Preface

The main goal of this book is to construct a theory of weights for the log
crystalline cohomologies of families of open smooth varieties in character-
istic p > 0. This is a p-adic analogue of the theory of the mixed Hodge
structure on the cohomologies of open smooth varieties over C developed
by Deligne in [23]. We also prove the fundamental properties of the weight-
filtered log crystalline cohomologies such as the p-adic purity, the functori-
ality, the weight-filtered base change theorem, the weight-filtered Kiinneth
formula, the convergence of the weight filtration, the weight-filtered Poincaré
duality and the Es-degeneration of p-adic weight spectral sequences. One can
regard some of these results as the logarithmic and weight-filtered version of
the corresponding results of Berthelot in [3] and K. Kato in [54].

Following the suggestion of one of the referees, we have decided to state
some theorems on the weight filtration and the slope filtration on the rigid
cohomology of separated schemes of finite type over a perfect field of char-
acteristic p > 0. This is a p-adic analogue of the mixed Hodge structure on
the cohomologies of separated schemes of finite type over C developped by
Deligne in [24]. The detailed proof for them is given in another book [70] by
the first-named author.

We have to assume that the reader is familiar with the basic premises
and properties of log schemes ([54], [55]) and (log) crystalline cohomologies
([3], [11], [54]). We hope that the findings in this book will serve as a role
as a first step to understanding the rich structures which p-adic cohomology
theory should have.

Tokyo Yukiyoshi Nakkajima
January 2008 Atsushi Shiho



Chapter 2

Weight Filtrations on Log Crystalline
Cohomologies

In this chapter, we construct a theory of weights of the log crystalline coho-
mologies of families of open smooth varieties in characteristic p > 0, by
constructing four filtered complexes. We prove fundamental properties of
these filtered complexes. Especially we prove the p-adic purity, the functori-
ality of three filtered complexes, the convergence of the weight filtration, the
weight-filtered Kiinneth formula, the weight-filtered Poincaré duality and the
E5-degeneration of p-adic weight spectral sequences. We also prove that our
weight filtration on log crystalline cohomology coincides with the one defined
by Mokrane in the case where the base scheme is the spectrum of a perfect
field of characteristic p > 0.

2.1 Exact Closed Immersions, SNCD’s and Admissible
Immersions

In this section we give some results on exact closed immersions. After that,
we define a relative simple normal crossing divisor (=:relative SNCD) and a
key notion admissible immersion of a smooth scheme with a relative SNCD.

(1) Let the notations be as in §1.6. Consider triples

(2.1.0.1) (V.2v(V), [ ])’s,

where V is an open log subscheme of Y, ¢t: V' S5V is an exact immersion
into a log smooth scheme over S and Dy (V) is the log PD-envelope of ¢ over
(S,Z,7v). Let (Y/S)}gﬁcrys be a full subcategory of (Y/S)98, whose objects
are the triples (2.1.0.1). We define the topology of (Y/S)E)ﬁcrys as the induced
topology by that of (Y/S)8

crys:®
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56 2 Weight Filtrations on Log Crystalline Cohomologies

Definition 2.1.1. We call the site (Y/S)ERCW5 (resp. the topos (}%)Eﬁcws)
the exact restricted log crystalline site (resp. exact restricted log crystalline
topos) of Y/(S,Z,7).

Let

(2111) QY/S : (Y/S)Elgicrys (Y/S)locg:;rys

log

ER* .
Rcrys

be a natural morphism of topoi: Qy/s( ) for an object E € (Y/S)
the natural restriction of E and QY /S commutes with inverse limits. We also
have a morphism

(2112) -
QY/S : ((Y/S)}Slg{cryy Q%’?gQ;/S(OY/S)) - ((Y/S);zcgrys’ Q;/S(OY/S))

of ringed topoi.

Proposition 2.1.2. The morphism (2.1.1.1) (resp. (2.1.1.2)) gives an equiv-
alence of topoi (resp. ringed topoi).

Proof. One can check easily the isomorphism F — Q;E,%QY V5. for any

F € (V/8)5erye

On the other hand, let ® := (V, Dy (V),[]) be an object of (Y/S)gfcgrys. By
54, (5.6)], Dy (V) is constructed locally by a local exactification V —= Ve*
of V —=5 V. Hence there exists a covering ® = | J, ©; such that each ©; is an
object in (Y/S)E’ﬁcrys. Note that ©; xp D, is also an object in (Y/S)Eﬁcrys.
Then, for any F € (Y/S)'8  we have

Rerys?

= Ker(H F(@l) — HF(:Dz XD :Dl’))

0,1’

= Ker( HQY/S* 1{3/1}; D) — H QY/S*QnE/%F(Qi Xp Dir))

QY/S*QY/S (D).

Hence we have F = Y / o QEI/{;F. Thus the equivalences follow. 0O

Next we prove the second fundamental exact sequence for exact closed
immersions of fine log schemes and using this, we give a local description of
exact closed immersions of fine log schemes under certain assumption.

Lemma 2.1.3 (Second fundamental exact sequence).

Let 11 Z —=5 Y be an ezact closed immersion of fine log schemes over a
fine log scheme S defined by a coherent ideal J of Oy . Then the following
sequence
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A
(2.1.3.1) T T? = *(Ayg) — Ay — 0

is exact. Here A is the composite morphism A : J | J?—1* (Q%//s) —* (A%,/S).

If Z/S is log smooth, then A is injective. If Z/S is log smooth and if Y is
affine, then (2.1.3.1) is split.

Proof. Let My and My be the log structures of Y and Z with structural
morphisms ay : My — Oy and ayz: Mz — Oy, respectively. Let Mg be

the log structure of S. Because the natural morphisms (*(Q% ,) — Qb
v/8 Z/%

and 71 (My /O%) — Myz/O} are surjective, so is L*(A%,/S) — AIZ/S. To
prove the exactness of the middle term of (2.1.3.1), it suffices to prove that
the following sequence

(2.1.3.2) Home, (J/JT? E) «— HomoZ(L*(AbS),E) «—— Homyp, (Alz/s,é')

is exact for any Oz-module €. The question is local. Assume that the re-
striction of an element of ¢ € Homp, (L*(A%//S),S) to A(J) is the zero.
Let ¢ be a section of J such that 1 +¢ € O3. Then g(dlog(l + 1)) =
g(dt/(1 +1t) = g(dt) = 0. Let B: .71 (My) — 7 1(Oy) — Oy/J be
the natural morphism. Since M is the push-out of the following diagram

BHOY/T)) —— TH(My)

|

Oy /T) ;

we may assume that a local section of My is represented by (u,m) (u €
(Oy/T)*,m € 1 (My)). Let ¢': A} ;g — & be a morphism defined by

§'(w) =9(®) (w ey o) and ¢'([(u,m)]) = gldlogu) +g(dlogm) ([(u,m)] €
M), where & denotes any lift of w to ¢* (2} g) It is straightforward to check
%

that ¢’ is well-defined and that ¢’ induces g. Thus (2.1.3.2) is exact.

(o]

Next assume that Z/S is log smooth and that Y is affine. Let Y be the

first log infinitesimal neighborhood of the exact closed immersion Z =Y.
For two sections m € :~1(My) and a € 1~}(Oy), let [m] and [a] be the images

[e]
in My and Oy, respectively. Because Z/S is log smooth and Y is affine, there
exists a section s: Y1 — Z of the exact closed immersion Z —= Y! induced
by ¢. In particular, there exist morphisms syo: s~ 1(Mz) — My|y1 and
st 8 1(0z) — Oy such that spo(fm]) = m(1+t) 3t € J/J* 1+t €
v1) and sy(a]) = a+t' (3t € J/T?); moreover, sy, and sy fit into the
following commutative diagram:
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Smo

s™1 (Mz) _— MYlYl

s‘l(az)l J/aY|y1

S_I(Oz) LN Oy,

where the vertical morphisms above are structural morphisms.

To prove the existence of the local splitting of (2.1.3.1), we need the module
of the log derivations, e.g., in [53, (5.1)].

Let F be an Oy-module. Let f: Y — S be the structural morphism.
Let Derg(Y, F) be a I'(S, Og)-module whose elements are the pairs (4, 9)’s
satisfying the following conditions:

(1) ¢ is a derivation Oy — F over 9,
(2) ¢ is a morphism My — F of monoids,

(3) ay (m)d(m) = d(ay (m)) (m € My),
(4) 0(f7H(n)) =0 (n € Ms).
Then, by [53, (5.3)], we have an isomorphism
Homo, (Ay /g, F) 3 h+— (hod,hodlog) € Ders(Y, F).
In particular,

Homo, (1 (Ay,g), J/J?) = Homo, (Ay 4, T /T?) = Ders(Y, T /T?).

Let (3 be the isomorphism (1+7)/(1+J2) 3 1+t — t € J/J? of abelian

sheaves. It is easy to check that the morphisms 0: Oy 2 a — a — s,i([a]) €
J/T? and §: My > m — B(m/smo([m])) € J/J? satisfy (1) ~ (4) and
give a local splitting of (2.1.3.1). O

Lemma 2.1.4. Let the notations be as in (2.1.3) with Y, Z log smooth over S.
Let A% (n € N) be a log scheme whose underlying scheme is A7 and whose
s

[e]
log structure is the pull-back of that of S by the natural projection A7 — S.
s

Let z be a point of Z and assume that there exists a chart (Q — Mg, P —
My, Q 2 P) of Z — S on a neighborhood of z such that p is injective, such
that Coker(p®P) is torsion free and that the natural homomorphism Oz . @z
(PEP/QBP) — AIZ/S’Z is an isomorphism. Then, on a neighborhood of z,
there exist a nonnegative integer ¢ and the following cartesian diagram:

4 LN Y

(2.1.4.1) l l

(S ®z1q) ZIP), PY) —=— (S ®gq) Z[P], P*) x5 A%.
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Here the vertical morphisms are strict etale and the lower horizontal mor-
phism is the base change of the zero section S — Ag.

Proof. Assume that Y is affine. By (2.1.3) we have the following split exact
sequence

(2.1.4.2) 0—J/J° 2 V(Ayyg) — Ayys — 0.

Let s be the image of z in S. Since Coker(psP) is torsion free, there ex-

ists a homomorphism P& — Mlg/pL(z) which is compatible with the monoid

homomorphisms ¢ — Mg s — My,,(.) and P — Mz .. Since we have
(Mz/0%). = (My /0% ),(2), the homomorphism P& — M{g,pL(z) induces the
homomorphism P — My, (), which induces a chart of ¥ — S on a neigh-
borhood of ¢(z). By the exact sequence (2.1.4.2), there exist local sections
Trg1s-- s Trgpe € J and elements my,...,m, € P such that {dlogm,;}_; is
a basis of AlZ/S,z and {{dlogm;}I_;, {dxj}?;fﬂ} is a basis of A%,/S)L(Z). By
the same argument as that in [54, p. 205], we have compatible etale morphisms
Z — S ®yjq) Z[P] and Y — (S ®zq] Z[P)) Xe Specg((’)g [Tai1,- s Tare])
in the classical sense. O

Corollary 2.1.5. Let Sy S, S be a closed immersion of fine log schemes.
Let Zy (resp. Y) be a log smooth scheme over Sy (resp. S), which can be

considered as a log scheme over S. Let v: Zy S5 Y be an ezact closed im-

o
mersion over S. Let z be a point of Zy and assume that there exists a chart
(Q — Mg, P — My,,Q LN P) of Zg — So s Sona neighborhood of
z such that p is injective, such that Coker(p®P) is torsion free and that the
natural homomorphism Oz, , ®z (P# /Q8P) — A1Z/SO7Z is an isomorphism.
Then, on a meighborhood of z, there exist a nonnegative integer ¢ and the
following cartesian diagram

(2.1.5.1)

Zo _ Y’ —_ Y

l l !

(So ®zjq) ZIP], P*) —S— (S ®zq) Z[P], P*) —S— (S ®gzq] ZIP), P*) x5 A%,

where the vertical morphisms are strict etale and the lower second horizontal
morphism is the base change of the zero section S -, AG andY' ==Y xpe S.

Proof. Set Yy := Y xg Sy and let 1o: Zj = Yy be the closed immer-
sion induced by ¢. Apply (2.1.4) for ¢g. Then we have a cartesian diagram

(2.1.4.1) for Zy/Sy and Yy/Sp around any point z € Zy. By the same ar-
gument as in the proof of (2.1.4) using the isomorphism (My /O3 ),y ~
(My, /O3, )io(z), we see that the chart P — My, extends to a chart



60 2 Weight Filtrations on Log Crystalline Cohomologies

P — My around ¢(z). Let Jy (resp. J) be the ideal sheaf of ¢y (resp. ¢).
Let {{dlog mi}le,{dxg-o)};lﬁﬂ} (m; € P, x;o) € Jo) be a basis of Ay, /g .
;O) in 7. Then, using [13, Corollaire to IT §3 Propo-
sition 6], we see that {{dlogmi}gzl,{dxj};iﬁH} is a basis of A%//S,L(z)
(cf.[40, 4 (17.12.2)]). Hence we have a strict etale morphism Y — (S ®zq
Z[P],P*) xg AS. Now we obtain the diagram (2.1.5.1). O

Let z; be any lift of

Remark 2.1.6. By a similar argument to the proof of (2.1.4) and (2.1.5) and
using [54, (3.5), (3.13)], we see that the diagrams as in (2.1.4.1), (2.1.5.1)
always exist etale locally (for some Q — P) even if we drop the condition
on the existence of a nice chart which we assumed in (2.1.4), (2.1.5).

(2) Let Y be a scheme over a scheme T'. Let Div(Y/T)>o be the integral
monoid of effective Cartier divisors on Y over T' (e.g., [56, (1.1.1)]). We say
that a family {E)}aea of non-zero elements in Div(Y/T)>¢ has a locally finite
intersection if, for any point z € Y, there exists a Zariski open neighborhood
V of z such that Ay :={\ € A | Ex|v # 0} is a finite set. If {Ex}xca has a
locally finite intersection, then we can define a sum ), ., naEx (nx € N) in
Div(Y/T)>o.
Let f: X — Sy be a smooth morphism of schemes.

Definition 2.1.7. We call an effective Cartier divisor D on X /Sy is a relative
simple normal crossing divisor (=:relative SNCD) on X /Sy if there exists a
family A := {D)}ea of non-zero effective Cartier divisors on X /.Sy of locally
finite intersection which are smooth schemes over Sy such that

(2.1.7.1) D=> Dy in Div(X/Sp)>0
AEA

and, for any point z of D, there exist a Zariski open neighborhood V of z in
X and the following cartesian diagram:
(2.1.7.2)

D|V # 14

! L

Spec (Os, Y1, -+ yal /(Y1 - -ys)) —— Specg (Os, [y1; - -+ ya])

(for some positive integers s and d such that s < d), where the morphism g
is etale.

Note that we do not require a relation a priori between {Dy|y }rea, and
the family {y; = 0}7_; of closed subschemes in V in the diagram (2.1.7.2).
However, by (A.0.1) below, we obtain {Dx|y }xea, = {{y;i = 0}}{_; in the
diagram (2.1.7.2) if V' is small.
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Definition 2.1.8. We call a smooth divisor on X /S contained in D a smooth
component of D. We call A = {Dy}xea a decomposition of D by smooth
components of D over Sy.

Note that the decomposition of a relative SNCD by smooth components is
not unique.

Let Divp(X/So)>0 be a submonoid of Div(X/Sy)>o consisting of effective
Cartier divisors E’s on X /Sy such that there exists an open covering X =
Uier Vi (depending on E) of X such that |y, is contained in the submonoid
of Div(V;/So)>0 generated by Dily, (A € A). By (A.0.1) below, we see that
the definition of Divp(X/Sp)>o is independent of the choice of A.

The pair (X, D) gives a natural fs(=fine and saturated) log structure in
Xar as follows (cf. [54, p. 222-223], [29, §2]).

Let M (D)’ be a presheaf of monoids in )Z'Zﬁr defined as follows: for an open
subscheme V of X,

(2.1.8.1)  I'(V,M(D)") :={(E,a) €Divpy, (V/So)>0 x I'(V,Ox)|
a is a generator of I'(V,Ox(—FE))}

with a monoid structure defined by (E,a)-(E’,a’) := (E+ E’,aa’). The nat-
ural morphism M (D) — Ox defined by the second projection (E,a) — a
induces a morphism M (D) — (Ox,*) of presheaves of monoids in X,a;.
The log structure M (D) is, by definition, the associated log structure to
the sheafification of M(D)". Because Divp), (V/Sy)>0 is independent of the
choice of the decomposition of D]y by smooth components, M (D) is inde-
pendent of the choice of the decomposition of D by smooth components of D.

Proposition 2.1.9. Let the notations be as above. Let z be a point of D
and let V be an open neighborhood of z in X which admits the diagram
(2.1.7.2). Assume that z € (\;_{yi = 0}. If V is small, then the log struc-
ture M(D)|ly — Oy is isomorphic to Qi - -yl - Oy. Consequently
M(D)|v is associated to the homomorphism N§, 2 e, — y; € M(D)|y
(1 <i<s) of sheaves of monoids on V', where {e;};_, is the canonical basis
of N*. In particular, M (D) is fs.

Proof. By the definition of M’'(D) and by (A.0.1) below, the homomorphism
M'(D)|y — Oy factors through Of4i -yl if V is small. Hence there
exists a natural morphism M(D)|y — Op 4 -y of log structures on V.
By taking the stalks, one can easily check that the morphism above is an
isomorphism. 0O

By abuse of notation, we denote the log scheme (X, M (D)) by (X, D).

Set U := X\ D and let j: U —<, X be the natural open immersion. Set
N(D) := Ox N j.(Of). We remark that M (D) & N(D) in general; indeed,
the stalks of N(D)/O% are not even finitely generated in general (see (A.0.9)
below).
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Let Sy -S5 S be a closed immersion of schemes defined by a quasi-coherent
ideal sheaf 7 of Og. We can consider the scheme X as a scheme over S by the
closed immersion Sy —= S. Let (X, D)(= (X, M(D))) be a smooth scheme
with a relative SNCD over S. Let t: X — X be a closed immersion over S
defined by a quasi-coherent ideal sheaf of Oy.

Definition 2.1.10. Let A := {D)} ca be a decomposition of D by smooth
components of D. Let ¢v: (X, D) - (X, D) be an exact (closed) immersion
into a smooth scheme with a relative SNCD over S. Then we call ¢ (or a pair
(X,D)/S by abuse of terminology) an admissible (closed) immersion over S
with respect to A if D admits a decomposition A= {Dx}rea by smooth
components of D such that ¢ induces an isomorphism Dy 5 Dyoxx X
of schemes over Sy for all A € A. We say that A is compatible with A.
We sometimes denote the admissible (closed) immersion by v: (X, D; A)

(X,D; A).

Remark 2.1.11. If the underlying topological spaces of g‘g and g‘ are the same
and if (X,D) is a lift of (X, D) with a decomposition A of D by smooth

components of D, we obtain the decomposition AofD by smooth components
of D canonically.

Let ¢: (X,D;A) < (X,D;A) be an admissible immersion. Let V' be an
open subscheme of X. If we set V := X\ (X \ V) (here X is the closure of X
in &), the restriction of ¢ to (V,DNV)

(2.1.11.1) w: (V,DNV) == W, (| DanYy)
AEAY

is an admissible immersion with respect to {Dx}aen, -

Definition 2.1.12. We call the admissible immersion ¢y the restriction of ¢
to V, and Aly := {Dx}xea, the restriction of A to V.

By (2.1.5) and (A.0.1) below, we have the following:

Lemma 2.1.13. Let t: (X, D; A) = (X, D; A) be an admissible immersion.
Then, for any point z of X, there exist Zariski open neighborhoods V of z
and V of 1(z), positive integers s < d < d' and the following two cartesian
diagrams:
(2.1.13.1)

Dly — Vv

l s

SpeCS(OS[xla cee 7xd/]/($1 T xs)) - SpecS(Os[xl, s al'd’])a
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(2.1.13.2)
1% SELSEEN Vv
! Js
SpecSO((’)sO [21,.. . 2a]/(Tas, .. xar)) — Specy(Os(a1, ..., zar]),

where g is etale and {Dx|y rea, = {{x; =0}}7_, in the diagram (2.1.13.1).

Let (S,Z,v) be a PD-scheme and let (X, D) be a smooth scheme with a
relative SNCD over Sy := Spec(Og/Z). Let A be a decomposition of D by
smooth components of D. Consider triples

(2.1.13.3) (U, D|v),Dw,pj,)(U,D)),[])’s,

where U is an open subscheme of X, (U, D|y) — (U, D) is an admissible
immersion over S with respect to Ay and Dy, pj, (U, D)) is the log PD-

envelope of the immersion above over (S,Z,v). Let ((X, D)/S)fﬁcrys be a
full subcategory of ((X, D)/S)8. whose objects are the triples (2.1.13.3).

crys

We define the topology of ((X,D)/S)fﬁcrys as the induced topology by

—_~—

that of ((X,D)/S)s,. Let ((X, D)/S)lglg;{crys be the topos associated to
(X, D)/8) Rerys:

Definition 2.1.14. We call the site (()QD)/S)X%CWS (resp. the topos

—~

(X, D)/S)fﬁcrys) the admissible restricted log crystalline site (resp. admis-
sible restricted log crystalline topos) of (X, D)/(S,Z,~).

Let

—~— —_~—

(21141) Q(A)?D)/S: ((X’ D)/S)X)Ig{crys - ((X? D)/S)II({)cgryS

be a natural morphism of topoi: For an object E € ((X, D)/S)Efrysy
f;?*D) /s(E) is the natural restriction of E and Qé?*b) /s commutes with

inverse limits. We also have a morphism

e~

lo, * *
(2.1.14.2) QX pys: (X, D)/S) Reryss QX 0)/sQUx,0)/5(O(x.0)/5))

—~

— (X, D)/S) s Qix.0y5(O(x,1)/8))

of ringed topoi.
Proposition 2.1.15. The morphism (2.1.14.1) (resp. (2.1.14.2)) gives an

equivalence of topoi (resp. ringed topoi).

Proof. Let ¢: (X, D) —<, P be an exact closed immersion into a log smooth
scheme over S. Let P’ be an exact closed log subscheme of P locally obtained
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in (2.1.5) for ¢. Then ¢ is locally an admissible immersion with respect to the
restriction of A to an open subscheme of X since P’ is a local lift of (X, D).
Hence we obtain (2.1.15) by (2.1.2) and by the proof of (2.1.2). O

2.2 The Log Linearization Functor

In this section we recall the log version of the linearization functor in [11, §6]
(cf. [54, (6.9)]) and the log HPD differential operators. After that, we show
some properties of the log linearization functor for a smooth scheme with a
relative SNCD.

(1) Let (S,Z,v) and f: Y — S be as in §1.6. For an object (V, T, Mr,¢,9)
of the log crystalline site (Y/S)¢ . we sometimes denote it simply by

crys?

(V,T,Mr,6), (V,T,5) or even T as usual. We also denote by T' the rep-
resentable sheaf in (Y/S)10g defined by T'. Let F be an object of (Y/S’)log

crys crys®

Let (%)log | be the localization of the topos (Y/S)log at F: the objects

crys crys

in (}7/V5’)1°g,|p are the pairs (E, ¢)’s, where E is an object in (Y/S)log and

crys crys
¢ is a morphism £ — F in (Y/S)!8_. As usual, let

crys

(2.2.01) ir: (V/S)s5lr — (V/S)

crys crys
log
crys?
Ja(E) is a pair (Ex F,ExF proi; F); for an object (E,¢) in (Y/S)}3‘;§S|p,
Jjr«((E, 9)) is the sheaf of the sections of ¢.

Let (V, T, Mr,d) be an object of the log crystalline site (Y/S)_. Let

crys

be a morphism of topoi defined by the following: for an object E in (Y/ S)

jr: (Y/S)'%8,|r — (Y/5)'%2

crys crys

be the localization morphism in (2.2.0.1) for F' =T Let

(2.2.0.2) 01 (Y/9)% |7, Oy s|7) — (Thar, Or)

be a morphism of ringed topoi defined by the following (cf. [11, 5.26 Propo-
sition]): for an Or-module &, the sections of p*(€) at (T, ¢) is I'(T", ¢*(£));
for an Oy s-module E in (Y/S)9 |7, ¢.(E) is defined as follows: let T” be

crys
an open log subscheme of T. Let T’ also denote the object (77 xr V <,
(T'x7 T =T")) in (Y/S)!98 . Then we have a natural morphism ¢: 7" — T

crys”
in (Y/S)8,; the section of ¢, (E) is, by definition, I'(T", ¢.(E)) := E((T",1)).
By the log version of the ringed topos version of [11, 5.26 Proposition], we

have the following diagram of ringed topoi
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(2.2.0.3) 4
(Y/S)% |7, Oyslr) —2— ((Y/S)1E,, Oyss) —L  (Yoars f1(O5))

d [

(Tyar, Or) e Ve, Oy)  ——— (Vour, fH(O5) V)

and the following commutative diagram of topoi

(Y/S)8 | —2 (Y/S)ke

crys crys

(2.2.0.4) % lus’/s

Tzar = ‘/;ar szarv

where ¢ is defined as follows: I'((1”, ¢), 0 1)) :=T(T", 1)) for £ € Tyar
and (7", ¢) € (Y/S) %7

By the log version of [11, 5.27 Corollary], we have the following:

Proposition 2.2.1. Let the notations be as above. Assume thatV =Y . Then
the following hold:
(1) The functors jrs is exact.

(2) For an abelian sheaf E in ()7/\5’),1;%,5, Jr+(E) is uys.-acyclic.

Now let us recall the log linearization functor briefly (cf. [11, 6.10 Propo-
sition], [54, (6.9)]).

Let .1 Y - Y be a closed immersion into a log smooth scheme over
S such that 7 extends to ). Let Dy ()) be the log PD-envelope of ¢ over
(S,Z,7). Let

o

(22.1.1) o (Y/9)&Eny ) Ovssloy ) — Dy (V) O0y ()

be the morphism (2.2.0.2) for ' = Dy (Y). For an Og, (y)-module &, we
define L(&) as follows:

(22.1.2) L(E) = jo, )9 " (E) € (Y/9) ks
As in the classical crystalline case, L defines a functor:

(2.2.1.3)
{the category of Og, (y)-modules and Oz, (y)-linear morphisms}

— {Oy/s-modules}.

For (U, T,0) € (Y/S)8_, let Dy (T x §) be the PD-envelope of U — T'x gy

crys?
compatible with v and 6 and let pr : Dy (T'xsY) — T, py : Du(Txs)) —
Dy (Y) be natural morphisms. Then the sheaf L(E) . 7,5y on Tyar induced by

L(g) is given by L(g)(U,T,(S) = pT*p{,g = O,DU(TXS;V) ®O’Dy(y) 8
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As in the classical crystalline case, another definition of the log lineariza-
tion functor is known. To state it, we need to recall the definition of a log
HPD stratification (cf. [11, 4.3H Definition]; however there is a mistype in
[loc.cit., 1)]: “Dx/,g-linear” should be replaced by “Dx/g(1)-linear”).

Let Dy (V2) be the log PD-envelope of the locally closed immersion Y —=
Y xg Y over (S,Z,7). Let J be the PD-ideal sheaf defining the exact locally
closed immersion Y —— Dy (Y?).

Definition 2.2.2. Let & and F be two Ogp,, (y)-modules.

(1) An isomorphism e: 05, (32)805, (€ = EQ05,, () Oy (y2) is called
a log HPD stratification if € is Og,, (y2)-linear, if € mod J is the identity and
if the cocycle condition holds.

(2) ([75, (1.1.3)]) An Ogp, (y)-linear morphism u : Op, (y2) @0y,
& — Fis called a log HPD differential operator.

(3) ([75, (1.1.3)]) For a positive integer n, an Op, (y)-linear morphism

u : (Ogy(y2)/g7[n+1]) ®Ogy(y) E— F
is called a log PD differential operator of order < n.

Set L'(€) := O, (y2) ®0s, () E. Then, as in the classical crystalline case,
there is a canonical log HPD stratification

Oi)y()}2) ®O®Y(y) Ll(g) o L/(g) ®O®Y(y) O@Y(y2)'

Hence L'(€) defines a crystal of Oy g-modules (cf. [54, (6.7)]), which we
denote by the same symbol L/(£). L’ defines a functor

{the category of Ogp, (y)-modules and log HPD differential operators} —

{the category of crystals of Oy g-modules} :

For a log HPD differential operator u : Og, (y2) Q00 () E— F, L'(u):
L'(£) — L'(F) is given by the composite

5®@id
(2221) O@Y(y2) ®0©Y(y) & = Ogyoﬂ) ®O®Y(y) OQY()/Q) ®@®y(y) &
id®u
— O0,(02) ®0s, 3 I
where 0: O@y(yZ) — O@y(yZ) ®O®y(3’> Ogy(yz) = O@y(yS) is the map
induced by the projection 3 — )2 to the first and the third factors. By
the log version of [11, 6.10 Proposition], the following holds:

Proposition 2.2.3. For an Oy, (y)-module £, there exists a canonical iso-
morphism
L'(&) = L(&).
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Hence L also defines the functor
{the category of Ogp, (y)-modules and log HPD differential operators} —

{the category of crystals of Oy/gs-modules}.
By (2.2.2.1) and (2.2.3), we see the following: For a log HPD differential
operator u : Op,, (y2)®0g, o, € — Fand (U,T,6) € (Y/S)&8s, L(w)w,rs) -
L(&)w,r,s5) — L(F)w,r,s) is given by the composite

(2.2.3.1)
o £ o o g
Dy (TxsY) 09 3y € — Uy (Txsy) ®0n, ) Yoy (12) ®0s, )
id®u

I O@Y(szy) ®O©y(3}) f’

Where 5T . OQY(TXSy) — O@Y(szy) ®ODy(3’) O@Y()ﬂ) = O:DY(TXS)}Q)
(the equality follows from the log version of [11, 6.3, proof of 6.10]) is the
map induced by the projection T x g Y? — T x g to the first and the third
factors. It is easy to obtain the following lemma from the definition of L’.

Lemma 2.2.4. The functor L, regarded as the functor
{the category of Og, (y)-modules and Oy, (y)-linear morphisms} —

{the category of crystals of Oy, g-modules}

18 exact.

Remark 2.2.5. (cf. [3, IV Remarque 1.7.8]) The functor L is not left exact as
a functor (2.2.1.3) in general. Indeed, let k be a perfect field of characteristic
p > 0 and let W,, (n € Z>2) be the Witt ring of x of length n. Set S :=
(Spec(W,,), W, pWo, [ ]), Y := (Spec(k),k*), Y := S and € := W,,. Then,
though a sequence

n—1
0—p&—& P_r¢e
of W,,-modules is exact, the following sequence

n—lx

0 — L(p&) — L&) "—" L(&)

in Oy/s-modules is not exact since the value of the sequence above at Y is

0— an/p2Wn 2k %k
The following is analogous to [11, 6.2 Proposition].
Lemma 2.2.6. (1) Let Y; (i = 1,2) and (S,Z,7v) be as in §1.6. Let T; =

(U, T3, 6;) = (Ui, Ty, Mr,, ;) (i = 1,2) be an object of the log crystalline site
(Yi/S)8,, which is considered as a representable sheaf in the topos (Y;/S)8

crys*
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Let J; be the defining ideal sheaf of the closed immersion U, S5 T,. Let
Y; <, Y5 be an exact closed immersion which induces an exact closed im-
mersion Uy -, Us. Let g: Ty — Ty be an exact closed immersion of fine
log PD-schemes over S fitting into the following commutative diagram

UlL)U2

n| [n

T -9 1.
c
Assume that g* induces a surjective morphism g*: g*(J2) — J1. Let

v (V1/8)%lm — (Ya/9)&SSslm

be the induced morphism of topoi. Let (U,T,6,¢) = (U,T,Mrp,0,0) be a
representable object in (Y2/S)'8 |1,. Let J be the defining ideal sheaf of

crys
the closed immersion U_L T. Set T := J +ZOp and let § be the ex-
tension of § and v on J. Let D5(T xr, Th) be the log PD-envelope of the

closed immersion U xy, Uy —— T xq, Ty over (T, J,8) with natural mor-
phzsm q: (U XU, Ul,gg(T X1y Tl);[ ]) — (U1,T1,51) m (Yl/S)IC?%S Then
H((U,T,6,)) is representable by an object (U xy, Ur,D5(T x1, Th),[ ],q) €
(Y1/S)$8 | 1y; the functor v, is exact.

(2) Let the notations and the assumptions be as in (1). Then D5(T X1,
Tl) =T Xy, Tl.

Proof. (1): We have to check that (U xy, U1, D5(T x1, T1), [ |, ¢) is actually
an object of (Y1/9)195,|r, .

Since U xy, U; is an open subscheme of Uy, v extends to OUXU2 U, - Since
the image 7 in Ovxy,v, 8TOU %y, Uy § actually extends to Oy « UpUn (cf. [11,
6.2.1 Lemmal). Since  extends to Ov .y, v, » the exact closed immersion U X,
U, = D5(T xp, T1) is a PD closed immersion by [11, 3.20 Remarks 4)].

Set J;:= T;+ZO01, (i = 1,2) and let §; be the extension of 4; and v on J;.
Set Jizr = Ker(Orwp, 1, — Ovxy,r). Let Typp be the PD-ideal sheaf
of OQK(TXT2T1) obtained from Ji2,7. Set 7127T = 7’12,T + IOQX(TXTQTI).
Consider the following commutative diagram

OQX(TXTZTI) O@g(TquTl)
Orx T Or

I I

Or, — Or,.
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Here we omit to write the direct images. We claim that the left vertical com-
posite morphism induces a PD-morphism (O, , J1) — (Ops(Txz, 1) T12.7)-
Indeed, by the definition of &, the composite morphism (Or,,J2) —
(O7,T) — ((’)QX(TXT2T1),7127T) is a PD-morphism. Let s be a local sec-
tion of Ker(g*: Jo — J1). Then the image of s in Oo5(Txr,1;) by the right
vertical composite morphism is the zero. Hence the claim follows because
g*: g*(J2) — J1 is surjective by the assumption. Consequently we actually
have a natural morphism

q: (U XU, Ulvgg(T Xy Tl)v [ ]) - (UlaTlv(Sl)

of log PD-schemes over (S,Z,7).
By using the universality of the log PD-envelope, it is straightforward to
see that

(2.2.6.1) C(UT,6,0) = (U xu, U, D5(T x1, T1),[ ], 9)-

Therefore, for an object E in (}72-73)15’§S|T27 we have

(2262) L*E((U7 T7 67 ¢)) = Hom(%)log E (L*((Ua Ta 53 ¢))7 E)

crys

= E((U XU, Ul,gg(T X, Tl)? [ ]7Q))'

Using the formula (2.2.6.2) and noting that D5(T x1, T1) ~ T xp, 17 is a
closed set of T" as a topological space, we can easily see that the functor ¢, is
exact.

(2): Set J12 := Ker(Or, — g+(Or,)). The structure sheaf of T' xp, T} is
equal to Or/J1207. By the following commutative diagram

Or/J —— Ov
| H
¢~ HOr,/To) =——= ¢~ (Ou,),

we have J N ¢~ (J12)Or = ¢~ 1(Jo N J12)O7. It is easy to see that the ideal
sheaf J12 N J> is a sub PD-ideal sheaf of J5. Hence, by the same proof of
[11, 3.5 Lemmal, the PD-structure § defines a unique PD-structure d12 on
J(O1/T1207). Moreover, it is easy to see that v extends to Orxr, 1, - Hence
(Or/J1207, T (O /J1207),612) is a sheaf of the universal PD-algebras of
(Orxr, 10 Jr2r) over (Or, J,0), that is, we have (2). O

Following [31], let us denote by A%, /s the sheaf of log differential forms of
Y/S of degree i (i € N). The following is a log version of [11, 6.12 Theorem)]:

Proposition 2.2.7. Let ¢: Y S, Y be a closed immersion of fine log
schemes over S. Assume that Y is log smooth over S and that v extends
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to Y. Let Dy (Y) be the log PD-envelope of v over (S,Z,~). Then the natural
morphism

(2271) Oy/s e L(O@Y(y) ®Oy A&/S)
s a quasi-isomorphism.

Proof. Let Dy (V') (i € Zg) be the log PD-envelope of the composite im-
mersion Y —=» Yy SSI Vi over S , where ) -, V' is the diagonal immersion.
Let pi: Dy()?) — V2 FHhppel ) (i = 1,2) be a natural morphism and let
J be the ideal sheaf of the locally exact closed immersion ) — @y(y2).
The problem is local as in [11, 6.12 Theorem]; we may assume that Ai//s has
a basis {dlogt;}}_,, where t; is a local section of the log structure of . Let
u;j be a local section of Ker(O%y(yQ) — O3) such that p3(t;) = pi(t;)u;.
Then, by [54, (6.5)], the following morphism

[n]

Oy(s1,.--,5n) 2 S; (uj - 1)[n] € ODy(le)

is an isomorphism, where s;’s are independent indeterminates. We identify
Os,,(y2) with Oy(s1,..., s,) by this isomorphism. By the log version of [11,
6.2 Proposition], LICCI)»%,s*(Oy/S) is a crystal of Oy)/g-modules. Hence, as in [11,
6.3 Corollary], we obtain a canonical isomorphism Og, (y) ®0,, On,,(32) —
Os, (y2). Consequently we can identify O, (y2) with Ogp, (yy(s1,...,5n)
(cf. [54, (6.5)]). Moreover, by [54, (5.8.1)] and [81, Proposition 3.2.5], there
exists an isomorphism Ai}/s > dlogt; — uj —1 € J|T?* = j/jm of
Oy-modules.

Let pi3: Dy (Y3) — Dy (Y?) be the induced morphism by the product
of the first and the third projections Y3 — V2. Let

PI ~
0: Op, (y2) = Opy (y3) — Oy (32) ®0s, 3, Ooy (32)
be the morphism in [75, p. 14]. Then, by the formula [75, (1.1.4.2)], §(u;) =
uj ®@u,;. Hence 6(s;) = s; ®s;+5; ®1+1®s; (the last formula in [75, p. 16]).
Hence the natural connection

1
V: O@Y(Jﬂ) R0y, ASI;/S - ODY()}Q) Qoy Agj/_s

is given by

(2.2.7.2) V(as[fl] sl gu) = a(z s[fl] o -sg-ijfl] sl (s;41)dlog t Aw
j=1

—|—s[1i1] sl @dw) (ae Ony ), i1,---,in €N, we A§/S)
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as in [11, 6.11 Lemmal]. Let (U,T,6) be an object of (Y/S)$5,. Because the
problem is local, we may assume that there exists the following commutative
diagram:

uvu—S-r71

L

y —“ 5 .

Then we have a natural morphism (U, T,6) — (Y,Dy(Y),[]) in (Y/S)k8

crys
and a natural complex Or(s1,...,5,) ®0,, A;,/S, which is equal to the com-
plex L(Og, (y) @0y A3/ 5)0,1.9)-

Now, consider the case n = 1 and set s; = s and t; = t. Then the
complex Or(s1, ..., 5n)®0, A3, /g is equal to Or(s) Ve, Or(s)dlogt. Because
Vr(sh) = slh=U(s 4+ 1)dlogt = (nsl™ + s*=1))

n, we have the following formula

dlogt for a positive integer

(2.2.7.3)

V(Y a,s™) = Z(an + (n—1D)an_1)s" Ydlogt + ma,,s™dlogt
0 n=1

n=

(m e N,a, € Or (0 <n <m)).

Hence Ker(Vy) = Op. Because p is locally nilpotent on S, we may assume
that p a,~v = 0if N is sufficiently large. Hence we see that Coker(Vy) = 0 by
the formula (2.2.7.3). Therefore we have checked that the morphism (2.2.7.1)
is a quasi-isomorphism for the case n = 1.

The rest of the proof is the same as that of [11, 6.12 Theorem]. O

Proposition 2.2.8 ([54, the proof of (6.9)]).

Let1:Y =Y, Y and Dy (V) be as in (2.2.7). Let E be a crystal of Oy/s-
modules. Let (£,V) be the corresponding Og, (yy-module with integrable con-
nection. Then there exists a natural quasi-isomorphism

(2.2.8.1) E — L(€ ®oy A} )s)-

Proof. The proof is the same as that in [11, 6.14 Theorem]: we have the
following equalities in DT (Oyg):

E=E®oy,s L(Os,(y) ®o, AS/s)
= L(€ ®oy AY)s)-

0

Let t: Z =5 Y be an exact closed immersion of fine log schemes over S to
which v extends. Assume that there exists the following cartesian diagram
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zZ ——Y
C

(2.2.8.2) ml ln

where 1y z is an exact closed immersion of fine log schemes over S and the
vertical two morphisms are closed immersions. Let ©7(Z) and Dy ()) be

the log PD-envelopes of the closed immersions Z s Zand Y = Y over
(S,Z,7), respectively. Then we have the following diagram of ringed topoi:

(2.2.8.3)

~ —— PD4(2) |, renlo
(Zoar, 0z) 22— (D2(2) 100, 00 4(2)) —— (Z/9)&5slo 4(2) Oz/510 5(2))

PD log,loc
Ly’zl Ly,Zl Leass l

_ B — Oy () L Trinlo
Vaar, Oy) —2— Dy (V)ar: Oy () ——— (V/9)Hslny (), Ovysloy ()

((Z]8)58s,04)5)

s, |
((Y/S)55s, Oy ).

Let J z (resp. Jy) be the PD-ideal sheaf of D z(Z) (resp. Dy (Y)). Let Jy z
be the ideal sheaf of the closed immersion ¢y z.

j@y()’)
—_—

Lemma 2.2.9. Assume that ©z(Z) = Z xy Dy (). Then the diagram

*

(gzaraOZ) 9_2) (QZ(Z)zar’OEZ(Z))
(2.2.9.1) Ly,z,fl l@l?z*

5

Dsars Oy) —2— Dy (V)0 Oy (3))-

is commutative for a quasi-coherent O z-module &, that is, the natural mor-
phism gyLy, z. (5)—>L3P,Pz*g}(€) is an isomorphism.

Proof. Since Zy’ z is affine, (2.2.9) immediately follows from the affine base
change theorem ([39, (1.5.2)]). O

Lemma 2.2.10. Assume that L?DZ induces a surjection 15" (Ty) — J=.
Then the diagram

gy ¥35(2)

(D2(2) ar> On5(2) —— ((2/9)8.)0,(2), Oz/sl9,(2))
(2.2.10.1) L;?Z*l lbﬁﬁ,c

—~ w%y(y)

Dy (V) Oy ) ——— (Y/S)E oy ), Ov/sloy )
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is commutative for a quasi-coherent Og ,(z)-module €, that is, the natural

morphism Sﬂ%y(y)@?z*(5)—%1&@130@2%(3)(5) is an isomorphism.

Proof. Let £ be a quasi-coherent Oy , (z)-module. Let (7', ¢) = (U, T, Mr, 6, ¢)
be an object of (Y/9)98,|o, (3). Then, by (2.2.6) (1) and (2),

crys

(2.2.10.2) LB 0,2y (ENT, ¢) = T(T xo, (y) D2(Z),p5(E)),

where po: T'X g, ()P z(Z) — Dz(Z2) is the second projection. On the other
hand,

(2.2.10.3) Py )z (ENT, ¢) = T(T, 6" 135, (€)).

Since Dz (Z) — Dy (Y) is a closed immersion, in particular, an affine mor-

phism, the affine base change theorem tells us that both right hand sides of

(2.2.10.2) and (2.2.10.3) are the same. This completes the proof of (2.2.10).
O

Lemma 2.2.11. Assume that LQP,PZ induces a surjection 15" (Ty) — J=.
Then the following diagram of topoi

I 4(2)

(Z/9)&8s]0,(2) (Z/8)&8s
(2.2.11.1) nggocl Lg;gs

T nlo IDy M < Tanlo

(Y/S)lcr%/s‘fgy(y) — (Y/S)l:rgfs

s commutative.

Proof. Let T = (U, T, Mr,§) be an object of (Y/S)8_. Let 6 be the PD-
structure of Ker(Or — Opy) + ZOr which is an extension of § and ~.

Let D(T) = Dyn,5(T) be the log PD-envelope of the closed immersion

UNZ — T over (T,Mr,d). By the log version of [11, 6.2.1 Lemma],
Lse(T) = (UN Z,9(T)). Hence jy  zt55(T) = (D(T) x Dz(2),p2,2)
as a sheaf, where py z: D(T) X Dz(2) — Dz(Z) is the second projection.
Analogously, let poy: T X Dy (Y) — Dy (V) be the second projection. Let
5z be the PD-structure of ®z(Z) and let z be the extension of the ¢ and
v on Ker(Op,(zy — Oz) +ZOs ,(z). Let D(T x5 Dy (Y)) be the double
log PD-envelope of T' and Dy (Y) (cf. [11, 5.12 Lemmal) over (S,Z,~). Let
D(8) be the PD-structure of (T x s Dy (Y)) and D(4) the extension of D(J)

and . Then we have
L oy ) (T) = 1 (T x Dy (V) p2,y)
= 135 (DT x5 Dy (V)), p2.y)

= D55 (D(T x5 Dy (V) X2, ) Dz(2)) (2.2.6)
=9D(T) xDz(Z) (the universality of D (T x5 Dy ()))).
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Here we consider the last equality as sheaves in (Z/S)Cryb\gz z). Hence
(2.2.11.1) is commutative. O

Corollary 2.2.12. Assume that Dz(2) = Z xy Dy (Y). Let LE]/DS (resp.
Ll):)/?s) be the linearization functor of Og ,(zy-modules (resp. Og,, (y)-mod-

ules). Then there exists a canonical isomorphism of functors

(2.2.12.1) LyYs 0y, — 198, o LyYs
for quasi-coherent Og ,(z)-modules. Set Ly s := Lf,]/js ogy and Ly =
Lg?s o g%. Then there also exists a canonical isomorphism of functors

(2.2.12.2) Ly/sotyze — 158, 0 Lzys

for quasi-coherent Oz-modules. Moreover, the isomorphism (2.2.12.1) is
functorial with respect to log HPD differential operators of quasi-coherent
Op ,(z)-modules.

Proof. Because Dz(Z) = Z Xy Dy ()) and because the diagram (2.2.8.2) is

cartesian, the natural morphism L:};DZ' LJP;Dg(J y) — J z is surjective. The

first statement of (2.2.12) immediately follows from (2.2.1.2), (2.2.10) and
(2.2.11). The second statement follows from the former and (2.2.9).

Let us prove the last statement. For a quasi-coherent Ogp,(z)-module £
and (U, T,9) € (Y/S)e_ the isomorphism

crys?

LY/S 0 LJPJDZ*(S)T - Lcrya* © LZ/S(S)

induced by (2.2.12.1) is given by the natural homomorphism
(2.212.3)  Opy(1xsy) @00, ) 5 24(E) — Onyy 1 (1xs2) D0y (2 E-

If we are given a log HPD differential operator u : Op ,(z2) ®04 (5 € — F
of Op ,(z)-modules, the composite morphism

u: Opy (y2) Q05 ) L?%(«f) — Op,(22) 05,z € —F

is a log HPD differential operator of Og, (y)-modules and we see easily that
the diagram

OQU(TXSJ)) ®O®Y(y) LIJDI],DZ*(‘(:) - OCDU(TXSJJ) ®O©Y(y) L)PII,DZ*(]:)

| !

ODUXyZ(TXSZ) ®O©Z(z) g OCDUXYZ(TXSZ) ®O®Z(z) F

is commutative for any 7' = (U,T,§) € (Y/S)!98_, where the upper horizon-

crys?
tal morphism (resp. the lower horizontal morphism) is the homomorphism
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induced by @ (resp. u) in the way described in (2.2.3.1) and the vertical mor-
phisms are the homomorphism (2.2.12.3) for £ and F. Therefore we see the
compatibility of (2.2.12.1) with log HPD differential operators. O

Remark 2.2.13. In the case where Y, Z are trivial log smooth schemes over
a trivial log scheme S, we can also prove (2.2.12) by an analogous proof of
[3, IV Proposition 3.1.7]. In the case where Y, Z are fine log (not necessarily
smooth) schemes over a fine log scheme S, we can also prove (2.2.12) by
the second fundamental exact sequence of log differential forms on fine log
smooth schemes ((2.1.3)) and by the log version of an analogous proof of [3,
IV Proposition 3.1.7].

(2) Now let us study some properties of log linearization functors for a smooth
scheme with a relative SNCD.

