
Preface

The main goal of this book is to construct a theory of weights for the log
crystalline cohomologies of families of open smooth varieties in character-
istic p > 0. This is a p-adic analogue of the theory of the mixed Hodge
structure on the cohomologies of open smooth varieties over C developed
by Deligne in [23]. We also prove the fundamental properties of the weight-
filtered log crystalline cohomologies such as the p-adic purity, the functori-
ality, the weight-filtered base change theorem, the weight-filtered Künneth
formula, the convergence of the weight filtration, the weight-filtered Poincaré
duality and the E2-degeneration of p-adic weight spectral sequences. One can
regard some of these results as the logarithmic and weight-filtered version of
the corresponding results of Berthelot in [3] and K. Kato in [54].

Following the suggestion of one of the referees, we have decided to state
some theorems on the weight filtration and the slope filtration on the rigid
cohomology of separated schemes of finite type over a perfect field of char-
acteristic p > 0. This is a p-adic analogue of the mixed Hodge structure on
the cohomologies of separated schemes of finite type over C developped by
Deligne in [24]. The detailed proof for them is given in another book [70] by
the first-named author.

We have to assume that the reader is familiar with the basic premises
and properties of log schemes ([54], [55]) and (log) crystalline cohomologies
([3], [11], [54]). We hope that the findings in this book will serve as a role
as a first step to understanding the rich structures which p-adic cohomology
theory should have.

Tokyo Yukiyoshi Nakkajima
January 2008 Atsushi Shiho
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Chapter 2

Weight Filtrations on Log Crystalline
Cohomologies

In this chapter, we construct a theory of weights of the log crystalline coho-
mologies of families of open smooth varieties in characteristic p > 0, by
constructing four filtered complexes. We prove fundamental properties of
these filtered complexes. Especially we prove the p-adic purity, the functori-
ality of three filtered complexes, the convergence of the weight filtration, the
weight-filtered Künneth formula, the weight-filtered Poincaré duality and the
E2-degeneration of p-adic weight spectral sequences. We also prove that our
weight filtration on log crystalline cohomology coincides with the one defined
by Mokrane in the case where the base scheme is the spectrum of a perfect
field of characteristic p > 0.

2.1 Exact Closed Immersions, SNCD’s and Admissible
Immersions

In this section we give some results on exact closed immersions. After that,
we define a relative simple normal crossing divisor (=:relative SNCD) and a
key notion admissible immersion of a smooth scheme with a relative SNCD.

(1) Let the notations be as in §1.6. Consider triples

(2.1.0.1) (V,DV (V), [ ])’s,

where V is an open log subscheme of Y , ι : V
⊂−→ V is an exact immersion

into a log smooth scheme over S and DV (V) is the log PD-envelope of ι over
(S, I, γ). Let (Y/S)logERcrys be a full subcategory of (Y/S)logcrys whose objects
are the triples (2.1.0.1). We define the topology of (Y/S)logERcrys as the induced
topology by that of (Y/S)logcrys.
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56 2 Weight Filtrations on Log Crystalline Cohomologies

Definition 2.1.1. We call the site (Y/S)logERcrys (resp. the topos ( ˜Y/S)logERcrys)
the exact restricted log crystalline site (resp. exact restricted log crystalline
topos) of Y/(S, I, γ).

Let

(2.1.1.1) QER
Y/S : ( ˜Y/S)logERcrys −→ ( ˜Y/S)logRcrys

be a natural morphism of topoi: QER∗
Y/S (E) for an object E ∈ ( ˜Y/S)logRcrys is

the natural restriction of E and QER∗
Y/S commutes with inverse limits. We also

have a morphism

(2.1.1.2)
QER

Y/S : (( ˜Y/S)logERcrys, Q
ER∗
Y/SQ∗

Y/S(OY/S)) −→ (( ˜Y/S)logRcrys, Q
∗
Y/S(OY/S))

of ringed topoi.

Proposition 2.1.2. The morphism (2.1.1.1) (resp. (2.1.1.2)) gives an equiv-
alence of topoi (resp. ringed topoi).

Proof. One can check easily the isomorphism F
=−→ QER∗

Y/SQER
Y/S∗F for any

F ∈ ( ˜Y/S)logERcrys.
On the other hand, let D := (V,DV (V), [ ]) be an object of (Y/S)logRcrys. By

[54, (5.6)], DV (V) is constructed locally by a local exactification V
⊂−→ Vex

of V
⊂−→ V. Hence there exists a covering D =

⋃

i Di such that each Di is an
object in (Y/S)logERcrys. Note that Di ×D Di′ is also an object in (Y/S)logERcrys.

Then, for any F ∈ ( ˜Y/S)logRcrys, we have

F (D) = Ker(
∏

i

F (Di) −→
∏

i,i′

F (Di ×D Di′))

= Ker(
∏

i

QER
Y/S∗Q

ER∗
Y/SF (Di) −→

∏

i,i′

QER
Y/S∗Q

ER∗
Y/SF (Di ×D Di′))

= QER
Y/S∗Q

ER∗
Y/SF (D).

Hence we have F = QER
Y/S∗Q

ER∗
Y/SF . Thus the equivalences follow. ��

Next we prove the second fundamental exact sequence for exact closed
immersions of fine log schemes and using this, we give a local description of
exact closed immersions of fine log schemes under certain assumption.

Lemma 2.1.3 (Second fundamental exact sequence).
Let ι : Z

⊂−→ Y be an exact closed immersion of fine log schemes over a
fine log scheme S defined by a coherent ideal J of OY . Then the following
sequence
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(2.1.3.1) J /J 2 ∆−→ ι∗(Λ1
Y/S) −→ Λ1

Z/S −→ 0

is exact.Here∆ is the compositemorphism∆: J /J 2−→ι∗(Ω1
Y/S)−→ι∗(Λ1

Y/S).

If Z/S is log smooth, then ∆ is injective. If Z/S is log smooth and if
◦
Y is

affine, then (2.1.3.1) is split.

Proof. Let MY and MZ be the log structures of Y and Z with structural
morphisms αY : MY −→ OY and αZ : MZ −→ OZ , respectively. Let MS be
the log structure of S. Because the natural morphisms ι∗(Ω1

◦
Y /

◦
S
) −→ Ω1

◦
Z/

◦
S

and ι−1(MY /O∗
Y ) −→ MZ/O∗

Z are surjective, so is ι∗(Λ1
Y/S) −→ Λ1

Z/S . To
prove the exactness of the middle term of (2.1.3.1), it suffices to prove that
the following sequence

(2.1.3.2) HomOZ
(J /J 2, E) ←− HomOZ

(ι∗(Λ1
Y/S), E) ←− HomOZ

(Λ1
Z/S , E)

is exact for any OZ-module E . The question is local. Assume that the re-
striction of an element of g ∈ HomOZ

(ι∗(Λ1
Y/S), E) to ∆(J ) is the zero.

Let t be a section of J such that 1 + t ∈ O∗
Y . Then g(d log(1 + t)) =

g(dt/(1 + t)) = g(dt) = 0. Let β : ι−1(MY ) −→ ι−1(OY ) −→ OY /J be
the natural morphism. Since MZ is the push-out of the following diagram

β−1((OY /J )∗) −−−−→ ι−1(MY )
⏐

⏐

�

(OY /J )∗ ,

we may assume that a local section of MZ is represented by (u,m) (u ∈
(OY /J )∗,m ∈ ι−1(MY )). Let g′ : Λ1

Z/S −→ E be a morphism defined by
g′(ω) = g(ω̃) (ω ∈ Ω1

◦
Z/

◦
S
) and g′([(u,m)]) = g(d log u)+g(d log m) ([(u,m)] ∈

MZ), where ω̃ denotes any lift of ω to ι∗(Ω1
◦
Y /

◦
S
). It is straightforward to check

that g′ is well-defined and that g′ induces g. Thus (2.1.3.2) is exact.

Next assume that Z/S is log smooth and that
◦
Y is affine. Let Y 1 be the

first log infinitesimal neighborhood of the exact closed immersion Z
⊂−→ Y .

For two sections m ∈ ι−1(MY ) and a ∈ ι−1(OY ), let [m] and [a] be the images

in MZ and OZ , respectively. Because Z/S is log smooth and
◦
Y is affine, there

exists a section s : Y 1 −→ Z of the exact closed immersion Z
⊂−→ Y 1 induced

by ι. In particular, there exist morphisms smo : s−1(MZ) −→ MY |Y 1 and
sri : s−1(OZ) −→ OY 1 such that smo([m]) = m(1 + t) (∃t ∈ J /J 2, 1 + t ∈
O∗

Y 1) and sri([a]) = a + t′ (∃t′ ∈ J /J 2); moreover, smo and sri fit into the
following commutative diagram:
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s−1(MZ) smo−−−−→ MY |Y 1

s−1(αZ)

⏐

⏐

�

⏐

⏐

�
αY |Y 1

s−1(OZ) sri−−−−→ OY 1 ,

where the vertical morphisms above are structural morphisms.
To prove the existence of the local splitting of (2.1.3.1), we need the module

of the log derivations, e.g., in [53, (5.1)].
Let F be an OY -module. Let f : Y −→ S be the structural morphism.

Let DerS(Y,F) be a Γ (S,OS)-module whose elements are the pairs (
◦
δ, δ)’s

satisfying the following conditions:

(1)
◦
δ is a derivation OY −→ F over S,

(2) δ is a morphism MY −→ F of monoids,

(3) αY (m)δ(m) =
◦
δ(αY (m)) (m ∈MY ),

(4) δ(f−1(n)) = 0 (n ∈ MS).
Then, by [53, (5.3)], we have an isomorphism

HomOY
(Λ1

Y/S ,F) � h �−→ (h ◦ d, h ◦ d log) ∈ DerS(Y,F).

In particular,

HomOZ
(ι∗(Λ1

Y/S),J /J 2) = HomOY
(Λ1

Y/S ,J /J 2) ∼−→ DerS(Y,J /J 2).

Let β be the isomorphism (1+J )/(1+J 2) � 1+t �−→ t ∈ J /J 2 of abelian

sheaves. It is easy to check that the morphisms
◦
δ : OY � a �−→ a− sri([a]) ∈

J /J 2 and δ : MY � m �−→ β(m/smo([m])) ∈ J /J 2 satisfy (1) ∼ (4) and
give a local splitting of (2.1.3.1). ��

Lemma 2.1.4. Let the notations be as in (2.1.3) with Y,Z log smooth over S.
Let A

n
S (n ∈ N) be a log scheme whose underlying scheme is A

n
◦
S

and whose

log structure is the pull-back of that of S by the natural projection A
n
◦
S
−→

◦
S.

Let z be a point of
◦
Z and assume that there exists a chart (Q −→MS , P −→

MZ , Q
ρ−→ P ) of Z −→ S on a neighborhood of z such that ρ is injective, such

that Coker(ρgp) is torsion free and that the natural homomorphism OZ,z ⊗Z

(P gp/Qgp) −→ Λ1
Z/S,z is an isomorphism. Then, on a neighborhood of z,

there exist a nonnegative integer c and the following cartesian diagram:

(2.1.4.1)

Z
ι−−−−→ Y

⏐

⏐

�

⏐

⏐

�

(S ⊗Z[Q] Z[P ], P a) ⊂−−−−→ (S ⊗Z[Q] Z[P ], P a)×S A
c
S .
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Here the vertical morphisms are strict etale and the lower horizontal mor-
phism is the base change of the zero section S −→ A

c
S.

Proof. Assume that
◦
Y is affine. By (2.1.3) we have the following split exact

sequence

(2.1.4.2) 0 −→ J /J 2 ∆−→ ι∗(Λ1
Y/S) −→ Λ1

Z/S −→ 0.

Let s be the image of z in S. Since Coker(ρgp) is torsion free, there ex-
ists a homomorphism P gp −→ Mgp

Y,ι(z) which is compatible with the monoid
homomorphisms Q −→ MS,s −→ MY,ι(z) and P −→ MZ,z. Since we have
(MZ/O∗

Z)z = (MY /O∗
Y )ι(z), the homomorphism P gp −→Mgp

Y,ι(z) induces the
homomorphism P −→ MY,ι(z), which induces a chart of Y −→ S on a neigh-
borhood of ι(z). By the exact sequence (2.1.4.2), there exist local sections
xr+1, . . . , xr+c ∈ J and elements m1, . . . ,mr ∈ P such that {d log mi}r

i=1 is
a basis of Λ1

Z/S,z and {{d log mi}r
i=1, {dxj}d+c

j=r+1} is a basis of Λ1
Y/S,ι(z). By

the same argument as that in [54, p. 205], we have compatible etale morphisms
◦
Z −→

◦
S ⊗Z[Q] Z[P ] and

◦
Y −→ (

◦
S ⊗Z[Q] Z[P ])×◦

S
Spec◦

S
(O◦

S
[xd+1, . . . , xd+c])

in the classical sense. ��

Corollary 2.1.5. Let S0
⊂−→ S be a closed immersion of fine log schemes.

Let Z0 (resp. Y ) be a log smooth scheme over S0 (resp. S), which can be
considered as a log scheme over S. Let ι : Z0

⊂−→ Y be an exact closed im-

mersion over S. Let z be a point of
◦
Z0 and assume that there exists a chart

(Q −→ MS , P −→ MZ0 , Q
ρ−→ P ) of Z0 −→ S0

⊂−→ S on a neighborhood of
z such that ρ is injective, such that Coker(ρgp) is torsion free and that the
natural homomorphism OZ0,z ⊗Z (P gp/Qgp) −→ Λ1

Z/S0,z is an isomorphism.
Then, on a neighborhood of z, there exist a nonnegative integer c and the
following cartesian diagram

(2.1.5.1)
Z0 −−−−−→ Y ′ −−−−−→ Y

⏐

⏐

�

⏐

⏐

�

⏐

⏐

�

(S0 ⊗Z[Q] Z[P ], P a)
⊂−−−−−→ (S ⊗Z[Q] Z[P ], P a)

⊂−−−−−→ (S ⊗Z[Q] Z[P ], P a) ×S A
c
S ,

where the vertical morphisms are strict etale and the lower second horizontal
morphism is the base change of the zero section S

⊂−→ A
c
S and Y ′ := Y ×A

c
S
S.

Proof. Set Y0 := Y ×S S0 and let ι0 : Z0
⊂−→ Y0 be the closed immer-

sion induced by ι. Apply (2.1.4) for ι0. Then we have a cartesian diagram

(2.1.4.1) for Z0/S0 and Y0/S0 around any point z ∈
◦
Z0. By the same ar-

gument as in the proof of (2.1.4) using the isomorphism (MY /O∗
Y )ι(z) �

(MY0/O∗
Y0

)ι0(z), we see that the chart P −→ MY0 extends to a chart
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P −→ MY around ι(z). Let J0 (resp. J ) be the ideal sheaf of ι0 (resp. ι).
Let {{d log mi}r

i=1, {dx
(0)
j }r+c

j=r+1} (mi ∈ P, x
(0)
j ∈ J0) be a basis of Λ1

Y0/S0
.

Let xj be any lift of x
(0)
j in J . Then, using [13, Corollaire to II §3 Propo-

sition 6], we see that {{d log mi}r
i=1, {dxj}r+c

j=r+1} is a basis of Λ1
Y/S,ι(z)

(cf.[40, 4 (17.12.2)]). Hence we have a strict etale morphism Y −→ (S ⊗Z[Q]

Z[P ], P a)×S A
c
S . Now we obtain the diagram (2.1.5.1). ��

Remark 2.1.6. By a similar argument to the proof of (2.1.4) and (2.1.5) and
using [54, (3.5), (3.13)], we see that the diagrams as in (2.1.4.1), (2.1.5.1)
always exist etale locally (for some Q −→ P ) even if we drop the condition
on the existence of a nice chart which we assumed in (2.1.4), (2.1.5).

(2) Let Y be a scheme over a scheme T . Let Div(Y/T )≥0 be the integral
monoid of effective Cartier divisors on Y over T (e.g., [56, (1.1.1)]). We say
that a family {Eλ}λ∈Λ of non-zero elements in Div(Y/T )≥0 has a locally finite
intersection if, for any point z ∈ Y , there exists a Zariski open neighborhood
V of z such that ΛV := {λ ∈ Λ | Eλ|V = 0} is a finite set. If {Eλ}λ∈Λ has a
locally finite intersection, then we can define a sum

∑

λ∈Λ nλEλ (nλ ∈ N) in
Div(Y/T )≥0.

Let f : X −→ S0 be a smooth morphism of schemes.

Definition 2.1.7. We call an effective Cartier divisor D on X/S0 is a relative
simple normal crossing divisor (=:relative SNCD) on X/S0 if there exists a
family ∆ := {Dλ}λ∈Λ of non-zero effective Cartier divisors on X/S0 of locally
finite intersection which are smooth schemes over S0 such that

(2.1.7.1) D =
∑

λ∈Λ

Dλ in Div(X/S0)≥0

and, for any point z of D, there exist a Zariski open neighborhood V of z in
X and the following cartesian diagram:

(2.1.7.2)
D|V ⊂−−−−→ V
⏐

⏐

�

⏐

⏐

�

g

Spec
S0

(OS0 [y1, . . . , yd]/(y1 · · · ys)) −−−−→ Spec
S0

(OS0 [y1, . . . , yd])

(for some positive integers s and d such that s ≤ d), where the morphism g
is etale.

Note that we do not require a relation a priori between {Dλ|V }λ∈ΛV
and

the family {yi = 0}s
i=1 of closed subschemes in V in the diagram (2.1.7.2).

However, by (A.0.1) below, we obtain {Dλ|V }λ∈ΛV
= {{yi = 0}}s

i=1 in the
diagram (2.1.7.2) if V is small.
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Definition 2.1.8. We call a smooth divisor on X/S0 contained in D a smooth
component of D. We call ∆ = {Dλ}λ∈Λ a decomposition of D by smooth
components of D over S0.

Note that the decomposition of a relative SNCD by smooth components is
not unique.

Let DivD(X/S0)≥0 be a submonoid of Div(X/S0)≥0 consisting of effective
Cartier divisors E’s on X/S0 such that there exists an open covering X =
⋃

i∈I Vi (depending on E) of X such that E|Vi
is contained in the submonoid

of Div(Vi/S0)≥0 generated by Dλ|Vi
(λ ∈ Λ). By (A.0.1) below, we see that

the definition of DivD(X/S0)≥0 is independent of the choice of ∆.
The pair (X,D) gives a natural fs(=fine and saturated) log structure in

˜Xzar as follows (cf. [54, p. 222–223], [29, §2]).
Let M(D)′ be a presheaf of monoids in ˜Xzar defined as follows: for an open

subscheme V of X,

Γ (V,M(D)′) := {(E, a) ∈DivD|V (V/S0)≥0 × Γ (V,OX)|(2.1.8.1)
a is a generator of Γ (V,OX(−E))}

with a monoid structure defined by (E, a) · (E′, a′) := (E +E′, aa′). The nat-
ural morphism M(D)′ −→ OX defined by the second projection (E, a) �→ a

induces a morphism M(D)′ −→ (OX , ∗) of presheaves of monoids in ˜Xzar.
The log structure M(D) is, by definition, the associated log structure to
the sheafification of M(D)′. Because DivD|V (V/S0)≥0 is independent of the
choice of the decomposition of D|V by smooth components, M(D) is inde-
pendent of the choice of the decomposition of D by smooth components of D.

Proposition 2.1.9. Let the notations be as above. Let z be a point of D
and let V be an open neighborhood of z in X which admits the diagram
(2.1.7.2). Assume that z ∈

⋂s
i=1{yi = 0}. If V is small, then the log struc-

ture M(D)|V −→ OV is isomorphic to O∗
V yN

1 · · · yN

s
⊂−→ OV . Consequently

M(D)|V is associated to the homomorphism N
s
V � ei �−→ yi ∈ M(D)|V

(1 ≤ i ≤ s) of sheaves of monoids on V , where {ei}s
i=1 is the canonical basis

of N
s. In particular, M(D) is fs.

Proof. By the definition of M ′(D) and by (A.0.1) below, the homomorphism
M ′(D)|V −→ OV factors through O∗

V yN

1 · · · yN

s if V is small. Hence there
exists a natural morphism M(D)|V −→ O∗

V yN

1 · · · yN

s of log structures on V .
By taking the stalks, one can easily check that the morphism above is an
isomorphism. ��

By abuse of notation, we denote the log scheme (X,M(D)) by (X,D).
Set U := X \D and let j : U

⊂−→ X be the natural open immersion. Set
N(D) := OX ∩ j∗(O∗

U ). We remark that M(D) � N(D) in general; indeed,
the stalks of N(D)/O∗

X are not even finitely generated in general (see (A.0.9)
below).
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Let S0
⊂−→ S be a closed immersion of schemes defined by a quasi-coherent

ideal sheaf I of OS . We can consider the scheme X as a scheme over S by the
closed immersion S0

⊂−→ S. Let (X ,D)(= (X ,M(D))) be a smooth scheme
with a relative SNCD over S. Let ι : X −→ X be a closed immersion over S
defined by a quasi-coherent ideal sheaf of OX .

Definition 2.1.10. Let ∆ := {Dλ}λ∈Λ be a decomposition of D by smooth
components of D. Let ι : (X,D) ⊂−→ (X ,D) be an exact (closed) immersion
into a smooth scheme with a relative SNCD over S. Then we call ι (or a pair
(X ,D)/S by abuse of terminology) an admissible (closed) immersion over S

with respect to ∆ if D admits a decomposition ˜∆ := {Dλ}λ∈Λ by smooth
components of D such that ι induces an isomorphism Dλ

∼−→ Dλ ×X X
of schemes over S0 for all λ ∈ Λ. We say that ˜∆ is compatible with ∆.
We sometimes denote the admissible (closed) immersion by ι : (X,D;∆) ⊂−→
(X ,D; ˜∆).

Remark 2.1.11. If the underlying topological spaces of
◦
S0 and

◦
S are the same

and if (X ,D) is a lift of (X,D) with a decomposition ∆ of D by smooth
components of D, we obtain the decomposition ˜∆ ofD by smooth components
of D canonically.

Let ι : (X,D;∆) ⊂−→ (X ,D; ˜∆) be an admissible immersion. Let V be an
open subscheme of X. If we set V := X \ (X \V ) (here X is the closure of X
in X ), the restriction of ι to (V,D ∩ V )

(2.1.11.1) ιV : (V,D ∩ V ) ⊂−→ (V, (
⋃

λ∈ΛV

Dλ) ∩ V)

is an admissible immersion with respect to {Dλ}λ∈ΛV
.

Definition 2.1.12. We call the admissible immersion ιV the restriction of ι
to V , and ∆|V := {Dλ}λ∈ΛV

the restriction of ∆ to V .

By (2.1.5) and (A.0.1) below, we have the following:

Lemma 2.1.13. Let ι : (X,D;∆) ⊂−→ (X ,D; ˜∆) be an admissible immersion.
Then, for any point z of X, there exist Zariski open neighborhoods V of z
and V of ι(z), positive integers s ≤ d ≤ d′ and the following two cartesian
diagrams:

(2.1.13.1)
D|V ⊂−−−−→ V
⏐

⏐

�

⏐

⏐

�

g

Spec
S
(OS [x1, . . . , xd′ ]/(x1 · · ·xs)) −−−−→ Spec

S
(OS [x1, . . . , xd′ ]),
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(2.1.13.2)
V

⊂−−−−→ V
⏐

⏐

�

⏐

⏐

�

g

Spec
S0

(OS0 [x1, . . . , xd′ ]/(xd+1, . . . , xd′)) −−−−→ Spec
S
(OS [x1, . . . , xd′ ]),

where g is etale and {Dλ|V}λ∈ΛV = {{xi = 0}}s
i=1 in the diagram (2.1.13.1).

Let (S, I, γ) be a PD-scheme and let (X,D) be a smooth scheme with a
relative SNCD over S0 := Spec

S
(OS/I). Let ∆ be a decomposition of D by

smooth components of D. Consider triples

(2.1.13.3) ((U,D|U ),D(U,D|U )((U ,D)), [ ])’s,

where U is an open subscheme of X, (U,D|U ) ⊂−→ (U ,D) is an admissible
immersion over S with respect to ∆U and D(U,D|U )((U ,D)) is the log PD-
envelope of the immersion above over (S, I, γ). Let ((X,D)/S)logARcrys be a
full subcategory of ((X,D)/S)logcrys whose objects are the triples (2.1.13.3).
We define the topology of ((X,D)/S)logARcrys as the induced topology by

that of ((X,D)/S)logcrys. Let ( ˜(X,D)/S)logARcrys be the topos associated to
((X,D)/S)logARcrys.

Definition 2.1.14. We call the site ((X,D)/S)logARcrys (resp. the topos

( ˜(X,D)/S)logARcrys) the admissible restricted log crystalline site (resp. admis-
sible restricted log crystalline topos) of (X,D)/(S, I, γ).

Let

(2.1.14.1) QAR
(X,D)/S : ( ˜(X,D)/S)logARcrys −→ ( ˜(X,D)/S)logRcrys

be a natural morphism of topoi: For an object E ∈ ( ˜(X,D)/S)logRcrys,
QAR∗

(X,D)/S(E) is the natural restriction of E and QAR∗
(X,D)/S commutes with

inverse limits. We also have a morphism

(2.1.14.2) QAR
(X,D)/S : (( ˜(X,D)/S)logARcrys, Q

AR∗
(X,D)/SQ∗

(X,D)/S(O(X,D)/S))

−→ (( ˜(X,D)/S)logRcrys, Q
∗
(X,D)/S(O(X,D)/S))

of ringed topoi.

Proposition 2.1.15. The morphism (2.1.14.1) (resp. (2.1.14.2)) gives an
equivalence of topoi (resp. ringed topoi).

Proof. Let ι : (X,D) ⊂−→ P be an exact closed immersion into a log smooth
scheme over S. Let P ′ be an exact closed log subscheme of P locally obtained
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in (2.1.5) for ι. Then ι is locally an admissible immersion with respect to the
restriction of ∆ to an open subscheme of X since P ′ is a local lift of (X,D).
Hence we obtain (2.1.15) by (2.1.2) and by the proof of (2.1.2). ��

2.2 The Log Linearization Functor

In this section we recall the log version of the linearization functor in [11, §6]
(cf. [54, (6.9)]) and the log HPD differential operators. After that, we show
some properties of the log linearization functor for a smooth scheme with a
relative SNCD.

(1) Let (S, I, γ) and f : Y −→ S be as in §1.6. For an object (V, T,MT , ι, δ)
of the log crystalline site (Y/S)logcrys, we sometimes denote it simply by
(V, T,MT , δ), (V, T, δ) or even T as usual. We also denote by T the rep-
resentable sheaf in ( ˜Y/S)logcrys defined by T . Let F be an object of ( ˜Y/S)logcrys.

Let ( ˜Y/S)logcrys|F be the localization of the topos ( ˜Y/S)logcrys at F : the objects

in ( ˜Y/S)logcrys|F are the pairs (E, φ)’s, where E is an object in ( ˜Y/S)logcrys and

φ is a morphism E −→ F in ( ˜Y/S)logcrys. As usual, let

(2.2.0.1) jF : ( ˜Y/S)logcrys|F −→ ( ˜Y/S)logcrys

be a morphism of topoi defined by the following: for an object E in (̃Y/S)logcrys,

j∗F (E) is a pair (E × F,E × F
proj.−→ F ); for an object (E, φ) in ( ˜Y/S)logcrys|F ,

jF∗((E, φ)) is the sheaf of the sections of φ.
Let (V, T,MT , δ) be an object of the log crystalline site (Y/S)logcrys. Let

jT : ( ˜Y/S)logcrys|T −→ ( ˜Y/S)logcrys

be the localization morphism in (2.2.0.1) for F = T . Let

(2.2.0.2) ϕ : (( ˜Y/S)logcrys|T ,OY/S |T ) −→ (˜Tzar,OT )

be a morphism of ringed topoi defined by the following (cf. [11, 5.26 Propo-
sition]): for an OT -module E , the sections of ϕ∗(E) at (T ′, φ) is Γ (T ′, φ∗(E));
for an OY/S-module E in (̃Y/S)logcrys|T , ϕ∗(E) is defined as follows: let T ′ be

an open log subscheme of T . Let T ′ also denote the object (T ′ ×T V
⊂−→

(T ′×T T = T ′)) in (Y/S)logcrys. Then we have a natural morphism ι : T ′ −→ T

in (Y/S)logcrys; the section of ϕ∗(E) is, by definition, Γ (T ′, ϕ∗(E)) := E((T ′, ι)).
By the log version of the ringed topos version of [11, 5.26 Proposition], we
have the following diagram of ringed topoi
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(2.2.0.3)

(( ˜Y/S)logcrys|T ,OY/S |T )
jT−−−−→ (( ˜Y/S)logcrys,OY/S)

uY/S−−−−→ (˜Yzar, f
−1(OS))

ϕ

⏐

⏐

�

�

⏐

⏐

( ˜Tzar,OT ) ←−−−− (˜Vzar,OV ) −−−−→ (˜Vzar, f
−1(OS)|V )

and the following commutative diagram of topoi

(2.2.0.4)

( ˜Y/S)logcrys|T
jT−−−−→ ( ˜Y/S)logcrys

ϕ

⏐

⏐

�

⏐

⏐

�

uY/S

˜Tzar = ˜Vzar −−−−→ ˜Yzar,

where ϕ is defined as follows: Γ((T ′, φ), ϕ−1(E)) := Γ(T ′, φ−1(E)) for E ∈ ˜Tzar

and (T ′, φ) ∈ ( ˜Y/S)logcrys|T .
By the log version of [11, 5.27 Corollary], we have the following:

Proposition 2.2.1. Let the notations be as above. Assume that V = Y . Then
the following hold:

(1) The functors jT∗ is exact.
(2) For an abelian sheaf E in ( ˜Y/S)logcrys, jT∗(E) is uY/S∗-acyclic.

Now let us recall the log linearization functor briefly (cf. [11, 6.10 Propo-
sition], [54, (6.9)]).

Let ι : Y
⊂−→ Y be a closed immersion into a log smooth scheme over

S such that γ extends to
◦
Y. Let DY (Y) be the log PD-envelope of ι over

(S, I, γ). Let

(2.2.1.1) ϕ : (( ˜Y/S)logcrys|DY (Y),OY/S |DY (Y)) −→ (
◦̃
DY (Y)zar,ODY (Y))

be the morphism (2.2.0.2) for T = DY (Y). For an ODY (Y)-module E , we
define L(E) as follows:

(2.2.1.2) L(E) := jDY (Y)∗ϕ
∗(E) ∈ ( ˜Y/S)logcrys.

As in the classical crystalline case, L defines a functor:

{the category of ODY (Y)-modules and ODY (Y)-linear morphisms}
(2.2.1.3)

−→ {OY/S-modules}.

For (U, T, δ) ∈ (Y/S)logcrys, let DU (T×SY) be the PD-envelope of U
⊂−→ T×SY

compatible with γ and δ and let pT : DU (T×SY) −→ T , pY : DU (T×SY) −→
DY (Y) be natural morphisms. Then the sheaf L(E)(U,T,δ) on Tzar induced by
L(E) is given by L(E)(U,T,δ) = pT∗p

∗
Y E = ODU (T×SY) ⊗ODY (Y) E .
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As in the classical crystalline case, another definition of the log lineariza-
tion functor is known. To state it, we need to recall the definition of a log
HPD stratification (cf. [11, 4.3H Definition]; however there is a mistype in
[loc.cit., 1)]: “DX/S-linear” should be replaced by “DX/S(1)-linear”).

Let DY (Y2) be the log PD-envelope of the locally closed immersion Y
⊂−→

Y ×S Y over (S, I, γ). Let J be the PD-ideal sheaf defining the exact locally
closed immersion Y

⊂−→ DY (Y2).

Definition 2.2.2. Let E and F be two ODY (Y)-modules.
(1) An isomorphism ε : ODY (Y2)⊗ODY (Y)E −→ E⊗ODY (Y)ODY (Y2) is called

a log HPD stratification if ε is ODY (Y2)-linear, if ε mod J is the identity and
if the cocycle condition holds.

(2) ([75, (1.1.3)]) An ODY (Y)-linear morphism u : ODY (Y2) ⊗ODY (Y)

E −→ F is called a log HPD differential operator.
(3) ([75, (1.1.3)]) For a positive integer n, an ODY (Y)-linear morphism

u : (ODY (Y2)/J [n+1])⊗ODY (Y) E −→ F

is called a log PD differential operator of order ≤ n.

Set L′(E) := ODY (Y2)⊗ODY (Y) E . Then, as in the classical crystalline case,
there is a canonical log HPD stratification

ODY (Y2) ⊗ODY (Y) L′(E) ∼−→ L′(E)⊗ODY (Y) ODY (Y2).

Hence L′(E) defines a crystal of OY/S-modules (cf. [54, (6.7)]), which we
denote by the same symbol L′(E). L′ defines a functor

{the category of ODY (Y)-modules and log HPD differential operators} −→

{the category of crystals of OY/S-modules} :

For a log HPD differential operator u : ODY (Y2) ⊗ODY (Y) E −→ F , L′(u) :
L′(E) −→ L′(F) is given by the composite

ODY (Y2) ⊗ODY (Y) E
δ⊗id−→ ODY (Y2) ⊗ODY (Y) ODY (Y2) ⊗ODY (Y) E(2.2.2.1)
id⊗u−→ ODY (Y2) ⊗ODY (Y) F ,

where δ : ODY (Y2) −→ ODY (Y2) ⊗ODY (Y) ODY (Y2) = ODY (Y3) is the map
induced by the projection Y3 −→ Y2 to the first and the third factors. By
the log version of [11, 6.10 Proposition], the following holds:

Proposition 2.2.3. For an ODY (Y)-module E, there exists a canonical iso-
morphism

L′(E) ∼−→ L(E).
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Hence L also defines the functor

{the category of ODY (Y)-modules and log HPD differential operators} −→

{the category of crystals of OY/S-modules}.
By (2.2.2.1) and (2.2.3), we see the following: For a log HPD differential
operator u : ODY (Y2)⊗ODY (Y) E −→ F and (U, T, δ) ∈ (Y/S)logcrys, L(u)(U,T,δ) :
L(E)(U,T,δ) −→ L(F)(U,T,δ) is given by the composite

ODY (T×SY) ⊗ODY (Y) E
δT ⊗id−→ ODY (T×SY) ⊗ODY (Y) ODY (Y2) ⊗ODY (Y) E

(2.2.3.1)

id⊗u−→ ODY (T×SY) ⊗ODY (Y) F ,

where δT : ODY (T×SY) −→ ODY (T×SY) ⊗ODY (Y) ODY (Y2) = ODY (T×SY2)

(the equality follows from the log version of [11, 6.3, proof of 6.10]) is the
map induced by the projection T ×S Y2 −→ T ×S Y to the first and the third
factors. It is easy to obtain the following lemma from the definition of L′.

Lemma 2.2.4. The functor L, regarded as the functor

{the category of ODY (Y)-modules and ODY (Y)-linear morphisms} −→

{the category of crystals of OY/S-modules}
is exact.

Remark 2.2.5. (cf. [3, IV Remarque 1.7.8]) The functor L is not left exact as
a functor (2.2.1.3) in general. Indeed, let κ be a perfect field of characteristic
p > 0 and let Wn (n ∈ Z≥2) be the Witt ring of κ of length n. Set S :=
(Spec(Wn),W ∗

n , pWn, [ ]), Y := (Spec(κ), κ∗), Y := S and E := Wn. Then,
though a sequence

0 −→ pE −→ E pn−1×−→ E
of Wn-modules is exact, the following sequence

0 −→ L(pE) −→ L(E)
pn−1×−→ L(E)

in OY/S-modules is not exact since the value of the sequence above at Y is

0 −→ pWn/p2Wn
0−→ κ

0−→ κ.

The following is analogous to [11, 6.2 Proposition].

Lemma 2.2.6. (1) Let Yi (i = 1, 2) and (S, I, γ) be as in §1.6. Let Ti =
(Ui, Ti, δi) = (Ui, Ti,MTi

, δi) (i = 1, 2) be an object of the log crystalline site
(Yi/S)logcrys, which is considered as a representable sheaf in the topos (Ỹi/S)logcrys.
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Let Ji be the defining ideal sheaf of the closed immersion Ui
⊂−→ Ti. Let

Y1
⊂−→ Y2 be an exact closed immersion which induces an exact closed im-

mersion U1
⊂−→ U2. Let g : T1 −→ T2 be an exact closed immersion of fine

log PD-schemes over S fitting into the following commutative diagram

U1
⊂−−−−→ U2

⋂

⏐

⏐

�

⏐

⏐

�

⋂

T1
g−−−−→
⊂

T2.

Assume that g∗ induces a surjective morphism g∗ : g∗(J2) −→ J1. Let

ι : (Ỹ1/S)logcrys|T1 −→ (Ỹ2/S)logcrys|T2

be the induced morphism of topoi. Let (U, T, δ, φ) = (U, T,MT , δ, φ) be a
representable object in (Ỹ2/S)logcrys|T2 . Let J be the defining ideal sheaf of

the closed immersion U
⊂−→ T . Set J := J + IOT and let δ be the ex-

tension of δ and γ on J . Let Dδ(T ×T2 T1) be the log PD-envelope of the
closed immersion U ×U2 U1

⊂−→ T ×T2 T1 over (T,J , δ) with natural mor-
phism q : (U ×U2 U1,Dδ(T ×T2 T1), [ ]) −→ (U1, T1, δ1) in (Y1/S)logcrys. Then
ι∗((U, T, δ, φ)) is representable by an object (U ×U2 U1,Dδ(T ×T2 T1), [ ], q) ∈
(Y1/S)logcrys|T1 ; the functor ι∗ is exact.

(2) Let the notations and the assumptions be as in (1). Then Dδ(T ×T2

T1) = T ×T2 T1.

Proof. (1): We have to check that (U ×U2 U1,Dδ(T ×T2 T1), [ ], q) is actually
an object of (Y1/S)logcrys|T1 .

Since U ×U2 U1 is an open subscheme of U1, γ extends to OU×U2U1 . Since
the image J in OU×U2U1 is IOU×U2U1 , δ actually extends to OU×U2U1 (cf. [11,
6.2.1 Lemma]). Since δ extends toOU×U2U1 , the exact closed immersion U×U2

U1
⊂−→ Dδ(T ×T2 T1) is a PD closed immersion by [11, 3.20 Remarks 4)].

Set J i := Ji+IOTi
(i = 1, 2) and let δi be the extension of δi and γ on J i.

Set J12,T := Ker(OT×T2T1 −→ OU×U2U1). Let J ′
12,T be the PD-ideal sheaf

of ODδ(T×T2T1) obtained from J12,T . Set J 12,T := J ′
12,T + IODδ(T×T2T1).

Consider the following commutative diagram

ODδ(T×T2T1) ODδ(T×T2T1)
�

⏐

⏐

�

⏐

⏐

OT×T2T1 OT
�

⏐

⏐

�

⏐

⏐

OT1 ←−−−− OT2 .
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Here we omit to write the direct images. We claim that the left vertical com-
posite morphism induces a PD-morphism (OT1 ,J 1)−→(ODδ(T×T2T1),J 12,T ).
Indeed, by the definition of δ, the composite morphism (OT2 ,J 2) −→
(OT ,J ) −→ (ODδ(T×T2T1),J 12,T ) is a PD-morphism. Let s be a local sec-
tion of Ker(g∗ : J2 −→ J1). Then the image of s in ODδ(T×T2T1) by the right
vertical composite morphism is the zero. Hence the claim follows because
g∗ : g∗(J 2) −→ J 1 is surjective by the assumption. Consequently we actually
have a natural morphism

q : (U ×U2 U1,Dδ(T ×T2 T1), [ ]) −→ (U1, T1, δ1)

of log PD-schemes over (S, I, γ).
By using the universality of the log PD-envelope, it is straightforward to

see that

(2.2.6.1) ι∗((U, T, δ, φ)) = (U ×U2 U1,Dδ(T ×T2 T1), [ ], q).

Therefore, for an object E in (Ỹ2/S)logcrys|T2 , we have

ι∗E((U, T, δ, φ)) = Hom
(Ỹ1/S)logcrys|T1

(ι∗((U, T, δ, φ)), E)(2.2.6.2)

= E((U ×U2 U1,Dδ(T ×T2 T1), [ ], q)).

Using the formula (2.2.6.2) and noting that Dδ(T ×T2 T1) ≈ T ×T2 T1 is a
closed set of T as a topological space, we can easily see that the functor ι∗ is
exact.

(2): Set J12 := Ker(OT2 −→ g∗(OT1)). The structure sheaf of T ×T2 T1 is
equal to OT /J12OT . By the following commutative diagram

OT /J OU
�

⏐

⏐

∥

∥

∥

φ−1(OT2/J2) φ−1(OU2),

we have J ∩φ−1(J12)OT = φ−1(J2 ∩J12)OT . It is easy to see that the ideal
sheaf J12 ∩ J2 is a sub PD-ideal sheaf of J2. Hence, by the same proof of
[11, 3.5 Lemma], the PD-structure δ defines a unique PD-structure δ12 on
J (OT /J12OT ). Moreover, it is easy to see that γ extends to OT×T2T1 . Hence
(OT /J12OT ,J (OT /J12OT ), δ12) is a sheaf of the universal PD-algebras of
(OT×T2T1 ,J12,T ) over (OT ,J , δ), that is, we have (2). ��

Following [31], let us denote by Λi
Y/S the sheaf of log differential forms of

Y/S of degree i (i ∈ N). The following is a log version of [11, 6.12 Theorem]:

Proposition 2.2.7. Let ι : Y
⊂−→ Y be a closed immersion of fine log

schemes over S. Assume that Y is log smooth over S and that γ extends
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to
◦
Y . Let DY (Y) be the log PD-envelope of ι over (S, I, γ). Then the natural

morphism

(2.2.7.1) OY/S −→ L(ODY (Y) ⊗OY Λ•
Y/S)

is a quasi-isomorphism.

Proof. Let DY (Yi) (i ∈ Z>0) be the log PD-envelope of the composite im-
mersion Y

⊂−→ Y ⊂−→ Yi over S, where Y ⊂−→ Yi is the diagonal immersion.
Let pi : DY(Y2) −→ Y2 i-th proj.−→ Y (i = 1, 2) be a natural morphism and let
J be the ideal sheaf of the locally exact closed immersion Y −→ DY(Y2).
The problem is local as in [11, 6.12 Theorem]; we may assume that Λ1

Y/S has
a basis {d log tj}n

j=1, where tj is a local section of the log structure of Y. Let
uj be a local section of Ker(O∗

DY (Y2) −→ O∗
Y) such that p∗2(tj) = p∗1(tj)uj .

Then, by [54, (6.5)], the following morphism

OY〈s1, . . . , sn〉 � s
[n]
j �−→ (uj − 1)[n] ∈ ODY(Y2)

is an isomorphism, where sj ’s are independent indeterminates. We identify
ODY (Y2) with OY〈s1, . . . , sn〉 by this isomorphism. By the log version of [11,
6.2 Proposition], ιlogcrys∗(OY/S) is a crystal of OY/S-modules. Hence, as in [11,
6.3 Corollary], we obtain a canonical isomorphism ODY (Y)⊗OY ODY(Y2)

∼−→
ODY (Y2). Consequently we can identify ODY (Y2) with ODY (Y)〈s1, . . . , sn〉
(cf. [54, (6.5)]). Moreover, by [54, (5.8.1)] and [81, Proposition 3.2.5], there
exists an isomorphism Λ1

Y/S � d log tj
∼�−→ uj − 1 ∈ J /J 2 = J /J [2] of

OY -modules.
Let p13 : DY (Y3) −→ DY (Y2) be the induced morphism by the product

of the first and the third projections Y3 −→ Y2. Let

δ : ODY (Y2)
p∗
13−→ ODY (Y3)

∼−→ ODY (Y2) ⊗ODY (Y) ODY (Y2)

be the morphism in [75, p. 14]. Then, by the formula [75, (1.1.4.2)], δ(uj) =
uj⊗uj . Hence δ(sj) = sj⊗sj +sj⊗1+1⊗sj (the last formula in [75, p. 16]).
Hence the natural connection

∇ : ODY (Y2) ⊗OY Λq
Y/S −→ ODY (Y2) ⊗OY Λq+1

Y/S

is given by

(2.2.7.2) ∇(as
[i1]
1 · · · s[in]

n ⊗ω) = a(
n

∑

j=1

s
[i1]
1 · · · s[ij−1]

j · · · s[in]
n (sj+1)d log tj∧ω

+s
[i1]
1 · · · s[in]

n ⊗ dω) (a ∈ ODY (Y), i1, . . . , in ∈ N, ω ∈ Λq
Y/S)
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as in [11, 6.11 Lemma]. Let (U, T, δ) be an object of (Y/S)logcrys. Because the
problem is local, we may assume that there exists the following commutative
diagram:

U
⊂−−−−→ T

⏐

⏐

�

⏐

⏐

�

Y
ι−−−−→ Y.

Then we have a natural morphism (U, T, δ) −→ (Y,DY (Y), [ ]) in (Y/S)logcrys

and a natural complex OT 〈s1, . . . , sn〉 ⊗OY Λ•
Y/S , which is equal to the com-

plex L(ODY (Y) ⊗OY Λ•
Y/S)(U,T,δ).

Now, consider the case n = 1 and set s1 = s and t1 = t. Then the
complexOT 〈s1, . . . , sn〉⊗OY Λ•

Y/S is equal toOT 〈s〉 ∇T−→ OT 〈s〉d log t. Because
∇T (s[n]) = s[n−1](s + 1)d log t = (ns[n] + s[n−1])d log t for a positive integer
n, we have the following formula

∇T (
m

∑

n=0

ans[n]) =
m

∑

n=1

(an + (n− 1)an−1)s[n−1]d log t + mams[m]d log t

(2.2.7.3)

(m ∈ N, an ∈ OT (0 ≤ n ≤ m)).

Hence Ker(∇T ) = OT . Because p is locally nilpotent on
◦
S, we may assume

that pNapN = 0 if N is sufficiently large. Hence we see that Coker(∇T ) = 0 by
the formula (2.2.7.3). Therefore we have checked that the morphism (2.2.7.1)
is a quasi-isomorphism for the case n = 1.

The rest of the proof is the same as that of [11, 6.12 Theorem]. ��

Proposition 2.2.8 ([54, the proof of (6.9)]).
Let ι : Y

⊂−→ Y, Y and DY (Y) be as in (2.2.7). Let E be a crystal of OY/S-
modules. Let (E ,∇) be the corresponding ODY (Y)-module with integrable con-
nection. Then there exists a natural quasi-isomorphism

(2.2.8.1) E −→ L(E ⊗OY Λ•
Y/S).

Proof. The proof is the same as that in [11, 6.14 Theorem]: we have the
following equalities in D+(OY/S):

E = E ⊗OY/S
L(ODY (Y) ⊗OY Λ•

Y/S)

= L(E ⊗OY Λ•
Y/S).

��

Let ι : Z
⊂−→ Y be an exact closed immersion of fine log schemes over S to

which γ extends. Assume that there exists the following cartesian diagram
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(2.2.8.2)

Z
ι−−−−→
⊂

Y

∩
⏐

⏐

�

⏐

⏐

�
∩

Z ιY,Z−−−−→
⊂

Y,

where ιY,Z is an exact closed immersion of fine log schemes over S and the
vertical two morphisms are closed immersions. Let DZ(Z) and DY (Y) be
the log PD-envelopes of the closed immersions Z

⊂−→ Z and Y
⊂−→ Y over

(S, I, γ), respectively. Then we have the following diagram of ringed topoi:

(2.2.8.3)

( ˜Zzar,OZ )
gZ←−−−−− (D̃Z(Z)zar,ODZ(Z))

ϕDZ (Z)←−−−−−− (( ˜Z/S)logcrys|DZ(Z),OZ/S |DZ(Z))

ιY,Z

⏐

⏐

�
ιPD
Y,Z

⏐

⏐

�
ιlog,loc
crys

⏐

⏐

�

( ˜Yzar,OY )
gY←−−−−− (D̃Y (Y)zar,ODY (Y))

ϕDY (Y)←−−−−−− (( ˜Y/S)logcrys|DY (Y),OY/S |DY (Y))

jDZ (Z)−−−−−−→ (( ˜Z/S)logcrys,OZ/S)

ιlogcrys

⏐

⏐

�

jDY (Y)−−−−−−→ (( ˜Y/S)logcrys,OY/S).

Let J Z (resp. J Y) be the PD-ideal sheaf of DZ(Z) (resp. DY (Y)). Let JY,Z
be the ideal sheaf of the closed immersion ιY,Z .

Lemma 2.2.9. Assume that DZ(Z) = Z ×Y DY (Y). Then the diagram

(2.2.9.1)

( ˜Zzar,OZ)
g∗
Z−−−−→ (D̃Z(Z)zar,ODZ(Z))

ιY,Z∗

⏐

⏐

�

⏐

⏐

�
ιPD
Y,Z∗

( ˜Yzar,OY)
g∗
Y−−−−→ (D̃Y (Y)zar,ODY (Y)).

is commutative for a quasi-coherent OZ-module E, that is, the natural mor-
phism g∗Y ιY,Z∗(E)−→ιPD

Y,Z∗g
∗
Z(E) is an isomorphism.

Proof. Since
◦
ιY,Z is affine, (2.2.9) immediately follows from the affine base

change theorem ([39, (1.5.2)]). ��

Lemma 2.2.10. Assume that ιPD
Y,Z induces a surjection ιPD∗

Y,Z (J Y) −→ J Z .
Then the diagram

(2.2.10.1)

(D̃Z(Z)zar,ODZ(Z))
ϕ∗

DZ (Z)−−−−−→ (( ˜Z/S)logcrys|DZ(Z),OZ/S |DZ(Z))

ιPD
Y,Z∗

⏐

⏐

�

⏐

⏐

�
ιlog,loc
crys∗

(D̃Y (Y)zar,ODY (Y))
ϕ∗

DY (Y)−−−−−→ (( ˜Y/S)logcrys|DY (Y),OY/S |DY (Y))
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is commutative for a quasi-coherent ODZ(Z)-module E, that is, the natural
morphism ϕ∗

DY (Y)ι
PD
Y,Z∗(E)−→ιlog,loc

crys∗ ϕ∗
DZ(Z)(E) is an isomorphism.

Proof. Let E be a quasi-coherentODZ(Z)-module. Let (T, φ)=(U, T,MT , δ, φ)
be an object of (Y/S)logcrys|DY (Y). Then, by (2.2.6) (1) and (2),

(2.2.10.2) ιlog,loc
crys∗ ϕ∗

DZ(Z)(E)(T, φ) = Γ (T ×DY (Y) DZ(Z), p∗2(E)),

where p2 : T×DY (Y)DZ(Z) −→ DZ(Z) is the second projection. On the other
hand,

(2.2.10.3) ϕ∗
DY (Y)ι

PD
Y,Z∗(E)(T, φ) = Γ (T, φ∗ιPD

Y,Z∗(E)).

Since DZ(Z) −→ DY (Y) is a closed immersion, in particular, an affine mor-
phism, the affine base change theorem tells us that both right hand sides of
(2.2.10.2) and (2.2.10.3) are the same. This completes the proof of (2.2.10).

��
Lemma 2.2.11. Assume that ιPD

Y,Z induces a surjection ιPD∗
Y,Z (J Y) −→ J Z .

Then the following diagram of topoi

(2.2.11.1)

( ˜Z/S)logcrys|DZ(Z)

jDZ (Z)−−−−−→ ( ˜Z/S)logcrys

ιlog,loc
crys

⏐

⏐

�

⏐

⏐

�
ιlogcrys

( ˜Y/S)logcrys|DY (Y)

jDY (Y)−−−−−→ ( ˜Y/S)logcrys.

is commutative.

Proof. Let T = (U, T,MT , δ) be an object of (Y/S)logcrys. Let δ be the PD-
structure of Ker(OT −→ OU ) + IOT which is an extension of δ and γ.
Let D(T ) := DU∩Z,δ(T ) be the log PD-envelope of the closed immersion
U ∩ Z −→ T over (T,MT , δ). By the log version of [11, 6.2.1 Lemma],
ιlog∗crys(T ) = (U ∩ Z,D(T )). Hence j∗

DZ(Z)ι
log∗
crys(T ) = (D(T ) × DZ(Z), p2,Z)

as a sheaf, where p2,Z : D(T )×DZ(Z) −→ DZ(Z) is the second projection.
Analogously, let p2,Y : T ×DY (Y) −→ DY (Y) be the second projection. Let
δZ be the PD-structure of DZ(Z) and let δZ be the extension of the δ and
γ on Ker(ODZ(Z) −→ OZ) + IODZ(Z). Let D(T ×S DY (Y)) be the double
log PD-envelope of T and DY (Y) (cf. [11, 5.12 Lemma]) over (S, I, γ). Let
D(δ) be the PD-structure of D(T ×S DY (Y)) and D(δ) the extension of D(δ)
and γ. Then we have

ιlog,loc∗
crys j∗DY (Y)(T ) = ιlog,loc∗

crys (T ×DY (Y), p2,Y)

= ιlog,loc∗
crys (D(T ×S DY (Y)), p2,Y)

= DD(δ)(D(T ×S DY (Y))×DY (Y) DZ(Z)) (2.2.6)

= D(T )×DZ(Z) (the universality of D(T ×S DY (Y))).
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Here we consider the last equality as sheaves in ( ˜Z/S)logcrys|DZ(Z). Hence
(2.2.11.1) is commutative. ��

Corollary 2.2.12. Assume that DZ(Z) = Z ×Y DY (Y). Let LPD
Z/S (resp.

LPD
Y/S) be the linearization functor of ODZ(Z)-modules (resp. ODY (Y)-mod-

ules). Then there exists a canonical isomorphism of functors

(2.2.12.1) LPD
Y/S ◦ ιPD

Y,Z∗ −→ ιlogcrys∗ ◦ LPD
Z/S

for quasi-coherent ODZ(Z)-modules. Set LY/S := LPD
Y/S ◦ g∗Y and LZ/S :=

LPD
Z/S ◦ g∗Z . Then there also exists a canonical isomorphism of functors

(2.2.12.2) LY/S ◦ ιY,Z∗ −→ ιlogcrys∗ ◦ LZ/S

for quasi-coherent OZ-modules. Moreover, the isomorphism (2.2.12.1) is
functorial with respect to log HPD differential operators of quasi-coherent
ODZ(Z)-modules.

Proof. Because DZ(Z) = Z ×Y DY (Y) and because the diagram (2.2.8.2) is
cartesian, the natural morphism ιPD

Y,Z : ιPD∗
Y,Z (J Y) −→ J Z is surjective. The

first statement of (2.2.12) immediately follows from (2.2.1.2), (2.2.10) and
(2.2.11). The second statement follows from the former and (2.2.9).

Let us prove the last statement. For a quasi-coherent ODZ(Z)-module E
and (U, T, δ) ∈ (Y/S)logcrys, the isomorphism

LPD
Y/S ◦ ιPD

Y,Z∗(E)T −→ ιlogcrys∗ ◦ LPD
Z/S(E)T

induced by (2.2.12.1) is given by the natural homomorphism

(2.2.12.3) ODU (T×SY) ⊗ODY (Y) ιPD
Y,Z∗(E) −→ ODU×Y Z(T×SZ) ⊗ODZ (Z) E .

If we are given a log HPD differential operator u : ODZ(Z2)⊗ODZ (Z) E −→ F
of ODZ(Z)-modules, the composite morphism

ũ : ODY (Y2) ⊗ODY (Y) ιPD
Y,Z∗(E) −→ ODZ(Z2) ⊗ODZ (Z) E

u−→ F

is a log HPD differential operator of ODY (Y)-modules and we see easily that
the diagram

ODU (T×SY) ⊗ODY (Y) ιPD
Y,Z∗(E) −−−−→ ODU (T×SY) ⊗ODY (Y) ιPD

Y,Z∗(F)
⏐

⏐

�

⏐

⏐

�

ODU×Y Z(T×SZ) ⊗ODZ (Z) E −−−−→ ODU×Y Z(T×SZ) ⊗ODZ (Z) F

is commutative for any T = (U, T, δ) ∈ (Y/S)logcrys, where the upper horizon-
tal morphism (resp. the lower horizontal morphism) is the homomorphism
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induced by ũ (resp. u) in the way described in (2.2.3.1) and the vertical mor-
phisms are the homomorphism (2.2.12.3) for E and F . Therefore we see the
compatibility of (2.2.12.1) with log HPD differential operators. ��

Remark 2.2.13. In the case where Y , Z are trivial log smooth schemes over
a trivial log scheme S, we can also prove (2.2.12) by an analogous proof of
[3, IV Proposition 3.1.7]. In the case where Y , Z are fine log (not necessarily
smooth) schemes over a fine log scheme S, we can also prove (2.2.12) by
the second fundamental exact sequence of log differential forms on fine log
smooth schemes ((2.1.3)) and by the log version of an analogous proof of [3,
IV Proposition 3.1.7].

(2) Now let us study some properties of log linearization functors for a smooth
scheme with a relative SNCD.

Let S0
⊂−→ S be a closed immersion of schemes(=trivial log schemes)

defined by a quasi-coherent ideal sheaf. Let f : X −→ S0 be a smooth
scheme with a relative SNCD D on X over S0. Let Z be a relative SNCD
on X over S0 which intersects D transversally over S0. Let ∆D := {Dλ}λ

(resp. ∆Z := {Zµ}µ) be a decomposition of D (resp. Z) by smooth compo-
nents of D (resp. Z). Then ∆ := {Dλ, Zµ}λ,µ is a decomposition of D∪Z by
smooth components of D ∪Z. Let (X,D ∪Z) ⊂−→ (X ,D∪Z) be an admissi-
ble closed immersion over S with respect to ∆. Let ˜∆ := {Dλ,Zµ}λ,µ be the
decomposition of D ∪ Z which is compatible with ∆.

Set

(2.2.13.1) D{λ1,λ2,...λk} := Dλ1 ∩Dλ2 ∩ · · · ∩Dλk
(λi = λj if i = j)

for a positive integer k, and set

(2.2.13.2) D(k) =

⎧

⎨

⎩

X (k = 0),
∐

{λ1,...,λk | λi �=λj (i�=j)}
D{λ1,λ2,...,λk} (k ≥ 1)

for a nonnegative integer k. Set

(2.2.13.3) D∅ := X

for later convenience.
The following proposition says that a decomposition of a relative SNCD

by smooth components is locally unique:

Proposition 2.2.14. Let ∆ and ∆′ be decompositions of D by smooth com-
ponents. Then, for any z ∈ X, there exists an open neighborhood V of z in
X such that ∆V = ∆′

V .

Proof. If V is small enough, we can take the diagram (2.1.7.2) such that
(A.0.1) below holds for both ∆ and ∆′. Then ∆V = {yi = 0}s

i=1 = ∆′
V . ��
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Proposition 2.2.15. D(k) is independent of the choice of the decomposition
of D by smooth components of D.

Proof. Obviously we may assume that k is positive.
First we prove (2.2.15) for the case k = 1. Let ∆D = {Dλ}λ and

∆′
D = {D′

λ′}λ′ be two decompositions of D by smooth components of D. By
(2.2.14) there exists an open covering {Xi}i of X such that ∆D|Xi

= ∆′
D|Xi

.
Hence we have an isomorphism (

∐

λ Dλ)×X Xi
∼−→ (

∐

λ′ D′
λ′) ×X Xi. This

local isomorphism is compatible with the open immersions Xi ∩Xi′
⊂−→ Xi;

therefore we have the global isomorphism
∐

λ Dλ
∼−→

∐

λ′ D′
λ′ .

Let D[k] be the k-fold fiber product of D(1) over X; D[k] admits the action
of the symmetric group Sk of degree k. For a positive integer k, denote
the set {1, 2, . . . , k} by [1, k]. For a surjective map α : [1, k] −→ [1, l], we
have the corresponding morphism D[l] −→ D[k], which we denote by sα.
Let Sk be the set of surjective morphisms [1, k] −→ [1, k − 1]. Set D{k} :=
D[k] \

⋃

α∈Sk
sα(D[k−1]); D{k} is an open subscheme of D[k]. The scheme

D{k} also admits the action of Sk. Then we can check D(k) = D{k}/Sk by
the construction of D{k}. Consequently D(k) is independent of the choice of
the decomposition of D by smooth components of D. ��

Set

(2.2.15.1) Z|D(k) := Z ×X D(k).

The scheme Z|D(k) is a relative SNCD on D(k). We use analogous notations
D(k) and Z|D(k) (k ∈ N) for D∪Z with ˜∆. Let a(k) : (D(k), Z|D(k)) −→ (X,Z)
and b(k) : (D(k),Z|D(k)) −→ (X ,Z) be morphisms induced by natural closed
immersions.

As usual, we define the preweight filtration PD
• on the sheaf of the log

differential forms Ωi
X/S(log(D ∪ Z)) (i ∈ N) in ˜Xzar with respect to D as

follows:

(2.2.15.2) PD
k Ωi

X/S(log(D ∪ Z)) =

⎧

⎪

⎨

⎪

⎩

0 (k < 0),

Im(Ωk
X/S

(log(D ∪ Z))⊗OX Ωi−k
X/S

(logZ) −→ Ωi
X/S

(log(D ∪ Z))) (0 ≤ k ≤ i),

Ωi
X/S

(log(D ∪ Z)) (k > i).

Now, assume that the defining ideal sheaf I of the closed immersion
S0

⊂−→ S is a PD-ideal sheaf with a PD-structure γ.
Let the right objects in the following table be the log PD-envelopes of the

left exact closed immersions over (S, I, γ):
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(X,D ∪ Z) ⊂−→ (X ,D ∪ Z) DD

(X,Z) ⊂−→ (X ,Z) D

(D(k), Z|D(k)) ⊂−→ (D(k),Z|D(k)) D(k)

Let gD : DD −→ (X ,D∪Z), g : D −→ (X ,Z) and g(k) : D(k) −→ (D(k),Z|D(k)

) be natural morphisms. Note that the underlying schemes of the log schemes
DD and D are the same. Let c(k) : D(k) −→ D be a morphism induced by
b(k) : (D(k),Z|D(k)) −→ (X ,Z).

Lemma 2.2.16. (1) The natural morphism (D(k), Z|D(k)) −→ (D(k),Z|D(k))
×(X ,Z) (X,Z) is an isomorphism.

(2) The natural morphism D(k) −→ D×(X ,Z) (D(k),Z|D(k)) is an isomor-
phism.

(3) Let J (resp. J (k)
) be the PD-ideal sheaf of OD (resp. OD(k)). Then

the natural morphism c(k)∗ : c(k)∗(J ) −→ J (k)
is surjective.

Proof. Apply (2.1.13) to the SNCD D ∪ Z and assume that D (resp. Z) is
defined by an equation x1 = · · · = xt = 0 (resp. xt+1 = · · · = xs = 0)
(1 ≤ t ≤ s).

(1): (1) is obvious.
(2): By the universality of the log PD-envelope, this is a local question. We

may have two cartesian diagrams in (2.1.13) for D ∪Z; we may assume that
k ≤ t. Let D1···k be a closed subscheme defined by an equation x1 = · · · =
xk = 0. Then OD⊗OX OD1···k = OX 〈xd+1, . . . , xd′〉⊗OX (OX /(x1, . . . , xk)) =
OX 〈xd+1, . . . , xd′〉/(x1, . . . , xk).

Set D1···k := D1···k ×X X. Then the structure sheaf of the PD-envelope of
the closed immersion D1···k

⊂−→ D1···k is

OD1···k〈xd+1, . . . , xd′〉 = OX 〈xd+1, . . . , xd′〉/(x1, . . . , xk).

Furthermore it is immediate to see that there exists a natural isomorphism
D(k) � D×(X ,Z) (D(k),Z|D(k)) as log schemes. Thus (2) follows.

(3): The proof of (3) is evident by the local description of OD and OD(k) .
��

As usual, we denote the left objects in the following table by the right ones
for simplicity of notation:

((X,D ∪ Z) ⊂−→ DD) ∈ ((X,D ∪ Z)/S)logcrys DD

((X,Z) ⊂−→ D) ∈ ((X,Z)/S)logcrys D

((D(k), Z|D(k)) ⊂−→ D(k)) ∈ ((D(k), Z|D(k))/S)logcrys D(k)

Furthermore, as usual, we identify the representable sheaf by DD in ((X,

D̃ ∪ Z)/S)logcrys with DD. Let ( ˜(X,D ∪ Z)/S)logcrys|DD be the localization of
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( ˜(X,D ∪ Z)/S)logcrys at DD. Let ( ˜(X,Z)/S)logcrys|D and ( ˜(D(k), Z|D(k))/S)logcrys

|D(k) be obvious analogues. Let a
(k)log
crys : ( ˜(D(k), Z|D(k))/S)logcrys −→ ( ˜(X,Z)/S)

log
crys be a morphism of topoi induced by the morphism a(k). By the log version

of [11, 6.2 Proposition], the functor a
(k)log
crys∗ is exact.

Let the right objects in the following table be the log PD-envelope of the
locally closed immersion of the left ones:

(X,D ∪ Z) ⊂−→ (X ,D ∪ Z)×S (X ,D ∪ Z) DD(1)
(X,Z) ⊂−→ (X ,Z)×S (X ,Z) D(1)
(D(k), Z|D(k)) ⊂−→ (D(k),Z|D(k))×S (D(k),Z|D(k)) D(k)(1)

Let

jDD : ( ˜(X,D ∪ Z)/S)logcrys|DD −→ ( ˜(X,D ∪ Z)/S)logcrys

jD : ( ˜(X,Z)/S)logcrys|D −→ ( ˜(X,Z)/S)logcrys

jD(k) : ( ˜(D(k), Z|D(k))/S)logcrys|D(k) −→ ( ˜(D(k), Z|D(k))/S)logcrys

be localization functors (2.2.0.1) and let

ϕD : (( ˜(X, D ∪ Z)/S)logcrys|DD ,O(X,D∪Z)/S |DD ) −→ (
◦̃
Dzar,OD)

ϕ : (( ˜(X, Z)/S)logcrys|D ,O(X,Z)/S |D) −→ (
◦̃
Dzar,OD)

ϕ(k) : (( ˜(D(k), Z|D(k))/S)logcrys|D(k) ,O(D(k),Z|
D(k) )/S |D(k) ) −→ (˜D(k)

zar,OD(k))

be morphisms of ringed topoi defined in (2.2.1.1) and let

g : (
◦̃
Dzar,OD) −→ (

◦̃
X zar,OX )

g(k) : (
◦̃
D(k)

zar,OD) −→ ( ˜D(k)
zar,OD(k))

be natural morphisms.
For an OX -module E , set

L(X,D∪Z)/S(E) := jDD∗ϕ
∗
Dg∗(E) ∈ ( ˜(X,D ∪ Z)/S)logcrys

and
L(X,Z)/S(E) := jD∗ϕ

∗g∗(E) ∈ ( ˜(X,Z)/S)logcrys.

For an OD(k)-module E , set also

L(k)(E) := jD(k)∗ϕ
(k)∗g(k)∗(E) ∈ ( ˜(D(k), Z|D(k))/S)logcrys.



2.2 The Log Linearization Functor 79

As usual, we have a complex L(X,D∪Z)/S(Ω•
X/S(log(D∪Z))) of O(X,D∪Z)/

S-modules. By (2.2.7) we have a natural quasi-isomorphism

(2.2.16.1) O(X,D∪Z)/S
∼−→ L(X,D∪Z)/S(Ω•

X/S(log(D ∪ Z))).

Similarly we have two quasi-isomorphisms:

(2.2.16.2) O(X,Z)/S
∼−→ L(X,Z)/S(Ω•

X/S(logZ)),

(2.2.16.3) O(D(k),Z|
D(k) )/S

∼−→ L(k)(Ω•
D(k)/S(logZ|D(k))).

Let {PD
k Ω•

X/S(log(D ∪ Z))}k∈Z be the filtration on Ω•
X/S(log(D ∪ Z))

defined in (2.2.15.2). Then PD
k Ω•

X/S(log(D ∪ Z)) forms a subcomplex of
Ω•

X/S(log(D ∪ Z)) and the boundary morphisms of PD
k Ω•

X/S(log(D ∪ Z))
are log HPD differential operators of order ≤ 1 with respect to (X ,Z)/S.

Set

PD
k L(X,Z)/S(Ω•

X/S(log(D∪Z))) := L(X,Z)/S(PD
k Ω•

X/S(log(D∪Z))) (k ∈ Z).

Lemma 2.2.17. (1) The natural morphism

(2.2.17.1) OD ⊗OX PD
k Ω•

X/S(log(D ∪ Z)) −→ OD ⊗OX Ω•
X/S(log(D ∪ Z))

is injective.
(2) The natural morphism

Q∗
(X,Z)/SPD

k L(X,Z)/S(Ω•
X/S(log(D ∪ Z)))

(2.2.17.2)

−→ Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z)))

is injective.

Proof. (1): The question is local. We may have cartesian diagrams (2.1.13.1)
and (2.1.13.2) for SNCD D∪Z on X ; we assume that D (resp. Z) is defined by
an equation x1 · · ·xt = 0 (resp. xt+1 · · ·xs = 0). Set J := (xd+1, . . . , xd′)OX ,
X ′ := SpecX (OX /J ) and X ′′ := Spec

S
(OS [xd+1, . . . , xd′ ]). Then X ′ is

smooth over S. Let D′ (resp. Z ′) be a closed subscheme of X ′ defined by
an equation x1 · · ·xt = 0 (resp. xt+1 · · ·xs = 0). Because p is locally nilpo-
tent on S, we may assume that there exists a positive integer N such that
JNOD = 0. Since X ′ is smooth over S, there exists a section of the surjection
OX /JN −→ OX ′ . Hence, as in [11, 3.32 Proposition], we have a morphism

OX ′ [xd+1, . . . , xd′ ] −→ OX /JN
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such that the induced morphism OX ′ [xd+1, . . . , xd′ ]/JN
0 −→ OX /JN is an

isomorphism, where J0 := (xd+1, . . . , xd′). By [11, 3.32 Proposition], OD is
isomorphic to the PD-polynomial algebra OX ′〈xd+1, . . . , xd′〉. Hence we have
the following isomorphisms

OD ⊗OX Ω•
X/S(log(D ∪ Z)) ∼−→s(Ω•

X ′/S(log(D′ ∪ Z ′))⊗OS

OS〈xd+1, . . . , xd′〉 ⊗OX′′ Ω•
X ′′/S)

and

OD ⊗OX PD
k Ω•

X/S(log(D ∪ Z)) ∼−→s(PD′

k Ω•
X ′/S(log(D′ ∪ Z ′))⊗OS

OS〈xd+1, . . . , xd′〉 ⊗OX′′ Ω•
X ′′/S).

Since the complex OS〈xd+1, . . . , xd′〉 ⊗OX′′ Ω•
X ′′/S consists of free OS-

modules, we obtain the desired injectivity.
(2): By (1) and (2.2.4), the natural morphism

(2.2.17.3) PD
k L(X,Z)/S(Ω•

X/S(log(D∪Z))) −→ L(X,Z)/S(Ω•
X/S(log(D∪Z)))

is injective in the category of crystals of O(X,Z)/S-modules. As in [3, IV
Proposition 2.1.3], the functor

{the category of crystals of O(X,Z)/S-modules} −→

{the category of Q∗
(X,Z)/S(O(X,Z)/S)-modules}

is exact. Hence (2.2.17.2) is injective. ��

By (2.2.17) (2), a family {Q∗
(X,Z)/SPD

k L(X,Z)/S(Ω•
X/S(log(D∪Z)))}k∈Z of

complexes of Q∗
(X,Z)/S(O(X,Z)/S)-modules defines a filtration on the complex

Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z))). Hence we obtain an object

(Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z))),

{Q∗
(X,Z)/SPD

k L(X,Z)/S(Ω•
X/S(log(D ∪ Z)))}k∈Z)

in C+F(Q∗
(X,Z)/S(O(X,Z)/S)).

Now we consider the Poincaré residue isomorphism with respect to D.
Though a relative divisor in this book is a union of smooth divisors, we
consider the orientation sheaf of it for showing that our theory in this book
is independent of the choice of the numbering of the smooth components of
a relative SNCD.

First, let us recall the orientation sheaf in [23, (3.1.4)].
Let E be a finite set with cardinality k ≥ 0. Set �E :=

∧k
Z

E if k ≥ 1
and �E := Z if k = 0.
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Let k be a positive integer. Let P be a point of D(k). Let Dλ0 , . . . , Dλk−1

be different smooth components of D such that Dλ0 ∩ · · · ∩Dλk−1 contains
P . Then the set E := {Dλ0 , . . . , Dλk−1} gives an abelian sheaf

�λ0···λk−1zar(D/S0) :=
k

∧

Z
E
Dλ0∩···∩Dλk−1

on a local neighborhood of P in D(k). The sheaf �λ0···λk−1zar(D/S0) is glob-
alized on D(k); we denote this globalized abelian sheaf by the same symbol
�λ0···λk−1zar(D/S0). We denote a local section of �λ0···λk−1zar(D/S0) by the
following way: m(λ0 · · ·λk−1) (m ∈ Z). Set

�(k)
zar(D/S0) :=

⊕

{λ0,...λk−1}
�λ0···λk−1zar(D/S0).

By abuse of notation, we often denote a
(k)
∗ �

(k)
zar(D/S0) simply by �

(k)
zar(D/S0).

Set �
(0)
zar(D/S0) := ZX . The sheaves �λ0···λk−1zar(D/S0) and �

(k)
zar(D/S0)

are extended to abelian sheaves �log
λ0···λk−1crys(D/S;Z) and �

(k)log
crys (D/S;Z),

respectively, in the log crystalline topos ( ˜(D(k), Z|D(k))/S)logcrys since, for

an object (U, T,MT , ι, δ) ∈ ( ˜(D(k), Z|D(k))/S)logcrys, the closed immersion

ι : U
⊂−→ T is a homeomorphism of topological spaces. If Z = ∅, then de-

note �log
λ0···λk−1crys(D/S;Z) and �

(k)log
crys (D/S;Z) by �λ0···λk−1crys(D/S) and

�
(k)
crys(D/S), respectively.

Definition 2.2.18. We call

�(k)
zar(D/S0) (resp. �(k)

crys(D/S), �(k)log
crys (D/S;Z))

the zariskian orientation sheaf (resp. crystalline orientation sheaf , log crystal-
line orientation sheaf) ofD(k)/S0 (resp.D(k)/(S, I, γ), (D(k), Z|D(k))/(S, I, γ)).

Remark 2.2.19. The sheaves �
(k)
zar(D/S0), �

(k)
crys(D/S) and �

(k)log
crys (D/S;Z)

are defined by the local nature of D; they are independent of the choice of
the decomposition by smooth components of D.

Lemma 2.2.20. Let E be an OD(k)-module. Then there exists a canonical
isomorphism

(2.2.20.1) L(k)(E ⊗Z �(k)
zar(D/S)) ∼−→ L(k)(E)⊗Z �(k)log

crys (D/S;Z).

Proof. (2.2.20) immediately follows from the definition of �
(k)log
crys (D/S;Z).

��
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Proposition 2.2.21. (1) There exists the following exact sequence:

0 −→ OD ⊗OX PD
k−1Ω

•
X/S(log(D ∪ Z)) −→ OD ⊗OX PD

k Ω•
X/S(log(D ∪ Z))

(2.2.21.1)

−→ OD ⊗OX b
(k)
∗ (Ω•

D(k)/S(logZ|D(k))⊗Z �(k)
zar(D/S){−k}) −→ 0.

(2) There exist quasi-isomorphisms

gr
Q∗

(X,Z)/SP D

k Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z)))

(2.2.21.2)

∼−→ Q∗
(X,Z)/Sa

(k)log
crys∗ L(k)(Ω•

D(k)/S(logZ|D(k))⊗Z �(k)
zar(D/S)){−k}

∼←− Q∗
(X,Z)/Sa

(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)){−k}.

Proof. (1): By the Poincaré residue isomorphism with respect to D (cf. [21,
3.6]), we have the following isomorphism

ResD : grPD

k Ω•
X/S(log(D ∪ Z))

(2.2.21.3)

∼−→ b
(k)
∗ (Ω•

D(k)/S(logZ|D(k))⊗Z �(k)
zar(D/S){−k}).

Hence (1) follows from (2.2.17) (1).
(2): By the isomorphism (2.2.21.3), (2.2.17) (1) and (2.2.4), we have

gr
Q∗

(X,Z)/SP D

k Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z)))

= Q∗
(X,Z)/SL(X,Z)/S(grPD

k Ω•
X/S(log(D ∪ Z)))

Q∗
(X,Z)/SL(X,Z)/S(ResD)

= Q∗
(X,Z)/SL(X,Z)/S(b(k)

∗ (Ω•
D(k)/S(logZ|D(k))

⊗Z �(k)
zar(D/S))){−k}.

By (2.2.12) and (2.2.16) (1), (2), this complex is equal to

Q∗
(X,Z)/Sa

(k)log
crys∗ L(k)(Ω•

D(k)/S(logZ|D(k))⊗Z �(k)
zar(D/S)){−k},

which is equal to

Q∗
(X,Z)/Sa

(k)log
crys∗ (L(k)(Ω•

D(k)/S(logZ|D(k)))⊗Z �(k)log
crys (D/S;Z)){−k}

by (2.2.20).
By (2.2.7) we obtain the second quasi-isomorphism in (2.2.21.2). ��
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For simplicity of notation, set

(Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z))), Q∗
(X,Z)/SP D) :=

(Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D∪Z))), {Q∗
(X,Z)/SP D

k L(X,Z)/S(Ω•
X/S(log(D∪Z)))}k∈Z)

and
(OD ⊗OX Ω•

X/S(log(D ∪ Z)), PD) :=

(OD ⊗OX Ω•
X/S(log(D ∪ Z)), {OD ⊗OX PD

k Ω•
X/S(log(D ∪ Z))}k∈Z).

Proposition 2.2.22. Let
(2.2.22.1)

u(X,Z)/S : (( ˜(X,Z)/S)logRcrys, Q
∗
(X,Z)/S(O(X,Z)/S)) −→ ( ˜Xzar, f

−1(OS))

be the morphism in (1.6.1.2). Then

Ru(X,Z)/S∗(Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z))), Q∗
(X,Z)/SPD)

(2.2.22.2)

= (OD ⊗OX Ω•
X/S(log(D ∪ Z)), PD)

in D+F(f−1(OS)).

Proof. By (1.6.3.1), by (2.2.1) (2) and by (1.3.1), the left hand side of
(2.2.22.2) is equal to

(u(X,Z)/S∗L(X,Z)/S(Ω•
X/S(log(D ∪ Z))), u(X,Z)/S∗L(X,Z)/S(PD

k Ω•
X/S(log(D ∪ Z)))).

For an OX -module F , we have

u(X,Z)/S∗L(X,Z)/S(F) = u(X,Z)/S∗jD∗ϕ
∗g∗(F) = ϕ∗ϕ

∗g∗(F) = OD ⊗OX F

by (2.2.0.4). Hence

u(X,Z)/S∗(L(X,Z)/S(PD
k Ω•

X/S(log(D∪Z)))) = OD⊗OX PD
k Ω•

X/S(log(D∪Z)).

Thus (2.2.22) follows. ��

Remark 2.2.23. For simplicity, we assume that Z = ∅ in this remark. By the
proof of (2.2.7), the differential operator of OD ⊗X PD

k Ω•
X/S(logD) is not a

log HPD differential operator in general since the log HPD differential oper-
ator ODD(1) ⊗OX Ω•

X/S(logD) −→ OD ⊗X Ω•+1
X/S(logD) induces a morphism

ODD(1) ⊗OX PD
k Ω•

X/S(logD) −→ OD ⊗X PD
k+1Ω

•+1
X/S(logD), but does not in-

duce a morphism ODD(1) ⊗OX PD
k Ω•

X/S(logD) −→ OD ⊗X PD
k Ω•+1

X/S(logD)
in general; there does not exist a complex L(X,D)/S(PD

k Ω•
X/S(logD)) in

C+(O(X,D)/S) in general.
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2.3 Forgetting Log Morphisms and Vanishing Cycle
Sheaves

In this section we investigate some properties of the forgetting log morphism
of log crystalline topoi.

Let the notations be as in §1.6. However, in this section, we denote the
underlying scheme of the log scheme Y also by Y by abuse of notation. Let
M be the log structure of Y . Let N ⊂M be also a fine log structure on Yzar.
Then we have a natural morphism

(2.3.0.1) ε = ε(Y,M,N)/S : (Y,M) −→ (Y,N)

of log schemes over S. The morphism ε induces a morphism of topoi which
is denoted by the same notation:

(2.3.0.2) ε = ε(Y,M,N)/S : ( ˜(Y,M)/S)logcrys −→ ( ˜(Y,N)/S)logcrys.

When N is trivial, we denote ε(Y,M,N)/S by εY/S ; the morphism εY/S is a
p-adic analogue of the l-adic forgetting log morphism in [30] and [67, (1.1.2)].

In this section, let us assume the following condition on the log structure
N unless otherwise stated:

(2.3.0.3)
Locally on Y , there exists a chart P −→ N such that P gp has no p-torsion.

Then we have the following lemma:

Lemma 2.3.1. Let the notation be as above and let (U, T,MT , ι, δ) be an
object of ((Y,M)/S)logcrys, let N inv

T be the inverse image of N |U/O∗
U by the

following morphism: MT
proj.−→ MT /O∗

T

ι∗∼−→M |U/O∗
U . Then N inv

T is a fine log
structure on T (under the assumption (2.3.0.3)).

Proof. It is easy to see that N inv
T is a log structure on T such that N inv

T /O∗
T =

N |U/O∗
U . Set IT := Ker(OT −→ OU ). Then we have the exact sequence

0 −→ 1 + IT −→ N inv,gp
T −→ Ngp|U −→ 0.

Shrink U and take a chart α : P −→ N |U such that P gp has no p-torsion.
Then, since any element of 1 + IT is killed by some power of p, we have
Ext1(P gp, 1 + IT ) = 0. Hence we have a homomorphism α̃ : P gp −→ N inv,gp

T

lifting αgp locally on T and it induces the homomorphism of monoids
P −→ N inv

T , which we also denote by α̃. If we denote the log structure

associated to P
α̃−→ N inv

T −→ OT by P a, α̃ induces a homomorphism of
log structures α̃a : P a −→ N inv

T such that the induced homomorphism
α̃a : P a/O∗

T −→ N inv
T /O∗

T is nothing but the identity on N |U/O∗
U . Hence

α̃a is an isomorphism, that is, α̃ is a chart of N inv
T . Therefore N inv

T is a fine
log structure. ��
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Under the assumption (2.3.0.3), the explicit description of ε = (ε∗, ε∗)

is given as follows: for an object F of ( ˜(Y,N)/S)logcrys and an object
(U, T,MT , ι, δ) ∈ ((Y,M)/S)logcrys,

ε∗(F )((U, T,MT , ι, δ)) = F ((U, T,N inv
T , ι, δ));

for an object G of ( ˜(Y,M)/S)crys and an object (U, T,NT , ι, δ)∈((Y,N)/S)logcrys,

ε∗(G)((U, T,NT , ι, δ)) = Hom
( ˜(Y,M)/S)logcrys

(ε∗(T ), G).

Definition 2.3.2. We call the morphism ε(Y,M,N)/S in (2.3.0.1) and the mor-
phism ε(Y,M,N)/S in (2.3.0.2) the forgetting log morphism of log schemes
over S along M \N and the forgetting log morphism of log crystalline topoi
along M \ N , respectively. When N is trivial, we call the two ε(Y,M,N)/S ’s
the forgetting log morphisms of Y/S. When Y is a smooth scheme X over
S0 := Spec

S
(OS/I), M = M(D ∪ Z) and N = M(Z), where D and Z are

transversal relative SNCD’s on X/S0, we call the two ε(Y,M,N)/S ’s the forget-
ting log morphisms along D and denote them by ε(X,D∪Z,Z)/S .

Let {Yi}i∈I be an open covering of Y . Let Mi (resp. Ni) be the pull-back
of M (resp. N) to Yi. Then we also have an analogous morphism of topoi

(2.3.2.1) ε• : ( ˜(Y•,M•)/S)logcrys −→ ( ˜(Y•, N•)/S)logcrys,

and we have the following commutative diagram

(2.3.2.2)

( ˜(Y•,M•)/S)logcrys
ε•−−−−→ ( ˜(Y•, N•)/S)logcrys

πlog
Mcrys

⏐

⏐

�

⏐

⏐

�
πlog

Ncrys

( ˜(Y,M)/S)logcrys
ε−−−−→ ( ˜(Y,N)/S)logcrys.

Here πlog
Mcrys and πlog

Ncrys are morphisms of topoi defined in §1.6; we have
written the symbols M and N in subscripts for clarity. Let u(Y,L)/S , u(Y•,L•)/S

and u(Y••,L••)/S (L := M,N) be the projections in (1.6.0.8), (1.6.0.9) and
(1.6.0.10) for (Y,L), respectively. Since ε∗ ◦ u∗

(Y,N)/S = u∗
(Y,M)/S and ε∗• ◦

u∗
(Y•,N•)/S = u∗

(Y•,M•)/S , we have the following two equations

(2.3.2.3) u(Y,N)/S ◦ ε = u(Y,M)/S , u(Y•,N•)/S ◦ ε• = u(Y•,M•)/S

as morphisms of topoi.
Let the notations be as in §1.6. Then we have the following commutative

diagram:
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(2.3.2.4)

( ˜(Y••,M••)/S)logcrys
ε••−−−−→ ( ˜(Y••, N••)/S)logcrys

ηlog
Mcrys

⏐

⏐

�

⏐

⏐

�
ηlog

Ncrys

( ˜(Y•,M•)/S)logcrys
ε•−−−−→ ( ˜(Y•, N•)/S)logcrys.

Let O(Y,L)/S (L := M,N) be the structure sheaf in ( ˜(Y,L)/S)logcrys. Since
there is a morphism ε∗(O(Y,N)/S) −→ O(Y,M)/S , there is a morphism

(2.3.2.5) O(Y,N)/S −→ ε∗(O(Y,M)/S).

The morphism ε also induces a morphism

(2.3.2.6) ε : (( ˜(Y,M)/S)logcrys,O(Y,M)/S) −→ (( ˜(Y,N)/S)logcrys,O(Y,N)/S)

of ringed topoi. We have the analogues of the commutative diagrams (2.3.2.2)
and (2.3.2.4) for the ringed topoi:

(2.3.2.7)

(( ˜(Y•,M•)/S)logcrys,O(Y•,M•)/S) ε•−−−−→ (( ˜(Y•, N•)/S)logcrys,O(Y•,N•)/S)

πlog
Mcrys

⏐

⏐

�

⏐

⏐

�
πlog

Ncrys

(( ˜(Y,M)/S)logcrys,O(Y,M)/S) ε−−−−→ (( ˜(Y,N)/S)logcrys,O(Y,N)/S)),

(2.3.2.8)

(( ˜(Y••,M••)/S)logcrys,O(Y••,M••)/S) ε••−−−−→ (( ˜(Y••, N••)/S)logcrys,O(Y••,N••)/S)

ηlog
Mcrys

⏐

⏐

�

⏐

⏐

�
ηlog

Ncrys

(( ˜(Y•,M•)/S)logcrys,O(Y•,M•)/S) ε•−−−−→ (( ˜(Y•, N•)/S)logcrys,O(Y•,N•)/S).

The morphism (2.3.2.5) gives a morphism

(2.3.2.9) O(Y,N)/S −→ Rε∗(O(Y,M)/S).

Using (2.3.2.3), we have a morphism

(2.3.2.10) Ru(Y,N)/S∗(O(Y,N)/S) −→ Ru(Y,M)/S∗(O(Y,M)/S).

Next we define the localization of ε. Let FM = (UF , TF ,MF , ιF , δF ) be a

representable sheaf in ( ˜(Y,M)/S)logcrys. Set FN := (UF , TF , N inv
F , ιF , δF ),

where N inv
F is the inverse image of N |UF

by the morphism MF −→
M |UF

/O∗
UF

as before. Then we have a morphism

(2.3.2.11) ε|F : ( ˜(Y,M)/S)logcrys|FM
−→ ( ˜(Y,N)/S)logcrys|FN

of topoi and a morphism
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(2.3.2.12)

ε|F : (( ˜(Y,M)/S)logcrys|FM
,O(Y,M)/S |FM

) −→ (( ˜(Y,N)/S)logcrys|FN
,O(Y,N)/S |FN

).

of ringed topoi.

Lemma 2.3.3. Let the notations be as above. Then the functor ε|F∗ is exact.

Proof. Let (U, T,NT , ι, δ, φN ) be an object in ((Y,N)/S)logcrys|FN
. Let φ : T −→

TF be the underlying morphism of schemes of φN . Set MT := φ∗(MF ). Let

φM : (U, T,MT , ι, δ) −→ (UF , TF ,MF , ιF , δF )

be the natural morphism. Then (U, T,MT , ι, δ, φM ) is an object in ((Y,M)/S)
log
crys|FM

. Let (TF ,MF )×(TF ,N inv
F )(T,NT ) be the fiber product of (TF ,MF ) and

(T,NT ) over (TF , N inv
F ) in the category of fine log schemes. We claim that

(2.3.3.1) (TF ,MF )×(TF ,N inv
F ) (T,NT ) = (T,MT ).

Indeed, let φU : U
⊂−→ UF be the open immersion. Then we have the following:

(φ∗(MF )⊕φ∗(N inv
F ) NT )/O∗

T = φ∗(MF )/O∗
T ⊕φ∗(N inv

F )/O∗
T

NT /O∗
T

= φ−1(MF /O∗
TF

)⊕φ−1(N inv
F /O∗

TF
) NT /O∗

T

� φ−1
U (M |UF

/O∗
UF

)⊕φ−1
U (N |UF

/O∗
UF

) N |U/O∗
U

= M |U/O∗
U � φ∗(MF )/O∗

T .

Hence the natural morphism φ∗(MF ) −→ φ∗(MF ) ⊕φ∗(N inv
F ) NT is an iso-

morphism and we have shown the claim. Denote (U, T, LT , ι, δ, φL) (L :=
M,N) by (T,LT , φL) for simplicity of notation. By the formula (2.3.3.1),
(ε|F )∗((T,NT , φN )) is represented by (T,MT , φM ). Therefore, for an object

E in ( ˜(Y,M)/S)logcrys|FM
, we have

Γ ((T,NT , φN ), (ε|F )∗(E)) = Hom
( ˜(Y,M)/S)logcrys|FM

((ε|F )∗((T,NT , φN )), E)
(2.3.3.2)

= E((T,MT , φM )).

Using this formula, we see that the functor ε|F∗ is exact. ��

Lemma 2.3.4. Let the notations be as above. Then the following diagram of
topoi is commutative:

(2.3.4.1)

( ˜(Y,M)/S)logcrys|FM

jFM−−−−→ ( ˜(Y,M)/S)logcrys

ε|F
⏐

⏐

�

⏐

⏐

�
ε

( ˜(Y,N)/S)logcrys|FN

jFN−−−−→ ( ˜(Y,N)/S)logcrys.



88 2 Weight Filtrations on Log Crystalline Cohomologies

The obvious analogue of (2.3.4.1) for ringed topoi also holds.

Proof. Let G be an object of ( ˜(Y,N)/S)logcrys. By the proof of (2.3.3), (ε|F )∗

(FN ) = FM . Hence (ε|F )∗j∗FN
(G) = (ε|F )∗(G × FN ) = ε∗(G) × FM =

j∗FM
ε∗(G). Hence the former statement follows.

The latter statement immediately follows. ��

Lemma 2.3.5. Let FM = (Y, T,MT , ι, δ) be a representable sheaf in ( ˜(Y,M)/

S)logcrys. Let E ∈ ( ˜(Y,M)/S)logcrys|FM
be an O(Y,M)/S |FM

-module. Then the
canonical morphism

ε∗jFM∗(E) −→ Rε∗jFM∗(E)

is an isomorphism in the derived category D+(O(Y,N)/S).

Proof. Indeed, we have

ε∗jFM∗(E)
(2.3.4)

= jFN∗(ε|F )∗(E)
(2.3.3)

= jFN∗R(ε|F )∗(E)
(2.2.1) (1)

= RjFN∗R(ε|F )∗(E) = R(jFN
ε|F )∗(E)

(2.3.4)
= R(εjFM

)∗(E) = Rε∗RjFM∗(E)
(2.2.1) (1)

= Rε∗jFM∗(E).

��

Though ε∗ is not exact in general (see (2.7.1) below), the following holds:

Corollary 2.3.6. Let ι : (Y,M) ⊂−→ (Y,M) be a closed immersion into a log
smooth scheme over S. Let DY (Y) be the log PD-envelope of ι over (S, I, γ).
Let E be an ODY (Y)-module. Let LPD

(Y,M)/S(E) be the linearization of E with
respect to ι. Then the canonical morphism

(2.3.6.1) ε∗L
PD
(Y,M)/S(E) −→ Rε∗L

PD
(Y,M)/S(E)

is an isomorphism in the derived category D+(O(Y,N)/S).

Proof. (2.3.6) immediately follows from (2.2.1.2) and (2.3.5). ��

Lemma 2.3.7. Let (Y,M) be a log smooth scheme over S. Let N be a fine
sub-log structure of M on Y such that (Y,N ) is also log smooth over S. Let

(2.3.7.1)

(Y,M) ιM−−−−→ (Y,M)

ε(Y,M,N)/S

⏐

⏐

�

⏐

⏐

�

ε(Y,M,N)/S

(Y,N) ιN−−−−→ (Y,N )

be a commutative diagram whose horizontal morphisms are closed immer-
sions. Let DM and DN be the log PD-envelopes of ιM and ιN over (S, I, γ),
respectively, with the natural following commutative diagram:
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(2.3.7.2)

DM
gM−−−−→ (Y,M)

h

⏐

⏐

�

⏐

⏐

�

DN
gN−−−−→ (Y,N )

Assume that the underlying morphism
◦
h of schemes is the identity. Then

there exist natural isomorphisms

(2.3.7.3) LPD
(Y,N)/S

∼−→ ε(Y,M,N)/S∗L
PD
(Y,M)/S

and

(2.3.7.4) LPD
(Y,N)/S

◦
g∗N

∼−→ ε(Y,M,N)/S∗L
PD
(Y,M)/S

◦
g∗M

of functors. Moreover, the functor (2.3.7.3) is functorial with respect to log
HPD differential operators.

Proof. Let ϕM : (( ˜(Y,M)/S)logcrys|DM ,O(Y,M)/S |DM) −→ (
◦̃
DMzar,ODM) be

the morphism of ringed topoi in (2.2.1.1). Let ϕN be the analogue of ϕM for
(Y,N ). Let

ε|D : (( ˜(Y, M)/S)logcrys|DM ,O(Y,M)/S |DM ) −→ (( ˜(Y, N)/S)logcrys|DN ,O(Y,N)/S |DN )

be the natural morphism. Then, using the formula (2.3.3.2), we can immedi-
ately check that (ε|D)∗ϕ∗

M = ϕ∗
N . Hence we have the following commutative

diagram

(2.3.7.5)

( ˜Yzar,OY)
◦
g∗
M−−−−→ (

◦̃
DMzar,ODM)

ϕ∗
M−−−−→

∥

∥

∥

∥

∥

∥

( ˜Yzar,OY)
◦
g∗
N−−−−→ (

◦̃
DNzar,ODN )

ϕ∗
N−−−−→

(( ˜(Y,M)/S)logcrys|DM ,O(Y,M)/S |DM)
jDM∗−−−−→ (( ˜(Y,M)/S)logcrys,O(Y,M)/S)

ε|D∗

⏐

⏐

�

ε(Y,M,N)/S∗

⏐

⏐

�

(( ˜(Y,N)/S)logcrys|DN ,O(Y,N)/S |DN )
jDN ∗−−−−→ (( ˜(Y,N)/S)logcrysO(Y,N)/S),

and this implies the isomorphisms (2.3.7.3), (2.3.7.4).
Finally we check the functoriality of the isomorphism (2.3.7.3) with re-

spect to log HPD differential operators. To show this, it suffices to prove the
required functoriality for the morphism

(2.3.7.6) ε∗(Y,M,N)/SLPD
(Y,N)/S −→ LPD

(Y,M)/S .



90 2 Weight Filtrations on Log Crystalline Cohomologies

For TM := (U, T,MT , ι, δ) in ((Y,M)/S)logcrys, let TN := (U, T,N inv
T , ι, δ) be as

above. Then, for an ODN
-module E , the homomorphism

(ε∗(Y,M,N)/SLPD
(Y,N)/S(E))TM

−→ (LPD
(Y,M)/S(E))TN

induced by (2.3.7.6) is given by the canonical homomorphism

ODU (TN×S(Y,N )) ⊗ODN
E −→ ODU (TM×S(Y,M)) ⊗ODM

E ,

and it is easy to see that this homomorphism is functorial with respect to log
HPD differential operators (see (2.2.3.1)). Hence we finish the proof of the
lemma. ��

Remark 2.3.8. In (2.3.7), we do not have to assume the condition (2.3.0.3)
on the log structure N . The reason why we imposed the condition (2.3.0.3)
was to assure that the log structure N inv

T is always fine. However, in the
situation in (2.3.7), the fineness of N inv

T for any T = (U, T,MT ) follows from
the assumption. Indeed, we have a morphism ψ : (T,MT ) −→ DM etale
locally on T and one can see that N inv

T is isomorphic to the pull-back of the
log structure of DN by ψ.

Definition 2.3.9. For an OY/S-module E, we call Rε(Y,M,N)/S∗(E) the van-
ishing cycle sheaf of E along M \ N . We call Rε(Y,M,N)/S∗(O(Y,M)/S) the
vanishing cycle sheaf of (Y,M)/(S, I, γ) along M \N . If N is trivial, we omit
the word “along M \N”.