Let So —= S be a closed immersion of schemes(=trivial log schemes)
defined by a quasi-coherent ideal sheaf. Let f: X — Sy be a smooth
scheme with a relative SNCD D on X over Sy. Let Z be a relative SNCD
on X over Sy which intersects D transversally over Sy. Let Ap := {Dy}x
(resp. Az :={Z,},) be a decomposition of D (resp. Z) by smooth compo-
nents of D (resp. Z). Then A := {Dy, Z,} . is a decomposition of DU Z by
smooth components of DU Z. Let (X, DU Z) - (X, DU Z) be an admissi-
ble closed immersion over S with respect to A. Let A := {Dj, Z,}a,u be the
decomposition of D U Z which is compatible with A.

Set

(22131) D{)\l’)\%_”)\k} = D)\l DDA2O~-~0D)\k ()\1#>\] lfl#j)
for a positive integer k, and set

X (k=0),
(k) _
(2.2.13.2) D\¥) = H D{)\h)\%”’/\k} (k>1)
v e | NN (i)}

for a nonnegative integer k. Set
(2.2.13.3) Dy:=X

for later convenience.
The following proposition says that a decomposition of a relative SNCD
by smooth components is locally unique:

Proposition 2.2.14. Let A and A’ be decompositions of D by smooth com-
ponents. Then, for any z € X, there exists an open neighborhood V' of z in
X such that Ay = A,.

Proof. If V' is small enough, we can take the diagram (2.1.7.2) such that
(A.0.1) below holds for both A and A’. Then Ay = {y; =0})_; =A{,. 0O
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Proposition 2.2.15. D) is independent of the choice of the decomposition
of D by smooth components of D.

Proof. Obviously we may assume that k is positive.

First we prove (2.2.15) for the case k = 1. Let Ap = {D,}, and
Ay ={D),}» be two decompositions of D by smooth components of D. By
(2.2.14) there exists an open covering {X;}; of X such that Ap|x, = Ap|x,-
Hence we have an isomorphism ([[, D)) xx X; — ([I,, D},) xx X;. This

local isomorphism is compatible with the open immersions X; N X,/ = Xi;
therefore we have the global isomorphism [[, Dy — [[,, D},.

Let D¥l be the k-fold fiber product of D over X; DI¥l admits the action
of the symmetric group &y of degree k. For a positive integer k, denote
the set {1,2,...,k} by [1,k]. For a surjective map « : [1,k] — [1,1], we
have the corresponding morphism DI — D] which we denote by s,.
Let Sy be the set of surjective morphisms [1,k] — [1,k — 1]. Set DF} .=
DI \ Uaes, 5o (DF=11); DIF} s an open subscheme of D, The scheme
D} also admits the action of &j. Then we can check D) = D{k}/G;€ by
the construction of D{*}. Consequently D®*) is independent of the choice of

the decomposition of D by smooth components of D. 0O
Set
(2.2.15.1) Z|pw = Z xx D®),

The scheme Z|pk) is a relative SNCD on D®) . We use analogous notations
D®) and Z|pw (k € N) for DUZ with A. Let a®: (D®), Z| py) — (X, Z)
and b*®) : (D™ Z|pa) — (X, Z) be morphisms induced by natural closed
immersions.

As usual, we define the preweight filtration PP on the sheaf of the log

differential forms Qiy/s(log(D U Z)) (i € N) in Xy with respect to D as
follows:

(2.2.15.2) PPy s(log(DU Z)) =
0 (k <0),
Im(Q%,, 5 (log(D U 2))®0,, QY f5(log Z) — Q% 5(log(DU 2))) (0 <k <),
Q"X/S(log(DUZ)) (k> 1).

Now, assume that the defining ideal sheaf 7 of the closed immersion
So -5, S'is a PD-ideal sheaf with a PD-structure 5.

Let the right objects in the following table be the log PD-envelopes of the
left exact closed immersions over (S,Z,7):
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(X,DUZ) < (X,DUZ) Dp
(X.2) = (¥, 2) £
(DX, Z|pwy) = (DX, Z|pw)) | P®)

Let gp: Dp — (X, DUZ), g: D — (X, Z) and ¢*): DF) — (DF) Z| )
) be natural morphisms. Note that the underlying schemes of the log schemes

Dp and © are the same. Let ¢*): D*) — © be a morphism induced by
b(k) : (D(k)a Z‘D(k)) - (Xa Z)

Lemma 2.2.16. (1) The natural morphism (D®), Z|pay) — (D) Z|pwy)
X(x,z) (X, Z) is an isomorphism.

(2) The natural morphism D% — D x (y z) (D®), Z|pay) is an isomor-
phism.

(3) Let J (resp. 7(k)) be the PD-ideal sheaf of Ogn (resp. Oguy). Then

the natural morphism ¢®)*: ¢®)*(7) — 7(k) is surjective.

Proof. Apply (2.1.13) to the SNCD D U Z and assume that D (resp. Z) is
defined by an equation z; = -+ = z; = 0 (resp. @441 = -+ = x5, = 0)
(1<t<s).

(1): (1) is obvious.

(2): By the universality of the log PD-envelope, this is a local question. We
may have two cartesian diagrams in (2.1.13) for D U Z; we may assume that
k < t. Let Di...; be a closed subscheme defined by an equation z; = --- =
zr = 0. Then Oy RO ODLnk = OX<$d+17 S ,xd/) ROy (OX/($17 S ,Ik)) =
Ox<$d+1, [N ,l’d/>/(l‘1, e ,:Ek).

Set D1...p := D1..; Xx X. Then the structure sheaf of the PD-envelope of
the closed immersion D;...j =, Dy... is

Opl___k<xd+1, .. .,(Ed/> = O)(<{Ed+1, e ,xd/>/(x1, e 7€Ek).

Furthermore it is immediate to see that there exists a natural isomorphism
DH ~ D x(y z) (DW), Z|pw) as log schemes. Thus (2) follows.

(3): The proof of (3) is evident by the local description of Op and Og ).

0

As usual, we denote the left objects in the following table by the right ones
for simplicity of notation:

(X,DUZ) -5 Dp) e ((X,DUZ)/S)e Dp

crys

(X.2) = D) € (X.2)/9)5% )

crys

(D), Z|poy) = DW) € (DW, Z|pwy)/ 515, | D™

crys

Furthermore, as usual, we identify the representable sheaf by ©p in ((X,
DUZ)/S)e  with Dp. Let ((X,DUZ)/S)% |5, be the localization of

crys crys
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(X,DUZ)/S)8%s at Dp. Let (X, 2)/9)&5ln and (DW), Z|pw)/S)S%s
|o ) be obvious analogues. Let af;f}),lsog :((D®), Z|pw)/8)es, — (X, 2)/5)
log be a morphism of topoi induced by the morphism a*). By the log version

crys
of [11, 6.2 Proposition], the functor a&f}é‘;g is exact.

Let the right objects in the following table be the log PD-envelope of the
locally closed immersion of the left ones:

(X,DUZ) S (X, DUZ) x5 (X,DU Z) Dp(1)
(X,2) = (X, 2) xs (X, 2) D(1)
(D®), Z|py) = (DW), Z|pw) x5 (D®), Z|pu)|DF) (1)

Let
j@v : ((XvD U Z)/S)lc?r%/s|9D - ((XvD U Z)/S)lc(l)r%/s
o : (X, 2)/8)&%slo — (X, 2)/9) 3%

Jow : (DW), Z]|pw)/S) e low — (DW), Z|pw)/S)E,

be localization functors (2.2.0.1) and let

—_—~—— o
¢p : (X, DU 2)/8)Bs|n 5, Ox.0u2)/5l0p) — (Dsar, Op)

¢ (((X,2))9)8s19,Ox,2)/510) — (Daar, Op)
k) ¢ (((D(’“),Z\D(m)/s)ggysb(k),O(D(k),z|n(k))/s|@<k>) — (D) sar, Og )

be morphisms of ringed topoi defined in (2.2.1.1) and let

g (gzaraoﬁ) — (Xzarao.)c')
g(k) : ("g(k)zaraoﬁ) — (’a/k)zaraob(k))

be natural morphisms.
For an Oy-module &, set

P

L(X,DUZ)/S(g) = Jop«ppg”(£) € (X,DU Z)/S)gﬁs

and

P

Lix,2)/5(E) = jo"g"(€) € (X, 2)/5) %

For an Opx)-module &, set also

LINE) = jpu " g™ (€) € (DX, Z| py)/S)E,.



2.2 The Log Linearization Functor 79

As usual, we have a complex L(X?DUZ)/S(Q;(/S(log(DUZ))) of Ox,puzy)
s-modules. By (2.2.7) we have a natural quasi-isomorphism

(2.2.16.1) Ox.puz)s — L(x,puz)/s (% s(log(D U 2))).

Similarly we have two quasi-isomorphisms:

(2.2.16.2) O(x.z)/s — Lix,2)/5(Q% s (log 2)),

(2.2.16.3) O® 2| 4))/s — L(k)(Q;)(k)/s(loga(k,))).

Let {PEQ}/S(log(D U 2))}kez be the filtration on Q}/S(log(D U Zz))
defined in (2.2.15.2). Then PEQ}/S(log(D U Z)) forms a subcomplex of
Q% ,s(log(D U Z)) and the boundary morphisms of PkDQ;(/S(log(D U Z2))

are log HPD differential operators of order < 1 with respect to (X, Z£)/S.
Set

PPLx,2)/5(Q%5(l0g(DUZ))) := L(x,z),s(PF Q% s(log(DUZ))) (k € Z).
Lemma 2.2.17. (1) The natural morphism
(2.2.17.1) Op ®0, PPy /s(log(DU Z)) — Op ®0, % 5(log(D U 2))

18 1njective.
(2) The natural morphism

(2.2.17.2)
Qlx.zy/s P Lix.2)/5(Q% s (log(D U 2)))
— Q(x,z)/5L(x,2)/5 (2 s(log(D U £)))

s injective.

Proof. (1): The question is local. We may have cartesian diagrams (2.1.13.1)
and (2.1.13.2) for SNCD DUZ on X'; we assume that D (resp. Z) is defined by
an equation xq - --xy = 0 (resp. x4y -+ xs = 0). Set J := (xg41,..., 24 )Ox,
X' = Spec,(Ox/J) and X" := Spec (Os|zat1,...,za]). Then A" is
smooth over S. Let D’ (resp. Z’) be a closed subscheme of X’ defined by
an equation zq -+ 2y = 0 (resp. xpy1 -+ -z, = 0). Because p is locally nilpo-
tent on S, we may assume that there exists a positive integer N such that
JINOgp = 0. Since X' is smooth over S, there exists a section of the surjection
Ox/JIN — Oxr. Hence, as in [11, 3.32 Proposition], we have a morphism

OX/[IL'd+1,...,(Ed/] — Ox/jN
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such that the induced morphism Ox[zgs1,...,za]/ Ty — Ox /TN is an
isomorphism, where Jy := (2441, ...,2a ). By [11, 3.32 Proposition], O is
isomorphic to the PD-polynomial algebra Ox/{(x 411, ..., x4 ). Hence we have
the following isomorphisms

Op ®0, Ny s(log(DU 2)) —=s(Q%5(log(D' U 2))@0,
Os<xd+1, . ,l‘d/> ®OX” Q:Yu/s)

and

Op @0, PPO% s(log(D U 2)) —s(PP Q% 5(log(D' U 2') @0
Os(xay1, - 2a) @0, Q;\.’”/S)'
Since the complex Os(zgi1,...,%q) @0, Q;(,,/S consists of free Og-

modules, we obtain the desired injectivity.
(2): By (1) and (2.2.4), the natural morphism

(2.2.17.3) PP L(x,2)/5(Q% s (10g(PUZ))) — L(x,2)/5 (s (log(DUZ)))

is injective in the category of crystals of O(x z)/s-modules. As in [3, IV
Proposition 2.1.3], the functor

{the category of crystals of O(x,z)/s-modules} —

{the category of Q(x z),5(O(x,z)/s)-modules}

is exact. Hence (2.2.17.2) is injective. O

By (2.2.17) (2), a family {Q?XZVSP/CDL(X,Z)/S(Q:\g/s(IOg(DUZ)))}keZ of
complexes of Q?X,Z)/S(O(XZ)/S)'mOdUIes defines a filtration on the complex
Qlx,2)/5L(x,2)/5(2% /5(log(D U Z))). Hence we obtain an object

(Qlx,2)/5L(x.2)/5 (X% 5 (log(D U 2))),
{Qix.z),sPP Lix.z)/5(% s (log(D U £))) }rez)

in C*F(Q(x 2)5(Ox,2)/5))-

Now we consider the Poincaré residue isomorphism with respect to D.
Though a relative divisor in this book is a union of smooth divisors, we
consider the orientation sheaf of it for showing that our theory in this book
is independent of the choice of the numbering of the smooth components of
a relative SNCD.

First, let us recall the orientation sheaf in [23, (3.1.4)].

Let F be a finite set with cardinality & > 0. Set wg = /\k ZF if k> 1
and wg :=Z if k=0.
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Let k be a positive integer. Let P be a point of D®*). Let Dyyy.-.s Dy,
be different smooth components of D such that Dy, N---N Dy, , contains
P. Then the set E :={D,,..., D), ,} gives an abelian sheaf

WigAp_qzar(D/S0) : /\ZDA n-NDx, _,

on a local neighborhood of P in D*). The sheaf Wy Ap_zar(D/S0) is glob-
alized on D®); we denote this globalized abelian sheaf by the same symbol
Wy Ap_1zar(D/S0). We denote a local section of @wy,...x,_,zar(D/So) by the
following way: m(Ag - -+ Ag—1) (m € Z). Set

o (D/So) = D wagassar(D/S0)-
{0, Ap—1}

By abuse of notation, we often denote a( )wzar(D/SO) simply by wzar(D/S ).
Set wégg(D/S’o) := Zx. The sheaves wy,...,_,zar(D/So) and wzar(D/So)

are extended to abelian sheaves wl)\ofn)\k_lcrys(D/S; 7) and wi8(D/S; 7),

respectively, in the log crystalline topos ((D®),Z|pw))/S)w8, since, for

an object (U, T, Mz,.,8) € (D®),Z|px)/S)9e,, the closed immersion

crys?

U S Tisa homeomorphism of topological spaces. If Z = (), then de-
note % ce(D/S; Z) and wixgs(D/S; Z) by @agxserys(D/S) and

wé@b (D/S), respectively.

Definition 2.2.18. We call

@) (D/So) (resp. wh)(D/S), wk)\8(D/S; Z))

Zar crys

the zariskian orientation sheaf (vesp. crystalline orientation sheaf , log crystal-
line orientation sheaf) of D%/ Sy (resp. D) /(S,Z,7), (D™, Z| )/ (S, T,7)).

Remark 2.2.19. The sheaves wzar(D/So) wcryS(D/S) and wcrylog(D/S Z)
are defined by the local nature of D; they are independent of the choice of
the decomposition by smooth components of D.

Lemma 2.2.20. Let £ be an Opw)-module. Then there exists a canonical
isomorphism

(2.2.20.1) LW(E @7 wk)(D/S)) = L®(&) @7 wk)8(D/S; 2).

Proof. (2.2.20) immediately follows from the definition of wé’f}),éog(D /S: 7).
O
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Proposition 2.2.21. (1) There exists the following exact sequence:
(2.2.21.1)
0 — Op ®o, PZ10%s(log(D U 2)) — Op ®0, PN s(log(DU Z))
— Op @0, b (U (10g Zlpw) @z =k (D/S){~k}) — 0.
(2) There exist quasi-isomorphisms

(2.2.21.2)

Qlx, pP * °
gry 0 Qlx 2y /s Lix,2)/5(Q% s (log(D U 2)))

(k)log o
— Q(X Z)/Sacr})’s?" L(k)( D(k)/s(loga(’«)) @z wﬁ’;z(D/S)){—k}

~ * k 3 o
Qx5 WE (O 21, 4115 @2 TEWE(D/ S5 Z)){—k}.

Proof. (1): By the Poincaré residue isomorphism with respect to D (cf. [21
3.6]), we have the following isomorphism

(2.2.21.3)
Res” : gl Q% 5(log(D U 2))
5 0 (i (108 2| ) @z i (D/S){—k}).

Hence (1) follows from (2.2.17) (1).
(2): By the isomorphism (2.2.21.3), (2.2.17) (1) and (2.2.4), we have

Q* PD y .
gry 7 Qlx gy sL(x.2))5(Q% s (log(D U 2)))

* D Ll
= Qlx.z/sL(x.z)/s(grk Q% s(log(DU 2)))

Qlx, L(x,z)s(Res?) N k) e
R Q(X,Z)/SL(X,Z)/S(bSK )(er«)/s(log Zlpw)

®z @il (D/S){—k}.
By (2.2.12) and (2.2.16) (1), (2), this complex is equal to

k)log °
Qix )y 50 e LW (03,0, 5 (log Z|pu)) @z wE)(D/S)){~k},

which is equal to

* k)log °
Qix.z)/ 50 (LW () 5 (l0g Z|pao)) @z w8 (D /S5 Z)) {—k}

by (2.2.20).
By (2.2.7) we obtain the second quasi-isomorphism in (2.2.21.2). O
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For simplicity of notation, set
(QE(XYZ)/SL(X,Z)/S(Q}/S(IOg(DUZ)))aQE‘x,Z)/sPD) =

(Qlx,2y/5L(x.2)/5(Q% 5 108(PUZE))) AQ{x, 2y, s i L(x,2)5(Q% /s (log(DU £))) }kez)
and
(O’D Q0 Q;(/S(log(DU Z))’PD) =
(09 @0, Ny 5(l0g(D U 2)),{O0p ®0, PPQ%/5(l0g(D U 2))}rez)-
Proposition 2.2.22. Let
(2.2.22.1)
TUx,z)/5: (X, 2))9) ity Qix 2y/5(O(x,2)/5)) — (Xzar, £ (O5))

be the morphism in (1.6.1.2). Then

(2.2.22.2)
Ru(x,2)/5+(Q(x, 25 L(x.2)/5 (% s (l0g(D U £))), Q(x z),s PP)
= (0p ®o, N /s(log(D U 2)), PP)

in DTF(f~1(Os)).

Proof. By (1.6.3.1), by (2.2.1) (2) and by (1.3.1), the left hand side of
(2.2.22.2) is equal to

(ux,z)/5:L(x,2))5(Q% /s 08(D U 2))), u(x, 2) 5+ L x,2)5 (P % (log(D U £)))).

For an Oy-module F, we have

ux,zy/5+L(x,2)/8(F) = u(x,2)/5:J0+0" 9" (F) = 00" 9" (F) = Op @0, F

by (2.2.0.4). Hence

u(x,z)/5+(L(x,2))5 (PP )s(log(DUZ)))) = Op ®0, PPN% 5(log(DUZ)).
Thus (2.2.22) follows. O

Remark 2.2.23. For simplicity, we assume that Z = () in this remark. By the
proof of (2.2.7), the differential operator of Op @ P,?Q;(/S(log D) is not a
log HPD differential operator in general since the log HPD differential oper-

ator Op (1) R0 Q;(/S(log D) — Op ®x Q:‘f/g(log D) induces a morphism

On,(1) Q0 PICDQ;(/S(Iog D) — Op ®@x P,alQ:\j?g(log D), but does not in-

duce a morphism Ogp 1) ®ox PkDQ;(/S(log D) — Op ®x P,?Q?/}g(log D)
in general; there does not exist a complex L(X7D)/S(P,€DQ:Y/S(10gD)) in

Ct(O(x,py/s) in general.
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2.3 Forgetting Log Morphisms and Vanishing Cycle
Sheaves

In this section we investigate some properties of the forgetting log morphism
of log crystalline topoi.

Let the notations be as in §1.6. However, in this section, we denote the
underlying scheme of the log scheme Y also by Y by abuse of notation. Let
M be the log structure of Y. Let N C M be also a fine log structure on Y,;.
Then we have a natural morphism

(2301) EZE(Y,M,N)/S: (KM)*)(Y’N)

of log schemes over S. The morphism € induces a morphism of topoi which
is denoted by the same notation:

—_~— —_~—

(2.3.0.2) e =evnys: (Y, M)/S)E, — (Y,N)/8)%

crys*

When N is trivial, we denote €y, as,n)/s by €y/s; the morphism ey,g is a
p-adic analogue of the [-adic forgetting log morphism in [30] and [67, (1.1.2)].

In this section, let us assume the following condition on the log structure
N unless otherwise stated:

(2.3.0.3)
Locally on Y, there exists a chart P — N such that P®P has no p-torsion.

Then we have the following lemma:

Lemma 2.3.1. Let the notation be as above and let (U, T, My, ,d) be an
object of (Y, M)/S)\e_, let N¥V be the inverse image of N|y/Oj by the

crys?

*

following morphism: Mr proj; M7 /O —= M|y /Of;. Then NI is a fine log
structure on T (under the assumption (2.3.0.3)).

Proof. Tt is easy to see that NV is a log structure on 7' such that N\t /O3 =
Ny /0. Set Iy := Ker(Or — Oyp). Then we have the exact sequence

0— 14Zp — NpVE — N8|, — 0.

Shrink U and take a chart o : P — N|y such that P8P has no p-torsion.
Then, since any element of 1 + Zr is killed by some power of p, we have
Ext(PeP, 1+ Zr) = 0. Hence we have a homomorphism & : P& — N, V&P
lifting a®P locally on T and it induces the homomorphism of monoids
P — N®  which we also denote by a. If we denote the log structure

associated to P —— N — Op by P% & induces a homomorphism of
log structures a® : P* — NIV such that the induced homomorphism
a® : P/O% — N®/O% is nothing but the identity on N|y/Of;. Hence
a® is an isomorphism, that is, & is a chart of Ni'V. Therefore NV is a fine
log structure. O
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Under the assumption (2.3.0.3), the explicit description of € = (€, ¢,)

—~—

is given as follows: for an object F of ((Y,N)/S)$8, and an object
(U7 T, MT7L’6) € ((K M)/s)log

crys?

(F)(U, T, Mr,1,6)) = F((U,T, N, 1,0));

—~—

for an object G of ((Y, M)/S)erys and an object (U, T, Nr, ¢, §)€((Y, N)/S)kg

crys?

e.(G)((U, T, Nr,t,0)) = Hom oz (€°(T),G).

(Y.M)/S)k5%.

Definition 2.3.2. We call the morphism €y, 57, 5/5 in (2.3.0.1) and the mor-
phism ey, ar,n) s in (2.3.0.2) the forgetting log morphism of log schemes
over S along M \ N and the forgetting log morphism of log crystalline topoi
along M \ N, respectively. When N is trivial, we call the two €y, n)/s's
the forgetting log morphisms of Y/S. When Y is a smooth scheme X over
So = Spec (Os/I), M = M(DU Z) and N = M(Z), where D and Z are
transversal relative SNCD’s on X/Sy, we call the two €(y,ar,n)/s’s the forget-
ting log morphisms along D and denote them by € x puz,z)/s-

Let {Y;};cr be an open covering of Y. Let M; (resp. N;) be the pull-back
of M (resp. N) to Y;. Then we also have an analogous morphism of topoi

(2.3.2.1) €o: (Yo, Ma)/S)1%, — ((Ya,Ns)/S)lE

crys crys?

and we have the following commutative diagram

—_—~—

(Yo, ML)/S)i8, —— (Y, N2)/5)55

crys crys
(2'322) ﬂ-x}gcrst/ lﬂ-l]\of%rys
(Y, M)/8)8% —— ((V.N)/9)&%,

Here Wﬁirys and Wﬁ%rys are morphisms of topoi defined in §1.6; we have
written the symbols M and N in subscripts for clarity. Let u(y,r)/s, (v, ,L.)/s
and u(y,,,L..)/s (L := M,N) be the projections in (1.6.0.8), (1.6.0.9) and
(1.6.0.10) for (Y, L), respectively. Since € o ufy ny,g = Uy pp),5 and €50
u’(kyh NS = u’(kyh Ma)/s0 e have the following two equations

(2.3.2.3) U(Y,N)/S O € = U(y,M)/Ss U(Ye,Ns)/S © € = U(Y,,M,)/S

as morphisms of topoi.
Let the notations be as in §1.6. Then we have the following commutative
diagram:
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(Yeu, Maa) /)28, —* ((Yau, Nou)/S)10%

crys crys
(2.3.2.4) nﬁ&irysl lnﬁiys
(Yo, M)/S)iE, —S— (Y No)/S)S5,.
Let O¢y,)/s (L := M, N) be the structure sheaf in ((m&')}g%,s Since

there is a morphism €*(Oy,ny/s5) — O(v,um),s, there is a morphism

(2.3.2.5) Ow,ny/s — €x(Oymy)s)-

The morphism e also induces a morphism
— —

(2.32.6) e (Y, M)/9)3% Ovianyss) — (Y, N)/8) 3% Otvinyss)

of ringed topoi. We have the analogues of the commutative diagrams (2.3.2.2)
and (2.3.2.4) for the ringed topoi:

(2.3.2.7)

e~ e~

(((Ya, Ma)/S)5s, Ovantayss) —— ((Ye, Na)/8) &5 Ova Ny /5)

log log
T(]Wcrst/ J/TrNcrys

(V. M)/9)%%,, Ovanys)  —— (Y, N)/8)%,, Oyny/s)):
(2.3.2.8)
((You: Maa)/S)15, Ovs atanr/s) — 2 ((You: Nua)/S)1%¢, Oty sy 5)

log log
nMacrysl JrnNcrys

e~ e~

(Yo, M) /98, Ovymtayys)  —— ((Ye,Na)/S)E., Oy, N /5)-
The morphism (2.3.2.5) gives a morphism
(2.3.2.9) O(Y,N)/s — Rf*(O(Y,M)/S)~

Using (2.3.2.3), we have a morphism

(2.3.2.10) Rugy,ny/s«(Oy,ny/s) — Ruey,any s« (O s)-

Next we define the localization of e. Let Fyy = (Up,Tr, Mp,tp,0F) be a

representable sheaf in ((Y,M)/S)5,. Set Fy := (Up,Tr,Np™,1p,0p),
where NIV is the inverse image of N|y, by the morphism Mp —

My, /OF,. as before. Then we have a morphism

e~ e~

(2:3.2.11) elrs (Y, M)/8) el — (Y, N)/9) sl

crys crys

of topoi and a morphism
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(2.3.2.12)

elr: (Y, M)/9) 28 | ra Ovanysslin) — (Y, N)/S)S8 | s Ocvinyyslin)-
of ringed topoi.
Lemma 2.3.3. Let the notations be as above. Then the functor €| g, is exact.

Proof. Let (U, T, Nt,1,5,¢x) be an object in (Y, N)/S)\8 |, . Let ¢: T —

crys

Tr be the underlying morphism of schemes of ¢n. Set My := ¢*(Mp). Let
o (U, T, Mr,1,0) — (Up, T, M, 1F,0F)

be the natural morphism. Then (U, T, My, ¢, d, ¢pr) is an object in ((Y, M)/S)
1C2’§,5|FM. Let (Tr, MF) X (7, ninvy (T, Nr) be the fiber product of (T, Mp) and
(T, N7) over (Tr, N2V) in the category of fine log schemes. We claim that

(2331) (TF,MF> X(TF7N};r‘Av) (T, NT) = (T, MT)

Indeed, let ¢y : U ~S5 U be the open immersion. Then we have the following:

(0" (MF) S+ (ninvy N1) /O = ¢*(MF)/OF @4+ (ninvy 0z N1/OF
= d)_l(MF/O;ﬂF) ®¢*1(N}§“’/O}F) NT/O;W
= ¢51(M‘UF/O[*]F) @¢51(N\UF/(9;,F) Nlu/Op
= M|y /O ~ ¢"(Mp)/Or.
Hence the natural morphism ¢*(Mp) — ¢*(Mp) Sy (nimvy Nr is an iso-
morphism and we have shown the claim. Denote (U, T, Lp,¢,0,¢5) (L =

M,N) by (T, Ly, ¢yr) for simplicity of notation. By the formula (2.3.3.1),
(e|lp)*((T, Nz, én)) is represented by (T, My, ¢pr). Therefore, for an object

Ein ((Y,M)/S)28 |g,,, we have

crys

(2.3.3.2)
DT Nr, ow), (el ) () = Hom 7375 cyee 1,

= E((Ta MTa ¢M))

((elr)"((T, N7, 9n)), E)

Using this formula, we see that the functor €|p, is exact. O

Lemma 2.3.4. Let the notations be as above. Then the following diagram of
topoi 1s commutative:

P P

(Y, M)/8)1, |y, —T (Y, M) /S) 108,
(2.3.4.1) 6|Fl l

e~ jFN e~

(V,N)/8)&slry ——— (Y\N)/S)%

crys”
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The obvious analogue of (2.3.4.1) for ringed topoi also holds.
Proof. Let G be an object of ((Y,/]\V_/)/S)lcc;gs. By the proof of (2.3.3), (¢|r)*
(Fn) = Fy. Hence (¢|r)*ji, (G) = (e|p)"(G x Fn) = € (G) x Fy =
Ji,, € (G). Hence the former statement follows.

The latter statement immediately follows. 0O

—~—

Lemma 2.3.5. Let Fiy = (Y, T, My, ,0) be a representable sheaf in ((Y, M)/
S)es . Let E € ((Y,M)/S)%5|r, be an Oy s|ry, -module. Then the

crys” crys
canonical morphism

€*jFM*(E) - RG*jFM*(E)
is an isomorphism in the derived category DT (Ory,n)/s)-
Proof. Indeed, we have

(2.3.4) (2.3.3)

Ty« (€|F)«(E) JEn«R(e|F)+(E)
200 Rip R(e|r)s(E) = R(jryelr)-(E)

2.3.4 . . 2.2. 1 .
C2Y R(ejiy)s(B) = Re.Rjmy-(B) “*2 Y Re,jp,.(E).

e*jFZ\/I*(E)

O

Though e, is not exact in general (see (2.7.1) below), the following holds:

Corollary 2.3.6. Let c: (Y, M) o (Y, M) be a closed immersion into a log
smooth scheme over S. Let Dy (Y) be the log PD-envelope of v over (S,Z,7).
Let € be an Oy, (yy-module. Let LFYD,M)/S(g) be the linearization of € with
respect to v. Then the canonical morphism

(2.3.6.1) E*Lg]/?M)/s(g) - Re*LFYD,M)/S (&)

is an isomorphism in the derived category DY (O, ny/s)-
Proof. (2.3.6) immediately follows from (2.2.1.2) and (2.3.5). O

Lemma 2.3.7. Let (Y, M) be a log smooth scheme over S. Let N be a fine
sub-log structure of M on Y such that (¥, N) is also log smooth over S. Let

(Y, M) —*—= (¥, M)
(2.3.7.1) corans | e anrss

be a commutative diagram whose horizontal morphisms are closed immer-
sions. Let D pq and D nr be the log PD-envelopes of taq and vy over (S,Z,7),
respectively, with the natural following commutative diagram:
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D —— (¥, M)

(2.3.7.2) ”J l
Dy —— (W, N)

o]
Assume that the underlying morphism h of schemes is the identity. Then
there exist natural isomorphisms

(2.3.7.3) L{yny/s — €Ny /s« Livans
and
(2.3.7.4) L{y)ny/sIn — €vmny /s« Livan s9m

of functors. Moreover, the functor (2.3.7.3) is functorial with respect to log
HPD differential operators.

PTOOf. Let PM: (((K M)/S)lc(l)r%/J@M ) O(Y’M)/S‘CDM) - (QMzan OCDM) be
the morphism of ringed topoi in (2.2.1.1). Let ¢ be the analogue of @4 for
(V,N). Let

elo: (Y, M)/S) Bl oi» Ovian 1o ag) — (Y, N)/S) o 0 Otv,ny 510 5r)

be the natural morphism. Then, using the formula (2.3.3.2), we can immedi-
ately check that (e|o )., = ¢ Hence we have the following commutative
diagram

(jzaryoy) —) (gMzaraoi)M) M,

(2.3.7.5)

(:)N}zaraoy) 9_/\/) (QNzamO@N) L’

- o pq

(((KM)/ )}:?‘%75|©M7O(YM/S‘®M) - (((KM)/S)IC(;%yO(Y,M)/S)

€|®*l E(Y,M,N)/S*l

(Y, N)/8)8 |9, Ovinyslon) —2 (Y, N)/S)CrysO(YN /5)s

and this implies the isomorphisms (2.3.7.3), (2.3.7.4).

Finally we check the functoriality of the isomorphism (2.3.7.3) with re-
spect to log HPD differential operators. To show this, it suffices to prove the
required functoriality for the morphism

(2.3.7.6) (vt sLvny s = Livans-
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For T == (U, T, M7,1,6) in (Y, M)/S)ke_, let Ty := (U, T, NI*V 1, 6) be as

crys?
above. Then, for an Og ,-module £, the homomorphism

(ety.arny s Lty nyys(E))m — (L anys(E))1y

induced by (2.3.7.6) is given by the canonical homomorphism

Oy (Tyxs(VN)) ®00, € — Oy (Tarxs(¥. M) ®0s,, €,

and it is easy to see that this homomorphism is functorial with respect to log
HPD differential operators (see (2.2.3.1)). Hence we finish the proof of the
lemma. 0O

Remark 2.3.8. In (2.3.7), we do not have to assume the condition (2.3.0.3)
on the log structure N. The reason why we imposed the condition (2.3.0.3)
was to assure that the log structure NIV is always fine. However, in the
situation in (2.3.7), the fineness of NIV for any T' = (U, T, M) follows from
the assumption. Indeed, we have a morphism ¢ : (T, M7) — D etale
locally on T" and one can see that N%f“’ is isomorphic to the pull-back of the
log structure of ®n by 1.

Definition 2.3.9. For an Oy g-module E, we call Re(y,a, ny/5+(E) the van-
ishing cycle sheaf of E along M \ N. We call Recy ar,n)/s+(Ov,ar)/s) the
vanishing cycle sheaf of (Y, M)/(S,Z,v) along M\ N.If N is trivial, we omit
the word “along M\ N”.

The following theorem is the crystalline Poincaré lemma of a vanishing
cycle sheaf:

Theorem 2.3.10 (Poincaré lemma of a vanishing cycle sheaf). Let

M be the log structure of S. Let E be a crystal of Oy, n)/s-modules and

let (£,V) be the Op ,,-module with integrable log connection corresponding to

iy, s(E)- Assume that we are given the commutative diagram (2.3.7.1)
o

and that h in (2.3.7) is the identity. Then there exists a canonical isomor-
phism

(2.3.10.1)
Re(y,m,v)/s+€(yarny s (B) == Ly nys(€ @0y, Q35 (log M/ Ms))

in D (O(v,n)/s)-
Proof. By (2.2.8.1), we have an isomorphism
(2.3.10.2) E?Y,JVI,N)/S(E) — L?XI/D,M)/S(S ®oy Q}/S(log M/ Ms)).

Applying Re(y,n,n) s« to both hands of (2.3.10.2) and using (2.3.6) and
(2.3.7), we obtain
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Re(y mn)/s+€(y,m,n) 5 (E)

= Reqy,m,n) s+ Ly any s (€ ®oy, 05/ 5(log M/ Ms))

~

= e Ny /s Lvan s (€ @oy 0s(log M/ Ms))
= L?SP,N)/S(‘S ®oy (13, /5(log M/ Msg)).
O

We prove the boundedness of log crystalline cohomology in a general sit-
uation.

Proposition 2.3.11. Let (S,Z,v) be the log PD-scheme in §1.6. Set Sy :=
Spec(Os/I). Let f: X — Y be a morphism of fine log schemes over So.

o [e] o [e] [e]
Assume that X and Y are quasi-compact and that f : X — Y is quasi-
separated morphism of finite type. Let E be a quasi-coherent crystal of Oy;s-

modules. Then Rf&%.(E) is bounded.

Proof. For (U, T,0) € (Y/S)lf;%,s, put Xy := X Xy U and denote the morphism
of topoi (f|x,)oux, 7 by fx, r- By the same argument as [3, V Théoreme
3.2.4], we are reduced to proving the following claim: there exists a positive
integer 7 such that, for any (U, T,d) € (Y/S)2_ and for any quasi-coherent

crys

crystal E on (Xy/T)RE,, we have R’ fx, j7.(E) =0 for i > r. Again, by the

crys?

same argument as [3, V Théoréme 3.2.4, PrOpOblthH 3.2.5], we are reduced
to showing the above claim in the case where X and Y are sufficiently small
affine schemes. Hence we may assume that X admits a chart a: P — Mx.
(Note that, in this book, log structures are defined on a Zariski site.) Let us
take surjections ¢; : Oy [N%] — Ox and ¢y : N® — P (a,b € N). For (U, T,
My, 1,0) € (Y/S)k8,, let us define T := (T', Mz) by

T:.= SpecOT(OT[Na @ N),

Mg := the log structure associated to My & N* — O7[N* @ NI,

where the map My @ N® — O7[N® @ N] is induced by My — Or and the
natural inclusion N - O [N% @ N°]. Then we have the canonical affine log
smooth morphism g : T — T Let 11 be the morphism O7[N*@N’] — Ox,

‘XU

induced by N* -S> Op[N*] #19 Oy, and N* 2 P ¢ Ary s Oy, . Let
19 be the morphism My & Nt — My, induced by My — My — Mx,,

and N® 22, p olxy Mx,,. Then we have the closed immersion ¢ : Xy =T

of log schemes induced by 1, ¥ and we have the commutative diagram of
log schemes
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XUL)T

b

U —— T.
Let © be the log PD-envelope of ¢ and let h : ® — T be the composite mor-
phism ® — T' — T. Then we have R'fx, /r.(E) = H'(h.(E(x, 0) ®0,

A%, /T)) =0 for i > a + b. Hence we have proved the claim and consequently
we finish the proof of (2.3.11). O

Corollary 2.3.12. Let (S,Z,v) and Sy be as in (2.3.11). Let (Y, M) be a
fine log smooth scheme over Sy such that Y is quasi-compact. Let N be a
fine sub log structure of M on Y. Then, for a quasi-coherent crystal E of
O(yv,my/s-modules, the compler Rey ar,ny/s«(E) is bounded.

Remark 2.3.13. In the proof of (2.3.11), we used the convention that the log
structures in this book are defined on a Zariski site. However, if we assume
that f is log smooth, we can prove the statement of (2.3.11) also in the case
where the log structures are defined on an etale site. Indeed, in this case, by

(2.3.14) below, if we assume that X and Y are affine, then we have always a
log smooth lift g : T — T of Xy — U for any (U, T,6) € (Y/S)%8_ such

crys

that % is affine. Then we have
R'fxy,reB =M (9:(E x, 7 @05 A% ) =0
for ¢ > r, where r is the maximum of the rank of Ak/y’z (x € X).

We give a proof of a lemma which has been used in (2.3.13), which is useful
also in later sections.

Lemma 2.3.14. Let S be a fine log scheme and let T be a quasi-coherent
nil-ideal sheaf of Os. Let Sy be an exact closed log subscheme of S defined

by T. Assume that S is affine. Let Z be a log smooth scheme over Sy. Then,

if Z is affine, there exists a unique log smooth lift Z (up to an isomorphism)
of Z over § and Z is also affine.

Proof. Let (P) be a property of a scheme or a morphism of schemes. In
this proof, for simplicity, we say that a log scheme W (resp. a morphism

f: W — W’ of log schemes) has the property (P) if W (resp. f) has the
property (P). Though the unique existence of Z seems more or less well-
known, we give a proof as follows (cf. [54, (3.14) (1)], [11, N.B. in 5.28]).
Express Z as the inductive limit of the inductive system {Z,} of quasi-
coherent nilpotent ideal sheaves of Og: 7 = lii>n)\ Ty\. Let S, be an exact
closed log subscheme of S defined by Zy. Since S§g = 1&1 Sy, and since Z is of
finite presentation over Sy, there exists a fine log smooth scheme Zy over Sy
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such that Z = 7 xgs, Sy for a large A\ (cf. [40, 3 (8.8.2) (ii)], [40, 4 (17.7.8)],
[86, 4.11]). By [40, 3 (8.10.5) (viii)], we may assume that Z, is affine. Since
Z) is nilpotent, the existence of Z follows from [54, (3.14) (1)].

Let Z’ be another lift of Z over S. Since the structural morphism Z — Sy
is quasi-separated, the structural morphisms Z — S and 2’ — § are quasi-
separated by [40, 1 (1.2.5)]. Set Zy := Z xgs S\ and Z} := Z’ xs Sx. Then
Zy and Z} are quasi-compact, quasi-separated and of finite presentation over
S. Because @A Zy=7 = 1121/\ Z!, there exists an isomorphism Z, —— Z}
over Sy for a large A which induces the identity of Z (cf. [40, 3 (8.8.2) (i)],
[86, 4.11.3]). Since T, is nilpotent, there exists an isomorphism Z — Z’ over
S which induces the isomorphism Z, — Z} ([54, (3.14) (1)]).

The rest we have to prove is that Z is affine. Let Z) be the affine fine
log scheme above. Because T, is nilpotent, we may assume that Z? = 0.
Let J be a coherent ideal sheaf of Oz. By the proof in [45, III (3.7)] of
Serre’s theorem on the criterion of the affineness of a scheme, we have only

to prove that H*(Z,J) = 0 (the assumption “noetherianness” in [loc. cit.] is
unnecessary). Consider the following exact sequence

0—10J — T — J/TnT — 0.

Because Z, is affine, Hl(%,j/l)\j) = Hl(%A,j/I)\j) = 0. Similarly,
HY(Z,7,J) = 0. Hence H'(Z,J) = 0. Hence we finish the proof. O

Let X be a smooth scheme over Sy and let D and Z be relative SNCD’s
on X/Sy which meets transversally over Sy. In §2.7 below, we investigate
important properties of Re(y,ar,ny/5+(O¢v,ar),s) for the case where (Y, M) =
(X,DUZ) and (Y,N) = (X,Z

2.4 Preweight-Filtered Restricted Crystalline
and Zariskian Complexes

Let (S,Z,v) be a PD-scheme such that Og is killed by a power of a prime
number p and such that 7 is quasi-coherent. Set So := Spec (Os/T). Let

f: X — Sy be a smooth morphism and D a relative SNCD on X over Sy.
Let f: (X, D) — Sp be the natural morphism of log schemes. By abuse of
notation, we also denote by f the composite morphism (X, D) — S £, 8.

The aim in this section is to construct two fundamental objects in
D¥F(Q%/5(Ox/s)) and in D*F(f~}(Os)) which we call the preweight-
filtered restricted crystalline complex of (X, D)/(S,Z,~) and preweight-filtered
zariskian complex of (X, D)/(S,Z,), respectively. In fact, we construct these
complexes in a more general setting.
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As explained in §2.1, X has the fs log structure M (D) defined by D
As in §2.1, we denote this log scheme by (X, D). Let A = {Dy}xea be
a decomposition of D by smooth components of D over Sy. Let X =

U Xi, be an open covering, where Iy is a set. Set D;, = D N X,
o€l
and D(y;,) = Dx N X;,. Fix a total order on Iy and let I be the cat-

egory deﬁned in §1.5. For an object i = (igy... i) € I, set X; =
Miso Xi., =i Di, and D Dy ﬂé o D(xniy)- As explained in §1.6,
we have two rlnged topoi (((Xe, D, )/S)Iog Q(X.,D.)/S(O(X07Do)/s)) and

g Rerys?
(XOZara fo_l(OS))
Thus we have the following datum:

(2.4.0.1): An open covering X = (J; c;, Xi, and the family {(X;, D;)}ier of
log schemes which form a diagram of log schemes over the log scheme (X, D),
which we denote by (X,, D, ). That is, (X,, D, ) is nothing but a contravariant
functor

I° — {smooth schemes with relative SNCD’s over Sy
which are augmented to (X, D)}

Assume that, for any element io of Iy, there exists a smooth scheme X,
with a relative SNCD D;, on X}, over S such that there exists an admissible
immersion

(Xigs Diy) = (Xig, Diy)

0

with respect to A;, 1= {D(xn;io) frea. By (2.3.14), if {Xzo}ioelo is an affine
open covering of X, we can assume that (X;,,D;,) is, in fact, a lift of
(Xiy, Diy): (Xiy, D; )XSSO_(XW,D ).

20 109
We wish to construct the following object:

(2.4.0.2): A diagram (X,, D) S (Xs,Ds) (o € I) of admissible immersions
into a diagram of smooth schemes with relative SNCD’s over S with respect
to Ae, where A; := {D(x.i)brenx, (i € 1)

Let ﬁio = {D()\;io)})\el\xio be a decomposition of D;, which is compatible
with Aiﬂt Dio = U/\EAXiO D(/\;io) and D(A;io) XXy, Xz'o = D(/\;io) (VA € AXiO).
Let i = (do,...,ir) be an object of I. Set X(;_ ;) = &, \ (Xi, \ Xi) (0 <
a < r), where X;_ denotes the closure of X, in &;_ . Since X, \ X, is
a closed subscheme of X;,, X, is an open subscheme of &; . It is easy

to see that the morphism X; = X(i., iy is a closed immersion. Denote by
D(xsin.i) (resp. D, qy) the closed subscheme Dy, ) N (i, i) (resp. D;, N

Xin,iy) of X iy Set &) = [[h—o&(.,i)- The closed immersions X; <,
S

Xin,i) (@ =0,...,7) induce an immersion X; SN X!. Blow up X/ along
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Usea ];IZZOD()\;,-Q’Z-). Denote this scheme by X/’. We consider the complement

X; of the strict transform of

U U Ry xs - x5Xis 1.0 X5Dnsin i) X5 X 41,i) X5 - X5 &K(i i)
AEA B=0

in X/”. Let D; be the exceptional divisor on X;. Then D; is a relative SNCD
on X; by (2.4.2) below. Considering the strict transform of the image of X;
of the diagonal embedding in X7, we have an immersion X; -, X, in fact,
an admissible immersion (X;, D;) — (X;, D;) with respect to A; by (2.4.2)
below. Let ®; be the log PD-envelope of the immersion (X;, D;) -, (X, D;)
over (S,Z,~) with structural morphism f;: ®; — S.

First we give the local description of Oy, at a point of D; (cf. [47, 2],
[48, (1.7)], [64, 3.4]) for the warm up for the general description of Oy, in
(2.4.2) below.

Lemma 2.4.1. Let i = (ig, .. .,4,) be an element of I. Then, Zariski locally
at the image of a point of D; in X;, the structure sheaf Oy, of X; is etale
over the following sheaf of rings

i0)%1

Os[x(li“),...,x((ii") | Ogagr][ugi" [1<a<rl1<t<s]/

(xgi“) - ugi“i")xgi‘)) [1<a<rl<t<s),

where xgi“),...,xgi”) (0<a<r)and uY“‘”,...,uS“O) (1 <a<r) are
independent variables over Og and s is a positive integer. The exceptional
divisor D; is defined by an equation IEZO) gl = .

Proof. The problem is etale local. We may assume that there exists an isomor-

phism X; — Spec(Os [x(lia), . ,x&i(’)]). Assume, furthermore, that Dg;_ ;)

is defined by an equation :c(lio‘) el =0 (I1<s<min{d;, |0<a<r}).
Here a positive integer s is independent of a.

Set A = Os[acgla),...,m&") |0 <a<r].LetZ; C A (1 <t<s) be the
ideal sheaf of a closed subscheme

@ =0)n @™ =0)n---n @) =0).

Set Uy := X/ and let U (1 < t < s) be a scheme defined inductively as
follows: U, is the blowing up of U;_; with respect to the ideal sheaf 7,0y, , .
Then, by [77, (5.1.2) (v)], Us = X/". By the construction of Uy, U, is covered
by the following spectrums over S of the following sheaves of rings:

Ay pug )l o) o< oy, By <)

) )

(Igiﬂl _ (ugiﬁl /ugiaﬂ)xyaﬂ, o ,xgiﬁs) _ (uyﬁl)/ugias))xgias)) (0<ai,...,as <7).
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Since the following equations
2 20 1<t<s,0<VYB<T)
are equivalent to
W 20, 200 20 1<t<s,0<VYB<T),
Oy, is isomorphic to
Oslaf™), .. ale) [o<a <o [0<a#f<r 1<t <)/
(iniﬁ) _ uffﬁia)x?“),uii"ia)ugiaiﬁ) 1

9

0<a#B#yAa<r 1<t<s)

The last sheaf of rings is isomorphic to

(i'via) (i“riﬁ) (iﬂia)
Uy — Uy Uy

Oslal™) ... el |0<a <l * |1<a<r 1<t <)

(x,(fi") - ugiaiO)inO) [I1<a<r 1<t<s).
Now the claim on the exceptional divisor is obvious. 0O

We think that the reader is ready to read the following theorem which
tells us that (X;, D;) — (X;, D;) is, indeed, an admissible immersion with
respect to A;.