The following theorem is the crystalline Poincaré lemma of a vanishing
cycle sheaf:

Theorem 2.3.10 (Poincaré lemma of a vanishing cycle sheaf). Let
MS be the log structure of S. Let E be a crystal of O(Y,N)/S-modules and
let (E ,∇) be the ODM-module with integrable log connection corresponding to
ε∗(Y,M,N)/S(E). Assume that we are given the commutative diagram (2.3.7.1)

and that
◦
h in (2.3.7) is the identity. Then there exists a canonical isomor-

phism

(2.3.10.1)
Rε(Y,M,N)/S∗ε

∗
(Y,M,N)/S(E) ∼−→ LPD

(Y,N)/S(E ⊗OY Ω•
Y/S(logM/MS))

in D+(O(Y,N)/S).

Proof. By (2.2.8.1), we have an isomorphism

(2.3.10.2) ε∗(Y,M,N)/S(E) ∼−→ LPD
(Y,M)/S(E ⊗OY Ω•

Y/S(logM/MS)).

Applying Rε(Y,M,N)/S∗ to both hands of (2.3.10.2) and using (2.3.6) and
(2.3.7), we obtain
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Rε(Y,M,N)/S∗ε
∗
(Y,M,N)/S(E)

∼−→ Rε(Y,M,N)/S∗L
PD
(Y,M)/S(E ⊗OY Ω•

Y/S(logM/MS))
∼←− ε(Y,M,N)/S∗L

PD
(Y,M)/S(E ⊗OY Ω•

Y/S(logM/MS))

= LPD
(Y,N)/S(E ⊗OY Ω•

Y/S(logM/MS)).

��

We prove the boundedness of log crystalline cohomology in a general sit-
uation.

Proposition 2.3.11. Let (S, I, γ) be the log PD-scheme in §1.6. Set S0 :=
Spec

S
(OS/I). Let f : X −→ Y be a morphism of fine log schemes over S0.

Assume that
◦
X and

◦
Y are quasi-compact and that

◦
f :

◦
X −→

◦
Y is quasi-

separated morphism of finite type. Let E be a quasi-coherent crystal of OY/S-
modules. Then Rf log

crys∗(E) is bounded.

Proof. For (U, T, δ) ∈ (Y/S)logcrys, put XU := X×Y U and denote the morphism
of topoi (f |XU

) ◦uXU /T by fXU /T . By the same argument as [3, V Théorème
3.2.4], we are reduced to proving the following claim: there exists a positive
integer r such that, for any (U, T, δ) ∈ (Y/S)logcrys and for any quasi-coherent
crystal E on (XU/T )logcrys, we have RifXU /T∗(E) = 0 for i > r. Again, by the
same argument as [3, V Théorème 3.2.4, Proposition 3.2.5], we are reduced

to showing the above claim in the case where
◦
X and

◦
Y are sufficiently small

affine schemes. Hence we may assume that X admits a chart α : P −→ MX .
(Note that, in this book, log structures are defined on a Zariski site.) Let us
take surjections ϕ1 : OY [Na] −→ OX and ϕ2 : N

b −→ P (a, b ∈ N). For (U, T,

MT , ι, δ) ∈ (Y/S)logcrys, let us define ˜T := (˜T ,M
˜T ) by

˜T := SpecOT
(OT [Na ⊕ N

b]),

M
˜T := the log structure associated to MT ⊕ N

b −→ OT [Na ⊕ N
b],

where the map MT ⊕N
b −→ OT [Na⊕N

b] is induced by MT −→ OT and the
natural inclusion N

b ⊂−→ OT [Na⊕N
b]. Then we have the canonical affine log

smooth morphism g : ˜T −→ T . Let ψ1 be the morphismOT [Na⊕N
b] −→ OXU

induced by N
a ⊂−→ OU [Na]

ϕ1|U−→ OXU
and N

b ϕ2−→ P
α|XU−→ MXU

−→ OXU
. Let

ψ2 be the morphism MT ⊕ N
b −→ MXU

induced by MT −→ MU −→ MXU

and N
b ϕ2−→ P

α|XU−→ MXU
. Then we have the closed immersion ψ : XU

⊂−→ ˜T
of log schemes induced by ψ1, ψ2 and we have the commutative diagram of
log schemes
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XU
ψ−−−−→ ˜T

⏐

⏐

�

⏐

⏐

�

g

U
ι−−−−→ T.

Let D be the log PD-envelope of ψ and let h : D −→ T be the composite mor-
phism D −→ ˜T −→ T . Then we have RifXU /T∗(E) = Hi(h∗(E(XU ,D) ⊗O

˜T

Λ•
˜T/T

)) = 0 for i > a + b. Hence we have proved the claim and consequently
we finish the proof of (2.3.11). ��

Corollary 2.3.12. Let (S, I, γ) and S0 be as in (2.3.11). Let (Y,M) be a
fine log smooth scheme over S0 such that Y is quasi-compact. Let N be a
fine sub log structure of M on Y . Then, for a quasi-coherent crystal E of
O(Y,M)/S-modules, the complex Rε(Y,M,N)/S∗(E) is bounded.

Remark 2.3.13. In the proof of (2.3.11), we used the convention that the log
structures in this book are defined on a Zariski site. However, if we assume
that f is log smooth, we can prove the statement of (2.3.11) also in the case
where the log structures are defined on an etale site. Indeed, in this case, by

(2.3.14) below, if we assume that
◦
X and

◦
Y are affine, then we have always a

log smooth lift g : ˜T −→ T of XU −→ U for any (U, T, δ) ∈ (Y/S)logcrys such

that
◦
T is affine. Then we have

RifXU /T∗E = Hi(g∗(E(XU , ˜T ) ⊗O
˜T

Λ•
˜T/T

)) = 0

for i > r, where r is the maximum of the rank of Λ1
X/Y,x (x ∈ X).

We give a proof of a lemma which has been used in (2.3.13), which is useful
also in later sections.

Lemma 2.3.14. Let S be a fine log scheme and let I be a quasi-coherent
nil-ideal sheaf of OS . Let S0 be an exact closed log subscheme of S defined

by I. Assume that
◦
S is affine. Let Z be a log smooth scheme over S0. Then,

if
◦
Z is affine, there exists a unique log smooth lift Z (up to an isomorphism)

of Z over S and Z is also affine.

Proof. Let (P) be a property of a scheme or a morphism of schemes. In
this proof, for simplicity, we say that a log scheme W (resp. a morphism

f : W −→ W ′ of log schemes) has the property (P) if
◦

W (resp.
◦
f) has the

property (P). Though the unique existence of Z seems more or less well-
known, we give a proof as follows (cf. [54, (3.14) (1)], [11, N.B. in 5.28]).

Express I as the inductive limit of the inductive system {Iλ} of quasi-
coherent nilpotent ideal sheaves of OS : I = lim−→λ

Iλ. Let Sλ be an exact
closed log subscheme of S defined by Iλ. Since S0 = lim←−λ

Sλ and since Z is of
finite presentation over S0, there exists a fine log smooth scheme Zλ over Sλ
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such that Z = Zλ ×Sλ
S0 for a large λ (cf. [40, 3 (8.8.2) (ii)], [40, 4 (17.7.8)],

[86, 4.11]). By [40, 3 (8.10.5) (viii)], we may assume that Zλ is affine. Since
Iλ is nilpotent, the existence of Z follows from [54, (3.14) (1)].

Let Z ′ be another lift of Z over S. Since the structural morphism Z −→ S0

is quasi-separated, the structural morphisms Z −→ S and Z ′ −→ S are quasi-
separated by [40, 1 (1.2.5)]. Set Zλ := Z ×S Sλ and Z ′

λ := Z ′ ×S Sλ. Then
Zλ and Z ′

λ are quasi-compact, quasi-separated and of finite presentation over
Sλ. Because lim←−λ

Zλ = Z = lim←−λ
Z ′

λ, there exists an isomorphism Zλ
∼−→ Z ′

λ

over Sλ for a large λ which induces the identity of Z (cf. [40, 3 (8.8.2) (i)],
[86, 4.11.3]). Since Iλ is nilpotent, there exists an isomorphism Z ∼−→ Z ′ over
S which induces the isomorphism Zλ

∼−→ Z ′
λ ([54, (3.14) (1)]).

The rest we have to prove is that Z is affine. Let Zλ be the affine fine
log scheme above. Because Iλ is nilpotent, we may assume that I2

λ = 0.
Let J be a coherent ideal sheaf of OZ . By the proof in [45, III (3.7)] of
Serre’s theorem on the criterion of the affineness of a scheme, we have only

to prove that H1(
◦
Z,J ) = 0 (the assumption “noetherianness” in [loc. cit.] is

unnecessary). Consider the following exact sequence

0 −→ IλJ −→ J −→ J /IλJ −→ 0.

Because Zλ is affine, H1(
◦
Z,J /IλJ ) = H1(

◦
Zλ,J /IλJ ) = 0. Similarly,

H1(
◦
Z, IλJ ) = 0. Hence H1(

◦
Z,J ) = 0. Hence we finish the proof. ��

Let X be a smooth scheme over S0 and let D and Z be relative SNCD’s
on X/S0 which meets transversally over S0. In §2.7 below, we investigate
important properties of Rε(Y,M,N)/S∗(O(Y,M)/S) for the case where (Y,M) =
(X,D ∪ Z) and (Y,N) = (X,Z).

2.4 Preweight-Filtered Restricted Crystalline
and Zariskian Complexes

Let (S, I, γ) be a PD-scheme such that OS is killed by a power of a prime
number p and such that I is quasi-coherent. Set S0 := Spec

S
(OS/I). Let

◦
f : X −→ S0 be a smooth morphism and D a relative SNCD on X over S0.
Let f : (X,D) −→ S0 be the natural morphism of log schemes. By abuse of
notation, we also denote by f the composite morphism (X,D) −→ S0

⊂−→ S.
The aim in this section is to construct two fundamental objects in

D+F(Q∗
X/S(OX/S)) and in D+F(f−1(OS)) which we call the preweight-

filtered restricted crystalline complex of (X,D)/(S, I, γ) and preweight-filtered
zariskian complex of (X,D)/(S, I, γ), respectively. In fact, we construct these
complexes in a more general setting.
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As explained in §2.1, X has the fs log structure M(D) defined by D.
As in §2.1, we denote this log scheme by (X,D). Let ∆ = {Dλ}λ∈Λ be
a decomposition of D by smooth components of D over S0. Let X =
⋃

i0∈I0

Xi0 be an open covering, where I0 is a set. Set Di0 := D ∩ Xi0

and D(λ;i0) := Dλ ∩ Xi0 . Fix a total order on I0 and let I be the cat-
egory defined in §1.5. For an object i = (i0, . . . , ir) ∈ I, set Xi :=
⋂r

s=0 Xis
, Di :=

⋂r
s=0 Dis

and D(λ;i) :=
⋂r

s=0 D(λ;is). As explained in §1.6,

we have two ringed topoi (( ˜(X•,D•)/S)logRcrys, Q
∗
(X•,D•)/S(O(X•,D•)/S)) and

(˜X•zar, f
−1
• (OS)).

Thus we have the following datum:

(2.4.0.1): An open covering X =
⋃

i0∈I0
Xi0 and the family {(Xi,Di)}i∈I of

log schemes which form a diagram of log schemes over the log scheme (X,D),
which we denote by (X•,D•). That is, (X•,D•) is nothing but a contravariant
functor

Io −→ {smooth schemes with relative SNCD’s over S0

which are augmented to (X,D)}

Assume that, for any element i0 of I0, there exists a smooth scheme Xi0

with a relative SNCD Di0 on Xi0 over S such that there exists an admissible
immersion

(Xi0 ,Di0)
⊂−→ (Xi0 ,Di0)

with respect to ∆i0 := {D(λ;i0)}λ∈Λ. By (2.3.14), if {Xi0}i0∈I0 is an affine
open covering of X, we can assume that (Xi0 ,Di0) is, in fact, a lift of
(Xi0 ,Di0): (Xi0 ,Di0)×S S0 = (Xi0 ,Di0).

We wish to construct the following object:

(2.4.0.2): A diagram (X•,D•)
⊂−→ (X•,D•) (• ∈ I) of admissible immersions

into a diagram of smooth schemes with relative SNCD’s over S with respect
to ∆•, where ∆i := {D(λ;i)}λ∈ΛXi

(i ∈ I).

Let ˜∆i0 = {D(λ;i0)}λ∈ΛXi0
be a decomposition of Di0 which is compatible

with ∆i0 : Di0 =
⋃

λ∈ΛXi0
D(λ;i0) and D(λ;i0) ×Xi0

Xi0 = D(λ;i0) (∀λ ∈ ΛXi0
).

Let i = (i0, . . . , ir) be an object of I. Set X(iα,i) := Xiα
\ (Xiα

\ Xi) (0 ≤
α ≤ r), where Xiα

denotes the closure of Xiα
in Xiα

. Since Xiα
\ Xi is

a closed subscheme of Xiα
, X(iα,i) is an open subscheme of Xiα

. It is easy

to see that the morphism Xi
⊂−→ X(iα,i) is a closed immersion. Denote by

D(λ;iα,i) (resp. D(iα,i)) the closed subscheme D(λ;iα) ∩ X(iα,i) (resp. Diα
∩

X(iα,i)) of X(iα,i). Set X ′
i :=

∏

S

r
α=0X(iα,i). The closed immersions Xi

⊂−→

X(iα,i) (α = 0, . . . , r) induce an immersion Xi
⊂−→ X ′

i . Blow up X ′
i along
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⋃

λ∈Λ

∏

S

r
α=0D(λ;iα,i). Denote this scheme by X ′′

i . We consider the complement

Xi of the strict transform of

⋃

λ∈Λ

r
⋃

β=0

(X(i0,i)×S · · · ×SX(iβ−1,i)×SD(λ;iβ ,i)×SX(iβ+1,i) ×S · · · ×SX(ir,i))

in X ′′
i . Let Di be the exceptional divisor on Xi. Then Di is a relative SNCD

on Xi by (2.4.2) below. Considering the strict transform of the image of Xi

of the diagonal embedding in X ′
i , we have an immersion Xi

⊂−→ Xi, in fact,
an admissible immersion (Xi,Di)

⊂−→ (Xi,Di) with respect to ∆i by (2.4.2)
below. Let Di be the log PD-envelope of the immersion (Xi,Di)

⊂−→ (Xi,Di)
over (S, I, γ) with structural morphism fi : Di −→ S.

First we give the local description of OXi
at a point of Di (cf. [47, 2],

[48, (1.7)], [64, 3.4]) for the warm up for the general description of OXi
in

(2.4.2) below.

Lemma 2.4.1. Let i = (i0, . . . , ir) be an element of I. Then, Zariski locally
at the image of a point of Di in Xi, the structure sheaf OXi

of Xi is etale
over the following sheaf of rings

OS [x(iα)
1 , . . . , x

(iα)
diα

| 0 ≤ α ≤ r][u(iαi0)±1
t | 1 ≤ α ≤ r, 1 ≤ t ≤ s]/

(x(iα)
t − u

(iαi0)
t x

(i0)
t | 1 ≤ α ≤ r, 1 ≤ t ≤ s),

where x
(iα)
1 , . . . , x

(iα)
diα

(0 ≤ α ≤ r) and u
(iαi0)
1 , . . . , u

(iαi0)
s (1 ≤ α ≤ r) are

independent variables over OS and s is a positive integer. The exceptional
divisor Di is defined by an equation x

(i0)
1 · · ·x(i0)

s = 0.

Proof. The problem is etale local. We may assume that there exists an isomor-
phism Xiα

∼−→ Spec
S
(OS [x(iα)

1 , . . . , x
(iα)
diα

]). Assume, furthermore, that D(iα,i)

is defined by an equation x
(iα)
1 · · ·x(iα)

s = 0 (1 ≤ s ≤ min{diα
| 0 ≤ α ≤ r}).

Here a positive integer s is independent of α.
Set A := OS [x(iα)

1 , . . . , x
(iα)
diα

| 0 ≤ α ≤ r]. Let It ⊂ A (1 ≤ t ≤ s) be the
ideal sheaf of a closed subscheme

(x(i0)
t = 0) ∩ (x(i1)

t = 0) ∩ · · · ∩ (x(ir)
t = 0).

Set U0 := X ′
i and let Ut (1 ≤ t ≤ s) be a scheme defined inductively as

follows: Ut is the blowing up of Ut−1 with respect to the ideal sheaf ItOUt−1 .
Then, by [77, (5.1.2) (v)], Us = X ′′

i . By the construction of Us, Us is covered
by the following spectrums over S of the following sheaves of rings:

A[u
(iβ1 )

1 /u
(iα1 )

1 , . . . , u
(iβs )
s /u

(iαs )
s | 0 ≤ β1, . . . , βs ≤ r]/

(x
(iβ1 )

1 − (u
(iβ1 )

1 /u
(iα1 )

1 )x
(iα1 )

1 , . . . , x
(iβs )
s − (u

(iβ1 )
s /u

(iαs )
s )x

(iαs )
s ) (0 ≤ α1, . . . , αs ≤ r).
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Since the following equations

x
(iβ)
t = 0 (1 ≤ t ≤ s, 0 ≤ ∀β ≤ r)

are equivalent to

u
(iβ)
t = 0, x

(iα)
t = 0 (1 ≤ t ≤ s, 0 ≤ ∀β ≤ r),

OXi
is isomorphic to

OS [x(iα)
1 , . . . , x

(iα)
diα

| 0 ≤ α ≤ r][u(iβiα)±1
t | 0 ≤ α = β ≤ r, 1 ≤ t ≤ s]/

(x(iβ)
t − u

(iβiα)
t x

(iα)
t , u

(iβiα)
t u

(iαiβ)
t − 1, u

(iγ iα)
t − u

(iγiβ)
t u

(iβiα)
t

| 0 ≤ α = β = γ = α ≤ r, 1 ≤ t ≤ s).

The last sheaf of rings is isomorphic to

OS [x(iα)
1 , . . . , x

(iα)
diα

| 0 ≤ α ≤ r][u(iαi0)±1
t | 1 ≤ α ≤ r, 1 ≤ t ≤ s]/

(x(iα)
t − u

(iαi0)
t x

(i0)
t | 1 ≤ α ≤ r, 1 ≤ t ≤ s).

Now the claim on the exceptional divisor is obvious. ��

We think that the reader is ready to read the following theorem which
tells us that (Xi,Di)

⊂−→ (Xi,Di) is, indeed, an admissible immersion with
respect to ∆i.

Theorem 2.4.2. Fix i = (i0, . . . , ir) ∈ I. Let A := �r
α=0OX(iα,i) be the

structure sheaf of X ′
i . Set Λi := {λ ∈ Λ | D(λ;iα,i) = ∅ (0 ≤ ∀α ≤ r)}. (Then

we have Λi = ΛXi
.)

Let J(λ;iα,i) (λ ∈ Λi) be the ideal sheaf of OX(iα,i) defining the closed im-

mersion D(λ;iα,i)
⊂−→ X(iα,i). Let X(iα,i) = ∪µ(iα,i)Xµ(iα,i) be an open covering

of X(iα,i) such that the restriction of J(λ;iα,i) to Xµ(iα,i) is generated by a local

section x
(µ(iα,i))

λ for all λ ∈ Λi (such open covering exists by the commutative
diagram (2.1.7.2) for (X(iα,i),D(iα,i))). Set

Λ(r)
i := Λ(r)

i (µ(i0,i), . . . , µ(ir,i))
:= {λ ∈ Λi | D(λ;iα,i) ∩ Xµ(iα,i) = ∅, (0 ≤ ∀α ≤ r)}.

Then Xi is covered by the spectrums over S of the following sheaves of rings

A[(u
(µ(iα,i)µ(i0,i))

λ )±1 | λ ∈ Λ(r)
i , 1 ≤ α ≤ r]/

(x(µ(iα,i))

λ − u
(µ(iα,i)µ(i0,i))

λ x
(µ(i0,i))

λ | λ ∈ Λ(r)
i ) (µ(i0,i), . . . , µ(ir,i)).
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Here u
(µ(iα,i)µ(i0,i))

λ ’s are independent variables. The exact locally closed im-
mersion (Xi,Di)

⊂−→ (Xi,Di) is an admissible immersion with respect to
{D(λ;i)}λ∈Λi

.

Proof. We have the restriction

(Xi,Di)
⊂−→ (X(iα,i),

⋃

λ∈Λi

D(λ;iα,i))

of the admissible immersion (Xiα
,Diα

) ⊂−→ (Xiα
,Diα

) with respect to ∆iα

(0 ≤ α ≤ r).
Set

M(λ) := {(µ(i0,i), . . . , µ(ir,i)) | D(λ;iα) ∩ Xµ(iα,i) = ∅ (0 ≤ ∀α ≤ r)}

and let M1(λ) be the set of the µ(is,i)’s (0 ≤ s ≤ r) appearing in an element
of M(λ). Then, by [77, (5.1.2) (v)], X ′′

i is covered by the spectrums over S
of the following sheaves of rings:

A[u
(µ(iβλ

,i))

λ /u
(µ(iαλ

,i))

λ | 0 ≤ βλ ≤ r, λ ∈ Λ(r)
i , µ(iβλ

,i) ∈ M1(λ)]/

(x
(µ(iβλ

,i))

λ −(u
(µ(iβλ

,i))

λ /u
(µ(iαλ

,i))

λ )x
(µ(iαλ

,i))

λ ) (0 ≤ αλ ≤ r, µ(iαλ
,i) ∈M1(λ)).

Since the following equations

x
(µ(iα,i))

λ = 0 (0 ≤ ∀α ≤ r)

are equivalent to

u
(µ(iα,i))

λ = 0, x
(µ(iα,i))

λ = 0 (0 ≤ ∀α ≤ r),

Xi is covered by the spectrums of the quotient sheaves of

A[(u
(µ(iβ,i)µ(iα,i))

λ )±1 | 0 ≤ α = β ≤ r, λ ∈ Λ(r)
i , µ(iα,i), µ(iβ ,i) ∈ M1(λ)]

divided by ideal sheaves generated by

x
(µ(iβ,i))

λ − u
(µ(iβ,i)µ(iα,i))

λ x
(µ(iα,i))

λ ,

u
(µ(iα,i)µ(iβ,i))

λ u
(µ(iβ,i),µ(iα,i))

λ − 1,

and

u
(µ(iγ ,i)µ(iα,i))

λ − u
(µ(iγ ,i)µ(iβ,i))

λ u
(µ(iβ,i)µ(iα,i))

λ

(0 ≤ α = β = γ = α ≤ r, λ ∈ Λ(r)
i , µ(iα,i), µ(iβ ,i), µ(iγ ,i) ∈M1(λ)).
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This quotient sheaf is isomorphic to

A[(u
(µ(iα,i)µ(i0,i))

λ )±1 | λ ∈ Λ(r)
i ]/

(x(µ(iα,i))

λ − u
(µ(iα,i)µ(i0,i))

λ x
(µ(i0,i))

λ | λ ∈ Λ(r)
i ).

Let D(λ;i) be the strict transform of
∏r

α=0D(λ;iα,i) in Xi. Now we see that,
for λ ∈ Λ(r)

i , the intersection of D(λ;i) and the inverse image of
∏

S

r
α=0Xµ(iα,i) in

Xi is defined by an equation x
(µ(i0,i))

λ = 0. Hence D(λ;i) is a smooth divisor on
Xi over S and Di is a relative SNCD on Xi over S, and D(λ;i)×Xi

Xi = D(λ;i).
Therefore we obtain (2.4.2). ��

Now we change notations. Let X be a smooth scheme and let D and Z be
transversal relative SNCD’s on X/S0. Let ∆D := {Dλ}λ (resp. ∆Z := {Zµ}µ)
be a decomposition of D (resp. Z) by smooth components of D (resp. Z).
Then ∆D and ∆Z give a decomposition ∆ := {Dλ, Zµ}λ,µ of D∪Z by smooth
components of D∪Z. We can construct the objects in (2.4.0.1) and (2.4.0.2)
for D ∪ Z and ∆: (X•,D• ∪ Z•)

⊂−→ (X•,D• ∪ Z•). Let Di be the log PD-
envelope of the admissible immersion (Xi, Zi)

⊂−→ (Xi,Zi) with respect to
∆Z |Xi

. Set Zi|D(k)
i

:= Zi ∩D
(k)
i and Zi|D(k)

i
:= Zi ∩D(k)

i (k ∈ N), where D(k)
i

is a scheme over S defined in (2.2.13.2) for Di.

Lemma 2.4.3. The log scheme Di×(Xi,Zi)(D
(k)
i ,Zi|D(k)

i
) is the log PD-enve-

lope of the locally closed immersion (D(k)
i , Zi|D(k)

i
) −→ (D(k)

i ,Zi|D(k)
i

).

Proof. (2.4.3) is a special case of (2.2.16) (2). ��

Let {PDi

k }k∈Z be the filtration on Ω•
Xi/S(log(Di∪Zi)) defined in (2.2.15.2).

As in §2.2, we set

PDi

k L(Xi,Zi)/S(Ω•
Xi/S(log(Di ∪ Zi))) := L(Xi,Zi)/S(PDi

k Ω•
Xi/S(log(Di ∪ Zi))),

PDi

k (ODi
⊗OXi

Ω•
Xi/S(logDi)) := ODi

⊗OXi
PDi

k Ω•
Xi/S(log(Di ∪ Zi)).

By (2.2.17) (1) and (2), we have two filtered complexes

(Q∗
(Xi,Zi)/SL(Xi,Zi)/S(Ω•

Xi/S(log(Di ∪ Zi))), Q∗
(Xi,Zi)/SPDi)

∈ C+F(O(Xi,Zi)/S),

(ODi
⊗OXi

Ω•
Xi/S(log(Di ∪ Zi)), PDi) ∈ C+F(f−1

i (OS)).

Lemma 2.4.4. For a morphism α : i −→ j in I, let α : (Xj ,Dj ∪ Zj) −→
(Xi,Di ∪ Zi) be the natural morphism. Then {(Xi,Di ∪ Zi), α}i∈I,α∈Mor(I)

defines a diagram of smooth schemes with relative SNCD’s over S :

Io −→ {smooth schemes with relative SNCD’s over S},
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that is, for another morphism β : j −→ l in I, α ◦ β = β ◦ α, and idi =
id. Moreover, {Di}i∈I is a diagram of log schemes. In particular, there are
natural morphisms

ρα : α−1(Q∗
(Xi,Zi)/SPDi

k L(Xi,Zi)/S(Ω•
Xi/S(log(Di ∪ Zi))))

−→ Q∗
(Xj ,Zj)/SP

Dj

k L(Xj ,Zj)/S(Ω•
Xj/S(log(Dj ∪ Zj))),

ρα : α−1(PDi

k (ODi
⊗OXi

Ω•
Xi/S(log(Di ∪ Zi))))

−→ P
Dj

k (ODj
⊗OXj

Ω•
Xj/S(log(Dj ∪ Zj)))

such that ρidi = id and ρβ◦α = ρβ ◦ β−1(ρα).

Proof. The open immersion Xj
⊂−→ Xi induces a morphism X ′

j −→ X ′
i . By

the universality of the blow ups, we have a morphism X ′′
j −→ X ′′

i and this
morphism induces morphisms (Xj ,Dj ∪ Zj) −→ (Xi,Di ∪ Zi), (Xj ,Dj) −→
(Xi,Di) and (Xj ,Zj) −→ (Xi,Zi). The universality of the log PD-envelope
induces a morphism Dj −→ Di. Thus (2.4.4) follows. ��

By (2.4.4), we obtain a complex

(Q∗
(Xi,Zi)/SPDi

k L(Xi,Zi)/S(Ω•
Xi/S(log(Di ∪ Zi))))i∈I

∈ C+(Q∗
(X•,Z•)/S(O(X•,Z•)/S))

of Q∗
(X•,Z•)/S(O(X•,Z•)/S)-modules and a complex

(PDi

k (ODi
⊗OXi

Ω•
Xi/S(log(Di ∪ Zi))))i∈I ∈ C+(f−1

• (OS))

of f−1
• (OS)-modules. Now we have the following filtered complex of Q∗

(X•,Z•)

/S(O(X•,Z•)/S)-modules and the following filtered complex of f−1
• (OS)-mod-

ules:
(C log,Z•

Rcrys (O(X•,D•∪Z•)/S), PD•) :=

(Q∗
(Xi,Zi)/SL(Xi,Zi)/S(Ω•

Xi/S(log(Di ∪ Zi))), Q∗
(Xi,Zi)/SPDi)i∈I

and

(C log,Z•
zar (O(X•,D•∪Z•)/S), PD•) := (ODi

⊗OXi
Ω•

Xi/S(logDi), PDi)i∈I .

Remark 2.4.5. Once we are given the data (2.4.0.1) and (2.4.0.2) for (X,D
∪Z) with respect to ∆ = {Dλ, Zµ}λ,µ, we can obtain two filtered complexes

(C log,Z•
Rcrys (O(X•,D•∪Z•)/S), PD•) and (C log,Z•

zar (O(X•,D•∪Z•)/S), PD•).

Let

(2.4.5.1) πlog
(X,Z)/SRcrys : (( ˜(X•, Z•)/S)logRcrys, Q

∗
(X•,Z•)/S(O(X•,Z•)/S)) −→
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(( ˜(X,Z)/S)logRcrys, Q
∗
(X,Z)/S(O(X,Z)/S))

and

(2.4.5.2) πzar : (˜X•zar, f
−1
• (OS)) −→ ( ˜Xzar, f

−1(OS))

be natural morphisms of ringed topoi defined in §1.5 and §1.6.

Definition 2.4.6. Assume that we are given the data (2.4.0.1) and (2.4.0.2)
for (X,D ∪ Z) with respect to ∆ = {Dλ, Zµ}λ,µ.

(1) We call

(2.4.6.1)
Rπlog

(X,Z)/SRcrys∗(C
log,Z•
Rcrys (O(X•,D•∪Z•)/S), PD•) ∈ D+F(Q∗

(X,Z)/S(O(X,Z)/S))

the preweight-filtered restricted crystalline complex of O(X,D∪Z)/S (or (X,D∪
Z)/S) with respect to D. We denote it by (C log,Z

Rcrys(O(X,D∪Z)/S), PD). If
Z = ∅, then we call (C log,Z

Rcrys(O(X,D∪Z)/S), PD) the preweight-filtered re-
stricted crystalline complex of O(X,D)/S or (X,D)/S and we denote it by
(CRcrys(O(X,D)/S), P ).

(2) We call

(2.4.6.2) Rπzar∗(C log,Z•
zar (O(X•,D•∪Z•)/S), PD) ∈ D+F(f−1(OS))

the preweight-filtered zariskian complex of O(X,D∪Z)/S (or (X,D ∪ Z)/S)
with respect to D. We denote it by (C log,Z

zar (O(X,D∪Z)/S), PD). If Z = ∅, then
we call (C log,Z

zar (O(X,D∪Z)/S), PD) the preweight-filtered zariskian complex of
O(X,D)/S or (X,D)/S and we denote it by (Czar(O(X,D)/S), P ).

Let

ε(X,D∪Z,Z)/S : (( ˜(X,D ∪ Z)/S)logcrys,O(X,D∪Z)/S)(2.4.6.3)

−→ (( ˜(X,Z)/S)logcrys,O(X,Z)/S)

be the forgetting log morphism along D ((2.3.2)) and let

(2.4.6.4)

u(X,D∪Z)/S : (( ˜(X,D ∪ Z)/S)logcrys,O(X,D∪Z)/S) −→ ( ˜Xzar, f
−1(OS))

be the canonical projection ((1.6.0.8)).

Proposition 2.4.7. There exists the following canonical isomorphisms

(2.4.7.1) Q∗
(X,Z)/SRε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S) ∼−→ C log,Z

Rcrys(O(X,D∪Z)/S),

(2.4.7.2)
Ru(X,Z)/S∗(C

log,Z
Rcrys(O(X,D∪Z)/S)) ∼−→ Ru(X,D∪Z)/S∗(O(X,D∪Z)/S),
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(2.4.7.3) Ru(X,D∪Z)/S∗(O(X,D∪Z)/S) ∼−→ C log,Z
zar (O(X,D∪Z)/S).

Proof. Let

(2.4.7.4) πlog
(X,D∪Z)/Scrys : ( ˜(X•,D• ∪ Z•)/S)logcrys −→ ( ˜(X,D ∪ Z)/S)logcrys

and

(2.4.7.5) πlog
(X,D∪Z)/SRcrys : ( ˜(X•,D• ∪ Z•)/S)logRcrys −→ ( ˜(X,D ∪ Z)/S)logRcrys

be natural morphisms of topoi defined in §1.6.
The isomorphism (2.4.7.1) follows from the cohomological descent [42,

Vbis], (2.3.2.2), (2.3.10.1), (1.6.4.1) and the definition of C log,Z
Rcrys(O(X,D∪Z)/S).

Indeed, the left hand side of (2.4.7.1) is equal to

Q∗
(X,Z)/SRε(X,D∪Z,Z)/S∗Rπlog

(X,D∪Z)/Scrys∗π
log,−1
(X,D∪Z)/Scrys(O(X,D∪Z)/S)

=Q∗
(X,Z)/SRπlog

(X,Z)/Scrys∗Rε(X•,D•∪Z•,Z•)/S∗(O(X•,D•∪Z•)/S)

=Q∗
(X,Z)/SRπlog

(X,Z)/Scrys∗L(X•,Z•)/S(Ω•
X•/S(log(D• ∪ Z•)))

=Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•)))

=C log,Z
Rcrys(O(X,D∪Z)/S).

By the trivially filtered case of (1.6.3.1) and by (2.4.7.1),

Ru(X,Z)/S∗(C
log,Z
Rcrys(O(X,D∪Z)/S) = Ru(X,Z)/S∗Rε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S)

= Ru(X,D∪Z,Z)/S∗(O(X,D∪Z)/S).

(2.4.7.3) is a special case of [46, (2.20)], which follows from the cohomo-
logical descent. ��

Remark 2.4.8. (1) In the next section we shall prove that

(C log,Z
Rcrys(O(X,D∪Z)/S), PD) ∈ D+F(Q∗

(X,Z)/S(O(X,Z)/S))

and
(C log,Z

zar (O(X,D∪Z)/S), PD) ∈ D+F(f−1(OS))

are independent of the data (2.4.0.1) and (2.4.0.2) for (X,D ∪ Z) if we fix a
decomposition of D and Z by their smooth components, and then, in §2.7,
we shall prove that they are independent of the choice of the decompositions
of D and Z by their smooth components. Once we know that the definitions
of (C log,Z

Rcrys(O(X,D∪Z)/S), PD) and (C log,Z
zar (O(X,D∪Z)/S), PD) are well-defined,

we know that
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(2.4.8.1)
Ru(X,Z)/S∗(C

log,Z
Rcrys(O(X,D∪Z)/S), PD) = (C log,Z

zar (O(X,D∪Z)/S), PD)

by the constructions of them.
(2) The complex Czar(O(X,D)/S) in (2.4.6) is different from that defined in

[46, (2.19)]. Because the latter depends on an embedding system of (X,D),
it should be called a crystalline complex with respect to an embedding system.

2.5 Well-Definedness of the Preweight-Filtered
Restricted Crystalline and Zariskian Complexes

In this section we prove that the preweight-filtered restricted crystalline
complex

(C log,Z
Rcrys(O(X,D∪Z)/S), PD) ∈ D+F(Q∗

(X,Z)/S(O(X,Z)/S))

in (2.4.6.1) and the preweight-filtered zariskian complex

(C log,Z
zar (O(X,D∪Z)/S), PD) ∈ D+F(f−1(OS))

in (2.4.6.2) are independent of the data (2.4.0.1) and (2.4.0.2). To prove this
independence, we need not make local explicit calculations of PD-envelopes;
the notion of the admissible immersion enables us to use the classical crys-
talline Poincaré lemma implicitly; see (2.5.1), (2.5.2) and (2.5.3) below for
the detail.

Let S0
⊂−→ S be a PD-closed immersion defined by a quasi-coherent ideal

sheaf I. Let (X,D∪Z), ∆D, ∆Z and ∆ be as in the previous section. Consider
the following commutative diagram

(X,D ∪ Z) ⊂−−−−→ (X1,D1 ∪ Z1)
∥

∥

∥

⏐

⏐

�

(X,D ∪ Z) ⊂−−−−→ (X2,D2 ∪ Z2),

where the horizontal morphisms above are admissible immersions with re-
spect to a decomposition ∆; assume that the horizontal morphisms in-
duce admissible immersions (X,D) ⊂−→ (Xi,Di) with respect to ∆D and
(X,Z) ⊂−→ (Xi,Zi) with respect to ∆Z (i = 1, 2). Let Di (i = 1, 2) be the
log PD-envelope of the admissible immersion (X,Z) ⊂−→ (Xi,Zi). Then the
following holds:

Lemma 2.5.1. The induced morphisms

(2.5.1.1) (Q∗
(X,Z)/SL(X,Z)/S(Ω•

X2/S(log(D2 ∪ Z2))), Q∗
(X,Z)/SPD)

−→ (Q∗
(X,Z)/SL(X,Z)/S(Ω•

X1/S(log(D1 ∪ Z1))), Q∗
(X,Z)/SPD),
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(2.5.1.2) (OD2⊗OX2
Ω•

X2/S(log(D2 ∪ Z2)), PD)

−→ (OD1⊗OX1
Ω•

X1/S(log(D1 ∪ Z1)), PD)

are filtered quasi-isomorphisms.

Proof. Apply the gr-functor gr
Q∗

(X,Z)/SP D

k (k ∈ N) to (2.5.1.1). Then, by
(2.2.21.2), we obtain the following morphism:

gr
Q∗

(X,Z)/SP D

k {(2.5.1.1)} :

Q∗
(X,Z)/Sa

(k)log
crys∗ L(k)(Ω•

D(k)
2 /S

(logZ2|D(k)
2

)){−k} ⊗Z �(k)log
crys (D/S;Z)

−→ Q∗
(X,Z)/Sa

(k)log
crys∗ L(k)(Ω•

D(k)
1 /S

(logZ1|D(k)
1

)){−k} ⊗Z �(k)log
crys (D/S;Z).

Then gk := gr
Q∗

(X,Z)/SP D

k {(2.5.1.1)} fits into the following commutative dia-
gram:

Q∗
(X,Z)/Sa

(k)log
crys∗ L(k)(Ω•

D(k)
2 /S

(logZ2|D(k)
2

)){−k} ⊗Z �
(k)log
crys (D/S;Z)

gk

⏐

⏐

�

Q∗
(X,Z)/Sa

(k)log
crys∗ L(k)(Ω•

D(k)
1 /S

(logZ1|D(k)
1

)){−k} ⊗Z �
(k)log
crys (D/S;Z)

←−−−− Q∗
(X,Z)/Sa

(k)log
crys∗ O(D(k),Z|

D(k) )/S{−k} ⊗Z �
(k)log
crys (D/S;Z)

∥

∥

∥

←−−−− Q∗
(X,Z)/Sa

(k)log
crys∗ O(D(k),Z|

D(k) )/S{−k} ⊗Z �
(k)log
crys (D/S;Z),

where the horizontal morphisms are quasi-isomorphisms. Hence gk is also a
quasi-isomorphism and so is (2.5.1.1).

Applying the filtered direct image Ru(X,Z)/S∗ to (2.5.1.1), we immedi-
ately see that (2.5.1.2) is a filtered quasi-isomorphism by the log version of
[11, 5.27.2, (7.1.2)]. ��

Remark 2.5.2. To compare our straight method with previous works, assume
that Z = ∅ and consider two admissible immersions (X,D) ⊂−→ (Xi,Di)
(i = 1, 2) with respect to a decomposition ∆ = {Dλ}λ∈Λ of D by smooth
components of D. As in §2.4, we make the following operation. Set X ′

12 :=
X1×SX2. Let Di =

⋃

λ∈ΛD(λ;i) (i = 1, 2) be the union of smooth components
of Di. Blow up X ′

12 along
⋃

λ∈Λ(D(λ;1)×SD(λ;2)). Let X12 be the complement
of the strict transform of

⋃

λ∈Λ

{(D(λ;1) ×S X2) ∪ (X1 ×S D(λ;2))}
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in this blow up. Let D12 be the exceptional divisor on X12. By consider-
ing the strict transform of X in X12, we have an admissible immersion
(X,D) ⊂−→ (X12,D12) with respect to ∆, and we have the following com-
mutative diagram:

(2.5.2.1)

(X,D) ⊂−−−−→ (X12,D12)
∥

∥

∥

⏐

⏐

�

(X,D) ⊂−−−−→ (Xi,Di),

Let Di (i = 1, 2) and D12 be the log PD-envelope of the admissible immersions
(X,D) ⊂−→ (Xi,Di) and (X,D) ⊂−→ (X12,D12), respectively.

Then the induced morphisms (X12,D12) −→ (Xi,Di) (i = 1, 2) induce
morphisms of filtered complexes

(Q∗
X/SLX/S(Ω•

Xi/S(logDi)), Q∗
X/SP )(2.5.2.2)

−→ (Q∗
X/SLX/S(Ω•

X12/S(logD12)), Q∗
X/SP ),

and

(2.5.2.3) (ODi
⊗OXi

Ω•
Xi/S(logDi), P ) −→ (OD12⊗OX12

Ω•
X12/S(logD12), P ),

which are filtered quasi-isomorphisms by (2.5.1). Thus the proof for (2.5.2.3)
gives a simpler proof of a filtered version of the last lemma in [47] (cf. [48,
(1.7)], [64, 3.4]). Because we allow not only local lifts of (X,D) but also
local admissible immersions in the constructions of (CRcrys(O(X,D)/S), P ) and
(Czar(O(X,D)/S), P ), we can use the Poincaré lemma implicitly for the proof
of the quasi-isomorphism (2.5.2.3). We can also use a complicated version of
[64, 3.4] to prove that (2.5.2.3) is a filtered quasi-isomorphism; however we
omit this proof because this proof is lengthy.

Next we prove that (C log,Z
Rcrys(O(X,D∪Z)/S), PD) and (C log,Z

zar (O(X,D∪Z)/S),
PD) are independent of the data (2.4.0.1) and (2.4.0.2) for D ∪ Z and ∆.

Let the notations be as in §2.4. Let {Xi0}i0∈I0 and {Xj0}j0∈J0 be two open
coverings of X, where I0 and J0 are two sets. Let I and J be two sets in §1.5.
By §1.6 we have a diagram of ringed topoi (( ˜(X••, Z••)/S)logcrys,O(X••,Z••)/S)
and (˜X••zar, f

−1
•• (OS)).

Let i and j be arbitrary elements of I and J , respectively. For simplic-
ity of notation, set E := D ∪ Z. Let {Dλ}λ and {Zµ}µ be decomposi-
tions of D and Z by smooth components of D and Z, respectively. Set
∆ := {Eν}ν := {Dλ, Zµ}λ,µ. Then ∆ is a decomposition of E by smooth
components of E. Assume that there exist two diagrams of admissible im-
mersions (Xi, Ei;∆|Xi

)i∈I
⊂−→ (Xi, Ei; ˜∆i)i∈I and (Xj , Ej ;∆|Xj

)j∈J
⊂−→

(Xj , Ej ; ˜∆j)j∈J over S. Set Xij := Xi ∩Xj and Eij := Ei ∩Ej . Let X(i,ij) :=
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Xi\(Xi \Xij) (resp. X(j,ij) := Xj \(Xj \Xij)) and set X ′
ij := X(i,ij)×SX(j,ij).

Then we have a locally closed immersion Xij
⊂−→ X ′

ij . Set {E(ν;i)}ν := ˜∆i

and {E(ν;j)}ν := ˜∆j . Set also E(i,ij) := Ei ∩ X(i,ij), E(j,ij) := Ej ∩ X(j,ij),
E(ν;i,ij) := E(ν;i) ∩ X(i,ij) and E(ν;j,ij) := E(ν;j) ∩ X(j,ij). Blow up X ′

ij along
⋃

ν
(E(ν;i,ij)×SE(ν;j,ij)). Let X ′′

ij be the resulting scheme. Let Xij be the com-

plement of the strict transform of

[
⋃

ν

E(ν;i,ij) ×S X(j,ij))] ∪ [
⋃

ν

X(i,ij) ×S E(ν;j,ij)]

in X ′′
ij . Let Eij be the exceptional divisor on Xij . Then Eij is a relative SNCD

on Xij by (2.4.2). Considering the strict transform of the image of Xij in
Xij , we have a locally closed immersion Xij

⊂−→ Xij , in fact, an admissible
immersion (Xij , Eij)

⊂−→ (Xij , Eij) by (2.4.2). Let {E(ν;ij)}ν be the resulting
decomposition of Eij by smooth components of Eij . We also have a relative
SNCD Zij on Xij/S by using Z instead of E. Let Dij be the log PD-envelope
of the locally closed immersion (Xij , Zij)

⊂−→ (Xij ,Zij).
Let

Rηlog
Rcrys∗ : D+F(Q∗

(X••,Z••)/S(O(X••,Z••)/S)) −→ D+F((Q∗
(X•,Z•)/S(O(X•,Z•)/S))•∈I)

and

Rηlog
i,Rcrys∗ : D+F(Q∗

(Xi•,Zi•)/S(O(Xi•,Zi•)/S)) −→ D+F(Q∗
(Xi,Zi)/S(O(Xi,Zi)/S))

be the natural morphisms defined in (1.6.0.2) and (1.6.0.3), respectively.
Let

Rηzar∗ : D+F(f−1
•• (OS)) −→ D+F((f−1

• (OS))•∈I),

Rηi,zar∗ : D+F(f−1
i• (OS)) −→ D+F(f−1

i (OS))

be the natural morphisms defined in (1.6.0.6) and (1.6.0.7), respectively. Then
we have the following:

Theorem 2.5.3.

Rηlog
Rcrys∗(Q

∗
(X••,Z••)/SL(X••,Z••)/S(Ω•

X••/S(log E••)), Q∗
(X••,Z••)/SPD••)

(2.5.3.1)

=(Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log E•)), Q∗
(X•,Z•)/SPD•)•∈I .

Rηzar∗(OD••⊗OX•• Ω•
X••/S(log E••), PD••)(2.5.3.2)

=(OD•⊗OX• Ω•
X•/S(log E•), PD•)•∈I .

Proof. Because (2.5.3.2) follows from (2.5.3.1) by (2.2.22) and by the com-
mutative diagram (1.6.4.7), we have only to prove (2.5.3.1).



106 2 Weight Filtrations on Log Crystalline Cohomologies

Let γij : Xij −→ Xi (i ∈ I, j ∈ J) be the natural morphism. Then

η
log
Rcrys∗(Q

∗
(X••,Z••)/SL(X••,Z••)/S(Ω

•
X••/S(log E••)), Q

∗
(X••,Z••)/SP

D•• ) =

Ker{
∏

j0

γ•j0Rcrys∗(Q
∗
(X•j0

,Z•j0
)/SL(X•j0

,Z•j0
)/S(Ω

•
X•j0

/S(log E•j0 )), Q
∗
(X•j0

,Z•j0
)/SP

D•j0 )

−→
∏

j0<j1

γ•j0j1Rcrys∗(Q
∗
(X•j0j1

,Z•j0j1
)/SL(X•j0j1

,Z•j0j1
)/S(Ω

•
X•j0j1

/S(log E•j0j1 )),

Q
∗
(X•j0j1

,Z•j0j1
)/SP

D•j0j1 )} (j0, j1 ∈ J0).

Thus there exists a natural composite morphism

(Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log E•)), Q∗
(X•,Z•)/SPD•)

−→ ηlog
Rcrys∗(Q

∗
(X••,Z••)/SL(X••,Z••)/S(Ω•

X••/S(log E••)), Q∗
(X••,Z••)/SPD••)

−→ Rηlog
Rcrys∗(Q

∗
(X••,Z••)/SL(X••,Z••)/S(Ω•

X••/S(log E••)), Q∗
(X••,Z••)/SPD••).

For i ∈ I, let

ei : (( ˜(Xi•, Zi•)/S)logRcrys,O(Xi•,Zi•)/S) −→ (( ˜(X••, Z••)/S)logRcrys,O(X••,Z••)/S)

be a morphism defined in §1.5. Let (I•••, {(I•••)k}) be a filtered flasque reso-
lution of (Q∗

(X••,Z••)/SL(X••,Z••)/S(Ω•
X••/S(log E••)), Q∗

(X••,Z••)/SPD••) such
that, for each i, (I•i•, {(I•i•)k}) is a filtered flasque resolution of

(Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

Xi•/S(log Ei•)), Q∗
(Xi•,Zi•)/SPDi•).