Theorem 2.4.2. Fiz i = (ig,...,ir) € I. Let A = M _,Ox, . be the

structure sheaf of Xj. Set Aj := {X € A | D(n;i, 5y # 0 (0 < Va <r)}. (Then
we have A; = Ax,.)
Let J(niin,iy (A € Ai) be the ideal sheaf of Ox,,_,, defining the closed im-

mersion Dix., .0 SN Kin,i)- Let Xy iy = Ypin o Koo i) be an open covering
of X(i., iy such that the restriction of Jix;i., i) to Xy, 4 18 generated by a local

section, xf\“(i"““) for all X € A; (such open covering exists by the commutative
diagram (2.1.7.2) for (X, ), D)) Set

Ai('r) = A§T)(N(io,i), S /J(ir,i))
= {)\ eN; | D(A;imi) N Xu(im” #+ 0, (0 <Va < ’I")}

Then X; is covered by the spectrums over S of the following sheaves of rings
Af(uff Mo EL |y e A 1 < <]/

( Tt ) ( Ty st 10,1 ) ( 10, ) T
(x,\u( ) _“,\M( o x,\m o | A€ Az(' )) (K(io,iys -+ s B(iyi))-
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(M(ia,i)u(io,i)) ’
A

Here u s are independent variables. The exact locally closed im-

mersion (X;,D;) = (X;,D;) is an admissible immersion with respect to
{Doxiy baen,-

Proof. We have the restriction

C
(Xi, Di) — (X, i) U D(riini))
AEA;

of the admissible immersion (X, ,D;.) — (X;.,D;.) with respect to A,

0<a<r). ’
Set

M) = {(Bgio,iys - -+ > BGiri)) | Dinsia) N Xy 7 0 (0 < Va < 1)}

and let M;(A) be the set of the y;, ;)’s (0 < s < r) appearing in an element
of M(\). Then, by [77, (5.1.2) (v)], X/ is covered by the spectrums over S
of the following sheaves of rings:

(N(igk i)

(H(ia, i) r
Alu,y fuy 0 < By < A€ A ny iy € Mi(V)]/

(i, 0) (g, ), (Bliay )y (Hiay i)
(13)\ Bx _(u/\ Bx /u/\ (facy 1) )xA (tacy 1) ) (O < (6% < ’/’,,u(ia/\)i) S M1(>\))
Since the following equations
x&““"’i)) #0 (0<Va<r)
are equivalent to
(H(ia,i)) (V‘(ia,i))
Uy #0, x #0 (0 <Va<r),

X; is covered by the spectrums of the quotient sheaves of

(ki ,il"ia,i) r
Ay TN 0 <at B < A€ A Gy iy i) € Mi(M)]
divided by ideal sheaves generated by

(M(i i) (#(z‘ M (ia,i)) (ki 4))
B> B> o Hlia,i)
Ty Uy Ty )

(H(i i) M (i i)) (H(i i) M (i i))
o> B8 B o>
Uy Uy —1

)

and

(H(in ) P(ia ) (B iy Gig.)) (B Hiia.i)
uy Uy Uy

O<a#p#Fy#a<sn A€ Agr)aN(ia,i),,u(ig,i)vﬂ(iw,i) € My(N)).
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This quotient sheaf is isomorphic to
A[(u(“(ia,i)“(io-ﬁ)))il Ae A(T)]/
A %

Ae Al

(xg\u(ia,i)) . ug\ﬂ(ia,i)N(iU,i))xg\M(io,i))

Let D(y;;) be the strict transform of H;:o D(xrii, i) in X;. Now we see that,

for A € Az(-r)7 the intersection of Dy, and the inverse image of [ [, X}, ,, in
s

()u'(io,i))

A is defined by an equation = 0. Hence D, ;) is a smooth divisor on
& over S and D; is a relative SNCD on &; over S, and Dy, X x, Xi = D).
Therefore we obtain (2.4.2). O

Now we change notations. Let X be a smooth scheme and let D and Z be
transversal relative SNCD’s on X/Sy. Let Ap := {Dy} (resp. Az :=={Z,},)
be a decomposition of D (resp. Z) by smooth components of D (resp. Z).
Then Ap and Az give a decomposition A := {Dy, Z,} , of DUZ by smooth
components of DU Z. We can construct the objects in (2.4.0.1) and (2.4.0.2)

for DU Z and A: (X,, Dy U Zy) — (X, Dy U Z,). Let D, be the log PD-

envelope of the admissible immersion (X;, Z;) — (X, Z;) with respect to

Dzlx,. Set Zil poo = Z; nD* and Zilpw = Zi nD™ (k € N), where D
is a scheme over S defined in (2.2.13.2) for D;.

Lemma 2.4.3. The log scheme ’Dix(;(i,gi)(ng), Zi| ) is the log PD-enve-
lope of the locally closed immersion (ng), Zi‘DE’“)) —> (ng), Zi|D§k)).
Proof. (2.4.3) is a special case of (2.2.16) (2). O

Let { P} ez be the filtration on Q:Yi/s(log(DiUZi)) defined in (2.2.15.2).
As in §2.2, we set

Pk;DiL(Xi,Zi)/S(Q;(i/S(log(Di Uz))) = L(Xi,zi)/s(P;?iQSQ/s(IOg(Di U Z))),
P (09,20, Wy, 5108 D;)) i= On, @0, P OV, 5(log(D; U Zy)).
By (2.2.17) (1) and (2), we have two filtered complexes

(Qix, 2y L(x1,20/5 (%, /5 (108(Ds U 2:))), Q(x, 2.y P"7)
€ C+F(O(Xi7Zi)/S)?
(O@i®oxi Q;\?7/S(10g(pl U Z)), PDI) € CJFF(fiil(OS))'

Lemma 2.4.4. For a morphism «: i — j in I, let a: (X;,D; U Z;) —
(X3, D; U 2;) be the natural morphism. Then {(X;,D; U Z;), a}icr,aeMor(1)
defines a diagram of smooth schemes with relative SNCD’s over S :

I° — {smooth schemes with relative SNCD’s over S},
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that is, for another morphism (B:j — L in I, a0 = Boa, and id; =
id. Moreover, {®;}icr is a diagram of log schemes. In particular, there are
natural morphisms

pat & Qlx, 25 PV Lix, 25 (%, 5 (108(D; U £)))
— Qix,.z,)5 P8 Lix, 2,5 (Q%, 5 (0g(D; U 25))),
pa: o (PP(O0,®0,, O, 5(log(D; U £)))))
— P (00,80, 0%, 5(log(D; U Z))))

such that pia, = 1d and pgoa = ps oﬁ_l(pa),

Proof. The open immersion X -<, X, induces a morphism X — X]. By
the universality of the blow ups, we have a morphism &} — X/ and this
morphism induces morphisms (X;,D; U Z;) — (X;,D; U Z;), (X;,D;) —
(X;,D;) and (&X;, Z;) — (&X;, Z;). The universality of the log PD-envelope
induces a morphism ©; — ©;. Thus (2.4.4) follows. O

By (2.4.4), we obtain a complex
(Q?X;,,Z,y)/SPk:DiL(Xi,Zi)/S(Q:Y,j/S(IOg(’Di U 2;))))ier
€ C+(Q?X.,Z.)/S(O(XHZ-)/S))

of Q?X.’Z.)/S(O(X.’Z.)/S)-modules and a complex

(PP (0n,®0., 0%, /s (log(D;s U 2:))))ier € CT(foH(Os))

of f;71(Og)-modules. Now we have the following filtered complex of Qlx..2.)

/5(O(x..z.)/s)-modules and the following filtered complex of f; ! (Og)-mod-
ules:

(Crtye (Ocx,.pauz0)/5), PP*) =
(Q(x.z)/5L(x0, 215, s(08(Di U 21))), Qlx, 7,y P7)ier
and
(Co2 % (O(x0,Duuz0)5), PP*) 1= (09,00, U, /5 (l0g Ds), PP )ier.
Remark 2.4.5. Once we are given the data (2.4.0.1) and (2.4.0.2) for (X, D
U Z) with respect to A = {Dx, Z,} ., we can obtain two filtered complexes
(Cras (Oix.,povzays), PP*) and (CRE%* (O(x, pouzays)s PP*).

Let

—~

(24.5.1) 7% 4 /sreryst (Xey Za) /9 kb Qxa 20175 (O (X0, 20)/8)) —
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—~—

(X, 2)/9) 58 ye Qix.20/5(O(x.,2)/9))

and

(2'4'5'2) Tzar * (Kzarafo_l(os)) B ()?zarvf_l(os))

be natural morphisms of ringed topoi defined in §1.5 and §1.6.

Definition 2.4.6. Assume that we are given the data (2.4.0.1) and (2.4.0.2)
for (X, DU Z) with respect to A = {Dx, Z,}x .-
(1) We call
(2.4.6.1)
RW%?,Z)/SRcryS*(Cgcg{st'(O(X.,D.uz.)/s), PP*) € DTF(Q(x.2)/5(O(x.2)/5))

the preweight-filtered restricted crystalline complex of O(x puz)s (or (X, DU
Z)/S) with respect to D. We denote it by (Clog’Z(O(Xypuz)/S),PD). If

Recrys

Z = (), then we call (Cgf;yZS(O(XVDUz)/S),PD) the preweight-filtered re-

stricted crystalline complex of O(x py/g or (X,D)/S and we denote it by

(CRcrys(O(X,D)/S)vp)'
(2) We call

(2.4.6.2) R ar (Cp8?* (O(x., pauza)ys), PP) € DYF(f71(0s))

the preweight-filtered zariskian complex of Ox puz)/s (or (X,D U Z)/S)
with respect to D. We denote it by (C18%(Ox,puz)/s), PP). If Z =0, then

zar

we call (C18Z(O(x,puz)/s), PP) the preweight-filtered zariskian complez of

O(x,p)/s or (X, D)/S and we denote it by (Crar(Ox,p)/s), P).
Let

(2.4.6.3) €x,puzz)/s: (X, DUZ)/9)$E.O0x,puz)/3)

—_—

— (X, 2)/9)$8. Ox,2)/5)
be the forgetting log morphism along D ((2.3.2)) and let
(2.4.6.4)
u(x,puz)y/s: (X, DU Z)/S)lcc;%s, O(x,puz)/s) — (Xzar, 7 H0s))
be the canonical projection ((1.6.0.8)).

Proposition 2.4.7. There exists the following canonical isomorphisms

(24.7.1)  Qix.z)sRe(x.puz,2)/5:(O(x,p02)/5) — Crhoe(O(x,puz)/8)s

(2.4.7.2)
Rﬂ(sz)/S*(C%é)(;gr’yZS(O(X7DUZ)/S)) - RU(X,DUZ)/S*(O(X,DUZ)/S)v
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(2.4.7.3) Ru(x,puzy/s«(Ox,puz)/s) — C;(;%’Z(O(X,DUZ)/S)'
Proof. Let
(24.74) T iy seryst (Xos Do U Za)/S)5 — (X, DU Z)/S)%,

and

(2475) ,/TB?,DUZ)/SRcrys: ((X" D' U Z')/S)lf({)frys — ((X7 Du Z)/S)i:c{)cgrys

be natural morphisms of topoi defined in §1.6.
The isomorphism (2.4.7.1) follows from the cohomological descent [42,

VbS], (2.3.2.2), (2.3.10.1), (1.6.4.1) and the definition of Cy%7 (O(x, puz)/s)-
Indeed, the left hand side of (2.4.7.1) is equal to

* 1 log,—1
Q(X,Z)/SRG(X7DUZvZ)/S*RW(?,DUZ)/Scrys*ﬂ-((;?,DuZ)/Scrys(O(XxDUZ)/S)

:Q?X>Z)/SR7TB§Z)/Scrys*RE(X-vDoUZ.,Z.)/S*(O(X.,D,UZ.)/S)
* 1 °
=Q(x,2)/587 (X 2)/5cryse L(Xe,20)/5 (%, 5(10g(Da U Z4)))

:RT(?;(%,Z)/SRcryS*Q?X.7Z-)/SL(Xo,Zc)/S(Q.X./S (10g(D. U Z°)))

ZCing{st(O(X,Duz)/S)

By the trivially filtered case of (1.6.3.1) and by (2.4.7.1),

Rﬂ(x,z)/s*(Og)cg{yZS(O(X,Duz)/s) = Ru(x,z)/s«Re(x,puz,2))5«(O(x,pUz)/5)

= Ru(x,puz,z)/s+(O(x,puz)/s)-

(2.4.7.3) is a special case of [46, (2.20)], which follows from the cohomo-
logical descent. O

Remark 2.4.8. (1) In the next section we shall prove that

(CREZ(O(x,puz)/s), PP) € D*F(Q(x,2)/5(Ox.2)/5))

and
(C82(O(x.puz)s), PP) € DYF(f1(0s))

zar

are independent of the data (2.4.0.1) and (2.4.0.2) for (X, DU Z) if we fix a
decomposition of D and Z by their smooth components, and then, in §2.7,
we shall prove that they are independent of the choice of the decompositions
of D and Z by their smooth components. Once we know that the definitions
of (Cﬁ)f’;yzs((’)(;(,puz)/s), PP) and (CX&%(Ox puz)ss), PP) are well-defined,
we know that
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(2.4.8.1)
Ri(x,7)/5+(Crec(O(x,puz)/5): PP) = (Ch8%(Ox,puzy,s), PP)

by the constructions of them.

(2) The complex Cyar(O(x,py/s) in (2.4.6) is different from that defined in
[46, (2.19)]. Because the latter depends on an embedding system of (X, D),
it should be called a crystalline complex with respect to an embedding system.

2.5 Well-Definedness of the Preweight-Filtered
Restricted Crystalline and Zariskian Complexes

In this section we prove that the preweight-filtered restricted crystalline
complex

(Cg(:gI")yZS(O(X,DUZ)/S)v PP) e DTF(Q(x,2),5(Ox.2)/5))

in (2.4.6.1) and the preweight-filtered zariskian complex
(C8?(Ox,puz)s), PP) € DYF(f71(Os))

in (2.4.6.2) are independent of the data (2.4.0.1) and (2.4.0.2). To prove this
independence, we need not make local explicit calculations of PD-envelopes;
the notion of the admissible immersion enables us to use the classical crys-
talline Poincaré lemma implicitly; see (2.5.1), (2.5.2) and (2.5.3) below for
the detail.

Let So — S be a PD-closed immersion defined by a quasi-coherent ideal
sheaf 7. Let (X, DUZ), Ap, Az and A be as in the previous section. Consider
the following commutative diagram

(X,DUZ) —— (X, D1 UZ)

H l

(X,DUZ) —S— (X5, Dy U Zy),

where the horizontal morphisms above are admissible immersions with re-
spect to a decomposition A; assume that the horizontal morphisms in-
duce admissible immersions (X, D) = (X;,D;) with respect to Ap and
(X,Z) - (X, Z;) with respect to Ay (i = 1,2). Let ®; (i = 1,2) be the
log PD-envelope of the admissible immersion (X, Z) —— (X;, Z;). Then the
following holds:

Lemma 2.5.1. The induced morphisms
(2.5.1.1) (sz,z)/sL(X,Z)/S(Q;Q/s(log(pz U 25))), Q?X,Z)/SPD)

— (Q(x,2)/5L(x.2)/5(2%, s (l0g(D1 U £1))), Q(x z),s P");
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(2.5.1.2) (09,004, 2%, /s(log(D2 U 23)), PP)

— (09,004, 0%, /5(log(D1 U £1)), PP)

are filtered quasi-isomorphisms.

Proof. Apply the gr-functor grQ(X z)/sP (k: € N) to (2.5.1.1). Then, by
(2.2.21.2), we obtain the following morphism:

* D
g 2 {2511}
k)lo,
Qix.z)50ers L (@0 (108 Zal o) { —k} @z w0*(D/S; 2)

(k)1 o
- Q(X Z)/Sacrys?"gL(k)( D<k>/5(108§ Zl|D§kJ)){*k} ®z wé’fyi &(D/S;2).

Qix,z)/sP" {

Then g, := gr, 2.5.1.1)} fits into the following commutative dia-

gram:
* k)lo
Qix.z)/59mE L0 () (108 Zal ) [k} ©z wle™ (D/S: 2)

.|

Qx50 L Q) (log 21| o) {—} @z wiis™(D/S; Z)

* k)lo: k)lo,
— Q(X,Z)/sagr;s*go(mw,Z|D<k))/s{—k} ©z wi*(D/S; Z)

* k)lo. k)lo
—— Qx589 21,0051~} B2 @G H(D/S; 2),

where the horizontal morphisms are quasi-isomorphisms. Hence g is also a
quasi-isomorphism and so is (2.5.1.1).

Applying the filtered direct image Riu(x z)/s. to (2.5.1.1), we immedi-
ately see that (2.5.1.2) is a filtered quasi-isomorphism by the log version of
[11, 5.27.2, (7.1.2)]. O

Remark 2.5.2. To compare our straight method with previous works assume
that Z = () and consider two admissible immersions (X, D) — (X;,D;)
(i = 1,2) with respect to a decomposition A = {Dy}rea of D by smooth
components of D. As in §2.4, we make the following operation. Set X7, :=
Xy x5 Xy. Let Dy = Jycp Porsiy (4 = 1,2) be the union of smooth components
of D;. Blow up Xy along (Jyc (Das1) Xs D(as2))- Let X1 be the complement
of the strict transform of

U (D) x5 X2) U (X1 x5 Dnay)}
AeA
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in this blow up. Let Dis be the exceptional divisor on Aj5. By consider-
ing the strict transform of X in X35, we have an admissible immersion

(X, D) = (X12,D12) with respect to A, and we have the following com-
mutative diagram:

(X,D) ; (X12,D12)

| l

(X,D) —S— (X, D),

(2.5.2.1)

Let ®; (i = 1,2) and ©12 be the log PD-envelope of the admissible immersions
(X,D) S (X;,D;) and (X, D) = (X132, D13), respectively.

Then the induced morphisms (X2, D12) — (X;,D;) (i = 1,2) induce
morphisms of filtered complexes

(25.2.2)  (Qx/sLx/s(QY%,/s(logDi)), Q% /s P)
— (QxsLx/s(Q%,,,s(log D12)), Qs P),

and
(2523) (O@i®oxi Q}l/S(IOgDz),P) — <O3312®@X12 Q:k'lg/S(lOgD:lQ)’P)’

which are filtered quasi-isomorphisms by (2.5.1). Thus the proof for (2.5.2.3)
gives a simpler proof of a filtered version of the last lemma in [47] (cf. [48,
(1.7)], [64, 3.4]). Because we allow not only local lifts of (X, D) but also
local admissible immersions in the constructions of (Crerys(O(x,p)/s), P) and
(Crar(O(x,Dy/5), P), we can use the Poincaré lemma implicitly for the proof
of the quasi-isomorphism (2.5.2.3). We can also use a complicated version of
[64, 3.4] to prove that (2.5.2.3) is a filtered quasi-isomorphism; however we
omit this proof because this proof is lengthy.

Next we prove that (Cgf;i(O(X’DUz)/S),PD) and (C&Z(O(x,puz)/s),
PP) are independent of the data (2.4.0.1) and (2.4.0.2) for DU Z and A.

Let the notations be as in §2.4. Let {X;, }i,e1, and { X, }j,eJ, b€ two open
coverings of X, where Iy and J; are two sets. Let I and J be two sets in §1.5.

By §1.6 we have a diagram of ringed topoi (((X.:E./.)/S)IC‘;%S, O(Xee,Zes)/S)

and (Xoozara f._.l(OS))

Let ¢ and j be arbitrary elements of I and J, respectively. For simplic-
ity of notation, set £ := D U Z. Let {Dy}» and {Z,}, be decomposi-
tions of D and Z by smooth components of D and Z, respectively. Set
A = {E,}, := {Dx,Z,}x,- Then A is a decomposition of E by smooth
components of F. Assume that there exist two diagrams of admissible im-
mersions (X, E;; Alx, )ier = (Xi, Ei; Ni)ier and (X, By Alx;)jes S
(Xj,gj; Ej)jej over S. Set Xy =XiNnX; and E;; == E;NE;. Let X(i,ij) =
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XA\(Xi\ Xy5) (resp. X5 = X5\ (X, \ Xi;)) and set Xy = Xaig) jid)-
Then we have a locally closed immersion X; - ;. Set {Ewity == A
and {g(y7j)}u = A] Set also g(l’”) = EZ‘ n X(z,z])7 5(37”) = 5J n X(j’”)7
Ewiiig) = Esi) N Xiig) and Eqjigy = Ewyj) N X(jij)- Blow up j; along
U(Ewii,i) X 5Ewi4ij))- Let X} be the resulting scheme. Let Xj; be the com-

XsX(

plement of the strict transform of
| Ewiiin xs XY I Xig) X5 Ewigiis)]

in XZ’J' Let &;; be the exceptional divisor on A&j;. Then &;; is a relative SNCD
on X;; by (2.4.2). Considering the strict transform of the image of Xj; in

&Xij, we have a locally closed immersion Xj; - &i;, in fact, an admissible
immersion (X;;, E;j) - (Xij,&ij) by (2.4.2). Let {€(;ij) }» be the resulting
decomposition of &; by smooth components of &;;. We also have a relative
SNCD Z;; on X;;/S by using Z instead of E Let ©;; be the log PD-envelope

of the locally closed immersion (X;;, Z; ) (Xij, Zij).
Let

Rn}‘{iys*: DYF(Q{xve.700)/5(O(X00.Z00)/9)) — DTF((Q(x, 24)/5(O(X4,24)/5))ecl)
and
R0} cryee: DTF(Qlx,, 2,0)/5(O(X10,200)/8) — DYF(Q(x, 2,5 (O(x,2:)/5))

be the natural morphisms defined in (1.6.0.2) and (1.6.0.3), respectively.
Let

anar*: D+F(fo_ol(05)) - D+F((fo_l(o ))'Ef)a
an zars - D+F(f (OS)) — D+F(.f (OS))

be the natural morphisms defined in (1.6.0.6) and (1.6.0.7), respectively. Then
we have the following:

Theorem 2.5.3.
(2.5.3.1)
Rt (Q(x e Zen) 5D (Xew 200115 ( Qs 5108 E00))s Qi 200y PP
=(Q(x.,z)/5L(x0, 20075, 5108 €0)), Q{x, 20y /s P " eer-

(2.5.3.2) anar*((’)@" ®@X" Q}../S(log 5..)7 PDee )
= (09,804, %, /5108 &), PP*)ecr.

Proof. Because (2.5.3.2) follows from (2.5.3.1) by (2.2.22) and by the com-
mutative diagram (1.6.4.7), we have only to prove (2.5.3.1).
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Let v;;: X;; — X; (1 € I, j € J) be the natural morphism. Then
ni:gcgrys*(Q?X..YZ..)/SL(X..72..)/5(&2;(../5(10gg..))7 Q?X.n,Z.o)/S‘DD..) =

. “ De;
Ker{H'YOJQRcrys*(Q(X.jo,Z.jo)/SL(X.jO‘Z.]-O)/S(Q:Y.jo/S(IOgg'JO)):Q(X.jO,Z.jU)/SP 7o)
Jo
ing - L Q° log Eejp i
I H 70.7011Rcry5*(Q(X,j0j1,Z.jojl)/s (X.jojl,Z,jUjl)/s( X.jgjl/S(Og -.7011))7

Jjo<ii1

Qux )/ sPT*3091)} (o, g1 € Jo).

ejgi1 Zeioi1
Thus there exists a natural composite morphism
(Q(xv.20)/5 (X0, 20)/5(%, 5108 ), Q(x, 7.y, P"*)

— ngcgrys* (Q(Xee Zeo) /s L(X e, 200) /5 (2%, 15108 Eas ), Q?X..,Z..)/SPD°°)

N Rnlog

Rerysr (Q(Xue,Z00)/8 L (X 00 200015 (%, 5108 Ea0)), Qi x, 20075 P77

For i e I, let

eit (Xies Zin) /) 5orys: OXia.2:0)/8) — (Xees Zoo) /S) oy O(Xue Zen)/5)

be a morphism defined in §1.5. Let (I3,,{(I8)x}) be a filtered flasque reso-

lution of (Q(x.,, 7..)/5L(Xee,Zee) /5 (2%, /5108 Eee)), Q?X..,Z..)/SPD") such
that, for each i, (I,,{(I%)x}) is a filtered flasque resolution of

(Q?Xi.,Zi.)/SL(Xio7Zio)/S(Q;fi./S(10ggi.))VQ?Xi.,zi.)/SPDi.)'

Obviously we have e, 1(me2  (I2,, {(I2)r}) = n;f’écrys*(li'., {(I,)r})- Hence

Rerys*
it suffices to prove that the morphism

(2:533)  (Q(x,,z)/5L(x:,20)/5 (%, 5108 £)).Q(x, 2,)/sP7")
Bl TR (TATSY

is a filtered quasi-isomorphism. Henceforth we fix ¢+ € I in this proof.

If there exists a morphism j° — 5 in J, then there exists the natural open
O,

immersion (X(Lij),g(i’ij)) <, (X(i,ij’)7g(i,ij’))- By the definition of n;,l;gicryy
we obtain an equality

log,— * . * i\ —
(2534) 080y (Qx, 2 /s Lix20/5 (%, 5108 6)), Qx, 2,y s PP*) =

(Qfxi.,zi.)/sL(Xi.,Zi.)/S(Q}(,-J.)/s(log 5(1‘,@-)))7 Q?Xi.,zi.)/sPD“)

Next, we construct two morphisms (2.5.3.5) and (2.5.3.6) below (cf. [47],
(48, (1.7)], [64, 3.4]). Blow up Xje x5 X(; je) along |, (Eqsie) X5 E(vsiie))- Let
W;e be the complement of the strict transform of
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U((g(u;io) Xs X(i,io)) U (Xio Xs 5(1/;1',@'0)))

v

in this blowing up. Let F;, be the exceptional divisor on W;,. By considering
the strict transform of the image of X;, in W;,, we have a locally closed
immersion X;e -, Wie.

The two projections Wis — Xje and Wies — X[; 4e) induce two mor-
phisms

(2535) (Q?Xio7Zi0)/SL(XihZio)/S(Q:Vio/s(loggi'))’Q?Xinzio)/SPD“) -

(szi.,Zi.)/SL(Xz‘--,Zio)/S(Ql./Vi./S(logfi.))’Q?Xi.,zi.)/SPDi.)
and
(2.5.3.6)
(Qxua 200 /5L (X0, 200) /5, 15108 i) Qlx e 20y s P7) —

(Qix,ez00)/5L(X10.200)/5 (D, 5 (108 Fie)), Q(x o 200y s P7°)-

Because there exists the following commutative diagram
C
(Xij, Eij) —— Wij, Fij)

| l

(Xij, Bij) —=— (X, &)

such that the horizontal arrows are admissible immersions, we see that
(2.5.3.5) is a filtered quasi-isomorphism by (2.5.1). By the same proof, we
see that (2.5.3.6) is a filtered quasi-isomorphism.

Now we can prove that (2.5.3.3) is a filtered quasi-isomorphism. Indeed,
let (J%,{(J%)k}) be a filtered flasque resolution of

(Qlx1a.200)/5 DX 10,2001/ (W, 15108 Fi)), Qi x, 200y s P70)-

Because (2.5.3.6) is a filtered quasi-isomorphism, so is the following composite
morphism

Mhofeeys (Qx, 2y /5 Lx. 2015 (5 (108 €), QTx, 2,)/5PP*)

= (Q?X,i.,Z,i.)/SL(Xi.,Zio)/S(Q:\f(i’i”/S(log S(i,io)))aQ?Xihzi.)/SPDi.)
— (Qxua 200y /5L X0 20115 (B, 5108 Fis), Qix,, 2,05 P7)
— (%, {(J3)k )

Hence, by the filtered cohomological descent (1.5.1) (2), the following com-
posite morphism



108 2 Weight Filtrations on Log Crystalline Cohomologies

(2.5.3.7)
(Qix, 2y L(x0.20/5 (%, /5 (108 €)), Qlx, 2,y s P7)
— D eryee T tiorys Qs 20y 5 Lx 20015 (X 15 (108 60)), Q(x, 22y P
— i Reryee (S (T8}

is a filtered quasi-isomorphism. Because (2.5.3.5) is a filtered quasi-isomor-
phism, so is the following composite morphism
(2.5.3.8)
(Q(x1a.200) /5 L(X10.200) /5 (%1 s (108 Ei0)), Qlx,0 2005 PP
(Q(Xz.,z,.)/s (XieZia)/5 (S L./s(log}_z-))aQ?X,-.,zi.)/sPD")
— (Jio, {(Jio)i})-

The filtered quasi-isomorphism (2.5.3.8) induces a morphism

log

Wi eryse (QUxia 2001/ DX 00 Z00) 15 (Vs 15 (108 Ei0)), QU 710y P

- niolicrys*( ies {( )k})

By the definition of the composite morphisms (2.5.3.7) and (2.5.3.8), the
following diagram is commutative:

(Qx,.z;)/5L(xs,2:)/5 (U, s (l0g £i)), N 1
D, - ni?l%crys* (Jz..’ {(Jl..)k})
Qx;,z:)/sF7")

log

; JRerysx (Q?Xz- «Zin)/SL(XihZi-)/S(Q;(“/S(lOg gi.))v )
O,
D, 772 f‘{crys*( ’L.’{( ’L.)k})
QTX“ 7Z71.)/SP v )
We also have the following diagram

niolgg{crys* (Q?Xi.,Z,i.)/SL(Xi.,Zi.)/S(Q;(“/S(IOg (‘:7;.))7

!

nz Rcrys* (17,07 {( )k})

Since (I, {(I%)r}) and (J%, {(J%)x}) are filtered flasque resolutions of the
same. complex (Qfx., 7,75 L 0xi.zi)/5( %, 5108 i0)). Qlx, 20y /5 P7):
we have an isomorphism n;?l;g{crys*( e {( zo)k}) _> niolgcrys* (Iz.ﬂ {(Iz.o)k}) in
D+F(Q>{X¢,Zi)/S(O(Xivzi)/s)) which makes the diagram of the triangle above
commutative. Hence the composite morphism

- niofgicrys*( 1.7{( ’L.)k})

QX0 210)/5P7)
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(Q(x,. 20y Lix.. 20015 (%, 15108 €)), Q(x, 70y s PP7)
—>n1?}§crys*(‘]i.v {(Jz.o)k}) - ni?}g{crys*(ji.ﬂ {(I;)k})

is an isomorphism in D+F(QE{X¢,ZI-)/S(O(Xi’zi)/s))' Therefore we have proved

that the morphism (2.5.3.3) is a filtered quasi-isomorphism. We finish the
proof of (2.5.3). O

Corollary 2.5.4. Fix decompositions of D and Z by their smooth compo-
nents. Then the following hold:

(1) (Cllji’gyZS(O(X,Duz)/s),PD) is independent of the data (2.4.0.1) and
(2.4.0.2).

(2) The following formula holds in DYF(f~*(Og)) :

(2.5.4.1)
RE(X,Z)/S*(Cllgcgr’yzs(o(X,DUZ)/S)vPD) = (CL27(O(x,puz)s), PP).

As a result, (CX8Z(O(x puz/s), PP) is independent of the data (2.4.0.1)
and (2.4.0.2).

Proof. (1): By (2.5.3), (C’log’Z(O(Xypuz)/S),PD) is equal to

Recrys

lo lo 7Zo °
RT()?,Z)/SRcrys*(Ochrys (O(XnDoUZo)/S)’PD Jeer

1 1 * °
:RW((;E,Z)/SRcrys*RnP({)Cgrys* (Q(X..,Z..)/SL(X..,Z..)/S(QX../S(IOg Eee));
QixunzenysP7*)
( log,Z.

:Rﬂ—log Recrys (O(XuyDoUZ-)/S)’PD.)‘eJ’

(X,Z)/SRerys*

(2): We have

(2542) Rﬂ(x7z)/s*(C%{)Cg;},ZS(O(X,DUZ)/S)vPD)
ZRﬂzar*Rﬂ(X.,Z.)/s*(Q?X,,z,)/sL(X.,Z.)/S(Q:\f./s(l()g5-))7

Qlxv.za)/sP")
:Rﬂzar*(O@. ®OX. Qk./s(].og g.)’ PD.)

=(C&7(Ox,puz)s), PP).

Here the first (resp. second) equality follows from (1.6.4.6) (resp. (2.2.22.2)).
The fact that the isomorphism (2.5.4.1) is independent of the data (2.4.0.1)
and (2.4.0.2) immediately follows from (2.5.3.1) and (2.5.3.2). O

Remark 2.5.5. In §2.7 we shall prove that (Ollsgyzs(o(x,puz)/s), PP) is inde-
pendent of the choice of the decompositions of D and Z by their smooth
components. As a result, (Clog’Z(O(XVDUz)/S),PD) is also independent of

zar
the choice above.
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Corollary 2.5.6. Let v: (X, DU Z) - (X, DU Z) be an admissible im-
mersion over S with respect to the union of decompositions Ap and Az of
D and Z by smooth components of D and Z, respectively. Let ® be the log
PD-envelope of the locally closed immersion (X, Z) — (X, Z) over (S,T,7).
Then the following hold:

(1)

(2.5.6.1) (CREZ(Ox.puz)/5), PP)

Rerys

=(Q{x.2y/5L(x,2)/5(2% 5(10g(D U £))), Q(x. 2,5 P")-

In particular, the filtered compler (Qfx 7),sL(x,2)/s(2%5(log(D U Z))),
?X,Z)/SPD) s independent of the choice of the admissible immersion of
(X,DUZ) over S if one fizes Ap and Ay.
(2)

(2.5.6.2) (CIOg’Z(O(X,DUz)/S), PD) = (O@ Koy Q:‘_,/S(log(D U Z)),PD)

zar

in DTF(f~1(Og)). In particular, the filtered complez (Op @0, Q% /5 (log(DU
Z)), PP) is independent of the choice of the admissible immersion of (X, DU
Z) over S if one fixres Ap and Ay.

Proof. By (2.5.4) (1), we have

(Cllvi)cgr’yzs(o(x,Duz)/s% PP)
=(Q(x,2)/5L(x.2)/5(% )5 (10g(D U £))), Q{x 2,5 P")-
Hence (1) follows. The proof of (2) is the same. O

Proposition 2.5.7. Let (S,Z,7v) and f: (X,FE) = (X,DUZ) — Sy
be as in §2.4. Let A be a decomposition of E by smooth components of
D and Z. Let X = |J X;, be an affine open covering of X, where
i0€lp

Iy is a set. Set (Xo,Eo) = ([I;, Xio: [1;,(E N Xy)) and (Xn, Ep) =
(cosky\ (Xo)n, coski (Eg)p) (n € N). Let (X, Zy) and (X,,, Dy,) be the ana-
logues of (Xn, Ey) for Z and D, respectively. Set Ag := [[; Alx,, ((2.1.12))
and let A, (n € Z~q) be the induced decomposition of E, of smooth compo-
nents of E,,. Let

lo I lo *
7TlRfrys : (((Xn7 Z")/S)chrys’ Q(Xn,Zn)/S(O(szn)/s))”eN

P

— (X, 2)/9)8 s Qix.2)/5(Ox.2)/8))

be a natural morphism of ringed topoi. Then there exists an admissible immer-
sion (X, Ep)nen SR (X, En)nen of simplicial smooth schemes with simpli-
cial relative SNCD’s over S with respect to (Ay,)nen. Moreover,
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(2.5.7.1)

(Creve(Ocx.py/5), PP) =

Rﬂll(cggyZ)Rcrys*((Q?Xn,Zn)/SL(XmZn)/S(Q:vn/s(log gn))vQ’(FXn,Zn,)/SPDn)nEN)'
Proof. Let I' be a category whose objects are (i, ...,%)’s (r € Nyig,...,i, €
Iy) and the morphism from i := (ig,...,i) — j := (Jo,-..,Js) IS one

point if {ig,...,%.} C {jo,.-..,js} and empty otherwise. For an object i =
(i0y .-y ir), set X; = (oo Xi,, B == a_o(E N X,,). Then we have the
following contravariant functor:

(Xe, Eq): I'° — {smooth schemes with relative SNCD’s over Sy}

The construction in §2.4 shows the existence of a diagram of admissible im-
mersions into a diagram of smooth schemes with relative SNCD’s over S:
(Xe, Es) =<, (X, &) (o € I') with respect to A,, where A, is the induced
decomposition of E by A ((2.1.12)). For an element ji,j2 € Iy, there ex-
ists two natural morphisms &;.: (X(j, 4,), EGi.ga)) — (X, ) (B = 1,2).
Using these morphisms, we have natural face morphisms 0,,: (X,,&,) —
(Xn—1,En—1) (m = 0,...,n). Moreover, note that X(;; (i € Ip) is an open
scheme of the blow up of X; x ¢ X; by a closed subscheme of it. By considering
the strict transform of the diagonal immersion X; S X; xg X;, we have a
natural morphism s": X; — A{; ;). Using this morphism, we have natural
degeneracy morphisms s, (X,—-1,En—1) — (X, &) (m = 0,...,n — 1).
The morphisms s, and d,, (m € N) satisfy the standard relations in [90,
(8.1.3)]. Hence we have a desired simplicial log scheme (X, &, )nen-

Fix a total order < on Iy. Let I be a subcategory of I’ whose objects are
(20, .- -,3p)’s (r € Nyig < -+ <'ip,i; € Iy). Let

7"%())?72)/513\@%5 (((X'aZ')/S)EiysvQE(X.7Z.)/S(O(X.,Z.)/S))'€I

e~

— (((X, Z)/S);)(g:;rys’Q?X,Z)/S(O(X,Z)/S))

be a natural morphism of ringed topoi. Then we have

(CREZ(Ox,p)/3): PP)

=R 7)) serysr (Qlxe 20y 5L(x0 20115, 15108 €0)), Qlx, 205 P " )ec)

by the definition of (Cll,i’fr’yZS(O(Xﬂ)/S), PP). Because Cech complexes are cal-

culated by alternating cochains as in [80, §3], the right hand side is canonically
isomorphic to

log * ° * .
Rﬂ'/(i)}?z)/sr{ays*((Q(Xn,Zn)/SL(Xn,Zn)/S(QXn/s(IOg571))» Q(szn)/sPD )neN)~

0
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Corollary 2.5.8. With the notation of (2.5.7), let D,, be the log PD-envelope

of the locally closed immersion (X, Zy) <, (X, Zn) over (S,Z,7). Let

7ot (Xp)nen — X be a natural morphism of topoi. Then the following

holds:
(2.5.8.1)

(C;Z%)Z<O(X,E)/S)a PD) = R7,.0. (0o, Q0x,, Q:vn/s(log En)s PD”)neN)~

Proof. We immediately have (2.5.8) since we have the analogue of (2.5.4.1)
for

lo * ° * n
Rr' % ) sreryar (Qx .20y 5L(X 0 20115 (%, 15108 E0)), Q(x,, 2,y /5P 7™ Jnen).

O

2.6 The Preweight Spectral Sequence

Let the notations be as in §2.4 and §2.5. Recall the projections u(x z)/s

and U(X,DUZ)/S ((2.2.22.1), (2464)) Set f(X,Z)/S = f o] u(X,Z)/S’ and
fix.puzy/s = [ o ux puzys- Then we have the log crystalline coho-

mology sheaf Rhf(X,DUZ)/S*(O(X,DUZ)/S) (h € Z). We also have the
log crystalline cohomology sheaf Rhf(D<k>,Z|D(k.))/S*(O(Dw),Z\D(k))/S) of

(D) Z| py)/(S,Z,7). In this section we construct the following spectral
sequence of Og-modules:

(2.6.0.1)
—khtk _
By = R fipw 21, 0)/5+(Ow 21y s @2 w5 (D] S: Z))

= Rhf(X,DuZ)/S*(O(X,DUZ)/S)-

Theorem 2.6.1. Let a®): (D®), Z|50) — (X, Z) (k € N) be the natural
morphism. Let

k)lo
af(:rgzs*g: D+(O(D(k),Z\D(k))/S) N D+(O(X,Z)/S)

and
al®), : DY ((f 0 a™)1(0g)) — DH(F1(Os))

be the induced morphisms by a'®). Fiz decompositions of D and Z by their
smooth components. Then there exist the following canonical isomorphisms

D
(2.6.1.1) grt (Cll{’fr’yZS(O(X,DuZ)/S))
* k)lo o
:Q(X7Z)/Sa((:r§)ls*g(o(D(k>,Z|D(k))/5' ®z wg]r?/i g(D/S7 Z)){_k}

and
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(2.6.1.2) gt (C87(O(x,puz)/s))

—azar*RU(D(k) Z|D(k))/S*(O(D(’C> Z| )/ S O w (D/So)){ k}.
Proof. Let the notations be as in §2.4. By applying Ru(x,z),s« to both hands
of (2.6.1.1), we immediately have (2.6.1.2) by (1.3.4.1) and (2.5.4.1); hence

we have only to prove (2.6.1.1).
Let

—~—

log
(26.1.3) ”&W Z| pky)/ Serys” (DS, Z, |D(k>)/s)°ryb’O(Dik),ZJD(k))/S)

(((D(k Z|D(’“> )/S)crys’ O(D(k),Z\D(k))/S)

be the natural morphism of ringed topoi (§1.6). Then we have the following
equalities:

(2.6.1.4)
D o
gt (Crai(Oix.puz)/s))
ngk RW(X Z)/SRCrys*(Q(xhz.)/sL(X.,Z.)/S(Q}./s(log(po UZ.))))

lo; Qf 0. Ze PP *
:R’/T()?Z)/SRcrys*grk (o208 (Q(XHZ.)/SL(X.,Z.)/S

(2%, /s(log(De U Z4))))
=R (¥ 1) sRerysrQUxa,20) /58500 (O oo | g/
Rz TaWE(Da/S; Zo)){—k}
:Q?x,zvsR”g?m/Scrya*“'lzflyc;g*(O<D£"‘>’Z.\D<ﬁ>>/s
Rz TINE(Da/S; Zo)){—k}
=Q(x, Z>/sagr35* R”Eﬁk) 210/ Serysn QP 2, p()/S

©z Wiag *(De/S; Za)){—k}

crys

* k)lo, o
=Qix,2)/50E (O 2| )/5 @2 TEIE(D/S; 2)){~k}.

Here the second, the third, the fourth and the fifth equalities follow from
(1.3.4.1), (2.2.21.2), (1.6.4.1) and (1.6.0.13), respectively. The last equality
follows from the cohomological descent.

Next we prove that the isomorphism (2.6.1.4) is independent of the choice
of the data (2.4.0.1) and (2.4.0.2). Assume that we are given the other data

(2.4.0.1) and (2.4.0.2) as in §2.5. By the trivially filtered version of (2.5.3),
we have
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* k)log °
Rni:({)cgrys*(Q(X..7Z..)/Sa'£‘)crygs*L(Xoo,Zoo)/S(QD(.’Z)/S( 10g Zaa| 1))

Rz WEE(Des/S; Zas)))

crys

* k)lo ° o
- Q(X.7Z.)/Sa£(31)“ysg*(L(X.,Z.)/S(QDsk)/S(IOg Ze|pm)) ®z wéfy)l 8(Dy/S; Z)).

Since Rni{’frys*grfm' = gr,fD' Rnﬁ)cgrys* by (1.3.4.1), we have the following
commutative diagram

* D
[Qixe.ze)/sP '(

g k Q}{X--,Zn)/SL(XhZO)/S ~

(2%, /s(log(Ds U 24))))
Rnlog sz..vz..>/SPD..

Rcrys*grk: (Q?X..7Zn-)/SL(Xoo7Zoo)/S ~

(2%, /5(108(Dee U Zs4))))

* k)lo °
Qe 2500 (Lo 211y 5108 Zelp)H{=}

* o k)l °
Q(X.,Z.)/SRnlrfzs*a&)CroygS* (L(D(.’i),Z.. |D(k) )/S(Qpﬁli)/s(log Zeeo |D£"."> )){*k}

@z W) (Da/S; Z))

®Z wélr?féog(DOO/S; Zoo))~

Hence we see that the isomorphism (2.6.1.1) (and hence (2.6.1.2)) is inde-
pendent of the choice of the data (2.4.0.1) and (2.4.0.2). O

Corollary 2.6.2. Let k' be a nonnegative integer. For integers k and h, set
BEfMH (X, DU 2)/S:K)

_ )
_ B o0 21 )15+ (Op0 21 1) 5 @ wE (DS Z)) (k< K),
0 (k> FK).

Set ?(X,Z)/S = fou(x,z)s- Then there exists the following spectral sequence

(2.6.2.1) ERME — prkhth (X DU Z)/S; K
= Rh?(x,z)/s*(Plgcll{)cgﬁyzs(o(X,DUZ)/S))'

In particular, there exists the following spectral sequence



2.6 The Preweight Spectral Sequence 115

(2.6.2.2)
By = ErRMR (X, DU Z)/8)

= Rh_kf(p(k),Z\D(k>)/s*(O(Dm,Z\D(k))/s Rz WANE(D/S; Z))
= R" f(x,puz)/5:(O(x,0U7)/5)-

Proof. Let (I3, {I h<w) € K+F(QZX,Z)/S(O(X7Z)/S)) be a filtered flasque
resolution of a representative of (P,EC}i’f;fs(O(x,Duz)/s),{BDC}Sf;yZS(O(x,
puz)/s) hi<k') € D+F(Q>{X)Z)/S(O(X,Z)/S))- Consider the following spectral
sequence

BRI = H'(Fx.2) 580 (I0) = H"(F (x.2) /5 I00)-

ObViOuSly we haVe Hh(?(X,Z)/S*Ik’) = Rh?(X,Z)/S* (Pk;D/Cll}OCgr’st(O(X,DUZ)/S))
By the proof of (1.3.4.1), gr,(I?,) is a flasque resolution of gr” (CREZ(Ox.

Rerys
puzy/s)) for k < k'. Hence, for k < k', we have

— D
E1 k,h+k :Rh (Clog,Z

Tix.zy sk (Crevi(O(x,puz)/s)))

=z * k)l k)log
=R"F(x.2)/5 (Q(X,Z)/S(aér})'so*g(o(p(k)7z|D(k) 51—k} @2 =ENE(D/S; 2))))
— k)lo,
—=RM kf(D(k)’ZlD(k) )/S*(O(D(’“),ZlD(k) )/ S ®z W£r;s &(D/S; Z)).

Here, in the last equality, we have used the commutativity of the diagram
(1.6.3.1) for the trivially filtered case. Therefore we obtain (2.6.2.1). By using
(2.4.7.2), we obtain (2.6.2.2) similarly. O

Corollary 2.6.3. Fix decompositions Ap and Ay of D and Z by their

smooth components, respectively. Let v: (X, DU Z) = (X, DU2Z) be an ad-
missible immersion over S with respect to Ap and Ayz. Let f: (X,DUZ) —
So and fg: (X, DU Z) — S be the structural morphisms. Let D be the log

PD-envelope of the locally closed immersion (X, Z) — (X, Z) over (S,T,7).
Let fék): D*) — S be the PD-envelope of the locally closed immersion

D®) S, D®) over (S,Z,7). Let k' be a nonnegative integer. For integers k
and h, set

ErFMR (X, DU Z)/S; k)

_ RMF £ (05w ®0_,) Q% /5 (log Zlpw)) @z wih (D/S)) (k< K),
0 (k> k).

Then the following spectral sequence

(2.6.3.1) B = prhtR((x DU 2)/S;K)
— R f5.(0p ®0, PEY s(log(D U 2)))
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is isomorphic to (2.6.2.1), and hence it is independent of the choice of the
admissible immersion fs. In particular, if fs: (X, DU Z) — S is a lift of
[+ (X,DUZ) — Sy, then the following spectral sequence

(2.6.3.2)
E;MME = BrMRN (X, DU 2)/S3K) = R fs.(PEQ% s (log(D U £)))

is independent of the choice of the lift. Here
EfMH (X, DU Z)/S;K)

_ R @ 5 log Zlpw) @z @l (D/S) (k< k),
0 (k> F).

Proof. (2.6.3) immediately follows from (2.5.4.1) and (2.6.2.1). O

Remark 2.6.4. In §2.9 below, we consider the functoriality of (2.6.2.2); in
particular, in the case where Sy is of characteristic p, we shall consider the
compatibility of (2.6.2.2) with the relative Frobenius F': (X, D) — (X', D)
over Sy.

2.7 The Vanishing Cycle Sheaf and the Preweight
Filtration

Let S, Sp and f: (X, DUZ) — Sy be as in §2.4. Let a®): (D®), Z|50)) —
(X,Z) be asin §2.2 (2). In §2.4 and §2.5, we have constructed the preweight-
filtered restricted crystalline complex

(CrEZ(Ox.puz)5): PP) € DTF(Qlx 1)/5(O(x.2)/5))

such that
Cll:({)ch:yZS(O(X,DUZ)/S) = Q(x,z)/sBex,puz,2)/5:(O(x,DUZ)/5)

in DY(Q(x 2)/5(O(x,2)/5))- Here

€x,puz,z)/s: (X,DU Z)/S)log~ — ((X, Z)/S)lc(;is
is the forgetting log morphism along D ((2.3.2)). Let j: U := X \ D S X
be the natural open immersion. Let n be a positive integer. Let (X, D U Z)
be as above or an analogous log scheme over C or an algebraically closed field
of characteristic p > 0. Then we have the following translation if Z = {):
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(2.7.0.1)
/C l-adic crystal
Uan Uet ?
(Xans Dan)'%%, (Xan, Dan)¥| (X, D)SE - |((X, D)/8) 1%,
Xans Xan Xt (X/8)crys
Jan: Uan — Xan Jet : ﬁet - )?et ?

6top (Xan7Dan)log — Xan
(Xana Dan)log — X €et - (Xa D)lccég 6(X,Dl/_é’_:/(()(? D)/S)log

crys
— Xt —_— (X/S)Crys

R = e @) B @ =7

Retops (Z/n) = Reanx(Z/n) REct*(Z/lf) Re(x,p)/s+(O(x,p) s)~

Xon — X Xet — Xyar Ux/s - (X/S)crys — Xoar

L(X yy,Dan)'o®

(Z/710) (X g, Do 105 (Z/n) =5 |Ox.py/s

L win)

Zx

(Z/n)x,, (n € Z) (Z/n)%., (1n)|Ox/s

(Q /C(logD) P) ? (Coar(O(x,p)/5): P)
( (logDan)vp) ? (CRCrys(O(X D)/S)vp)
( (log Dan)> T) ? (CRcrys(O X D)/S)7 T)

Here (Xan, Dan)'°8 is the real blow up of (Xan, Dan) ([58, (1.2)]) and €op is

the natural morphism of topological spaces, (Xan, Dan)log is the analytic log
etale topos of (Xan, Dan) ([51]) and €,y is the forgetting log morphism to
the topos )?an defined by the local isomorphisms to X,y,; the morphism g
in the middle column is the forgetting log morphism ([30], cf. [67, (1.1.2)]);
the upper (resp. lower) equality in the left column has been obtained in [58,
(1.5.1)] (resp. [72]), and the equality in the middle column ([30, (3.6)]) follows
from the following composite equality

(2.7.0.2)
h

R (Z/1") = \(ME O%) 2. Z/1"(~h) = R juin(Z/1") (h € L, € Ls).

Here the first equality follows from [58, (2.4)] and the second equality is
Gabber’s purity ([33]) which has solved Grothendieck’s purity conjecture.
Recall that, in the crystalline case, Rjerys«(Opyg) is not a good object ([3,
VI Lemme 1.2.2]).

The purpose of this section is to give another intrinsic description of the
preweight-filtered restricted crystalline complex (C’llgffr’yZS(O( X,DUZ) /5),PD )
and, as a corollary, to obtain the spectral sequence (2.6.2.2) in a different
way.
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We start with the following, which includes a crystalline analogue of Gab-
ber’s purity.

Theorem 2.7.1 (p-adic purity). Let k be a nonnegative integer. Then
(2.7.1.1)
Qfx,z)/st€(X,DuZ,Z)/S*(O(X,Duz)/s)

* k)1 o,
= Q(X,Z)/Sagr})'s?kg(O(D(k),Z\D<k>)/S ®z wH)8(D/S; Z)).

Proof. The “increasing filtration” {PDC’log Z(O(X,Duz)/s)}kez on C&Z4 (0

Rerys Rerys
(X,DUZ)/ 5) gives us the following spectral sequence
(2.7.1.2)
_ D log, O
EyHME = 1M (g ORE(O(x.puz) s) = MM (Crinya(O(x,0u2)/5)).

Let I* be a flasque resolution of O(x puz)/s. By (2.4.7.1) and by the exact-
ness of QE‘X 7)/s> We have

H (Cllv?cgr’ys(o(x,DUZ)/s)) = H"(Q{x.2)/sRe(x,puz,2)/5+(O(x.pUZ)/5))
= Hh(Q?xz)/se(X,DUZ,Z)/S*(I.))
= Qfx,z)/sHh(E(X,DUZ,Z)/S*(P))

= Q?X,Z)/sRhe(X,DuZ,Z)/s*(O(X,Duz)/s)7

and by (2.6.1.1) we have

D
H(gr Crac(Oix.puz)/s))
=H"*(Qx, Z)/Sagrys* (Opw, 2|, )5 Dz wWl8(D/S; Z)));

this is equal to QTXVZ)/Sayf;,lsig(O(Dm,Z|D(k))/S ®z wglfyiog(D/S Z)), 0 for
k = h and k # h, respectively. Hence (2.7.1.2) degenerates at Ey; thus we
have a canonical isomorphism

Qix.z)sR e(x,puz,2)/5:(Ox.pUz)/5)
:Q?X,Z)/Saglfb)’ls?kg(o(DW),Z\D(k))/s ®z wHENE(D/S; 2)).
0
By the Leraﬁ?/ectral sequence for the fungt_(z_r/e(x puz,z)/s«: (X, l/)—[J_/Z)/S)
e — ((X,2)/S)8 and Jx,zys+ (X, Z)/8)ee  — Xzar, we obtain the

crys crys crys
following spectral sequence

(2.7.1.3) Es' = R®f(x.7)/s:R'€(x.puz,2)/5+(O(x.pU7Z) /5) =
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R fix.puz)/8+(O(x,p02)/5)-
I = N aylo _—
Set fixz)/s = fx.2)/5 © Qux.zy/57 (X, 2)[S)Rerys — (X, 2)/9)5s —
X,.r. Because R?(X,Z)/S* ) Q?X,Z)/S = Rf(x,z)/s%, (2.7.1.3) is equal to the
following spectral sequence

(2714) E;t = Rsf(D("),Z|D(f,))/S*(O(D<t):Z|D(t))/S X7z wég};’g(D/S,Z)) —

R fix.puz)/8+(O(x,puz7)/8)

by (2.7.1).

Using (2.7.1), we can give another simpler expression of (C’gfr’yzs((ﬁ(xﬂuz)
/5); PP). To do this, let us recall the canonical filtration of a complex.

Let (7,.A) be a ringed topos and let E® be an object in C(A). Then the
canonical filtration 7 := {7, E®}1ez of E® is defined as follows: 7, E! := E°
(i <k),:=Ker(E¥ — E*1) (i =k),:=0 (i > k). Let E* and F'* be objects
in C*(A). Then a homotopy h between two morphisms f,g: E®* — F* also
gives a filtered homotopy between two morphisms f,g: (E®,7) — (F'®, ) of
filtered complexes. Furthermore, a quasi-isomorphism f: E®* — F'® induces
a filtered quasi-isomorphism f: (E®,7) — (F*®,7); thus a functor CT(A) 2
E* — (E*,7) € C*F(A) induces a functor D™ (A) — DTF(A), which is
also denoted by E® +— (E*®,T).

We prove the following lemma for a main result (2.7.3) below in this
section:

Lemma 2.7.2. Let f: (T,A) — (7', A") be a morphism of ringed topoi.
Then, for an object E® in DT (A), there exists a canonical morphism

(2.7.2.1) (Rf.(E®),T) — Rf.((E*,7))

in DYF(A).

Proof. Let E®* — I° be a quasi-isomorphism into a complex of flasque
A-modules. Let (I°,7) — (J*,{Jg}) be a filtered flasque resolution of
(I°,7). Then, by applying the functor f, to the morphism of this resolution,
we obtain a morphism

(2.7.2.2) (L (I%), S L®)}) — (F(I*): {S(T0)})-

By (1.1.12) (2), the right hand side of (2.7.2.2) is equal to Rf.((E*®,7)). On
the other hand, there exists a natural morphism f.(7,1°) — 7 f«(I®); in
fact, by the left exactness of f., we have f,(731°) — 74 f.(I*). Hence the
left hand side of (2.7.2.2) is equal to (f«(I*), {7k f<(I°)}) = (Rf.(E®),T). It
is easy to check that the induced morphism in DTF(A’) by the morphism
(2.7.2.2) is independent of the choice of I* and (J*®, {J2}). Therefore we have
a canonical morphism (2.7.2.1). O

Now we give another description of (C%gfr’yzs((’)(xpuz)/s), PD).
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Theorem 2.7.3 (Comparison theorem). Let Sy, S, X, D and Z be as in
§2.4. Set

(2.7.3.1) (ER&Z (Ox.puz)s), PP)

crys

5:(R€(X,Duz,z)/s*(O(X,Duz)/s),T) € D+F(O(X,Z)/S)-
Then there exists a canonical isomorphism
(2.7.3.2)
Q?X,Z)/S(Eicr)iéZ(O(X,DUZ)/S)vPD) - (Ci{)cgr)yzs(o(X,DUZ)/S%PD)'

In particular,

(2.7.3.3) (CREZ(O(x.puz)5): T) = (Cel(O(x.puzyys) PP).

Proof. Fix the data (2.4.0.1) and (2.4.0.2) for D U Z. Then, as usual, there
exists a natural morphism of filtered O(x, z,)/s-modules:

(2.7.34) Qx,z4)/5(L(xe.20)/5 (D, 5 (10g(De U 24))), 7) —

(QCxu.20)/5L(x0.20)/5 (%, 5 (108(Da U 24))), Q(x, 20)/sP*)-

By (2.7.2) there exists a canonical morphism

(2.7.3.5)
(BT 1) sReryss Qe 20)/5L(X0 20) /5, s (108(Da U 24))), 7) —

Rﬂ-ggz)/sficrys*(Q?X.,Z.)/SL(X.,Z.)/S(Q;(./S(IOg(DO U Z,))), 7).

By composing (2.7.3.5) with the morphism RW%C)’?’Z)/SRCWS*((2.7.3.4)), we ob-

tain a morphism
(2.7.3.6)
1 * °
(BT 2)/sReryse @ Xa,20) /5L (X0, 20) 15 (%, 15 (l0g(De U 24))), 7) —

lo * ° * .
R7(% ) seryen(Q(xa,20)/5D(x0,20)/5 (0%, 5 (108(DoUZ0))), Q(x, 2y /s P7*)
which is nothing but a morphism

(2.7.3.7)

(Q(x,2)/sRe(x,puz,2)/5+(O(x,pU2)/5), T) — (Cﬁ)f;yZS(O(X,DUZ)/S),PD)
by (1.6.4.1). (We have not yet claimed that the morphism (2.7.3.7) is in-
dependent of the data (2.4.0.1) and (2.4.0.2).) To prove that the morphism

(2.7.3.7) is a filtered quasi-isomorphism, it suffices to prove that the induced
morphism

(2.7.3.8)
D O,
gr;;-QEkX7Z)/SRE(X7DUZ,Z)/S*(O(X,DUZ)/S) - grkp CIIDchr7};Zs(O(X7DUZ)/S)
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is a quasi-isomorphism for each k € Z. By the definition of the canonical
filtration 7 and by the proof of (2.7.1), we have

(2.7.3.9)

Hi(gr;sz,z)/sRG(x,DuZ,Z)/s*(O(X,Duz)/s))
_ {Q?X’Z)/SRICG(X,DUZ,Z)/S*(O(X,DUZ)/S) (1 =Fk)

0 (i # k)
* k)lo k)lo .
_ [ Qixz)s058E O 7115 @z @R (D/S: Z)) (i = k),
0 (i # k).

By the proof of (2.7.1) again, Hi(grfDC’lgffr’yZS(O(Xpuz)/S)) is also equal

to the last formulas in (2.7.3.9). Hence the morphism (2.7.3.7) is a quasi-
isomorphism.

Finally we show that the morphism (2.7.3.7) is independent of the data
(2.4.0.1) and (2.4.0.2). Indeed, let the notations be as in §2.5. Using (2.5.3.1),
we have the following commutative diagram:

1o, *
(Rﬂ()?,Z)/SRcrys*Q(X.,Z.)/SL(XnZo)/S ~

(2%, /s (log(De U 2,))), 7)

lo lo *
(RW()?,Z)/SRcrys*Ranrys*Q(X..,Z..)/S'L(Xu,Zu)/S
_

(Q2%../5(108(Des U Z44))), 7)
1 . .
(Rﬂ((;(g,z)/SRcrys*Q(X.,Z.)/SL(X.,Z.)/S(QX./S(IOg(DO U Z,))),

Q(x..20)/5P"*)

It 1 * °
(RF((E,Z)/SRcrys*RnP({)cgrys*Q(X..,Z..)/SL(X..,Z..)/S(QX../S(log(DOO U ZO.)))v

Qfx..,z..)/sPD")'

Thus the independence in question follows. 0

Definition 2.7.4. We call (Ei?%éZ(O(X,DUZ)/S),PD) € D'F(O(x,z)/s) the
preweight-filtered vanishing cycle crystalline complex of (X, D U Z)/S with
respect to D. Set

(E8?(O(x,puz)5), PP) = Ru(x,z)/5:(ES&7 (Ox,puzy/s), PP)

zar
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and we call it the preweight-filtered vanishing cycle zariskian complex of
(X,DU Z)/S with respect to D.

Corollary 2.7.5. There exists a canonical isomorphism
(275.1) (B2 %(Oix,puzys), PP) = (G (O(x,puz)/5), PP).

Proof. The left hand side of (2.7.5.1) is equal to

log

Ru(x,2)/5:Q(x.2)/5(Eeot? (Ox.puz)/s), PP)
:RE(X,Z)/S*(Cllscgﬁyzs(O(X,DuZ)/S%PD) = (C87(O(x,puz)s), PP).
Here we have used (2.5.4.1) for the last equality. O

Corollary 2.7.6. The spectral sequence (2.7.1.4) is equal to (2.6.2.2) if we
make the renumbering E-*hk = Ef;lkk (r>1).

Proof. By [23, (1.4.8)], the spectral sequence (2.7.1.4) is obtained from the

increasing filtration {TkC%?fr’yZS(O(X,Duz)/s)}kez; this filtration is equal to

{P;?C%gi}i(o(x,puz)/s)}kez by (2.7.3). Hence (2.7.6) follows. O

Corollary 2.7.7. (1) The filtered complex (C’%gcgr’yzs((’)(x,guz)/s),PD) is in-
dependent of the choice of the decompositions of D and Z by their smooth
components. The spectral sequence (2.6.2.2) is also independent of the choice
of them.

(2) Let the assumptions be as in (2.5.6). Then the right hand sides of
(2.5.6.1) and (2.5.6.2) are independent of the choice of the decompositions of

D and Z by their smooth components.
Proof. The proof is obvious. O

Corollary 2.7.8. The isomorphism (2.6.1.1) is independent of the choice of
the decompositions of D and Z by their smooth components. Consequently the
isomorphism (2.6.1.2) and the spectral sequences (2.6.2.1), (2.6.2.2), (2.6.3.1)
and (2.6.3.2) are also independent of the choice.

Proof. Since both hands of (2.6.1.1) is independent of the choice by (2.7.3)
and (2.2.15), the problem is local. By (A.0.1) below, we may assume that two
choices of the decompositions of D and Z by their smooth components are
the same. Now the independence follows from the proof of (2.5.1) and the
argument in (2.5.3). 0

The following is another proof of (2.5.7):

Corollary 2.7.9. (2.5.7) and (2.5.8) hold.
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Proof. By (1.6.4.1), (2.3.10.1) and the cohomological descent, we have

lo * °
RW’()?,Z)/SRcrys*(Q(Xn,Zn)/SL(Xn7Zn)/S(QXn/S(10g &n))nen)

=Q(x,z)/sRe(x.puz,2)/5:(O(x,pUzZ)/5)-

By the same proof as that for the formula (2.7.3.2), we also have

lo % .
RT(’()?,Z)/SRcrys*((Q(Xn,Zn)/SL(Xn,Zn)/S(QXn/S(]()g &),
Qx,.z.)/5P8 " Jnen)

lo, °
:(Rﬁ/()g,z)/SRcrys* (L(Xn,Zn)/S(QXn/S(IOg gn))neN)7 7).
Hence we have (2.5.7) and (2.5.8). O
We shall use the following for the preweight-filtered Kiinneth formula:

Proposition 2.7.10. Assume that X is quasi-compact. Then the filtered
complex (EX8:7(Ox,puzyss), PP) is bounded.

crys

PT’OOf. By (2311), Re(X7DUZ7Z)/S* (O(X,DUZ)/S) is bounded. Hence (2710)
immediately follows. O

Remark 2.7.11. In this remark we show an unexpected nonequality

(2.7.11.1)
RPe(x,py/5+(O(x,p)/5) # aliyse (Opw s 2 wE)(D/S)) (k€ N)

in general. More specially, in this remark, we prove that the natural morphism

(2.7.11.2)  Oxys — €(x.py/5+(O(x,p)/5) = RY€(x.p)/5:(O(x,0y/5)

is not surjective in general if p = 0 on Sp.
Let (X, D) S5 (X, D) be an exact closed immersion into a smooth scheme
with a relative SNCD over S. Let ¢: Lx;s(Qy,5) — Lx/s(Qy/5(log D)) be

anatural morphism of Ox/g-modules, and let d: Lx;s(Ox) — LX/S(QQ/S)
be the natural boundary morphism. By the crystalline Poincaré lemma and
the Poincaré lemma of a vanishing cycle sheaf ((2.3.10)), we have the follow-
ing:

(2.7.11.3)
Ox/s = Ker(d: Lx;s(Ox) — LX/S(Q%Y/S))

| !

ex,0)/s+(O(x,p)/s) — Ker(tod: Ly/s(Ox) — Lx;s(Qy5(log D)))

Consider the following commutative diagram of exact sequences:
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0 —— 0 —— Lyx/s(Ox) —— Lx/5(Ox) —— 0

J | ]
0 —— Kert —— LX/S(Q}Y/S) e Ime — 0.

Hence, by the snake lemma and (2.7.11.3), we obtain the following exact
sequence

(27114) 0— OX/S — G(X,D)/S*(O(X,D)/S) — Ker(L) — Coker(d).

Now set X' := Spec (Os[z]) and let D be a relative smooth divisor on
X defined by an equation x = 0. Set (X,D) := (X,D) xg Sp. In this
case, Coker(d) = 0 by the crystalline Poincaré lemma. Hence, to prove

that (2.7.11.2) is not an isomorphism in this case, it suffices to prove that
Ker(c) # 0. Set Ag := Og,[z,y]/(zy). Let f : Ay — Og,[x] be a morphism
of sheaves of rings over Og, defined by equations f(z) = z and f(y) = 0.
Let AFP be the PD-envelope of Ag with respect to Ker(f). Let § be the PD-
structure on Ker(f) and let fPP: AP — Og,[z] be the induced morphism
of sheaves of rings over Og, by f. Set T := MSO (ALP). Then f induces a
PD closed immersion X —= T the triple (X, T, 4) is an object of (X/S)erys-

Let g: AGP @05, Os,[2] — Os,[x] be a morphism of sheaves of rings over
Og, defined by g(s ®t) := fFP(s)t (s € AFP, t € Og,[7]) and let B be the
PD-envelope of A§P ®0g, Os,[z] with respect to Ker(g). Then, by the proof
of [11, (6.10)], the value LX/S(QQ/S)T of LX/S(Q}L,/S) at T is given by the
following formula

LX/S(Qic/S)T =B ®(’)s[r] Os[x]dx = Bdx,
while the value L/, 5(Q% (log D)) is given by the following formula
LX/S(Q}Y/S(logD))T = Bdlog x.

Let ur: Lyx/s(Qy g)7 — Lx/s(Qy5(logD))r be the value of ¢ at T Then
tr(dz) = (1 ® x)dlog x.

To prove that ¢ is not injective, it suffices to prove that a morphism
B — B given by multiplication by 1 ® z is not injective. Here we denote the
image of a local section s of AP ®0s, Os,[r] in B by the same symbol s by
abuse of notation. We check

(A)y®1#0in B
and
B)l®z)P(y®1) =0in B.

First we check (A). Consider the following commutative diagram
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Ay —1— 0g,[2]

l l

Os,ly] —— Os,,

where the vertical morphisms are defined by sending x to 0 and the lower
horizontal morphism is defined by sending y to 0. By taking the PD-envelopes
with respect to the kernels of the horizontal morphisms, we obtain the fol-
lowing commutative diagram:

AP L 0, (2]

(2.7.11.5) l l

050<y> - OSO'

Denote by ¢ the left vertical morphism in (2.7.11.5) and let 1: AP R®os,
Og,[z] — Os, (y) be a morphism defined by ¢ (s®t):=p(s)-(t mod zOg,[x])
(s € AP t € Og,[z]). Then the diagram (2.7.11.5) gives the following com-
mutative diagram

APP @0, Os,lz] —2— Os,[a]

a |

OSO <y> - OSO
and then the following commutative diagram:
B ——— Og,x]

(2.7.11.6) l l

Oso<y> - OSO'

Since the image of y ® 1 € B by the left vertical morphism in (2.7.11.6) is
equal to y € Og,(y), y® 1 #0 in B.

Next we check (B). It is clear that 1 @ z — 2 ® 1 € B is a local section of
the PD-ideal sheaf of B. Hence we have the following equalities in B

(I@a)(yol)=ayel+ (1@’ -2’ @1)(y©1)
=0+(1l®z—21)P(y®1)
=pllozr-—ro)P(ye1)=0

because p = 0 in B.

Now we have proved that the morphism (2.7.11.2) is not an isomorphism
in general.
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We also remark the following.

By the p-adic purity in (X/S)rerys ((2.7.1)), (Ox/s)x = (€(x,0)/5+(O(x,D)
/s))x. Hence the exact sequence (2.7.11.4) tells us that € x, p)/s+(O(x,p)/s)
is not a crystal of Ox/g-modules in general.

Remark 2.7.12. (1) Let (X, D) be a smooth analytic variety with (not neces-
sarily simple) NCD over the complex number field. Let U be the complement

of D in X and let j be the natural inclusion U LLX . Let D© be the nor-
malization of D and for a positive integer k, define D®) in the way described
in (2.2.15) from D). Let a*): D*) — X be the natural morphism. Then,
in [23, (3.1.8)], Deligne has proved that

(2.7.12.1) (2% c(log D), 7) — (% c(log D), P)

is a quasi-isomorphism by using the Poincaré residue isomorphism and the
Poincaré lemma

Res

grt Qe /c(log D) — @™ (U, {1k} @2 &P (D/C)(~k))

=@M (Cpm{—k} ®2 " (D/C)(~k)),

where @*)(D/C) is the orientation sheaf of D) (Since we have used the
notation e as a forgetting log morphism, we cannot use the notation € in
[23]). Note that, in (2.7.1), (2.7.3) and (2.7.12.1), the graded pieces gr? is
isomorphic to the complex which consists of one component; this property is
a key point for (2.7.1) and the quasi-isomorphism (2.7.12.1). It is reasonable
to expect that, if D is an SNCD, if we use the log infinitesimal topos and if
we develop analogous theory for this topos by the same method as that in
this book, we will be able to prove that

(2.7.12.2) Rre,(0x/c) = ™ (Opw ¢ @2 @™ (D/C)(~k)),

where e: ()/(76)12% — (%)inf is the forgetting log morphism of infin-
log
inf

(resp. (D) /C)ine), a® = a®): p®) = D) —, X and w®(D/C) =
@*)(D/C).

(2) The morphism (2.7.2.1) is not a filtered isomorphism in general. Indeed,
if it were so, we would have the following contradiction.

Assume that Z = () and that it were an isomorphism. Then, by applying
Rix /g, to (2.7.3.2), we would have

itesimal topoi, Ox/c (resp. Opw c) is the structure sheaf in ()/(76)
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(2.7.12.3) (Cuar(O(x,0y/5): P) = Rux;s«(Eerys(O(x,0y/5)s P)
= Rux/s.(Re(x,p)/s:(O(x,p)/5),T)
= (Ru(x.p)/5+(O(x.0)/5):T)
= (Coar(O(x,0y/5), T)-

Here the first equality follows from (2.7.5.1). The third equality follows from
our assumption. The fourth equality follows from (2.4.7.3). However it is
practically well-known that the equality (2.7.12.3) does not hold in gen-
eral. Indeed, let xk be a field of characteristic p > 0 and let (X, D) be a
smooth scheme with an SNCD over x. Assume that S = Sy = Spec(x). Then
(2.7.12.3) is an isomorphism

(2% /x(log D), 7) = (2%, (log D), P).

If we take X := Al  D: the origin of X and k = 0, we have a contradiction.
Hence (2.7.2.1) is not a filtered isomorphism in general.

2.8 Boundary Morphisms

In this section we define the log cycle class of a smooth divisor which intersects
the log locus transversally (cf. [29, §2]).

As an application, we give the description of the boundary morphism be-
tween the Fj-terms of the spectral sequence (2.6.2.2).

Let f: (X,Z) — Sp be a smooth scheme with a relative SNCD over a
scheme Sy. Let D be a smooth divisor on X which intersects Z transver-
sally over So; for a decomposition A = {Z,}, of Z by smooth components
of Z, A(D) := {D,Z,}, is a decomposition of D U Z by smooth compo-
nents of D U Z. The closed subscheme Z|p := Z N D in D is a relative
SNCD on D/Sy; Alp = {Z,|p}, be a decomposition of Z|p by smooth
components of Z|p. Let a: (D, Z|p) —= (X, Z) be the natural closed im-
mersion over Sp. Let dyar: (5zar,0D) — ()}ZM,(’)X) be the induced mor-

phism of Zariski ringed topoi. Let al%8,: (D, Z|p)/S)%2, O, 2|p)/s) —

crys * crys
(X, 2)/9)$5.,Ox,2)s) be also the induced morphism of log crystalline
ringed topoi. Let
(2.8.0.1)

Res”: Q% g, (10g(D U Z)) — azarc(Qh5, (l08(Z|p)) @z wis)(D/So)) {1}

be the Poincaré residue morphism with respect to D/Sy. Then we have the
following exact sequence:

(2.8.0.2) 0 — 0%/5, (log Z) — Q% /s, (log(D U 2))
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esP °
2 G (25 (108(Z]p)) @2 @ (D/S0)){~1} — 0.
Let (S,Z,v) and Sy be as in §2.4. As in §2.4, by abuse of notation, we also

denote by f the composite morphism (X, Z) — Sy =, 8.
As in §2.4, we have the following data:

(2.8.0.3): An open covering X = U, o, Xi, with X; = _(Xi, (i =
(io, .. .,Z'T)). The family {()(“.Dz U Zi)}ie] (.Dz =DNX;, Z; .= 7N Xz)
of log schemes form a diagram of log schemes over (X, D U Z), which we
denote by (X, De U Z,). That is, (X,, De U Z,) is a contravariant functor

I° — {smooth schemes with relative SNCD’s over Sy
which are augmented to (X, DU Z)}.

We have a diagram A4(D,) of a decomposition of D U Ze by a diagram of
smooth components of Dy U Z,.

(2.8.0.4): A family (X,, Dy U Z,) — (Xo,Ds U Z,) (o € I) of admissible
immersions into a diagram of smooth schemes with relative SNCD’s over S
with respect to Ag(De).

Let be : Do — X, be a diagram of the natural closed immersions. By using
the Poincaré residue isomorphism with respect to Do, we have the following
exact sequence ([29, §2]):

(2.8.0.5) 0 — 0%, /s(log Z,) — %, /s(log(Dy U 2,)) =5

bezars (U, /5 (108(Za|p,)) @z @i} (Da/S)){~1} — 0.

Let L(x, z,/s (resp. L(p, z,|p,)/s) be the log linearization functor with

respect to the diagram of the locally closed immersions (X, Z) =

(X, Za) (resp. (Do, Zs|p,) —= (Ds,Z4|p.)). By (2.2.12) and (2.2.16),

Lix.,z.)/sDezars = ai?%,s.*L(D.’Z.‘D_)/S. Hence we have the following exact
sequence by (2.2.17) (2) and (2.2.21.2):

(2.8.0.6)
0 — Q(x,.z0)/5L(x0.20)/5(QY, /5 (0g 24))
— Q(x.z0)/sL(x0.20)/5 (%, ) 5(log(De U Z,)))
— Qixaz2)/50 50 (L(De a1 50 /5(, 5 (108( 24 ,)))
@z wE(Ds/S; Z)){~1}) — 0.

crys

Recall the morphisms Wi‘}i 7)) Serys a0 Wing, ZIp))serys Of Tinged topoi in
(2.4.7.4) for the case D = ¢ and (2.6.1.3). By (1.6.0.23) we have the following

triangle
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(2.8.0.7)
: Rml8 L Q% ,s(log Z,))
—>Q(X,z)/s T(X,2)/Scrys« (X, Ze) /S X./S( 08 Ze)) —
* 1 °
Qlx,2)/587 (X 2)/5cryse (X0, 20)/5 (%, 15 (10g(Da U 24))) —
* lo °
Q(X’Z)/SGIC?"‘%’S*RW(D%Z\D)/Scrys*L(Do7Zo|D.)/S(QD./S(]'Og(Z°|Do))
®7 w(D8(D, /S; Z4)){—1} N

crys

By (2.2.7), (2.3.10.1) and by the cohomological descent, we have the following
triangle:

(2.8.0.8)
I Q?x,z)/s(o(x,z)/s) — Q?X,z)/sRQX,DuZ,Z)/S*(O(X,Duz)/s) -

* o o +1
Q(X,Z)/Salcris*(O(D,Z|D)/S Rz wc%})llsg(D/S Z)){ 1} e

Using the Convention (4), we have the boundary morphism

(2.8.0.9)
d: Q?X,Z)/Salc(igrS*(O(D,Z|D)/S ®z wg;l;g(p/s; ZM)N{-1}
— Q(x,2)/5(O0x.2)/5) 1]
in D+(Q?X,Z)/S(O(X,Z)/5)). Equivalently, we have the following morphism
(2.8.0.10)
d: Q?X,Z)/Salcc;f,s*(O(D,Z|D)/S Rz w&})}Og(D/S Z)))
— Qx,2)s(Ox,z)/5)[1{1}
in D+(Q?X,Z)/S(O(X,Z)/S))- Set
(2.8.0.11) Gy = —d.

and call Gp/(x,z) the Gysin morphism of D. Then we have a cohomology
class

(2.8.0.12)
R 0 * 1
¢(x,2)/s(D) = Gp/(x,2) €€xlgr . (0(x.2,5)(Qx,2)/5%ys: (O(D,21p)/5

©z Wy 2(D/8; 2)), Q(x,2)/5(O1x,2)/5) [L{1}).

Since wﬁ%ﬁ‘SOg(D /S; Z) is canonically isomorphic to Z and since there exists

a natural morphism Q{y z),s(O(x,z)/s) — Q’("X,Z)/Salc?f,s*(O(D,Z|D)/s), we
have a cohomology class
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c(x,z),s(D) € Sxt%(*xyz)/sw(xvz)m)(Q?X,sz((?(x,z)/s),Qfxyz)/s((’)(x,z)/s)[1}{1})
= Q?X,Z)/Sﬂﬁ)g—crys((Xv Z)/S)

As usual, if Z = 0, we denote Gp,(x,z) and c(x z),s(D) simply by Gp,x
and cx/g(D), respectively.

Remark 2.8.1. (cf. [35, (1.6)]) Let te = 0 be a local equation of D in X,. If

we use a Poincaré residue morphism
0%, /5(10g(De U 2,)) 2 dlogte Awe = we|D, Ebezars(2p, /5(l0g(Ze|p,))
©z Wial(De/S; Za))[-1]

instead of the Poincaré residue morphism in (2.8.0.5), then we have a Gysin
morphism

Gp/x,2): Qfx,z)/salff/s*(O(D,Z|D)/s®zw§;ls°g(D/S; ZN[=1]
— Q(x,2),5(Ox,2)/5)[1]-

Here we have used the Convention (4). Hence, by the Convention (2), we
have a Gysin morphism

(28.1.1) Gp/(x.2): Qlx,2)/506055:(O(D,71) /50w E (D] S5 7)) [-2]
- QTX,Z)/S(O(X,Z)/S)'
However we do not use this Gysin morphism in this book.

Proposition 2.8.2. The morphism Gp,(x,z) and the class c(x,z);s(D) are
independent of the data (2.8.0.3) and (2.8.0.4).

Proof. Use notations in §2.5. Assume that we are given two data in (2.8.0.3)
and two data in (2.8.0.4). Because the question is local, we may assume that
the two admissible immersions are admissible immersions with respect to the
same decompositions of D and Z by their smooth components. As in §2.5 we
have two morphisms

1x.2)/5° (Xew Zos)/9)es O(Xue.Z00)/5)

— (((Xe, Z4)/9) 28, Ox0,20)/5)

and

U(D,Z|D)/S: (((D'.7 Z"‘D-.)/S)LCI)§IS7 O(D..7ZOOID..)/S)
— ((Da; Za|D,)/S) 80, O (D0 201 1)/5)

of ringed topoi. Then we have the following commutative diagram of triangles:
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(2.8.2.1)
— Q(x..2)/580x,2)/5: L(X 00, Z00) /5 (%, /5 (108 Zas)) ——

I

T Qlx.,za)/5Lx0,20)/5(Q%, /5 (108 Z)) -

QzX.,Z.)/SR,’?(X»Z)/S*L(X..aZoo)/S(Q;('../SG‘Og(D.. U Z”)))

I

Qfx.,Z.)/SL(X-,Z.)/S(Q;c,/s(IOg(Do UZ,))) -
Q(x0,20)/5005 50 BIND 2101 /55 L(Dus Zas | 500 ) /5 o
IR
(.. /5(108(Zee|p,.)){—1})
+1

Qixa.z2)/5005s0s L(Du 201501 /5 (U, 5 (108(ZeD){-1}) —— .

By the proof of (2.5.3), the three vertical morphisms above are isomorphisms.
Hence (2.8.2) follows. ]

Remark 2.8.3. We can also construct ¢(x,z),s(D) by using the vanishing cycle
sheaf as follows. o
Let €(x,puz,z)/s: (X, DU Z)/S)%8, — ((X, Z)/S)%E, be the forgetting

crys crys

log morphism along D ((2.3.2)). By (2.3.2.9), there exists a natural morphism

(2.8.3.1) O(x,z)/s — Rex,puz,2)/5+(O(x,puz)/5)

in D¥(O(x,z)/s)- Let RL 1, (O(x, 7y,s) be the mapping fiber of (2.8.3.1). Then
we have a triangle

(2.8.3.2)
+1

— RUp(Ox,2)/5) — O(x,2)/s — Re(x,puz,2)/5+(O(x,pUz)/5) — -

Set HY,(O(x,z)/s) := H(RLp(O(x,2)/s)) (i € Z). Then we have the follow-
ing exact sequence

(28.3.3) -+ — Hp(O(x,2)/8) — H'(O(x.2)/5)
— RiG(X,DuZ,Z)/S*(O(X,DUZ)/S> —

Here we have used the Convention (4) and (5). By (2.7.1), we have

(28.34) Qi z),sMp(Ox.2)/5)

* o 1)1 .
Qx50 (O, 211y /5 @2 BRH(D]S; 2)) (i = 2),
0 (i # 2).



132 2 Weight Filtrations on Log Crystalline Cohomologies

Let E® be a representative of Q?X,Z)/SED(O()CZ)/S)‘ Then we have an
isomorphism
TQE. ; E°
and we can take an isomorphism
(2.8.3.5) B Q?x,Z)/stD(O(X,Z)/S){—l}[—1]~
Therefore we have a canonical isomorphism
Q(x,2)sBLp(O(x,2)/5)
=Q(x.2)/5%%5:(O(D.21p) /s @2 @EIE(D/S; Z)){—1}[-1].

Since there exists a natural morphism RI'(O(x, zy/s) — O(x,z)/s by the
definition of RT'1,(O(x,z)/s), we have a canonical morphism

(283.6) Q(x.2)/50056(O(D. 2115 ©z TG E(D/S; Z)){~1}[~1]
— Q(x,2)/5(0(x,2)/5)-

By (2.8.0.8), we see that the morphism (2.8.3.6) is equal to —G'p/(x,z)-
If we take the canonical isomorphism

(2.8.3.7) E* =5 Qlx 2/sMDb(Ox,2)5)[—2].
instead of (2.8.3.5), we obtain the Gysin morphism (2.8.1.1) again.

Proposition 2.8.4. Let u: (S",7',4") — (S,Z,~) be a morphism of PD-
schemes. Set S := Spec,(Os/1'). Let h: Y — S be a smooth morphism
of schemes fitting into the following commutative diagram

y —2 5 X
hl lf
Sy —— So.

Set E :=DxxY and W :=Z xxY. Assume that EUW is a relative SNCD
on'Y over Sy. Let b: (E,W|g) — (Y, W) be a natural closed immersion of
log schemes. Then the image of g rRu(x, z)/s+(¢(x,2)/s(D)) in (2.8.0.12) by
the natural morphism

Gort 1 00y (Ru(x,2)/54055 5. (O(D, 21 )5 Oz T #(D/S; 7)),
Rux.7)/5+(O(x,2)/s

)
— Ext) 1o,y Ry, w) 5068 (Ow)p) s @z wOIE(E/S, W)
Ruey,wy/s+(Oy,wyys)[1{1})

[1{1})

)
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is equal to Rucy,w)/s«(ciyv,w) s (E)).

Proof. (2.8.4) immediately follows from the functoriality of the construction
given in (2.8.3). O

Finally we prove that the boundary morphism d}® of (2.6.2.2) is expressed
by summation of Gysin morphisms with signs.

Henceforth D denotes a (not necessarily smooth) relative SNCD on X
over Sy which meets Z transversally. First, fix a decomposition {Dj}xea
of D by smooth components of D over So. Assume that Dy, ..\,_,} # 0.

Set A = {/\07 ceey /\k_1}, Aj = {/\07 ceey /\j7 ey /\k—l}a DA = D{/\0;~-~7)\k—1}7
and Dy := D{/\[)’.‘_,Xj’_“’)\kil} for k > 2 and D), := X. Here
means the elimination. Then Dy is a smooth divisor on Dy over Sp. Let

Lij : (Dx, Z|p,) = (DAJwZ‘DAj) be the closed immersion. Set

wy s (D/S; Z) = w\® (D/S; Z)

Ao Ak —1Crys

and
W, (D/S: 2) =l (D/5:2).

)\omkj---)\k,lcrys

By (2.8.0.11) we have a morphism

e
(2.8.4.1) Gy = GDA/(DAJ-’Z|DAJ.) :

* Ajlog (1)1 .
Q(p,, Zlp,, /5 xmrysr (O(Dy, 2101 /8 B Dy erys (D] S5 Z))

- Q?DAjvleAj )/S(O(DAJ"ZIDAJ)/S)[l]{l}'
We fix an isomorphism

(2.8.4.2) T8 (D)8 Z) @ wyE  (D]S; Z) =5 wy® (D/S; Z)

Ajerys Ajerys
by the following morphism
A)® Mo+ Aj - Ae1) — (1) (Ao - Ak—r).

We identify w8 (D/S; Z)@z@' 8 (D/S; Z) with @'*®__(D/S; Z) by this

Ajcrys Ajcerys Acrys
isomorphism. We also have the following composite morphism
(2.8.4.3)

A log

i A * lo ~
(_1)JGA] : Q(DA].,ZIDA]_)/SLAi:rys*(O(DLZbA)/S X7 WAC%yS(D/S; Z)) —

« Ajlog log . 1 .
Q(DAWZ‘DAJ. )/Sbgcrys*(O(DA’Z‘DA)/S ®z w)\oﬁtrys(D/S7 Z) ®z w)\c;gcrys(D/S7 Z))

N
G:]®1 * lo,
= Q(p,, Zlby, )/5(O (D, Zlpy )18 B2 Wy rerys(D/95 2)) 11}



134 2 Weight Filtrations on Log Crystalline Cohomologies

defined by
(2844) @@ (Moo Ae) — (—1IGY (@) @ Mo+ Ay A1)

The morphism (2.8.4.3) induces a morphism of log crystalline cohomologies:
(2.8.4.5)
] A]’ — lo,
(—17GY : " [, 21,)/5:(O(Ds.210, ) /5 @2 Wxinys (D[ 85 2)) —

R 2 fip, ZIpy )/5+(O(Dy; 21p, )/5 Oz wzirys(D/S; Z)).

Here we have used the Convention (6). If Dy, . s, .} =0, set (—1)jG§j :
=0. -

Denote by ay (resp. ay,) the natural exact closed immersion (Dy, Z|p, )
S5 (X, Z) (resp. (Dy,, ZIp,,) S (X, 2).

.....

Proposition 2.8.5. Let dl_k’h+k: El_k’h+k — Efk+1’h+k be the boundary

. k—1 i
morphism of (2.6.2.2). Set G := Y2\, || N#EN; (i) im0 (1YGY
Then dy """ = —G.

Proof. (cf. [64, 4.3]) Assume that we are given the data (2.4.0.1) and (2.4.0.2)
for D U Z. Consider the following exact sequence

Q7 PPe * °
0— grki)l(.’D.)/s (Q(X,,D,)/SL(X.,Z.)/S(Qx,/s(bg(p- UZ,)))) —

(Qlxv. 00y Qx4 00y s P ) Qlxe Duy /s L(Xe Z0) 15 (s 5(108(De U Z4))))

* pDe
ger<X.,D.>s

(Q(xe,pe)/5 (X0, 24)/5(Q%, /5(108(De U Z4)))) — 0.

Then the boundary morphism dl_k’}”'k

of the following triangle

is induced by the boundary morphism

1 QL e:.De pPhe * bd
— BT(E 2 sreryss @17 (QUxa pay/sLixe,ze)/5 (U, 5 (108(Ds U 20))))

log * Do * Do
— B¢ 2)/sRerys (QUxe,00) 5Pk " /Q( x4, D4y /5 Pr2)
(Q(xe,pe)/5L(X0,24)/5(Q%, /5(108(De U Z4))))) —

+1

o Qlxe,ne)sPP* s
RWI q g k(x Pe)s (Q(X,,D,)/SL(X.,Z.)/S(Q;c,/s(l‘)g(p- UZ,)))) — -

(X,Z)/SRerys«5"
Here we have used the Convention (4).

Assume that Dy.e) = Dngie) N - N Diny ;00 # 0. Set D(Aj;-) =
Dxng;o) N NDn;_1:0) ND(x,1:0) NN D(x,_y;e)- We use a shorter notation
Wxzar(De/S; Z4) for a zariskian orientation sheaf wy,...x,_;zar(De/S; Z6) and
so on as for crystalline orientation sheaves.

The Poincaré residue morphisms with respect to Dy, (0<j<k-—1)and
D, induce the following morphisms
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De
Resfj’ L grho1 %, /s(log(De U Z,)) —

0, 1)/5008 Zalpgy, o {0k = 1)} 87 D ar (DS 22)

and .
Resy*: grf Q% s(log(Ds U 2,)) —

Q.D(A;,)/S(log ZO|D(AJ;.)){7‘I€} Xz WAZM(D./S; Z.).
As in (2.8.4.2), we fix an isomorphism
(2.8.5.1)  @x,zar(De/S; Zs) @z wAjzar(D./S; Ze) — @rzar(De/S; Z4)

by the following morphism
(A7) @ oA+ Ae1) — (=1)7 (Ao -+~ A1)

We identify @y ;zar(De/S; Ze) @z wAjzar(D./S; Z,) with @yzar(De/S; Z) by
this isomorphism. Let Res; be the Poincaré residue morphism

(2852) Q.D(Aj;.)/S(IOg(ID(Aﬁ) U Z’|D(Aj;o))) I

Q’.D(A;,)/S(k)g Z'|D(A;.) H-1} @z wkaar(DO/Si Z,)

with respect to the divisor D(y.e) on D(Aj;-)~ Then we have a composite
morphism '

(—1)'Res; : 0Dy, 10 /5108(Dixse) U ZelDiy o)) @2 W 2ax (De /S5 Z)
— QB(A;.)/S(IOg ZO|'D(A;.)){7]~} Az wAjzar(Do/S; Zo) z wijzar(’Dc/S; Zo)
208, (108 Zalo s -1} 82 Dauar(Da/ S5 2a).

defined by

(2853)  2® (N Ay Akor) > (~1PResD* (2) @ (Ao~ M),

It is easy to check that (—1)7Res; is well-defined. The morphism (—1)7Res;
induces a morphism

(2.8.5.4)
Lx,,7.)/s((—1)’Res;):
L(X”Z')/S(Q;’(Aj;.)/S(IOg(D(A;') UZelpgy,.0)) ®2 wz%:rys(D/S; Za))

° 1
— Lix,,2)/5(Q,. ., /5108 Zalpy o {1} @2 @5 (De /S5 Z4)).
As in [64, 4.3], the morphism QzX.,D.)/SL(X-»Z-)/S(RQSZ.) uniquely extends

to a morphism Qfy, p.y/sL(x.,2.)/s (ResADj”A) fitting into the following com-
mutative diagram:
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(2.8.5.5)

o* pDe
grkijf.'D.)/S QTX.,D.)/SL(X.‘Z.)/S(Q;(./S(k’g(p’ U Ze)))

* D
Xe,De)/5 (Xe.2e)/5(Rosx )|

9]

* lo,
Q<X.)D.)/SL(X.,Z.)/S(Q;J(Aj;.)/S(log Z.\D(Aj:.) N{-(k -1} &z wAjgcrys(D./s; Ze)

* D * D *
(Qxe.De)/5Fk */R(Xe.D0) /5T k—=2)(Xe.De)/SL(Xe,70)/5 2%y /5(Pe U Ze)))
* D
QXe,De)/5 L (Xe.2a)/5(Rex 2 )|

Uxe.Da)/5 (Xe.20)/5 Dy gy /508 Paie) U 2oy ) M=k = DY 82 N Forys (Do /53 Ze)

Qx4 .De)/sE(Xe,70)/5 (DI Res))

Qxy.Da)/sP0 . .
&k QXe.De)/sh(Xe.Za)/5 (kg /5108 o)) 0

* D
QlXq.De)/ 5 (Xe,70) /8 Resx®)|

0.

Q{X.,D.)/SL(X.,Z.)/S(Q.D(A:.)/S(log ZO\D(A;.))){*k‘} ®z ngcgrys(Do/S; Ze)

Here the morphism Resf_‘ » is defined by a formula
A5
Resy* (ydlog zy, -~ dloga, ) = (~1)ydlogzy, ® (Ao -+~ Ay -+~ A1),

where ), = 0 (x5, € Ou,) is a local equation of D(y,,q) in Xy and y is a
local section of Q% (log Z,) (the formula Résfq (w) = aNdz;,/zi,|p,, in [64,
p. 323, 1. -9] have to be replaced by Résj (w) = (~1)*"'a Adz;, /z;,|p,, ). By
the formulas (2.8.4.4) and (2.8.5.3), by the definition of the Gysin morphism
for smooth divisors ((2.8.0.11)) and by the Convention (4) and (5), we see
that (—1)7(—G}’) is the boundary morphism of the lower exact sequence.
Hence we obtain (2.8.5). O

2.9 The Functoriality of the Preweight-Filtered
Zariskian Complex

Let Sy, S and (X, DU Z) be as in §2.4. In this section we prove the functo-
riality of (C18%(O(x,puz)/s), PP); (2.7.3) is indispensable for the proof of

the functoriality.
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Let (S7,7',~") be another PD-scheme satisfying the same conditions in the
beginning of §2.4. Set Sj := Spec, (Os//Z"). Let u: (S,Z,v) — (5", 7",7/)
be a morphism of PD-schemes. Let ug: So — S{) be the induced morphism
by w. Let (X', D' U Z’) be a smooth scheme with a relative SNCD over S.
Let

(X,puz) —2— (X',D'UZ)

(2.9.0.1) l l

ug /
Sy A

be a commutative diagram of log schemes. Assume that the morphism g
induces g(x,py: (X, D) — (X', D') and g(x z): (X,Z) — (X', Z') over
ug: Sy — S{. Let

e: ((X,DUZ)/S)%E, — (X, 2)/S)\E,

and

¢ (X1, D' UZ) /85, — (X7, 27)/S")1o%

crys crys
be the forgetting log morphisms along D and D', respectively.
Theorem 2.9.1 (Functoriality). Let the notations be as above. Then the

following hold:
(1) There exists a canonical morphism

(2.9.1.1) gig?,*z)crysf (EXEZ (Oxr,pruzys ), PP)
1 o
- Rg(g?,Z)crys*(EérgéZ(O(X,DUZ)/S)a PPy,

(2) There exists a canonical morphism
(2.9.1.2)
g;ar: (C;(;%,Z (O(X/,D'UZ')/S/)ﬂPD ) I Rgzar*(C;Z%’Z(O(X,DUZ)/S%PD)‘

Proof. (1): (1) is clear.
(2): Let

g(l:(lj‘is: (((XDD U Z)/S)lcziwo(x,DUZ)/S)
— (X", D'U 2")/8") % O(xr,pruzry 1)

crys?
be the morphism of log crystalline ringed topoi induced by g. Then we con-
struct a desired morphism in the following way:

’

(Cl8Z (O x+ pruzryst), PP

- R’U’(X,,Z/)/S,*(E(Izggéz,(O(X’,D’UZ’)/S’)7 PD/)
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= Ru(X’,Z’)/S’*(de(O(X’,D’UZ/)/S’)7 T)

— RU(X’,Z’)/S’*(ReiRgg%s*(O(X,DuZ)/SL )
log

= Ru(xr,20)/5'+(RY X 7)crys BE(O(x,002)/5), T)

— Ru(xr,20)/5+RIE 2)eryen (Rex(O(x,pUZ)/5), T)

= R“(X’,Z’)/S’*Rgé(f,z)ays*(Egiéz(o(x,puz)/s), PP)
= Rgare Ru(x, 7)) 5 (ES27 (O(x,puzyys), PP)

= Rgrars (C287(O(x,puz)/5): PP).