Obviously we have e−1
i (ηlog

Rcrys∗(I
•
••, {(I•••)k}) = ηlog

i,Rcrys∗(I
•
i•, {(I•i•)k}). Hence

it suffices to prove that the morphism

(Q∗
(Xi,Zi)/SL(Xi,Zi)/S(Ω•

Xi/S(log Ei)),Q∗
(Xi,Zi)/SPDi)(2.5.3.3)

−→ ηlog
i,Rcrys∗(I

•
i•, {(I•i•)k})

is a filtered quasi-isomorphism. Henceforth we fix i ∈ I in this proof.
If there exists a morphism j′ −→ j in J , then there exists the natural open

immersion (X(i,ij), E(i,ij))
⊂−→ (X(i,ij′), E(i,ij′)). By the definition of ηlog

i,Rcrys,
we obtain an equality

(2.5.3.4) ηlog,−1
i,Rcrys(Q

∗
(Xi,Zi)/SL(Xi,Zi)/S(Ω•

Xi/S(log Ei)), Q∗
(Xi,Zi)/SPDi) =

(Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

X(i,i•)/S(log E(i,i•))), Q∗
(Xi•,Zi•)/SPDi•).

Next, we construct two morphisms (2.5.3.5) and (2.5.3.6) below (cf. [47],
[48, (1.7)], [64, 3.4]). Blow up Xi•×S X(i,i•) along

⋃

ν(E(ν;i•)×S E(ν;i,i•)). Let
Wi• be the complement of the strict transform of
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⋃

ν

((E(ν;i•) ×S X(i,i•)) ∪ (Xi• ×S E(ν;i,i•)))

in this blowing up. Let Fi• be the exceptional divisor on Wi•. By considering
the strict transform of the image of Xi• in Wi•, we have a locally closed
immersion Xi•

⊂−→Wi•.
The two projections Wi• −→ Xi• and Wi• −→ X(i,i•) induce two mor-

phisms

(2.5.3.5) (Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

Xi•/S(log Ei•)), Q∗
(Xi•,Zi•)/SPDi•) −→

(Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

Wi•/S(logFi•)), Q∗
(Xi•,Zi•)/SPDi•)

and
(2.5.3.6)

(Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

X(i,i•)/S(log E(i,i•))), Q∗
(Xi•,Zi•)/SPDi•) −→

(Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

Wi•/S(logFi•)), Q∗
(Xi•,Zi•)/SPDi•).

Because there exists the following commutative diagram

(Xij , Eij)
⊂−−−−→ (Wij ,Fij)

∥

∥

∥

⏐

⏐

�

(Xij , Eij)
⊂−−−−→ (Xij , Eij)

such that the horizontal arrows are admissible immersions, we see that
(2.5.3.5) is a filtered quasi-isomorphism by (2.5.1). By the same proof, we
see that (2.5.3.6) is a filtered quasi-isomorphism.

Now we can prove that (2.5.3.3) is a filtered quasi-isomorphism. Indeed,
let (J•

i•, {(J•
i•)k}) be a filtered flasque resolution of

(Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

Wi•/S(logFi•)), Q∗
(Xi•,Zi•)/SPDi•).

Because (2.5.3.6) is a filtered quasi-isomorphism, so is the following composite
morphism

ηlog,−1
i,Rcrys(Q

∗
(Xi,Zi)/SL(Xi,Zi)/S(Ω•

Xi/S(log Ei)), Q∗
(Xi,Zi)/SPDi•)

= (Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

X(i,i•)/S(log E(i,i•))), Q∗
(Xi•,Zi•)/SPDi•)

−→ (Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

Wi•/S(logFi•)), Q∗
(Xi•,Zi•)/SPDi•)

−→ (J•
i•, {(J•

i•)k}).

Hence, by the filtered cohomological descent (1.5.1) (2), the following com-
posite morphism
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(Q∗
(Xi,Zi)/SL(Xi,Zi)/S(Ω•

Xi/S(log Ei)), Q∗
(Xi,Zi)/SPDi)

(2.5.3.7)

−→ ηlog
i,Rcrys∗η

log,−1
i,Rcrys(Q

∗
(Xi,Zi)/SL(Xi,Zi)/S(Ω•

Xi/S(log Ei)), Q∗
(Xi,Zi)/SPDi)

−→ ηlog
i,Rcrys∗(J

•
i•, {(J•

i•)k})

is a filtered quasi-isomorphism. Because (2.5.3.5) is a filtered quasi-isomor-
phism, so is the following composite morphism

(Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

Xi•/S(log Ei•)), Q∗
(Xi•,Zi•)/SPDi•)

(2.5.3.8)

−→ (Q∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

Wi•/S(logFi•)), Q∗
(Xi•,Zi•)/SPDi•)

−→ (Ji•, {(Ji•)k}).

The filtered quasi-isomorphism (2.5.3.8) induces a morphism

ηlog
i,Rcrys∗(Q

∗
(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•

Xi•/S(log Ei•)), Q∗
(Xi•,Zi•)/SPDi•)

−→ ηlog
i,Rcrys∗(J

•
i•, {(J•

i•)k}).

By the definition of the composite morphisms (2.5.3.7) and (2.5.3.8), the
following diagram is commutative:

(Q∗
(Xi,Zi)/SL(Xi,Zi)/S(Ω•

Xi/S(log Ei)),

Q∗
(Xi,Zi)/SP Di)

�−−−−−→ ηlog
i,Rcrys∗(J•

i•, {(J•
i•)k})

⏐

⏐

�

∥

∥

∥

ηlog
i,Rcrys∗(Q∗

(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•
Xi•/S(log Ei•)),

Q∗
(Xi•,Zi•)/SP Di• )

−−−−−→ ηlog
i,Rcrys∗(J•

i•, {(J•
i•)k}).

We also have the following diagram

ηlog
i,Rcrys∗(Q∗

(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•
Xi•/S(log Ei•)),

Q∗
(Xi•,Zi•)/SP Di• )

−−−−−→ ηlog
i,Rcrys∗(J•

i•, {(J•
i•)k})

⏐

⏐

�

ηlog
i,Rcrys∗(I•i•, {(I•i•)k}) .

Since (I•i•, {(I•i•)k}) and (J•
i•, {(J•

i•)k}) are filtered flasque resolutions of the
same complex (Q∗

(Xi•,Zi•)/SL(Xi•,Zi•)/S(Ω•
Xi•/S(log Ei•)), Q∗

(Xi•,Zi•)/SPDi•),

we have an isomorphism ηlog
i,Rcrys∗(J

•
i•, {(J•

i•)k}) ∼−→ ηlog
i,Rcrys∗(I

•
i•, {(I•i•)k}) in

D+F(Q∗
(Xi,Zi)/S(O(Xi,Zi)/S)) which makes the diagram of the triangle above

commutative. Hence the composite morphism
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(Q∗
(Xi,Zi)/SL(Xi,Zi)/S(Ω•

Xi/S(log Ei)), Q∗
(Xi,Zi)/SPDi)

−→ηlog
i,Rcrys∗(J

•
i•, {(J•

i•)k}) −→ ηlog
i,Rcrys∗(I

•
i•, {(I•i•)k})

is an isomorphism in D+F(Q∗
(Xi,Zi)/S(O(Xi,Zi)/S)). Therefore we have proved

that the morphism (2.5.3.3) is a filtered quasi-isomorphism. We finish the
proof of (2.5.3). ��

Corollary 2.5.4. Fix decompositions of D and Z by their smooth compo-
nents. Then the following hold:

(1) (C log,Z
Rcrys(O(X,D∪Z)/S), PD) is independent of the data (2.4.0.1) and

(2.4.0.2).
(2) The following formula holds in D+F(f−1(OS)) :

(2.5.4.1)
Ru(X,Z)/S∗(C

log,Z
Rcrys(O(X,D∪Z)/S), PD) = (C log,Z

zar (O(X,D∪Z)/S), PD).

As a result, (C log,Z
zar (O(X,D∪Z)/S), PD) is independent of the data (2.4.0.1)

and (2.4.0.2).

Proof. (1): By (2.5.3), (C log,Z
Rcrys(O(X,D∪Z)/S), PD) is equal to

Rπlog
(X,Z)/SRcrys∗(C

log,Z•
Rcrys (O(X•,D•∪Z•)/S), PD•)•∈I

=Rπlog
(X,Z)/SRcrys∗Rηlog

Rcrys∗(Q
∗
(X••,Z••)/SL(X••,Z••)/S(Ω•

X••/S(log E••)),
Q∗

(X••,Z••)/SPD••)

=Rπlog
(X,Z)/SRcrys∗(C

log,Z•
Rcrys (O(X•,D•∪Z•)/S), PD•)•∈J .

(2): We have

Ru(X,Z)/S∗(C
log,Z
Rcrys(O(X,D∪Z)/S), PD)(2.5.4.2)

=Rπzar∗Ru(X•,Z•)/S∗(Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log E•)),
Q∗

(X•,Z•)/SPD•)

=Rπzar∗(OD• ⊗OX• Ω•
X•/S(log E•), PD•)

=(C log,Z
zar (O(X,D∪Z)/S), PD).

Here the first (resp. second) equality follows from (1.6.4.6) (resp. (2.2.22.2)).
The fact that the isomorphism (2.5.4.1) is independent of the data (2.4.0.1)
and (2.4.0.2) immediately follows from (2.5.3.1) and (2.5.3.2). ��

Remark 2.5.5. In §2.7 we shall prove that (C log,Z
Rcrys(O(X,D∪Z)/S), PD) is inde-

pendent of the choice of the decompositions of D and Z by their smooth
components. As a result, (C log,Z

zar (O(X,D∪Z)/S), PD) is also independent of
the choice above.
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Corollary 2.5.6. Let ι : (X,D ∪ Z) ⊂−→ (X ,D ∪ Z) be an admissible im-
mersion over S with respect to the union of decompositions ∆D and ∆Z of
D and Z by smooth components of D and Z, respectively. Let D be the log
PD-envelope of the locally closed immersion (X,Z) ⊂−→ (X ,Z) over (S, I, γ).
Then the following hold:

(1)

(C log,Z
Rcrys(O(X,D∪Z)/S), PD)(2.5.6.1)

=(Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z))), Q∗
(X,Z)/SPD).

In particular, the filtered complex (Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z))),
Q∗

(X,Z)/SPD) is independent of the choice of the admissible immersion of
(X,D ∪ Z) over S if one fixes ∆D and ∆Z .

(2)

(2.5.6.2) (C log,Z
zar (O(X,D∪Z)/S), PD) = (OD ⊗OX Ω•

X/S(log(D ∪ Z)), PD)

in D+F(f−1(OS)). In particular, the filtered complex (OD⊗OX Ω•
X/S(log(D∪

Z)), PD) is independent of the choice of the admissible immersion of (X,D∪
Z) over S if one fixes ∆D and ∆Z .

Proof. By (2.5.4) (1), we have

(C log,Z
Rcrys(O(X,D∪Z)/S), PD)

=(Q∗
(X,Z)/SL(X,Z)/S(Ω•

X/S(log(D ∪ Z))), Q∗
(X,Z)/SPD).

Hence (1) follows. The proof of (2) is the same. ��

Proposition 2.5.7. Let (S, I, γ) and f : (X,E) := (X,D ∪ Z) −→ S0

be as in §2.4. Let ∆ be a decomposition of E by smooth components of
D and Z. Let X =

⋃

i0∈I0

Xi0 be an affine open covering of X, where

I0 is a set. Set (X0, E0) := (
∐

i0
Xi0 ,

∐

i0
(E ∩ Xi0)) and (Xn, En) :=

(coskX
0 (X0)n, coskE

0 (E0)n) (n ∈ N). Let (Xn, Zn) and (Xn,Dn) be the ana-
logues of (Xn, En) for Z and D, respectively. Set ∆0 :=

∐

i0
∆|Xi0

((2.1.12))
and let ∆n (n ∈ Z>0) be the induced decomposition of En of smooth compo-
nents of En. Let

π′log
Rcrys : (( ˜(Xn, Zn)/S)logRcrys, Q

∗
(Xn,Zn)/S(O(Xn,Zn)/S))n∈N

−→ (( ˜(X,Z)/S)logRcrys, Q
∗
(X,Z)/S(O(X,Z)/S))

be a natural morphism of ringed topoi. Then there exists an admissible immer-
sion (Xn, En)n∈N

⊂−→ (Xn, En)n∈N of simplicial smooth schemes with simpli-
cial relative SNCD’s over S with respect to (∆n)n∈N. Moreover,
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(C log,Z
Rcrys(O(X,E)/S), PD) =

(2.5.7.1)

Rπ′log
(X,Z)Rcrys∗((Q

∗
(Xn,Zn)/SL(Xn,Zn)/S(Ω•

Xn/S(log En)), Q∗
(Xn,Zn)/SPDn)n∈N).

Proof. Let I ′ be a category whose objects are (i0, . . . , ir)’s (r ∈ N, i0, . . . , ir ∈
I0) and the morphism from i := (i0, . . . , ir) −→ j := (j0, . . . , js) is one
point if {i0, . . . , ir} ⊂ {j0, . . . , js} and empty otherwise. For an object i =
(i0, . . . , ir), set Xi :=

⋂r
s=0 Xis

, Ei :=
⋂r

s=0(E ∩ Xis
). Then we have the

following contravariant functor:

(X•, E•) : I ′o −→ {smooth schemes with relative SNCD’s over S0}.

The construction in §2.4 shows the existence of a diagram of admissible im-
mersions into a diagram of smooth schemes with relative SNCD’s over S:
(X•, E•)

⊂−→ (X•, E•) (• ∈ I ′) with respect to ∆•, where ∆• is the induced
decomposition of E by ∆ ((2.1.12)). For an element j1, j2 ∈ I0, there ex-
ists two natural morphisms δ′k : (X(j1,j2), E(j1,j2)) −→ (Xjk

, Ejk
) (k = 1, 2).

Using these morphisms, we have natural face morphisms δm : (Xn, En) −→
(Xn−1, En−1) (m = 0, . . . , n). Moreover, note that X(i,i) (i ∈ I0) is an open
scheme of the blow up of Xi×SXi by a closed subscheme of it. By considering
the strict transform of the diagonal immersion Xi

⊂−→ Xi ×S Xi, we have a
natural morphism s′ : Xi −→ X(i,i). Using this morphism, we have natural
degeneracy morphisms sm : (Xn−1, En−1) −→ (Xn, En) (m = 0, . . . , n − 1).
The morphisms sm and δm (m ∈ N) satisfy the standard relations in [90,
(8.1.3)]. Hence we have a desired simplicial log scheme (Xn, En)n∈N.

Fix a total order < on I0. Let I be a subcategory of I ′ whose objects are
(i0, . . . , ir)’s (r ∈ N, i0 < · · · < ir, ij ∈ I0). Let

πlog
(X,Z)/SRcrys : (( ˜(X•, Z•)/S)logRcrys, Q

∗
(X•,Z•)/S(O(X•,Z•)/S))•∈I

−→ (( ˜(X,Z)/S)logRcrys, Q
∗
(X,Z)/S(O(X,Z)/S))

be a natural morphism of ringed topoi. Then we have

(C log,Z
Rcrys(O(X,E)/S), PD)

=Rπlog
(X,Z)/Scrys∗((Q

∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log E•)), Q∗
(X•,Z•)/SPD•)•∈I)

by the definition of (C log,Z
Rcrys(O(X,E)/S), PD). Because Čech complexes are cal-

culated by alternating cochains as in [80, §3], the right hand side is canonically
isomorphic to

Rπ′log
(X,Z)/SRcrys∗((Q∗

(Xn,Zn)/SL(Xn,Zn)/S(Ω•
Xn/S(log En)), Q∗

(Xn,Zn)/SP Dn )n∈N).

��
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Corollary 2.5.8. With the notation of (2.5.7), let Dn be the log PD-envelope
of the locally closed immersion (Xn, Zn) ⊂−→ (Xn,Zn) over (S, I, γ). Let
π′

zar : ( ˜Xn)n∈N −→ ˜X be a natural morphism of topoi. Then the following
holds:
(2.5.8.1)

(C log,Z
zar (O(X,E)/S), PD) = Rπ′

zar∗((ODn
⊗OXn

Ω•
Xn/S(log En), PDn)n∈N).

Proof. We immediately have (2.5.8) since we have the analogue of (2.5.4.1)
for

Rπ′log
(X,Z)/SRcrys∗((Q∗

(Xn,Zn)/SL(Xn,Zn)/S(Ω•
Xn/S(log En)), Q∗

(Xn,Zn)/SP Dn )n∈N).

��

2.6 The Preweight Spectral Sequence

Let the notations be as in §2.4 and §2.5. Recall the projections u(X,Z)/S

and u(X,D∪Z)/S ((2.2.22.1), (2.4.6.4)). Set f(X,Z)/S := f ◦ u(X,Z)/S and
f(X,D∪Z)/S := f ◦ u(X,D∪Z)/S . Then we have the log crystalline coho-
mology sheaf Rhf(X,D∪Z)/S∗(O(X,D∪Z)/S) (h ∈ Z). We also have the
log crystalline cohomology sheaf Rhf(D(k),Z|

D(k) )/S∗(O(D(k),Z|
D(k) )/S) of

(D(k), Z|D(k))/(S, I, γ). In this section we construct the following spectral
sequence of OS-modules:

E−k,h+k
1 = Rh−kf(D(k),Z|

D(k) )/S∗(O(D(k),Z|
D(k) )/S ⊗Z �(k)log

crys (D/S;Z))
(2.6.0.1)

=⇒ Rhf(X,D∪Z)/S∗(O(X,D∪Z)/S).

Theorem 2.6.1. Let a(k) : (D(k), Z|D(k)) −→ (X,Z) (k ∈ N) be the natural
morphism. Let

a
(k)log
crys∗ : D+(O(D(k),Z|

D(k) )/S) −→ D+(O(X,Z)/S)

and
a
(k)
zar∗ : D+((f ◦ a(k))−1(OS)) −→ D+(f−1(OS))

be the induced morphisms by a(k). Fix decompositions of D and Z by their
smooth components. Then there exist the following canonical isomorphisms

grP D

k (C log,Z
Rcrys(O(X,D∪Z)/S))(2.6.1.1)

=Q∗
(X,Z)/Sa

(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)){−k}

and
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grP D

k (C log,Z
zar (O(X,D∪Z)/S))(2.6.1.2)

=a
(k)
zar∗Ru(D(k),Z|

D(k) )/S∗(O(D(k),Z|
D(k) )/S ⊗Z �(k)

zar(D/S0)){−k}.

Proof. Let the notations be as in §2.4. By applying Ru(X,Z)/S∗ to both hands
of (2.6.1.1), we immediately have (2.6.1.2) by (1.3.4.1) and (2.5.4.1); hence
we have only to prove (2.6.1.1).

Let

πlog
(D(k),Z|

D(k) )/Scrys
: (( ˜(D(k)

• , Z•|D(k)
•

)/S)logcrys,O(D
(k)
• ,Z•|

D
(k)
•

)/S
)(2.6.1.3)

−→ (( ˜(D(k), Z|D(k))/S)logcrys,O(D(k),Z|
D(k) )/S)

be the natural morphism of ringed topoi (§1.6). Then we have the following
equalities:

grP D

k (C log,Z
Rcrys(O(X,D∪Z)/S))

(2.6.1.4)

=grP D

k Rπlog
(X,Z)/SRcrys∗(Q

∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))))

=Rπlog
(X,Z)/SRcrys∗gr

Q∗
(X•,Z•)/SP D•

k (Q∗
(X•,Z•)/SL(X•,Z•)/S

(Ω•
X•/S(log(D• ∪ Z•))))

=Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/Sa

(k)log
•crys∗(O(D

(k)
• ,Z•|

D
(k)
•

)/S

⊗Z �(k)log
crys (D•/S;Z•)){−k}

=Q∗
(X,Z)/SRπlog

(X,Z)/Scrys∗a
(k)log
•crys∗(O(D

(k)
• ,Z•|

D
(k)
•

)/S

⊗Z �(k)log
crys (D•/S;Z•)){−k}

=Q∗
(X,Z)/Sa

(k)log
crys∗ Rπlog

(D(k),Z|
D(k) )/Scrys∗(O(D

(k)
• ,Z•|

D
(k)
•

)/S

⊗Z �(k)log
crys (D•/S;Z•)){−k}

=Q∗
(X,Z)/Sa

(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)){−k}.

Here the second, the third, the fourth and the fifth equalities follow from
(1.3.4.1), (2.2.21.2), (1.6.4.1) and (1.6.0.13), respectively. The last equality
follows from the cohomological descent.

Next we prove that the isomorphism (2.6.1.4) is independent of the choice
of the data (2.4.0.1) and (2.4.0.2). Assume that we are given the other data
(2.4.0.1) and (2.4.0.2) as in §2.5. By the trivially filtered version of (2.5.3),
we have
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Rηlog
Rcrys∗(Q

∗
(X••,Z••)/Sa

(k)log
••crys∗L(X••,Z••)/S(Ω•

D(k)
•• /S

( logZ••|D(k)
••

)

⊗Z �(k)log
crys (D••/S;Z••)))

= Q∗
(X•,Z•)/Sa

(k)log
•crys∗(L(X•,Z•)/S(Ω•

D(k)
• /S

(logZ•|D(k)
•

))⊗Z �(k)log
crys (D•/S;Z•)).

Since Rηlog
Rcrys∗grP D••

k = grP D•
k Rηlog

Rcrys∗ by (1.3.4.1), we have the following
commutative diagram

gr
Q∗

(X•,Z•)/SP D•

k (Q∗
(X•,Z•)/SL(X•,Z•)/S

(Ω•
X•/S(log(D• ∪ Z•))))

∼−−−−→

∥

∥

∥

Rηlog
Rcrys∗gr

Q∗
(X••,Z••)/SP D••

k (Q∗
(X••,Z••)/SL(X••,Z••)/S

(Ω•
X••/S(log(D•• ∪ Z••))))

∼−−−−→

Q∗
(X•,Z•)/Sa

(k)log
•crys∗(L(D

(k)
• ,Z•|

D
(k)
•

)/S
(Ω•

D(k)
• /S

(logZ•|D(k)
•

)){−k}

⊗Z �(k)log
crys (D•/S;Z•))

∥

∥

∥

Q∗
(X•,Z•)/SRηlog

crys∗a
(k)log
••crys∗(L(D

(k)
•• ,Z••|

D
(k)
••

)/S
(Ω•

D(k)
•• /S

(logZ••|D(k)
••

)){−k}

⊗Z �(k)log
crys (D••/S;Z••)).

Hence we see that the isomorphism (2.6.1.1) (and hence (2.6.1.2)) is inde-
pendent of the choice of the data (2.4.0.1) and (2.4.0.2). ��

Corollary 2.6.2. Let k′ be a nonnegative integer. For integers k and h, set

E−k,h+k
1 ((X,D ∪ Z)/S; k′)

:=

{

Rh−kf(D(k),Z|
D(k) )/S∗(O(D(k),Z|

D(k) )/S ⊗Z �
(k)log
crys (D/S;Z)) (k ≤ k′),

0 (k > k′).

Set f (X,Z)/S := f ◦u(X,Z)/S. Then there exists the following spectral sequence

E−k,h+k
1 = E−k,h+k

1 ((X,D ∪ Z)/S; k′)(2.6.2.1)

=⇒ Rhf (X,Z)/S∗(P
D
k′ C

log,Z
Rcrys(O(X,D∪Z)/S)).

In particular, there exists the following spectral sequence
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E−k,h+k
1 = E−k,h+k

1 ((X,D ∪ Z)/S)
(2.6.2.2)

= Rh−kf(D(k),Z|
D(k) )/S∗(O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z))

=⇒ Rhf(X,D∪Z)/S∗(O(X,D∪Z)/S).

Proof. Let (I•k′ , {I•l }l≤k′) ∈ K+F(Q∗
(X,Z)/S(O(X,Z)/S)) be a filtered flasque

resolution of a representative of (PD
k′ C

log,Z
Rcrys(O(X,D∪Z)/S), {PD

l C log,Z
Rcrys(O(X,

D∪Z)/S)}l≤k′) ∈ D+F(Q∗
(X,Z)/S(O(X,Z)/S)). Consider the following spectral

sequence

E−k,h+k
1 = Hh(f (X,Z)/S∗grk(I•k′)) =⇒ Hh(f (X,Z)/S∗I

•
k′).

Obviously we haveHh(f (X,Z)/S∗Ik′)=Rhf (X,Z)/S∗(PD
k′ C

log,Z
Rcrys(O(X,D∪Z)/S)).

By the proof of (1.3.4.1), grk(I•k′) is a flasque resolution of grP D

k (C log,Z
Rcrys(O(X,

D∪Z)/S)) for k ≤ k′. Hence, for k ≤ k′, we have

E−k,h+k
1 =Rhf (X,Z)/S∗(grP D

k (Clog,Z
Rcrys(O(X,D∪Z)/S)))

=Rhf (X,Z)/S∗(Q∗
(X,Z)/S(a

(k)log
crys∗ (O(D(k),Z|

D(k) )/S{−k} ⊗Z �
(k)log
crys (D/S; Z))))

=Rh−kf(D(k),Z|
D(k) )/S∗(O(D(k),Z|

D(k) )/S ⊗Z �
(k)log
crys (D/S; Z)).

Here, in the last equality, we have used the commutativity of the diagram
(1.6.3.1) for the trivially filtered case. Therefore we obtain (2.6.2.1). By using
(2.4.7.2), we obtain (2.6.2.2) similarly. ��
Corollary 2.6.3. Fix decompositions ∆D and ∆Z of D and Z by their
smooth components, respectively. Let ι : (X,D ∪Z) ⊂−→ (X ,D∪Z) be an ad-
missible immersion over S with respect to ∆D and ∆Z . Let f : (X,D∪Z) −→
S0 and fS : (X ,D ∪ Z) −→ S be the structural morphisms. Let D be the log
PD-envelope of the locally closed immersion (X,Z) ⊂−→ (X ,Z) over (S, I, γ).
Let f

(k)
S : D(k) −→ S be the PD-envelope of the locally closed immersion

D(k) ⊂−→ D(k) over (S, I, γ). Let k′ be a nonnegative integer. For integers k
and h, set

E−k,h+k
1 ((X ,D ∪ Z)/S; k′)

:=

{

Rh−kf
(k)
S∗ (OD(k) ⊗OD(k) Ω•

D(k)/S
(logZ|D(k))⊗Z �

(k)
zar(D/S)) (k ≤ k′),

0 (k > k′).

Then the following spectral sequence

E−k,h+k
1 := E−k,h+k

1 ((X ,D ∪ Z)/S; k′)(2.6.3.1)

=⇒ RhfS∗(OD ⊗OX PD
k′ Ω•

X/S(log(D ∪ Z)))
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is isomorphic to (2.6.2.1), and hence it is independent of the choice of the
admissible immersion fS. In particular, if fS : (X ,D ∪ Z) −→ S is a lift of
f : (X,D ∪ Z) −→ S0, then the following spectral sequence

(2.6.3.2)
E−k,h+k

1 = E−k,h+k
1 ((X ,D ∪ Z)/S; k′) =⇒ RhfS∗(PD

k′ Ω•
X/S(log(D ∪ Z)))

is independent of the choice of the lift. Here

E−k,h+k
1 ((X ,D ∪ Z)/S; k′)

=

{

Rh−kf
(k)
S∗ (Ω•

D(k)/S
(logZ|D(k))⊗Z �

(k)
zar(D/S)) (k ≤ k′),

0 (k > k′).

Proof. (2.6.3) immediately follows from (2.5.4.1) and (2.6.2.1). ��

Remark 2.6.4. In §2.9 below, we consider the functoriality of (2.6.2.2); in
particular, in the case where S0 is of characteristic p, we shall consider the
compatibility of (2.6.2.2) with the relative Frobenius F : (X,D) −→ (X ′,D′)
over S0.

2.7 The Vanishing Cycle Sheaf and the Preweight
Filtration

Let S, S0 and f : (X,D∪Z) −→ S0 be as in §2.4. Let a(k) : (D(k), Z|D(k)) −→
(X,Z) be as in §2.2 (2). In §2.4 and §2.5, we have constructed the preweight-
filtered restricted crystalline complex

(C log,Z
Rcrys(O(X,D∪Z)/S), PD) ∈ D+F(Q∗

(X,Z)/S(O(X,Z)/S))

such that

C log,Z
Rcrys(O(X,D∪Z)/S) = Q∗

(X,Z)/SRε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S)

in D+(Q∗
(X,Z)/S(O(X,Z)/S)). Here

ε(X,D∪Z,Z)/S : ( ˜(X,D ∪ Z)/S)logcrys −→ ( ˜(X,Z)/S)logcrys

is the forgetting log morphism along D ((2.3.2)). Let j : U := X \D
⊂−→ X

be the natural open immersion. Let n be a positive integer. Let (X,D ∪ Z)
be as above or an analogous log scheme over C or an algebraically closed field
of characteristic p > 0. Then we have the following translation if Z = ∅:
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(2.7.0.1)
/C l-adic crystal
Uan

˜Uet ?

(Xan,Dan)log, ˜(Xan,Dan)loget (̃X,D)loget ( ˜(X,D)/S)logcrys

Xan, ˜Xan
˜Xet (̃X/S)crys

jan : Uan
⊂−→ Xan jet : ˜Uet −→ ˜Xet ?

εtop : (Xan,Dan)log −→ Xan

εan : ˜(Xan,Dan)loget −→ ˜Xan εet : (̃X,D)loget ε(X,D)/S : ˜((X,D)/S)logcrys

−→ ˜Xet −→ (̃X/S)crys

Rjan∗(Z) = Rεtop∗(Z) Rjet∗(Z/ln) = ?
Rεtop∗(Z/n) = Rεan∗(Z/n) Rεet∗(Z/ln) Rε(X,D)/S∗(O(X,D)/S)
Xan −→ X ˜Xet −→ ˜Xzar uX/S : ( ˜X/S)crys −→ ˜Xzar

Z(Xan,Dan)log

(Z/n)(Xan,Dan)log (Z/n)
(̃X,D)

log

et

O(X,D)/S

(Z/n)
˜(Xan,Dan)loget

(p � n)

ZXan

(Z/n)Xan (n ∈ Z) (Z/n)
˜Xet

(p � n) OX/S

(Ω•
X/C

(log D), P ) ? (Czar(O(X,D)/S), P )
(Ω•

Xan/C
(log Dan), P ) ? (CRcrys(O(X,D)/S), P )

(Ω•
Xan/C

(log Dan), τ) ? (CRcrys(O(X,D)/S), τ)

Here (Xan,Dan)log is the real blow up of (Xan,Dan) ([58, (1.2)]) and εtop is

the natural morphism of topological spaces, ˜(Xan,Dan)loget is the analytic log
etale topos of (Xan,Dan) ([51]) and εan is the forgetting log morphism to
the topos ˜Xan defined by the local isomorphisms to Xan; the morphism εet
in the middle column is the forgetting log morphism ([30], cf. [67, (1.1.2)]);
the upper (resp. lower) equality in the left column has been obtained in [58,
(1.5.1)] (resp. [72]), and the equality in the middle column ([30, (3.6)]) follows
from the following composite equality

(2.7.0.2)

Rhεet∗(Z/ln)=
h
∧

(Mgp
D /O∗

X)⊗Z Z/ln(−h)=Rhjet∗(Z/ln) (h ∈ Z, n ∈ Z>0).

Here the first equality follows from [58, (2.4)] and the second equality is
Gabber’s purity ([33]) which has solved Grothendieck’s purity conjecture.
Recall that, in the crystalline case, Rjcrys∗(OU/S) is not a good object ([3,
VI Lemme 1.2.2]).

The purpose of this section is to give another intrinsic description of the
preweight-filtered restricted crystalline complex (C log,Z

Rcrys(O(X,D∪Z)/S), PD)
and, as a corollary, to obtain the spectral sequence (2.6.2.2) in a different
way.
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We start with the following, which includes a crystalline analogue of Gab-
ber’s purity.

Theorem 2.7.1 (p-adic purity). Let k be a nonnegative integer. Then

Q∗
(X,Z)/SRkε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S)

(2.7.1.1)

= Q∗
(X,Z)/Sa

(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)).

Proof. The “increasing filtration” {PD
k C log,Z

Rcrys(O(X,D∪Z)/S)}k∈Z on C log,Z
Rcrys(O

(X,D∪Z)/S) gives us the following spectral sequence

(2.7.1.2)
E−k,h+k

1 = Hh(grP D

k C log,Z
Rcrys(O(X,D∪Z)/S)) =⇒ Hh(C log,Z

Rcrys(O(X,D∪Z)/S)).

Let I• be a flasque resolution of O(X,D∪Z)/S . By (2.4.7.1) and by the exact-
ness of Q∗

(X,Z)/S , we have

Hh(C log,Z
Rcrys(O(X,D∪Z)/S)) = Hh(Q∗

(X,Z)/SRε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S))

= Hh(Q∗
(X,Z)/Sε(X,D∪Z,Z)/S∗(I•))

= Q∗
(X,Z)/SHh(ε(X,D∪Z,Z)/S∗(I•))

= Q∗
(X,Z)/SRhε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S),

and by (2.6.1.1) we have

Hh(grP D

k C log,Z
Rcrys(O(X,D∪Z)/S))

=Hh−k(Q∗
(X,Z)/Sa

(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)));

this is equal to Q∗
(X,Z)/Sa

(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �
(k)log
crys (D/S;Z)), 0 for

k = h and k = h, respectively. Hence (2.7.1.2) degenerates at E1; thus we
have a canonical isomorphism

Q∗
(X,Z)/SRkε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S)

=Q∗
(X,Z)/Sa

(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)).

��

By the Leray spectral sequence for the functor ε(X,D∪Z,Z)/S∗ : ( ˜(X,D ∪ Z)/S)
log
crys −→ ( ˜(X,Z)/S)logcrys and f(X,Z)/S∗ : ( ˜(X,Z)/S)logcrys −→ ˜Xzar, we obtain the
following spectral sequence

(2.7.1.3) Est
2 := Rsf(X,Z)/S∗R

tε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S) =⇒
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Rs+tf(X,D∪Z)/S∗(O(X,D∪Z)/S).

Set f (X,Z)/S := f(X,Z)/S ◦Q(X,Z)/S : ( ˜(X,Z)/S)logRcrys −→ ( ˜(X,Z)/S)logcrys −→
˜Xzar. Because Rf (X,Z)/S∗ ◦Q∗

(X,Z)/S = Rf(X,Z)/S∗, (2.7.1.3) is equal to the
following spectral sequence

(2.7.1.4) Est
2 = Rsf(D(t),Z|

D(t) )/S∗(O(D(t),Z|
D(t) )/S ⊗Z �(t)log

crys (D/S;Z)) =⇒

Rs+tf(X,D∪Z)/S∗(O(X,D∪Z)/S)

by (2.7.1).
Using (2.7.1), we can give another simpler expression of (C log,Z

Rcrys(O(X,D∪Z)

/S), PD). To do this, let us recall the canonical filtration of a complex.
Let (T ,A) be a ringed topos and let E• be an object in C(A). Then the

canonical filtration τ := {τkE•}k∈Z of E• is defined as follows: τkEi := Ei

(i < k), := Ker(Ek −→ Ek+1) (i = k), := 0 (i > k). Let E• and F • be objects
in C+(A). Then a homotopy h between two morphisms f, g : E• −→ F • also
gives a filtered homotopy between two morphisms f, g : (E•, τ) −→ (F •, τ) of
filtered complexes. Furthermore, a quasi-isomorphism f : E• −→ F • induces
a filtered quasi-isomorphism f : (E•, τ) −→ (F •, τ); thus a functor C+(A) �
E• �−→ (E•, τ) ∈ C+F(A) induces a functor D+(A) −→ D+F(A), which is
also denoted by E• �→ (E•, τ).

We prove the following lemma for a main result (2.7.3) below in this
section:

Lemma 2.7.2. Let f : (T ,A) −→ (T ′,A′) be a morphism of ringed topoi.
Then, for an object E• in D+(A), there exists a canonical morphism

(2.7.2.1) (Rf∗(E•), τ) −→ Rf∗((E•, τ))

in D+F(A′).

Proof. Let E• −→ I• be a quasi-isomorphism into a complex of flasque
A-modules. Let (I•, τ) −→ (J•, {J•

k}) be a filtered flasque resolution of
(I•, τ). Then, by applying the functor f∗ to the morphism of this resolution,
we obtain a morphism

(2.7.2.2) (f∗(I•), {f∗(τkI•)}) −→ (f∗(J•), {f∗(J•
k )}).

By (1.1.12) (2), the right hand side of (2.7.2.2) is equal to Rf∗((E•, τ)). On
the other hand, there exists a natural morphism f∗(τkI•) −→ τkf∗(I•); in
fact, by the left exactness of f∗, we have f∗(τkI•) ∼−→ τkf∗(I•). Hence the
left hand side of (2.7.2.2) is equal to (f∗(I•), {τkf∗(I•)}) = (Rf∗(E•), τ). It
is easy to check that the induced morphism in D+F(A′) by the morphism
(2.7.2.2) is independent of the choice of I• and (J•, {J•

k}). Therefore we have
a canonical morphism (2.7.2.1). ��

Now we give another description of (C log,Z
Rcrys(O(X,D∪Z)/S), PD).
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Theorem 2.7.3 (Comparison theorem). Let S0, S, X, D and Z be as in
§2.4. Set

(Elog,Z
crys (O(X,D∪Z)/S), PD)(2.7.3.1)

:=(Rε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S), τ) ∈ D+F(O(X,Z)/S).

Then there exists a canonical isomorphism

(2.7.3.2)
Q∗

(X,Z)/S(Elog,Z
crys (O(X,D∪Z)/S), PD) ∼−→ (C log,Z

Rcrys(O(X,D∪Z)/S), PD).

In particular,

(2.7.3.3) (C log,Z
Rcrys(O(X,D∪Z)/S), τ) = (C log,Z

Rcrys(O(X,D∪Z)/S), PD).

Proof. Fix the data (2.4.0.1) and (2.4.0.2) for D ∪ Z. Then, as usual, there
exists a natural morphism of filtered O(X•,Z•)/S-modules:

(2.7.3.4) Q∗
(X•,Z•)/S(L(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))), τ) −→

(Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))), Q∗
(X•,Z•)/SPD•).

By (2.7.2) there exists a canonical morphism

(2.7.3.5)
(Rπlog

(X,Z)/SRcrys∗Q
∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))), τ) −→

Rπlog
(X,Z)/SRcrys∗(Q

∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))), τ).

By composing (2.7.3.5) with the morphism Rπlog
(X,Z)/SRcrys∗((2.7.3.4)), we ob-

tain a morphism
(2.7.3.6)

(Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))), τ) −→

Rπlog
(X,Z)/SRcrys∗(Q

∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D•∪Z•))), Q∗
(X•,Z•)/SPD•)

which is nothing but a morphism

(2.7.3.7)
(Q∗

(X,Z)/SRε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S), τ) −→ (C log,Z
Rcrys(O(X,D∪Z)/S), PD)

by (1.6.4.1). (We have not yet claimed that the morphism (2.7.3.7) is in-
dependent of the data (2.4.0.1) and (2.4.0.2).) To prove that the morphism
(2.7.3.7) is a filtered quasi-isomorphism, it suffices to prove that the induced
morphism

(2.7.3.8)
grτ

kQ∗
(X,Z)/SRε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S) −→ grP D

k C log,Z
Rcrys(O(X,D∪Z)/S)
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is a quasi-isomorphism for each k ∈ Z. By the definition of the canonical
filtration τ and by the proof of (2.7.1), we have

Hi(grτ
kQ∗

(X,Z)/SRε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S))

(2.7.3.9)

=

{

Q∗
(X,Z)/SRkε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S) (i = k)

0 (i = k)

=

{

Q∗
(X,Z)/Sa

(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �
(k)log
crys (D/S;Z)) (i = k),

0 (i = k).

By the proof of (2.7.1) again, Hi(grP D

k C log,Z
Rcrys(O(X,D∪Z)/S)) is also equal

to the last formulas in (2.7.3.9). Hence the morphism (2.7.3.7) is a quasi-
isomorphism.

Finally we show that the morphism (2.7.3.7) is independent of the data
(2.4.0.1) and (2.4.0.2). Indeed, let the notations be as in §2.5. Using (2.5.3.1),
we have the following commutative diagram:

(Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/SL(X•,Z•)/S

(Ω•
X•/S(log(D• ∪ Z•))), τ)

∼−−−−→

∥

∥

∥

(Rπlog
(X,Z)/SRcrys∗Rηlog

Rcrys∗Q
∗
(X••,Z••)/SL(X••,Z••)/S

(Ω•
X••/S(log(D•• ∪ Z••))), τ)

−−−−→

(Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))),

Q∗
(X•,Z•)/SPD•)

∥

∥

∥

(Rπlog
(X,Z)/SRcrys∗Rηlog

Rcrys∗Q
∗
(X••,Z••)/SL(X••,Z••)/S(Ω•

X••/S(log(D•• ∪ Z••))),

Q∗
(X••,Z••)/SPD••).

Thus the independence in question follows. ��

Definition 2.7.4. We call (Elog,Z
crys (O(X,D∪Z)/S), PD) ∈ D+F(O(X,Z)/S) the

preweight-filtered vanishing cycle crystalline complex of (X,D ∪ Z)/S with
respect to D. Set

(Elog,Z
zar (O(X,D∪Z)/S), PD) := Ru(X,Z)/S∗(Elog,Z

crys (O(X,D∪Z)/S), PD)
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and we call it the preweight-filtered vanishing cycle zariskian complex of
(X,D ∪ Z)/S with respect to D.

Corollary 2.7.5. There exists a canonical isomorphism

(2.7.5.1) (Elog,Z
zar (O(X,D∪Z)/S), PD) ∼−→ (C log,Z

zar (O(X,D∪Z)/S), PD).

Proof. The left hand side of (2.7.5.1) is equal to

Ru(X,Z)/S∗Q
∗
(X,Z)/S(Elog,Z

crys (O(X,D∪Z)/S), PD)

=Ru(X,Z)/S∗(C
log,Z
Rcrys(O(X,D∪Z)/S), PD) = (C log,Z

zar (O(X,D∪Z)/S), PD).

Here we have used (2.5.4.1) for the last equality. ��

Corollary 2.7.6. The spectral sequence (2.7.1.4) is equal to (2.6.2.2) if we
make the renumbering E−k,h+k

r = Eh−k,k
r+1 (r ≥ 1).

Proof. By [23, (1.4.8)], the spectral sequence (2.7.1.4) is obtained from the
increasing filtration {τkC log,Z

Rcrys(O(X,D∪Z)/S)}k∈Z; this filtration is equal to
{PD

k C log,Z
Rcrys(O(X,D∪Z)/S)}k∈Z by (2.7.3). Hence (2.7.6) follows. ��

Corollary 2.7.7. (1) The filtered complex (C log,Z
Rcrys(O(X,D∪Z)/S), PD) is in-

dependent of the choice of the decompositions of D and Z by their smooth
components. The spectral sequence (2.6.2.2) is also independent of the choice
of them.

(2) Let the assumptions be as in (2.5.6). Then the right hand sides of
(2.5.6.1) and (2.5.6.2) are independent of the choice of the decompositions of
D and Z by their smooth components.

Proof. The proof is obvious. ��

Corollary 2.7.8. The isomorphism (2.6.1.1) is independent of the choice of
the decompositions of D and Z by their smooth components. Consequently the
isomorphism (2.6.1.2) and the spectral sequences (2.6.2.1), (2.6.2.2), (2.6.3.1)
and (2.6.3.2) are also independent of the choice.

Proof. Since both hands of (2.6.1.1) is independent of the choice by (2.7.3)
and (2.2.15), the problem is local. By (A.0.1) below, we may assume that two
choices of the decompositions of D and Z by their smooth components are
the same. Now the independence follows from the proof of (2.5.1) and the
argument in (2.5.3). ��

The following is another proof of (2.5.7):

Corollary 2.7.9. (2.5.7) and (2.5.8) hold.
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Proof. By (1.6.4.1), (2.3.10.1) and the cohomological descent, we have

Rπ′log
(X,Z)/SRcrys∗(Q

∗
(Xn,Zn)/SL(Xn,Zn)/S(Ω•

Xn/S(log En))n∈N)

=Q∗
(X,Z)/SRε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S).

By the same proof as that for the formula (2.7.3.2), we also have

Rπ′log
(X,Z)/SRcrys∗((Q

∗
(Xn,Zn)/SL(Xn,Zn)/S(Ω•

Xn/S(log En)),

Q∗
(Xn,Zn)/SPDn

k )n∈N)

=(Rπ′log
(X,Z)/SRcrys∗(L(Xn,Zn)/S(Ω•

Xn/S(log En))n∈N), τ).

Hence we have (2.5.7) and (2.5.8). ��

We shall use the following for the preweight-filtered Künneth formula:

Proposition 2.7.10. Assume that X is quasi-compact. Then the filtered
complex (Elog,Z

crys (O(X,D∪Z)/S), PD) is bounded.

Proof. By (2.3.11), Rε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S) is bounded. Hence (2.7.10)
immediately follows. ��

Remark 2.7.11. In this remark we show an unexpected nonequality

(2.7.11.1)
Rkε(X,D)/S∗(O(X,D)/S) = a

(k)
crys∗(OD(k)/S ⊗Z �(k)

crys(D/S)) (k ∈ N)

in general. More specially, in this remark, we prove that the natural morphism

(2.7.11.2) OX/S −→ ε(X,D)/S∗(O(X,D)/S) = R0ε(X,D)/S∗(O(X,D)/S)

is not surjective in general if p = 0 on S0.
Let (X,D) ⊂−→ (X ,D) be an exact closed immersion into a smooth scheme

with a relative SNCD over S. Let ι : LX/S(Ω1
X/S) −→ LX/S(Ω1

X/S(logD)) be
a natural morphism ofOX/S-modules, and let d : LX/S(OX ) −→ LX/S(Ω1

X/S)
be the natural boundary morphism. By the crystalline Poincaré lemma and
the Poincaré lemma of a vanishing cycle sheaf ((2.3.10)), we have the follow-
ing:

(2.7.11.3)
OX/S

=−−−−→ Ker(d : LX/S(OX ) −→ LX/S(Ω1
X/S))

⏐

⏐

�

⏐

⏐

�

ε(X,D)/S∗(O(X,D)/S) =−−−−→ Ker(ι ◦ d : LX/S(OX ) −→ LX/S(Ω1
X/S(logD)))

Consider the following commutative diagram of exact sequences:
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0 −−−−→ 0 −−−−→ LX/S(OX ) LX/S(OX ) −−−−→ 0
⏐

⏐

� d

⏐

⏐

� ι◦d

⏐

⏐

�

0 −−−−→ Ker ι −−−−→ LX/S(Ω1
X/S) −−−−→ Im ι −−−−→ 0.

Hence, by the snake lemma and (2.7.11.3), we obtain the following exact
sequence

(2.7.11.4) 0 −→ OX/S −→ ε(X,D)/S∗(O(X,D)/S) −→ Ker(ι) −→ Coker(d).

Now set X := Spec
S
(OS [x]) and let D be a relative smooth divisor on

X defined by an equation x = 0. Set (X,D) := (X ,D) ×S S0. In this
case, Coker(d) = 0 by the crystalline Poincaré lemma. Hence, to prove
that (2.7.11.2) is not an isomorphism in this case, it suffices to prove that
Ker(ι) = 0. Set A0 := OS0 [x, y]/(xy). Let f : A0 −→ OS0 [x] be a morphism
of sheaves of rings over OS0 defined by equations f(x) = x and f(y) = 0.
Let APD

0 be the PD-envelope of A0 with respect to Ker(f). Let δ be the PD-
structure on Ker(f) and let fPD : APD

0 −→ OS0 [x] be the induced morphism
of sheaves of rings over OS0 by f . Set T := Spec

S0
(APD

0 ). Then f induces a

PD closed immersion X
⊂−→ T ; the triple (X,T, δ) is an object of (X/S)crys.

Let g : APD
0 ⊗OS0

OS0 [x] −→ OS0 [x] be a morphism of sheaves of rings over
OS0 defined by g(s ⊗ t) := fPD(s)t (s ∈ APD

0 , t ∈ OS0 [x]) and let B be the
PD-envelope of APD

0 ⊗OS0
OS0 [x] with respect to Ker(g). Then, by the proof

of [11, (6.10)], the value LX/S(Ω1
X/S)T of LX/S(Ω1

X/S) at T is given by the
following formula

LX/S(Ω1
X/S)T = B ⊗OS [x] OS [x]dx = Bdx,

while the value LX/S(Ω1
X (logD))T is given by the following formula

LX/S(Ω1
X/S(logD))T = Bd log x.

Let ιT : LX/S(Ω1
X/S)T −→ LX/S(Ω1

X/S(logD))T be the value of ι at T . Then
ιT (dx) = (1⊗ x)d log x.

To prove that ιT is not injective, it suffices to prove that a morphism
B −→ B given by multiplication by 1⊗x is not injective. Here we denote the
image of a local section s of APD

0 ⊗OS0
OS0 [x] in B by the same symbol s by

abuse of notation. We check

(A) y ⊗ 1 = 0 in B
and

(B) (1⊗ x)p(y ⊗ 1) = 0 in B.