Here the first and the last equalities follow from (2.7.5.1); the first arrow is

induced by gi%8* and the second arrow is obtained from (2.7.2). O

Corollary 2.9.2. Let E,((X,DUZ)/S) (resp. Exs((X',D'UZ")/S")) be the
spectral sequence (2.6.2.2) (resp. (2.6.2.2) for (X', D' U Z")/S"). Then the

morphism 955: induces a morphism

(2.9.2.1) 98 EL((X', D' UZ')/S") — Ewu((X,DUZ)/S)

of spectral sequences.
Proof. The proof is straightforward. 0O

Let o'®: (D'®) 7’| hyy) — (X', Z') be a natural morphism. Assume
that g induces a morphism gpu) : (D®), Z|pay) — (D'*) Z'| ) for any
k€ N. By (2.6.1.1), (2.9.1) and (1.3.4.1), the morphism g%, induces
the following morphism

(2.9.2.2)
log*
grkp(g()g,Z)crys) :

Ru(xr 25040 S (O(pro0 201050 @ TN (D' 1S5 2')){ =k} —

Ru(X/Zr)/g/*alf(;lrc}),ls?kgRglog (O(D(k),Z\D(k) )/ S ®7z wg@iog(D/S; Z)){—k}

D) crys#

In the following, we make the morphism grf(g?;?:"z)crys) in (2.9.2.2) explicit
in certain cases by using a notion which is analogous to the D-twist in [71].

Assume that the following two conditions hold:

(2.9.2.3): there exists the same cardinality of smooth components of D and
D’ over Sy and S, respectively: D = |Jyop Dx, D' = U,cp D\, where D)
and D’ are smooth divisors over Sy and S, respectively.

(2.9.2.4): there exist positive integers ey (A € A) such that exDy = ¢g*(D}).
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As in the previous section, set A := {Ai,..., A} (A € A, (N # A (1 #
7). Let ax: (Dy, Z|p,) — (X,Z) and a\: (D}, Z'|py) — (X', Z") be
natural morphisms. Consider the following direct factor of the morphism
(2.9.2.2):

(2.9.2.5)
Ru(x1,20) /50 ygy o (Gxeays)
Ru(x0, 21540 Neays (O(D4, 21y )57 @ Fntas (D' /8" Z){ =)
— Ru(x, 2154 yoryn ROn s (O(Dy 210, )15 ©2 Fney (D[ S5 2)){=k}.
Proposition 2.9.3. Let the notations and the assumptions be as above. Let

g(DAvZ|DA): (DA7Z|DA) - (DIA7 Z/|D/A)

be the induced morphism by g. Then the morphism Ru(X/’Z,)/S,*(g;OC%;S) in

. k lo log* N
(2.9.2.5) is equal to ([];_, e>\j)Ru(X,7Z/)/S,*a’A§yS*(g(Di’ZbA)UyS) fork > 0.
Here we define H?:l ex; as 1 for k=0.

Proof. We may assume that & > 1. Let us take affine open coverings X =
Uiver, Xios X' = Uiyer, Xi, of X, X’ by the same index set Iy satisfying
9(Xi,) € X, (io € Ip) and let us form diagrams of log schemes (X,, Do U Z,)
and (X}, D, U Z,) indexed by I as in (2.4.0.1). Then we have a morphism
ge : (Xe, Do U Zy) — (X, D, UZ.) of diagrams of log schemes over g. Next
let us take log smooth lifts
C c

(Xio’Dio U Zio) - (XioaDio U Zio)7 (Xz{ongo U Zz{o) - (Xilo’,Dgo U Zz{o)
for each iy € Iy and from these data, let us construct the diagrams of admis-
sible immersions

(Xe, Do U Zs) < (X, Do U Z,), (X.,D,UZ,) - (X,,D,UZL)

by the method explained in §2.4 before (2.4.1). Let g(x, z,) : (Xe, Zs) —
(X}, Z.) be the morphism induced by ge, which exists by assumption on g
and let m,,, be the morphism defined in (2.4.5.2). Then we have

(2.9.3.1)
D De o
grkP C;(;%’Z(O(X,DUZ)/S) = R'/Tzar*(OBD. ®(’)X. grg X./S(log(po U ZO)))?

D’ ’
(29.3.2)  grf CR&Z(O(x pruzry)s)

zar
’

Do °
:Rﬂ-zar*Rg(X,,Z.)zar*(O’D’. ®(9X‘ grf QX‘/S(log(D: U Zi))),
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where D, (resp. D)) denotes the log PD-envelope of (X, Zs) — (Xa, Z)
(resp. (XL, Z.) - (X!, ZL)). Because (X}, D;, U2 ) is log smooth over S’
and the exact closed immersion (X;,, Di, UZs,) —= (Xiy, Diy UZ;, ) is defined
by the nil-ideal sheaf ZO, , there exists a morphism g;, : (Xi,, Di, UZ;,) —
(X}, D;, U Z; ) which is a lift of g|x D, UZs,) (cf. [11, N.B. in 5.27]). The

~ . . ’LO ’
family {gi, }i,e1, induces a morphism

(2.9.3.3) Go: (Xe, Do U Zy) — (X,, D, U Z)
of diagrams of log schemes by the universality of blow-up. Let

7 . ’ ’
hxe): (Do) Zelpisi)) = (Plae) £l L))
be the induced morphism. (Here we put D(y,e) := ﬂle Drise): Diney =
ﬂle Db\m)’ where D()\i;.),DEAi;.) are as in §2.4 before (2.4.1).)

For ig € Io, Let x(j;,) = 0 (resp. J,‘/(j;io) = 0) be a local equation
of Diy,i) in Xi, (resp. DEAj;io) in /) (1 < j < k). Then we have

_ SO\
gfo(x?j;i())) = u(j;io)x(j;Jio

us put ;) = m(j;io)Vx/(j;i) = m’(j;io),u(j;i) = U(j,)- Then, by definition

) for some unit u(jy;y). For i = (igy .y iy) € I, let

of D(/\j;i)vDZAm) (via the blow-up construction), x(;,;y = 0 (resp. 1'/(j_i) =0)
is a local equation of D,y in A& (resp. DEAM’) in &) (1 <j <k)and

we have the equality Ef(x’(”)) = u(j;i)x?;_é). So, for a local section w =
adlog (., - dloga(;., of P,?/Q:Y//S,(log(D’ UZ) (a € Q;(Tfs/(logz’)),

we have gf(w) = (H§:1 ex;)g; (a)dlogx (i, - - - dlog iy + W', where W' €
P,?le;(i/S(log(Di U Z;)). So, if we put
QE)\:O) = Q.D(L,)/SO‘Og ZO‘D(A;.)) ®z wAZB«T(DO/S)ﬂ

Quoy =Dy sslog Zelpy, ) @2 Daar(De/S),

(Ase)

we have the following commutative diagram (the vertical arrows are Poincaré
residue morphisms with respect to D) and D,):

D’ 1 ,Z‘ grPD.(gi)
AV (O (O(x;.04021)/5)) —

(2934)  (On, ®o,, grf "0, s (log(D, U 21)))
RCSE‘ J,

. (51 ex,)hiae)
(O@/. ®0xg (a/A|(D’.,Z’\D/.))zar*Q(A;.)/){*k} ~]——>
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D
g(X.,Z.)zar*grkP (C;c;%Z. (O(X.,D.UZ.)/S))

9(Xe Zyuars (00, B0y, erl " 0%, (log(Dy U 2.)))
Resg'l
g(X.,Z.)zar*(OQ. ®OX. (G‘A|(D.7Z\D.))Zar*QEA;o)){_k}'

Now, by (2.9.3.1), (2.9.3.2), (2.9.3.4) and log crystalline Poincaré lemma
for (D, Z|p, ), (Dy, Z'|p;), (2.9.3) is reduced to the following obvious lemma.
O

Lemma 2.9.4. Let F': A — B be a left exact functor of abelian categories.
Let M® and M'® (resp. N® and N'®) be objects of KT (B) (resp. KT(A)). Let

M —L - PN

=| |=

M/. f’ F(N/.)

be the commutative diagram in K+ (B). Assume that A has enough injectives.
Then the following diagram is commutative:

M* —L— RRP(N®)

=| |=

e L RE(N).
Proof. The proof is obvious. O

Definition 2.9.5. (1) We call {ex}rca € Z2, the multi-degree of g with
respect to a decomposition A := {Dy}, and A" := {D\} of D and D’,
respectively. We denote it by dega A (9) € ZQO. If e)’s for all \’s are equal,
we also denote ey € Z~o by dega a/(9) € Z>o-

(2) Assume that ey’s for all X’s are equal. Let u: &€ — F be a morphism
of Og-modules. Let k be a nonnegative integer. The k-twist

u(—k): E(=k;g; A A') — F(—k; g; A, A')

of u with respect to g, A and A’ is, by definition, the morphism
dega ar(9)fu: € — F.

Corollary 2.9.6. Assume that eyx’s for all X’s are equal. Let Eg((X,D U
7Z)/S) be the following spectral sequence
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E;PMR(X, DU Z)/S)
= R" "ot 21 1)) /5 (O 21 1))78) (K 5 A, A)
= R"f(x.puz)/5:(O(x.002)/5)

and let E((X',D'UZ")/S") be the obvious analogue of the above for (X', D'U
Z')]S’. Then there exists a morphism

(2.9.6.1) 985 Es((X', D' U Z")/S") — Es((X,DU Z)/S)
of spectral sequences.

Proof. (2.9.6) immediately follows from (2.9.3). O

Assume that S is a scheme of characteristic p > 0. Let Fg,: So — So
be the p-th power endomorphism. Let (X', D’ U Z’) be the base change of
(X,DUZ) by Fg,. The relative Frobenius morphism

F:(X,DuZ)— (X',D'uZ"
over Sy induces the relative Frobenius morphisms

F(X,Z): (X, Z) — (X/,Z/)

and ,
F® . (D® Z| pay) — (D™, Z' oy ).
Let
a®: (DW, Z|pw) — (X, DU Z)
and

®' (D® 7| ) — (X, D' U Z')

be the natural morphisms. We define the relative Frobenius action

B(p09 7] )5 Crves STUINE(D' 1S5 2') — Fi& ol Em ()% (D /S; 2)

cryss* crys

as the identity under the natural identification

wloe(D' /S, 2') = FE w8 (D) S; 7).

CI‘yS CI‘ S

When g is the relative Frobenius F': (X, DUZ) — (X', D' UZ"), we denote
(2.9.6.1) by

(2.9.6.2)
E;MR(X,DU 2)/S) = Rhikf(D(’“),Z|D(k))/S*(O(D(’€) 21 ))/8
®z w8 (D/S; Z))(~k)

= R"f(x.puz)/5+(O(x.002)/5)-
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((2.9.6.2) is equal to (2.6.2.2)+(the compatibility with Frobenius).) (2.9.6.2)
is generalized to the following spectral sequence

(2.9.6.3) EyFME = IR (X DU Z) /S K ) (—k)
= Rh?(x,puz)/s*(Pzgcllv?cgr’yzs(o(x,fjuz)/s))
- Rhf(X,Duz)/S*(PlgEé?ﬁéZ(O(X,DuZ)/s))
by (2.6.2.1) and (2.7.3.2).

Definition 2.9.7. We call the sequence (2.9.6.2) the preweight spectral se-
quence of (X, DU Z)/(S,Z,~) with respect to D. If Z = (), then we call it the
preweight spectral sequence of (X, D)/(S,Z,7).

By the proof of (2.8.5) and (2.9.3), the morphism G in (2.8.5) is a morphism
(2.9.7.1)
G: Rh*kf(p(kpzb(k))/S*(O(D(m,zb(k))/s ©z Wi (D/S; 7)) (—k)
— B 000,21 /50 (Op0,21,, 0175
0z Wiy "8 (D/S; 2)) (= (k — 1)).
By (2.7.6) we also have the following Leray spectral sequence

(2.9.7.2)
B3 = R f(p),7],)/5+ (001,715 B2 Firys® (D] 55 2)) (1)

= R*" f(x.puz)/5+(O(x,pu27)/5)-

2.10 The Base Change Theorem and the Kiinneth
Formula

In this section we prove the base change theorem of a preweight-filtered van-
ishing cycle crystalline complex and the Kiinneth formula of it. (2.7.5) plays
an important role in this section.

We keep the notations in §2.4. In this section we assume that X is quasi-
compact. Hence we can assume that the cardinality of the family {X;, }ioer,
of an open covering of X is finite.

(1) Base change theorem.

Proposition 2.10.1. Let



144 2 Weight Filtrations on Log Crystalline Cohomologies
Y’ —2 5 Y
(2.10.1.1) ffl lf
(I,J"9") —— (1.J,7)

be a commutative diagram of fine log schemes, where a PD-structure -y
(resp. v') on a PD-ideal sheaf J (resp. J') of Or (resp. Op:) extends to
Y (resp. Y') and u is a PD-morphism of PD-log schemes. Let (E®,{E}}) be
a bounded below filtered complex of Oy p-modules. Assume that Rfy p.(E*®,
{E}}) is bounded above. Then there exists a canonical morphism

(2.10.1.2) Lu*Rfyr(E* {E}}Y) — Rfv rg05: (B {ED)

xYerys
in DF(Oq).
Proof. By (1.2.3.2) we have only to find an element in
H°[{RHomo,., (Lu* Rfyr.(E*, {ER}), Ry jpr. gt (E*, {ER}) Yol
Using (1.2.2), we have the following formula
(2.10.1.3)  RHomo,, (Lu*Rfyr.(E* {E}}), Rfyr 7985 | (B, {E}}))

= RHomo, (Rfy/r.(E*, {E2}), Ru.Rfy. pv. 95 (B {(E2))

*gcrys

= RHomo, (Rfy/r«(E*, {ER}), Rfy - Ro5s.9erye  (E°, {E}})-

The adjunction morphism (E*,{Ep}) — gi??js*gg;}g,s_l(Eﬂ {E}}) induces a
morphism (E*,{E}}) — Rgi?f,s*g£?§;1(E', {E}}). This morphism induces
a morphism

Rfy/r(E* {ER}) — RfyreRoit 055 (B {E}})

in DF(O7). 0

Proposition 2.10.2. (1) Let f: (X,D U Z) — So(-= S) and (S,Z,~) be

as in §2.4. Assume moreover that S is quasi-compact and that }: X — 5y is
quasi-separated and quasi-compact. Let fix zy: (X, Z) — So(é S) be the
induced morphism by f. Then Rhf(XVZ)/S*P,?(Eé‘r’§éZ(O(X7DUz)/S) (h,k €
Z) are quasi-coherent Og-modules and Rf x z),s.(Ew87(Ox,puz)s), PP)
is isomorphic to a bounded filtered complex of Og-modules.

(2) Let (S,Z,7v) and S be as in §2.4. Let Y be a quasi-compact smooth

scheme over Sy (with trivial log structure). Let f: (X,DUZ) — Y be a

morphism of log schemes such that f: X — Y is smooth, quasi-compact and
quasi-separated and such that DUZ is a relative SNCD over'Y . (In particular,
DU Z is also a relative SNCD on X over Sy.) Let f(x,z): (X,Z) — Y be
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the induced morphism by f. Then Rf(lgfz)cws*(Eé$§;Z(O(X7DUZ)/S),PD) is
isomorphic to a bounded filtered complex of Oy g-modules.

Proof. (1): Let (I*,{I2}) be a filtered flasque resolution of (EX%:Z(Ox puz)

crys
gs),}J;D)- Then Rf(x,z)/s:(E8Z (Oix,puz)s), PP) = (f o ucx,z)/s)-(1°,
).

Now, fix a decomposition { Dy} of D by its smooth components and give a
total order on \’s. Then there exists an isomorphism Z —— wég),éog(D /S;Z).
Furthermore, for each k, fix a decomposition {(Z|pw ).} of Z|pw by its
smooth components and give a total order on u’s. Because X is quasi-
compact, the sets A’s and p’s are finite. By (2.6.2.2) we have the following
spectral sequence

—1,h+l -
(2~10~2-1) E; =R lfz(l)\D(m/s*(ozanwk)/S)

= R"f(pw z1_,)/5:(Opw).2]_1)/5)-

By [11, 7.6 Theorem] and by the spectral sequences (2.6.2.2) and (2.10.2.1),
H"((fix,2) © wix,z)/s)«(I8)) (h,k € Z) are quasi-coherent Og-modules
and there exists an integer hg such that, for all h > hy and for all & € Z,
H'((f(x,2)0u(x,2)/s)«(I})) = 0. Hence R" f(x 7)5. PP (ES&Z (O(x,puz)/s)
(h, k € Z) are quasi-coherent Og-modules and R f(x, zys+(Er2:% (O x, puzys)

cry

PD) = ((f(X7Z) o U(X,Z)/S)*(I.)a(f o u(X,Z)/S)*(I]:)) is iSOInOI"phiC to a
bounded filtered complex of Og-modules.

(2): (2) immediately follows from (1) and from the proof of [3, V Corollaire

3.2.3] (cf. the proof of [11, 7.11 Corollary]). O

Theorem 2.10.3 (Base change theorem). Let f: (X, DUZ) — So(——
S) and (S,Z,v) be as in (2.10.2). Let u: (S, Z7',v") — (S,Z,~) be a mor-
phism of PD-schemes. Assume that T' is a quasi-coherent ideal sheaf of Og .
Set Sg = Specy, (Os//T"). Let f': (X', D" U Z") := (X Xs, 50, (DU Z) xs,
Sp) — S be the base change morphism of f with respect to uls,. Then there
exists a canonical isomorphism

~

(2.10.3.1) Lu*Rf(x,7)5: (B2 (Ox,puzys), PP) =

crys

’

Rf(/XQZ')/S’*(E}:?géZI(O(X’,D’UZ’)/S’)7 PP

in the filtered derived category DF(f'~1(Os)).

Proof. Let gx,zy: (X', 2") — (X,Z) and gx puz): (X', D'UZ") —
(X, DU Z) be the natural morphisms of log schemes. First we use the general
theory in §1.5 as follows.

Consider a small category I := {i,4'} consisting of two elements. The mor-
phisms in I, by definition, consist of three elements id;, id;; and a morphism
1 — 1. By corresponding the natural morphism
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. — .
g(gg,DuZ)crys : (((X/7 Dy Zl)/S/)lCris’ O(X’,D’UZ’)/S’)

— (X, DU 2)/9) 88, Ox,puz)/8)

crys?
to the morphism i — i, we have a ringed topos (((X;, D;UZ;)/S;)98,, O x,,
p,uz;)/s;)jer- Let (I7)jer be a flasque resolution of (Ox; p,uz,)/s;)jer

e~

((15.0.2)). Let e: (X, DU Z)/S)8, — (X, Z)/S) 8, and ¢': (X', D' U 2’

crys crys
)/S")eg, — (X', 2")/5")%8, be the forgetting log morphisms/along D and
D', respectively. Then (Eé‘r’§’sz((’)(X1DUz)/S),PD) and (E}%SZ (Ox7,pruz

/5),PD/) are represented by (e.(I?),7) and (€, (I),7), respectively. Since
gg?,g)lcrys is exact, gg?,g)lcrys(e* (Ii.)’ T) - ( g?,g)lcryse* (Ii.)’ T)’ By the follow-
ing commutative diagram

9(x,puz)
_

(X', D'U Z") (X,DU Z)

(x',zy IX2, (X, 27),

we have a natural morphism (g%(;(gé)lcryse* (18),7) — (e;gig’ggbz)cws(lf), 7).

By the definition of (I7);er, we have the morphism g}f’gbz)cws([{) — 1.
Hence we have a composite morphism

log —1 ° °
(g((;gZ)cryse* (Ii )’ T) - (6; (Ii’)’ T)'

Therefore we have a canonical morphism (2.10.3.1) by (2.10.1) and
(2.10.2) (1).

We prove that (2.10.3.1) is an isomorphism. By the filtered cohomological
descent (1.5.1) (2) and by the same argument as that in the proof of [3, V
Proposition 3.5.2] ([11, 7.8 Theorem]), we may assume that S is affine and
that X is an affine scheme over Sy. Then (X, DU Z) has a lift (X, DU Z)/S
(D =Dxx X, Z = Zxx X) by (2.3.14). In this case, we may assume

—_~—

that the morphism (2.4.5.1) is the identity of (((X, Z)/S)%2,, O(x,z)/s)- Let

crys’
f: (X, DUZ) — S be the lift of f. Set f.(PP) := f*(P]?Q;(/S(log(DU 2)))
(k € Z) and §.(PP) := {f.(PP)}rez for simplicity of notation. Then, by

(2.7.5), we have

Rfx.z)/5:(E&7(Ox.puz)/s), PP) = (1.(Q% s (log(D U 2))), f.(PP)).

and we have the same formula for (X', D'UZ")/S’. We claim that }.(Q% 5 (log

(DU 2)))/i.(PP) is a flat Og-module for any k. Indeed, the filtration PP
on 2% g(log(DU Z)) is finite and f, (2% 5(log(DU £))) is a flat Og-module.
Because X is affine over S, we have the following exact sequence
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(2.10.3.2)
0 — fu(grf Q%/s(log(D U 2))) — (2 s (log(D U 2))) /1. (PP.,)
— (2% /s(log(D U £))) /5. (F) — 0.

By the Poincaré residue isomorphism, the left term of (2.10.3.2) is isomorphic

to £, (0708, 5 (log Z|pw) @z @iad (D/S)){~k}, where b®): D®) —, X

is the natural morphism. Hence, the descending induction on k& shows the
claim. Therefore the left hand side of (2.10.3.1) is equal to u*f, (2% /5 (log(DU

Z)), PP). Since f: X — S is an affine morphism, we obtain (2.10.3) by the
affine base change theorem ([39, (1.5.2)]) as in the classical case ([11, 7.8
Theorem]). O

Asin [3, V] and [11, §7], we have some important consequences of (2.10.3).

Corollary 2.10.4. Let f: (X,DUZ) — Y be as in (2.10.2) (2). Then

1
RIE freryss (Bi? (O(x,puz) /5), PP)

is a filtered crystal in DF(Oy,g). That is, for a morphism v: (U',T',¢') —
(U,T,6) of the crystalline site (Y/S)crys, the canonical morphism

Lo (RIS 1o (B27 (O(x.00z)5) PP))1) —

1 ’ !’
Rf(géggz')crys* (Ei‘?ﬁ’sz (Oxr . proznys), PP )

is an isomorphism, where (X', D'UZ") := (X', D' U Z") xy U'.
Corollary 2.10.5. Let f: (X, DU Z) — Y be as in (2.10.2) (2). Assume
that Y has a smooth lift Y over S. Let h be an integer. Then the following

holds:
(1) There exists a quasi-nilpotent integrable connection

o v
(2.10.5.1) R" f(x. 29« (PP ES87 (O x,puz)/8)) —

R f(x,2),y+(PPES37 (O(x,puz)/8)) 20,y s (k € Z)
making the following diagram commutative for any two monnegative integers

kE<l:

(2.10.5.2)

v
R fx 2y . (PP EREZ (O x pLzy ) — Rhf(x,z)/y*<PEE£?§Z<Z(O(X,Duz)/s))@’oy %5

! !

v -
R fx 2y« (PP BREZ(O(x puz)/s)) ‘—l'Rhf(X,Z)/y*(PLDEé(;)sf’sZ(O(X‘DUZ)/S))@Oy 935
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(2) Fork € Z, set

PPR" fix.puzy/v«(Ox.puz)/8) =
Im(R" f(x, 7))y« (P ESEZ (O(x,puz)/8)) — R" fix.puz) v+ (O(x,puz)/s))-

Then there exists a quasi-nilpotent connection

PPR" fx,puz)/v+(O(x.puz)/s)
— PkDRhf(X7DUZ)/y*(O(X,DUZ)/S)®OJ;Q§}/S-

Corollary 2.10.6. Let f: (X,DUZ) — Y be as in (2.10.2) (2). Let

(X',D'uZz) —— (X,DUZ)

f/l lf

y! _h Yy

l l

(Slazlv'y,) - (57177)

be a commutative diagram such that the upper rectangle is cartesian. As-
sume that Y' is a quasi-compact smooth scheme over S'. Then the natural
morphism

% lo o
Ly RE(E 7y cryor (B (O(x,puz)/5), PP) —

lo o ’ ’
RIS 2yeryes (E&7 (Oxr,pruznys), PP)

18 an isomorphism.

Corollary 2.10.7. Let the notations and the assumptions be as in (2.10.2)
1 o .

(1). Then Rf(ggz)/scrys*(PkDEérﬁéZ(O(X,DuZ)/S)) (k € N) has finite tor-

dimension. Moreover, if S is noetherian and if f is proper, then Rf x z)/s«

(P,?Elog’z((’)(xpuz)/s)) is a perfect complex of Og-module.

crys

Definition 2.10.8. Let A be a noetherian commutative ring. Let (E®,{E}})
€ CF(A) be a filtered complex of A-modules. We say that (E*,{Ep}) is
filteredly strictly perfect if it is bounded, if the filtration {E{} is finite for any
g and if all E'’s are finitely generated projective A-modules.

Definition 2.10.9. Let A be a commutative ring with unit element. For a
filtered A-module (E,{E}}) whose filtration is finite and for a family {7} },ez
of A-modules, we say that (E,{E\}) is the direct sum of {T}}ez if B =
D Ti (Vk € Z).

The following is a nontrivial filtered version of [11, 7.15 Lemmal:
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Theorem 2.10.10. Let A be a noetherian commutative ring. Let (E®,{E}})
be a filtered complex of A-modules. Assume that there exist integers ko < kq
such that B} = E9 and E} = 0 for all ¢ € Z. Then (E*,{E}}) is quasi-
isomorphic to a filteredly stmctly perfect complex if and only if E; (Vk) has
finite tor-dimension and finitely generated cohomologies.

Proof. Roughly speaking, the proof is dual to that of (1.1.7) with some ad-
ditional calculations.

We have only to prove the “if” part. Let k& be an integer such that kg <
k < ki. By the assumption, we may assume that E?7 = 0 (¢ > 0). Since
HY(E}) is finitely generated, there exists a free A-module T} of finite rank
with a morphism TP — EY such that the induced morphism 77 — H°(Ep)
is surjective. Set T := 0 for k < kg or k > ky. Let (Q°, {Q{}) be the direct
sum of {7T}7}. Then we have a natural filtered morphism (Q°,{Q%}) —
(E, {EQ)).

Assume that, for a nonpositive integer ¢, we are given a morphism

Q=1 {Qy7")) — (B=,{E77))

of (> g)-truncated filtered complexes such that the induced morphism
H*(Q) — H*(Ep) is an isomorphism for * > ¢, Ker(Q? — QI™) —
HY(EY) is surjective, Q* =0 for ¢ > 0, Q* = Q; , @ =0 (¢ < <0) and
that (Q",{Q%}) (Vr > q) is the direct sum of some family {7} }rez of free
A-modules of finite rank.

For an integer ky < k < ki, consider the fiber product ng1 X g

Ker(Qf — QZH). Let I} be the image of the following composite morphism
Bl % Ker(Qf — QF') — Ker(Qf — QI™) - Q.

Since A is noetherian, I}! is finitely generated. Let {y; };cs be a system of finite
generators of I?. Take an element (z;,1;) € E{ ™" X ga Ker(Qf — QL.
Because H?'(Ey) is finitely generated, we can take a family {2, } ;e of finite
elements of Ker(E,’f1 — E}) whose images in H4~!(E}) form a system of
generators of H1~1(Ep).

Now consider a finitely generated A-module Sg_l generated by {(x;, yi) bier
and {(z;,0)}jes in B x pe Ker(Qf — QI™). Let TY™" be a free A-
module of finite rank such that there exists a surjection T,;]*l — ngl.
Set T{™" = 0 for k < ko or k& > k1. Let (Q7 ', {Q¢"}) be the
direct sum of {Tgil}kez. Then we have a natural filtered morphism
QU {QI — (B (B ).

By assumption, Ker(Q} — QZH) — H9(E}) is a surjection. Moreover,
if the image of an element of Ker(Q? — Q%™') vanishes in H?(E}), then
this element belongs to Im(T,;Fl — Q1) by the definition of qu' In partic-
ular, this element belongs to Im(QZ_1 — Q}). Hence the natural morphism
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~

Ker(Qf — QZ‘H) — HY(Ep) induces an isomorphism H?(Qf}) —
HY(E}). Moreover, it is easy to see that Ker(Q% ' — Q%) — HI'(E})
is surjective. Hence the induction works well and so we have constructed a
filtered complex (Q*,{@}}) such that Q7 = 0 (¢ > 0), such that Q3 =0
and Qp, = Q°, such that (QY, {Q%}) (¢ € Z) is the direct sum of a family
{T'}rez of free A-modules of finite rank and such that there exists a fil-
tered quasi-isomorphism (Q°,{Q7}) — (E°,{Ey}). Because E; (Vk) has
finite tor-dimension, gr,E® (Vk) also has it. Since (Q°,{Q}}) is filteredly
quasi-isomorphic to (E®,{Ep}), gr,@° (Vk) also has it. Since the filtration
on ° is finite, there exists a nonpositive integer » and a complex F}} of flat
A-modules for each k € 7Z satisfying the following properties:

(a) Fy is quasi-isomorphic to gr,Q°,

(b) Fg =0 for e>0ore<r.

Set B := Irn(QZ_1 — Q). Let I < k1 — ko be a positive integer. Set

0 (g<r—I1+1orq>0),
RZO—H = QZO—H/(QZO—&-T—q + BZO+T_q+1) (T —1+1 < q < T);
QZOH (T <g< O)-

Then we claim that RZO 4 is a flat A-module. We proceed on induction on
l. Unusually we assume that the initial case [ = 1 holds and that [ > 2.
Consider the following exact sequence

0— R} 1 — Rl — @ —0 (r—I+1<qg<r).

By the induction hypothesis, we may assume that RZOJFF1 (r=l4+41<gq<r)

is a flat A-module. Since gr;, Q% is a flat A-module, so is R} , (r—1+1<

g < r). Now we show that Rzo__l;[l is a flat A-module. By the properties (a)

and (b), we have the following exact sequence

r—I1 r—Il+1 r—I+1
T Bl QT 8y @ — Ry —0.

For a positive integer ¢ and for any A-module M,

A r—
Tor; (Rkofjl, M)

=H (- — gfkoJrlQPl @AM — grkoHQT*lH ®a M —0)
:HT71+17i(grko+lQ. ®a M) _ H’r’folf’L'(F’:OJrl ®a M) =0.

Hence R;(;ljl is a flat A-module. The rest for showing the claim is to prove
that R}, isa flat A-module. As above, we can prove this using the following
resolution

r—1 r T
" Qi1 — Qrgpr — Ry — 0.
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Set R® := Ry := Ry for k > ky and R}, := 0 for k < ko. Then {R} }rez is
an increasing filtration on R® since the natural morphism R} , | — R}
is injective. Note that R® is a bounded complex of projective A-modules.

Finally we claim that the natural morphism (Q°,{Q%}) — (R*.{Ry})
is a filtered quasi-isomorphism. Indeed, for a positive integer I < ki — ko,

gry,+ R is the following complex

—l+1 —1 —l+1
0—>grk0+lQT * /Im(grkOHQT —>grko+lQT +)
r—I+1
—1+2
— g, @ — -
r—I14+2

This complex is isomorphic to gr, ;Q°® by the properties (a) and (b).
Hence we have finished the proof of (2.10.10). O

Corollary 2.10.11. Let the notations and the assumptions be as in (2.10.7).
Then the filtered complex Rf(X’Z)/S*(E(I%QZ(O(X’DUZ)/S),PD) is a filtered
perfect complex of Og-modules, that is, locally on S,.., filteredly quasi-
isomorphic to a filtered strictly perfect complex.

Proof. (2.10.11) immediately follows from (2.10.7) and (2.10.10). O

(2) Kiinneth formula.

Next, we give the Kiinneth formula of preweight-filtered vanishing cycle
crystalline complexes.

Let X;/So (j = 1,2) be a smooth scheme with transversal relative SNCD’s
D; and Z; over So. Set X3 := X; xg, Xo, D3 = (D1 XS, XQ) U (Xl XS, DQ)
and Zg = (Zl X S XQ) U (Xl XS ZQ) Let fji (Xj,Dj U ZJ) — So
(j = 1,2,3) be the structural morphism. Assume that S is quasi-compact

[e]
and that f; (j = 1,2) is quasi-compact and quasi-separated. We denote

log,Z; R . log,Z;
Rfj(x,.2;))5+(Berys (O(x,,p,0z,)/8), PP7) simply by Rfix; z,)/s4(Ecy

(O(x,,p,0z,)/5)s PPi). We have the following commutative diagram of ringed
topoi for j =1,2:
(2.10.11.1)

log
Djcrys

(((X;,D; U Z;)/9)&%s, O(x;.p;uz;)/8) ——— (X3, D3 U 73)/5)68s, O (x5, D5025)/5)

E(XJ*DJ'UZTZJ‘)/Sl 16<X3»D3UZS»Z3)/S
— plog —
1 jerys 1
(((X5,Z;)/8)ciys, O(x;.2;)/) I (((X3,23)/8) 58, O(x4,25)/9)
f(xj,zj)/sl Lf(xi,,,zg)/s

(Szaryos) _— (Szary OS):
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where ¢;: (X3,D3U Z3) — (X;,D; U Z;) and p;: (X3, Z3) — (X, Z;) are
the projections. We shall construct a canonical morphism

(2.10.11.2) Rfx, 7208+ (ER87 (O(x, pruz1)/5): PPV @6,

Rf(x,,2)/5: (B3 (O(x,,0002)/5) P7?)

— Rf(xy,24)/ 5 (B85 (O x4, 05024 5): P2).

For simplicity of notation, set ¢; := ¢(x, p,uz,,z,)/s (j = 1,2,3). We have to
construct a morphism

(2.10.11.3)

Rf(x;,21) /5 (Re1:(O(xy,0y021)/8), TV®G s RF (x5, 25) 5+ (Re24 (O(x5,05025)/5)5 T)
— Rf(x3,23)/5+(Re3x(O(x3,D3025)/5), T)-
To construct it, we need the following two lemmas:

Lemma 2.10.12 (cf. (2.7.2)). Let f: (T,A) — (7', A") be a morphism
of ringed topoi. Then, for an object E® in D~ (A’), there exists a canonical
morphism

(2.10.12.1) Lf*((E®,7)) — (Lf*(E®),7)

in D"F(A).

Proof. Let Q®* — E°® be a quasi-isomorphism from a complex of flat A’-
modules. Let (R®*,{Rp}) — (Q°,7) be a filtered flat resolution of (Q°, 7).
Then, by applying the functor f* to the morphism of this resolution, we
obtain a diagram

ARy —— [ (mQ*)
(2.10.12.2) l l
(R —— f1(Q%).

By (1.1.19) (2), the left hand side of (2.10.12.2) is equal to Lf*((E®,1)).
On the other hand, there exists a natural morphism f*(7,Q°®) — 7 f*(Q°®).
Hence there exists a natural diagram

[H(m@Q%) —— 7w f*(Q%)
(2.10.12.3) | |
Q%) ——= (@)
Composing (2.10.12.2) with (2.10.12.3), we have a morphism (2.10.12.1). O

Lemma 2.10.13. Let (7, A) be a ringed topos. Let E® and F*® be two com-
plezes of A-modules. Assume that E® is bounded above. Then there ezists a
canonical morphism
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(2.10.13.1) (E*,7) @4 (F*,7) — (BE®* @4 F*, 7).

Proof. Let P* — E° be a flat resolution of E°. Let (Q*,{Q}}) — (P°,7)
be a filtered flat resolution of (P®, 7). Then we have the following;:

(E®,T) ®j (F*, 1)
= (@, {Q%)) ®a (F*,7)
= (@ @aF {Im( Y Q @aTnF* — Q" @4 F*)}rer)

l+m=k
— (P*@4 F* {Im( Y mP*@amnF* — > P*@4F%)}kez)
I+m=k l+m=k

- (E. ®.,Lzl F.aT)'

0O

Now we construct the canonical morphism (2.10). We need a canonical
element in

(2.10.13.2)
HORHomo,y, /s (Lf(xy )5 (RS (x1.20) 5+ (Rere(O(x, 0, 021)/8)s T) @55

Rf(xy,25))5+(Re2:(O(x5,0,025)/5): T) }s (Reas(O(x3,05024)/5), T))]-

First we have the following morphism

Lfix, 255 RS (x1.20)/9+(Rer«(O(x,,pyuz1)/5): T)®

Rfix,,2,)/5+(Re2:(O(x,5,D,022)/5): T) }
:Lf(*X:s,Zs)/SRf(Xlazl)/s*(Rel*(0(X17D1UZ1)/S) )®0(x3 Z3)/S

Lfixy z0)/s R (x2,22) 55 (Re2:(O(x,,0,025)/5), T)

log* *
:Lplcgryst(Xl Zl)/SRf(X1 Zy /S*(R€1*(O(X17D1UZ1)/S)’T)®é(x3 Z3)/S

log*

Lp?cryaLf(XQ,Zg)/SRf Xo, Z2)/S*(R€2*(O(X2 D2UZ2)/S) )

_>Lplcrys(R€1* (O(X1 ,D1 UZ1)/S)’ T)®O(X3 73)/8

log*
2Cgryb (REQ*(O X27D2UZ2)/S)7 T)’

Note that Re;.(O(x;,p,uz,)s) (7 = 1,2,3) is bounded above by (2.7.10).
Therefore it suffices to construct a canonical morphism
(2 10.13.3)
log* log*
1cgry§(R€1*(O(X17D1U21)/S)7 T)®é(x3_yz3>/s pQCgrys(Rez*(O(X27D2UZQ)/S)7 T)
— (Re3e(O(x4,05023)/8), T)-

We also have the following composite morphism
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Lp;%gr;s(Rej*(O(Xj,Djqu)/S)a7') - (Lp;?:%;sRej*(O(Xj»DjUZj)/S)7T)

— (363*[/(1;?;%;5(0()(]-,Djuzj)/s)7 7)
= (R€3*(O(X3,D3UZ3)/S)a 7’)

Here we have obtained the first morphism by (2.10.12), and the second mor-
phism by the commutative diagram (2.10.11.1) and the adjunction morphism.
Thus we have only to construct a canonical morphism

(Re3«(O(x3,03023)/5) T)®é<x3,z3)/s (Re34(O(x3,05025)/5), T)

— (Resw (O(x,05025)/5), T)-

By (2.10.13), it suffices to construct a canonical morphism
(Re?’*(O(X31D3UZ3)/S)®é(X3,23>/sRES*(O(XsstUZS)/S)’T)
— (R€3*(O(X3,D3UZ3)/S)5 7)
and, furthermore, to construct a canonical morphism
Re3.(O(x3,05025)/5) ®(L9<x3,z3>/s Re3.(O(x5,05025)/5)
— Re3.(O(x5,05025)/9)-

Hence we have only to have a canonical element of
0 * L
(210134) H [RHomO(Xg,Dg,ng)/S (L63{R€3*(O(XSaDSUZS)/S)®O(X3,Z3)/s

R€3*(O(X3,D3UZ3)/S)}7O(Xg,DgUZ;})/S)]‘
The source of [ ] in (2.10.13.4) is

Lez Resi(O(x5,05025)/5) ®(L9<X3,D3u23)/s Lez Rez(O(x,,05023) /)

Using the adjunction, we have a composite morphism

Lez Resi(O(x,,05025)/5) ®é(x3,D3uZ3)/S LezReso (O (x4,05025)/5) —

O(Xg,DgUZg)/S ®é(X3,D3UZ3)/S O(X3,D3UZ3)/S = O(Xg,DgUZg)/S'
Thus we have a morphism (2.10.11.2).

Theorem 2.10.14 (Kiinneth formula). (1) Let the notation be as above.
Then there exists a canonical isomorphism

(2.10.14.1) Rf(xl,zl)/s*(Eé??le (O(x,.p10z1)/8), PP)®g,

Rf(x,,2) 75+ (B3 (O x5, 00020 /5) P7?)
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=5 Rf(xy,20) )5 (B8 (O (x4, Dsuz4) ) PP2).

(2) LetY and f;: (X;,D;UZ;) — Y (j =1,2) be as in (2.10.2) (2). Set

f3:= f1 Xy fa. Then there exists a canonical isomorphism
log o 1
(2.10.14.2) Rf(())é,Zﬂcrys*(E}:r%éZl(O(Xl’Dluzl)/SLPD )®éY/s

1 2 2
Rf(;ngg)crys*(Ei?géZ (O(X21D2UZ2)/S)’PD )
~ lo, fe)
Rf(ng,Z;;)crys*(EfllrgéZS(O(X37D3UZB)/S)’ PD3)'

Proof. (1): By virtue of the filtered cohomological descent (1.5.1) (2), we
may assume that X; (j = 1,2) and S are affine as in the proof of [3, V
Corollary 4.2.2], and hence that (X;, D;UZ;) (j = 1,2) has a log smooth lift
(X;,D; U Zj) over S. Let (X5, D3 U Z3) be the fiber product of (X1, Dy U Z1)
and (X, Dy U Z5) over S. Let g;: (X;,D; U Z;) — S (j = 1,2,3) be the
structural morphism. In this case, by (2.7.5), the proof of (1) is reduced to
showing an isomorphism

(91:2%, /5 (log(D1 U 21)) ®04 g2482%, /5 (log(D2 U 22)),

{ > 91.PPQ%, /5(log(D1 U 21)) ®os 92. P20, /5 (l0g(D2 U 22)) }iez)
l+m=k

— g3.(QY, /5(log(Ds U Z3)), PP2),

which is easily verified.
(2): (2) follows from (1) as in [3, V Theorem 4.2.1]. a

The following is the compatibility of the preweight-filtered Kiinneth for-
mula with the base change formula.

Proposition 2.10.15. Let u be the morphism in (2.10.3). Let’ mean the base
change of an object over S by u|s,. Let K be the preweight-filtered Kinneth
isomorphism (2.10.14.1) and K' the preweight-filtered Kiunneth isomorphism
for (X,,D; U Z!) (i=1,2,3). Set

H; = Rf(x, z)),5:(ES87 (Ox,.p0z0)8), PPP)

and
log,Z!, 4
H! = Rf(x1.z1)5(Eerys (O(x1.piozr)s), PP7)

(i =1,2,3). Then the following diagram is commutative:

Lu il LuHy % pym,
(2.10.15.1) gl lg
K/

meb



156 2 Weight Filtrations on Log Crystalline Cohomologies

Proof. We leave the proof of (2.10.15) to the reader because the proof is a
straightforward (but long) exercise by recalling the constructions of the base
change isomorphism and the Kiinneth isomorphism (cf. [3, V Proposition
4.1.3)). 0

2.11 Log Crystalline Cohomology with Compact
Support

Let the notations be as in §2.4. Let us define a variant of a special case of the
definition of the log crystalline cohomology sheaf with compact support in [85,
§5] briefly (cf. [29, §2]). Let (U, T, ¢, M7,0) be an object of the log crystalline
site ((X,D U Z)/S)lcor%S = (X,M(DU Z))/S)i‘;%s. Set My == M(DUZ)|y.
Because ¢: (U, My) — (T, M) is an exact closed immersion, Mp/O% =
My O}, on Uzar = T,ar. Hence the defining local equation of the relative
SNCD D NU on U lifts to a local section ¢t of My. We define an ideal
sheaf I 1,7/ € O(x,puz)/s by the following: I(DX7DUZ)/S(T): the ideal
generated by the image of ¢ by the structural morphism Mp — Op. One
can prove that Q?X,DUZ)/S(I([))(,DUZ)/S) is a crystal on the restricted log

crystalline site ((X, DU Z)/S)gzcgrys in the same way as [85, (5.3)].

Definition 3.11.1. We call the higher direct image sheaf Rhf(X_’DUz)/S* (I&y
puz)/s) in Szar the log crystalline cohomology sheaf with compact support
with respect to D and denote it by Rhf(X,DuZ)/S*,C(O(X,DUZ;Z)/S)-

The local description of Rhf(X,DUZ)/S*,c(O(X,DUZ;Z)/S) is as follows; as-

sume that there exists an exact closed immersion ¢: (X, DUZ) = (X, DUZ)
into a smooth scheme with a relative SNCD over S such that ¢ induces exact
closed immersions (X, D) — (X, D) and (X, Z) - (X, Z). Let © be the log
PD-envelope of the exact closed immersion (X, Z) = (X, Z) over (S,Z,7)
with structural morphism fs: ® — S. Let u(x,puz)/s: (X, ITEJ_/Z)/S)IC‘;%b
— X,u be the canonical projection. Let F be the crystal on ((X,D
UZ)/S)ke  corresponding to the integrable log connection Op ®¢, Ox(—D)

crys

— Op ®o, OX(—D)Q}/S(log(’D U Z)). Then there exists a natural mor-
phism F — I(DKDUZ)/S and it induces an isomorphism QzX,DUZ)/S(}-)

SN Q?X,Duz)/S(I(DX,DUZ)/S) by [85, (5.3)]. Hence we have the following
formula:

(2.11.1.1) RU(X,DUZ)/S*(I&,DUZ)/S)
= RH(X,DUZ)/S*Q?X,DUZ)/S(I&,DUZ)/S)

= Ra(XaDUZ)/S*Q?X,DUZ)/S(}—)
= RU(X,DUZ)/S*(]:) = OQ ®OX Q:Y/S(log(z _ D))7
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where Q% ¢ (log(Z — D)) := Ox(=D)Q% 5(log(DU Z)). As a result, we have

Rhf(X,DUZ)/S*,c(O(X,DUZ;Z)/S) = RhfS*(Oz) R0x Q:y/s(log(z —D))).

Let {Dy}x be a decomposition of D by smooth components of D. Let

the notations be as in §2.8. The exact closed immersion L)\ : (Da, Z|DA)
(Dy, Z|ng) induces the morphism

- A.logx o
(2.11.1.2) (=)l Oy, i, 178 ©2 Dy ere(D/ 83 2) —
G (O ) @z wyE (D/S; Z)
Acryss* (DAaZ‘DA)/S Z w)\crys )
defined by @ ® (Ao~ Ny -+~ A1) — (1A (1) @ o+ ). Tt s

easy to check that the morphism (—1) 2198 1o well-defined. Set

L)\crys
(2.11.1.3)
k—1
k—1)logx* 1 . /\ log*
((:rys Jlog = Z agjgcrys* ° ((_1)] Acry% )
{0, A1, Ak—1 | NiF#EN (i)} 5=0

k—1)log o
altysy #(Ope-1,2], 4_1y)/s O o V8(D/S; Z)) —

agglsig(@(mm,z‘ Lm)/S Bz w8 (D/S; 7).
Th (k)log= (kE—1)log* . e
e composite morphism terys © 0 Lerys is the zero. Indeed, the question
is local. By taking trivializations of orientation sheaves, we can reduce this
vanishing to the usual well-known case.
In this section we start with the following:

Lemma 2.11.2. The morphism Lg’ﬁy’s”“g* is independent of the choice of the

decomposition of {Dx}x by smooth components of D/Sy.