First we check (A). Consider the following commutative diagram
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A0
f−−−−→ OS0 [x]

⏐

⏐

�

⏐

⏐

�

OS0 [y] −−−−→ OS0 ,

where the vertical morphisms are defined by sending x to 0 and the lower
horizontal morphism is defined by sending y to 0. By taking the PD-envelopes
with respect to the kernels of the horizontal morphisms, we obtain the fol-
lowing commutative diagram:

(2.7.11.5)

APD
0

fPD

−−−−→ OS0 [x]
⏐

⏐

�

⏐

⏐

�

OS0〈y〉 −−−−→ OS0 .

Denote by ϕ the left vertical morphism in (2.7.11.5) and let ψ : APD
0 ⊗OS0

OS0 [x] −→ OS0〈y〉 be a morphism defined by ψ(s⊗t) :=ϕ(s)·(t mod xOS0 [x])
(s ∈ APD

0 , t ∈ OS0 [x]). Then the diagram (2.7.11.5) gives the following com-
mutative diagram

APD
0 ⊗OS0

OS0 [x]
g−−−−→ OS0 [x]

ψ

⏐

⏐

�

⏐

⏐

�

OS0〈y〉 −−−−→ OS0

and then the following commutative diagram:

(2.7.11.6)

B −−−−→ OS0 [x]
⏐

⏐

�

⏐

⏐

�

OS0〈y〉 −−−−→ OS0 .

Since the image of y ⊗ 1 ∈ B by the left vertical morphism in (2.7.11.6) is
equal to y ∈ OS0〈y〉, y ⊗ 1 = 0 in B.

Next we check (B). It is clear that 1 ⊗ x− x⊗ 1 ∈ B is a local section of
the PD-ideal sheaf of B. Hence we have the following equalities in B

(1⊗ x)p(y ⊗ 1) = xpy ⊗ 1 + (1⊗ xp − xp ⊗ 1)(y ⊗ 1)
= 0 + (1⊗ x− x⊗ 1)p(y ⊗ 1)

= p!(1⊗ x− x⊗ 1)[p](y ⊗ 1) = 0

because p = 0 in B.
Now we have proved that the morphism (2.7.11.2) is not an isomorphism

in general.
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We also remark the following.
By the p-adic purity in ( ˜X/S)Rcrys ((2.7.1)), (OX/S)X = (ε(X,D)/S∗(O(X,D)

/S))X . Hence the exact sequence (2.7.11.4) tells us that ε(X,D)/S∗(O(X,D)/S)
is not a crystal of OX/S-modules in general.

Remark 2.7.12. (1) Let (X,D) be a smooth analytic variety with (not neces-
sarily simple) NCD over the complex number field. Let U be the complement
of D in X and let j be the natural inclusion U

⊂−→ X. Let ˜D(0) be the nor-
malization of D and for a positive integer k, define ˜D(k) in the way described
in (2.2.15) from ˜D(0). Let ã(k) : ˜D(k) −→ X be the natural morphism. Then,
in [23, (3.1.8)], Deligne has proved that

(2.7.12.1) (Ω•
X/C

(log D), τ) −→ (Ω•
X/C

(log D), P )

is a quasi-isomorphism by using the Poincaré residue isomorphism and the
Poincaré lemma

grP
k Ω•

X/C
(log D)

Res
∼−→ ã

(k)
∗ (Ω•

˜D(k)/C
{−k} ⊗Z �̃(k)(D/C)(−k))

= ã
(k)
∗ (C

˜D(k){−k} ⊗Z �̃(k)(D/C)(−k)),

where �̃(k)(D/C) is the orientation sheaf of ˜D(k) (Since we have used the
notation ε as a forgetting log morphism, we cannot use the notation ε in
[23]). Note that, in (2.7.1), (2.7.3) and (2.7.12.1), the graded pieces grP

k is
isomorphic to the complex which consists of one component; this property is
a key point for (2.7.1) and the quasi-isomorphism (2.7.12.1). It is reasonable
to expect that, if D is an SNCD, if we use the log infinitesimal topos and if
we develop analogous theory for this topos by the same method as that in
this book, we will be able to prove that

(2.7.12.2) Rkε∗(OX/C) = a
(k)
∗ (OD(k)/C ⊗Z �(k)(D/C)(−k)),

where ε : (X̃/C)loginf −→ (X̃/C)inf is the forgetting log morphism of infin-
itesimal topoi, OX/C (resp. OD(k)/C) is the structure sheaf in (X̃/C)loginf

(resp. (D̃(k)/C)inf), a(k) := ã(k) : D(k) = ˜D(k) −→ X and �(k)(D/C) :=
�̃(k)(D/C).

(2) The morphism (2.7.2.1) is not a filtered isomorphism in general. Indeed,
if it were so, we would have the following contradiction.

Assume that Z = ∅ and that it were an isomorphism. Then, by applying
RuX/S∗ to (2.7.3.2), we would have
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(Czar(O(X,D)/S), P ) = RuX/S∗(Ecrys(O(X,D)/S), P )(2.7.12.3)
= RuX/S∗(Rε(X,D)/S∗(O(X,D)/S), τ)
= (Ru(X,D)/S∗(O(X,D)/S), τ)
= (Czar(O(X,D)/S), τ).

Here the first equality follows from (2.7.5.1). The third equality follows from
our assumption. The fourth equality follows from (2.4.7.3). However it is
practically well-known that the equality (2.7.12.3) does not hold in gen-
eral. Indeed, let κ be a field of characteristic p > 0 and let (X,D) be a
smooth scheme with an SNCD over κ. Assume that S = S0 = Spec(κ). Then
(2.7.12.3) is an isomorphism

(Ω•
X/κ(log D), τ) = (Ω•

X/κ(log D), P ).

If we take X := A
1
κ, D: the origin of X and k = 0, we have a contradiction.

Hence (2.7.2.1) is not a filtered isomorphism in general.

2.8 Boundary Morphisms

In this section we define the log cycle class of a smooth divisor which intersects
the log locus transversally (cf. [29, §2]).

As an application, we give the description of the boundary morphism be-
tween the E1-terms of the spectral sequence (2.6.2.2).

Let f : (X,Z) −→ S0 be a smooth scheme with a relative SNCD over a
scheme S0. Let D be a smooth divisor on X which intersects Z transver-
sally over S0; for a decomposition ∆ = {Zµ}µ of Z by smooth components
of Z, ∆(D) := {D,Zµ}µ is a decomposition of D ∪ Z by smooth compo-
nents of D ∪ Z. The closed subscheme Z|D := Z ∩ D in D is a relative
SNCD on D/S0; ∆|D := {Zµ|D}µ be a decomposition of Z|D by smooth
components of Z|D. Let a : (D,Z|D) ⊂−→ (X,Z) be the natural closed im-
mersion over S0. Let azar : ( ˜Dzar,OD) −→ ( ˜Xzar,OX) be the induced mor-

phism of Zariski ringed topoi. Let alog
crys : (( ˜(D,Z|D)/S)logcrys,O(D,Z|D)/S) −→

(( ˜(X,Z)/S)logcrys,O(X,Z)/S) be also the induced morphism of log crystalline
ringed topoi. Let

(2.8.0.1)
ResD : Ω•

X/S0
(log(D ∪ Z)) −→ azar∗(Ω•

D/S0
(log(Z|D))⊗Z �(1)

zar(D/S0)){−1}

be the Poincaré residue morphism with respect to D/S0. Then we have the
following exact sequence:

(2.8.0.2) 0 −→ Ω•
X/S0

(log Z) −→ Ω•
X/S0

(log(D ∪ Z))
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ResD

−→ azar∗(Ω•
D/S(log(Z|D))⊗Z �(1)

zar(D/S0)){−1} −→ 0.

Let (S, I, γ) and S0 be as in §2.4. As in §2.4, by abuse of notation, we also
denote by f the composite morphism (X,Z) −→ S0

⊂−→ S.
As in §2.4, we have the following data:

(2.8.0.3): An open covering X =
⋃

i0∈I0
Xi0 with Xi =

⋂r
s=0 Xis

(i =
(i0, . . . , ir)). The family {(Xi,Di ∪ Zi)}i∈I (Di := D ∩ Xi, Zi := Z ∩ Xi)
of log schemes form a diagram of log schemes over (X,D ∪ Z), which we
denote by (X•,D• ∪ Z•). That is, (X•,D• ∪ Z•) is a contravariant functor

Io −→ {smooth schemes with relative SNCD’s over S0

which are augmented to (X,D ∪ Z)}.

We have a diagram ∆•(D•) of a decomposition of D• ∪ Z• by a diagram of
smooth components of D• ∪ Z•.

(2.8.0.4): A family (X•,D• ∪ Z•)
⊂−→ (X•,D• ∪ Z•) (• ∈ I) of admissible

immersions into a diagram of smooth schemes with relative SNCD’s over S
with respect to ∆•(D•).

Let b• : D• −→ X• be a diagram of the natural closed immersions. By using
the Poincaré residue isomorphism with respect to D•, we have the following
exact sequence ([29, §2]):

(2.8.0.5) 0 −→ Ω•
X•/S(logZ•) −→ Ω•

X•/S(log(D• ∪ Z•))
Res−→

b•zar∗(Ω•
D•/S(log(Z•|D•))⊗Z �(1)

zar(D•/S)){−1} −→ 0.

Let L(X•,Z•)/S (resp. L(D•,Z•|D• )/S) be the log linearization functor with

respect to the diagram of the locally closed immersions (X•, Z•)
⊂−→

(X•,Z•) (resp. (D•, Z•|D•)
⊂−→ (D•,Z•|D•)). By (2.2.12) and (2.2.16),

L(X•,Z•)/Sb•zar∗ = alog
crys•∗L(D•,Z•|D• )/S . Hence we have the following exact

sequence by (2.2.17) (2) and (2.2.21.2):

0 −→ Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(logZ•))
(2.8.0.6)

−→ Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•)))

−→ Q∗
(X•,Z•)/Salog

crys•∗(L(D•,Z•|D• )/S(Ω•
D•/S(log(Z•|D•)))

⊗Z �(1)log
crys (D•/S;Z•)){−1}) −→ 0.

Recall the morphisms πlog
(X,Z)/Scrys and πlog

(D,Z|D)/Scrys of ringed topoi in
(2.4.7.4) for the case D = φ and (2.6.1.3). By (1.6.0.23) we have the following
triangle
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−→Q∗
(X,Z)/SRπlog

(X,Z)/Scrys∗L(X•,Z•)/S(Ω•
X•/S(logZ•)) −→

(2.8.0.7)

Q∗
(X,Z)/SRπlog

(X,Z)/Scrys∗L(X•,Z•)/S(Ω•
X•/S(log(D• ∪ Z•))) −→

Q∗
(X,Z)/Salog

crys∗Rπlog
(D,Z|D)/Scrys∗L(D•,Z•|D• )/S(Ω•

D•/S(log(Z•|D•))

⊗Z �(1)log
crys (D•/S;Z•)){−1} +1−→ · · · .

By (2.2.7), (2.3.10.1) and by the cohomological descent, we have the following
triangle:
(2.8.0.8)
−→ Q∗

(X,Z)/S(O(X,Z)/S) −→ Q∗
(X,Z)/SRε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S) −→

Q∗
(X,Z)/Salog

crys∗(O(D,Z|D)/S ⊗Z �(1)log
crys (D/S;Z)){−1} +1−→ · · · .

Using the Convention (4), we have the boundary morphism

d : Q∗
(X,Z)/Salog

crys∗(O(D,Z|D)/S ⊗Z �(1)log
crys (D/S;Z))){−1}

(2.8.0.9)

−→ Q∗
(X,Z)/S(O(X,Z)/S)[1]

in D+(Q∗
(X,Z)/S(O(X,Z)/S)). Equivalently, we have the following morphism

d : Q∗
(X,Z)/Salog

crys∗(O(D,Z|D)/S ⊗Z �(1)log
crys (D/S;Z)))

(2.8.0.10)

−→ Q∗
(X,Z)/S(O(X,Z)/S)[1]{1}

in D+(Q∗
(X,Z)/S(O(X,Z)/S)). Set

(2.8.0.11) GD/(X,Z) := −d.

and call GD/(X,Z) the Gysin morphism of D. Then we have a cohomology
class

c(X,Z)/S(D) := GD/(X,Z) ∈Ext0
Q∗

(X,Z)/S(O(X,Z)/S)(Q
∗
(X,Z)/Salog

crys∗(O(D,Z|D)/S

(2.8.0.12)

⊗Z �(1)log
crys (D/S;Z)), Q∗

(X,Z)/S(O(X,Z)/S)[1]{1}).

Since �
(1)log
crys (D/S;Z) is canonically isomorphic to Z and since there exists

a natural morphism Q∗
(X,Z)/S(O(X,Z)/S) −→ Q∗

(X,Z)/Salog
crys∗(O(D,Z|D)/S), we

have a cohomology class
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c(X,Z)/S(D) ∈ Ext0Q∗
(X,Z)/S

(O(X,Z)/S)(Q
∗
(X,Z)/S(O(X,Z)/S), Q∗

(X,Z)/S(O(X,Z)/S)[1]{1})

=: Q∗
(X,Z)/SH

2
log-crys((X, Z)/S).

As usual, if Z = ∅, we denote GD/(X,Z) and c(X,Z)/S(D) simply by GD/X

and cX/S(D), respectively.

Remark 2.8.1. (cf. [35, (1.6)]) Let t• = 0 be a local equation of D• in X•. If
we use a Poincaré residue morphism

Ω•
X•/S(log(D• ∪ Z•)) � d log t• ∧ ω• �−→ ω•|D• ∈b•zar∗(Ω•

D•/S(log(Z•|D•))

⊗Z �(1)
zar(D•/S;Z•))[−1]

instead of the Poincaré residue morphism in (2.8.0.5), then we have a Gysin
morphism

GD/(X,Z) : Q∗
(X,Z)/Salog

crys∗(O(D,Z|D)/S⊗Z�(1)log
crys (D/S;Z))[−1]

−→ Q∗
(X,Z)/S(O(X,Z)/S)[1].

Here we have used the Convention (4). Hence, by the Convention (2), we
have a Gysin morphism

GD/(X,Z) : Q∗
(X,Z)/Salog

crys∗(O(D,Z|D)/S⊗Z�(1)log
crys (D/S;Z))[−2](2.8.1.1)

−→ Q∗
(X,Z)/S(O(X,Z)/S).

However we do not use this Gysin morphism in this book.

Proposition 2.8.2. The morphism GD/(X,Z) and the class c(X,Z)/S(D) are
independent of the data (2.8.0.3) and (2.8.0.4).

Proof. Use notations in §2.5. Assume that we are given two data in (2.8.0.3)
and two data in (2.8.0.4). Because the question is local, we may assume that
the two admissible immersions are admissible immersions with respect to the
same decompositions of D and Z by their smooth components. As in §2.5 we
have two morphisms

η(X,Z)/S : (( ˜(X••, Z••)/S)logcrys,O(X••,Z••)/S)

−→ (( ˜(X•, Z•)/S)logcrys,O(X•,Z•)/S),

and

η(D,Z|D)/S : (( ˜(D••, Z••|D••)/S)logcrys,O(D••,Z••|D•• )/S)

−→ (( ˜(D•, Z•|D•)/S)logcrys,O(D•,Z•|D• )/S)

of ringed topoi. Then we have the following commutative diagram of triangles:
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(2.8.2.1)
−−−−→ Q∗

(X•,Z•)/SRη(X,Z)/S∗L(X••,Z••)/S(Ω•
X••/S(logZ••)) −−−−→

�

⏐

⏐

−−−−→ Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(logZ•)) −−−−→

Q∗
(X•,Z•)/SRη(X,Z)/S∗L(X••,Z••)/S(Ω•

X••/S(log(D•• ∪ Z••))) −−−−→
�

⏐

⏐

Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))) −−−−→

Q∗
(X•,Z•)/Salog

crys•∗Rη(D,Z|D)/S∗L(D••,Z••|D•• )/S

(Ω•
D••/S(log(Z••|D••)){−1})

+1−−−−→

�

⏐

⏐

Q∗
(X•,Z•)/Salog

crys•∗L(D•,Z•|D• )/S(Ω•
D•/S(log(Z•|D•)){−1}) +1−−−−→ .

By the proof of (2.5.3), the three vertical morphisms above are isomorphisms.
Hence (2.8.2) follows. ��

Remark 2.8.3. We can also construct c(X,Z)/S(D) by using the vanishing cycle
sheaf as follows.

Let ε(X,D∪Z,Z)/S : ( ˜(X,D ∪ Z)/S)logcrys −→ ( ˜(X,Z)/S)logcrys be the forgetting
log morphism along D ((2.3.2)). By (2.3.2.9), there exists a natural morphism

(2.8.3.1) O(X,Z)/S −→ Rε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S)

in D+(O(X,Z)/S). Let RΓD(O(X,Z)/S) be the mapping fiber of (2.8.3.1). Then
we have a triangle

(2.8.3.2)
−→ RΓD(O(X,Z)/S) −→ O(X,Z)/S −→ Rε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S) +1−→ .

Set Hi
D(O(X,Z)/S) := Hi(RΓD(O(X,Z)/S)) (i ∈ Z). Then we have the follow-

ing exact sequence

· · · −→ Hi
D(O(X,Z)/S) −→ Hi(O(X,Z)/S)(2.8.3.3)

−→ Riε(X,D∪Z,Z)/S∗(O(X,D∪Z)/S) −→ · · · .

Here we have used the Convention (4) and (5). By (2.7.1), we have

Q∗
(X,Z)/SHi

D(O(X,Z)/S)(2.8.3.4)

=

{

Q∗
(X,Z)/Salog

crys∗(O(D,Z|D)/S ⊗Z �
(1)log
crys (D/S;Z)) (i = 2),

0 (i = 2).
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Let E• be a representative of Q∗
(X,Z)/SRΓD(O(X,Z)/S). Then we have an

isomorphism
τ2E

• ∼−→ E•

and we can take an isomorphism

(2.8.3.5) τ2E
• ∼−→ Q∗

(X,Z)/SH2
D(O(X,Z)/S){−1}[−1].

Therefore we have a canonical isomorphism

Q∗
(X,Z)/SRΓD(O(X,Z)/S)

=Q∗
(X,Z)/Salog

crys∗(O(D,Z|D)/S ⊗Z �(1)log
crys (D/S;Z)){−1}[−1].

Since there exists a natural morphism RΓD(O(X,Z)/S) −→ O(X,Z)/S by the
definition of RΓD(O(X,Z)/S), we have a canonical morphism

Q∗
(X,Z)/Salog

crys∗(O(D,Z|D)/S ⊗Z �(1)log
crys (D/S;Z)){−1}[−1](2.8.3.6)

−→ Q∗
(X,Z)/S(O(X,Z)/S).

By (2.8.0.8), we see that the morphism (2.8.3.6) is equal to −GD/(X,Z).
If we take the canonical isomorphism

(2.8.3.7) τ2E
• ∼−→ Q∗

(X,Z)/SH2
D(O(X,Z)/S)[−2].

instead of (2.8.3.5), we obtain the Gysin morphism (2.8.1.1) again.

Proposition 2.8.4. Let u : (S′, I ′, γ′) −→ (S, I, γ) be a morphism of PD-
schemes. Set S′

0 := Spec
S′(OS′/I ′). Let h : Y −→ S′

0 be a smooth morphism
of schemes fitting into the following commutative diagram

Y
g−−−−→ X

h

⏐

⏐

�

⏐

⏐

�
f

S′
0 −−−−→ S0.

Set E := D×X Y and W := Z×X Y . Assume that E∪W is a relative SNCD
on Y over S0. Let b : (E,W |E) ⊂−→ (Y,W ) be a natural closed immersion of
log schemes. Then the image of g−1

zarRu(X,Z)/S∗(c(X,Z)/S(D)) in (2.8.0.12) by
the natural morphism

g−1
zarExt0

f−1(OS)(Ru(X,Z)/S∗a
log
crys∗(O(D,Z|D)/S ⊗Z �(1)log

crys (D/S;Z)),

Ru(X,Z)/S∗(O(X,Z)/S)[1]{1})
−→ Ext0

h−1(OS′ )(Ru(Y,W )/S∗b
log
crys∗(O(E,W |E)/S′ ⊗Z �(1)log

crys (E/S′;W )),

Ru(Y,W )/S∗(O(Y,W )/S)[1]{1})
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is equal to Ru(Y,W )/S∗(c(Y,W )/S′(E)).

Proof. (2.8.4) immediately follows from the functoriality of the construction
given in (2.8.3). ��

Finally we prove that the boundary morphism d••1 of (2.6.2.2) is expressed
by summation of Gysin morphisms with signs.

Henceforth D denotes a (not necessarily smooth) relative SNCD on X
over S0 which meets Z transversally. First, fix a decomposition {Dλ}λ∈Λ

of D by smooth components of D over S0. Assume that D{λ0,...,λk−1} = ∅.
Set λ := {λ0, . . . , λk−1}, λj := {λ0, . . . , ̂λj , . . . , λk−1}, Dλ := D{λ0,...,λk−1},
and Dλj

:= D{λ0,...,̂λj ,...,λk−1} for k ≥ 2 and Dλ0
:= X. Here ̂

means the elimination. Then Dλ is a smooth divisor on Dλj
over S0. Let

ι
λj

λ : (Dλ, Z|Dλ
) ⊂−→ (Dλj

, Z|Dλj
) be the closed immersion. Set

�log
λcrys(D/S;Z) := �log

λ0···λk−1crys(D/S;Z)

and
�log

λjcrys(D/S;Z) := �log

λ0···̂λj ···λk−1crys
(D/S;Z).

By (2.8.0.11) we have a morphism

G
λj

λ := GDλ/(Dλj
,Z|Dλj

) :(2.8.4.1)

Q∗
(Dλj

,Z|Dλj
)/Sι

λj log

λcrys∗(O(Dλ,Z|Dλ
)/S ⊗Z �

(1)log
λjcrys(D/S;Z))

−→ Q∗
(Dλj

,Z|Dλj
)/S(O(Dλj

,Z|Dλj
)/S)[1]{1}.

We fix an isomorphism

(2.8.4.2) �log
λjcrys(D/S;Z)⊗Z �log

λjcrys(D/S;Z) ∼−→ �log
λcrys(D/S;Z)

by the following morphism

(λj)⊗ (λ0 · · · ̂λj · · ·λk−1) �−→ (−1)j(λ0 · · ·λk−1).

We identify �log
λjcrys(D/S;Z)⊗Z�log

λjcrys(D/S;Z) with �log
λcrys(D/S;Z) by this

isomorphism. We also have the following composite morphism
(2.8.4.3)

(−1)jG
λj

λ : Q∗
(Dλj

,Z|Dλj
)/Sι

λj log

λcrys∗(O(Dλ,Z|Dλ
)/S ⊗Z �log

λcrys(D/S;Z)) ∼−→

Q∗
(Dλj

,Z|Dλj
)/Sι

λj log

λcrys∗(O(Dλ,Z|Dλ
)/S ⊗Z �log

λjcrys(D/S;Z)⊗Z �log
λjcrys(D/S;Z))

G
λj
λ ⊗1
−→ Q∗

(Dλj
,Z|Dλj

)/S(O(Dλj
,Z|Dλj

)/S ⊗Z �log
λjcrys(D/S;Z))[1]{1}
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defined by

(2.8.4.4) “x⊗ (λ0 · · ·λk−1) �−→ (−1)jG
λj

λ (x)⊗ (λ0 · · · ̂λj · · ·λk−1)”.

The morphism (2.8.4.3) induces a morphism of log crystalline cohomologies:

(2.8.4.5)
(−1)jG

λj

λ : Rh−kf(Dλ,Z|Dλ
)/S∗(O(Dλ,Z|Dλ

)/S ⊗Z �log
λcrys(D/S;Z)) −→

Rh−k+2f(Dλj
,Z|Dλj

)/S∗(O(Dλj
,Z|Dλj

)/S ⊗Z �log
λjcrys(D/S;Z)).

Here we have used the Convention (6). If D{λ0,...,λk−1} = ∅, set (−1)jG
λj

λ :
= 0.

Denote by aλ (resp. aλj
) the natural exact closed immersion (Dλ, Z|Dλ

)
⊂−→ (X,Z) (resp. (Dλj

, Z|Dλj
) ⊂−→ (X,Z)).

Proposition 2.8.5. Let d−k,h+k
1 : E−k,h+k

1 −→ E−k+1,h+k
1 be the boundary

morphism of (2.6.2.2). Set G :=
∑

{λ0,...,λk−1 | λi �=λj (i�=j)}
∑k−1

j=0 (−1)jG
λj

λ .

Then d−k,h+k
1 = −G.

Proof. (cf. [64, 4.3]) Assume that we are given the data (2.4.0.1) and (2.4.0.2)
for D ∪ Z. Consider the following exact sequence

0 −→ gr
Q∗

(X•,D•)/SP D•

k−1 (Q∗
(X•,D•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•)))) −→

(Q∗
(X•,D•)/SP D•

k /Q∗
(X•,D•)/SP D•

k−2)(Q
∗
(X•,D•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))))

−→ gr
Q∗

(X•,D•)SP D•

k (Q∗
(X•,D•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•)))) −→ 0.

Then the boundary morphism d−k,h+k
1 is induced by the boundary morphism

of the following triangle

−→ Rπlog
(X,Z)/SRcrys∗gr

Q∗
(X•,D•)/SP D•

k−1 (Q∗
(X•,D•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))))

−→ Rπlog
(X,Z)/SRcrys∗((Q∗

(X•,D•)/SP D•
k /Q∗

(X•,D•)/SP D•
k−2)

(Q∗
(X•,D•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))))) −→

Rπlog
(X,Z)/SRcrys∗gr

Q∗
(X•,D•)SP D•

k (Q∗
(X•,D•)/SL(X•,Z•)/S(Ω•

X•/S(log(D• ∪ Z•))))
+1−→ .

Here we have used the Convention (4).
Assume that D(λ;•) := D(λ0;•) ∩ · · · ∩ D(λk−1;•) = ∅. Set D(λj ;•) :=

D(λ0;•)∩ · · ·∩D(λj−1;•)∩D(λj+1;•)∩ · · ·∩D(λk−1;•). We use a shorter notation
�λzar(D•/S;Z•) for a zariskian orientation sheaf �λ0···λk−1zar(D•/S;Z•) and
so on as for crystalline orientation sheaves.

The Poincaré residue morphisms with respect to Dλj
(0 ≤ j ≤ k − 1) and

Dλ induce the following morphisms
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ResD•
λj

: grPD•
k−1 Ω•

X•/S(log(D• ∪ Z•)) −→

Ω•
D(λj ;•)/S(logZ•|D(λj ;•)){−(k − 1)} ⊗Z �λjzar(D•/S;Z•)

and
ResD•

λ : grPD•
k Ω•

X•/S(log(D• ∪ Z•)) −→
Ω•

D(λ;•)/S(logZ•|D(λj ;•)){−k} ⊗Z �λzar(D•/S;Z•).

As in (2.8.4.2), we fix an isomorphism

(2.8.5.1) �λjzar(D•/S;Z•)⊗Z �λjzar(D•/S;Z•)
∼−→ �λzar(D•/S;Z•)

by the following morphism

(λj)⊗ (λ0 · · · ̂λj · · ·λk−1) �−→ (−1)j(λ0 · · ·λk−1).

We identify �λjzar(D•/S;Z•)⊗Z �λjzar(D•/S;Z•) with �λzar(D•/S;Z•) by
this isomorphism. Let Resj be the Poincaré residue morphism

(2.8.5.2) Ω•
D(λj ;•)/S(log(D(λ;•) ∪ Z•|D(λj ;•))) −→

Ω•
D(λ;•)/S(logZ•|D(λ;•)){−1} ⊗Z �λjzar(D•/S;Z•)

with respect to the divisor D(λ;•) on D(λj ;•). Then we have a composite
morphism

(−1)jResj : Ω•
D(λj ;•)/S(log(D(λ;•) ∪ Z•|D(λj ;•)))⊗Z �λjzar(D•/S;Z•)

−→ Ω•
D(λ;•)/S(logZ•|D(λ;•)){−1} ⊗Z �λjzar(D•/S;Z•)⊗Z �λjzar(D•/S;Z•)

∼−→ Ω•
D(λ;•)/S(logZ•|D(λ;•)){−1} ⊗Z �λzar(D•/S;Z•).

defined by

(2.8.5.3) x⊗ (λ0 · · · ̂λj · · ·λk−1) �−→ (−1)jResD•
λj

(x)⊗ (λ0 · · ·λk−1).

It is easy to check that (−1)jResj is well-defined. The morphism (−1)jResj

induces a morphism

L(X•,Z•)/S((−1)jResj) :
(2.8.5.4)

L(X•,Z•)/S(Ω•
D(λj ;•)/S(log(D(λ;•) ∪ Z•|D(λj ;•)))⊗Z �log

λjcrys(D/S;Z•))

−→ L(X•,Z•)/S(Ω•
D(λ;•)/S(logZ•|D(λ;•)){−1} ⊗Z �log

λcrys(D•/S;Z•)).

As in [64, 4.3], the morphism Q∗
(X•,D•)/SL(X•,Z•)/S(ResD•

λj
) uniquely extends

to a morphism Q∗
(X•,D•)/SL(X•,Z•)/S(ResD•

λj ,λ) fitting into the following com-
mutative diagram:
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(2.8.5.5)

0 −−−−−−−→ gr
Q∗

(X•,D•)/S
P D•

k−1 Q∗
(X•,D•)/S

L(X•,Z•)/S(Ω•
X•/S

(log(D• ∪ Z•)))

Q∗
(X•,D•)/S

L(X•,Z•)/S(ResD•
λj

)
⏐

⏐

�

0 −−−−−−−→ Q∗
(X•,D•)/S

L(X•,Z•)/S(Ω•
D(λj ;•)/S

(log Z•|D(λj ;•)
)){−(k − 1)} ⊗

Z
�

log
λjcrys(D•/S; Z•)

−−−−−−−→

−−−−−−−→

(Q∗
(X•,D•)/S

P
D•
k

/Q∗
(X•,D•)/S

P
D•
k−2)Q∗

(X•,D•)/S
L(X•,Z•)/S(Ω•

X•/S
(D• ∪ Z•))))

Q∗
(X•,D•)/S

L(X•,Z•)/S(ResD•
λj,λ

)
⏐

⏐

�

Q∗
(X•,D•)/S

L(X•,Z•)/S(Ω•
D(λj ;•)/S

(log(D(λ;•) ∪ Z•|D(λj ;•)
))){−(k − 1)} ⊗

Z
�

log
λjcrys(D•/S; Z•)

−−−−−−−→

Q∗
(X•,D•)/S

L(X•,Z•)/S((−1)jResj)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

gr
Q∗

(X•,D•)/S
P D•

k
Q∗

(X•,D•)/S
L(X•,Z•)/S(Ω•

X•/S
(log D•)) −−−−−−−→ 0

Q∗
(X•,D•)/S

L(X•,Z•)/S(ResD•
λ

)
⏐

⏐

�

Q∗
(X•,D•)/S

L(X•,Z•)/S(Ω•
D(λ;•)/S

(log Z•|D(λ;•))){−k} ⊗
Z

�
log
λcrys(D•/S; Z•) −−−−−−−→ 0.

Here the morphism ResD•
λj ,λ is defined by a formula

ResD•
λj ,λ(yd log xλ0 · · · d log xλk−1) = (−1)jyd log xλj

⊗ (λ0 · · · ̂λj · · ·λk−1),

where xλi
= 0 (xλi

∈ OX•) is a local equation of D(λi;•) in X• and y is a
local section of Ω•

X•
(logZ•) (the formula RésI

Iq
(ω) = α∧ dxiq

/xiq
|DIq

in [64,
p. 323, l. -9] have to be replaced by RésI

Iq
(ω) = (−1)q−1α∧dxiq

/xiq
|DIq

). By
the formulas (2.8.4.4) and (2.8.5.3), by the definition of the Gysin morphism
for smooth divisors ((2.8.0.11)) and by the Convention (4) and (5), we see
that (−1)j(−G

λj

λ ) is the boundary morphism of the lower exact sequence.
Hence we obtain (2.8.5). ��

2.9 The Functoriality of the Preweight-Filtered
Zariskian Complex

Let S0, S and (X,D ∪ Z) be as in §2.4. In this section we prove the functo-
riality of (C log,Z

zar (O(X,D∪Z)/S), PD); (2.7.3) is indispensable for the proof of
the functoriality.
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Let (S′, I ′, γ′) be another PD-scheme satisfying the same conditions in the
beginning of §2.4. Set S′

0 := Spec
S′(OS′/I ′). Let u : (S, I, γ) −→ (S′, I ′, γ′)

be a morphism of PD-schemes. Let u0 : S0 −→ S′
0 be the induced morphism

by u. Let (X ′,D′ ∪ Z ′) be a smooth scheme with a relative SNCD over S′
0.

Let

(2.9.0.1)

(X,D ∪ Z)
g−−−−→ (X ′,D′ ∪ Z ′)

⏐

⏐

�

⏐

⏐

�

S0
u0−−−−→ S′

0

be a commutative diagram of log schemes. Assume that the morphism g
induces g(X,D) : (X,D) −→ (X ′,D′) and g(X,Z) : (X,Z) −→ (X ′, Z ′) over
u0 : S0 −→ S′

0. Let

ε : ( ˜(X,D ∪ Z)/S)logcrys −→ ( ˜(X,Z)/S)logcrys

and
ε′ : ( ˜(X ′,D′ ∪ Z ′)/S′)logcrys −→ ( ˜(X ′, Z ′)/S′)logcrys

be the forgetting log morphisms along D and D′, respectively.

Theorem 2.9.1 (Functoriality). Let the notations be as above. Then the
following hold:

(1) There exists a canonical morphism

glog∗
(X,Z)crys : (Elog,Z′

crys (O(X′,D′∪Z′)/S′), PD′
)(2.9.1.1)

−→ Rglog
(X,Z)crys∗(E

log,Z
crys (O(X,D∪Z)/S), PD).

(2) There exists a canonical morphism

(2.9.1.2)
g∗zar : (C log,Z′

zar (O(X′,D′∪Z′)/S′), PD′
) −→ Rgzar∗(C log,Z

zar (O(X,D∪Z)/S), PD).

Proof. (1): (1) is clear.
(2): Let

glog
crys : (( ˜(X,D ∪ Z)/S)logcrys,O(X,D∪Z)/S)

−→ (( ˜(X ′,D′ ∪ Z ′)/S′)logcrys,O(X′,D′∪Z′)/S′)

be the morphism of log crystalline ringed topoi induced by g. Then we con-
struct a desired morphism in the following way:

(C log,Z′

zar (O(X′,D′∪Z′)/S′), PD′
)

= Ru(X′,Z′)/S′∗(Elog,Z′

crys (O(X′,D′∪Z′)/S′), PD′
)
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= Ru(X′,Z′)/S′∗(Rε′∗(O(X′,D′∪Z′)/S′), τ)

−→ Ru(X′,Z′)/S′∗(Rε′∗Rglog
crys∗(O(X,D∪Z)/S), τ)

= Ru(X′,Z′)/S′∗(Rglog
(X,Z)crys∗Rε∗(O(X,D∪Z)/S), τ)

−→ Ru(X′,Z′)/S′∗Rglog
(X,Z)crys∗(Rε∗(O(X,D∪Z)/S), τ)

= Ru(X′,Z′)/S′∗Rglog
(X,Z)crys∗(E

log,Z
crys (O(X,D∪Z)/S), PD)

= Rgzar∗Ru(X,Z)/S∗(Elog,Z
crys (O(X,D∪Z)/S), PD)

= Rgzar∗(C log,Z
zar (O(X,D∪Z)/S), PD).

Here the first and the last equalities follow from (2.7.5.1); the first arrow is
induced by glog ∗

crys and the second arrow is obtained from (2.7.2). ��

Corollary 2.9.2. Let Ess((X,D∪Z)/S) (resp. Ess((X ′,D′∪Z ′)/S′)) be the
spectral sequence (2.6.2.2) (resp. (2.6.2.2) for (X ′,D′ ∪ Z ′)/S′). Then the
morphism glog∗

crys induces a morphism

(2.9.2.1) glog∗
crys : Ess((X ′,D′ ∪ Z ′)/S′) −→ Ess((X,D ∪ Z)/S)

of spectral sequences.

Proof. The proof is straightforward. ��

Let a′(k) : (D′(k), Z ′|D′(k)) −→ (X ′, Z ′) be a natural morphism. Assume
that g induces a morphism gD(k) : (D(k), Z|D(k)) −→ (D′(k), Z ′|D′(k)) for any
k ∈ N. By (2.6.1.1), (2.9.1) and (1.3.4.1), the morphism glog∗

(X,Z)crys induces
the following morphism

grP
k (glog∗

(X,Z)crys) :
(2.9.2.2)

Ru(X′,Z′)/S′∗a
′(k)log
crys∗ (O(D′(k),Z′|

D′(k) )/S′ ⊗Z �(k)log
crys (D′/S′;Z ′)){−k} −→

Ru(X′,Z′)/S′∗a
′(k)log
crys∗ Rglog

D(k)crys∗(O(D(k),Z|
D(k) )/S ⊗Z �(k)log

crys (D/S;Z)){−k}.

In the following, we make the morphism grP
k (glog∗

(X,Z)crys) in (2.9.2.2) explicit
in certain cases by using a notion which is analogous to the D-twist in [71].

Assume that the following two conditions hold:

(2.9.2.3): there exists the same cardinality of smooth components of D and
D′ over S0 and S′

0, respectively: D =
⋃

λ∈Λ Dλ, D′ =
⋃

λ∈Λ D′
λ, where Dλ

and D′
λ are smooth divisors over S0 and S′

0, respectively.

(2.9.2.4): there exist positive integers eλ (λ ∈ Λ) such that eλDλ = g∗(D′
λ).
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As in the previous section, set λ := {λ1, . . . , λk} (λj ∈ Λ, (λi = λj (i =
j))). Let aλ : (Dλ, Z|Dλ

) −→ (X,Z) and a′
λ : (D′

λ, Z ′|D′
λ
) −→ (X ′, Z ′) be

natural morphisms. Consider the following direct factor of the morphism
(2.9.2.2):

Ru(X′,Z′)/S′∗a
′log
λcrys∗(g

log∗
λcrys) :

(2.9.2.5)

Ru(X′,Z′)/S′∗a
′log
λcrys∗(O(D′

λ,Z|D′
λ
)/S′ ⊗Z �log

λcrys(D
′/S′;Z ′)){−k}

−→ Ru(X′,Z′)/S′∗a
′log
λcrys∗Rglog

λcrys∗(O(Dλ,Z|Dλ
)/S ⊗Z �log

λcrys(D/S;Z)){−k}.

Proposition 2.9.3. Let the notations and the assumptions be as above. Let

g(Dλ,Z|Dλ
) : (Dλ, Z|Dλ

) −→ (D′
λ, Z ′|D′

λ
)

be the induced morphism by g. Then the morphism Ru(X′,Z′)/S′∗(g
log∗
λcrys) in

(2.9.2.5) is equal to (
∏k

j=1 eλj
)Ru(X′,Z′)/S′∗a

′log
λcrys∗(g

log∗
(Dλ,Z|Dλ

)crys) for k ≥ 0.

Here we define
∏k

j=1 eλj
as 1 for k = 0.

Proof. We may assume that k ≥ 1. Let us take affine open coverings X =
⋃

i0∈I0
Xi0 ,X

′ =
⋃

i0∈I0
X ′

i0
of X,X ′ by the same index set I0 satisfying

g(Xi0) ⊆ X ′
i0

(i0 ∈ I0) and let us form diagrams of log schemes (X•,D•∪Z•)
and (X ′

•,D
′
• ∪ Z ′

•) indexed by I as in (2.4.0.1). Then we have a morphism
g• : (X•,D• ∪Z•) −→ (X ′

•,D
′
• ∪Z ′

•) of diagrams of log schemes over g. Next
let us take log smooth lifts

(Xi0 ,Di0 ∪ Zi0)
⊂−→ (Xi0 ,Di0 ∪ Zi0), (X ′

i0 ,D
′
i0 ∪ Z ′

i0)
⊂−→ (X ′

i0 ,D
′
i0 ∪ Z

′
i0)

for each i0 ∈ I0 and from these data, let us construct the diagrams of admis-
sible immersions

(X•,D• ∪ Z•)
⊂−→ (X•,D• ∪ Z•), (X ′

•,D
′
• ∪ Z ′

•)
⊂−→ (X ′

•,D′
• ∪ Z ′

•)

by the method explained in §2.4 before (2.4.1). Let g(X•,Z•) : (X•, Z•) −→
(X ′

•, Z
′
•) be the morphism induced by g•, which exists by assumption on g

and let πzar be the morphism defined in (2.4.5.2). Then we have

(2.9.3.1)
grP D

k C log,Z
zar (O(X,D∪Z)/S) = Rπzar∗(OD• ⊗OX• grPD•

k Ω•
X•/S(log(D• ∪ Z•))),

grP D′

k C log,Z′

zar (O(X′,D′∪Z′)/S)(2.9.3.2)

=Rπzar∗Rg(X•,Z•)zar∗(OD′
• ⊗OX′•

grPD′
•

k Ω•
X ′

•/S(log(D′
• ∪ Z ′

•))),
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where D• (resp. D′
•) denotes the log PD-envelope of (X•, Z•)

⊂−→ (X•,Z•)
(resp. (X ′

•, Z
′
•)

⊂−→ (X ′
•,Z ′

•)). Because (X ′
i0

,D′
i0
∪Z ′

i0
) is log smooth over S′

and the exact closed immersion (Xi0 ,Di0∪Zi0)
⊂−→ (Xi0 ,Di0∪Zi0) is defined

by the nil-ideal sheaf IOXi0
, there exists a morphism g̃i0 : (Xi0 ,Di0∪Zi0) −→

(X ′
i0

,D′
i0
∪ Z ′

i0
) which is a lift of g|(Xi0 ,Di0∪Zi0 ) (cf. [11, N.B. in 5.27]). The

family {g̃i0}i0∈I0 induces a morphism

(2.9.3.3) g̃• : (X•,D• ∪ Z•) −→ (X ′
•,D′

• ∪ Z ′
•)

of diagrams of log schemes by the universality of blow-up. Let

˜h(λ;•) : (D(λ;•),Z•|D(λ;•)) −→ (D′
(λ;•),Z ′|D′

(λ;•)
)

be the induced morphism. (Here we put D(λ;•) :=
⋂k

i=1D(λi;•),D′
(λ;•) :=

⋂k
i=1D′

(λi;•), where D(λi;•),D′
(λi;•) are as in §2.4 before (2.4.1).)

For i0 ∈ I0, Let x(j;i0) = 0 (resp. x′
(j;i0)

= 0) be a local equation
of D(λj ;i0) in Xi0 (resp. D′

(λj ;i0)
in X ′

i0
) (1 ≤ j ≤ k). Then we have

g̃∗i0(x
′
(j;i0)

) = u(j;i0)x
eλj

(j;i0)
for some unit u(j;i0). For i = (i0, ..., ir) ∈ I, let

us put x(j;i) := x(j;i0), x
′
(j;i) := x′

(j;i0)
, u(j;i) := u(j;i0). Then, by definition

of D(λj ;i),D′
(λj ;i)

(via the blow-up construction), x(j;i) = 0 (resp. x′
(j;i) = 0)

is a local equation of D(λj ;i) in Xi (resp. D′
(λj ;i)

in Xi) (1 ≤ j ≤ k) and

we have the equality g̃∗i (x′
(j;i)) = u(j;i)x

eλj

(j;i). So, for a local section ω =

ad log x′
(1;i) · · · d log x′

(k;i) of PD′

k Ω•
X ′/S′(log(D′ ∪ Z ′)) (a ∈ Ω•−k

X ′/S′(logZ ′)),

we have g̃∗i (ω) = (
∏k

j=1 eλj
)g̃∗i (a)d log x(1;i) · · · d log x(k;i) + ω′, where ω′ ∈

PDi

k−1Ω
•
Xi/S(log(Di ∪ Zi)). So, if we put

Ω•
(λ;•) := Ω•

D(λ;•)/S(logZ•|D(λ;•))⊗Z �λzar(D•/S),

Ω•
(λ;•)′ := Ω•

D′
(λ;•)/S(logZ ′

•|D′
(λ;•)

)⊗Z �λzar(D′
•/S),

we have the following commutative diagram (the vertical arrows are Poincaré
residue morphisms with respect to D′

λ and Dλ):

(2.9.3.4)

grP D′

k (C log,Z′
•

zar (O(X′
•,D′

•∪Z′
•)/S))

grP D•
k (g̃∗

•)−−−−−−−→
∥

∥

∥

(OD• ⊗OX• grP D′
•

k Ω•
X ′

•/S(log(D′
• ∪ Z ′

•)))

Res
D′

•
λ

⏐

⏐

�

(OD′
• ⊗OX′•

(a′
λ|(D′

•,Z′|D′•
))zar∗Ω•

(λ;•)′){−k}
(
∏k

j=1 eλj
)˜h∗

(λ;•)−−−−−−−−−−−→
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g(X•,Z•)zar∗grP D

k (C log,Z•
zar (O(X•,D•∪Z•)/S))
∥

∥

∥

g(X•,Z•)zar∗(OD• ⊗OX• grP D•
k Ω•

X•/S(log(D• ∪ Z•)))

ResD•
λ

⏐

⏐

�

g(X•,Z•)zar∗(OD• ⊗OX• (aλ|(D•,Z|D• ))zar∗Ω•
(λ;•)){−k}.

Now, by (2.9.3.1), (2.9.3.2), (2.9.3.4) and log crystalline Poincaré lemma
for (D•, Z|D•), (D′

•, Z
′|D′

•), (2.9.3) is reduced to the following obvious lemma.
��

Lemma 2.9.4. Let F : A −→ B be a left exact functor of abelian categories.
Let M• and M ′• (resp. N• and N ′•) be objects of K+(B) (resp. K+(A)). Let

M• f−−−−→ F (N•)

�
⏐

⏐

�

⏐

⏐

�
�

M ′• f ′

−−−−→ F (N ′•)

be the commutative diagram in K+(B). Assume that A has enough injectives.
Then the following diagram is commutative:

M• f−−−−→ RF (N•)

�
⏐

⏐

�

⏐

⏐

�
�

M ′• f ′

−−−−→ RF (N ′•).

Proof. The proof is obvious. ��

Definition 2.9.5. (1) We call {eλ}λ∈Λ ∈ Z
Λ
>0 the multi-degree of g with

respect to a decomposition ∆ := {Dλ}λ and ∆′ := {D′
λ}λ of D and D′,

respectively. We denote it by deg∆,∆′(g) ∈ Z
Λ
>0. If eλ’s for all λ’s are equal,

we also denote eλ ∈ Z>0 by deg∆,∆′(g) ∈ Z>0.
(2) Assume that eλ’s for all λ’s are equal. Let u : E −→ F be a morphism

of OS-modules. Let k be a nonnegative integer. The k-twist

u(−k) : E(−k; g;∆,∆′) −→ F(−k; g;∆,∆′)

of u with respect to g, ∆ and ∆′ is, by definition, the morphism
deg∆,∆′(g)ku : E −→ F .

Corollary 2.9.6. Assume that eλ’s for all λ’s are equal. Let Ess((X,D ∪
Z)/S) be the following spectral sequence
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E−k,h+k
1 ((X,D ∪ Z)/S)

= Rh−kf(D(k),Z|
D(k) )/S∗(O(D(k),Z|

D(k) )/S)(−k; g;∆,∆′)

=⇒ Rhf(X,D∪Z)/S∗(O(X,D∪Z)/S)

and let Ess((X ′,D′∪Z ′)/S′) be the obvious analogue of the above for (X ′,D′∪
Z ′)/S′. Then there exists a morphism

(2.9.6.1) glog∗
crys : Ess((X ′,D′ ∪ Z ′)/S′) −→ Ess((X,D ∪ Z)/S)

of spectral sequences.

Proof. (2.9.6) immediately follows from (2.9.3). ��

Assume that S0 is a scheme of characteristic p > 0. Let FS0 : S0 −→ S0

be the p-th power endomorphism. Let (X ′,D′ ∪ Z ′) be the base change of
(X,D ∪ Z) by FS0 . The relative Frobenius morphism

F : (X,D ∪ Z) −→ (X ′,D′ ∪ Z ′)

over S0 induces the relative Frobenius morphisms

F(X,Z) : (X,Z) −→ (X ′, Z ′)

and
F (k) : (D(k), Z|D(k)) −→ (D(k)′ , Z ′|D(k)′ ).

Let
a(k) : (D(k), Z|D(k)) −→ (X,D ∪ Z)

and
a(k)′ : (D(k)′ , Z ′|D(k)′ ) −→ (X ′,D′ ∪ Z ′)

be the natural morphisms. We define the relative Frobenius action

Φ(D(k),Z|
D(k) )/S : a

(k)′log
crys∗ �(k)log

crys (D′/S;Z ′) −→ F log
crys∗a

(k)log
crys∗ �(k)log

crys (D/S;Z)

as the identity under the natural identification

�(k)log
crys (D′/S;Z ′) ∼−→ F

(k)log
crys∗ �(k)log

crys (D/S;Z).

When g is the relative Frobenius F : (X,D∪Z) −→ (X ′,D′ ∪Z ′), we denote
(2.9.6.1) by

E−k,h+k
1 ((X,D ∪ Z)/S) = Rh−kf(D(k),Z|

D(k) )/S∗(O(D(k),Z|
D(k) )/S

⊗Z �(k)log
crys (D/S;Z))(−k)

=⇒ Rhf(X,D∪Z)/S∗(O(X,D∪Z)/S).

(2.9.6.2)



2.10 The Base Change Theorem and the Künneth Formula 143

((2.9.6.2) is equal to (2.6.2.2)+(the compatibility with Frobenius).) (2.9.6.2)
is generalized to the following spectral sequence

E−k,h+k
1 = E−k,h+k

1 ((X,D ∪ Z)/S; k′)(−k)(2.9.6.3)

=⇒ Rhf (X,D∪Z)/S∗(P
D
k′ C

log,Z
Rcrys(O(X,D∪Z)/S))

= Rhf(X,D∪Z)/S∗(PD
k′ Elog,Z

crys (O(X,D∪Z)/S))

by (2.6.2.1) and (2.7.3.2).

Definition 2.9.7. We call the sequence (2.9.6.2) the preweight spectral se-
quence of (X,D∪Z)/(S, I, γ) with respect to D. If Z = ∅, then we call it the
preweight spectral sequence of (X,D)/(S, I, γ).

By the proof of (2.8.5) and (2.9.3), the morphism G in (2.8.5) is a morphism

G : Rh−kf(D(k),Z|
D(k) )/S∗(O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)))(−k)

(2.9.7.1)

−→ Rh−k+2f(D(k−1),Z|
D(k−1) )/S∗(O(D(k−1),Z|

D(k−1) )/S

⊗Z �(k−1)log
crys (D/S;Z))(−(k − 1)).

By (2.7.6) we also have the following Leray spectral sequence

Est
2 := Rsf(D(t),Z|

D(t) )/S∗(O(D(t),Z|
D(t) )/S ⊗Z �(t)log

crys (D/S;Z))(−t)
(2.9.7.2)

=⇒ Rs+tf(X,D∪Z)/S∗(O(X,D∪Z)/S).

2.10 The Base Change Theorem and the Künneth
Formula

In this section we prove the base change theorem of a preweight-filtered van-
ishing cycle crystalline complex and the Künneth formula of it. (2.7.5) plays
an important role in this section.

We keep the notations in §2.4. In this section we assume that X is quasi-
compact. Hence we can assume that the cardinality of the family {Xi0}i0∈I0

of an open covering of X is finite.

(1) Base change theorem.

Proposition 2.10.1. Let
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(2.10.1.1)

Y ′ g−−−−→ Y

f ′
⏐

⏐

�

⏐

⏐

�
f

(T ′,J ′, γ′) u−−−−→ (T,J , γ)

be a commutative diagram of fine log schemes, where a PD-structure γ
(resp. γ′) on a PD-ideal sheaf J (resp. J ′) of OT (resp. OT ′) extends to
Y (resp. Y ′) and u is a PD-morphism of PD-log schemes. Let (E•, {E•

k}) be
a bounded below filtered complex of OY/T -modules. Assume that RfY/T∗(E•,
{E•

k}) is bounded above. Then there exists a canonical morphism

(2.10.1.2) Lu∗RfY/T∗(E•, {E•
k}) −→ Rf ′

Y ′/T ′∗g
log−1
crys (E•, {E•

k})

in DF(OT ′).

Proof. By (1.2.3.2) we have only to find an element in

H0[{RHomOT ′ (Lu∗RfY/T∗(E•, {E•
k}), Rf ′

Y ′/T ′∗g
log−1
crys (E•, {E•

k})}0].

Using (1.2.2), we have the following formula

(2.10.1.3) RHomOT ′ (Lu∗RfY/T∗(E•, {E•
k}), Rf ′

Y ′/T ′∗g
log−1
crys (E•, {E•

k}))

= RHomOT
(RfY/T∗(E•, {E•

k}), Ru∗Rf ′
Y ′/T ′∗g

log−1
crys (E•, {E•

k}))

= RHomOT
(RfY/T∗(E•, {E•

k}), RfY/T∗Rglog
crys∗g

log−1
crys (E•, {E•

k})).

The adjunction morphism (E•, {E•
k}) −→ glog

crys∗glog−1
crys (E•, {E•

k}) induces a
morphism (E•, {E•

k}) −→ Rglog
crys∗glog−1

crys (E•, {E•
k}). This morphism induces

a morphism

RfY/T∗(E•, {E•
k}) −→ RfY/T∗Rglog

crys∗g
log−1
crys (E•, {E•

k})

in DF(OT ). ��

Proposition 2.10.2. (1) Let f : (X,D ∪ Z) −→ S0(
⊂−→ S) and (S, I, γ) be

as in §2.4. Assume moreover that S is quasi-compact and that
◦
f : X −→ S0 is

quasi-separated and quasi-compact. Let f(X,Z) : (X,Z) −→ S0(
⊂−→ S) be the

induced morphism by f . Then Rhf(X,Z)/S∗P
D
k (Elog,Z

crys (O(X,D∪Z)/S) (h, k ∈
Z) are quasi-coherent OS-modules and Rf(X,Z)/S∗(Elog,Z

crys (O(X,D∪Z)/S), PD)
is isomorphic to a bounded filtered complex of OS-modules.

(2) Let (S, I, γ) and S0 be as in §2.4. Let Y be a quasi-compact smooth
scheme over S0 (with trivial log structure). Let f : (X,D ∪ Z) −→ Y be a

morphism of log schemes such that
◦
f : X −→ Y is smooth, quasi-compact and

quasi-separated and such that D∪Z is a relative SNCD over Y . (In particular,
D ∪ Z is also a relative SNCD on X over S0.) Let f(X,Z) : (X,Z) −→ Y be
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the induced morphism by f . Then Rf log
(X,Z)crys∗(E

log,Z
crys (O(X,D∪Z)/S), PD) is

isomorphic to a bounded filtered complex of OY/S-modules.

Proof. (1): Let (I•, {I•k}) be a filtered flasque resolution of (Elog,Z
crys (O(X,D∪Z)

/S), PD). Then Rf(X,Z)/S∗(Elog,Z
crys (O(X,D∪Z)/S), PD) = (f ◦ u(X,Z)/S)∗(I•,

{I•k}).
Now, fix a decomposition {Dλ}λ of D by its smooth components and give a

total order on λ’s. Then there exists an isomorphism Z
∼−→ �

(k)log
crys (D/S;Z).

Furthermore, for each k, fix a decomposition {(Z|D(k))µ} of Z|D(k) by its
smooth components and give a total order on µ’s. Because X is quasi-
compact, the sets λ’s and µ’s are finite. By (2.6.2.2) we have the following
spectral sequence

E−l,h+l
1 = Rh−lfZ(l)|

D(k)/S∗(OZ(l)|
D(k)/S)(2.10.2.1)

=⇒ Rhf(D(k),Z|
D(k) )/S∗(O(D(k),Z|

D(k) )/S).

By [11, 7.6 Theorem] and by the spectral sequences (2.6.2.2) and (2.10.2.1),
Hh((f(X,Z) ◦ u(X,Z)/S)∗(I•k)) (h, k ∈ Z) are quasi-coherent OS-modules
and there exists an integer h0 such that, for all h ≥ h0 and for all k ∈ Z,
Hh((f(X,Z)◦u(X,Z)/S)∗(I•k)) = 0. Hence Rhf(X,Z)/S∗P

D
k (Elog,Z

crys (O(X,D∪Z)/S)
(h, k ∈ Z) are quasi-coherentOS-modules and Rf(X,Z)/S∗(Elog,Z

crys (O(X,D∪Z)/S),
PD) = ((f(X,Z) ◦ u(X,Z)/S)∗(I•), (f ◦ u(X,Z)/S)∗(I•k)) is isomorphic to a
bounded filtered complex of OS-modules.

(2): (2) immediately follows from (1) and from the proof of [3, V Corollaire
3.2.3] (cf. the proof of [11, 7.11 Corollary]). ��
Theorem 2.10.3 (Base change theorem). Let f : (X,D∪Z) −→ S0(

⊂−→
S) and (S, I, γ) be as in (2.10.2). Let u : (S′, I ′, γ′) −→ (S, I, γ) be a mor-
phism of PD-schemes. Assume that I ′ is a quasi-coherent ideal sheaf of OS′ .
Set S′

0 := Spec
S′(OS′/I ′). Let f ′ : (X ′,D′ ∪ Z ′) := (X ×S0 S′

0, (D ∪ Z) ×S0

S′
0) −→ S′

0 be the base change morphism of f with respect to u|S′
0
. Then there

exists a canonical isomorphism

(2.10.3.1) Lu∗Rf(X,Z)/S∗(Elog,Z
crys (O(X,D∪Z)/S), PD) ∼−→

Rf ′
(X′,Z′)/S′∗(E

log,Z′

crys (O(X′,D′∪Z′)/S′), PD′
)

in the filtered derived category DF(f ′−1(OS′)).

Proof. Let g(X,Z) : (X ′, Z ′) −→ (X,Z) and g(X,D∪Z) : (X ′,D′ ∪ Z ′) −→
(X,D∪Z) be the natural morphisms of log schemes. First we use the general
theory in §1.5 as follows.

Consider a small category I := {i, i′} consisting of two elements. The mor-
phisms in I, by definition, consist of three elements idi, idi′ and a morphism
i −→ i′. By corresponding the natural morphism
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glog
(X,D∪Z)crys : (( ˜(X ′,D′ ∪ Z ′)/S′)logcrys,O(X′,D′∪Z′)/S′)

−→ (( ˜(X,D ∪ Z)/S)logcrys,O(X,D∪Z)/S)

to the morphism i−→ i′, we have a ringed topos (( ˜(Xj ,Dj∪Zj)/Sj)logcrys,O(Xj ,

Dj∪Zj)/Sj
)j∈I . Let (I•j )j∈I be a flasque resolution of (O(Xj ,Dj∪Zj)/Sj

)j∈I

((1.5.0.2)). Let ε : ( ˜(X,D ∪ Z)/S)logcrys −→ ( ˜(X,Z)/S)logcrys and ε′ : (( ˜X ′,D′ ∪ Z ′

)/S′)logcrys −→ ( ˜(X ′, Z ′)/S′)logcrys be the forgetting log morphisms along D and
D′, respectively. Then (Elog,Z

crys (O(X,D∪Z)/S), PD) and (Elog,Z′

crys (O(X′,D′∪Z′)

/S), PD′
) are represented by (ε∗(I•i ), τ) and (ε′∗(I

•
i′), τ), respectively. Since

glog−1
(X,Z)crys is exact, glog−1

(X,Z)crys(ε∗(I
•
i ), τ) = (glog−1

(X,Z)crysε∗(I
•
i ), τ). By the follow-

ing commutative diagram

(X ′,D′ ∪ Z ′)
g(X,D∪Z)−−−−−−→ (X,D ∪ Z)

ε′
⏐

⏐

�

⏐

⏐

�
ε

(X ′, Z ′)
g(X,Z)−−−−→ (X,Z),

we have a natural morphism (glog−1
(X,Z)crysε∗(I

•
i ), τ) −→ (ε′∗g

log−1
(X,D∪Z)crys(I

•
i ), τ).

By the definition of (I•j )j∈I , we have the morphism glog−1
(X,D∪Z)crys(I

•
i ) −→ I•i′ .

Hence we have a composite morphism

(glog−1
(X,Z)crysε∗(I

•
i ), τ) −→ (ε′∗(I

•
i′), τ).

Therefore we have a canonical morphism (2.10.3.1) by (2.10.1) and
(2.10.2) (1).

We prove that (2.10.3.1) is an isomorphism. By the filtered cohomological
descent (1.5.1) (2) and by the same argument as that in the proof of [3, V
Proposition 3.5.2] ([11, 7.8 Theorem]), we may assume that S is affine and
that X is an affine scheme over S0. Then (X,D ∪Z) has a lift (X ,D ∪Z)/S
(D = D ×X X, Z = Z ×X X) by (2.3.14). In this case, we may assume

that the morphism (2.4.5.1) is the identity of (( ˜(X,Z)/S)logcrys,O(X,Z)/S). Let
f : (X ,D ∪Z) −→ S be the lift of f . Set f∗(PD

k ) := f∗(PD
k Ω•

X/S(log(D ∪Z)))
(k ∈ Z) and f∗(PD) := {f∗(PD

k )}k∈Z for simplicity of notation. Then, by
(2.7.5), we have

Rf(X,Z)/S∗(Elog,Z
crys (O(X,D∪Z)/S), PD) = (f∗(Ω•

X/S(log(D ∪ Z))), f∗(PD)).

and we have the same formula for (X ′,D′∪Z ′)/S′. We claim that f∗(Ω•
X/S(log

(D ∪ Z)))/f∗(PD
k ) is a flat OS-module for any k. Indeed, the filtration PD

k

on Ω•
X/S(log(D∪Z)) is finite and f∗(Ω•

X/S(log(D∪Z))) is a flat OS-module.
Because X is affine over S, we have the following exact sequence
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0 −→ f∗(grPD

k Ω•
X/S(log(D ∪ Z))) −→ f∗(Ω•

X/S(log(D ∪ Z)))/f∗(PD
k−1)

(2.10.3.2)

−→ f∗(Ω•
X/S(log(D ∪ Z)))/f∗(PD

k ) −→ 0.

By the Poincaré residue isomorphism, the left term of (2.10.3.2) is isomorphic
to f∗(b

(k)
∗ Ω•

D(k)/S
(logZ|D(k)) ⊗Z �

(k)
zar(D/S)){−k}, where b(k) : D(k) −→ X

is the natural morphism. Hence, the descending induction on k shows the
claim. Therefore the left hand side of (2.10.3.1) is equal to u∗f∗(Ω•

X/S(log(D∪
Z)), PD). Since f : X −→ S is an affine morphism, we obtain (2.10.3) by the
affine base change theorem ([39, (1.5.2)]) as in the classical case ([11, 7.8
Theorem]). ��

As in [3, V] and [11, §7], we have some important consequences of (2.10.3).

Corollary 2.10.4. Let f : (X,D ∪ Z) −→ Y be as in (2.10.2) (2). Then

Rf log
(X,Z)crys∗(E

log,Z
crys (O(X,D∪Z)/S), PD)

is a filtered crystal in DF(OY/S). That is, for a morphism v : (U ′, T ′, δ′) −→
(U, T, δ) of the crystalline site (Y/S)crys, the canonical morphism

Lv∗((Rf log
(X,Z)crys∗(E

log,Z
crys (O(X,D∪Z)/S), PD))T ) −→

Rf log
(X′,Z′)crys∗(E

log,Z′

crys (O(X′,D′∪Z′)/S), PD′
)T ′

is an isomorphism, where (X ′,D′ ∪ Z ′) := (X ′,D′ ∪ Z ′)×U U ′.

Corollary 2.10.5. Let f : (X,D ∪ Z) −→ Y be as in (2.10.2) (2). Assume
that Y has a smooth lift Y over S. Let h be an integer. Then the following
holds:

(1) There exists a quasi-nilpotent integrable connection

(2.10.5.1) Rhf(X,Z)/Y∗(PD
k Elog,Z

crys (O(X,D∪Z)/S)) ∇k−→

Rhf(X,Z)/Y∗(PD
k Elog,Z

crys (O(X,D∪Z)/S))⊗OYΩ1
Y/S (k ∈ Z)

making the following diagram commutative for any two nonnegative integers
k ≤ l :

(2.10.5.2)

Rhf(X,Z)/Y∗(P D
k Elog,Z

crys (O(X,D∪Z)/S))
∇k−−−−−−−→ Rhf(X,Z)/Y∗(P D

k Elog,Z
crys (O(X,D∪Z)/S))⊗OY Ω1

Y/S

⏐

⏐

�

⏐

⏐

�

Rhf(X,Z)/Y∗(P D
l Elog,Z

crys (O(X,D∪Z)/S))
∇l−−−−−−−→Rhf(X,Z)/Y∗(P D

l Elog,Z
crys (O(X,D∪Z)/S))⊗OY Ω1

Y/S
.
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(2) For k ∈ Z, set

PD
k Rhf(X,D∪Z)/Y∗(O(X,D∪Z)/S) :=

Im(Rhf(X,Z)/Y∗(PD
k Elog,Z

crys (O(X,D∪Z)/S)) −→ Rhf(X,D∪Z)/Y∗(O(X,D∪Z)/S)).

Then there exists a quasi-nilpotent connection

PD
k Rhf(X,D∪Z)/Y∗(O(X,D∪Z)/S)

−→ PD
k Rhf(X,D∪Z)/Y∗(O(X,D∪Z)/S)⊗OYΩ1

Y/S .

Corollary 2.10.6. Let f : (X,D ∪ Z) −→ Y be as in (2.10.2) (2). Let

(X ′,D′ ∪ Z ′)
g−−−−→ (X,D ∪ Z)

f ′
⏐

⏐

�

⏐

⏐

�
f

Y ′ h−−−−→ Y
⏐

⏐

�

⏐

⏐

�

(S′, I ′, γ′) −−−−→ (S, I, γ)

be a commutative diagram such that the upper rectangle is cartesian. As-
sume that Y ′ is a quasi-compact smooth scheme over S′. Then the natural
morphism

Lh∗
crysRf log

(X,Z)crys∗(E
log,Z
crys (O(X,D∪Z)/S), PD) −→

Rf ′log
(X′,Z′)crys∗(E

log,Z′

crys (O(X′,D′∪Z′)/S′), PD′
)

is an isomorphism.

Corollary 2.10.7. Let the notations and the assumptions be as in (2.10.2)
(1). Then Rf log

(X,Z)/Scrys∗(P
D
k Elog,Z

crys (O(X,D∪Z)/S)) (k ∈ N) has finite tor-
dimension. Moreover, if S is noetherian and if f is proper, then Rf(X,Z)/S∗
(PD

k Elog,Z
crys (O(X,D∪Z)/S)) is a perfect complex of OS-module.

Definition 2.10.8. Let A be a noetherian commutative ring. Let (E•, {E•
k})

∈ CF(A) be a filtered complex of A-modules. We say that (E•, {E•
k}) is

filteredly strictly perfect if it is bounded, if the filtration {Eq
k} is finite for any

q and if all Eq
k’s are finitely generated projective A-modules.

Definition 2.10.9. Let A be a commutative ring with unit element. For a
filtered A-module (E, {Ek}) whose filtration is finite and for a family {Tl}l∈Z

of A-modules, we say that (E, {Ek}) is the direct sum of {Tl}l∈Z if Ek =
⊕

l≤k Tl (∀k ∈ Z).

The following is a nontrivial filtered version of [11, 7.15 Lemma]:
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Theorem 2.10.10. Let A be a noetherian commutative ring. Let (E•, {E•
k})

be a filtered complex of A-modules. Assume that there exist integers k0 ≤ k1

such that Eq
k1

= Eq and Eq
k0

= 0 for all q ∈ Z. Then (E•, {E•
k}) is quasi-

isomorphic to a filteredly strictly perfect complex if and only if E•
k (∀k) has

finite tor-dimension and finitely generated cohomologies.

Proof. Roughly speaking, the proof is dual to that of (1.1.7) with some ad-
ditional calculations.

We have only to prove the “if” part. Let k be an integer such that k0 <
k ≤ k1. By the assumption, we may assume that Eq = 0 (q > 0). Since
H0(E•

k) is finitely generated, there exists a free A-module T 0
k of finite rank

with a morphism T 0
k −→ E0

k such that the induced morphism T 0
k −→ H0(E•

k)
is surjective. Set T 0

k := 0 for k ≤ k0 or k > k1. Let (Q0, {Q0
k}) be the direct

sum of {T 0
k }. Then we have a natural filtered morphism (Q0, {Q0

k}) −→
(E0, {E0

k}).
Assume that, for a nonpositive integer q, we are given a morphism

(Q•≥q, {Q•≥q
k }) −→ (E•≥q, {E•≥q

k })

of (≥ q)-truncated filtered complexes such that the induced morphism
H∗(Q•

k) −→ H∗(E•
k) is an isomorphism for ∗ > q, Ker(Qq

k −→ Qq+1
k ) −→

Hq(E•
k) is surjective, Q• = 0 for • ≥ 0, Q• = Q•

k1
, Q•

k0
= 0 (q ≤ • ≤ 0) and

that (Qr, {Qr
k}) (∀r ≥ q) is the direct sum of some family {T r

k }k∈Z of free
A-modules of finite rank.

For an integer k0 < k ≤ k1, consider the fiber product Eq−1
k ×Eq

k

Ker(Qq
k −→ Qq+1

k ). Let Iq
k be the image of the following composite morphism

Eq−1
k ×Eq

k
Ker(Qq

k −→ Qq+1
k ) −→ Ker(Qq

k −→ Qq+1
k ) ⊂−→ Qq

k.

Since A is noetherian, Iq
k is finitely generated. Let {yi}i∈I be a system of finite

generators of Iq
k . Take an element (xi, yi) ∈ Eq−1

k ×Eq
k

Ker(Qq
k −→ Qq+1

k ).
Because Hq−1(E•

k) is finitely generated, we can take a family {zj}j∈J of finite
elements of Ker(Eq−1

k −→ Eq
k) whose images in Hq−1(E•

k) form a system of
generators of Hq−1(E•

k).
Now consider a finitely generated A-module Sq−1

k generated by {(xi, yi)}i∈I

and {(zj , 0)}j∈J in Eq−1
k ×Eq

k
Ker(Qq

k −→ Qq+1
k ). Let T q−1

k be a free A-
module of finite rank such that there exists a surjection T q−1

k −→ Sq−1
k .

Set T q−1
k := 0 for k ≤ k0 or k > k1. Let (Qq−1, {Qq−1

k }) be the
direct sum of {T q−1

k }k∈Z. Then we have a natural filtered morphism
(Qq−1, {Qq−1

k }) −→ (Eq−1, {Eq−1
k }).

By assumption, Ker(Qq
k −→ Qq+1

k ) −→ Hq(E•
k) is a surjection. Moreover,

if the image of an element of Ker(Qq
k −→ Qq+1

k ) vanishes in Hq(E•
k), then

this element belongs to Im(T q−1
k −→ Qq

k) by the definition of T q−1
k . In partic-

ular, this element belongs to Im(Qq−1
k −→ Qq

k). Hence the natural morphism
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Ker(Qq
k −→ Qq+1

k ) −→ Hq(E•
k) induces an isomorphism Hq(Q•

k) ∼−→
Hq(E•

k). Moreover, it is easy to see that Ker(Qq−1
k −→ Qq

k) −→ Hq−1(E•
k)

is surjective. Hence the induction works well and so we have constructed a
filtered complex (Q•, {Q•

k}) such that Qq = 0 (q > 0), such that Q•
k0

= 0
and Q•

k1
= Q•, such that (Qq, {Qq

k}) (q ∈ Z) is the direct sum of a family
{T q

k }k∈Z of free A-modules of finite rank and such that there exists a fil-
tered quasi-isomorphism (Q•, {Q•

k}) −→ (E•, {E•
k}). Because E•

k (∀k) has
finite tor-dimension, grkE• (∀k) also has it. Since (Q•, {Q•

k}) is filteredly
quasi-isomorphic to (E•, {E•

k}), grkQ• (∀k) also has it. Since the filtration
on Q• is finite, there exists a nonpositive integer r and a complex F •

k of flat
A-modules for each k ∈ Z satisfying the following properties:

(a) F •
k is quasi-isomorphic to grkQ•,

(b) F •
k = 0 for • > 0 or • ≤ r.

Set Bq
k := Im(Qq−1

k −→ Qq
k). Let l ≤ k1 − k0 be a positive integer. Set

Rq
k0+l =

⎧

⎪

⎨

⎪

⎩

0 (q < r − l + 1 or q > 0),
Qq

k0+l/(Qq
k0+r−q + Bq

k0+r−q+1) (r − l + 1 ≤ q ≤ r),
Qq

k0+l (r < q ≤ 0).

Then we claim that Rq
k0+l is a flat A-module. We proceed on induction on

l. Unusually we assume that the initial case l = 1 holds and that l ≥ 2.
Consider the following exact sequence

0 −→ Rq
k0+l−1 −→ Rq

k0+l −→ grk0+lQ
q −→ 0 (r − l + 1 < q ≤ r).

By the induction hypothesis, we may assume that Rq
k0+l−1 (r− l+1 < q ≤ r)

is a flat A-module. Since grk0+lQ
q is a flat A-module, so is Rq

k0+l (r− l +1 <

q ≤ r). Now we show that Rr−l+1
k0+l is a flat A-module. By the properties (a)

and (b), we have the following exact sequence

· · · −→ grk0+lQ
r−l −→ grk0+lQ

r−l+1 −→ Rr−l+1
k0+l −→ 0.

For a positive integer i and for any A-module M ,

TorA
i (Rr−l+1

k0+l ,M)

=H−i(· · · −→ grk0+lQ
r−l ⊗A M −→ grk0+lQ

r−l+1 ⊗A M −→ 0)

=Hr−l+1−i(grk0+lQ
• ⊗A M) = Hr−l+1−i(F •

k0+l ⊗A M) = 0.

Hence Rr−l+1
k0+l is a flat A-module. The rest for showing the claim is to prove

that Rr
k0+1 is a flat A-module. As above, we can prove this using the following

resolution

· · · −→ Qr−1
k0+1 −→ Qr

k0+1 −→ Rr
k0+1 −→ 0.
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Set R• := R•
k := R•

k1
for k ≥ k1 and R•

k := 0 for k ≤ k0. Then {R•
k}k∈Z is

an increasing filtration on R• since the natural morphism R•
k0+l−1 −→ R•

k0+l

is injective. Note that R• is a bounded complex of projective A-modules.
Finally we claim that the natural morphism (Q•, {Q•

k}) −→ (R•, {R•
k})

is a filtered quasi-isomorphism. Indeed, for a positive integer l ≤ k1 − k0,
grk0+lR

• is the following complex

0 −→ grk0+lQ
r−l+1/Im(grk0+lQ

r−l −→ grk0+lQ
r−l+1)

r−l+1

−→ grk0+lQ
r−l+2

r−l+2

−→ · · · .

This complex is isomorphic to grk0+lQ
• by the properties (a) and (b).

Hence we have finished the proof of (2.10.10). ��

Corollary 2.10.11. Let the notations and the assumptions be as in (2.10.7).
Then the filtered complex Rf(X,Z)/S∗(Elog,Z

crys (O(X,D∪Z)/S), PD) is a filtered
perfect complex of OS-modules, that is, locally on Szar, filteredly quasi-
isomorphic to a filtered strictly perfect complex.

Proof. (2.10.11) immediately follows from (2.10.7) and (2.10.10). ��

(2) Künneth formula.

Next, we give the Künneth formula of preweight-filtered vanishing cycle
crystalline complexes.

Let Xj/S0 (j = 1, 2) be a smooth scheme with transversal relative SNCD’s
Dj and Zj over S0. Set X3 := X1 ×S0 X2, D3 = (D1 ×S0 X2) ∪ (X1 ×S0 D2)
and Z3 = (Z1 ×S0 X2) ∪ (X1 ×S0 Z2). Let fj : (Xj ,Dj ∪ Zj) −→ S0

(j = 1, 2, 3) be the structural morphism. Assume that S is quasi-compact

and that
◦
f j (j = 1, 2) is quasi-compact and quasi-separated. We denote

Rfj(Xj ,Zj)/S∗(E
log,Zj
crys (O(Xj ,Dj∪Zj)/S), PDj ) simply by Rf(Xj ,Zj)/S∗(E

log,Zj
crys

(O(Xj ,Dj∪Zj)/S), PDj ). We have the following commutative diagram of ringed
topoi for j = 1, 2:

(2.10.11.1)

(( ˜(Xj , Dj ∪ Zj)/S)logcrys,O(Xj ,Dj∪Zj)/S)
q
log
jcrys←−−−−− (( ˜(X3, D3 ∪ Z3)/S)logcrys,O(X3,D3∪Z3)/S)

ε(Xj,Dj∪Zj,Zj)/S

⏐

⏐

�

⏐

⏐

�

ε(X3,D3∪Z3,Z3)/S

(( ˜(Xj , Zj)/S)logcrys,O(Xj ,Zj)/S)
p
log
jcrys←−−−−− (( ˜(X3, Z3)/S)logcrys,O(X3,Z3)/S)

f(Xj,Zj)/S

⏐

⏐

�

⏐

⏐

�

f(X3,Z3)/S

(˜Szar,OS) (˜Szar,OS),
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where qj : (X3,D3 ∪Z3) −→ (Xj ,Dj ∪Zj) and pj : (X3, Z3) −→ (Xj , Zj) are
the projections. We shall construct a canonical morphism

(2.10.11.2) Rf(X1,Z1)/S∗(Elog,Z1
crys (O(X1,D1∪Z1)/S), PD1)⊗L

OS

Rf(X2,Z2)/S∗(Elog,Z2
crys (O(X2,D2∪Z2)/S), PD2)

−→ Rf(X3,Z3)/S∗(Elog,Z3
crys (O(X3,D3∪Z3)/S), PD3).

For simplicity of notation, set εj := ε(Xj ,Dj∪Zj ,Zj)/S (j = 1, 2, 3). We have to
construct a morphism

(2.10.11.3)

Rf(X1,Z1)/S∗(Rε1∗(O(X1,D1∪Z1)/S), τ)⊗L
OS

Rf(X2,Z2)/S∗(Rε2∗(O(X2,D2∪Z2)/S), τ)

−→ Rf(X3,Z3)/S∗(Rε3∗(O(X3,D3∪Z3)/S), τ).

To construct it, we need the following two lemmas:

Lemma 2.10.12 (cf. (2.7.2)). Let f : (T ,A) −→ (T ′,A′) be a morphism
of ringed topoi. Then, for an object E• in D−(A′), there exists a canonical
morphism

(2.10.12.1) Lf∗((E•, τ)) −→ (Lf∗(E•), τ)

in D−F(A).

Proof. Let Q• −→ E• be a quasi-isomorphism from a complex of flat A′-
modules. Let (R•, {R•

k}) −→ (Q•, τ) be a filtered flat resolution of (Q•, τ).
Then, by applying the functor f∗ to the morphism of this resolution, we
obtain a diagram

(2.10.12.2)

f∗(R•
k) −−−−→ f∗(τkQ•)

⏐

⏐

�

⏐

⏐

�

f∗(R•) −−−−→ f∗(Q•).

By (1.1.19) (2), the left hand side of (2.10.12.2) is equal to Lf∗((E•, τ)).
On the other hand, there exists a natural morphism f∗(τkQ•) −→ τkf∗(Q•).
Hence there exists a natural diagram

(2.10.12.3)

f∗(τkQ•) −−−−→ τkf∗(Q•)
⏐

⏐

�

⏐

⏐

�

f∗(Q•) f∗(Q•).

Composing (2.10.12.2) with (2.10.12.3), we have a morphism (2.10.12.1). ��

Lemma 2.10.13. Let (T ,A) be a ringed topos. Let E• and F • be two com-
plexes of A-modules. Assume that E• is bounded above. Then there exists a
canonical morphism
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(2.10.13.1) (E•, τ)⊗L
A (F •, τ) −→ (E• ⊗L

A F •, τ).

Proof. Let P • −→ E• be a flat resolution of E•. Let (Q•, {Q•
k}) −→ (P •, τ)

be a filtered flat resolution of (P •, τ). Then we have the following:

(E•, τ)⊗L
A (F •, τ)

= (Q•, {Q•
k})⊗A (F •, τ)

= (Q• ⊗A F •, {Im(
∑

l+m=k

Q•
l ⊗A τmF • −→ Q• ⊗A F •)}k∈Z)

−→ (P • ⊗A F •, {Im(
∑

l+m=k

τlP
• ⊗A τmF • −→

∑

l+m=k

P • ⊗A F •)}k∈Z)

−→ (E• ⊗L
A F •, τ).

��

Now we construct the canonical morphism (2.10). We need a canonical
element in

(2.10.13.2)
H0[RHomO(X1,Z1)/S

(Lf∗
(X3,Z3)/S{Rf(X1,Z1)/S∗(Rε1∗(O(X1,D1∪Z1)/S), τ)⊗L

OS

Rf(X2,Z2)/S∗(Rε2∗(O(X2,D2∪Z2)/S), τ)}, (Rε3∗(O(X3,D3∪Z3)/S), τ))].

First we have the following morphism

Lf∗
(X3,Z3)/S{Rf(X1,Z1)/S∗(Rε1∗(O(X1,D1∪Z1)/S), τ)⊗L

OS

Rf(X2,Z2)/S∗(Rε2∗(O(X2,D2∪Z2)/S), τ)}
=Lf∗

(X3,Z3)/SRf(X1,Z1)/S∗(Rε1∗(O(X1,D1∪Z1)/S), τ)⊗L
O(X3,Z3)/S

Lf∗
(X3,Z3)/SRf(X2,Z2)/S∗(Rε2∗(O(X2,D2∪Z2)/S), τ)

=Lplog∗
1crysLf∗

(X1,Z1)/SRf(X1,Z1)/S∗(Rε1∗(O(X1,D1∪Z1)/S), τ)⊗L
O(X3,Z3)/S

Lplog∗
2crysLf∗

(X2,Z2)/SRf(X2,Z2)/S∗(Rε2∗(O(X2,D2∪Z2)/S), τ)

−→Lplog∗
1crys(Rε1∗(O(X1,D1∪Z1)/S), τ)⊗L

O(X3,Z3)/S

Lplog∗
2crys(Rε2∗(O(X2,D2∪Z2)/S), τ).

Note that Rεj∗(O(Xj ,Dj∪Zj)/S) (j = 1, 2, 3) is bounded above by (2.7.10).
Therefore it suffices to construct a canonical morphism

(2.10.13.3)
Lplog∗

1crys(Rε1∗(O(X1,D1∪Z1)/S), τ)⊗L
O(X3,Z3)/S

Lplog∗
2crys(Rε2∗(O(X2,D2∪Z2)/S), τ)

−→ (Rε3∗(O(X3,D3∪Z3)/S), τ).

We also have the following composite morphism
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Lplog∗
jcrys(Rεj∗(O(Xj ,Dj∪Zj)/S), τ) −→ (Lplog∗

jcrysRεj∗(O(Xj ,Dj∪Zj)/S), τ)

−→ (Rε3∗Lqlog∗
jcrys(O(Xj ,Dj∪Zj)/S), τ)

= (Rε3∗(O(X3,D3∪Z3)/S), τ)

Here we have obtained the first morphism by (2.10.12), and the second mor-
phism by the commutative diagram (2.10.11.1) and the adjunction morphism.
Thus we have only to construct a canonical morphism

(Rε3∗(O(X3,D3∪Z3)/S), τ)⊗L
O(X3,Z3)/S

(Rε3∗(O(X3,D3∪Z3)/S), τ)

−→ (Rε3∗(O(X3,D3∪Z3)/S), τ).

By (2.10.13), it suffices to construct a canonical morphism

(Rε3∗(O(X3,D3∪Z3)/S)⊗L
O(X3,Z3)/S

Rε3∗(O(X3,D3∪Z3)/S), τ)

−→ (Rε3∗(O(X3,D3∪Z3)/S), τ)

and, furthermore, to construct a canonical morphism

Rε3∗(O(X3,D3∪Z3)/S)⊗L
O(X3,Z3)/S

Rε3∗(O(X3,D3∪Z3)/S)

−→ Rε3∗(O(X3,D3∪Z3)/S).

Hence we have only to have a canonical element of

(2.10.13.4) H0[RHomO(X3,D3∪Z3)/S
(Lε∗3{Rε3∗(O(X3,D3∪Z3)/S)⊗L

O(X3,Z3)/S

Rε3∗(O(X3,D3∪Z3)/S)},O(X3,D3∪Z3)/S)].

The source of [ ] in (2.10.13.4) is

Lε∗3Rε3∗(O(X3,D3∪Z3)/S)⊗L
O(X3,D3∪Z3)/S

Lε∗3Rε3∗(O(X3,D3∪Z3)/S).

Using the adjunction, we have a composite morphism

Lε∗3Rε3∗(O(X3,D3∪Z3)/S)⊗L
O(X3,D3∪Z3)/S

Lε∗3Rε3∗(O(X3,D3∪Z3)/S) −→

O(X3,D3∪Z3)/S ⊗L
O(X3,D3∪Z3)/S

O(X3,D3∪Z3)/S = O(X3,D3∪Z3)/S .

Thus we have a morphism (2.10.11.2).

Theorem 2.10.14 (Künneth formula). (1) Let the notation be as above.
Then there exists a canonical isomorphism

(2.10.14.1) Rf(X1,Z1)/S∗(Elog,Z1
crys (O(X1,D1∪Z1)/S), PD1)⊗L

OS

Rf(X2,Z2)/S∗(Elog,Z2
crys (O(X2,D2∪Z2)/S), PD2)
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∼−→ Rf(X3,Z3)/S∗(Elog,Z3
crys (O(X3,D3∪Z3)/S), PD3).

(2) Let Y and fj : (Xj ,Dj ∪Zj) −→ Y (j = 1, 2) be as in (2.10.2) (2). Set
f3 := f1 ×Y f2. Then there exists a canonical isomorphism

(2.10.14.2) Rf log
(X1,Z1)crys∗(E

log,Z1
crys (O(X1,D1∪Z1)/S), PD1)⊗L

OY/S

Rf log
(X2,Z2)crys∗(E

log,Z2
crys (O(X2,D2∪Z2)/S), PD2)

∼−→ Rf log
(X3,Z3)crys∗(E

log,Z3
crys (O(X3,D3∪Z3)/S), PD3).

Proof. (1): By virtue of the filtered cohomological descent (1.5.1) (2), we
may assume that Xj (j = 1, 2) and S are affine as in the proof of [3, V
Corollary 4.2.2], and hence that (Xj ,Dj ∪Zj) (j = 1, 2) has a log smooth lift
(Xj ,Dj ∪Zj) over S. Let (X3,D3 ∪Z3) be the fiber product of (X1,D1 ∪Z1)
and (X2,D2 ∪ Z2) over S. Let gj : (Xj ,Dj ∪ Zj) −→ S (j = 1, 2, 3) be the
structural morphism. In this case, by (2.7.5), the proof of (1) is reduced to
showing an isomorphism

(g1∗Ω•
X1/S(log(D1 ∪ Z1))⊗OS

g2∗Ω•
X2/S(log(D2 ∪ Z2)),

{
∑

l+m=k

g1∗P
D1
l Ω•

X1/S(log(D1 ∪ Z1))⊗OS
g2∗P

D2
m Ω•

X2/S(log(D2 ∪ Z2))}k∈Z)

−→ g3∗(Ω•
X3/S(log(D3 ∪ Z3)), PD3),

which is easily verified.
(2): (2) follows from (1) as in [3, V Theorem 4.2.1]. ��

The following is the compatibility of the preweight-filtered Künneth for-
mula with the base change formula.

Proposition 2.10.15. Let u be the morphism in (2.10.3). Let ′ mean the base
change of an object over S by u|S0 . Let K be the preweight-filtered Künneth
isomorphism (2.10.14.1) and K ′ the preweight-filtered Künneth isomorphism
for (X ′

i,D
′
i ∪ Z ′

i) (i = 1, 2, 3). Set

Hi := Rf(Xi,Zi)/S∗(Elog,Zi
crys (O(Xi,Di∪Zi)/S), PDi)

and
H ′

i := Rf(X′
i,Z

′
i)/S′∗(E

log,Z′
i

crys (O(X′
i,D

′
i∪Z′

i)/S′), PD′
i)

(i = 1, 2, 3). Then the following diagram is commutative:

(2.10.15.1)

Lu∗H1⊗L
OS′ Lu∗H2

Lu∗(K)−−−−−→ Lu∗H3

�
⏐

⏐

�

⏐

⏐

�
�

H ′
1⊗L

OS′ H
′
2

K′
−−−−→ H ′

3.
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Proof. We leave the proof of (2.10.15) to the reader because the proof is a
straightforward (but long) exercise by recalling the constructions of the base
change isomorphism and the Künneth isomorphism (cf. [3, V Proposition
4.1.3]). ��

2.11 Log Crystalline Cohomology with Compact
Support

Let the notations be as in §2.4. Let us define a variant of a special case of the
definition of the log crystalline cohomology sheaf with compact support in [85,
§5] briefly (cf. [29, §2]). Let (U, T, ι,MT , δ) be an object of the log crystalline
site ((X,D ∪ Z)/S)logcrys = ((X,M(D ∪ Z))/S)logcrys. Set MU := M(D ∪ Z)|U .
Because ι : (U,MU ) −→ (T,MT ) is an exact closed immersion, MT /O∗

T =
MU/O∗

U on Uzar = Tzar. Hence the defining local equation of the relative
SNCD D ∩ U on U lifts to a local section t of MT . We define an ideal
sheaf ID

(X,D∪Z)/S ⊂ O(X,D∪Z)/S by the following: ID
(X,D∪Z)/S(T )= the ideal

generated by the image of t by the structural morphism MT −→ OT . One
can prove that Q∗

(X,D∪Z)/S(ID
(X,D∪Z)/S) is a crystal on the restricted log

crystalline site ((X,D ∪ Z)/S)logRcrys in the same way as [85, (5.3)].

Definition 2.11.1. We call the higher direct image sheaf Rhf(X,D∪Z)/S∗(ID
(X,

D∪Z)/S) in ˜Szar the log crystalline cohomology sheaf with compact support
with respect to D and denote it by Rhf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S).

The local description of Rhf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S) is as follows; as-

sume that there exists an exact closed immersion ι : (X,D∪Z) ⊂−→ (X ,D∪Z)
into a smooth scheme with a relative SNCD over S such that ι induces exact
closed immersions (X,D) ⊂−→ (X ,D) and (X,Z) ⊂−→ (X ,Z). Let D be the log
PD-envelope of the exact closed immersion (X,Z) ⊂−→ (X ,Z) over (S, I, γ)

with structural morphism fS : D −→ S. Let u(X,D∪Z)/S : ( ˜(X,D ∪ Z)/S)logcrys

−→ ˜Xzar be the canonical projection. Let F be the crystal on ((X,D
∪Z)/S)logcrys corresponding to the integrable log connection OD⊗OX OX (−D)
−→ OD ⊗OX OX (−D)Ω1

X/S(log(D ∪ Z)). Then there exists a natural mor-
phism F −→ ID

(X,D∪Z)/S and it induces an isomorphism Q∗
(X,D∪Z)/S(F)

=−→ Q∗
(X,D∪Z)/S(ID

(X,D∪Z)/S) by [85, (5.3)]. Hence we have the following
formula:

Ru(X,D∪Z)/S∗(ID
(X,D∪Z)/S)(2.11.1.1)

= Ru(X,D∪Z)/S∗Q
∗
(X,D∪Z)/S(ID

(X,D∪Z)/S)

= Ru(X,D∪Z)/S∗Q
∗
(X,D∪Z)/S(F)

= Ru(X,D∪Z)/S∗(F) = OD ⊗OX Ω•
X/S(log(Z −D)),
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where Ω•
X/S(log(Z −D)) := OX (−D)Ω•

X/S(log(D∪Z)). As a result, we have

Rhf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S) = RhfS∗(OD ⊗OX Ω•
X/S(log(Z −D))).

Let {Dλ}λ be a decomposition of D by smooth components of D. Let
the notations be as in §2.8. The exact closed immersion ι

λj

λ : (Dλ, Z|Dλ
) ⊂−→

(Dλj
, Z|Dλj

) induces the morphism

(2.11.1.2) (−1)jι
λj log∗
λcrys : O(Dλj

,Z|Dλj
)/S ⊗Z �log

λjcrys(D/S;Z) −→

ι
λj log

λcrys∗(O(Dλ,Z|Dλ
)/S)⊗Z �log

λcrys(D/S;Z)

defined by x ⊗ (λ0 · · · ̂λj · · ·λk−1) �−→ (−1)jι
λj log∗
λcrys (x) ⊗ (λ0 · · ·λk−1). It is

easy to check that the morphism (−1)jι
λj log∗
λcrys is well-defined. Set

(2.11.1.3)

ι(k−1)log∗
crys :=

∑

{λ0,λ1,··· ,λk−1 | λi �=λl (i�=l)}

k−1
∑

j=0

alog
λjcrys∗ ◦ ((−1)jι

λj log∗
λcrys ) :

a
(k−1)log
crys∗ (O(D(k−1),Z|

D(k−1) )/S ⊗Z �(k−1)log
crys (D/S;Z)) −→

a
(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)).

The composite morphism ι
(k)log∗
crys ◦ ι

(k−1)log∗
crys is the zero. Indeed, the question

is local. By taking trivializations of orientation sheaves, we can reduce this
vanishing to the usual well-known case.

In this section we start with the following:

Lemma 2.11.2. The morphism ι
(k−1)log∗
crys is independent of the choice of the

decomposition of {Dλ}λ by smooth components of D/S0.

Proof. The question is local. Let ∆ and ∆′ be two decompositions of D by
smooth components of D. Let x be a point of X. By (A.0.1) below, there
exists an open neighborhood U of x such that ∆′|U = ∆|U . Thus we have
(2.11.2). ��

Theorem 2.11.3. Let ε : ( ˜(X,D ∪ Z)/S)logcrys −→ ( ˜(X,Z)/S)logcrys be the for-
getting log morphism along D ((2.3.2)). Set

Elog,Z
crys,c(O(X,D∪Z)/S)(2.11.3.1)

:= (O(X,Z)/S ⊗Z �(0)log
crys (D/S;Z)

ι(0)log∗crys−→

a
(1)log
crys∗ (O(D(1),Z|

D(1) )/S ⊗Z �(1)log
crys (D/S;Z))

ι(1)log∗crys−→
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a
(2)log
crys∗ (O(D(2),Z|

D(2) )/S ⊗Z �(2)log
crys (D/S;Z))

ι(2)log∗crys−→ · · · ).

Then there exists the following canonical isomorphism in D+(Q∗
(X,Z)/S

(O(X,Z)/S)) :

(2.11.3.2) Q∗
(X,Z)/SRε∗(ID

(X,D∪Z)/S) ∼−→ Q∗
(X,Z)/SElog,Z

crys,c(O(X,D∪Z)/S).

Before the proof of (2.11.3), we prove two lemmas.

Lemma 2.11.4. There exists a morphism of topoi

εRcrys : ( ˜(X,D ∪ Z)/S)logRcrys −→ ( ˜(X,Z)/S)logRcrys

fitting into the following commutative diagram of topoi:

(2.11.4.1)

( ˜(X,D ∪ Z)/S)logRcrys

εRcrys−−−−→ ( ˜(X,Z)/S)logRcrys

Q(X,D∪Z)/S

⏐

⏐

�

⏐

⏐

�

Q(X,Z)/S

( ˜(X,D ∪ Z)/S)logcrys
ε−−−−→ ( ˜(X,Z)/S)logcrys.

Proof. First we show the existence of εRcrys. To show this, it suffices to see
that, for an object T := (U, T,MT , ι, δ) ∈ ((X,D ∪ Z)/S)logRcrys, the object
(U, T,N inv

T , ι, δ) constructed in §2.3 belongs to ((X,Z)/S)logRcrys Zariski locally
on T . (Then we can define the exact functor ε∗Rcrys in the same way as ε∗ in
§2.3.) Let us assume that T is the log PD-envelope of the closed immersion
i : (U, (D∪Z)|U ) ⊂−→ (U ,MU ), where (U ,MU ) is log smooth over S. Since the
log structure MU is defined on the Zariski site of U , we have a factorization

(U, (D ∪ Z)|U ) ⊂−→ (U ′,MU ′) −→ (U ,MU )

of i Zariski locally on U such that the first morphism is an exact closed
immersion and that the second morphism is log etale. Then T is the log
PD-envelope of the first morphism. Hence we may suppose that i is an exact
closed immersion. Then, by (2.1.5), we may assume that i is an admissible
closed immersion (U, (D ∪ Z)|U ) ⊂−→ (U ,D ∪ Z). In this case, the log struc-
ture N inv

T on T is nothing but the pull-back of the log structure on U defined
by Z. Hence (T,N inv

T ) is the log PD-envelope of the exact closed immer-
sion (U,Z|U ) ⊂−→ (U ,Z). Hence (U, T,N inv

T , ι, δ) belongs to ((X,Z)/S)logRcrys

Zariski locally on T . Now it is clear that we have the morphism εRcrys of
topoi. It is easy to see that we have the commutative diagram (2.11.4.1). ��

Lemma 2.11.5. Let the notations be as in (2.11.4). Then the following nat-
ural morphism of functors

Q∗
(X,Z)/SRε∗ −→ RεRcrys∗Q

∗
(X,D∪Z)/S
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for O(X,D∪Z)/S-modules is an isomorphism.