Proof. The question is local. Let A and A’ be two decompositions of D by
smooth components of D. Let « be a point of X. By (A.0.1) below, there
exists an open neighborhood U of x such that A’|y = Aly. Thus we have
(2.11.2). 0

—~—

Theorem 2.11.3. Let e: ((X, 5\/UZ)/S)1°g — ((X,2)/S)8 be the for-

crys crys
getting log morphism along D ((2.3.2)). Set
(2.11.3.1) EX&%(Ox,puz)/s)
L(0)logx
= (O(x,2)/s @z @E(D/S; Z) = e,
(1)log*

1) o Lcrys
at(:rys* (O(D(l) Z| (1))/5’ ®z wg%ys g(D/S Z))
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(2)log=

2)lo O, crys
a((:r))ls*g(O(D(Z)¢Z|D(2))/S ®Z w((:%s),lb g(D/S’7 Z)) AN )

*

Then there exists the following canonical isomorphism in D+(Q(X’Z)/S

(Ox,2)/5)) :

(2.11.3.2)  Qx z)5Re(T% puzys) — Qix.z) s Bale(Ox,puz)/s)-
Before the proof of (2.11.3), we prove two lemmas.

Lemma 2.11.4. There exists a morphism of topoi

€Rerys * ((X? DU Z)/S)i'c{)cgrys - ((X’ Z)/S)gfrys
fitting into the following commutative diagram of topoi:
P log €Rerys i log
((X? Du Z)/S)Rcrys - ((X7 Z)/S)Rcrys
(2.11.4.1) Q(X,DUZ)/SJ/ lQ(x,z)/s
(X,DU2Z)/9)% —— (X,2)/9)%

Proof. First we show the existence of €gcrys. To show this, it suffices to see
that, for an object T := (U, T, Mr,1,8) € ((X,D U Z)/S)1% | the object

Rerys?
(U, T, NIV 1, §) constructed in §2.3 belongs to ((X, Z)/S)i({)(g:;rys Zariski locally
on T'. (Then we can define the exact functor €, in the same way as €* in
§2.3.) Let us assume that T is the log PD-envelope of the closed immersion
i (U,(DUZ)|y) —= (U, My), where (U, My,) is log smooth over S. Since the

log structure My, is defined on the Zariski site of U, we have a factorization
(U7 (D U Z)lU) L (U/7MZ/I’) - (u7 ML{)

of i Zariski locally on U such that the first morphism is an exact closed
immersion and that the second morphism is log etale. Then T is the log
PD-envelope of the first morphism. Hence we may suppose that ¢ is an exact
closed immersion. Then, by (2.1.5), we may assume that 4 is an admissible
closed immersion (U, (D U Z)|y) = (U, D U £Z). In this case, the log struc-
ture NV on T is nothing but the pull-back of the log structure on U defined
by Z. Hence (T, NIV) is the log PD-envelope of the exact closed immer-

sion (U, Z|v) - U, Z). Hence (U, T, N, 1, 5) belongs to ((X, Z)/S)lfgcgryS
Zariski locally on T'. Now it is clear that we have the morphism egreys of

topoi. It is easy to see that we have the commutative diagram (2.11.4.1). O

Lemma 2.11.5. Let the notations be as in (2.11.4). Then the following nat-
ural morphism of functors

Q(x,2)/sRex — Rerarys«Q(x puz)/s
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for O(x puz)/s-modules is an isomorphism.

Proof. By the same argument as that in the proof of (1.6.4), we are reduced to
showing that, for any parasitic O(x puz)/s-module F of (X, DU Z)/S)%8,,
Rie,(F) is also parasitic for any ¢ > 0. To see this, it suffices to prove that, for
any object T := (U, T, Mr,.,6) € (X, Z)/S)lfgfrys with T sufficiently small,
the sheaf (R%,(F))r on T,,, induced by R, (F) is equal to zero. Hence we
may assume that there exists a closed immersion i : (U, Z|y) —— X into an

affine log smooth scheme over S such that (T, Mr) is the log PD-envelope of
i. On the other hand, let us take a closed immersion @' : (U, (DUZ)|y) — Y
into an affine log scheme which is log smooth over S. Then, for any n € Z>1,
we have the closed immersion i, : (U, (D U Z)|y) —— X xg Y™ induced by
io (ely) and 7. Let D(n) be the log PD-envelope of the closed immersion
in over (S,Z,7). Then it is isomorphic to the log PD-envelope of the closed
immersion (U, (D U Z)|y) - (T, My) xs Y™ (induced by the composite
to(€|yy) and 7') compatible with &, where ¢ is the PD-structure on Ker(O7 —
Ou) + ZO7 extending v and 6. By the log version of [3, V 1.2.5], we have

(Riex(F))r = R fw,(puz)|v)/mF = R (1o (e|u))«CA(F),

where CA(F ) = Fp(e) is the log version of the Cech-Alexander complex of
F ([3, V 1.2.3]). Since I is parasitic, we have Fg(,) = 0 for any n. Now we
have (R, (F))r = 0. O

Proof (of Theorem 2.11.3). Assume that we are given the data (2.4.0.1) and
(2.4.0.2) for (X, DU Z). Let b DM . X, be the natural morphism. Let
Trig(g,DUZ)/Scrys be the morphism of topoi defined in (2.4.7.4). Let w%‘}?z)/scrys
be the morphism of topoi defined in (2.4.7.4) for the case D = ¢. Let F, be
the crystal on (X,, DeUZ,)/S corresponding to the integrable log connection
O, D0x, OX.(—D.) — Op, X0, O/\/.(—'D.)Q}./S(log(’p. @] Z.)), where
D, denotes the log PD-envelope of (X, De U Z,) in (X, Do U Z,). Then we
have

Qix.z)/sRe«(Tx puzy/s)

= * lo, log,—1 D
- Q(Xyz)/SRE*RW()?DUZ)/Scrys*W()?,DUZ)/Scrys (I(X,DUZ)/S)

= lo * log,—1 D

- RERCWS*R”()?,DUZ)/SRcrys*Q(X.,D.uZ.)/S”(}?,DUZ)/scrys(I(X,DUZ)/s)
= lo *

- ReRcrys*RW()?,DUZ)/SRcrys*Q(X.,D.UZ.)/S(]:')
= 1 «

- RW((;?,Z)/SRcrys*Q(X.,Z.)/SRGO*(]:0)

= 1 *
— Rﬂ(ggz)/SRcrys*Q(X.,Z.)/SR6°*L(X.,D.UZ.)/S(QX./S(log(ZO - D.)))

= 1 *
A RW((;?,Z)/SRcrys*Q(X.,Z.)/S’L(Xo,Z-)/S(QX./S(IOg(Z‘ - D.)))
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By the same argument as that in [27, (4.2.2) (a), (c)], the following se-
quence

(2.11.5.1) 0 — Q% 5(log(Zs — D)) — O, /5(log Z,) @z @) (Ds/5)

Wi . W
B (@) (108 Zalpn) @z @ADL /S)) 2 -

is exact. Here we define z,skz);r similarly as for Lgf;ls‘)g*. Hence Q% , s(log(Ze —

D,)) is quasi-isomorphic to the single complex of the following double
complex

(2.11.5.2)
d -
(0) Wi ) (1)
0%, /5108 2a) @2 @zar (De/S) — 0000 1) (108 el 1)) @2 iar(De /)
d -
(0) Wi ) (1)
Q}Y./S(log Zo) ®z wzar(D./S) - Dex (Q;(l)/s(log Z.IDSI)) Rz, wzar(Do/S))

d =
o

Ox, ®z @i (De/S) b8 (0 1) @z wiah(De/S))

d

e P
2 B (2 ) (log Zaly2) @z whad (Da/S)) —

D /s
|
L b (Q ., (log Ze|_(2)) @7 w52H(De/S)) e
o D£2)/S ’D£2) 7 Wzar

dl
o o
: b<.2*) ((’)D(2> ®z Wﬁ%(pc/s)) '

We claim that the following sequence
(2.11.5.3)

0 —Q(x.,2.)/5L(x0,20)/5(%, /5 (108(Ze — Ds))) —
Qlx..za)/sLixe,20)/5(Qk, /5 (log Z.)

Rz =0

Qfx.,z.)/s(b(.o,;;r)
zar ))

(Do/S
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* 1 .
Qlxaz0)/5Lixe 2275 (06 (V) 5108 Zal )

(1) Qlxe,z0)/5(1600)
®Z wzar(D./S))) —_— o e

is exact. Indeed, the question is local and we have only to prove that the
sequence (2.11.5.3) for e = i is exact for a fixed ¢ € I. As in (2.2.17), we have
only to prove that the following sequence

(2.11.5.4)

0— Ogi ®Oxi Q:\?7/S(10g(zl - Dl))

— Op, ®0,, W, /s(log Z;) @z @ (D;/S)

W e
5 Op, @0, b (R0 ¢ (108 Zilpn) 82 wWUDi/S)) =5 -

is exact. The following argument is the same as that in the proof of (2.2.17)
(1). We may have cartesian diagrams (2.1.13.1) and (2.1.13.2) for SNCD
D; U Z; on X;; we assume that D; (resp. Z;) is defined by an equation
xp---x¢ = 0 (resp. xpp1---25 = 0). Set J; = (®gq1,...,24)Ox,. We
may assume that there exists a positive integer N such that J¥Op, = 0.
Set X/ := SpecX’i(OXi/ji) and X" := Spec (Osrit1,...,za]). Let D;
(resp. Z!) be the closed subscheme of X! defined by an equation - --z; = 0
(resp. x¢41 -+ x5 = 0). Asin [11, 3.32 Proposition], we may assume that there
exists a morphism

OX,{ [xd—i-la e 7=Td’] — OX1/‘7LN
such that the induced morphism Ox/[zas1, ..., za]/Tg — Ox, /TN is an
isomorphism, where Jo; := (Tat1,...,zq ). By [11, 3.32 Proposition], Og,

is locally isomorphic to the PD-polynomial algebra Oyx; (a1, - xar). Let
b’l(»k) (k € Zsp) and R (k € Z>p) be analogous morphisms to bz(-k) and

i,zar
(k)=

Li,zar’

respectively, for X/, D; and Z/. Then we have an exact sequence

(21155) 0 — Q% 5(log(Z] — D)) — Q% 5(log 2}) @z = (D}/S)

zar

7(0)* 7(1)*

Y (5008 Zll ) B2 BUUDI/S) = -

Since Og{(Tat1,.--,%a) DO, Qg(”/s (¢ € N) is a free Og-module, applying
the tensor product ®o;Os(Tat1,--.,Za) @0, Qgc”/s (¢ € N) to the exact
sequence (2.11.5.5) preserves the exactness. Because

Op, @0y, N, s(l0g(2; — Di)) =%, s(log(2] — D)) @0

OS<xd+17 cee ,.’L'd/> ®OXN Q._X///S
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and because the similar formulas for Og, ®x, bgf)(Q;(m/S(log Zilpm) @z

wglgz(Di/S)) (k € N) hold, we have the exactness of (2.11.5.4).
By (2.2.12) and (2.11.5.3), we have the following quasi-isomorphism

(211.5.6) Q(x, z.)/5L(xe,20)/5(2%, 5(108(Zs — Ds)))
—H{Q(x. 205 L(x0.20)/5 (U, s5(log Z4) @2 w)(Ds/S))
% (1)log °
7 (Q(X"Z')/Sa'cryS*L(D(-l)Z'|D£1))/S(QD£1>/S(1Og Zalpm))

®z @ (D, /S)), —d) — -+ }.

Applying the direct image Rwé}g 2)/SReryse 10 (2.11.5.6), we have

1 * o ~
(2.11.5.7) R 1) /sRerysn@ (X0, 20) /5L X0, 20) /5 (D, 5 (108(Ze — Da))) —
log * °
{R7 (¥ 1) sReryss Qx, 20y 5 LX0 20) 15 (W, 15108 Za) @2 (0 (De /S)) —

lo, * 1)log °
(R’/T()gz)/SRcrys*Q(X.7Z.)/Sa(°c)r§?s%"L(D£1),Z.|D(1))/S(QDﬁl)/S(log(Z°|D<-l)))
©z wad(De/S), —d) — -+ }.
(See (2.11.8) below.) By (1.6.4.1) and (2.2.20.1), the isomorphism (2.11.5.7)
is nothing but an isomorphism (2.11.3.2).
Now we show that the isomorphism (2.11.3.2) is independent of the data

(2.4.0.1) and (2.4.0.2).
Let the notations be as in the proof of (2.5.3). Let

B8 et DYF(Qxo. 2001/5(O(Xun 200)/5))
— D+F((Q?X.,Z.)/S(O(X.,Z.)/S)).eI)

be a morphism of filtered derived categories in §2.5. Then we have the fol-
lowing commutative diagram by the cohomological descent:

lo. *
R (€ 7)) SRoryss U Xe.Ze) /ST (Xe, Ze)/5 (g /5 (108(Ze = Do)

!

1 1 s
R 7)) SReryss FMRerysx A Xae, Zoe) /S L (Xoe. Zae) /S (P gq /5 (105(Zee — Das))) ——

1 ; 0
(R7(E 7)) SRerysx @ Xe1Ze) /S L (Xe, Ze) /5 Py /5108 Zo) @7 <ok (De/8)) —

!

log log . 0
(R 7)) SReryss FMReryss @ Xee, Zoo) /S (Xee: Zae) /S (Pgq /5108 Zae) @z ={oh (Des /) —
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3 _n_log * u.(l)lOg . Q° o
(B(™(X,2)/ SRorys U Xe,Ze) /S Pecrys ) L(D@,Z.‘D(l))/g (D) 5108 Ze )

®7 WA} (De/S)), —d) — -}

(108 R0l QlXue Zes)/STemnE L (©° (log Zeel_ (1)
(X,2)/SReryss Rerys @(X oo, Zee)/S “edcryss (Dﬁl.),Zu\D(l))/S il /s e

@z w{L) (Pea/S)). —d) — -+ - }.
Hence the isomorphism (2.11.3.2) is independent of the data (2.4.0.1) and
(2.4.0.2). d

Remark 2.11.6. Let the notation be as in the proof of (2.11.3) and let
Ltx, z.)/s be the complex

{L(xa,20)/5(2%, /s (log Z4) @2 wH)H(Da/5))

(aSs I (Q

ecrys (DY Zo| (1))/S (log Z.|D£1))) ®z wig(D./S)), —d) — -}
D.

;751) /S
Then, by the proof of (2.11.3), we see that the isomorphism (2.11.3.2) is
obtained by applying Q’("X’ 7)/s 1O the following diagram:

(2.11.6.1) Re.(Z(% puz)/s)
= Re*Rw&gyDuz)/Scrys*ﬂigfjgéz)/says (I&,Duz)/s)
— ReRT%E b7y seryss (Fo)
Ree.(Fs)

= lo
— RW()?Z)/Scrys*
i) RW}(;?’Z)/Scrys*RE.*L(XQ7D.UZQ)/S(QXQ/S(log(Z. - D.)))

<i RWEC))§7Z)/Scrys*L(XQ7Za)/S(QX./S(log(z. - D‘)))

lo, )
- RW(Xg,Z)/Scrys*L(XuZ.)/S
= lo, log,—1 log,Z
A Rﬂ-(Xg,Z)/Scrys*ﬂ-()?,Z)/ScrysECF§S7C(O(X>DUZ)/S)

— Eé?ié,zc(O(X,DUZ)/S)-

Note that the arrows in the above diagram without = are not necessarily
isomorphisms: they become isomorphic only after we apply QE‘X 2)/8" Note
also that they become isomorphic if we apply Ru(x, z) s« or Rf(x, z) s+« be-
cause Ru(x z)/s« = Ru(x,z)/s © Q(x, zy/s and Rf(x,z)/s+ = Rf(x z)/s ©
Qlx.z)/s

Let PP := {PP*},c5 be the stupid filtration on EX8:Z(Ox puz)y/s

).
Then, by (2.11.3), we have a filtered complex (ER2%(Ox puz)s), PP) €
D*F(O(x,z)/s)-
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Definition 2.11.7. We call (E; Z(O(X,Duz)/s), PP) the preweight-filtered

crys,c
vanishing cycle crystalline complex with compact support of O(x puzy/s (or

(X,DU Z)/S) with respect to D. Set
(Ce82(Ox.puz)/5)s PP) = Qx5 (Eevs(O(x.puz) 9): PL)-

We call (Clog, Z(O(X DUZ)/S)s PP) the preweight-filtered crystalline complex

crys,c

with compact support of O(x puz),s (or (X,D U Z)/S) with respect to D.
Set

(ER&Z(Ox,puz)8) PP) = Ru(x 7)/5:(ESE%(Ox,puz)/8), PP).

We call (Elog’ (O(x,puz)/s)s PP) the preweight-filtered vanishing cycle zari-

zar,c

skian complex with compact support of O(x puzy/s (or (X, DU Z)/S) with
respect to D.

By the definition of (Elogv ((’) (x,puz)/s), PP), there exists the following

canonical isomorphism in D (f~1(0g)) :

(2.11.7.1)

E2Z(Ox,puz)/s)

=5 {Ru(x,2)/5:(0(x,2)/s @z wOWE(D/S; Z)) —
1 o,
aéal*(Ru(Dm,mDm)/5*(0(D<1),Z|D(1))/s ®z wgyls &(D/S;Z)),—d)

—

Remark-Definition 2.11.8. Because the notation for the right hand side
of (2.11.7.1) is only suggestive, we have to give the strict definition of it. Let
I°* be a double complex of O(x, 7),s-modules such that, for each nonnegative

integer k, I*® is a u(x z),s+-acyclic resolution of (a((;f}),lsig(O(D(m,Zb(k))/S Q7

¥ I8(D/S; 7)), (—1)Fd). Then the right hand side of (2.11.7.1) is, by de-
finition, an object in DT (f~(Og)) which is given by the single complex
of U(X,Z)/S*(I")- Let PP := {PP*},c7 be the stupid filtration with re-
spect to the first degree of u(x, zy/5.(I**). Then (ER2Z(Ox puz)s), PY) =
(U(X,Z)/S* ([“), PCD) in D+F(f71(05)).

Corollary 2.11.9. E2%7(O(x,puz)/s) = Ru(x,puz)/5+(L(x puz)/s)-

Proof. We have only to apply the direct image Ru(x z)/s. to (2.11.3.2) and
to use the commutative diagram (1.6.3.1) for the case of the trivial filtration.
0

By applying Rf. to both hands of (2.11.7.1) (cf. (2.11.8)), we have a
canonical isomorphism
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(2.11.9.1)
Rfx.p02)/56.c(Ox.puz:2)/5) — {Rf(x,2),5:(O(x.2)/5 @@ 0 (D/S; Z))

- (Rf(D(1>,Z|D(1))/S*(O(D(l),Z|D<1))/S Bz w§3§S(D/S; 7)), —d) — -+ }.

Next we prove the base change theorem of (EX8Z(Ox,puz)/s), PP).

crys,c

Proposition 2.11.10. Let the notations and the assumptions be as in
(2102) (1) Then Rhf(ij)/S*(PCD’kEIOg’Z(O(X7Duz)/s)) (h,k € Z) s a

crys,c

quasi-coherent Og-module and Rf(x, z)/s+ (PCD’kEé‘ﬁgéi((’)(X’Duz)/S)) (keZ)
has finite tor-dimension.

Proof. This immediately follows from the spectral sequence (2.10.2.1) and
[11, 7.6 Theorem], [11, 7.13 Corollary]. O

Theorem 2.11.11 (Base change theorem). Let the notations and the
assumptions be as in (2.10.3). Then there exists the following canonical
isomorphism

(2.11.11.1) Lu*Rf(x,z)/s+ (Eicr)gé,zc(o(X,DUZ)/S)a PP)
log,Z’ D’

LRf(X’,Z’)/S’*(ECry (O(X/,D’UZ’)/S/)7PC )

Proof. Let I** be a double complex of O(x z),s-modules such that, for
each & € N, I*® is an injective resolution of (ag’ﬁ;lsig(o(,)(m,mw)/S ®z
wgfy)éog(D/S; Z)),(—1)kd). Then we have a double complex ((fu(x, z)/s)
(I°%) — (fu(x,z)s)«(I'*) — ---). This double complex is a representative
of Rf(x,puz)/s« (Eéigéi(O(X,DuZ)/S))- For a nonnegative integer r, let 7,.(f
u(x,7)/s)«(I**) be the canonical filtration of the complex (fu(x,z)/s)«(I"®).
Because Rf(D<k>,Z\D(k))/S*(O(D<k>,Z|D(k))/s) is “bounded” by (2.10.2.1) and
[11, 7.6 Theorem], and because D*) = ) if k > 0 (since X is quasi-
compact), if r is large enough, the natural inclusions Tr(fu(X,Z)/S)*(Ik‘) =,
(fu(x,z),5)«(I"®) are quasi-isomorphisms for all k. Hence the natural mor-
phism
(1 (fu(x,z)8)«(I°)) — s((fu(x,z)/8)«(I°*))

is a quasi-isomorphism. Let

&' (fux.zys)«(I*) — (Fucx.z)ys)«(I1°FH)

and

d": (fu(X,Z)/S)*(Ik.) - (fU(X,z)/s)*(Ik"*l)

be the boundary morphisms. Using the functor LY in [11, §7], we have a flat
resolution Q*** of 7,.(fu(x,z)/s)«(I"*) for a fixed r >> 0. The morphisms d’
and d” induce morphisms df,: Q7*' — Q7**Hl and dpy: QIF — QIR t,

respectively. We fix the boundary morphisms as follows: (—1)7 db: QI —
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Q7+l and (—1)jd’c’2: Qk* — Q7F*+1 We also have a natural boundary

morphism Q¥ — Q°*+t1%! By these three boundary morphisms, we have

a triple complex Q°*°. Then LU*PCD’ka(X,DUZ)/S*(Eég§é,ZC(O(X,DUZ)/S)) =
oke

u* Q% — w*Q*F L — ...){—k}. By the base change theorem of Kato
[54, (6.10)]), this complex is isomorphic to

)l
{Bf o 211, 01/5 O 201y ® wORE(D' /S5 2){~k}, (~1)Fd) —

-} = Rf(xr z21)/5 . PP F(BREZ (O(x1 . prozrysr))-

0

Proposition 2.11.12. Let the notations and the assumptions be as those in
(2.10.2) (1). Assume moreover that f: X — Sy is proper. Then

Rfx,z)/5:(ESE2(Ox.puzy/s), PP)

is a filteredly strictly perfect complex.

Proof. We use the criterion (2.10.10); we have checked the condition as to
the tor-dimension in (2.11.10) and we obtain the finiteness from the spectral
sequence (2.10.2.1) and [11, 7.16 Theorem). O

We prove the boundedness property of the log crystalline cohomology for
the coefficient Z(x puz)/s:

Proposition 2.11.13. Let f : (X,DUZ) — Y be as in (2.10.2) (2) and
lete: (X,DUZ) — (X,Z) be the forgetting log morphism along D. Then
Rfé?}%s*(f&puz)/s) and Re*(I(g(,Duz)/s) are bounded.

Proof. Let us first prove that Rfi8,, (I&7Duz)/s) is bounded. Let the no-
tations be as that in the proof of (2.3.11). By the same argument as [3, V
Théoreme 3.2.4], we are reduced to proving the following claim: there ex-
ists a positive integer r such that, for any (U,T,0) € (Y/S)Ic‘igg,s, we have
Riqu/T*(Z([))(,Duz)/s) = 0 for i > 7. Again by the same argument as that
in the proof of [3, V Théoreme 3.2.4, Proposition 3.2.5], we are reduced to
showing the above claim in the case where X and Y are sufficiently small
affine schemes. Hence we may assume that the log structure M(D U Z) as-
sociated to D U Z admits a chart of the form N* — M (D U Z). If we take
a surjection ¢ : Oy [N?] — Ox and if we set @5 :=id: N® — NP, we can
construct a commutative diagram

XUL)T

(2.11.13.1) l lg

U ——— 7T
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in the same way as in the proof of (2.3.11) such that ¢ is an exact closed
immersion and that g is log smooth. Then we can form a crystal F on
(XU/T)}:‘;?S satisfying the equality Q}U/S(Z(DXDUZ)/S) = Q%,s(F). Then
we have RZfXU/T*(I(DX,DUZ)/S) = R'fx, j7+(F) and it vanishes for i > a+0b
by (2.3.11). Now we have proved that Rfé?;g,s*(I(waDUZ)/S) is bounded.

Let us prove that Re*(Z(DX DUZ)/S) is bounded. It suffices to prove that
there exists a positive integer r such that, for any (U,T,§) € ((X, Z)/S)k8

crys?
RZfXU/T*(I&,Dqus) = 0 (where Xy := U X(x,7) (X,DUZ) = (U,(DU
Z)|v)) for i > r. We may also assume that X is sufficiently small. Hence
we may assume that the log structure M (D) associated to D admits a chart
of the form o : N®* — M(D). Let us denote the log structure on X as-
sociated to D U Z by Mx. If we put ¢; := idp, and ¢ = idyy, we can
construct the commutative diagram (2.11.13.1) in the same way as (2.3.11)
and then we can form a crystal F on (Xy /7)) which satisfies the equality

crys )
Q}U/S(I(DX,Duz)/s) = Q}U/S(]-"). Then we have RZfXU/T*(Z(DX,DUZ)/S) —
R’ fx, jr+(F) and it vanishes for i > b by (2.3.11). Hence we have also proved
that Re*(I&,Duz)/s) is bounded. O

Using (2.11.11) and (2.11.13), we can prove the following:

Proposition 2.11.14. Let the notations and the assumptions as in (2.10.6).
(1) The natural morphism

(2.11.14.1) LhysREE yeryer (PO x puz)5)s PY) —

crys,c

1 log,Z’ D’
Rf/(c;?,z’)crys* (Ecclzis,c (O(X’,D’UZ’)/S)ﬂ Pc )
is an isomorphism.
(2) There exists a natural isomorphism

* o lo ’
(2.11.14.2) Lhy RIS (T puzyys) — BE euse @5 proznsr)
which is compatible with the isomorphism (2.11.14.1).

Proof. (1) follows from (2.11.12) in the same way as [3, V], [11, §7] (see also
§17).
Let us prove (2). One can construct the morphism (2.11.14.2) in usual

way ([3, V Théoréme 3.5.1]), using the boundedness of Rfclfygs*(I(DX’DUZ)/S)

which has been proved in (2.11.13). We can take data (X,, Dy U Z,) —
(X, Do UZ,) as (2.4.0.1), (2.4.0.2) for (X, DUZ). If we put (X, D,UZ,) :=
(Xo, Do UZ) xg S and (X, D, U Z,) := (Xs,De U Z,) x5 .5, we obtain the
data (X., DL UZ.) == (X.,D,UZ.) as (2.4.0.1), (2.4.0.2) for (X', D' U Z").
Then we see from the diagram (2.11.6.1) that there exists a diagram of base
change morphisms
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% lo, * lo,
LhcrystCY}%s*(Z([))(,DuZ)/S) A Lhcryst(Xg.,D.UZ.)crys*(‘7:')

| l

lo 4 lo
Rf,crf/S* (I&’,D’UZ’)/S’) A Rf,()?;,D/.UZ‘)crys* (F3)

* 1
LhCrySRf(ggZ)crys* (Eé(;%:;i(o(X,DUZ)/S’))

|

1 ’
—— Rf'S z7eryee (B (O(xv pruzry/s)s

where f(x, p,uz,) (resp. f(/X;,D’.UZ;)) denotes the composite morphism of
(Xo, DaUZs) — (X, DUZ) with f (vesp. (X., DLUZL) — (X', D'UZ') with
/') and F} is the crystal on (X, D,UZ])/S’ defined in the same way as F. To
prove (2), it suffices to prove that the horizontal arrows are isomorphisms. We
are reduced to showing (as in [3, V 3.5.5]) that, in the situation in (2.10.3),
the horizontal arrows in the following diagram of base change morphisms

LU*Rf(X,DUZ)/S*(I&7Duz)/s) A LU*Rf(X.,D.uZ.)/S*(]:o)

l I

Rf(X’,D’UZ’)/S’*(I([))(i’,D’UZ’)/S/) A — Rf(X‘,D’.UZ‘)/S’*(f:)

—— Lu*Rf(x,z)/s:(EN8%(Ox,puz)/s))

I Rf(X’,Z’)/S’*(Eé(;%s,Zc/ (O(X’,D’UZ/)/S/)>

are isomorphisms. This follows from (2.11.6) because the arrows in (2.11.6.1)
become isomorphic if we apply Rf(x z)/s.. Hence we have proved (2). 0O

By using the filtered complex (£ (O(x,puz)/s)s PP), by (2.11.9) and

crys,c
by the Convention (6), we have the following spectral sequence
(2.11.14.3) EYM (X, DU Z)/S)
= R" " (o021 )/ 5:(O0® 21 1)) /5 ©2 wM8(D/S; Z)))
= Rhf(X,DUZ)/S*,c(O(X,DUZ;Z)/S)-

Let k be a fixed integer. Set

E¥M M (x,DU2)/8) =

k! k1
B Fpw 21y 52O, 21 15 €2 i (D)8 2)) - (K 2 ),
0 (k' < k).
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We shall also need the following spectral sequence later

(2.11.14.4) Efh M BN (X,DU2Z)/S) =

_ k)l o
RM kf(X,DUZ)/S*((agr})fs?kg(o(D(k),Z\D(k))/S Rz wHNE(D/S; 2)), (—1)Fd) —
k+1)1 o,
aliye) B (O(pt+1),7] 1)) /5 P @w{8(D/S; Z)), (-1 d) — - -+).

Definition 2.11.15. We call the spectral sequence (2.11.14.3) the preweight
spectral sequence of (X, D U Z)/(S,Z,~) with respect to D for the log crys-
talline cohomology with compact support. If Z = (), then we call (2.11.14.3)
the preweight spectral sequence of (X, D)/(S,Z,~) for the log crystalline co-
homology with compact support.

Let PP+* be the filtration on Rhf(X,DUz) 5%,¢(O(x,puz;2),s) induced from
the spectral sequence (2.11.14.3). Since P.’»® is the decreasing filtration, we
also consider the following increasing filtration P

(2.11.15.1)
PP R f(x,puz))5%.0(O(x,007:2)/5)

= PcD’.Rhf(X,DuZ)/S*,c(O(X,Duz;z)/s)-

Proposition 2.11.16. Let the notations be as in (2.10.3). There exists a
canonical morphism of spectral sequences

(2.11.16.1)
{(EL2"H(X,DUZ)/S) ®0, O

= R"fx.puz)/s6.c(Ox,puz:2))5) @05 Osr}
—{(B "X, D u 2"/ S)
== Rhf(X’,D'uZ’)/S’*,c(O(X’,D’UZ’;Z’)/S’)}
of Og/-modules.

Proof. (2.11.16) immediately follows from the construction of (2.11.14.3). O

Proposition 2.11.17. The boundary morphism d’f’hik: Eff*k((X,D UZ)
/S) — Ef:l’h_k((X, DUZ)/S) is equal to the morphism induced by Lg’gls‘)g*.
Proof. Though the proof is the same as that of [68, (5.1)], we give the proof
here.

We have the following triangle

(2.11.17.1) — Rf(D(k+1)aZ‘D(k+1))/S*(O(D(k+1)7Z|D(k+1))/S)[_(k + 1)] —

+1
PPk /PPFEY2((211.9.1)) — Rfpw 2] 4)/5( O] )78k —
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Hence the boundary morphism d]f’h_k is equal to the boundary morphism
Rf (o2 ,))/5+(O (0 21, 1)) [=k] —

Rf(D(k“) 2 (k1)) S* (O(D(k+1)7Z‘D(k:+1) )/S) [=#]

by the Convention (4) and (5). By the Convention (3), (4), (6) and by

taking the Godement resolution of the complex aglr);;?f(O(D(n,Zb(l))/S* Rz,

wglri,lsg(D/S;Z)) (I = k,k+ 1) , we can check that d}""™* is equal to the

morphism induced by Lé’r??g*. O

Proposition 2.11.18. Let u be as in (2.10.3). Let ug: S, — Sy be the
induced morphism by u. Let (Y,EUW) and (X,D U Z) be smooth schemes
with relative SNCD’s over S|, and Sy, respectively. Let

(Y,EUW) —— (X,DU Z2)
(2.11.18.1) l l

U
Sy M8,

be a commutative diagram of log schemes such that the morphism g in-
duces morphisms g*) : (E®) W|gw) — (D®), Z| pay) of log schemes over
ug: Sy — So for all k € N. Then the isomorphism in (2.11.11.1) and the
spectral sequence (2.11.14.3) are functorial with respect to gi??,:.

Proof. The proof is obvious. a

The following is the Kiinneth formula for the log crystalline cohomology
sheaf with compact support Rhf(X,DuZ)/S*,c(O(X,DUZ;Z)/S)~

Theorem 2.11.19 (Kiinneth formula). Let the notations be as in those
in (2.10.14) (2). Then the following hold:

(1) Set H;. = Rfégé,Zi)crys*(Eé?§é?ci(O(XmDiUZi)/S)’PcDi) ('L = 1’273)-
Then there exists a canonical isomorphism

(2.11.19.1) Hie ®,,; Hoe — Ha.

(2) There exists a canonical isomorphism

(2.11.19.2)

log D L 1 D
RIS Diozyeryss (X 01020)/5) @0y, BE X Da0z0)eryse (X 02022 /5)
~ log D:
- Rf(ng,DSuzg)crys* (I();B,Dguzg,)/s)

which is compatible with the isomorphism (2.11.19.1).
(3) The isomorphisms (2.11.19.1), (2.11.19.2) are compatible with the base
change isomorphism (cf. (2.10.15)).
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Proof. (1): Let k be a nonnegative integer. Then ng) =111 = Dy) X 5, Déj).
Hence (1) follows from the usual Kiinneth formula.

(2): We have to check that the diagram (2.11.6.1) is compatible with log
Kiinneth morphisms.

Let (Xjo, Dje U Zja)ecr —— (Xjo,Djo U Zja)eer (j = 1,2) be the data
(2.4.0.1) and (2.4.0.2) with Aj, for (X;,D,; U Z;)/So/S. Here note that we
may assume that the index set I is independent of j = 1, 2 since I in §2.4 can
be assumed to be independent of j = 1,2 by considering the product of two
index sets. Set X3¢ := X1e X5 Yoo, D3¢ := (D1e X5 Xae) U (X1e X g D2e) and
Z36 1= (210 X 5 X26)U(X16 X 5 Z2e). Then we have a natural datum (Xsze, D3eU
Z3e)ecr —= (X3e, D30 U Z34)ecs With Az,. Set €jo = €(X;0.D;0UZ;0,714)/5
(j = 1,2,3). Then we have the following diagram

(2.11.19.3)

log
9jecrys

(Xjar Dja710)/$)er O(X 4,047 ;4)/8) ((X3e. D3e0Z30)/5)5256. O (X gy, DyeUZge)/S)

€je |

| Jeon

log
pjucrys
PR el Aol

(Xjg' Z10)/9) e O(Xje:Zj4)/5) (X34 Z30)/5)1%8,, O(X3e,23¢)/5)
T(Xje.250)/5| [7(xX30.250)/5

(Szar, Og) _ (Szar, Og)

as (2.10.11.1) (j = 1,2). Let Fjo (j = 1,2, 3) be the crystal F, in the proof of
(2.11.3) for the admissible immersion (Xjo, Dje U Zjs) <, (Xje:Dje U Zjs).
Then we have a natural morphism

log * log *
qlocryb(]:h) ®O(X3.,D3.UZ3.)/S q200rys(‘7:2‘) F3e

and hence a natural morphism

(2.11.19.4) L) (Fia) ®Bx,. Ll (Fpe) — Faa.

3e.D3eUZ34)/5 “d20crys

Using the adjunction formula, we have a natural morphism

log * log *
(2.11.19.5)  Lp{siiReren(Fia) @8 . po mnrs LPoeirysFe2er (F2)
* L log *
Rezes (quoogcrys(fl') ®O(X3.,D3.UZ3.)/S LqZOOgo::ryb(J:QO))'

Here, note that Reje.(Fje) (j = 1,2) is bounded above by (2.3.12). Compos-
ing (2.11.19.5) with (2.11.19.4), we have a morphism

(2.11.19.6)
LpyE) cReres(Fra) ®0,xyn. 2005 L Pyt Rezes(Fae) — Regeu(Fsa).
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Now let us set
1 °
Ljoog = L(onaDquZjn)/S(QXJ./S(IOg(Zj. - Dj')))’

Lje :=L(x,,,2,4)/5(Q%,,/5(108(Zje — Dja)))
and

ko (k)log
Ljo = jocrys*L(D k) Zjel (k))/S(

je

Q.

k
D_;o)/s crys

(log Zje| )Rz RN (D) /S; Zjs))

for k € N, where

a( ) log | (D(k) Zje ‘Dﬁ)) — (Xje: Zjs)

je je

is a natural morphism. Then we have a morphism

(2.11.19.7)
log * l log * 1
1O.gcrysR€1°*( Og) ®O(X3. Z3e)/S pQO.gcrysRCQO*( .g) I R€3o*(L30.g)

which is constructed in the same way as (2.11.19.6) and we also have natural
morphisms

(211198) Lplloog(::ys(Ll') ®é(X3.,Z3.)/S LPIQOOngyS(L2.) - L3.7
log * ° log * . .
(211199) Lplogcrys(Llo) ®O(x3.,z3.)/s Lp20gcrys(L20) - L3.'

We can check that the canonical morphism Fe — L;O.g induces the morphism
(2.11.19.6) — (2.11.19.7),

the isomorphism Rej.*(L;-O.g) — Lj, induces the isomorphism
(2.11.19.7) — (2.11.19.8)

and the morphism L;, — L%, induces the morphism
(2.11.19.8) — (2.11.19.9).

Hence we have the commutative diagram

Lplog* Reoes (]:20) E—

2ecrys

LplloogcrysRel'* (‘7:1‘) ®O(X3.
(2.11.19.10) l

Z3e)/S

RES.* (\7:3u) —

log * log *
Lploo%:rys(LIo) ®o(x3.,z3.)/s Lp200gcrys (Léo)

!

LS.
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By applying Rﬂzi,zs)/s@ys* to the diagram (2.11.19.10) and by using the
adjunction formula, we obtain the commutative diagram

(2.11.19.11)

log * log L log * log
Lpicrys Rer« BT (X, pyuzy)/Scryss (F1e) ®O(X3.,Zg.)/s Pocrys Reox R () p,uzy) /Seryss (F2e)

l

Rea. R"T(x3 D3UZg)/Scryss (F3e)

log * log * 1o, log .
E— Lp1cry<R7T(x1 21)/Scryss (L1e) ®O(xy4e,254)/5 Pocrys BT (X, 2) s scryss (D2e)

!

RTr(Xg Z3)/Sclys*( 5.)

lo
(Note that, by (2.3.11), Rej*RW(X D,;07,))Seryse(Fie) and RT(E 0o
(L3,) are bounded.) Let us put

OF = g{k)los (0

J jeryssk

k)l .
(D§k)7Z_7‘ ‘D(k))/S ®z wgr})fsog(Dj/S’ Zj))’
where

k) lo k
af? " (DY, 2| po) — (X5, 2))
is a natural morphism. Then we have a natural morphism

(2.11.19.12) Lpiee= (09)

lcrys

1og* (03) — 037

L
®0(X3,Z3)/S 2crys

and the isomorphism R/ ) < O3 induces the isomorphism

(X;,Z; )/Scrys*(L;O
(the right column of (2.11.19.11)) <= (2.11.19.12).

On the other hand, we have a natural morphism

(2.11.19.13)
log * D L log *
LplcgrysRel*(Z(Xll,D1UZ1)/S) ®O(X3,Z3)/S QCgrySRGQ*( (X2 D2U22)/S)

— Rezu( (X37D3UZ:3)/S)’

7Di
(note that Re;.(Z (X D,uZ;)/8
D;

X, puz) RW(X],D UZ,;)/Seryss (Fje) induces the morphism

) is bounded by (2.11.13)) and the morphism

(2.11.19.13) «— (the left column of (2.11.19.11)).
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Hence we obtain the diagram

(2.11.19.14)

log * Dy L log * Doy
Lpicrys RersT(x, pyuzy)/s ®@(X3,23)/s LpacrysReasT (X, pyuza) /5

!

D
Resn(Z(3y,pguz3)/5) —

—

log * log L log * log
Lpiys Re1« R bl Uz, ) Scryss (F1e) CICIN Pocrys €2« BT (5 boUzy) ) Scrys« (F2e)

log
Res. RW(XgS,D;,,qu)/Says* (Fe)

Z3e)/S

log = ° L log * °
Lplcrys(ol) ®O(X31Z3)/S Lp2crys(02)
_— O3.

By applying Rf(k;i 74) O the diagram (2.11.19.14) and by using the adjunc-
tion formula, we obtain the diagram

(2.11.19.15)

log Dy L log Do
RI(X).Diuzeys (X, Dj0z1)/8) ©0y 5 Bl (Xy.Douzs)erys (F(Xy,Dyuza) /)

!

—

log D3
RI(X5,D30Z5)crys« (F(X5,D3023)/8)

log log L log log
RI(X1,D10Z1)orys« V™ (X1, D1UZ1) / SerysF10) ©6y (I (x) DyUZyYeryss 7 (Xo, DauZg) /Seryss(F2e)

log log
R (X3.D3023)crys« BT (X3, D3UZ5)/Scryss (7 3e)

log L log
RIX, 2y )eryss (OD) 0y, s Bf(Xy.zp)crysx (©%)

|
|
+

log °
RI(Xy,23)crys«(O3):

The left vertical morphism in (2.11.19.15) is the morphism in the statement

of (2) and the right vertical morphism is (the non-filtered version of) the

morphism (2.11.19.1). Therefore, to prove (2), it suffices to prove that the

horizontal morphisms in (2.11.19.15) are isomorphisms. We can check this in
the same way as (2.11.14).

(3): (3) immediately follows from [3, V Corollary 4.1.4], (2.11.14) and (2).

O
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2.12 Filtered Log de Rham-Witt Complex

Let k be a perfect field of characteristic p > 0. Let W (resp. W,,) be the
Witt ring of k (resp. the Witt ring of length n € Z-g). Let Ky be the
fraction field of W. Let (X, D) be a smooth scheme with an SNCD over k.
In this section, as a special case, we prove that (C,.:(O(x,py/s), P) in the
case S = Spec(W,,) is canonically isomorphic to the filtered log de Rham-
Witt complex (W,,Q% (log D), P) := (W,Q% (log D), { P.W,,Q% (log D)} kez)
constructed by Mokrane ([64, 1.4]).

Before proceeding on our way, we have to give the following remarks. Let

s = (Spec(k), L) be a fine log scheme. Let g: Y := (Y, M) — s be a log
smooth morphism of Cartier type. Let W,, A}, be the “reverse” log de Rham-
Witt complex defined in [46, (4.1)] and denoted by W,,w$ in [loc. cit.]. Then,
in [46, (4.19)], we find the following statements:

(1) There exists a canonical isomorphism
Ruyw, (Oyjw,) — Waly  (n € Zso).

(2) These isomorphisms for various n € Z~ are compatible with transition
morphisms with respect to n.

However, as pointed out in [68, §7], the proofs of these two claims have
gaps: especially we cannot find a proof of (2) in the proof of [46, (4.19)];
in [68, (7.19)], we have completed the proof of [46, (4.19)]. Hence we can use
[46, (4.19)]. In addition, we have to note one more point as in [68, (7.20)]
for the completeness of this book; in the definition of the embedding system
in [46, p. 237], we allow the (not necessarily closed) immersion as in [82,
Definition 2.2.10].

Now we come back to our situation. We keep the notations in §2.4. For
example, the morphism f: X — Spec(k) is smooth and DU Z is a transver-
sal SNCD on X; by abuse of notation, we also denote by f the composite
morphism X — Spec(r) —— Spec(W,,) (n € Zs). Because the morphism
(X,DUZ) — (Spec(k),k*) of log schemes is of Cartier type, we can ap-
ply the general theory of the log de Rham-Witt complexes in [46, §4] and
[68, §6, §7] (cf. [48]) to our situation above. In particular, we have a canoni-
cal isomorphism

(2.12.0.1) Ru(x,puz)w,«(Ox.puz)w,) — Wak (log(D U Z))

by the Zariski analogue of [46, (4.19)]=[68, (7.19)]. In other words, we have
a canonical isomorphism

(2.12.0.2) Cr22(Ox,puzyw,) — WaQ% (log(D U Z))

zar
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Let (Vn,En U W,) be a lift of (X,D U Z) over W,,. Then we have
W,Q% (log(D U 2)) = H"(QS,H/W” (log(E, UW,))). Set
(212.03)  PPW,Q%(log(D U Z)) = H' (P Q3 1y, (log(En UWR))).

Definition 2.12.1. We call the filtration PP := { PPW,, Q% (log(DUZ))}rez
the preweight filtration on W,, Q% (log(D U Z)) with respect to D.

We shall prove, in (2.12.4) below, that PPW, Q% (log(DU Z)) is independent
of the choice of the lift (Y, £, UW,,). If Z = 0, PPW, Q% (log(DU Z)) is the
preweight filtration defined in [64, (1.4.1)]. Here, as noted in [68, (4.3)], we
use the terminology “preweight filtration” instead of the terminology “weight
filtration” since W,, Q% (log(D U Z)) is a sheaf of torsion W-modules in X4,

To prove a filtered version of (2.12.0.2), we need some lemmas (cf. [64, 1.2,
1.4.3]).

Let Ap := {Dx}x (resp. Az = {Z,},) be a decomposition of D

(resp. Z) by smooth components of D (resp. Z). Set A := {Dx,Z,}x -

Let v: (X,D U Z) - (X,,D, U Z,) be an admissible immersion over

W,, with respect to A which induces an admissible immersion (X, D) -

(Xn, D) (resp. (X,Z) < (X,, Z,)) with respect to Ap (resp. Agz). Let
Vi (X, DU Z) = (Vn,En UW,) be a lift of (X,D U Z) over W, such
that ¢/ induces a lift (X, D) —= (V&) (resp. (X, Z) = (Vn, Wa)). As-
sume that (V,,&, UW,) and (X,,D, U Z,) are affine log schemes. Be-
cause (X,,D, U Z,) is log smooth over W,,, there exists a morphism of
log schemes f: (Vn,En UW,) — (X,, D, U Z,,) over W, such that f in-
duces morphisms (V,,&,) — (X, Dp) and (Y, Wn) — (X, Z,) and
such that fo ' = ¢. Let Dx(X,) be the PD-envelope of the closed immer-
sion ¢: X — X, over (Spec(W,,),pW,,[]). The morphism § also induces a
morphism f: (Vn,p0y,) — (Dx(X,),Ker(Ox, — Ox)Op(x,)) of PD-
schemes. Hence f induces a morphism *: Op (x,)®0., 2%, /w, (l0g(Dn U
Zn)) — 9, w, (log(En UWn)) of complexes. By (2.2.17) (1), we have the
following exact sequence

(2.12.1.1) 0 — Og, (x,)®0x, P %, jw, (10g(Dn U 2,,))

— Op () ®0x, PU" %,y (10g(Dn U Z,,)) —
Oy (x,)P0x, Q;;'fm Jw,, 108 Zn|p) @z DN (D /W) (—k) — 0

by using the Poincaré residue isomorphism with respect to D, ((2.2.21.3)).
(The compatibility of the Poincaré residue isomorphism with the Frobenius
can be checked as in [68, (9.3) (1)].) Note that the derivative

d: P7Q%, w, (log(Dy U 2,)) — P8, (log(Da U 2,,))
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extends to a derivative of Op (x,)®0x, PE"Q;@/WH (log(D,, U Z,))
(cf. [50, 0 (3.1.4)], [54, (6.7)]).

Lemma 2.12.2. The long exact sequence associated to (2.12.1.1) is decom-
posed into the following short exact sequences:

(2.12.2.1) 0 — HY(Op (x,)@0x, PL %, jw, (108(Dy U Z,)))
— HY (O, (x,)P0x, P " Q. jw, (108(Dn U Z,)))

N Hq_k(OQX(X )®OX77, Q;J(k)/Wn (log Z”'ng))
@z @D, /W) (k) — 0 (g € Z).

Proof. (cf. [64, 1.2]) The problem is Zariski local. In the following, we fix an
isomorphism wgﬁg(Dn /Wy) — 7.