Proof. By the same argument as that in the proof of (1.6.4), we are reduced to
showing that, for any parasitic O(X,D∪Z)/S-module F of ((X,D ∪Z)/S)logcrys,
Rqε∗(F ) is also parasitic for any q ≥ 0. To see this, it suffices to prove that, for
any object T := (U, T,MT , ι, δ) ∈ ((X,Z)/S)logRcrys with T sufficiently small,
the sheaf (Rqε∗(F ))T on Tzar induced by Rqε∗(F ) is equal to zero. Hence we
may assume that there exists a closed immersion i : (U,Z|U ) ⊂−→ X into an
affine log smooth scheme over S such that (T,MT ) is the log PD-envelope of
i. On the other hand, let us take a closed immersion i′ : (U, (D∪Z)|U ) ⊂−→ Y
into an affine log scheme which is log smooth over S. Then, for any n ∈ Z≥1,
we have the closed immersion in : (U, (D ∪ Z)|U ) ⊂−→ X ×S Yn induced by
i ◦ (ε|U ) and i′. Let D(n) be the log PD-envelope of the closed immersion
in over (S, I, γ). Then it is isomorphic to the log PD-envelope of the closed
immersion (U, (D ∪ Z)|U ) ⊂−→ (T,MT ) ×S Yn (induced by the composite
ι◦(ε|U ) and i′) compatible with δ, where δ is the PD-structure on Ker(OT −→
OU ) + IOT extending γ and δ. By the log version of [3, V 1.2.5], we have

(Rqε∗(F ))T = Rqf(U,(D∪Z)|U )/T∗F = Rq(ι ◦ (ε|U ))∗ČA(F ),

where ČA(F ) = FD(•) is the log version of the Čech-Alexander complex of
F ([3, V 1.2.3]). Since F is parasitic, we have FD(n) = 0 for any n. Now we
have (Rqε∗(F ))T = 0. ��

Proof (of Theorem 2.11.3). Assume that we are given the data (2.4.0.1) and
(2.4.0.2) for (X,D ∪Z). Let b

(k)
• : D(k)

• −→ X• be the natural morphism. Let
πlog

(X,D∪Z)/Scrys be the morphism of topoi defined in (2.4.7.4). Let πlog
(X,Z)/Scrys

be the morphism of topoi defined in (2.4.7.4) for the case D = φ. Let F• be
the crystal on (X•,D•∪Z•)/S corresponding to the integrable log connection
OD• ⊗OX• OX•(−D•) −→ OD• ⊗OX• OX•(−D•)Ω1

X•/S(log(D• ∪ Z•)), where
D• denotes the log PD-envelope of (X•,D• ∪ Z•) in (X•,D• ∪ Z•). Then we
have

Q∗
(X,Z)/SRε∗(ID

(X,D∪Z)/S)
=−→ Q∗

(X,Z)/SRε∗Rπlog
(X,D∪Z)/Scrys∗π

log,−1
(X,D∪Z)/Scrys(I

D
(X,D∪Z)/S)

=−→ RεRcrys∗Rπlog
(X,D∪Z)/SRcrys∗Q

∗
(X•,D•∪Z•)/Sπlog,−1

(X,D∪Z)/Scrys(I
D
(X,D∪Z)/S)

=←− RεRcrys∗Rπlog
(X,D∪Z)/SRcrys∗Q

∗
(X•,D•∪Z•)/S(F•)

=←− Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/SRε•∗(F•)

=−→ Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/SRε•∗L(X•,D•∪Z•)/S(ΩX•/S(log(Z• −D•)))

=←− Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/SL(X•,Z•)/S(ΩX•/S(log(Z• −D•))).
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By the same argument as that in [27, (4.2.2) (a), (c)], the following se-
quence

(2.11.5.1) 0 −→ Ω•
X•/S(log(Z• −D•)) −→ Ω•

X•/S(logZ•)⊗Z �(0)
zar(D•/S)

ι(0)∗•,zar−→ b
(1)
•∗ (Ω•

D(1)
• /S

(logZ•|D(1)
•

)⊗Z �(1)
zar(D•/S))

ι(1)∗•,zar−→ · · ·

is exact. Here we define ι
(k)∗
•,zar similarly as for ι

(k)log∗
crys . Hence Ω•

X•/S(log(Z• −
D•)) is quasi-isomorphic to the single complex of the following double
complex
(2.11.5.2)

· · · −−−−−→ · · ·

d

�

⏐

⏐
−d

�

⏐

⏐

Ω2
X•/S

(logZ•) ⊗Z �
(0)
zar(D•/S)

ι
(0)∗
•,zar−−−−−→ b

(1)
•∗ (Ω2

D(1)
• /S

(logZ•|D(1)
•

) ⊗Z �
(1)
zar(D•/S))

d

�

⏐

⏐
−d

�

⏐

⏐

Ω1
X•/S

(logZ•) ⊗Z �
(0)
zar(D•/S)

ι
(0)∗
•,zar−−−−−→ b

(1)
•∗ (Ω1

D(1)
• /S

(logZ•|D(1)
•

) ⊗Z �
(1)
zar(D•/S))

d

�

⏐

⏐
−d

�

⏐

⏐

OX• ⊗Z �
(0)
zar(D•/S)

ι
(0)∗
•,zar−−−−−→ b

(1)
•∗ (OD(1)

•
⊗Z �

(1)
zar(D•/S))

−−−−−→ · · · −−−−−→ · · ·

d

�

⏐

⏐

ι
(1)∗
•,zar−−−−−→ b

(2)
•∗ (Ω2

D(2)
• /S

(logZ•|D(2)
•

) ⊗Z �
(2)
zar(D•/S))

ι
(2)∗
•,zar−−−−−→ · · ·

d

�

⏐

⏐

ι
(1)∗
•,zar−−−−−→ b

(2)
•∗ (Ω1

D(2)
• /S

(logZ•|D(2)
•

) ⊗Z �
(2)
zar(D•/S))

ι
(2)∗
•,zar−−−−−→ · · ·

d

�

⏐

⏐

ι
(1)∗
•,zar−−−−−→ b

(2)
•∗ (OD(2)

•
⊗Z �

(2)
zar(D•/S))

ι
(2)∗
•,zar−−−−−→ · · · .

We claim that the following sequence

0 −→Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(Z• −D•))) −→

(2.11.5.3)

Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(logZ•)

⊗Z �(0)
zar(D•/S))

Q∗
(X•,Z•)/S(ι(0)∗•,zar)−→
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Q∗
(X•,Z•)/SL(X•,Z•)/S(b(1)

•∗ (Ω•
D(1)

• /S
(logZ•|D(1)

•
)

⊗Z �(1)
zar(D•/S)))

Q∗
(X•,Z•)/S(ι(1)∗•,zar)−→ · · ·

is exact. Indeed, the question is local and we have only to prove that the
sequence (2.11.5.3) for • = i is exact for a fixed i ∈ I. As in (2.2.17), we have
only to prove that the following sequence

0 −→ ODi
⊗OXi

Ω•
Xi/S(log(Zi −Di))

(2.11.5.4)

−→ ODi
⊗OXi

Ω•
Xi/S(logZi)⊗Z �(0)

zar(Di/S)

ι
(0)∗
i,zar−→ ODi

⊗OXi
b
(1)
i∗ (Ω•

D(1)
i /S

(logZi|D(1)
i

)⊗Z �(1)
zar(Di/S))

ι
(1)∗
i,zar−→ · · ·

is exact. The following argument is the same as that in the proof of (2.2.17)
(1). We may have cartesian diagrams (2.1.13.1) and (2.1.13.2) for SNCD
Di ∪ Zi on Xi; we assume that Di (resp. Zi) is defined by an equation
x1 · · ·xt = 0 (resp. xt+1 · · ·xs = 0). Set Ji := (xd+1, . . . , xd′)OXi

. We
may assume that there exists a positive integer N such that JN

i ODi
= 0.

Set X ′
i := SpecXi

(OXi
/Ji) and X ′′ := Spec

S
(OS [xd+1, . . . , xd′ ]). Let D′

i

(resp. Z ′
i) be the closed subscheme of X ′

i defined by an equation x1 · · ·xt = 0
(resp. xt+1 · · ·xs = 0). As in [11, 3.32 Proposition], we may assume that there
exists a morphism

OX ′
i
[xd+1, . . . , xd′ ] −→ OXi

/JN
i

such that the induced morphism OX ′
i
[xd+1, . . . , xd′ ]/JN

0i −→ OXi
/JN

i is an
isomorphism, where J0i := (xd+1, . . . , xd′). By [11, 3.32 Proposition], ODi

is locally isomorphic to the PD-polynomial algebra OX ′
i
〈xd+1, . . . , xd′〉. Let

b′
(k)
i (k ∈ Z>0) and ι′

(k)∗
i,zar (k ∈ Z≥0) be analogous morphisms to b

(k)
i and

ι
(k)∗
i,zar, respectively, for X ′

i , D′
i and Z ′

i. Then we have an exact sequence

(2.11.5.5) 0 −→ Ω•
X ′

i /S(log(Z ′
i −D′

i)) −→ Ω•
X ′

i /S(logZ ′
i)⊗Z �(0)

zar(D′
i/S)

ι′
(0)∗
i,zar−→ b′

(1)
i∗ (Ω•

D′
i
(1)/S(logZ ′

i|D′(1)
i

)⊗Z �(1)
zar(D′

i/S))
ι′

(1)∗
i,zar−→ · · ·

Since OS〈xd+1, . . . , xd′〉 ⊗OX′′ Ωq
X ′′/S (q ∈ N) is a free OS-module, applying

the tensor product ⊗OS
OS〈xd+1, . . . , xd′〉 ⊗OX′′ Ωq

X ′′/S (q ∈ N) to the exact
sequence (2.11.5.5) preserves the exactness. Because

ODi
⊗OXi

Ω•
Xi/S(log(Zi −Di)) �Ω•

X ′
i /S(log(Z ′

i −D′
i))⊗OS

OS〈xd+1, . . . , xd′〉 ⊗OX′′ Ω•
X ′′/S
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and because the similar formulas for ODi
⊗Xi

b
(k)
i∗ (Ω•

D(k)
i /S

(logZi|D(k)
i

) ⊗Z

�
(k)
zar(Di/S)) (k ∈ N) hold, we have the exactness of (2.11.5.4).
By (2.2.12) and (2.11.5.3), we have the following quasi-isomorphism

Q∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(Z• −D•)))(2.11.5.6)
∼−→{Q∗

(X•,Z•)/SL(X•,Z•)/S(Ω•
X•/S(logZ•)⊗Z �(0)

zar(D•/S))

−→ (Q∗
(X•,Z•)/Sa

(1)log
•crys∗L(D

(1)
• ,Z•|

D
(1)
•

)/S
(Ω•

D(1)
• /S

(logZ•|D(1)
•

))

⊗Z �(1)
zar(D•/S)),−d) −→ · · · }.

Applying the direct image Rπlog
(X,Z)/SRcrys∗ to (2.11.5.6), we have

(2.11.5.7) Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(log(Z• −D•)))
∼−→

{Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/SL(X•,Z•)/S(Ω•

X•/S(logZ•)⊗Z �(0)
zar(D•/S)) −→

(Rπlog
(X,Z)/SRcrys∗Q

∗
(X•,Z•)/Sa

(1)log
•crys∗L(D

(1)
• ,Z•|D(1) )/S

(Ω•
D(1)

• /S
(log(Z•|D(1)

•
))

⊗Z �(1)
zar(D•/S),−d) −→ · · · }.

(See (2.11.8) below.) By (1.6.4.1) and (2.2.20.1), the isomorphism (2.11.5.7)
is nothing but an isomorphism (2.11.3.2).

Now we show that the isomorphism (2.11.3.2) is independent of the data
(2.4.0.1) and (2.4.0.2).

Let the notations be as in the proof of (2.5.3). Let

Rηlog
Rcrys∗ : D+F(Q∗

(X••,Z••)/S(O(X••,Z••)/S))

−→ D+F((Q∗
(X•,Z•)/S(O(X•,Z•)/S))•∈I)

be a morphism of filtered derived categories in §2.5. Then we have the fol-
lowing commutative diagram by the cohomological descent:

Rπ
log
(X,Z)/SRcrys∗Q∗

(X•,Z•)/S
L(X•,Z•)/S(Ω•

X•/S
(log(Z• − D•))) ∼−−−−−−−→

⏐

⏐

�

Rπ
log
(X,Z)/SRcrys∗Rη

log
Rcrys∗Q∗

(X••,Z••)/S
L(X••,Z••)/S(Ω•

X••/S
(log(Z•• − D••))) ∼−−−−−−−→

{Rπ
log
(X,Z)/SRcrys∗Q∗

(X•,Z•)/S
L(X•,Z•)/S(Ω•

X•/S
(log Z•) ⊗

Z
�

(0)
zar(D•/S)) −→

⏐

⏐

�

{Rπ
log
(X,Z)/SRcrys∗Rη

log
Rcrys∗Q∗

(X••,Z••)/S
L(X••,Z••)/S(Ω•

X••/S
(log Z••) ⊗

Z
�

(0)
zar(D••/S)) −→
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(R(π
log
(X,Z)/SRcrysQ

∗
(X•,Z•)/Sa

(1)log
•crys )∗L

(D
(1)
• ,Z•|

D(1) )/S
(Ω•

D(1)
• /S

(log Z•|
D(1)

•
)

⊗
Z

�
(1)
zar(D•/S)), −d) −→ · · · }

⏐

⏐

�

(Rπ
log
(X,Z)/SRcrys∗Rη

log
Rcrys∗Q

∗
(X••,Z••)/Sa

(1)log
••crys∗L

(D
(1)
•• ,Z••|

D(1) )/S
(Ω•

D(1)
•• /S

(log Z••|
D(1)

••
)

⊗
Z

�
(1)
zar(D••/S)), −d) −→ · · · }.

Hence the isomorphism (2.11.3.2) is independent of the data (2.4.0.1) and
(2.4.0.2). ��

Remark 2.11.6. Let the notation be as in the proof of (2.11.3) and let
L•

(X•,Z•)/S be the complex

{L(X•,Z•)/S(Ω•
X•/S(logZ•)⊗Z �(0)

zar(D•/S))

(a(1)log
•crys∗L(D

(1)
• ,Z•|

D
(1)
•

)/S
(Ω•

D(1)
• /S

(logZ•|D(1)
•

))⊗Z �(1)
zar(D•/S)),−d) −→ · · · }.

Then, by the proof of (2.11.3), we see that the isomorphism (2.11.3.2) is
obtained by applying Q∗

(X,Z)/S to the following diagram:

Rε∗(ID
(X,D∪Z)/S)(2.11.6.1)

=−→ Rε∗Rπlog
(X,D∪Z)/Scrys∗π

log,−1
(X,D∪Z)/Scrys(I

D
(X,D∪Z)/S)

←− Rε∗Rπlog
(X,D∪Z)/Scrys∗(F•)

=←− Rπlog
(X,Z)/Scrys∗Rε•∗(F•)

=−→ Rπlog
(X,Z)/Scrys∗Rε•∗L(X•,D•∪Z•)/S(ΩX•/S(log(Z• −D•)))

=←− Rπlog
(X,Z)/Scrys∗L(X•,Z•)/S(ΩX•/S(log(Z• −D•)))

−→ Rπlog
(X,Z)/Scrys∗L

•
(X•,Z•)/S

=←− Rπlog
(X,Z)/Scrys∗π

log,−1
(X,Z)/ScrysE

log,Z
crys,c(O(X,D∪Z)/S)

=←− Elog,Z
crys,c(O(X,D∪Z)/S).

Note that the arrows in the above diagram without = are not necessarily
isomorphisms: they become isomorphic only after we apply Q∗

(X,Z)/S . Note
also that they become isomorphic if we apply Ru(X,Z)/S∗ or Rf(X,Z)/S∗ be-
cause Ru(X,Z)/S∗ = Ru(X,Z)/S ◦ Q∗

(X,Z)/S and Rf(X,Z)/S∗ = Rf (X,Z)/S ◦
Q∗

(X,Z)/S .

Let PD
c := {PD,k

c }k∈Z be the stupid filtration on Elog,Z
crys,c(O(X,D∪Z)/S).

Then, by (2.11.3), we have a filtered complex (Elog,Z
crys,c(O(X,D∪Z)/S), PD

c ) ∈
D+F(O(X,Z)/S).
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Definition 2.11.7. We call (Elog,Z
crys,c(O(X,D∪Z)/S), PD

c ) the preweight-filtered
vanishing cycle crystalline complex with compact support of O(X,D∪Z)/S (or
(X,D ∪ Z)/S) with respect to D. Set

(C log,Z
crys,c(O(X,D∪Z)/S), PD

c ) := Q∗
(X,Z)/S(Elog,Z

crys,c(O(X,D∪Z)/S), PD
c ).

We call (C log,Z
crys,c(O(X,D∪Z)/S), PD

c ) the preweight-filtered crystalline complex
with compact support of O(X,D∪Z)/S (or (X,D ∪ Z)/S) with respect to D.
Set

(Elog,Z
zar,c (O(X,D∪Z)/S), PD

c ) := Ru(X,Z)/S∗(Elog,Z
crys,c(O(X,D∪Z)/S), PD

c ).

We call (Elog,Z
zar,c (O(X,D∪Z)/S), PD

c ) the preweight-filtered vanishing cycle zari-
skian complex with compact support of O(X,D∪Z)/S (or (X,D ∪ Z)/S) with
respect to D.

By the definition of (Elog,Z
zar,c (O(X,D∪Z)/S), PD

c ), there exists the following
canonical isomorphism in D+(f−1(OS)) :

Elog,Z
zar,c (O(X,D∪Z)/S)

(2.11.7.1)

∼−→ {Ru(X,Z)/S∗(O(X,Z)/S ⊗Z �(0)log
crys (D/S;Z)) −→

a
(1)
zar∗(Ru(D(1),Z|

D(1) )/S∗(O(D(1),Z|
D(1) )/S ⊗Z �(1)log

crys (D/S;Z)),−d)

−→ · · · }.

Remark-Definition 2.11.8. Because the notation for the right hand side
of (2.11.7.1) is only suggestive, we have to give the strict definition of it. Let
I•• be a double complex of O(X,Z)/S-modules such that, for each nonnegative
integer k, Ik• is a u(X,Z)/S∗-acyclic resolution of (a(k)log

crys∗ (O(D(k),Z|
D(k) )/S ⊗Z

�
(k)log
crys (D/S;Z)), (−1)kd). Then the right hand side of (2.11.7.1) is, by de-

finition, an object in D+(f−1(OS)) which is given by the single complex
of u(X,Z)/S∗(I••). Let PD

c := {PD,k
c }k∈Z be the stupid filtration with re-

spect to the first degree of u(X,Z)/S∗(I••). Then (Elog,Z
zar,c (O(X,D∪Z)/S), PD

c ) =
(u(X,Z)/S∗(I••), PD

c ) in D+F(f−1(OS)).

Corollary 2.11.9. Elog,Z
zar,c (O(X,D∪Z)/S) = Ru(X,D∪Z)/S∗(ID

(X,D∪Z)/S).

Proof. We have only to apply the direct image Ru(X,Z)/S∗ to (2.11.3.2) and
to use the commutative diagram (1.6.3.1) for the case of the trivial filtration.

��

By applying Rf∗ to both hands of (2.11.7.1) (cf. (2.11.8)), we have a
canonical isomorphism
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(2.11.9.1)
Rf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S) ∼−→ {Rf(X,Z)/S∗(O(X,Z)/S⊗Z �(0)

crys(D/S;Z))

−→ (Rf(D(1),Z|
D(1) )/S∗(O(D(1),Z|

D(1) )/S ⊗Z �(1)
crys(D/S;Z)),−d) −→ · · · }.

Next we prove the base change theorem of (Elog,Z
crys,c(O(X,D∪Z)/S), PD

c ).

Proposition 2.11.10. Let the notations and the assumptions be as in
(2.10.2) (1). Then Rhf(X,Z)/S∗(PD,k

c Elog,Z
crys,c(O(X,D∪Z)/S)) (h, k ∈ Z) is a

quasi-coherent OS-module and Rf(X,Z)/S∗(PD,k
c Elog,Z

crys,c(O(X,D∪Z)/S)) (k ∈ Z)
has finite tor-dimension.

Proof. This immediately follows from the spectral sequence (2.10.2.1) and
[11, 7.6 Theorem], [11, 7.13 Corollary]. ��

Theorem 2.11.11 (Base change theorem). Let the notations and the
assumptions be as in (2.10.3). Then there exists the following canonical
isomorphism

Lu∗Rf(X,Z)/S∗(Elog,Z
crys,c(O(X,D∪Z)/S), PD

c )(2.11.11.1)
∼−→Rf(X′,Z′)/S′∗(Elog,Z′

crys,c (O(X′,D′∪Z′)/S′), PD′

c ).

Proof. Let I•• be a double complex of O(X,Z)/S-modules such that, for
each k ∈ N, Ik• is an injective resolution of (a(k)log

crys∗ (O(D(k),Z|
D(k) )/S ⊗Z

�
(k)log
crys (D/S;Z)), (−1)kd). Then we have a double complex ((fu(X,Z)/S)∗

(I0•) −→ (fu(X,Z)/S)∗(I1•) −→ · · · ). This double complex is a representative
of Rf(X,D∪Z)/S∗(Elog,Z

crys,c(O(X,D∪Z)/S)). For a nonnegative integer r, let τr(f
u(X,Z)/S)∗(Ik•) be the canonical filtration of the complex (fu(X,Z)/S)∗(Ik•).
Because Rf(D(k),Z|

D(k) )/S∗(O(D(k),Z|
D(k) )/S) is “bounded” by (2.10.2.1) and

[11, 7.6 Theorem], and because D(k) = ∅ if k � 0 (since X is quasi-
compact), if r is large enough, the natural inclusions τr(fu(X,Z)/S)∗(Ik•) ⊂−→
(fu(X,Z)/S)∗(Ik•) are quasi-isomorphisms for all k. Hence the natural mor-
phism

s(τr(fu(X,Z)/S)∗(I••)) −→ s((fu(X,Z)/S)∗(I••))

is a quasi-isomorphism. Let

d′ : (fu(X,Z)/S)∗(I•l) −→ (fu(X,Z)/S)∗(I•+1,l)

and
d′′ : (fu(X,Z)/S)∗(Ik•) −→ (fu(X,Z)/S)∗(Ik,•+1)

be the boundary morphisms. Using the functor L0 in [11, §7], we have a flat
resolution Q•k∗ of τr(fu(X,Z)/S)∗(Ik∗) for a fixed r � 0. The morphisms d′

and d′′ induce morphisms d′Q : Qj•l −→ Qj,•+1,l and d′′
Q : Qjk• −→ Qjk,•+1,

respectively. We fix the boundary morphisms as follows: (−1)jd′Q : Qj•l −→
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Qj,•+1,l and (−1)jd′′Q : Qjk• −→ Qjk,•+1. We also have a natural boundary
morphism Q•kl −→ Q•+1,k,l. By these three boundary morphisms, we have
a triple complex Q•••. Then Lu∗PD,k

c Rf(X,D∪Z)/S∗(Elog,Z
crys,c(O(X,D∪Z)/S)) =

(u∗Q•k• −→ u∗Q•,k+1,• −→ · · · ){−k}. By the base change theorem of Kato
([54, (6.10)]), this complex is isomorphic to

{(Rf(D′(k),Z′|
D′(k) )/S′∗(O(D′(k),Z′|

D′(k) )/S′ ⊗Z �
(k)log
crys (D′/S′; Z′))){−k}, (−1)kd) −→

· · · } = Rf(X′,Z′)/S′∗P D′,k
c (Elog,Z′

crys,c (O(X′,D′∪Z′)/S′ )).

��

Proposition 2.11.12. Let the notations and the assumptions be as those in
(2.10.2) (1). Assume moreover that f : X −→ S0 is proper. Then

Rf(X,Z)/S∗(Elog,Z
crys,c(O(X,D∪Z)/S), PD

c )

is a filteredly strictly perfect complex.

Proof. We use the criterion (2.10.10); we have checked the condition as to
the tor-dimension in (2.11.10) and we obtain the finiteness from the spectral
sequence (2.10.2.1) and [11, 7.16 Theorem]. ��

We prove the boundedness property of the log crystalline cohomology for
the coefficient I(X,D∪Z)/S :

Proposition 2.11.13. Let f : (X,D ∪ Z) −→ Y be as in (2.10.2) (2) and
let ε : (X,D ∪ Z) −→ (X,Z) be the forgetting log morphism along D. Then
Rf log

crys∗(ID
(X,D∪Z)/S) and Rε∗(ID

(X,D∪Z)/S) are bounded.

Proof. Let us first prove that Rf log
crys∗(ID

(X,D∪Z)/S) is bounded. Let the no-
tations be as that in the proof of (2.3.11). By the same argument as [3, V
Théorème 3.2.4], we are reduced to proving the following claim: there ex-
ists a positive integer r such that, for any (U, T, δ) ∈ (Y/S)logcrys, we have
RifXU /T∗(ID

(X,D∪Z)/S) = 0 for i > r. Again by the same argument as that
in the proof of [3, V Théorème 3.2.4, Proposition 3.2.5], we are reduced to
showing the above claim in the case where X and Y are sufficiently small
affine schemes. Hence we may assume that the log structure M(D ∪ Z) as-
sociated to D ∪ Z admits a chart of the form N

b −→ M(D ∪ Z). If we take
a surjection ϕ1 : OY [Na] −→ OX and if we set ϕ2 := id: N

b =−→ N
b, we can

construct a commutative diagram

(2.11.13.1)

XU
ψ−−−−→ ˜T

⏐

⏐

�

⏐

⏐

�

g

U
ι−−−−→ T
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in the same way as in the proof of (2.3.11) such that ψ is an exact closed
immersion and that g is log smooth. Then we can form a crystal F on
(XU/T )logcrys satisfying the equality Q∗

XU /S(ID
(X,D∪Z)/S) = Q∗

XU /S(F). Then
we have RifXU /T∗(ID

(X,D∪Z)/S) = RifXU /T∗(F) and it vanishes for i > a + b

by (2.3.11). Now we have proved that Rf log
crys∗(ID

(X,D∪Z)/S) is bounded.
Let us prove that Rε∗(ID

(X,D∪Z)/S) is bounded. It suffices to prove that
there exists a positive integer r such that, for any (U, T, δ) ∈ ((X,Z)/S)logcrys,
RifXU /T∗(ID

(X,D∪Z)/S) = 0 (where XU := U ×(X,Z) (X,D ∪ Z) = (U, (D ∪
Z)|U )) for i > r. We may also assume that X is sufficiently small. Hence
we may assume that the log structure M(D) associated to D admits a chart
of the form α : N

b −→ M(D). Let us denote the log structure on X as-
sociated to D ∪ Z by MX . If we put ϕ1 := idOX

and ϕ2 := idNb , we can
construct the commutative diagram (2.11.13.1) in the same way as (2.3.11)
and then we can form a crystal F on (XU/T )logcrys which satisfies the equality
Q∗

XU /S(ID
(X,D∪Z)/S) = Q∗

XU /S(F). Then we have RifXU /T∗(ID
(X,D∪Z)/S) =

RifXU /T∗(F) and it vanishes for i > b by (2.3.11). Hence we have also proved
that Rε∗(ID

(X,D∪Z)/S) is bounded. ��

Using (2.11.11) and (2.11.13), we can prove the following:

Proposition 2.11.14. Let the notations and the assumptions as in (2.10.6).
(1) The natural morphism

(2.11.14.1) Lh∗
crysRf log

(X,Z)crys∗(E
log,Z
crys,c(O(X,D∪Z)/S), PD

c ) −→

Rf ′log
(X′,Z′)crys∗(E

log,Z′

crys,c (O(X′,D′∪Z′)/S), PD′

c )

is an isomorphism.
(2) There exists a natural isomorphism

(2.11.14.2) Lh∗
crysRf log

crys∗(ID
(X,D∪Z)/S) −→ Rf ′log

crys∗(ID′

(X′,D′∪Z′)/S′)

which is compatible with the isomorphism (2.11.14.1).

Proof. (1) follows from (2.11.12) in the same way as [3, V], [11, §7] (see also
§17).

Let us prove (2). One can construct the morphism (2.11.14.2) in usual
way ([3, V Théorème 3.5.1]), using the boundedness of Rf log

crys∗(ID
(X,D∪Z)/S)

which has been proved in (2.11.13). We can take data (X•,D• ∪ Z•)
⊂−→

(X•,D•∪Z•) as (2.4.0.1), (2.4.0.2) for (X,D∪Z). If we put (X ′
•,D

′
•∪Z ′

•) :=
(X•,D• ∪Z•)×S S′ and (X ′

•,D′
• ∪Z ′

•) := (X•,D• ∪Z•)×S S′, we obtain the
data (X ′

•,D
′
• ∪Z ′

•)
⊂−→ (X ′

•,D′
• ∪Z ′

•) as (2.4.0.1), (2.4.0.2) for (X ′,D′ ∪Z ′).
Then we see from the diagram (2.11.6.1) that there exists a diagram of base
change morphisms
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Lh∗
crysRf log

crys∗(ID
(X,D∪Z)/S) ←−−−− Lh∗

crysRf log
(X•,D•∪Z•)crys∗(F•)

⏐

⏐

�

⏐

⏐

�

Rf ′log
crys∗(ID′

(X′,D′∪Z′)/S′) ←−−−− Rf ′log
(X′

•,D′
•∪Z′

•)crys∗(F ′
•)

−−−−→ Lh∗
crysRf log

(X,Z)crys∗(E
log,Z
crys,c(O(X,D∪Z)/S))

⏐

⏐

�

−−−−→ Rf ′log
(X′,Z′)crys∗(E

log,Z′

crys,c (O(X′,D′∪Z′)/S)),

where f(X•,D•∪Z•) (resp. f ′
(X′

•,D′
•∪Z′

•)) denotes the composite morphism of
(X•,D•∪Z•) −→ (X,D∪Z) with f (resp. (X ′

•,D
′
•∪Z ′

•) −→ (X ′,D′∪Z ′) with
f ′) and F ′

• is the crystal on (X ′
•,D

′
•∪Z ′

•)/S′ defined in the same way as F . To
prove (2), it suffices to prove that the horizontal arrows are isomorphisms. We
are reduced to showing (as in [3, V 3.5.5]) that, in the situation in (2.10.3),
the horizontal arrows in the following diagram of base change morphisms

Lu∗Rf(X,D∪Z)/S∗(ID
(X,D∪Z)/S) ←−−−− Lu∗Rf(X•,D•∪Z•)/S∗(F•)

⏐

⏐

�

⏐

⏐

�

Rf(X′,D′∪Z′)/S′∗(ID′

(X′,D′∪Z′)/S′) ←−−−− Rf(X′
•,D′

•∪Z′
•)/S′∗(F ′

•)

−−−−→ Lu∗Rf(X,Z)/S∗(Elog,Z
crys,c(O(X,D∪Z)/S))
⏐

⏐

�

−−−−→ Rf(X′,Z′)/S′∗(Elog,Z′

crys,c (O(X′,D′∪Z′)/S′))

are isomorphisms. This follows from (2.11.6) because the arrows in (2.11.6.1)
become isomorphic if we apply Rf(X,Z)/S∗. Hence we have proved (2). ��

By using the filtered complex (Elog,Z
crys,c(O(X,D∪Z)/S), PD

c ), by (2.11.9) and
by the Convention (6), we have the following spectral sequence

Ek,h−k
1,c ((X,D ∪ Z)/S)(2.11.14.3)

= Rh−kf(D(k),Z|
D(k) )/S∗(O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)))

=⇒ Rhf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S).

Let k be a fixed integer. Set

Ek′,h−k′

1,c ((X,D ∪ Z)/S) =

{

Rh−k′
f(D(k′),Z|

D(k′) )/S∗(O(D(k′),Z|
D(k′) )/S ⊗Z �

(k′)log
crys (D/S;Z)) (k′ ≥ k),

0 (k′ < k).
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We shall also need the following spectral sequence later

(2.11.14.4) Ek′,h−k′

1 = Ek′,h−k′

1,c ((X,D ∪ Z)/S) =⇒

Rh−kf(X,D∪Z)/S∗((a
(k)log
crys∗ (O(D(k),Z|

D(k) )/S ⊗Z �(k)log
crys (D/S;Z)), (−1)kd) −→

a
(k+1)log
crys∗ (O(D(k+1),Z|

D(k+1) )/S ⊗Z �(k)log
crys (D/S;Z)), (−1)k+1d) −→ · · · ).

Definition 2.11.15. We call the spectral sequence (2.11.14.3) the preweight
spectral sequence of (X,D ∪ Z)/(S, I, γ) with respect to D for the log crys-
talline cohomology with compact support. If Z = ∅, then we call (2.11.14.3)
the preweight spectral sequence of (X,D)/(S, I, γ) for the log crystalline co-
homology with compact support.

Let PD,•
c be the filtration on Rhf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S) induced from

the spectral sequence (2.11.14.3). Since PD,•
c is the decreasing filtration, we

also consider the following increasing filtration PD
•,c:

PD
h−•,cR

hf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S)
(2.11.15.1)

= PD,•
c Rhf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S).

Proposition 2.11.16. Let the notations be as in (2.10.3). There exists a
canonical morphism of spectral sequences

{E−k,h+k
1,c ((X,D ∪ Z)/S)⊗OS

OS′

(2.11.16.1)

=⇒ Rhf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S)⊗OS
OS′}

−→{(E−k,h+k
1,c ((X ′,D′ ∪ Z ′)/S′)

=⇒ Rhf(X′,D′∪Z′)/S′∗,c(O(X′,D′∪Z′;Z′)/S′)}

of OS′-modules.

Proof. (2.11.16) immediately follows from the construction of (2.11.14.3). ��

Proposition 2.11.17. The boundary morphism dk,h−k
1 : Ek,h−k

1,c ((X,D ∪ Z)

/S) −→ Ek+1,h−k
1,c ((X,D∪Z)/S) is equal to the morphism induced by ι

(k)log∗
crys .

Proof. Though the proof is the same as that of [68, (5.1)], we give the proof
here.

We have the following triangle

(2.11.17.1) −→ Rf(D(k+1),Z|
D(k+1) )/S∗(O(D(k+1),Z|

D(k+1) )/S)[−(k + 1)] −→

PD,k
c /PD,k+2

c ((2.11.9.1)) −→ Rf(D(k),Z|
D(k) )/S∗(O(D(k),Z|

D(k) )/S)[−k] +1−→ .
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Hence the boundary morphism dk,h−k
1 is equal to the boundary morphism

Rf(D(k),Z|
D(k) )/S∗(O(D(k),Z|

D(k) )/S)[−k] −→

Rf(D(k+1),Z|
D(k+1) )/S∗(O(D(k+1),Z|

D(k+1) )/S)[−k]

by the Convention (4) and (5). By the Convention (3), (4), (6) and by
taking the Godement resolution of the complex a

(l)log
crys∗ (O(D(l),Z|

D(l) )/S∗ ⊗Z

�
(l)log
crys (D/S;Z)) (l = k, k + 1) , we can check that dk,h−k

1 is equal to the
morphism induced by ι

(k)log∗
crys . ��

Proposition 2.11.18. Let u be as in (2.10.3). Let u0 : S′
0 −→ S0 be the

induced morphism by u. Let (Y,E ∪W ) and (X,D ∪ Z) be smooth schemes
with relative SNCD’s over S′

0 and S0, respectively. Let

(2.11.18.1)

(Y,E ∪W )
g−−−−→ (X,D ∪ Z)

⏐

⏐

�

⏐

⏐

�

S′
0

u0−−−−→ S0

be a commutative diagram of log schemes such that the morphism g in-
duces morphisms g(k) : (E(k),W |E(k)) −→ (D(k), Z|D(k)) of log schemes over
u0 : S′

0 −→ S0 for all k ∈ N. Then the isomorphism in (2.11.11.1) and the
spectral sequence (2.11.14.3) are functorial with respect to glog∗

crys .

Proof. The proof is obvious. ��

The following is the Künneth formula for the log crystalline cohomology
sheaf with compact support Rhf(X,D∪Z)/S∗,c(O(X,D∪Z;Z)/S).

Theorem 2.11.19 (Künneth formula). Let the notations be as in those
in (2.10.14) (2). Then the following hold:

(1) Set Hi.c := Rf log
(Xi,Zi)crys∗(E

log,Zi
crys,c (O(Xi,Di∪Zi)/S), PDi

c ) (i = 1, 2, 3).
Then there exists a canonical isomorphism

(2.11.19.1) H1,c ⊗L
OY/S

H2,c
∼−→ H3,c.

(2) There exists a canonical isomorphism

(2.11.19.2)
Rf log

(X1,D1∪Z1)crys∗(I
D1
(X1,D1∪Z1)/S)⊗L

OY/S
Rf log

(X2,D2∪Z2)crys∗(I
D2
(X2,D2∪Z2)/S)

∼−→ Rf log
(X3,D3∪Z3)crys∗(I

D3
(X3,D3∪Z3)/S)

which is compatible with the isomorphism (2.11.19.1).
(3) The isomorphisms (2.11.19.1), (2.11.19.2) are compatible with the base

change isomorphism (cf. (2.10.15)).
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Proof. (1): Let k be a nonnegative integer. Then D
(k)
3 =

∐

i+j=k D
(i)
1 ×S0D

(j)
2 .

Hence (1) follows from the usual Künneth formula.
(2): We have to check that the diagram (2.11.6.1) is compatible with log

Künneth morphisms.
Let (Xj•,Dj• ∪ Zj•)•∈I

⊂−→ (Xj•,Dj• ∪ Zj•)•∈I (j = 1, 2) be the data
(2.4.0.1) and (2.4.0.2) with ∆j• for (Xj ,Dj ∪ Zj)/S0/S. Here note that we
may assume that the index set I is independent of j = 1, 2 since I0 in §2.4 can
be assumed to be independent of j = 1, 2 by considering the product of two
index sets. Set X3• := X1• ×S X2•, D3• := (D1• ×S X2•) ∪ (X1• ×S D2•) and
Z3• := (Z1•×SX2•)∪(X1•×SZ2•). Then we have a natural datum (X3•,D3•∪
Z3•)•∈I

⊂−→ (X3•,D3• ∪ Z3•)•∈I with ∆3•. Set εj• := ε(Xj•,Dj•∪Zj•,Zj•)/S

(j = 1, 2, 3). Then we have the following diagram

(2.11.19.3)

(( ˜(Xj•, Dj•∪Zj•)/S)logcrys, O(Xj•,Dj•∪Zj•)/S)
q
log
j•crys←−−−−−−−(( ˜(X3•, D3•∪Z3•)/S)logcrys, O(X3•,D3•∪Z3•)/S)

εj•
⏐

⏐

�

⏐

⏐

�

ε3•

(( ˜(Xj•, Zj•)/S)logcrys, O(Xj•,Zj•)/S)
p
log
j•crys←−−−−−−− (( ˜(X3•, Z3•)/S)logcrys, O(X3•,Z3•)/S)

f(Xj•,Zj•)/S
⏐

⏐

�

⏐

⏐

�

f(X3•,Z3•)/S

( ˜Szar, OS) ( ˜Szar, OS)

as (2.10.11.1) (j = 1, 2). Let Fj• (j = 1, 2, 3) be the crystal F• in the proof of
(2.11.3) for the admissible immersion (Xj•,Dj• ∪ Zj•)

⊂−→ (Xj•,Dj• ∪ Zj•).
Then we have a natural morphism

qlog ∗
1•crys(F1•)⊗O(X3•,D3•∪Z3•)/S

qlog ∗
2•crys(F2•) −→ F3•

and hence a natural morphism

(2.11.19.4) Lqlog ∗
1•crys(F1•)⊗L

O(X3•,D3•∪Z3•)/S
Lqlog ∗

2•crys(F2•) −→ F3•.

Using the adjunction formula, we have a natural morphism

(2.11.19.5) Lplog ∗
1•crysRε1•∗(F1•)⊗L

O(X3•,D3•∪Z3•)/S
Lplog ∗

2•crysRε2•∗(F2•)

−→ Rε3•∗(Lqlog ∗
1•crys(F1•)⊗L

O(X3•,D3•∪Z3•)/S
Lqlog ∗

2•crys(F2•)).

Here, note that Rεj•∗(Fj•) (j = 1, 2) is bounded above by (2.3.12). Compos-
ing (2.11.19.5) with (2.11.19.4), we have a morphism

(2.11.19.6)
Lplog ∗

1•crysRε1•∗(F1•)⊗L
O(X3•,Z3•)/S

Lplog ∗
2•crysRε2•∗(F2•) −→ Rε3•∗(F3•).
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Now let us set

Llog
j• := L(Xj•,Dj•∪Zj•)/S(Ω•

Xj•/S(log(Zj• −Dj•))),

Lj• := L(Xj•,Zj•)/S(Ω•
Xj•/S(log(Zj• −Dj•)))

and

Lk
j• := a

(k) log
j•crys∗L(D

(k)
j• ,Zj•|

D
(k)
j•

)/S
(Ω•

D(k)
j• /S

(logZj•|D(k)
j•

)⊗Z�(k)log
crys (Dj•/S;Zj•))

for k ∈ N, where

a
(k) log
j• : (D(k)

j• , Zj•|D(k)
j•

) −→ (Xj•, Zj•)

is a natural morphism. Then we have a morphism

(2.11.19.7)
Lplog ∗

1•crysRε1•∗(L
log
1• )⊗L

O(X3•,Z3•)/S
Lplog ∗

2•crysRε2•∗(L
log
2• ) −→ Rε3•∗(L

log
3• )

which is constructed in the same way as (2.11.19.6) and we also have natural
morphisms

(2.11.19.8) Lplog ∗
1•crys(L1•)⊗L

O(X3•,Z3•)/S
Lplog ∗

2•crys(L2•) −→ L3•,

(2.11.19.9) Lplog ∗
1•crys(L

•
1•)⊗O(X3•,Z3•)/S

Lplog ∗
2•crys(L

•
2•) −→ L•

3•.

We can check that the canonical morphismFj• −→ Llog
j• induces the morphism

(2.11.19.6) −→ (2.11.19.7),

the isomorphism Rεj•∗(L
log
j• ) =−→ Lj• induces the isomorphism

(2.11.19.7) =−→ (2.11.19.8)

and the morphism Lj• −→ L•
j• induces the morphism

(2.11.19.8) −→ (2.11.19.9).

Hence we have the commutative diagram

(2.11.19.10)

Lplog ∗
1•crysRε1•∗(F1•)⊗L

O(X3•,Z3•)/S
Lplog ∗

2•crysRε2•∗(F2•) −−−−→
⏐

⏐

�

Rε3•∗(F3•) −−−−→

Lplog ∗
1•crys(L

•
1•)⊗O(X3•,Z3•)/S

Lplog ∗
2•crys(L

•
2•)

⏐

⏐

�

L•
3•.
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By applying Rπlog
(X3,Z3)/Scrys∗ to the diagram (2.11.19.10) and by using the

adjunction formula, we obtain the commutative diagram

(2.11.19.11)
Lplog ∗

1crysRε1∗Rπlog
(X1,D1∪Z1)/Scrys∗(F1•) ⊗L

O(X3•,Z3•)/S
Lplog ∗

2crysRε2∗Rπlog
(X2,D2∪Z2)/Scrys∗(F2•)

⏐

⏐

�

Rε3∗Rπlog
(X3,D3∪Z3)/Scrys∗(F3•)

−−−−−−→ Lplog ∗
1crysRπlog

(X1,Z1)/Scrys∗(L•
1•) ⊗O(X3•,Z3•)/S

Lplog ∗
2crysRπlog

(X2,Z2)/Scrys∗(L•
2•)

⏐

⏐

�

−−−−−−→ Rπlog
(X3,Z3)/Scrys∗(L•

3•).

(Note that, by (2.3.11), Rεj∗Rπlog
(Xj ,Dj∪Zj)/Scrys∗(Fj•) and Rπlog

(Xj ,Zj)/Scrys∗
(L•

j•) are bounded.) Let us put

Ok
j := a

(k)log
jcrys∗(O(D

(k)
j ,Zj |

D
(k)
j

)/S
⊗Z �(k)log

crys (Dj/S;Zj)),

where
a
(k) log
j : (D(k)

j , Zj |D(k)
j

) −→ (Xj , Zj)

is a natural morphism. Then we have a natural morphism

(2.11.19.12) Lplog ∗
1crys(O•

1)⊗L
O(X3,Z3)/S

Lplog ∗
2crys(O•

2) −→ O•
3 ,

and the isomorphism Rπlog
(Xj ,Zj)/Scrys∗(L

•
j•)

=←− O•
j induces the isomorphism

(the right column of (2.11.19.11)) =←− (2.11.19.12).

On the other hand, we have a natural morphism

Lplog ∗
1crysRε1∗(ID1

(X1,D1∪Z1)/S)⊗L
O(X3,Z3)/S

Lplog ∗
2crysRε2∗(ID2

(X2,D2∪Z2)/S)
(2.11.19.13)

−→ Rε3∗(ID3
(X3,D3∪Z3)/S),

(note that Rεj∗(IDj

(Xj ,Dj∪Zj)/S) is bounded by (2.11.13)) and the morphism

IDj

(Xj ,Dj∪Zj)
←− Rπlog

(Xj ,Dj∪Zj)/Scrys∗(Fj•) induces the morphism

(2.11.19.13) ←− (the left column of (2.11.19.11)).
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Hence we obtain the diagram

(2.11.19.14)
Lplog ∗

1crysRε1∗ID1
(X1,D1∪Z1)/S ⊗L

O(X3,Z3)/S
Lplog ∗

2crysRε2∗ID2
(X2,D2∪Z2)/S ←−−−−−−

⏐

⏐

�

Rε3∗(ID3
(X3,D3∪Z3)/S) ←−−−−−−

Lplog ∗
1crysRε1∗Rπlog

(X1,D1∪Z1)/Scrys∗(F1•) ⊗L
O(X3•,Z3•)/S

Lplog ∗
2crysRε2∗Rπlog

(X2,D2∪Z2)/Scrys∗(F2•)

⏐

⏐

�

Rε3∗Rπlog
(X3,D3∪Z3)/Scrys∗(F3•)

−−−−−−→ Lplog ∗
1crys(O•

1 ) ⊗L
O(X3,Z3)/S

Lplog ∗
2crys(O•

2 )

⏐

⏐

�

−−−−−−→ O•
3 .

By applying Rf log
(X3,Z3)

to the diagram (2.11.19.14) and by using the adjunc-
tion formula, we obtain the diagram

(2.11.19.15)
Rf

log
(X1,D1∪Z1)crys∗(ID1

(X1,D1∪Z1)/S
) ⊗L

OY/S
Rf

log
(X2,D2∪Z2)crys∗(ID2

(X2,D2∪Z2)/S
) ←−−−−−−−

⏐

⏐

�

Rf
log
(X3,D3∪Z3)crys∗(ID3

(X3,D3∪Z3)/S
) ←−−−−−−−

Rf
log
(X1,D1∪Z1)crys∗Rπ

log
(X1,D1∪Z1)/Scrys∗(F1•) ⊗L

OY/S
Rf

log
(X2,D2∪Z2)crys∗Rπ

log
(X2,D2∪Z2)/Scrys∗(F2•)

⏐

⏐

�

Rf
log
(X3,D3∪Z3)crys∗Rπ

log
(X3,D3∪Z3)/Scrys∗(F3•)

−−−−−−−→ Rf
log
(X1,Z1)crys∗(O•

1 ) ⊗L
OY/S

Rf
log
(X2,Z2)crys∗(O•

2 )

⏐

⏐

�

−−−−−−−→ Rf
log
(X3,Z3)crys∗(O•

3 ).

The left vertical morphism in (2.11.19.15) is the morphism in the statement
of (2) and the right vertical morphism is (the non-filtered version of) the
morphism (2.11.19.1). Therefore, to prove (2), it suffices to prove that the
horizontal morphisms in (2.11.19.15) are isomorphisms. We can check this in
the same way as (2.11.14).

(3): (3) immediately follows from [3, V Corollary 4.1.4], (2.11.14) and (2).
��
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2.12 Filtered Log de Rham-Witt Complex

Let κ be a perfect field of characteristic p > 0. Let W (resp. Wn) be the
Witt ring of κ (resp. the Witt ring of length n ∈ Z>0). Let K0 be the
fraction field of W . Let (X,D) be a smooth scheme with an SNCD over κ.
In this section, as a special case, we prove that (Czar(O(X,D)/S), P ) in the
case S = Spec(Wn) is canonically isomorphic to the filtered log de Rham-
Witt complex (WnΩ•

X(log D), P ) := (WnΩ•
X(log D), {PkWnΩ•

X(log D)}k∈Z)
constructed by Mokrane ([64, 1.4]).