Let u : Xt — X,ar be a canonical morphism of topoi. For a coherent
Os (x,)-module (resp. a coherent Oy, -module) F on Dx(Xyn),,. ~ Xyar
(resp. Vngar = Xzar), let Fey be the corresponding coherent Oy (x,)-module
(resp. a coherent Oy, -module) on D x (Xy,), ~ Xet (resp. Vpey ~ Xet). Let
us consider the following diagram
(2.1222) 0 — HY((Op 4 (x,) @0, Pey Q% jw, (108(Dn U Z1)))et)

— HY((Opx (x,) R0, Pk Q% yw, (10g(Dy U Z5)))et)
o M (O (26 D0, Uiy, (108 Zal o er) — 0
(¢ €2),
which is the etale analogue of the diagram (2.12.2.1). We prove that the dia-
gram (2.12.2.1) is exact for any k, ¢ € Z if and only if the diagram (2.12.2.2)

is exact for any k,q € Z.
By the Zariski analogue of [54, (6.4)], both

and
H Q0 (log WP o))) = Wl (log(Z] poy))

calculate RqU(D(k),Z|D<k))/Wn*(O(D(k)7Z|D(k))/W"). Hence we have
R (Onx(x,) @ow, Ly (108(Znlp ) = Wl (log(Z] p))
and it is a quasi-coherent W,,(Ox)-module on X,,,. On the other hand, let

(D™, Z| py )W )CWS ot be the log crystalline site of (D), Z| px)) over W,
with respect to the etale topology and let

U(D("">,Z|D(k))/Wmet : (( Z|D(k))/W )cry% et — 7 ‘et
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be the morphism of topoi which is defined in the same way as the morphism
U’(D(M’Z|D(k))/wn' Then, by [54, (64)], both

H((Oo . (x,) @0, Yy, (108(Z0]pe)))et)

and
U0y, (logWiP [)))et) = W%, (log(Z| pw))

calculate Rlupw 7|, )/Wn,et*(O(D(k>,Z|D(k) y/w,,)- Hence we have H?((Op
(X)) PO, Q;D,(q,’”/W,L (log(Zn|D5Lk>)))et) = WnQ%(k) (log(Z| pxy)) on Xe and it
is the quasi-coherent W,,(Ox)-module on X corresponding to H¥(Op , (x,)

R0, Q.Di’”/wn (log(Zn|pe ))). Hence there exists the canonical isomorphism
(21223) H (O@X Xn) ®0Xn Q'.Dng)/Wn (lOg(ZnLDSLk))))
R Ru,HY (O (x,) @O, Q;DSL’“)/Wn (IOg(Zn|D§L’C) )))et)

and for any etale morphism ¢: X’ — X there exists the following canonical
isomorphism

(2.12.2.4)
Wi (Ox1) @p-1(w,(0x)) H1 (O (x,) @0x, D 1y, (108(Zn]p0)))

— M (O x(x,) @0, Yy ypr (108(Z0lp)))et)

X/

zar

Now let us assume that the diagram (2.12.2.2) is exact for any k,q € Z.
Then, by (2.12.2.3) and the induction on k, we see that each term of (2.12.2.2)
is us-acyclic and that u,((2.12.2.2)) gives the exact sequence (2.12.2.1). On
the other hand, assume that the diagram (2.12.2.1) is exact for any k, ¢ € Z.
In this case, note that the morphisms in the diagram (2.12.2.1) and the long
exact sequence

i Hq((O@X ®OXHP]Z) 1 X /W, (IOg(Dn UZn)))et)
— H(Onx (2,) 0, P U, jw, 108(Dy U Z5)) et
— HIM((On x (2,) @0, QL0 (108 Znlp))et) — -+
are W, (Ox)-linear with respect to the natural action of W, (Ox) = H°
(Op 4 (x,) PO, Q;(/W) Then, by (2.12.2.4) and the induction on k, we see
that there exists the canonical isomorphism
Wi (Ox1) @p-1(w,(0x)) H(Oo x (2,) @0, Pi "%, yw, (log(Dn U 2,)))
— HU((Onx (x,)Q0x, Pi ", w, (108(Dn U Z3)))et) | x;

zar
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for any etale morphism ¢ : X’ — X. Hence the diagram (2.12.2.2)|x/
is exact for any ¢ : X’ — X as above, and this implies the exactness of
(2.12.2.2) for any k, q € Z. Hence the exactness of (2.12.2.1) for any k,q € Z
is equivalent to the exactness of (2.12.2.2) for any k,q € Z.

By the claim we have shown in the previous paragraph, we may work etale
locally to prove the lemma. Hence we may assume that X, is the scheme
Spec(W,,[z1, ..., z4]) and that D, S, X, is the closed immersion defined by
the ideal (27 - - x) for some 0 < s < d. In this case, by the proof of [64, 1.2],
the morphism

Z(O’Dx(/\’n)®oxn PkD"Q?Y"/Wn (log(Dn U Z2,)))

— Z(ODX(Xn)@OXnQ (1Oan|,D7(1k)))

q—k
D /W,
is surjective on X,,,. Hence we obtain the exactness of (2.12.2.1). 0

By the Zariski analogue of [54, (6.4)] we have the following commutative
diagram:

(2.12.2.5)

RIu(x, puz)/wy+(O(x,pu2)/w,,) —— HUOs y (x,)®0x, %, jw,, 108(Dn U Z)))
| e

RUu(x puz)wn«(O(x,puz)/W,) ——— HUQS, w, (108(En UWn))).

Lemma 2.12.3. Let k be a nonnegative integer. Then HI(f*) induces an
isomorphism

HY(Op  (x,) 0, PL ", yw, (log(Dy U Z,,)))
== HUPE S,y (10g(En UW,))).

Proof. We have two proofs.
First proof: The morphism § induces a morphism

On 4 (2,)@0., PC" Q. jw, (108(Dn U 2,)) — PErQ3, 1y (log(E, UW,)).

By using the Poincaré residue isomorphisms with respect D,,, by (2.12.2) and
by induction on k, it suffices to prove that {* induces an isomorphism

~

Hqik(oi)x(é\fyz)@@xn Q (log Zn|pgﬁ)) Xz w§’§2 (D /Wy)(=k)) —

[ ]
D /W,

HIH(Q (10g Wal o) ®z W) (En/Wa) (k).

[ ]
e w,

By noting that © x (X,)x x, D' is the PD-envelope of the closed immersion

D® —, pF) ((2.2.16) (2)), we see that the morphism above is an isomor-
phism by [11, 7.1 Theorem).
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Second proof: (2.12.3) immediately follows from (2.5.4) (2). O

The following is a generalization of the preweight filtration on W, Q% (log

D) ([64, (1.4.1)]) for an admissible closed immersion (X, DUZ) < (X,, DU
Z,) over (Spec(W,,),pW,,[]) even if Z = {:

Corollary 2.12.4. (1) The preweight filtration on W, Q% (log(D U Z)) with

respect to D is well-defined. More generally, {H*(Op  (x,)®P0x, PICD”Q}”/W”’

(log(D,, U Z,,))) bren induces the preweight filtration on W, Q% (log(D U 2)).
(2) Let i be a nonnegative integer. Then

(2.12.4.1) PPW, Q% (log(D U 2)) = H(PPCR&7 (O x,puzy/w,))

zar

(3) There exists the following canonical isomorphism

(2.12.4.2)
Res”: grkPD W, 0% (log(D U Z)) — W, Q% (log Z| paw) @2z wéiB(D/m)(—k‘)

which is compatible with the Frobenius endomorphisms.

Proof. (1): We can show the well-definedness by the standard method in,
e.g., [64, 3.4] and by (2.12.3). The latter statement is obvious by (2.12.3).

(2): (2) is obvious by the definition (2.12.0.3).

(3): (2.12.4.2) is an isomorphism of complexes of W,,-modules by (2.6.1.1)
and the definition of the boundary morphism of the two log de Rham Witt
complexes in (2.12.4.2). The compatibility with the Frobenius endomor-
phisms is obtained by the same argument as that in [68, (9.3) (1)]. O

Let g: Y := (Y,M) — s be as in the beginning of this section.

By abuse of notation, we denote Y by Y. Let v: (Y,M) -~ (¥, M)
be a closed immersion into a fine formally log smooth scheme over
(Spf(W),W (L)), where W(L) is the canonical lift of L over Spf(WW)
(cf. [46, (3.1)]). Let g: (¥, M) — (Spf(W),W (L)) be the structural
morphism. Let (Dy()), Mo, (y)) be the log PD-envelope of the closed
immersion (Y,M) -= (V,M). Set (Yo, M,) = VM) @w W,,
Dy (In), Moy (p,)) = Dy (), Mo, () @w W, and g, == g @w W,
(n € Zsg). Let tn: (Y, M) = (Yo, M,) be the induced natural closed
immersion. Let W, (M) be the canonical lift of M over W, (Y"). Assume that
there exists an endomorphism @ of (Y, M) which is a lift of the Frobenius
morphism of (1, M;). Then there exists a morphism

(2.12.4.3) W) : (W (Y), Wi (M)) — (Vs My)

of log schemes which has been constructed in ([68, (7.17)]) by using a log
version of a lemma of Dieudonné-Cartier ([68, (7.10)]). In this book we only
review the definition of the morphism W, (¢). As a morphism of schemes,
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W (¢) is well-known (e.g., [50, 0 (1.3.21), II (1.1.4)]). Let m be a local section
of M with image m € M,,. Let z; (1 < j <n—1) be a unique local section

of 1+ pOy satisfying an equality ®*/(m) = m?’ zj. Let {s; }?;11 be a family
of local sections of Oy satisfying the following equalities

j—1 i~
L+psy +--- 4935 =z

(The existence of {s; ;Lz_ll has been proved in the proof of the log version of a
lemma of Dieudonné-Cartier ([68, (7.10)]) by using the argument in [61, VII
4].) Set s; :=1*(5;) (1 < j <n—1) and s¢ := 1. Then W,(¢) as a morphism
of log structures is, by definition, the following morphism:

(2.12.4.4)  W,o(0)"(My) 2 m (¢}, (m), (S0, -5 8n—1))
EM® (14+VW,_1(Oy)) = W, (M).

Here we denote W, (¢)*(m) simply by m.
By the universality of the log PD-envelope, ® induces a natural morphism

Do, ) Dy (), Mo, ) — Dy (), Mo, )

Following [31], let us denote by Ag,n W the sheaf of log differential forms
of degree i on (V,,, M,,)/(Spec(W,,), W, (L)), and by W,, A% the Hodge-Witt
sheaf of log differential forms of degree i on (Y, M)/s. The morphism W, (¢)
induces a morphism

(2.12.4.5) Ony (v,)®0y, A jw,, — A, vy (W W (D)), ]

of complexes of g, *(W,,)-modules, where Ay, vy (wo W (1)), ] 18 defined in
the proof of [46, (4.19)] and denoted by wy, v /w, w,. (), 10 [loc. cit.]. By
[46, (4.9)] there exists a canonical morphism

(212.4.6) Ay, vy ow, w1 — T (Ony,)®0y, Ay, jw, ) (= WaAY).

Composing (2.12.4.5) with (2.12.4.6), we have a morphism

(21247) O@y(yn)®0yn AS)TL/WH — H*® (Ogy()}n)@)(?yn A;n/wn)

As usual ([50, I (1.1)]), the induced morphism by (2.12.4.7) in the derived
category is independent of the choice of ) and ®.

Lemma 2.12.5. Set ¢ := % (). Then the morphism (2.12.4.7) is equal to
the morphism (p/p®)™ mod p".

Proof. First consider the case ¢ = 0. Because Oy is p-torsion-free, the fol-
lowing morphism s, is well-defined:

(2.12.5.1) Sp: Oy 32 +— (50,81,.-,5n-1,...) € W(Oy),
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where s;’s satisfy the following equations P —|—ps’1)m72 Fodp s =
" Yz) (m € Z=o) (e.g., [50, 0 (1.3.16)]). The morphism (2.12.4.5) for ¢ =0
is induced by the following composite morphism

semod V"W (Oy,
—

n

)
Oy Win(Oy,) — Wy(Oy).

The morphism (2.12.4.6) for ¢ = 0 is defined by

(2.12.5.2) Wo(Oy) 3 (to,tr, ... tpq) —

1

th +pf -+ p" M € H(Ony (v, @0y, MY W)

where t; € Op,(y,) (1 <j <n—1)isalift of t; € Oy ([46, (4.9)]). Since
o(sP" ) = 5" mod pnTitlOy, (s € Oy, i € {0,1,...,n}), (2.12.4.7)
for @ = 0 is induced by the morphism = — ¢"(z) (z € Oy,).

Next, consider the case @ = 1. Because the image of (2.12.4.5) is contained
in the image of W,,(Oy )@z W, (M)& in A%/Vn(Y)/(Wn,Wn(L)),[ > consider the
following composite morphism

(2.12.4.6) .
— Hl((%y(yn@o%Ayn/wn)-

The morphism (2.12.5.3) is defined by the morphisms (2.12.5.2) and dlogm
— dlogm mod p" (m € M), where m € Mg, (y) is a lift of m. Since
0: Mo, (yy — Mo,y is a lift of the Frobenius endomorphism, there
exists a section a of Og, (y)y such that p(m) = mP(1 + pa). Then

p~tdlog o(m) = p~tdlog(mP (1 + pa)) = dlogm + p~*dlog(1 + pa)
= dlog i+ d(>_ (=1 (1 fi)al).

i=1
Hence

dlogm mod p" = p~'dlog (M) mod p"

= p "dlog ¢"(m) mod p".

in H' (O, (y,)®0y, A}, ). Furthermore the image of 1 ® (1 + VW, _1(Oy))
by the morphism (2.12.5.3) is the zero.
Let m and {s; };‘;11 be local sections in (2.12.4.4). Then the image of dlog m

by the morphism (2.12.4.7) is the class of dlogm + dlog(1 + Z;L:_ll pjgi-’"ij),
where s is a lift of s; in Op, (y,). As in the argument above, the second

form is exact. Hence the morphism (2.12.4.7) for ¢ = 1 is induced from
(#/p)" mod p™.
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When e > 2, (2.12.5) follows from the definition of (2.12.4.6), from [46,
(4.9)] and from the calculation above. O

Corollary 2.12.6. Let 1: (X, DUZ) < (X, DUZ) be an admissible immer-
sion into a formally smooth scheme over Spt(W) with a relative transversal
SNCD over Spt(W). Set (X,,D, U Z,) = (X, DU Z) @w W,. Assume
that there exists a lift ®: (X, DU 2Z) — (X,D U Z) of the Frobenius en-
domorphism of (X1,D1 U Z1). Let Dx(X) be the PD-envelope of the closed

immersion X = X over (Spt(W),pW,[]). Set Dx (X,) := Dx (X) @w Wh.
Then the morphism

(212.6.1)  Opy(x,) @0, W, yw, (108D U Z,)) — W, (log(D U 2))

defined in (2.12.4.7) induces an isomorphism

(2.12.6.2)

(00 (x,)@0n, Wy, jw, l0g(Dy U 2,,)), PP") — (W, Q% (log(D U 2)), PP)
in DYF(f=1(W,)).

Proof. The endomorphism ¢ induces an endomorphism ®5  (xy: Dx(X) —
Dx(X). Set ¢ = @F (4. By the definition of W,0% (log(D U Z)) ([46,
(4.1)]), we have W,Q% (log(D U Z)) = H*(Op x (x,) @0, Lx, w, (108(Dr U
Z,))). By (2.12.5), the morphism (2.12.6.1) is induced by ¢, :=(¢/p® )mod p™.
By a calculation in [68, (8.1), (8.4)], ¢, preserves the preweight filtrations
with respect to D,,:

en(Op ()00, PPy (log(D U 2)) /p")
CH* (Op y(x)@0 PPy iy (log(D U 2)) /p").

Hence, by using the Poincaré residue isomorphism and by (2.12.2), it suffices
to prove that ¢, induces an isomorphism

(21263) On ()0, Wy 1y, (108 Znlp) @z o (D, /W) (k) =

H.(OSX(XW,)(@OX” Q log anpg’”) Xz wég (Dn/Wn)(_k))

This immediately follows from (2.2.16) (2) and [46, (4.19)]=[68, (7.19)]. O

*
Dgﬂ) /Wn (

Lemma 2.12.7. Let Y be a scheme over IF, with a closed subscheme L.

Let U be the complement of E in'Y and j: U S5 Y the open immersion.
Denote by (Y,E) a log scheme (Y,j.(Of) N Oy). Let (W, (Y), W, (E))
be a similar log scheme over W, (F,) = Z/p™ : (W,(Y),W,(E)) =
(Wn(Y), Wa(5)+(Wn(Ouv)*) N Wy (Oy)). Assume that the natural morphism
Oy — 7.(Ov) is injective. Then (W, (Y), W, (E)) is the canonical lift of
(Y, E) in the sense of [46, (3.1)].



184 2 Weight Filtrations on Log Crystalline Cohomologies

Proof. Let []: Oy 3 a— (a,0,...,0) € W,,(Oy) be the Teichmiiller lift. By
noting that VW, (Oy) is a nilpotent ideal sheaf of W,,(Or) ([50, 0 (1.3.13)]),
we have a formula W, (Op)* = [0f] & Ker(W,,(Oy)* — Of;). We claim
that

Ker{W,(5)«(Wn(Ouv)*) N W (Oy) — 4.(OF)} = Ker(Wy,(Oy)" — Oy).

The inclusion D is obvious. Let a be a local section on the left hand side.
Then the image of a in Oy is 1 since Oy — j,(Op) is injective. Hence we
have a € W,,(Oy)* since VIW,,(Oy) is a nilpotent ideal sheaf of W, (Oy).
Therefore

Wo(3)«(Wn(Ou)") N Wi (Oy) = [j-(OFr) N Oy ] & Ker(W, (Oy )" — Oy).
This equality shows (2.12.7). O

Let us also consider the case of the log crystalline cohomology with com-
pact support.

Assume that Z = () for the time being. Fix a total order on \’s only
in (2.12.7.1) below. In [64, Lemma 3.15.1], it is claimed that the following
sequence

(2.12.7.1) 0 — W,Q%(—log D) — W, Q% — W,Q%0) — -+

is exact. Let R be the Cartier-Dieudonné-Raynaud algebra over x ([52, I
(1.1)]). Set R, := R/(V™R + dV"™R). The second isomorphism

R, @k WQ% (—log D) = W, Q% (- log D)

in [64, 1.3.3] (we have to say that the turn of the tensor product in [64, 1.3.3]
is not desirable) is necessary for the proof of [64, Lemma 3.15.1]. However
the proof of the second isomorphism in [64, 1.3.3] is too sketchy. In [68, §6] we
have given a precise proof of the second isomorphism in [64, 1.3.3]. Hence we
can use [64, Lemma 3.15.1] without anxiety, and we identify W;,Q% (—log D)
with the following complex

(2.12.7.2) W,Q% — W,Q%0 ®z wl(D/kK), —d)

N WnQb@) Rz w(Q)(D/n) I,

zar

in D (£ (W,)).
We generalize the exact sequence (2.12.7.2) to the case Z # ) as follows.
First assume that X is affine. Let (X, DU Z) be a formal lift of (X, DUZ)
over Spf(W) with a lift ®: (X, DU Z) — (X,D U 2Z) of the Frobenius of
(X,DUZ). Let fix — Spf(W) be the structural morphism. Set Q° :=
Q% jw(log(Z — D)), QF == Q°*/pQ* and ¢ = ©*: Q* — Q°. Then (Q°,¢)
satisfies the axioms of (6.0.1) ~ (6.0.5) in [68], that is,
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(2.12.7.3): Q' =0 for i < 0.
(2.12.7.4): Q' (i € N) are p-torsion-free, p-adically complete Z,-modules in
CHF(Z,).
(2.12.7.5): ¢() C {w € p'Q | dw € p"TI QL) (i € N).
(2.12.7.6): There exists an Fp-linear isomorphism
C7hQf S HY(QY) (e N).
((19.7.6) is an isomorphism in [27, (4.2.1.3)].)

(2.12.7.7): A composite morphism (mod p) o p~'¢: QF — Q' — QO factors
through Ker(d: Qi — Qi™!), and the following diagram is commutative:

mod p

QO o
p”'cﬁl Jc—l
Qi P e,

Theorem 2.12.8 ([68, (6.2), (6.3), (6.4)]). (1) For a gauge e: Z — N
([11, 8.7 Definition]), let n: Z — N be the associated cogauge to € defined by

N Je@)+i(i>0),
(i) "{e<o> (i <0

Let Q2 (resp. 27) be the largest complex of Q° whose i-th degree is contained

~~—

in pDQF (resp. p" DO, Then the morphism ¢: Q° — Q° induces a quasi-
isomorphism ¢e: Q2F — Q.

(2) Assume that Q¢ and Q3 are bounded above and that they consist of flat
Z,-modules. Let M be an f_l(Zp) = Zy,-module. Then the morphism

(2.12.8.1) e Rz, idag: Q2 ®z, M — Q; ®z, M

is a quasi-isomorphism.
(3) (cf. [52, IIT (1.5)]) Let i (resp. n) be a nonnegative (resp. positive)
integer. Then
(2.12.8.2)
p{w € Q] dw € pnTiQitL} (i {w € QY dw € p"Qitt}
pit{w e Q| dw € pQitl} 4 pidQi—1 pr Q4 pdQi—t

Proof. (1): We only remark that the proof is the same as that in [11, 8.8
Theorem].

(2): By the assumption, the complex MC(¢.) ®z, M is acyclic.

(3): Set M :=7Z/p"™ in (2). Let € be any gauge such that e(i — 1) = 1 and
€(i) = 0. Then (2.12.8.1) at the degree i is equal to (2.12.8.2). O
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Set

(2.12.8.3) ‘ _ _ _ _ ‘ -
Zl = {we Q| dw e p"Q}, B :=p"Q' +dQ, 2,0 =7 /B!,

As usual (e.g., [68, §6]), we can define the following operators:
F: 90,0 — 2,0, V:2,0 — 2,,0°, d:2,0 — 20,07

p: W, Q0 — W, 1 and 7 W, 1Q° — 1,00

We only remark that p is an injective morphism induced by p~(~D¢: QF —
Q' (note that —(i—1) is positive if i = 0) and that  is the following composite
surjective morphism ([68, (6.5)]):

(2.12.8.4)

W1 Q' = Z) 1/ Br ILOj;ZfLH/(Pan +d)
(P7i¢)71 21 proj

&, Tn POLZi Bl — 9y, 00

= paigpaat /B
Here the isomorphism p~i¢ in (2.12.8.4) is given by (2.12.8.2). As usual, one

can endow 27,,Q¢ with a natural W,,(Ox )-module structure, and the following
formulas hold:

d>=0, FdV =d, FV =VF =p,
Fp=pF, Vp=pV, dp =pd, pr=7p =p.

Set 20Q° = @1 20,,Q°. Then 20Q° is a complex of sheaves of W (O x )-modules
and torsion-free W-modules in C*(f~1(W)). In fact, 20Q° (resp. 2, Q°) is
naturally an R-module (resp. R,-module). Set

Ker(0Q' — 20,QY)  (r > 0),
20! (r <0).

Fil"uQ? = {

We recall the following (cf. [50, I (3.31)], [50, I (3.21.1.5)], [62, (1.20)], [52,
IT (1.2)], [62, (2.16))):

Proposition 2.12.9 ([68, §6, (A), (B), (C)]). The following formulas
hold:

(1) Fil"0Q¢ = VP + dVrwQi—! (i € Z,r € Z>o).

(2) d=L(p"WO*) = FWN°.

(3) R, ®ﬁ 2WQ* = an. (n S Z>O)-

Proof. Here we only remark that (3) is a formal consequence of (1) and (2)
(see [52, II (1.2)]). O



2.12 Filtered Log de Rham-Witt Complex 187

Let us come back to the general case.
Recall the ideal sheaf I&DUZ)/S of O(x,puz)/s in §2.11. Set

(2.12.9.1) W, Q% (log(Z — D)) := R'u(x,puz)wo (L puzyw,) (i €N).

Zariski locally on X, we have an isomorphism W, Q% (log(Z — D)) — 20,,Q".
It is a routine work to check that the family {W,, Q% (log(Z — D))}nez., of
complexes has the operators F', V, d, p and 7 (cf. [46, (4.1), (4.2)]) (especially
one can check that p and 7 are well-defined by considering embedding systems
of (X, DUZ) over W); in fact, WQ% (log(Z — D)) is naturally an R-module.
Then the following holds:

Proposition 2.12.10. The complex W,,Q% (log(Z — D)) (n € Z~o) is quasi-
isomorphic to the single complex of the following double complex:

Emm—
dT —dT
,(0)x
W% (log Z) ——— W,02,,(log Z| py) ®7 wsat(D/ )

(2.12.10.1) | ~a]

L(0)%

Wo (log Z) —— W,.Qp4,(log Z|pay) @z wgz(D/m)

d -]
L(0)=
W,0% (log Z) —— WnQ%(l)(log Zlpm) ®z wéég(D/n)

- PN s

d
L (2

s W02 o (108 Z| pen) @2 wiak(D/R) ———s

d
L (2=

— WnQE@) (log Z|p=) ®z w;iz(D/ﬁ) —_—

d
L1 L)

s W2 (log Z|pa) @z wiad (D k) ——— -+

Proof. The proof is the same as that of [64, Lemma 3.15.1]: by using (2.12.9)
(3) and Ekedahl’s Nakayama duality, we can reduce the exactness to that for

the case n = 1, and in this case, we obtain the exactness by the argument of
[27, (4.2.2) (a), (c)] (cf. (2.11.5.1)). O

The complex (2.12.10.1) has a stupid filtration o* (k € Z) with respect to
the columns and we set PP"F := ¢*. Hence we obtain a filtered complex in
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CYF(f~1(W,,)), KTF(f~*(W,,)) and DYF(f~1(W,,)), and we denote it by
(2.12.10.2) (W,,0% (log(Z — D)), PP).

The following is the main result in this section:

Theorem 2.12.11 (Comparison theorem). (1) In DTF(f~*(W,,)), there
ezists the following canonical isomorphism:
(2.1211.1) (% %(O(x.puz) W) PP) == (Wn Q% (log(D U 2)), PP).
The isomorphisms (2.12.11.1) for n’s are compatible with two projections of
both hands of (2.12.11.1).

(2) In DTF(f~Y(W,,)), there exists the following canonical isomorphism:
(2.12.11.2) (B¢ (Ox.puz)w, ) PP) = (W% (log(Z — D)), PP).
If one forgets the filtrations of both hands of (2.12.11.2), one can identify the
isomorphism (2.12.11.2) with the isomorphism

(2.12.11.3) Ru(x,puz)wos (T puzyw,) — Walk (log(Z — D))

induced by the isomorphism (2.12.0.2). The isomorphisms (2.12.11.2) for n’s
are compatible with two projections of both hands of (2.12.11.2). The iso-
morphism (2.12.11.2) is functorial for the commutative diagram (2.11.18.1)
for the case Sy = Spec(k), S = Spec(W,), S = Spec(k’) and " =
Spec(W,,(k)), where k' is a perfect field of characteristic p.

Proof. (1): Let {X;, }i,e1, be an affine open covering of X. Set D;, := DNX;,
and Z;, := Z N X;,. Then there exists an affine formal log scheme (X;,, D;, U
Zio)ioct, over Spf (W) such that each (X;,, D;, UZ;,) is a lift of the log scheme
(Xi,, Di,UZ;,). The Frobenius morphism (X;,, D;,UZ;,) — (Xi,, DigUZ;,)
lifts to a morphism ®;,: (X;,,Di, U Ziy) — (Xiy, Diy U Zi,,). Then, using
{(Xiy, DiyUZi,) Yiger, , we have a diagram of log schemes (X, DeUZ,)ecr OVer
Spf(W) as in §2.4. Using {®;, }i,e1,, we have an endomorphism ®@q: (Xe, DeU
Z,) — (Xe, Do UZ,) of a diagram of log schemes; ®; is a lift of the Frobenius
of (X;,D;UZ;)@wk (i € I). Let Dx, (X,) be the PD-envelope of the locally
closed immersion Xo —— X, over (Spec(W,,), pW, [ ]). Then the morphism
®, induces a natural morphism D x, (X.) — Dx, (Xe).

Set (Xo,rupo,n U Zo,n)oel = (XO®WWna (Du®WWn) U (ZO®WWTL)).EI
and set @, ,, := P mod p™. Then there exists a morphism (W,,(X,), Wy, (De)U
Win(Ze)) — (Xe.ns Do UZ, ) of diagrams of log schemes, where (W,,(X,),
Win(De) U W, (Z,)) is a log scheme defined in (2.12.7). By (2.12.4.7), this
morphism induces a morphism

(2.12.11.4)
On . (Xe)P0xs . W, 108(Dan U Zan)) — WX, (log(Da U Z4)).
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(Note that (W, (X;), W,(D;) UW,(Z;)) is the canonical lift of (X;, D; U Z;)
over W,, by (2.12.7); thus, by applying the filtered higher direct image of
the natural morphism Tar: (Xesars fo '(W)) — (Xyar, f~1(W,)) to the
morphism in (2.12.11.4), we obtain a morphism which is equal to a special
case of a morphism defined in [46, (4.19)].)

The morphism (2.12.11.4) induces a filtered quasi-isomorphism with re-
spect to preweight filtrations. Indeed, the problem is local; in this case, it
follows from (2.12.6). By applying the filtered higher direct image of 7., to
(2.12.11.4), we have an isomorphism (2.12.11.1). As in the proof of (2.6.1),
we can check that the morphism (2.12.11.1) is independent of the choice of
the open covering of X and the lift of each open scheme.

Let g: (X1, D1 UZ) — (X3, D2 U Z5) be a morphism of smooth schemes
with SNCD’s over x which induces morphisms (X3, D;) — (X2, D3) and
(X1,7Z1) — (X2,Z5). Then, by the proof of [68, (9.3) (2)], ¢ induces a

morphism
9" (W%, (log(D2 U Z5)), PP?) — (W, Q% (log(D1 U Z1)), PP).

Using the diagram of log schemes, we see that the proof of the functoriality
of (2.12.11.1) is reduced to the local question on (X;,D; U Z;) (i = 1,2). In
this case, by the functoriality of the morphisms (2.12.4.3) and (2.12.4.6) and
by (2.12.6), we obtain the functoriality of (2.12.11.1).

In [68, (7.18)] we have proved that the morphism (2.12.4.6) is compatible
with two projections; as a result, the morphism (2.12.4.7) is also compatible
with them. In particular, we have the following commutative diagram

. (2.12.11.4)
(Onx, (Xans ) @0y s s ir /s 108(Pa i1 U Za 1)), PP) —————

proj.J{

. (2.12.11.4)
(Onx, (%) ®0x, , U, . 108(Dan U Za ), PP) —

(Wh41Q%, (log(Ds U Z,)), PP)
(W%, (log(Da U Z4)), PP).
Applying the direct image Rm a4, we obtain the compatibility with two

projections.
(2): The morphism (2.12.11.4) induces a morphism

(2.12.11.5)
Oi)x. (Xe,n)®Ox, ., Q:\f.ﬂn/wn (log(Ze.n — Do n)) — WnQ}(. (log(Ze — Da)).

By (2.2.16) (2), Dx, (X.) xx, D®) is the PD-envelope of the locally closed
immersion DY) - DM Set D p (D) == (Dx. (X) xx, D) @w Wi
By (2.11.9) and (2.12.10), we have the following commutative diagram:
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~

Rﬂzar*(oi)x. (Xe.n)D0x, ,, Q;(.‘,,,/Wn (log(Ze.n = Den))) ——

(2.12.11.6) l
R’frzar*(WnQ;(. (IOg(Z. - D'))) —
° 0
(Rraee(©s o 02)) B0 V0, oy, (108 Zonlpye))) €2 @1ak(D/R) — )

|

(Rt yare (W%, (108 Z4)) @z @ik (D/K) — ---).

By the cohomological descent, the lower vertical morphism in (2.12.11.6) is
equal to

{Rucx.2)w,«(Oix.20)w,,) @z @iob(D/K) — -+ } —

(W% (log Z) @z w{o)(D/k) — -+ }.

By [46, (4.19)]=[68, (7.19)], this is an isomorphism. The claim as to the
compatibility of the filtrations is obvious by the definitions. As usual (cf. [50,
IT (1.1)], §2.5), we see that the lower vertical morphism in (2.12.11.6) is
independent of the choice of the open covering of X, that of the lift of each
open subscheme and that of the lift of the Frobenius.

The compatibility with respect to two projections follows from the follow-
ing commutative diagram:

RU(D“)vZ‘D(-) )/ Whi1 (O(D(.) ,Z|D(.) )/ Wt ) — n+1Q.D(°) (log Z|D('))

proi. | |~

Ru(pe 71, )/ (O 21 wyw,)  ——— WaQly (log Z|pe),

which we can prove in the same way as [46, (4.19)]=[68, (7.19)].
The functoriality claimed in (2) is obvious by the proof above. O

Let ¢ be a nonnegative integer. We conclude this section by constructing
the preweight spectral sequences of W, Q% (log(DUZ)) and W,,Q% (log(Z—D))
with respect to D and describing the boundary morphisms between the F;-
terms of the spectral sequences.

The following is a generalization of [68, (5.7.1;n)]:

Proposition 2.12.12. Let © be a nonnegative integer. Then there exists the
following spectral sequence

(2.12.12.1) EPMP = gh=(DW, W,Q0k (log Z| pa ) @2 E)(D/K)) (—k)

— H" (X, W, Q% (log(D U Z))).

The spectral sequences (2.12.12.1) for n’s are compatible with the projections.
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Proof. (2.12.12.1) immediately follows from (2.12.4.2). The compatibility
with the projection immediately follows from the same proof as that of [68,

(8.4) (2)]. 0

Next we describe the boundary morphism between the FEj-terms of the
spectral sequence (2.12.12.1).
Let the notations be before (2.8.5). Consider the following exact sequence

(2.12.12.2) 0 — WaQp, (log Z|p,,) — Wnllp, (log(Z U Dy))

esPA A i—
T (W05 H(log Z| p,))(—1) — 0.

We have the boundary morphism

A Alo i i
(2.12.12.3) =Gy : 0y anQD;(logZDA)(—l) — Waldp, (log Z|p, )[1].

of (2.12.12.2). Here we have used the Convention (4). As in (2.8.4.5), the
morphism (2.12.12.3) induces the following morphism

(2.12.12.4)
(~1/GY : H'(Dy, W, (log Z|p, ) @5 @\%,.(D/r)) (—k) —

A,zar

H'=4(Dy W0 " log Z|p, ) @2 @y% 0 (D/R) (—(k = 1)).

Aj,zar

Definition 2.12.13. We call the morphism (2.12.12.4) the Gysin mor-
phism in log Hodge- Witt cohomologies associated to the closed immersion
(Dx, Z|p,) == (D, Z|py,).

oy k— .
Proposition 2.12.14. Set G := 3¢\, | NN (i)} Zj:é(—l)JGAJ.

Then the boundary morphism dl_k’h+k: El_k’h+k — El_k+l’h+k of

(2.12.12.1) is equal to —G.
Proof. The proof is the same as that of (2.8.5). O

Proposition 2.12.15. Let i be a nonnegative integer. Then there exists the
following spectral sequence

(2.12.15.1)  EY"F = HR DWW W,Q0 4 (log Z| pon ) @z wE(D/k))

— H" (X, W, Q% (log(Z — D))).

The spectral sequences (2.12.15.1) for n’s are compatible with the projections.
The boundary morphism
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(2.12.15.2) dy" % HMR(DW W00 4 (log Z| pon ) @7 wE)

zar

(D/K)) —

H' (DR W0y (log Z| poesy) @z wi ) (D/ k)
is equal to LF)*.

Proof. (2.12.15) immediately follows from (2.12.10.1). (The compatibility
with the projection is easy to check.) 0O

Remark 2.12.16. If X is proper over x and if Z = (), the first-named author
has proved the Fs-degeneration of the following spectral sequences modulo
torsion ([68, (5.9)]):

EPME = g (D0, wak @y wlk)(D/k)(—k)

zar

— H" (X, WQ% (log D)),

(a(D/r))

zar

EPMF = ghmith (DO Wl 0w
— "X, WQ%(—log D)).

2.13 Filtered Convergent F'-isocrystal

So far we have worked over a base scheme whose structure sheaf is killed by
a power of p. We can also work over a (not necessarily affine) P-adic base
in the sense of [11, 7.17 Definition], and the analogues of results in previous
sections hold in this case.

Let V' be a complete discrete valuation ring of mixed characteristics with
perfect residue field k of characteristics p > 0. Let W be the Witt ring
of k with fraction field K. Let K be the fraction field of V. For a V-
module M, My denotes the tensor product M ®y K. Unless otherwise
stated, from this section to §2.19, S denotes a p-adic formal V-scheme in
the sense of [74, §1], i.e., S is a noetherian formal scheme over V' with the
p-adic topology such that, for any affine open formal subscheme U, there ex-
ists a surjective morphism V{zy,...,z,} — T'(U,Oy) of topological rings
for some n. Let f: (X,D U Z) — S denote a proper smooth morphism
of p-adic formal V-schemes (e.g., V/p-schemes) of finite type with relative
transversal SNCD. Following [74], for a p-adic formal scheme T'/Spf(V'), set
Ty = Spec, (Or/pOr).

By virtue of results in previous sections, we can give the compatibil-
ity of the weight filtrations on log crystalline cohomologies as convergent
F-isocrystals with some canonical operations, e.g., the base change, the
Kiinneth formula, the functoriality. Later, in §2.19, we shall give the compat-
ibility of them with the Poincaré duality.
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(1) Base change theorem

Theorem 2.13.1. Let k, h be two nonnegative integers. Then there exists a
convergent F-isocrystal E,? on S/V such that

Drp, log,Z
(ER)r = R f(x1, 227 (Py " Eerys " (O(Xgy Dy uzzy))T)) K

for any p-adic enlargement T of S/V. In particular, there exists a convergent
F-isocrystal R"f, (Ox,puzy/Kx) on S/V such that

R"f.(Ox.puz)/x)T = R" X1, Dry0zay) /75 (O(Xry Dy 022y /T K
for any p-adic enlargement T of S/V.

Proof. The base change theorem (2.10.3) and the argument in [74, (3.1)] show
the existence of a p-adically convergent isocrystal EP.

As in the proof of [74, (3.7)], we may assume that V' = W; furthermore,
by the log version of [74, (3.4)], we may assume that pOg = 0. The spectral
sequence in (2.9.6.3) for

Do, log. Zr,
R"f(xr, 22)7+(Py " Eerys " (O(Xgy .Dry 021, )/T))

shows that the Frobenius action FZ(El) — EI is an isomorphism. Thus
E! prolongs to a convergent F-isocrystal as in [74, (3.7)]. ]

Remark 2.13.2. The existence of the convergent F-isocrystal Rhf*(O(xDUz)
/) is a special case of [76, Theorem 4] and [29, §2 (e), (f)]. This existence
also follows from the log base change theorem ([54, (6.10)]), the bijectivity of
the Frobenius [46, (2.24)], and the same proof of [74, (3.1), (3.7)].

Corollary 2.13.3. The weight filtration on R"f, (Ox,puz)/K) with respect
to D is a convergent F-isocrystal on S/V . That is, the image PkDRhf*(O(X,DU
2)k) =Im(E} — R"f.(O(x,puz)/k)) (k € N) is a convergent F-isocrystal.

Proof. The category of the convergent isocrystals on S/V is abelian ([74,
(2.10)]); hence the image Im(E}! — Rhf*((’)(X’DUZ)/K)) is a convergent
isocrystal.

Now, by [74, (2.18), (2.21)], we have only to prove that P,CDRhf*(O(XpUz)
/i) gives a p-adically convergent F-isocrystal for the case V' = W. The exis-
tence of the Frobenius on P” R" f+(O(x,puz)/K) is clear by the functoriality
which will be stated in (2.13.9) below soon. Because the Frobenius F’s on the
Ej-terms of (2.9.6.3) @y K for a p-adic formal V-scheme T are isomorphisms,
the Frobenius on PP R" J+(Ox,puz)/K) is also an isomorphism. This com-
pletes the proof of (2.13.3). O

Remark 2.13.4. We can also develop theory of weight filtrations by virtue of
theory of log convergent topoi ([82]). See [73] for details.
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Corollary 2.13.5. Let k, h be two nonnegative integers. For any p-adic en-
largement T of S/V,

D
(2.13.5.1) P Rhf(XTl,DTlule)/T*(O(XTl,DTluZTl)/T)K =

D log,Z
Im(Rhf(XT1’ZT1)/T* (Pk " Ecr§s " (O(XTl’DTlLJZTl)/T))K —

Rhf(XTl,DTlLJZTl)/T*(O(XTl,DTlUZTl)/T)K)
is a flat Or®y K-module.
Proof. (2.13.5) follows from [74, (2.9)] and (2.13.3). O

Remark 2.13.6. The flatness of Rhf(XTl,DTluZTl)/T*(O(XTl,DTlule)/T)K is
a special case of [76, Lemma 36] and [29, §2 (e), (f)].

(2) Kiinneth formula

Theorem 2.13.7. Let (X;,D; U Z;) (j =1,2) be a log scheme stated in the
beginning of this section. Let (X3, D3 U Z3) be the product (X1,D1 U Z1) X g
(X2,D5 U Zs) in the category of fine log schemes. Then the there exists the
following canonical isomorphism

(213.7.1) €D R fOx,.p102)/K) P00, B +(O(xs. 00020/ )
i+j=h

— Rhf*(o(xs,D3u23>/K)

of convergent F-isocrystals on S/V which is compatible with the weight fil-
trations with respect to Dy, Do and Ds.

Proof. The existence of the canonical isomorphism in (2.13.7.1) as weight-
filtered convergent F-isocrystals immediately follows from (2.10.15). O

(3) Log crystalline cohomology sheaf with compact support

Using (2.11.11) and (2.11.19), we obtain the following as in (1) and (2).

Theorem 2.13.8. Let k, h be two nonnegative integers.
(1) There exists a convergent F-isocrystal E} . on S/V such that

D 1
(El?,c)T =P, "R f(XT1 D1y UZTl)/T*vc(O(XTl 1DT1UZT1§ZT1)/T)K

for any p-adic enlargement T of S/V'. In particular, there exists a convergent
F-isocrystal Rhf*,c(O(X,DuZ;Z)/K) on S/V such that

R" f.e(Ox,pu2:2) /)T = R f(Xa Dy 022,) /72,0 (O, Dy U2y 20,) /T K

for any p-adic enlargement T of S/V .
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(2) The Or®y K-module

DT1 h
PR f(XTl,DTIUZTI)/T*,C(O(XTI,DT1UZT1§ZT1)/T)K

is flat for any p-adic enlargement T of S/V .
(3) Let (X;,D; U Z;) (j = 1,2) be as in (2.13.7). Then there exists the
following canonical isomorphism

@ Rif*7C(O(X1,D1UZ1§Z1)/K) ®OS/K ij*,c(O(Xg,DZUZQ;ZQ)/K)
i+j=h
-~ Rhf*,C(O(Xs,D3UZ3;Z3)/K)

of convergent F-isocrystals on S/V which is compatible with the weight fil-
trations with respect to Dy, Do and Ds.

(4) Functoriality

Theorem 2.13.9. Let f: (X, DU Z) — S be as in the beginning of this
section. Let k, h be nonnegative integers. Then the following hold:

(1) The convergent F-isocrystal PkDRhf*((’)(X,DUZ)/K) (k € 7Z) is
functorial.

(2) The convergent F-isocrystal PP R" fo.(O(x puz:z) k) (k € Z) is func-
torial with respect to the obvious analogue of the morphism in (2.11.18).

Proof. (1) and (2) immediately follow from (2.9.1) and (2.11.18), respectively.
O

(5) Gysin morphisms
Proposition 2.13.10. The Gysin morphism (2.8.4.5) induces the following
morphism
SN _ °
(213.10.1)  (=1)'GY: R* " f.(O(p, 71, /K @2 @3 (D/K; Z))(—k) —
R 1Oy, ny i B2 3 (DK ) (= (k = 1).

of convergent F-isocrystals on S/V . Here Rhf*(O(DA,ZgDA)/K ®Zw1\fg(D/K;
7)) is a convergent F-isocrystal on S/V such that Rhf*(O(DA,ZMDA)/K ®z

log lo
N (DI Z))r = B fxr, jre(OUDy)my (2201, |00, 1T) O Faays(Dri /T
Zr,)) for a p-adic enlargement T of S/V .
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Proof. (2.13.10) immediately follows from (2.8.4). O

Using (1), (3), (4) and (5), we obtain the following:
Theorem 2.13.11. Let Rhf*(O(D<k)7Z‘D(k))/K®Zw(k)1°g(D/K; 7)) be a con-
vergent F-isocrystal on S/V such that

Rhf*(ODw)/K ®z w8(D/K; Z))r =
B o, 12O 00,21y ©2 Ferss’ (D, /T 2,))
Ty

for any p-adic enlargement T' of S/V'. Then the following hold:
(1) There exist the following weight spectral sequences of convergent
F-isocrystals

(2.13.11.1) E;PMR(X, DU Z2)/K)
= R'" f(Opw 21y x @2 @8 (D/K; 2)) (k)

= R"f.(O(x.puz)/K):

(2.13.11.2) BEYMH(X,DU2)/K)
= RM f(Opw 21, )i ©2 @B (D/K; Z))
= R"f.(O(x.puz.2)/K)-

The boundary morphism of (2.13.11.1) (resp. (2.13.11.2)) is given by —G
(resp. 1% induced by the morphism in (2.8.5) (resp. (2.11.1.3)).

(2) The spectral sequences (2.13.11.1) and (2.13.11.2) are functorial with
respect to the obvious analogue of the morphism in (2.9.0.1) and (2.11.18),
respectively.

Proof. (1): (1) follows from (2.9.6.2) and (2.11.14.3).

(2): Obvious. O
Definition 2.13.12. In the case Z = (), we call (2.13.11.1) (resp. (2.13.11.2))
the p-adic weight spectral sequence of Rhf*(O(X,D)/K) (resp. RM"f..
(Ox.py/K))-

2.14 Specialization Argument in Log Crystalline
Cohomology

Let us recall a specialization argument of Deligne-Illusie in log crystalline
cohomologies (cf. [49, (3.10)], [68, §3]) for later sections §2.15 and §2.18.



2.14 Specialization Argument in Log Crystalline Cohomology 197

[e]
Let p be a prime number. Let T be a noetherian formal scheme with

an ideal sheaf of definition aOr, where a is a global section of I'(T, Or).
Assume that there exists a positive integer n such that pOpr = a"Op. Let

T be a fine formal log scheme with underlying formal scheme 7. Assume
that Or is a-torsion-free, that is, the endomorphism a x idp,. € Ende,. (Or)
is injective, and that the ideal sheaf aOp has a PD-structure ~. We call
T = (T,aOr,v) above an adic fine formal log PD-scheme. We define the
notion of a morphism ¢’: 7" — T of adic fine formal log PD-schemes in the
following way: the morphism ¢’ is nothing but a morphism of formal fine log
PD-schemes, and T” is a’-adically complete and separated and a’-torsion-free,
where a’ := ¢’*(a). In this section we assume that, for each affine open set
Spf(R) of T, aR is a prime ideal and that the localization ring R, at the
ideal aR is a discrete valuation ring.

Let H be an Op-module of finite type. Since R, is a PID, there exists
a non-empty open log formal subscheme T’ of T such that there exists an
isomorphism H|r ~ OF, @ Hior, Where Hioy is a direct sum of Ops-modules
Or:/a® (e € Zso) (Deligne’s remark ([49, (3.10)])). Let € be an a-torsion-free
Or-module. Then, as in [68, (3.1)], it is easy to see that

(2.14.0.1) Torl™ (H|pr,E|lp) =0 (Vr € Zo)
and
(2.14.0.2) Tor? " ©Cr) (g (H|pr), Opn) =0 (Vr € Zsg)

for any morphism ¢: 7" — T" of adic fine formal log PD-schemes.

Set T1 := Spec, (Or/a), and set T} := Spec,, (O /a) for an open log
formal subscheme T” of T. Let f: X — T} be a proper log smooth integral
morphism. By the finiteness of log crystalline cohomologies (cf. [11, 7.24
Theorem)]), there exists a non-empty open log formal subscheme T of T' such
that

(21403) TOT,,(?T/ (Rh'fXT{ /T/*(OXTI’ /T’)) (C:|T/) =0 (V?“ S Z>0)

for any a-torsion-free Op-module £ and for any h € Z. Assume furthermore
that the log structures on X, T" are fs. Let Zx 7 be the ideal sheaf on Ox,p

defined in [85, §5]. (In [85, §5], Zx 7 is defined under the condition that T
is equal to Spec W,,,(k) (k is a perfect field of characteristic p > 0), the log
structure on T is associated to the morphism N 3 1 +— b € W, (k) for some
b and that the morphism f is universally saturated. However, for the defin-
ition of Zx 7, we do not need these assumptions.) Set Rth/T*,c(OX/T) =
Rth/T*(ZX/T). One can see that Tx /g is a crystal on the restricted log crys-

talline site (X/T )Efrys as in [85, (5.3)] and that, for any log smooth integral

lift X — T of f, the sheaf (Zx,r)x is flat over Or by [85, (2.22)]. By using
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these facts, we see that the log version of the proofs of [11, (7.8), (7.13), (7.16),
(7.24)] and [74, (3.3)] work for the coefficient Tx/g. Hence Rth/T*’C(OX/T)
is a perfect complex of Op-modules and it satisfies the base change property.
Therefore, if T” is sufficiently small, we have

(2.14.0.4) Tor%r (R" Py j772,6(Ox gy y1),El1) = 0 (91 € Zno, Vh € ).

Proposition 2.14.1. Let T = (T,aOr,~) be as above. Let g: T" — T" be
a morphism from an adic fine formal log scheme into an open log formal
subscheme of T. If T" is small enough, then the following hold:

(1) The canonical morphism

Q*RthTl/ /T’*(OXT{ /T’)—)RthT{//T”*(OXT{/ /)

is an isomorphism of Opi-modules.
(2) The canonical morphism

g RthT{ JT"%,c (OXT{ J77)—R" Sy e (OXT{/ J7")

is an isomorphism of Opr-modules.

Proof. We may assume that (2.14.0.2), (2.14.0.3) and (2.14.0.4) hold.

(1): As in [68, (3.2)], we immediately obtain (1) using the existence of a
strictly perfect complex of Or/-modules representing RI'( X7/ /1", OXT{ /77)
(cf. [11, 7.14 Definition, 7.24.3 Theorem]), using (2.14.0.2) and (2.14.0.3), and
using the log base change theorem ([54, (6.10)], cf. [74, (3.3)]).

(2): By the facts described before (2.14.0.4), the same proof as that of (1)
works.

O

We will use the following proposition in §2.18 below.

Proposition 2.14.2. Let T be an adic formal scheme. Let g: T — T' be
a morphism from an adic scheme into an open formal subscheme of T. Let
f+(X,DUZ) — Ty be a proper smooth scheme with a relative SNCD over
Ty. If T is small enough, then the following hold:

(1) The canonical morphism

D !
Q*Pk K Rhf(X,DUZ)T{/T’*(O(X,DUZ)T{/T’) —

D 17
P R fx,002) 00 774 (O(x,002) 1y y77)

is an tsomorphism.
(2) The canonical morphism

Do
9P Rhf(X,DUZ)Tl/ /T’*,C(O(X,DUZ;Z)T{ i
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DT’/
h
By, R f(x.002) 000 /174, (O(X,DUZ:2) 1y /777)

is an isomorphism

Proof. By (2.9.6.2), there exist the following two spectral sequences

(2.14.2.1)
—k,h+k _ ph—k
2 = B0, 210 )y 177+ (O(D ), 21 10 g 177
®z wéfy)éog(DT{/T'; Z1;))(—k)
= Rh’f(X,Duz)Tl,/T'*(O(X,DUZ)T{/T')’
(2.14.2.2)

ByRhR — Rh_kf(D(k),Z\D(k))T{//T”*(O(D(k),Z|D(k))T{//T”
©z W # (Dayr [T"; Zprr))(—k)
- Rhf(X,DuZ)T{//T”*(O(X,DUZ)T{//T”)-
By (2.9.1) (2), there exists a canonical morphism
971((2.14.2.1)) ®y-1(0,,) Orr — (2.14.2.2).

Then, by (2.14.0.3), there exists a non-empty open formal subscheme T such
that

TO’I"T(?T’ (Rhf(D(k)vle(k))T{ /T/*(O(D(k)aZID(k))T{ /T/)’ S|T/) =0

for any Op-module £ without a-torsion and for all r € Z~ (. Hence we have
an isomorphism

g_lEl_kJH_k((X,DUZ)T’I/T/)®971(OT,)OT” adN El_k7h+k((X,DUZ)T1H/T”)

as in the proof of (2.14.1) (1), and therefore the morphism in (1) is an
isomorphism.
The proof of (2) is the same as that of (1). O

2.15 The E>-degeneration of the p-adic Weight Spectral
Sequence of an Open Smooth Variety

Let s be a perfect field of characteristic p > 0. Let W be the Witt ring of
k. Let Ko be the fraction field of W. In [68, (5.2)] we have proved the Ea-
degenerations modulo torsion of the weight spectral sequences (2.9.6.2) and
(2.11.14.3) when Z = () and S = Spf(W). To prove the degenerations, we
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have used a somewhat tricky argument in [68, (5.2)] (cf. [68, (3.2), (3.4), (3.5),
(3.6)]) based on Deligne’s remark ([49, 3.10]). Though we also use Deligne’s
remark in this book, the proof in this section is not tricky by virtue of the
existence of the weight spectral sequences (2.9.6.2) and (2.11.14.3) over a
general base (cf. [68, (3.7)]).

Let (X, D) be a proper smooth scheme with an SNCD over k. By [40,
3, (8.9.1) (iii), (8.10.5)] and [40, 4, (17.7.8)] , there exist a smooth affine
scheme S; over a finite field F, and a model (X,D) of (X, D) over Si.
By a standard deformation theory ([41, III (6.10)]), there exists a formally
smooth scheme S such that S @y, F, = S1. Let T' be an affine open
subscheme of S, and set 71 := T®y (r,)F,. Take a closed point ¢ of Tj.
The point ¢ is the spectrum of a finite field x;. We fix a lift Fpr: T — T
of the Frobenius(=p-th power morphism) Fr, of T;. Then we have the Te-
ichmiiller lift I'(T, Or) — W (k) (vesp. I'(T, Op) — W) of the morphism
(T, Or,) — ky (vesp. I'(T1, Ory) — k) (e.g., [50, 0 1.3]). The rings W (r;)
and W become I'(T, Or)-algebras by these lifts.

To prove the Fs-degenerations, we prove some elementary lemmas.

Let A be a p-adically complete and separated p-torsion-free ring with a
lift f of the Frobenius endomorphism of A; := A/p. Then there exists a
unique section 7: A — W(A) of the projection W(A) — A such that
To f=Fo7, where F is the Frobenius of W(A4) (e.g., [50, 0 (1.3.16)]). This
morphism induces morphisms 7: A — W(A;) and 7,,: A/p" — W, (Ay).
Then the following holds:

Lemma 2.15.1. If Ay is reduced, then the morphism 7: A — W(Ay) is
imjective.

Proof. Let F'(A1) be the restriction of scalars of A; by the n-th power
of the Frobenius endomorphism of A;. By the assumption, the morphism
F": Ay — F'(A;) is injective. (2.15.1) follows from the following commu-
tative diagram in [50, 0 (1.3.22)]:

A, " F(A;)

p"lz V"l: (Vn € N)
pr AP A BTy (AL) V(AL
O

Lemma 2.15.2. (1) Let B be a commutative ring whose Jacobson radical
rad(B) is the zero. Let M(B) be the set of the maximal ideals of B. Then
the morphism W(B) — [[ W(B/m) is injective.
meM(B)
(2) Let C be a commutative ring with unit element and let D be a smooth
C-algebra. If rad(C') = 0, then rad(D) = 0.
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Proof. (1): By the assumption, the natural morphism B — [ B/m s
meM(B)
injective. Thus W(B) — W( [ B/m)= [] W/(B/m) is injective.
meM(B) meM(B)
(2): Let {fi}: be a family of elements of D such that Spec(D) = |J, Spec
(Dy,). Then the natural morphism D — [], Dy, is injective since D —

Il Du is injective. Thus the problem is local; we may assume that there
meM(D)

exists a finite etale morphism C[X71, ..., X,,] — D. Let (+/0)¢ and (v/0)p be
the nilpotent radicals of C' and D, respectively. Since (v0)c C rad(C) = 0,
(v/0)¢ = 0. Hence C is a Jacobson ring and D is also by [13, V §3, n°4,
Theorem 3]. Therefore (v/0)p = rad(D). Since C[X1,. .., X,,] is reduced, D
is also by [41, I Proposition 9.2]. Hence (+/0)p = 0. O

Corollary 2.15.3. Let k' be a perfect field of characteristic p > 0. Let A

be a p-adically complete and separated formally smooth algebra over W (k')

with a lift of the Frobenius morphism of Ay. Then the morphism A —
[T W(A1/m) is injective.

meM(Ay)

Proof. (2.15.3) follows from (2.15.1) and (2.15.2). O

Theorem 2.15.4 ([68, (5.2)]). If Z = 0 and S = Spt(W), then (2.9.6.2)
and (2.11.14.3) degenerate at Es modulo torsion.

Proof. For a W(F,)-module M, Mg, denotes M @y y Ko(F,). First
we prove (2.15.4) for (2.9.6.2). Replace T by a sufficiently small affine
open sub log formal scheme in order that, for any h,k € Z,r € Zsy,
E7Rhk(Xr, D7) /T) has the form OF" @ N (n € N), where N is a di-
rect sum of modules of type Or/p¢ (e € Z~(). Then we have

Tord (©O1) (g L E-RMtk (X Dp)/T),00) =0 (Vs € Zng)

for any morphism g : 77 — T of p-adic fine log PD-schemes and for any
h,k € Z,r € Z~y. Then we have

g*E;k’h+k((XT17DT1)/T) = E;k’h+k((XT1’7DT1’)/T/)

for any morphism g : 7/ — T of p-adic fine log PD-schemes and for any
h,k € Z,r € Z~¢. Indeed, for r = 1, it is nothing but (2.14.1) (1); for general
r, it follows from the functoriality of the spectral sequence (2.9.6.2) and
induction. Hence, to prove the theorem for the spectral sequence (2.9.6.2),
we have to only to prove that the morphism

d (X, D) [T ko)t Er B (X, D) [ T) ko8, —
E Rttt (X D) [T ko (v,

is zero for any r > 2. Let us express
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E MR (X, D) /T) = 02" @ N
r (( Ty Tl)/ ) =0Ur ON,

E;k+r,h+k7r+1((XT1’DTI)/T) _ O%n’ @Nl,

where N, N7 are direct sums of modules of type Or/p° (e € Z~(). Then we
have

d;*h (X, Dr,)/T) € Homo, (OF" & N, 09" @& N)
- HomoT((’)é‘ﬁ”, (’)3‘?"/) @ N,

where N is a direct sum of modules of type I'(T, Or)/p°® (e € Z~g). Then,
for any closed point t of 77, we have

d PR (X, D) JW (K4)
:d;k’h+k((XT1 ) DTI)/T) RXor W(Ht)
€Homyy () (W (1) ", W (1) ®™ ) @ (N @ 1,00 W (ke)).

By the purity of the weight [15, (1.2)] or [68, (2.2) (4)], we have
d R (X, Dy) /W (Ke)) ko (r,) = O for any closed point ¢ of Ty, that is,
d PR (X, Dy) /W (Ky)) is contained in N ®p(r,0,) W (k). From this
and (2.15.3), we see that d, *"**((Xr,,Dr,)/T) is contained in N. Hence
d; MR (Xry, Dry) [ T) ko e,) = 0-

The proof of the degeneration of (2.11.14.3) is the same as the above. (One
may use the duality between (2.9.6.2) @y Ky and (2.11.14.3) @w Ky for the
case Z =) and S = Spf(W).) |

2.16 The Filtered Log Berthelot-Ogus Isomorphism

In this section we prove a filtered version of Berthelot-Ogus isomorphism.
Because the proof of this isomorphism is almost the same as that in [12] and
[74], we give only the sketch of the proof.

Proposition 2.16.1. Let S be a scheme of characteristic p > 0 and let
So <. S bea nilpotent immersion. Let S S5 T be a PD-closed immersion
into a formal scheme with p-adic topology such that Op is p-torsion-free. Let
f+(X,DUZ) — S and f': (X', D'UZ") — S be smooth schemes with rel-
ative transversal SNCD’s. Assume that X, X', S and T are noetherian. Set
(X0, DoUZy) :=(X,DUZ) xg Sy and (X}, DLUZ]) = (X', D'UZ") x5 Sp.
Let g: (X0, DoUZy) — (X, Dy U Z|) be a morphism of log schemes over Sy
which induces morphisms (Xo, Do) — (X{), D}) and (Xo, Zo) — (X{, Z)).
Then the following hold:
(1) There exists a canonical filtered morphism
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(2.16.1.1) 9" (Rf{x+ prugyre(Oxr,poznyyr) % Q, PPY) —

(Rf(x.puz)7+(O(x.pUZ) /1) ©F Q, PP),

which is compatible with compositions. If g has a lift g: (X,D U Z) —
(X', D' U Z), then g* = Giog?.
(2) Assume that g induces a morphism g\¥) (D(()k), ZO'D(()’“)) — (D’(()k)7 Z

|D,(k)) for all k € N. Then there exists a canonical filtered morphism
0

(21612) g: : (Rf(,X’,D’UZ/)/T*,C(O(X/,D/UZ/;ZI)/T) ®£ Q, PCD/) —

(Rf(x,puz),T%c(Ox,puz:2)7) ©% Q, PP),
which is compatible with compositions. If g has a lift g: (X,D U Z) —

(X', D' U Z), then ! = G257

Proof. (1): The relative Frobenius Fx puzy/s: (X,DUZ) — (X® D@y
ZP)) over S induces an isomorphism

(p)
PP Rf(xw pwuzm)m«(Oxw pwuzmyr) @7 Q

- PI?Rf(X7DUZ)/T*(O(X,DUZ)/T) ®;Q (keZ)
by (2.9.6.3) and (2.10.2.1) because the relative Frobenius induces an isomor-
phism of the classical iso-crystalline cohomology of a smooth scheme over S
([12, (1.3)]). Hence the same proof as that in [12, (2.1)] shows that we have
the morphism (2.16.1.1).

(2): The proof for (2.16.1.2) is the same as that for (2.16.1.1) by using
(2.11.14.4) instead of (2.9.6.3) and using (2.11.18). O

Corollary 2.16.2. If (Xo, Do U Zy) = (X{;, D{, U Z]), then
(Rf(x,puz)/7+(Ox,puz)T) ©F Q, PP) =

(Rfxr.proznym(Oxr ooz r) @7 Q, PP

and
(Rfx,puz) e (Ox,puz:2)7) ©% Q, PP) =
(Rfxr.pruznyre,e(Oxr,pruz20y ) T) ®7 @7PCD/)~
Proof. Obvious (cf. [12, (2.2)]). O

Theorem 2.16.3 (Filtered log Berthelot-Ogus isomorphism). Let V
be a complete discrete valuation ring of mixed characteristics with perfect
residue field k. Let p be the characteristic of k. Set K := Frac(V'). Let S be
a p-adic formal V-scheme in the sense of [74, §1]. Let (X,DUZ) — S be a
proper formally smooth scheme with a relative transversal SNCD over S. Let
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T be an enlargement of S with morphism z: Ty := (SpecT(OT/p))red — S.
Set T} := SpecT((’)T/p). Let fo: (Xo,Do U Zp) :==(X,DUZ) xs,To — Tp
be the base change of f: (X, DUZ) — S. Then the following hold:

(1) If there exists a log smooth lift f1: (X1,D1 U Z1) — Ty of fo, then
there exist the following canonical filtered isomorphisms

or: (Rhf(Xl,D1UZ1)/T*(O(Xl,DlLJZl)/T)Ka pP)

= (R"£.(O(x,puz) )T, PP),
OT " (Rhf(Xl,Dluzl)/T*,c(O(Xl,Dluzl;Zl)/T)K7 PP

= (R fee(Ox,pu2:2) /5 )T, PP).

(2) If there exists a log smooth lift f: (X, DU Z) — T of fo, then there
exist the following canonical filtered isomorphisms

owE o (RM.(Q% 1 (log(D U 2)) i, PP) =5 (R" £.(O(x,puzy k)T PP),

Ui?gs,T,c: (Rhf*( :V/T(log(z_p)))f(7 PCD) o (Rhf*,C(O(X,DUZ;Z)/K)T7 PCD)
Proof. The proof is the same as that of [74, (3.8)]. O

Remark 2.16.4. Let V, k and p be as in (2.16.3). Then V/p is a s-algebra by
[79, IT Proposition 8§].

(1) Let (X, DUZ) a proper smooth scheme over Spec(V') with an (S)NCD.
Set Ui = Xk \(DrgUZK). Then, by (2.16.3) and (2.16.2) and the base change
theorem of the log crystalline cohomology ([54, (6.10)]), there are canonical
isomorphisms:

(2.16.4.1)
Hiygerys (X, D U Z) /W (5)) i — H" (X, Q. (l0g(Drc U Z)))
= Hifp (Ux / K),
(2.16.4.2)

Hl}ég-crys,c((XM DU Zy; ZK)/W(H))K - Hh(XK’ Q;(K/K(log(ZK - DK)))

which are compatible with the weight filtrations with respect to D, and Dy.
See also [17] for analogous statements by the rigid analytic method in the
case Z = ().

(2) Let (X,D) be a proper smooth scheme with a relative SNCD
over k. Set U := X \ D. By the finite base change theorem ([5, (1.8)])
and by Shiho’s comparison theorems [82, Theorem 2.4.4, Corollary 2.3.9,
Theorem 3.1.1]), there exists a canonical isomorphism Hﬁg(U/K) -
H! (X,D)/W) @w K. As a result, H? (U/K) has a weight filtration.

log-crys rig
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By [85], [82, Theorem 2.4.4, Corollary 2.3.9, Theorem 3.1.1] and [6, (2.4)],
we obtain H{ég_crys,c((X, DY/W) ow K = Hﬁg,C(U/K). In particular,
Hﬁgyc(U/K) has a weight filtration.

If (X, D) is the special fiber of (X, D) in (1), there exists a weight-filtered
isomorphism Hrhig(U/K) — H!: (U /K). An analogous statement can be
found in [17].

(3) Let U be a separated scheme of finite type over k. Let Z/k be a closed
subscheme of U. In [70] the first-named author has defined a finite increasing
filtration on Hg& 7 (U/K) which deserves the name “weight filtration”. In
particular, the weight filtration on H/, (U/K) defined in (2) is independent
of the choice of (X, D). See §3.4 below for more details. In [loc. cit.] he has
also defined a finite increasing filtration on Hﬁg,c(U /K) which deserves the

name “weight filtration” in the case where U is embeddable into a smooth
scheme over k as a closed subscheme. See also §3.6 below for more details.

2.17 The E>-degeneration of the p-adic Weight Spectral
Sequence of a Family of Open Smooth Varieties

Let V be a complete discrete valuation ring of mixed characteristics with
perfect residue field x of characteristic p > 0. Let B be a topologically finitely
generated ring over V. For a V-module M, My denotes the tensor product
M ®y K. In particular, By = B®y K. Let m be a maximal ideal of By . By
the proof of [84, (4.5)], Bx/m is a finite extension of K. Set K’ := B /m.
Let C be the image of B in Bx/m = K'. Let V’ be the integer ring of K’.
Then the following is well-known (cf. [74, the proof of (4.2)]):

Lemma 2.17.1.VCc C C V'.

Proof. The inclusion V' C C' is obvious. Let m be a uniformizer of V. Let v
be a normalized valuation of V'. Let e be the ramification index of V'/V. By
the definition of B, there exists a surjection V{z1,...,z,.} — B. It suffices
to show that the image y; (1 < i < r) of z; in K’ belongs to V’. If not,
v(y;) < 0 for some 7. Set

" {w"/(”l) (neN, e+1|n),

0 (neN, e+11{n).
Then the image of an element > " (a,z? € V{z1,...,2,} in K’ does not
converge in K’. This is a contradiction. 0O

We keep the notations in §2.4 except that S is a p-adic formal V-scheme
in the sense of [74, §1] and that X is a proper smooth scheme with a relative
SNCD D over Sy := Spec,(Os/p). The main result in this section is the
following:
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Theorem 2.17.2 (E>-degeneration). Assume that S is a p-adic formal
V-scheme and that X is a proper smooth scheme over S1. Then (2.9.6.2)®@y K
and (2.11.14.3) ®y K degenerate at Ey in the case Z = () and Sy = S;.

Proof. (Compare the following proof with [20, (5.5)].)

We first prove the theorem for (2.9.6.2)®y K for the case Z = () and
So = S1. We may assume that S is a p-adic affine flat formal scheme Spf(B)
over Spf(V). Consider the following boundary morphism:

(2.17.2.1)
d;k,h+k: E;k’thk((X, D)/S)K N E;k+r,h+k7r+1((X, D)/S)K (T > 2)

We prove that d7%"*F =0 (r > 2).

Case I: First we consider a case where B is a topologically finitely gen-
erated ring over V such that By is an artinian local ring. Let m be the
maximal ideal of By . Then m is nilpotent. Set K’ := By /m. Consider the
following ideal of B: I := Ker(B — B /m). Then C' = B/I, Cx = K’ and
V C CcC V' ((217.1)). Let v: Spf(C) == Spf(B) be the nilpotent closed im-
mersion. Since the characteristic of K is 0, the morphism Spec(Ckx) —
Spec(K) is smooth and hence there exists a section sg: Spec(Bg) —
Spec(Ck) of the nilpotent closed immersion Spec(Cx) — Spec(Bg). By
[74, (1.17)], there exists a finite modification m: Spf(B’) — Spf(B), a nilpo-
tent closed immersion ¢/ : Spf(C) —= Spf(B’) with ot/ = ¢ and a morphism
s: Spf(B’) — Spf(C) such that s induces sk and that s o = id. Set
S’ := Spf(B’). Because the boundary morphisms {d; """} are summations
of Gysin morphisms (with signs) ((2.8.5)), the Ea-terms of (2.9.6.2) @y K
are convergent F-isocrystals by [74, (3.7), (3.13), (2.10)]. Hence we have
Ey""M(X,D)/S)k = By""(Xs;,Ds;)/S")k since By = By. Let
{d**} (r > 1) be the boundary morphism of (2.9.6.2)®y K for (Xs7,Dgr)/S".
Because {d?*} (r > 2) are functorial with respect to a morphism of p-adic
enlargements, we have the following commutative diagram for r» > 2:

E-RhE(X, D)/S) K N E;k’h+k((Xs;7Dsg)/S/)K

d—k,h+kl ld/—k,h-pk

Eyktrhtk=ril(X D)/S)x —— EyFtrhth=r+l((Xo Dg)/S")k.

Here, if » = 2, then the two horizontal morphisms above are isomorphisms.
By induction on r > 2, we see that d?® vanishes if d/.*® does. Hence it suffices
to prove that the boundary morphism
(217.2.2)  d,RMEEIRMR (X, D) /S K

— E;k+r’h+k_r+1((XSi,Dsﬁ)/SI)K (r>2)

is the zero. Let [(M) be the length of a finitely generated B = Bx-module
M. Furthermore, to prove the vanishing of d/.*®, it suffices to prove that
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(2.17.2.3)
UR" f(xy Dy 5+(Ox Doy /s7)K) = l(@kEz_k’thk((XspDsg)/SI)K)

Set S” := Spf(C). Then we have the morphism (Xg;, Dgr) — S”. Let us
denote the pull-back of the morphism (Xgv, Dgy) — S” by 5: 8" — S”
by (Xg{’Dgi) — S’. Then, since we have m o/ = ¢ and s o/ = id, both
(Xs7, Dgr) and (Xgi’Dg”i) are deformations of (Xgr, Dgr) to S7. Hence, by
(2.16.2), the spectral sequence (16.6.2)®y K for (Xg/, Dg/)/S" and that for
(X ~/91 ) D%i) /S’ are isomorphic. Therefore we have

—k,htk —khtk
By " (Xsq, D) /8 i = By M (X, D) /S ke
= B'@c By """ ((Xsy, Dsy) /9"
Hence, to prove (2.17.2.3), it suffices to prove that

(2.17.2.4)

dim g (Rhf(xs,l, D)/ 8" (O(Xsi/ Dgi1)/5" )K)
= dimK'(@kEz_k’thk((ngu Dgy)/S" ) k).

Set V' := V'/p. Because there exists a morphism Spf(V') — Spf(C) of
p-adic enlargements of S, it suffices to prove that

(2.17.2.5)

dimpcr (R" f(x )0y ) /v (O(x gDy ) /v )
= dimK'(@kEQk’h+k((le/,Dv;)/V/)K)-

We reduce (2.17.2.5) to a result of [68, (5.2) (1)](=(2.15.4) for (2.9.6.2) in
this book) by using (a log version of) a result of Berthelot-Ogus ([12, §2]) as
follows.

Let &’ be the residue field of V’. Since & is perfect and since x’ is a finite
extension of k, £’ is also perfect. Let W’ be the Witt ring of x’. The ring V/
is an artinian local x’-algebra with residue field " ([79, II Proposition 8§]).
Set X' := Xyy@yy k" and D' := Dy, @y’ Then (X' @ V{, D' @,/ V) and
(Xvyy, Dyy) are two log deformations of (X', D’). Therefore, by (2.16.2), the
spectral sequence (2.9.6.2)@y K for (X' ®. V{, D’ ®, V{)/V' and that for
(Xyy, Dy;)/V'" are isomorphic. From this fact, the log base change theorem
([54, (6.10)]) and the compatibility of Gysin morphisms with base change ([3,
VI Théoreme 4.3.12]), we have

(2172.6)  R™f(x,, .0y /vs(Otxy, Dy v) v K

L} Rhf(X’,D’)/W’*(O(X/,D’)/W’)®W/K/7
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(2.17.2.7)
EQ_kJH_k((XVl’a Dvll)/vl) Qv K’ . EQ_k’h+k((X/, D/)/W/)®W,K/.

Hence it suffices to prove that
By B (X!, D)W @w K’ = EXPR(X!, D) /W @w K

We have already proved this in [68, (5.2) (1)](=(2.15.4)).

Case II: Next, we consider the general case. Let m be a maximal ideal
of Bg. Consider the following ideal I™ and the following ring B,y in
[74, p. 780]:

1™ .= Ker(B — Bg/m"), B :=B/I"™ (neN).

The ring B, defines a p-adic enlargement S, of S. Let

—khtk | ok,
d’l",(n)+ . E'r g h+k((X(S(n))17D(S(n))1)/S(n))K
— BRI (X 5000 DS )/ Sy &
be the boundary morphism. Because {d®*} is functorial, we have the following
commutative diagram:

—k,h+k —k,h+k
E. + (X, D)/8)®p(Bn)) K E— EL + ((X(S(n))l’D(S(n))l)/s("))K

arkhtkgn (B ld_k’“k

r(n)

g—kt+rhtk—r41
r

E;k+r,h+k7r+1((x1 D)/S)®B(B(n))K ((X(S(n))1 s D(S(n))l)/s("))K’
Because E, ©"F((X,D)/S)k is a convergent F-isocrystal, the two horizon-
tal morphisms are isomorphisms if » = 2. By induction on r and by the
proof for the Case I, the boundary morphism d3*®p, (B(,))x (r > 2) van-
ishes. Thus lim | (d2*®p, Br/m™) = 0. Because By is a noetherian ring and

Ez_k’h+k((X, D)/S)k is a finitely generated By-module, we have

dr*®p, (im Br/m") =lim(d}*®p, Bk /m") = 0.

Since (Bg)m is a Zariski ring, lim (B )m/m"(Bk)m is faithfully flat over
(Bi)m ([13, IIT §3 Proposition 9]). Therefore d**®p,. (B )m = 0. Since m is
an arbitrary maximal ideal of By, d®® = 0 (r > 2). Hence we have proved
(2.17.2) for (2.9.6.2) @y K.

Next we prove (2.17.2) for (2.11.14.3)®y K for the case Z = () and Sy = 5.

As we remarked before (2.14.0.4), we have the base change property for
RIf(x,py/s%,c(Ox,py/s)k = (R f(x,p)/s+L(x,p))s) @v K. Hence the proof
is analogous to the proof of (2.17.2) for (2.9.6.2)®y K for the case Z = ) and
So = 57: we have only to use (2162) for Rf(X,D)/S*,C(O(X7D)/S)Ka (21117)
and use [68, (5.2) (2)] (=(2.15.4) for (2.11.14.3)). O
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We can reprove (2.13.3) in the case Z = () and more:

Corollary 2.17.3. Let k be a nonnegative integer. Then the following hold:
(1) There ezists a convergent F-isocrystal E; *"*((X,D)/K) such that

Ey "X, D)/ K)r = grh 1 R fixa, .02 /74Oy Dy ) ) 6

for any p-adic enlargement T of S over Spf(V).
(2) There exists a convergent F-isocrystal P,R" f.(O(x py k) such that

PyR"f.(Ox.py/x)T = Pthf(XT1 Dr,)/T+(O(xr, . Dr,)/T) K

for any p-adic enlargement T of S over Spf(V).
(3) There exists a spectral sequence of convergent F-isocrystals on (X, D)

/S over Spf(V) :

(2.17.3.1)  E; "X, D)/K) = R"* f.(Opw ) @2 o) (D/K))(—k)
= R'"f.(O(x,p)/K)-
This spectral sequence degenerates at Es.

Proof. (1): By (2.8.5), the boundary morphism d$® of (2.9.6.2) ®y K is a
summation (with signs) of Gysin morphisms, and thus d$® is a morphism of
convergent F-isocrystals by [74, (3.13)]. By [74, (3.1)] and by (2.17.2), we
obtain (1).

(2): By (1), for a morphism g: 77 — T of p-adic affine enlargements of S
over Spf(V), Pthf(xT{ D) /1(O(X g D) /1)K = 9" PeR" f(x1, Dry)y1:(O
(Xr,Dr),7) K- The claim on the F-isocrystal follows as in [74, (3.7)].

(3): (3) immediately follows from (2.17.2). ]

We can reprove (2.13.8) (1) and (2) in the case Z = () and more:

Corollary 2.17.4. Let k be a nonnegative integer. Then the following hold:
(1) There exists a convergent F-isocrystal Eg,’ch_k((X, D)/K) such that

Ey!M(X,D)/K)r = grf} xR fxr,.Dry)7ec(O X, Dy )y T) K

for any p-adic enlargement T of S over Spf(V).
(2) There exists a convergent F-isocrystal PyR"f, (O(x py/x) on S/
Spf(V') such that

(PeR" fu.c(Ox.0)/ k)T = PuR" f(x 1, D)) /7,6 (O (X, Dy )y 7) K

for any p-adic enlargement T of S/Spf(V).
(3) There exists a spectral sequence of convergent F-isocrystals on X/S
over Spf(V) :
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(21741)  BEN(XD)/K) = R F £ (Opi i 82 =M (D/K))
= R"f...(O(x,p)/K)-
This spectral sequence degenerates at Es.
Proof. (1), (2), (3): We obtain (1), (2) and (3) as in (2.17.3). O

As in [11, §7], for a p-adic formal V-scheme S, we have a log crystalline

—~— —_—

topos ((X,D)/S)98, and the forgetting log morphism €(x, p)/s: (X, D)/S)

—

e (X/ S)erys- The following is nothing but a restatement of a part of
(2.17.2) by the p-adic version of (2.7.6):

Corollary 2.17.5. The following Leray spectral sequence

(2.17.5.1) EY" M = RMRF ¢ pysn B ex )54 (O(x, 0y /5) K
= R" f(x,p)/5+(O(x.p)/8) K

degenerates at E3.

2.18 Strict Compatibility

In this section, using a specialization argument of Deligne-Tllusie (§2.14) and
by using the convergence of the weight filtration (§2.13, §2.17), we prove
the strictness of the induced morphism of log crystalline cohomologies by a
morphism of log schemes with respect to the weight filtration.

Let V' be a complete discrete valuation ring of mixed characteristics with
perfect residue field k of characteristic p > 0 and with fraction field K. Let
g: (X', D") — (X, D) be a morphism of two proper smooth schemes with
SNCD’s over k. Let W be the Witt ring of k and K the fraction field of W.
Then the following holds:

Theorem 2.18.1. Let h be an integer. Then the following hold:
(1) The induced morphism

(21811) 9(1:2%: HIF(L)g-crys(X/W)K — Hlicl)g-crys(Xl/W)K

is strictly compatible with the weight filtration.
(2) Assume that g induces morphisms g*): D'®) — D®) for all k € N.
Then the induced morphism

(21812) gé?%:,c: Hl}(L)g-crys,c(X/W)K - Hl}(L)g-crys,c(X//W)K

is strictly compatible with the weight filtration.
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Proof. (1): In this proof, for the sake of clarity, denote by P and P’ the weight
filtrations on HJ" (X/W)g, and H} (X' /W) k,, respectively.

log-crys log-crys
Since PkHl}ég-crys(X/W)Ko Ok, K = (Pth (X/W))K (k € ZU{OO})v

log-crys
we may assume that V' = W. By (2.9.1) the morphism g induces a morphism

(2.18.1.3)

gg%/:: PkHl}ég—crys(X/W)Ko - PIéHl}cL)g-crys(X//W>Ko (k €U {OO})

/1 ITh
Let Pk Hlog-crys

Then we prove that

(X'/W)g, be the image of P,H{ (X/W)k, by gler.

log-crys crys

(2.18.1.4) P.NP. =P

By [40, 3, (8.9.1) (iii), (8.10.5)] and [40, 4, (17.7.8)], there exists a model of
g, that is, there exists a morphism g: (X’,D’) — (X, D) of proper smooth
schemes with relative SNCD’s over the spectrum S; := Spec(A4;) of a smooth
algebra A;(C k) over a finite field I, such that g ® 4, = ¢g. By a standard
deformation theory ([41, IIT (6.10)]), there exists a formally smooth scheme
S = Spf(A) over Spf(W(F,)) such that S @wr,) F, = Si1. We fix a lift
F: S — S of the Frobenius of S7. Then, as in §2.15, W is an A-algebra. Let
P’ and P” be the analogous filtrations on Rth//S*(OX,/S) Owr,) Ko(Fq),
where Ko(F,) is the fraction field of W (F,). By (2.14.2), in order to prove
(2.18.1.4), it suffices to prove that

(2.18.1.5) PLNPL =P

by shrinking S. Here, note that the extension x/Frac(A;) of fields may be
infinite and transcendental. Because P, and P2 are convergent isocrystals
((2.13.3) or (2.17.3)), so is P, NP by [74, (2.10)]. Since two inclusions
(PL.OPLYNP — P;l and (P, NPL) NP — P NP, are morphisms of
convergent isocrystals, it suffice to prove that

(2.18.1.6) (PeNPL)s = (PY)s

for any closed point s € S by [74, (3.17)]. In this case, (2.18.1.6) immediately
follows from the purity of the weight of the crystalline cohomologies ([15,
(1.2)] or [68, (2.2) (4))]) and by the spectral sequence (2.9.6.2). Thus we have
proved (1).

(2): By the assumption of g, the analogue of (2.18.1.3) for the log crys-
talline cohomology with compact support holds. Using (2.13.8) instead of
(2.13.3), we obtain (2) in a similar way. O

Theorem 2.18.2 (Strict compatibility). Let S be a p-adic formal V-

scheme. Let f: (X,D) — Sy and f': (X', D') — Sy be proper smooth

schemes with relative SNCD’s over Sy. Let g: (X', D) — (X, D) be a mor-

phism of log schemes over Si. Let h be an integer. Then the following hold:
(1) The induced morphism
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(2.18.2.1)
9*: R" fix.p)/s:(Ox.py/s)k — R fix: pryyse(Oxr.pryys)k - (h € Z)

is strictly compatible with the weight filtration.
(2) Assume that g induces morphisms g*): D'®) — D®) for all k € N.
Then the induced morphism

(2.18.2.2)
95 R fix0)/54,(Ox,0)/5) K — B"f{x1 pry5ue(Oixr,0ryy8)i - (b € Z)

is strictly compatible with the weight filtration.

Proof. Since the proofs of (1) and (2) are similar, we give only the proof of
(1).

By (2.13.3) (or (2.17.3)) and by the proof of [74, (3.17)], we may assume
that S is the formal spectrum of a finite extension V' of V. Let £’ be the
residue field of V. As mentioned in the proof of (2.17.2), V' /pis an x'-algebra;
the two pairs (X, D) and ((X,D) @y k') @ V'/p are two deformations of
(X, D) ®y Kk'; the obvious analogue for (X', D’) also holds. Hence, by the
deformation invariance of log crystalline cohomologies with weight filtrations
((2.16.2)), we may assume that S = Spf(W(x’)) and that (X, D) and (X', D')
are smooth schemes with SNCD’s over a perfect field s’ of characteristic
p > 0. Hence (1) follows from (2.18.1) (1). O

Corollary 2.18.3. Let the notations be as in (2.18.2). Let g: (X', D’) —
(X, D) be a log etale morphism such that Rg.(Ox/) = Ox (e.g., the blowing
up along center a smooth component of D®)). Then g* in (2.18.2.1) is a
filtered isomorphism.

Proof. We may assume that S is flat over Spf(V'). By the second proof of [65,
(2.2)] and by [loc. cit., (2.4)], the induced morphism

Rf.(Q%/s, (log D)) — Rf.(Q%. /5, (log D))

is an isomorphism (cf. [43, VII (3.5)], (2.18.7) below). By the log version of
a triangle in the proof of [11, 7.16 Theorem| and by the log version of [11,
7.22.2], the induced morphism

9" Rfx/s:(Ox.p)/s) — Rf(x: pry/s:(Ox'.01y/5)

is an isomorphism; in particular, g*: Rhf(X7D)/S*(O(X7D)/S)K — Rhf(X/7D,)
15+(O(x7,p1y/s) K is an isomorphism. (2.18.3) follows from (2.18.2) (1). O

Remark 2.18.4. Let the notations be as in (2.18.2). We do not know an ex-
ample such that the induced morphism g*: (Rhf(Xp)/S* (Ox,pys), P) —
(Rhf(’X, D,)/S*(O(X/,D,)/S), P) is not strictly compatible with the weight fil-
tration.
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Theorem 2.18.5. Let the notations be as in (2.18.2). Assume that g induces
morphisms g : D'®) — D®) for all k € N. Assume, moreover, that g is
log etale, that Rg.(Ox/) = Ox and that g*(Ox(—D)) = Ox/(—=D’). Then g}
in (2.18.2.2) is a filtered isomorphism.

Proof. We may assume that S is flat over Spf(V'). Because g is log etale, we
have g*(Qéqs1 (log D)) = Qfx,/sl (log D") (i € N). Hence, by the assumption,
we have g*(Qy g (—log D)) = Q}{/Sl(—logD’). By using the projection
formula as in [65, p. 168], we have QY ¢ (—log D) = Rg. (Y., 5, (—log D).
Consequently, as in [65, (2.4)], we have Q;{/Sl(— log D) = Rg*(Q;(,/Sl(— log
D’)) by using the spectral sequence

EY = RIg.(Q%. /s, (—log D)) = R g, (0%, /5, (—log D')).

Let n be a positive integer, and set S,, := SpecS(OS/p"). Then we have
an exact sequence

0— p"Og/p" T Osg — Os,., — Os, — 0.

By using the base change theorem of the log crystalline cohomology sheaf
with compact support ((2.11.11.1)), we have the following triangle as in [11,
7.16 Theorem]:

(2.18.5.1) — Rf(x,0)/51%.c(O(x,0)/5) @54, P"Os/p" ' Os
— Rfx. D)/ 11%.0(O(x,0)/Sn1)
1
— Rfix.py/s,+(Ox,p)/s,) R

Hence, by induction on n and by (2.11.7.1) and [11, 7.22.2], we have

R fixr pryysee(Oxrpryys) = R fix,0) /50,0 (O(x,0)/9)-

In particular, ¢g¥ is an isomorphism of Og ®y K-modules. Moreover, by
(2.18.2) (2), g is a filtered isomorphism. O

Remark 2.18.6. 1t is straightforward to generalize (2.18.2), (2.18.3), (2.18.5)
into the framework of convergent F-isocrystals.

Remark 2.18.7. The following example (=a very special case of [65, (2.3)])
shows that the strictness of the induced morphism on sheaves of log differen-
tial forms by a morphism of smooth schemes with relative SNCD’s does not
hold.

Let S be a scheme and let X be an affine plane A% = Spec(Oslz, y]).
Let D be a relative SNCD on X/S defined by zy = 0. Let g: X' — X
be the blow up of X along the center (0,0). Let D’ be the union of
the strict transform of D and the exceptional divisor of g; then D’ is a
relative SNCD on X'/S. Let ¢ be an integer. Then Mokrane has proved that
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R 9. (Y, /5(log D)) = 0 (j € Zso) and g.(Q, g(log D)) = QY (log D) (a
very special case of [65, (2.2)]; however, note that in the notations in [loc. cit.],

the condition that the closed immersion ¥ -~ X is a regular embedding is
necessary for [loc. cit.] because the fact Rf.(Ox/) = Ox in [43, VII (3.5)]
has been shown under this assumption.). The pull-back morphism

9%: (9% s(log D), P) — g.(Q%,s(log D'), P)

is a morphism of filtered sheaves; however, as remarked in [loc. cit.], g* is not
strict. (Consequently ¢g* does not induce an isomorphism of filtered sheaves
of log differential forms.)

Note that the number of smooth components of D’ is more than those of
D; the log structure of (X’, D’) is “bigger” than that of (X, D).

Remark 2.18.8. The following remark is the crystalline analogue of a part of
results in [24, (9.2)].
Let (S,Z,v) and Sy be as in §2.4. Let f: (X, D) — Sp be a smooth scheme

with a smooth relative divisor over Sy. Let a: D -5 X be the natural closed
immersion. Then, by (2.6.1.1), we have the following exact sequence

(2.18.8.1) 0 — Q%,5(0x/s) — Q%;sCRerys(O(x,p)/5)
— Q% /50crys«(Opys)(—1){—1} — 0.

Applying the higher direct image functor R'?X/S* to (2.18.8.1), we have the
following exact sequence

(2.18.8.2)
- — R"?fp,5.(0Opss)(—=1) — R" fx;5.(0x/s)
— R"fixpys«(Ox.py/s) — -

The spectral sequence (2.9.6.2) degenerates at Fs in this case since E;j =0
if i # 0 ori# —1. It is easy to check that the exact sequence (2.18.8.2) is
strictly compatible with the preweight filtration.

Using (2.11.7.1), we also have the following exact sequence which is strictly
compatible with the preweight filtration

(2.18.8.3)
- — R fx/5.(0x/5) — R"fp;s.(Opys)

— R" fix.py/se.c(Ox,py/5) — - -

Now assume that S is a p-adic formal V-scheme (in the sense of [74, §1])
over a complete discrete valuation ring V' of mixed characteristics with perfect
residue field. Assume also that Sy = Spec (Os/p), that X is projective over
So of pure relative dimension d and that D is a smooth hypersurface section.
Let K be the fraction field of V. Then the induced morphism
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(2.18.8.4) R'"fx/5:(Ox/s)k — R"fp/s:(Ops)k

by the closed immersion D <, X is an isomorphism for h < d — 2 and an
injection for h = d —1 (cf. [2, Théoreme]). Indeed, first consider the case h <
d—2. Then we can assume that S is the formal spectrum of a finite extension
of V by [74, (3.17)]. In this case, the argument in the proof of (2.18.2) and
the specialization argument of Deligne-Tllusie ([49, 3.10], cf. the argument in
(2.18.1)) show that the hard Lefschetz theorem holds for Rth/S*((’)X/S)K
(cf. [49, 3.8]). Hence the proof of [57, p. 76 Corollary] shows that (2.18.8.4) is
an isomorphism for A < d—2. As to the case h = d — 1, the same proof works
by considering the image of Rdfle/S*(OX/S)K in RdflfD/S*(OD/S)K. By
the Poincaré duality ([74, (3.12)]), the Gysin morphism

Gn: R" 2 fps.(Ops)k(—1) — R" fx5.(Ox/8) K

is an isomorphism for h > d 4 2 and a surjection for h > d + 1. Set
Rd_lfD/S*,cv(OD/S)K(_l) = Ker Gd+1.

Then Rd_lfD/S*,ev((’)D/s)K(—l) is the orthogonal part of the image of the
injective morphism Rd_le/S*((’)X/S)K — Rd_lfD/S*(OD/S)K. Therefore
we have the following direct decomposition:
(2.18.8.5)

R fp5.(Opss)k = R fp/suev(Op)s)x & R fx /5. (Ox/8) k-

2.19 The Weight-Filtered Poincaré Duality

The following is the Poincaré duality:

Theorem 2.19.1 (Weight-filtered Poincaré duality). Let V be a com-
plete discrete valuation Ting of mized characteristics with perfect residue field
of characteristic p > 0. Let S be a p-adic formal V-scheme. Let (X, D) be
a formally smooth scheme with a relative SNCD over S. Assume that X/S
is projective and that the relative dimension of X/S is of pure dimension d.
Then there exists a perfect pairing of convergent F-isocrystal on S/Spf(V)

(219.1.1)  R"f. (Ox,p)/x) ®@ R**"£.(Ox,py/x) — Os/x(—d),

which is strictly compatible with the weight filtration. That is, the natural
morphism
(2.19.1.2)

R f,o(O(x,py i) — Homog,, (R**™" f.(Ox,py/K): Os i (—d))

is an isomorphism of weight-filtered convergent F-isocrystals on S/V .
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Proof. By (2.11.3), there exists a canonical morphism R2df*7C(O(X’D)/K) —
R*f,(Ox/r) of convergent isocrystals on S/Spf(V), which is constructed
from natural morphisms R2df*,C(O(XT17DT1)/T) — def*((’)XT1 ) for p-
adic enlargements T of S/Spf(V'). Using the cup product, we have the fol-
lowing composite morphism

(2.19.1.3)

R f. o(Ox.0y/k) @ R¥* " £.(Ox.py/i) — R*frc(Oix.0) /)
Tr o

— R¥f(Ox/K) —> Og/x(—d).

by [74, (3.12.1)]. The morphism (2.19.1.2) is an isomorphism. Indeed, by [74,
(3.17)], we may assume that S is the spectrum of a perfect field x of finite
characteristic. In this case Tr; is the classical trace map ([74, pp. 809-810]),
Therefore (2.19.1.2) for S = Spec(x) is an isomorphism by [85, (5.6)], and
hence we have an isomorphism (2.19.1.2).

By using the arguments in (2.18.1) and (2.18.2), we obtain the strict com-
patibility of the isomorphism (2.19.1.2) with the weight filtration. a

2.20 l-adic Weight Spectral Sequence

Let S be a scheme. Let (X, D)/S be a proper smooth scheme with a relative
SNCD. Set U := X \ D and let f: U — S be the structural mor-
phism. Let f(®): D) — § (k € Z>) be the structural morphism and
a®: D% — X also the natural morphism. Let [ be a prime number

which is invertible on S. Let wéf)(D/S)(—k) (k € N) be the etale orien-
k

tation sheaf of D) we()f) (D/S)(—k) := {U_l(/\(M<D)/O§())}‘D§f)’ where
u is the canonical morphism )A(:et — )Z'ZM of topoi. Here note that we do
not define “wéf) (D/S)”. If S is of characteristic p > 0, then the Frobenius
of (X, D) acts on wéf)(D/S)(—k) by the multiplication by p¥. Almost all
the results in the previous sections have [-adic analogues. For example, the
excision spectral sequence

(2.20.0.1) EX'F = Rh=k ¢ 0 (Qy (k) @7 P (D/S) (k) = R"f. o(Q).

calculates R" f. .(Q;).

Let j: U <, X be the open immersion. By Grothendieck’s absolute pu-
rity, which has been solved by O. Gabber ([33]), we obtain RFj,(Q;) —

aik)(QlyDuc) ®z wéf) (D/S)(—k)). As in the Introduction, we use the following
isomorphism
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(2.20.0.2) R*j.(Q) = Q. pw @z @ (D/S)(~k))
(—1)*
= a(@Qpw @z @ (D/S)(—k)).

Then we have the following spectral sequence:
(2.20.0.3)  ES"F = RFRED(Q @p P (D/S)(—k) = R*f.(Q)).

The spectral sequence (2.20.0.1) (resp. (2.20.0.3)) degenerates at Fo
(resp. E3) by the standard specialization argument (e.g., [34]) and the
Weil conjecture (26, (3.3.9)]).