Before proceeding on our way, we have to give the following remarks. Let

s = (Spec(κ), L) be a fine log scheme. Let g : Y := (
◦
Y ,M) −→ s be a log

smooth morphism of Cartier type. Let WnΛ•
Y be the “reverse” log de Rham-

Witt complex defined in [46, (4.1)] and denoted by Wnω•
Y in [loc. cit.]. Then,

in [46, (4.19)], we find the following statements:

(1) There exists a canonical isomorphism

RuY/Wn∗(OY/Wn
) ∼−→ WnΛ•

Y (n ∈ Z>0).

(2) These isomorphisms for various n ∈ Z>0 are compatible with transition
morphisms with respect to n.

However, as pointed out in [68, §7], the proofs of these two claims have
gaps: especially we cannot find a proof of (2) in the proof of [46, (4.19)];
in [68, (7.19)], we have completed the proof of [46, (4.19)]. Hence we can use
[46, (4.19)]. In addition, we have to note one more point as in [68, (7.20)]
for the completeness of this book; in the definition of the embedding system
in [46, p. 237], we allow the (not necessarily closed) immersion as in [82,
Definition 2.2.10].

Now we come back to our situation. We keep the notations in §2.4. For
example, the morphism f : X −→ Spec(κ) is smooth and D∪Z is a transver-
sal SNCD on X; by abuse of notation, we also denote by f the composite
morphism X −→ Spec(κ) ⊂−→ Spec(Wn) (n ∈ Z>0). Because the morphism
(X,D ∪ Z) −→ (Spec(κ), κ∗) of log schemes is of Cartier type, we can ap-
ply the general theory of the log de Rham-Witt complexes in [46, §4] and
[68, §6, §7] (cf. [48]) to our situation above. In particular, we have a canoni-
cal isomorphism

(2.12.0.1) Ru(X,D∪Z)/Wn∗(O(X,D∪Z)/Wn
) ∼−→ WnΩ•

X(log(D ∪ Z))

by the Zariski analogue of [46, (4.19)]=[68, (7.19)]. In other words, we have
a canonical isomorphism

(2.12.0.2) C log,Z
zar (O(X,D∪Z)/Wn

) ∼−→ WnΩ•
X(log(D ∪ Z))
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Let (Yn, En ∪ Wn) be a lift of (X,D ∪ Z) over Wn. Then we have
WnΩi

X(log(D ∪ Z)) = Hi(Ω•
Yn/Wn

(log(En ∪Wn))). Set

(2.12.0.3) PD
k WnΩi

X(log(D ∪ Z)) = Hi(P En

k Ω•
Yn/Wn

(log(En ∪Wn))).

Definition 2.12.1. We call the filtration PD := {PD
k WnΩi

X(log(D∪Z))}k∈Z

the preweight filtration on WnΩi
X(log(D ∪ Z)) with respect to D.

We shall prove, in (2.12.4) below, that PD
k WnΩi

X(log(D∪Z)) is independent
of the choice of the lift (Yn, En∪Wn). If Z = ∅, PD

k WnΩi
X(log(D∪Z)) is the

preweight filtration defined in [64, (1.4.1)]. Here, as noted in [68, (4.3)], we
use the terminology “preweight filtration” instead of the terminology “weight
filtration” since WnΩi

X(log(D ∪Z)) is a sheaf of torsion W -modules in ˜Xzar.
To prove a filtered version of (2.12.0.2), we need some lemmas (cf. [64, 1.2,

1.4.3]).
Let ∆D := {Dλ}λ (resp. ∆Z := {Zµ}µ) be a decomposition of D

(resp. Z) by smooth components of D (resp. Z). Set ∆ := {Dλ, Zµ}λ,µ.
Let ι : (X,D ∪ Z) ⊂−→ (Xn,Dn ∪ Zn) be an admissible immersion over
Wn with respect to ∆ which induces an admissible immersion (X,D) ⊂−→
(Xn,Dn) (resp. (X,Z) ⊂−→ (Xn,Zn)) with respect to ∆D (resp. ∆Z). Let
ι′ : (X,D ∪ Z) ⊂−→ (Yn, En ∪ Wn) be a lift of (X,D ∪ Z) over Wn such
that ι′ induces a lift (X,D) ⊂−→ (Yn, En) (resp. (X,Z) ⊂−→ (Yn,Wn)). As-
sume that (Yn, En ∪ Wn) and (Xn,Dn ∪ Zn) are affine log schemes. Be-
cause (Xn,Dn ∪ Zn) is log smooth over Wn, there exists a morphism of
log schemes f : (Yn, En ∪ Wn) −→ (Xn,Dn ∪ Zn) over Wn such that f in-
duces morphisms (Yn, En) −→ (Xn,Dn) and (Yn,Wn) −→ (Xn,Zn) and
such that f ◦ ι′ = ι. Let DX(Xn) be the PD-envelope of the closed immer-
sion ι : X −→ Xn over (Spec(Wn), pWn, [ ]). The morphism f also induces a
morphism f : (Yn, pOYn

) −→ (DX(Xn),Ker(OXn
−→ OX)ODX(Xn)) of PD-

schemes. Hence f induces a morphism f∗ : ODX(Xn)⊗OXn
Ω•

Xn/Wn
(log(Dn ∪

Zn)) −→ Ω•
Yn/Wn

(log(En ∪Wn)) of complexes. By (2.2.17) (1), we have the
following exact sequence

(2.12.1.1) 0 −→ ODX(Xn)⊗OXn
PDn

k−1Ω
•
Xn/Wn

(log(Dn ∪ Zn))

−→ ODX(Xn)⊗OXn
PDn

k Ω•
Xn/Wn

(log(Dn ∪ Zn)) −→

ODX(Xn)⊗OXn
Ω•−k

Dn
(k)/Wn

(logZn|D(k)
n

)⊗Z �(k)
zar(Dn/Wn)(−k) −→ 0

by using the Poincaré residue isomorphism with respect to Dn ((2.2.21.3)).
(The compatibility of the Poincaré residue isomorphism with the Frobenius
can be checked as in [68, (9.3) (1)].) Note that the derivative

d : PDn

k Ω•
Xn/Wn

(log(Dn ∪ Zn)) −→ PDn

k Ω•+1
Xn/Wn

(log(Dn ∪ Zn))
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extends to a derivative of ODX(Xn)⊗OXn
PDn

k Ω•
Xn/Wn

(log(Dn ∪ Zn))
(cf. [50, 0 (3.1.4)], [54, (6.7)]).

Lemma 2.12.2. The long exact sequence associated to (2.12.1.1) is decom-
posed into the following short exact sequences:

0 −→ Hq(ODX(Xn)⊗OXn
PDn

k−1Ω
•
Xn/Wn

(log(Dn ∪ Zn)))(2.12.2.1)

−→ Hq(ODX(Xn)⊗OXn
PDn

k Ω•
Xn/Wn

(log(Dn ∪ Zn)))

−→ Hq−k(ODX(Xn)⊗OXn
Ω•

D(k)
n /Wn

(logZn|D(k)
n

)

⊗Z �(k)
zar(Dn/Wn)(−k)) −→ 0 (q ∈ Z).

Proof. (cf. [64, 1.2]) The problem is Zariski local. In the following, we fix an
isomorphism �

(k)
zar(Dn/Wn) ∼−→ Z.

Let u : ˜Xet −→ ˜Xzar be a canonical morphism of topoi. For a coherent
ODX(Xn)-module (resp. a coherent OYn

-module) F on DX(Xn)zar � Xzar

(resp. Ynzar � Xzar), let Fet be the corresponding coherent ODX(Xn)-module
(resp. a coherent OYn

-module) on DX(Xn)et � Xet (resp. Ynet � Xet). Let
us consider the following diagram

0 −→ Hq((ODX(Xn)⊗OXn
PDn

k−1Ω
•
Xn/Wn

(log(Dn ∪ Zn)))et)(2.12.2.2)

−→ Hq((ODX(Xn)⊗OXn
PDn

k Ω•
Xn/Wn

(log(Dn ∪ Zn)))et)

−→ Hq−k((ODX(Xn)⊗OXn
Ω•

D(k)
n /Wn

(logZn|D(k)
n

))et) −→ 0

(q ∈ Z),

which is the etale analogue of the diagram (2.12.2.1). We prove that the dia-
gram (2.12.2.1) is exact for any k, q ∈ Z if and only if the diagram (2.12.2.2)
is exact for any k, q ∈ Z.

By the Zariski analogue of [54, (6.4)], both

Hq(ODX(Xn) ⊗OXn
Ω•

D(k)
n /Wn

(log(Zn|D(k)
n

)))

and
Hq(Ω•

E(k)
n /Wn

(log(W(k)
n |E(k)

n
))) = WnΩq

D(k)(log(Z|D(k)))

calculate Rqu(D(k),Z|
D(k) )/Wn∗(O(D(k),Z|

D(k) )/Wn
). Hence we have

Hq(ODX(Xn) ⊗OXn
Ω•

D(k)
n /Wn

(log(Zn|D(k)
n

))) = WnΩq
D(k)(log(Z|D(k)))

and it is a quasi-coherent Wn(OX)-module on Xzar. On the other hand, let
((D(k), Z|D(k))/Wn)logcrys,et be the log crystalline site of (D(k), Z|D(k)) over Wn

with respect to the etale topology and let

u(D(k),Z|
D(k) )/Wn,et : ( ˜(D(k), Z|D(k))/Wn)logcrys,et −→ ˜Xet
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be the morphism of topoi which is defined in the same way as the morphism
u(D(k),Z|

D(k) )/Wn
. Then, by [54, (6.4)], both

Hq((ODX(Xn) ⊗OXn
Ω•

D(k)
n /Wn

(log(Zn|D(k)
n

)))et)

and
Hq((Ω•

E(k)
n /Wn

(log(W(k)
n |E(k)

n
)))et) = WnΩq

D(k)(log(Z|D(k)))

calculate Rqu(D(k),Z|
D(k) )/Wn,et∗(O(D(k),Z|

D(k) )/Wn
). Hence we haveHq((ODX

(Xn) ⊗OXn
Ω•

D(k)
n /Wn

(log(Zn|D(k)
n

)))et) = WnΩq
D(k)(log(Z|D(k))) on Xet and it

is the quasi-coherent Wn(OX)-module on Xet corresponding to Hq(ODX(Xn)

⊗OXn
Ω•

D(k)
n /Wn

(log(Zn|D(k)
n

))). Hence there exists the canonical isomorphism

Hq(ODX(Xn) ⊗OXn
Ω•

D(k)
n /Wn

(log(Zn|D(k)
n

)))(2.12.2.3)
=−→ Ru∗Hq((ODX(Xn) ⊗OXn

Ω•
D(k)

n /Wn
(log(Zn|D(k)

n
)))et)

and for any etale morphism ϕ : X ′ −→ X, there exists the following canonical
isomorphism

Wn(OX′)⊗ϕ−1(Wn(OX)) Hq(ODX(Xn) ⊗OXn
Ω•

D(k)
n /Wn

(log(Zn|D(k)
n

)))
(2.12.2.4)

=−→ Hq((ODX(Xn) ⊗OXn
Ω•

D(k)
n /Wn

(log(Zn|D(k)
n

)))et)|X′
zar

.

Now let us assume that the diagram (2.12.2.2) is exact for any k, q ∈ Z.
Then, by (2.12.2.3) and the induction on k, we see that each term of (2.12.2.2)
is u∗-acyclic and that u∗((2.12.2.2)) gives the exact sequence (2.12.2.1). On
the other hand, assume that the diagram (2.12.2.1) is exact for any k, q ∈ Z.
In this case, note that the morphisms in the diagram (2.12.2.1) and the long
exact sequence

· · · −→ Hq((ODX(Xn)⊗OXn
PDn

k−1Ω
•
Xn/Wn

(log(Dn ∪ Zn)))et)

−→ Hq((ODX(Xn)⊗OXn
PDn

k Ω•
Xn/Wn

(log(Dn ∪ Zn)))et)

−→ Hq−k((ODX(Xn)⊗OXn
Ω•

D(k)
n /Wn

(logZn|D(k)
n

))et) −→ · · ·

are Wn(OX)-linear with respect to the natural action of Wn(OX) = H0

(ODX(Xn)⊗OXn
Ω•

Xn/Wn
). Then, by (2.12.2.4) and the induction on k, we see

that there exists the canonical isomorphism

Wn(OX′)⊗ϕ−1(Wn(OX)) Hq(ODX(Xn)⊗OXn
PDn

k Ω•
Xn/Wn

(log(Dn ∪ Zn)))
=−→ Hq((ODX(Xn)⊗OXn

PDn

k Ω•
Xn/Wn

(log(Dn ∪ Zn)))et)|X′
zar
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for any etale morphism ϕ : X ′ −→ X. Hence the diagram (2.12.2.2)|X′
zar

is exact for any ϕ : X ′ −→ X as above, and this implies the exactness of
(2.12.2.2) for any k, q ∈ Z. Hence the exactness of (2.12.2.1) for any k, q ∈ Z

is equivalent to the exactness of (2.12.2.2) for any k, q ∈ Z.
By the claim we have shown in the previous paragraph, we may work etale

locally to prove the lemma. Hence we may assume that Xn is the scheme
Spec(Wn[x1, . . . , xd]) and that Dn

⊂−→ Xn is the closed immersion defined by
the ideal (x1 · · ·xs) for some 0 ≤ s ≤ d. In this case, by the proof of [64, 1.2],
the morphism

Z(ODX(Xn)⊗OXn
PDn

k Ωq
Xn/Wn

(log(Dn ∪ Zn)))

−→ Z(ODX(Xn)⊗OXn
Ωq−k

D(k)
n /Wn

(logZn|D(k)
n

))

is surjective on Xzar. Hence we obtain the exactness of (2.12.2.1). ��
By the Zariski analogue of [54, (6.4)] we have the following commutative

diagram:

(2.12.2.5)
Rqu(X,D∪Z)/Wn∗(O(X,D∪Z)/Wn

)
∼−−−−−→ Hq(ODX (Xn)⊗OXn

Ω•
Xn/Wn

(log(Dn ∪ Zn)))

∥

∥

∥

⏐

⏐

�
Hq(f∗)

Rqu(X,D∪Z)/Wn∗(O(X,D∪Z)/Wn
)

∼−−−−−→ Hq(Ω•
Yn/Wn

(log(En ∪Wn))).

Lemma 2.12.3. Let k be a nonnegative integer. Then Hq(f∗) induces an
isomorphism

Hq(ODX(Xn)⊗OXn
PDn

k Ω•
Xn/Wn

( log(Dn ∪ Zn)))
∼−→ Hq(P En

k Ω•
Yn/Wn

(log(En ∪Wn))).

Proof. We have two proofs.
First proof: The morphism f induces a morphism

ODX(Xn)⊗OXn
PDn

k Ω•
Xn/Wn

(log(Dn ∪ Zn)) −→ P En

k Ω•
Yn/Wn

(log(En ∪Wn)).

By using the Poincaré residue isomorphisms with respect Dn, by (2.12.2) and
by induction on k, it suffices to prove that f∗ induces an isomorphism

Hq−k(ODX(Xn)⊗OXn
Ω•

D(k)
n /Wn

(logZn|D(k)
n

)⊗Z �(k)
zar(Dn/Wn)(−k)) ∼−→

Hq−k(Ω•
E(k)

n /Wn
(logWn|E(k)

n
)⊗Z �(k)

zar(En/Wn)(−k)).

By noting that DX(Xn)×Xn
D(k)

n is the PD-envelope of the closed immersion
D(k) −→ D(k)

n ((2.2.16) (2)), we see that the morphism above is an isomor-
phism by [11, 7.1 Theorem].
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Second proof: (2.12.3) immediately follows from (2.5.4) (2). ��

The following is a generalization of the preweight filtration on WnΩi
X(log

D) ([64, (1.4.1)]) for an admissible closed immersion (X,D∪Z) ⊂−→ (Xn,Dn∪
Zn) over (Spec(Wn), pWn, [ ]) even if Z = ∅:

Corollary 2.12.4. (1) The preweight filtration on WnΩ•
X(log(D ∪ Z)) with

respect to D is well-defined. More generally, {H•(ODX(Xn)⊗OXn
PDn

k Ω∗
Xn/Wn

(log(Dn ∪ Zn)))}k∈N induces the preweight filtration on WnΩ•
X(log(D ∪ Z)).

(2) Let i be a nonnegative integer. Then

(2.12.4.1) PD
k WnΩi

X(log(D ∪ Z)) = Hi(PD
k C log,Z

zar (O(X,D∪Z)/Wn
))

(3) There exists the following canonical isomorphism

(2.12.4.2)
ResD : grP D

k WnΩ•
X(log(D ∪ Z)) ∼−→WnΩ•

D(k)(log Z|D(k))⊗Z �(k)
zar(D/κ)(−k)

which is compatible with the Frobenius endomorphisms.

Proof. (1): We can show the well-definedness by the standard method in,
e.g., [64, 3.4] and by (2.12.3). The latter statement is obvious by (2.12.3).

(2): (2) is obvious by the definition (2.12.0.3).
(3): (2.12.4.2) is an isomorphism of complexes of Wn-modules by (2.6.1.1)

and the definition of the boundary morphism of the two log de Rham Witt
complexes in (2.12.4.2). The compatibility with the Frobenius endomor-
phisms is obtained by the same argument as that in [68, (9.3) (1)]. ��

Let g : Y := (
◦
Y ,M) −→ s be as in the beginning of this section.

By abuse of notation, we denote
◦
Y by Y . Let ι : (Y,M) ⊂−→ (Y,M)

be a closed immersion into a fine formally log smooth scheme over
(Spf(W ),W (L)), where W (L) is the canonical lift of L over Spf(W )
(cf. [46, (3.1)]). Let g̃ : (Y,M) −→ (Spf(W ),W (L)) be the structural
morphism. Let (DY (Y),MDY (Y)) be the log PD-envelope of the closed

immersion (Y,M) ⊂−→ (Y,M). Set (Yn,Mn) := (Y,M) ⊗W Wn,
(DY (Yn),MDY (Yn)) := (DY (Y),MDY (Y)) ⊗W Wn and gn := g̃ ⊗W Wn

(n ∈ Z>0). Let ιn : (Y,M) ⊂−→ (Yn,Mn) be the induced natural closed
immersion. Let Wn(M) be the canonical lift of M over Wn(Y ). Assume that
there exists an endomorphism Φ of (Y,M) which is a lift of the Frobenius
morphism of (Y1,M1). Then there exists a morphism

(2.12.4.3) Wn(ι) : (Wn(Y ),Wn(M)) −→ (Yn,Mn)

of log schemes which has been constructed in ([68, (7.17)]) by using a log
version of a lemma of Dieudonné-Cartier ([68, (7.10)]). In this book we only
review the definition of the morphism Wn(ι). As a morphism of schemes,
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Wn(ι) is well-known (e.g., [50, 0 (1.3.21), II (1.1.4)]). Let m̃ be a local section
of M with image m ∈ Mn. Let zj (1 ≤ j ≤ n− 1) be a unique local section
of 1 + pOY satisfying an equality Φ∗j(m̃) = m̃pj

zj . Let {s̃j}n−1
j=1 be a family

of local sections of OY satisfying the following equalities

1 + ps̃pj−1

1 + · · ·+ pj s̃j = zj .

(The existence of {s̃j}n−1
j=1 has been proved in the proof of the log version of a

lemma of Dieudonné-Cartier ([68, (7.10)]) by using the argument in [61, VII
4].) Set sj := ι∗(s̃j) (1 ≤ j ≤ n− 1) and s0 := 1. Then Wn(ι) as a morphism
of log structures is, by definition, the following morphism:

Wn(ι)∗(Mn) � m �−→(ι∗n(m), (s0, . . . , sn−1))(2.12.4.4)
∈ M ⊕ (1 + V Wn−1(OY )) = Wn(M).

Here we denote Wn(ι)∗(m) simply by m.
By the universality of the log PD-envelope, Φ induces a natural morphism

ΦDY (Y) : (DY (Y),MDY (Y)) −→ (DY (Y),MDY (Y)).

Following [31], let us denote by Λi
Yn/Wn

the sheaf of log differential forms
of degree i on (Yn,Mn)/(Spec(Wn),Wn(L)), and by WnΛi

Y the Hodge-Witt
sheaf of log differential forms of degree i on (Y,M)/s. The morphism Wn(ι)
induces a morphism

(2.12.4.5) ODY (Yn)⊗OYn
Λ•
Yn/Wn

−→ Λ•
Wn(Y )/(Wn,Wn(L)),[ ]

of complexes of g−1
n (Wn)-modules, where Λ•

Wn(Y )/(Wn,Wn(L)),[ ] is defined in
the proof of [46, (4.19)] and denoted by ω•

Wn(Y )/(Wn,Wn(L)),[ ] in [loc. cit.]. By
[46, (4.9)] there exists a canonical morphism

(2.12.4.6) Λ•
Wn(Y )/(Wn,Wn(L)),[ ] −→ H•(ODY (Yn)⊗OYn

Λ∗
Yn/Wn

)(= WnΛ•
Y ).

Composing (2.12.4.5) with (2.12.4.6), we have a morphism

(2.12.4.7) ODY (Yn)⊗OYn
Λ•
Yn/Wn

−→ H•(ODY (Yn)⊗OYn
Λ∗
Yn/Wn

).

As usual ([50, II (1.1)]), the induced morphism by (2.12.4.7) in the derived
category is independent of the choice of Y and Φ.

Lemma 2.12.5. Set ϕ := Φ∗
DY (Y). Then the morphism (2.12.4.7) is equal to

the morphism (ϕ/p•)n mod pn.

Proof. First consider the case • = 0. Because OY is p-torsion-free, the fol-
lowing morphism sϕ is well-defined:

(2.12.5.1) sϕ : OY � x �−→ (s0, s1, . . . , sn−1, . . .) ∈W (OY),
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where si’s satisfy the following equations spm−1

0 +pspm−2

1 + · · ·+pm−1sm−1 =
ϕm−1(x) (m ∈ Z>0) (e.g., [50, 0 (1.3.16)]). The morphism (2.12.4.5) for • = 0
is induced by the following composite morphism

OYn

sϕmod V nW (OY1 )
−→ Wn(OY1) −→Wn(OY ).

The morphism (2.12.4.6) for • = 0 is defined by

(2.12.5.2) Wn(OY ) � (t0, t1, . . . , tn−1) �−→

˜tp
n

0 + p˜tp
n−1

1 + · · ·+ pn−1
˜tpn−1 ∈ H0(ODY (Yn) ⊗OYn

Λ•
Yn/Wn

),

where ˜tj ∈ ODY (Yn) (1 ≤ j ≤ n − 1) is a lift of tj ∈ OY ([46, (4.9)]). Since
ϕ(spn−i

) ≡ spn−i+1
mod pn−i+1OYn

(s ∈ OYn
, i ∈ {0, 1, . . . , n}), (2.12.4.7)

for • = 0 is induced by the morphism x �−→ ϕn(x) (x ∈ OYn
).

Next, consider the case • = 1. Because the image of (2.12.4.5) is contained
in the image of Wn(OY )⊗ZWn(M)gp in Λ1

Wn(Y )/(Wn,Wn(L)),[ ], consider the
following composite morphism

Wn(OY )⊗ZWn(M)gp −→ Λ1
Wn(Y )/(Wn,Wn(L)),[ ](2.12.5.3)

(2.12.4.6)−→ H1(ODY (Yn)⊗OYn
Λ•
Yn/Wn

).

The morphism (2.12.5.3) is defined by the morphisms (2.12.5.2) and d log m
�−→ d log m̃ mod pn (m ∈ M), where m̃ ∈ MDY (Y) is a lift of m. Since
ϕ : MDY (Y) −→ MDY (Y) is a lift of the Frobenius endomorphism, there
exists a section a of ODY (Y) such that ϕ(m̃) = m̃p(1 + pa). Then

p−1d log ϕ(m̃) = p−1d log(m̃p(1 + pa)) = d log m̃ + p−1d log(1 + pa)

= d log m̃ + d(
∞
∑

i=1

(−1)i−1(pi−1/i)ai).

Hence

d log m̃ mod pn = p−1d log ϕ(m̃) mod pn

= · · ·
= p−nd log ϕn(m̃) mod pn.

in H1(ODY (Yn)⊗OYn
Λ•
Yn

). Furthermore the image of 1⊗ (1 + V Wn−1(OY ))
by the morphism (2.12.5.3) is the zero.

Let m and {sj}n−1
j=1 be local sections in (2.12.4.4). Then the image of d log m̃

by the morphism (2.12.4.7) is the class of d log m̃ + d log(1 +
∑n−1

j=1 pj s̃pn−j

j ),
where s̃j is a lift of sj in ODY (Yn). As in the argument above, the second
form is exact. Hence the morphism (2.12.4.7) for • = 1 is induced from
(ϕ/p)n mod pn.
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When • ≥ 2, (2.12.5) follows from the definition of (2.12.4.6), from [46,
(4.9)] and from the calculation above. ��

Corollary 2.12.6. Let ι : (X,D∪Z) ⊂−→ (X ,D∪Z) be an admissible immer-
sion into a formally smooth scheme over Spf(W ) with a relative transversal
SNCD over Spf(W ). Set (Xn,Dn ∪ Zn) := (X ,D ∪ Z) ⊗W Wn. Assume
that there exists a lift Φ: (X ,D ∪ Z) −→ (X ,D ∪ Z) of the Frobenius en-
domorphism of (X1,D1 ∪ Z1). Let DX(X ) be the PD-envelope of the closed
immersion X

⊂−→ X over (Spf(W ), pW, [ ]). Set DX(Xn) := DX(X )⊗W Wn.
Then the morphism

(2.12.6.1) ODX(Xn)⊗OXn
Ω•

Xn/Wn
(log(Dn ∪ Zn)) −→WnΩ•

X(log(D ∪ Z))

defined in (2.12.4.7) induces an isomorphism

(2.12.6.2)
(ODX(Xn)⊗OXn

Ω•
Xn/Wn

(log(Dn ∪ Zn)), PDn) −→ (WnΩ•
X(log(D ∪ Z)), PD)

in D+F(f−1(Wn)).

Proof. The endomorphism Φ induces an endomorphism ΦDX(X ) : DX(X ) −→
DX(X ). Set ϕ := Φ∗

DX(X ). By the definition of WnΩ•
X(log(D ∪ Z)) ([46,

(4.1)]), we have WnΩ•
X(log(D ∪ Z)) = H•(ODX(Xn)⊗OXn

Ω∗
Xn/Wn

(log(Dn ∪
Zn))). By (2.12.5), the morphism (2.12.6.1) is induced by ϕn :=(ϕ/p•)mod pn.
By a calculation in [68, (8.1), (8.4)], ϕn preserves the preweight filtrations
with respect to Dn:

ϕn(ODX(X )⊗OX PD
k Ω•

X/W (log(D ∪ Z))/pn)

⊂ H•(ODX(X )⊗OX PD
k Ω∗

X/W (log(D ∪ Z))/pn).

Hence, by using the Poincaré residue isomorphism and by (2.12.2), it suffices
to prove that ϕn induces an isomorphism

(2.12.6.3) ODX(Xn)⊗OXn
Ω•

D(k)
n /Wn

(logZn|D(k)
n

)⊗Z �(k)
zar(Dn/Wn)(−k) ∼−→

H•(ODX(Xn)⊗OXn
Ω∗

D(k)
n /Wn

(logZn|D(k)
n

)⊗Z �(k)
zar(Dn/Wn)(−k)).

This immediately follows from (2.2.16) (2) and [46, (4.19)]=[68, (7.19)]. ��

Lemma 2.12.7. Let Y be a scheme over Fp with a closed subscheme E.
Let U be the complement of E in Y and j : U

⊂−→ Y the open immersion.
Denote by (Y,E) a log scheme (Y, j∗(O∗

U ) ∩ OY ). Let (Wn(Y ),Wn(E))
be a similar log scheme over Wn(Fp) = Z/pn : (Wn(Y ),Wn(E)) :=
(Wn(Y ),Wn(j)∗(Wn(OU )∗) ∩Wn(OY )). Assume that the natural morphism
OY −→ j∗(OU ) is injective. Then (Wn(Y ),Wn(E)) is the canonical lift of
(Y,E) in the sense of [46, (3.1)].
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Proof. Let [ ] : OY � a �−→ (a, 0, . . . , 0) ∈Wn(OY ) be the Teichmüller lift. By
noting that V Wn(OU ) is a nilpotent ideal sheaf of Wn(OU ) ([50, 0 (1.3.13)]),
we have a formula Wn(OU )∗ = [O∗

U ] ⊕ Ker(Wn(OU )∗ −→ O∗
U ). We claim

that

Ker{Wn(j)∗(Wn(OU )∗) ∩Wn(OY ) −→ j∗(O∗
U )} = Ker(Wn(OY )∗ −→ O∗

Y ).

The inclusion ⊃ is obvious. Let a be a local section on the left hand side.
Then the image of a in OY is 1 since OY −→ j∗(OU ) is injective. Hence we
have a ∈ Wn(OY )∗ since V Wn(OY ) is a nilpotent ideal sheaf of Wn(OY ).
Therefore

Wn(j)∗(Wn(OU )∗) ∩Wn(OY ) = [j∗(O∗
U ) ∩ OY ]⊕Ker(Wn(OY )∗ −→ O∗

Y ).

This equality shows (2.12.7). ��

Let us also consider the case of the log crystalline cohomology with com-
pact support.

Assume that Z = ∅ for the time being. Fix a total order on λ’s only
in (2.12.7.1) below. In [64, Lemma 3.15.1], it is claimed that the following
sequence

(2.12.7.1) 0 −→WnΩ•
X(− log D) −→ WnΩ•

X −→WnΩ•
D(1) −→ · · ·

is exact. Let R be the Cartier-Dieudonné-Raynaud algebra over κ ([52, I
(1.1)]). Set Rn := R/(V nR + dV nR). The second isomorphism

Rn ⊗L
R WΩ•

X(− log D) ∼−→WnΩ•
X(− log D)

in [64, 1.3.3] (we have to say that the turn of the tensor product in [64, 1.3.3]
is not desirable) is necessary for the proof of [64, Lemma 3.15.1]. However
the proof of the second isomorphism in [64, 1.3.3] is too sketchy. In [68, §6] we
have given a precise proof of the second isomorphism in [64, 1.3.3]. Hence we
can use [64, Lemma 3.15.1] without anxiety, and we identify WnΩ•

X(− log D)
with the following complex

WnΩ•
X −→ (WnΩ•

D(1) ⊗Z �(1)
zar(D/κ),−d)(2.12.7.2)

−→ WnΩ•
D(2) ⊗Z �(2)

zar(D/κ) −→ · · ·

in D+(f−1(Wn)).
We generalize the exact sequence (2.12.7.2) to the case Z = ∅ as follows.
First assume that X is affine. Let (X ,D∪Z) be a formal lift of (X,D∪Z)

over Spf(W ) with a lift Φ: (X ,D ∪ Z) −→ (X ,D ∪ Z) of the Frobenius of
(X,D ∪ Z). Let ˜f : X −→ Spf(W ) be the structural morphism. Set Ω• :=
Ω•

X/W (log(Z − D)), Ω•
1 := Ω•/pΩ• and φ = Φ∗ : Ω• −→ Ω•. Then (Ω•, φ)

satisfies the axioms of (6.0.1) ∼ (6.0.5) in [68], that is,
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(2.12.7.3): Ωi = 0 for i < 0.

(2.12.7.4): Ωi (i ∈ N) are p-torsion-free, p-adically complete Zp-modules in
C+( ˜f−1(Zp)).

(2.12.7.5): φ(Ωi) ⊂ {ω ∈ piΩi | dω ∈ pi+1Ωi+1} (i ∈ N).

(2.12.7.6): There exists an Fp-linear isomorphism

C−1 : Ωi
1

∼−→ Hi(Ω•
1) (i ∈ N).

((19.7.6) is an isomorphism in [27, (4.2.1.3)].)

(2.12.7.7): A composite morphism (mod p) ◦ p−iφ : Ωi −→ Ωi −→ Ωi
1 factors

through Ker(d : Ωi
1 −→ Ωi+1

1 ), and the following diagram is commutative:

Ωi mod p−−−−−→ Ωi
1

p−iφ

⏐

⏐

�

⏐

⏐

�C−1

Ωi mod p−−−−−→ Hi(Ω•
1).

Theorem 2.12.8 ([68, (6.2), (6.3), (6.4)]). (1) For a gauge ε : Z −→ N

([11, 8.7 Definition]), let η : Z −→ N be the associated cogauge to ε defined by

η(i) :=
{

ε(i) + i (i ≥ 0),
ε(0) (i ≤ 0).

Let Ω•
ε (resp. Ω•

η) be the largest complex of Ω• whose i-th degree is contained
in pε(i)Ωi (resp. pη(i)Ωi). Then the morphism φ : Ω• −→ Ω• induces a quasi-
isomorphism φε : Ω•

ε −→ Ω•
η.

(2) Assume that Ω•
ε and Ω•

η are bounded above and that they consist of flat
Zp-modules. Let M be an ˜f−1(Zp) = Zp-module. Then the morphism

(2.12.8.1) φε ⊗Zp
idM : Ω•

ε ⊗Zp
M−→ Ω•

η ⊗Zp
M

is a quasi-isomorphism.
(3) (cf. [52, III (1.5)]) Let i (resp. n) be a nonnegative (resp. positive)

integer. Then

(2.12.8.2)
pi{ω ∈ Ωi| dω ∈ pn+1Ωi+1}

pi+n{ω ∈ Ωi| dω ∈ pΩi+1}+ pidΩi−1

φ
∼←− {ω ∈ Ωi| dω ∈ pnΩi+1}

pnΩi + pdΩi−1
.

Proof. (1): We only remark that the proof is the same as that in [11, 8.8
Theorem].

(2): By the assumption, the complex MC(φε)⊗Zp
M is acyclic.

(3): Set M := Z/pn in (2). Let ε be any gauge such that ε(i− 1) = 1 and
ε(i) = 0. Then (2.12.8.1) at the degree i is equal to (2.12.8.2). ��



186 2 Weight Filtrations on Log Crystalline Cohomologies

Set

(2.12.8.3)
Zi

n := {ω ∈ Ωi| dω ∈ pnΩi+1}, Bi
n := pnΩi + dΩi−1, WnΩi := Zi

n/Bi
n.

As usual (e.g., [68, §6]), we can define the following operators:

F : Wn+1Ωi −→WnΩi, V : WnΩi −→ Wn+1Ωi, d : WnΩi −→WnΩi+1,

p : WnΩi −→ Wn+1Ωi and π : Wn+1Ωi −→WnΩi.

We only remark that p is an injective morphism induced by p−(i−1)φ : Ωi −→
Ωi (note that −(i−1) is positive if i = 0) and that π is the following composite
surjective morphism ([68, (6.5)]):

Wn+1Ωi = Zi
n+1/Bi

n+1
proj.−→Zi

n+1/(pnZi
1 + dΩi−1)

(2.12.8.4)

(p−iφ)−1

∼−→ Zi
n

pnΩi + pdΩi−1

proj.−→ Zi
n/Bi

n = WnΩi.

Here the isomorphism p−iφ in (2.12.8.4) is given by (2.12.8.2). As usual, one
can endow WnΩi with a natural Wn(OX)-module structure, and the following
formulas hold:

d2 = 0, FdV = d, FV = V F = p ,

Fp = pF, V p = pV, dp = pd, pπ = πp = p.

Set WΩ• = lim←−
π

WnΩ•. Then WΩ• is a complex of sheaves of W (OX)-modules

and torsion-free W -modules in C+( ˜f−1(W )). In fact, WΩ• (resp. WnΩ•) is
naturally an R-module (resp. Rn-module). Set

FilrWΩi :=

{

Ker(WΩi −→WrΩi) (r > 0),
WΩi (r ≤ 0).

We recall the following (cf. [50, I (3.31)], [50, I (3.21.1.5)], [62, (1.20)], [52,
II (1.2)], [62, (2.16)]):

Proposition 2.12.9 ([68, §6, (A), (B), (C)]). The following formulas
hold:

(1) FilrWΩi = V rWΩi + dV rWΩi−1 (i ∈ Z, r ∈ Z≥0).
(2) d−1(pnWΩ•) = FnWΩ•.
(3) Rn ⊗L

R WΩ• = WnΩ• (n ∈ Z>0).

Proof. Here we only remark that (3) is a formal consequence of (1) and (2)
(see [52, II (1.2)]). ��
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Let us come back to the general case.
Recall the ideal sheaf ID

(X,D∪Z)/S of O(X,D∪Z)/S in §2.11. Set

(2.12.9.1) WnΩi
X(log(Z −D)) := Riu(X,D∪Z)/Wn∗(ID

(X,D∪Z)/Wn
) (i ∈ N).

Zariski locally on X, we have an isomorphism WnΩi
X(log(Z−D)) ∼−→WnΩi.

It is a routine work to check that the family {WnΩ•
X(log(Z −D))}n∈Z>0 of

complexes has the operators F , V , d, p and π (cf. [46, (4.1), (4.2)]) (especially
one can check that p and π are well-defined by considering embedding systems
of (X,D∪Z) over W ); in fact, WΩ•

X(log(Z −D)) is naturally an R-module.
Then the following holds:

Proposition 2.12.10. The complex WnΩ•
X(log(Z −D)) (n ∈ Z>0) is quasi-

isomorphic to the single complex of the following double complex:

(2.12.10.1)

· · · −−−−→ · · ·

d

�

⏐

⏐
−d

�

⏐

⏐

WnΩ2
X(log Z) ι(0)∗−−−−→ WnΩ2

D(1)(log Z|D(1))⊗Z �
(1)
zar(D/κ)

d

�

⏐

⏐
−d

�

⏐

⏐

WnΩ1
X(log Z) ι(0)∗−−−−→ WnΩ1

D(1)(log Z|D(1))⊗Z �
(1)
zar(D/κ)

d

�

⏐

⏐
−d

�

⏐

⏐

WnΩ0
X(log Z) ι(0)∗−−−−→ WnΩ0

D(1)(log Z|D(1))⊗Z �
(1)
zar(D/κ)

−−−−→ · · · −−−−→ · · ·

d

�

⏐

⏐

ι(1)∗−−−−→ WnΩ2
D(2)(log Z|D(2))⊗Z �

(2)
zar(D/κ) ι(2)∗−−−−→ · · ·

d

�

⏐

⏐

ι(1)∗−−−−→ WnΩ1
D(2)(log Z|D(2))⊗Z �

(2)
zar(D/κ) ι(2)∗−−−−→ · · ·

d

�

⏐

⏐

ι(1)∗−−−−→ WnΩ0
D(2)(log Z|D(2))⊗Z �

(2)
zar(D/κ) ι(2)∗−−−−→ · · · .

Proof. The proof is the same as that of [64, Lemma 3.15.1]: by using (2.12.9)
(3) and Ekedahl’s Nakayama duality, we can reduce the exactness to that for
the case n = 1, and in this case, we obtain the exactness by the argument of
[27, (4.2.2) (a), (c)] (cf. (2.11.5.1)). ��

The complex (2.12.10.1) has a stupid filtration σk (k ∈ Z) with respect to
the columns and we set PD,k

c := σk. Hence we obtain a filtered complex in
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C+F(f−1(Wn)), K+F(f−1(Wn)) and D+F(f−1(Wn)), and we denote it by

(2.12.10.2) (WnΩ•
X(log(Z −D)), PD

c ).

The following is the main result in this section:

Theorem 2.12.11 (Comparison theorem). (1) In D+F(f−1(Wn)), there
exists the following canonical isomorphism:

(2.12.11.1) (C log,Z
zar (O(X,D∪Z)/Wn

), PD) ∼−→ (WnΩ•
X(log(D ∪ Z)), PD).

The isomorphisms (2.12.11.1) for n’s are compatible with two projections of
both hands of (2.12.11.1).

(2) In D+F(f−1(Wn)), there exists the following canonical isomorphism:

(2.12.11.2) (Elog
zar,c(O(X,D∪Z)/Wn

), PD
c ) ∼−→ (WnΩ•

X(log(Z −D)), PD
c ).

If one forgets the filtrations of both hands of (2.12.11.2), one can identify the
isomorphism (2.12.11.2) with the isomorphism

(2.12.11.3) Ru(X,D∪Z)/Wn∗(ID
(X,D∪Z)/Wn

) ∼−→ WnΩ•
X(log(Z −D))

induced by the isomorphism (2.12.0.2). The isomorphisms (2.12.11.2) for n’s
are compatible with two projections of both hands of (2.12.11.2). The iso-
morphism (2.12.11.2) is functorial for the commutative diagram (2.11.18.1)
for the case S0 = Spec(κ), S = Spec(Wn), S′

0 = Spec(κ′) and S′ =
Spec(Wn(κ′)), where κ′ is a perfect field of characteristic p.

Proof. (1): Let {Xi0}i0∈I0 be an affine open covering of X. Set Di0 := D∩Xi0

and Zi0 := Z ∩Xi0 . Then there exists an affine formal log scheme (Xi0 ,Di0 ∪
Zi0)i0∈I0 over Spf(W ) such that each (Xi0 ,Di0∪Zi0) is a lift of the log scheme
(Xi0 ,Di0∪Zi0). The Frobenius morphism (Xi0 ,Di0∪Zi0) −→ (Xi0 ,Di0∪Zi0)
lifts to a morphism Φi0 : (Xi0 ,Di0 ∪ Zi0) −→ (Xi0 ,Di0 ∪ Zi0). Then, using
{(Xi0 ,Di0∪Zi0)}i0∈I0 , we have a diagram of log schemes (X•,D•∪Z•)•∈I over
Spf(W ) as in §2.4. Using {Φi0}i0∈I0 , we have an endomorphism Φ• : (X•,D•∪
Z•) −→ (X•,D•∪Z•) of a diagram of log schemes; Φi is a lift of the Frobenius
of (Xi,Di ∪Zi)⊗W κ (i ∈ I). Let DX•(X•) be the PD-envelope of the locally
closed immersion X•

⊂−→ X• over (Spec(Wn), pWn, [ ]). Then the morphism
Φ• induces a natural morphism DX•(X•) −→ DX•(X•).

Set (X•,n,D•,n ∪ Z•,n)•∈I := (X•⊗W Wn, (D•⊗W Wn) ∪ (Z•⊗W Wn))•∈I

and set Φ•,n := Φ• mod pn. Then there exists a morphism (Wn(X•),Wn(D•)∪
Wn(Z•)) −→ (X•,n,D•,n∪Z•,n) of diagrams of log schemes, where (Wn(X•),
Wn(D•) ∪ Wn(Z•)) is a log scheme defined in (2.12.7). By (2.12.4.7), this
morphism induces a morphism

(2.12.11.4)
ODX• (X•,n)⊗OX•,n

Ω•
X•,n/Wn

(log(D•,n ∪ Z•,n)) −→WnΩ•
X•(log(D• ∪ Z•)).
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(Note that (Wn(Xi),Wn(Di) ∪Wn(Zi)) is the canonical lift of (Xi,Di ∪ Zi)
over Wn by (2.12.7); thus, by applying the filtered higher direct image of
the natural morphism πzar : ( ˜X•zar, f

−1
• (Wn)) −→ ( ˜Xzar, f

−1(Wn)) to the
morphism in (2.12.11.4), we obtain a morphism which is equal to a special
case of a morphism defined in [46, (4.19)].)

The morphism (2.12.11.4) induces a filtered quasi-isomorphism with re-
spect to preweight filtrations. Indeed, the problem is local; in this case, it
follows from (2.12.6). By applying the filtered higher direct image of πzar to
(2.12.11.4), we have an isomorphism (2.12.11.1). As in the proof of (2.6.1),
we can check that the morphism (2.12.11.1) is independent of the choice of
the open covering of X and the lift of each open scheme.

Let g : (X1,D1 ∪Z1) −→ (X2,D2 ∪Z2) be a morphism of smooth schemes
with SNCD’s over κ which induces morphisms (X1,D1) −→ (X2,D2) and
(X1, Z1) −→ (X2, Z2). Then, by the proof of [68, (9.3) (2)], g induces a
morphism

g∗ : (WnΩi
X2

(log(D2 ∪ Z2)), PD2) −→ (WnΩi
X1

(log(D1 ∪ Z1)), PD1).

Using the diagram of log schemes, we see that the proof of the functoriality
of (2.12.11.1) is reduced to the local question on (Xi,Di ∪ Zi) (i = 1, 2). In
this case, by the functoriality of the morphisms (2.12.4.3) and (2.12.4.6) and
by (2.12.6), we obtain the functoriality of (2.12.11.1).

In [68, (7.18)] we have proved that the morphism (2.12.4.6) is compatible
with two projections; as a result, the morphism (2.12.4.7) is also compatible
with them. In particular, we have the following commutative diagram

(ODX• (X•,n+1)⊗OX•,n+1
Ω•

X•,n+1/Wn+1
(log(D•,n+1 ∪ Z•,n+1)), PD)

(2.12.11.4)−−−−−−−→

proj.

⏐

⏐

�

(ODX• (X•,n)⊗OX•,n
Ω•

X•,n/Wn
(log(D•,n ∪ Z•,n)), PD)

(2.12.11.4)−−−−−−−→

(Wn+1Ω•
X•

(log(D• ∪ Z•)), PD)
⏐

⏐

�
π

(WnΩ•
X•

(log(D• ∪ Z•)), PD).

Applying the direct image Rπzar∗, we obtain the compatibility with two
projections.

(2): The morphism (2.12.11.4) induces a morphism

(2.12.11.5)
ODX• (X•,n)⊗OX•,n

Ω•
X•,n/Wn

(log(Z•,n −D•,n)) −→WnΩ•
X•(log(Z• −D•)).

By (2.2.16) (2), DX•(X•) ×X• D(k) is the PD-envelope of the locally closed
immersion D

(k)
•

⊂−→ D(k)
• . Set D

D
(k)
•

(D(k)
•,n) := (DX•(X•) ×X• D

(k)
• ) ⊗W Wn.

By (2.11.9) and (2.12.10), we have the following commutative diagram:
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(2.12.11.6)

Rπzar∗(ODX• (X•,n)⊗OX•,n
Ω•

X•,n/Wn
(log(Z•,n −D•,n))) ∼−−−−→

⏐

⏐

�

Rπzar∗(WnΩ•
X•

(log(Z• −D•)))
∼−−−−→

(Rπzar∗(OD
D

(0)
•

(D(0)
•,n)

⊗O
D(0)

•,n

Ω•
D(0)

•,n/Wn

(logZ•,n|D(0)
•,n

))⊗Z �
(0)
zar(D/κ) −→ · · · )

⏐

⏐

�

(Rπzar∗(WnΩ•
X•

(log Z•))⊗Z �
(0)
zar(D/κ) −→ · · · ).

By the cohomological descent, the lower vertical morphism in (2.12.11.6) is
equal to

{Ru(X,Z)/Wn∗(O(X,Z)/Wn
)⊗Z �(0)

zar(D/κ) −→ · · · } −→

{WnΩ•
X(log Z)⊗Z �(0)

zar(D/κ) −→ · · · }.
By [46, (4.19)]=[68, (7.19)], this is an isomorphism. The claim as to the
compatibility of the filtrations is obvious by the definitions. As usual (cf. [50,
II (1.1)], §2.5), we see that the lower vertical morphism in (2.12.11.6) is
independent of the choice of the open covering of X, that of the lift of each
open subscheme and that of the lift of the Frobenius.

The compatibility with respect to two projections follows from the follow-
ing commutative diagram:

Ru(D(•),Z|
D(•) )/Wn+1

(O(D(•),Z|
D(•) )/Wn+1

) ∼−−−−→ Wn+1Ω•
D(•)(log Z|D(•))

proj.

⏐

⏐

�

⏐

⏐

�
π

Ru(D(•),Z|
D(•) )/Wn

(O(D(•),Z|
D(•) )/Wn

) ∼−−−−→ WnΩ•
D(•)(log Z|D(•)),

which we can prove in the same way as [46, (4.19)]=[68, (7.19)].
The functoriality claimed in (2) is obvious by the proof above. ��
Let i be a nonnegative integer. We conclude this section by constructing

the preweight spectral sequences of WnΩi
X(log(D∪Z)) and WnΩi

X(log(Z−D))
with respect to D and describing the boundary morphisms between the E1-
terms of the spectral sequences.

The following is a generalization of [68, (5.7.1;n)]:

Proposition 2.12.12. Let i be a nonnegative integer. Then there exists the
following spectral sequence

(2.12.12.1) E−k,h+k
1 = Hh−i(D(k),WnΩi−k

D(k)(log Z|D(k))⊗Z�(k)
zar(D/κ))(−k)

=⇒ Hh−i(X,WnΩi
X(log(D ∪ Z))).

The spectral sequences (2.12.12.1) for n’s are compatible with the projections.
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Proof. (2.12.12.1) immediately follows from (2.12.4.2). The compatibility
with the projection immediately follows from the same proof as that of [68,
(8.4) (2)]. ��

Next we describe the boundary morphism between the E1-terms of the
spectral sequence (2.12.12.1).

Let the notations be before (2.8.5). Consider the following exact sequence

(2.12.12.2) 0 −→ WnΩi
Dλj

(log Z|Dλj
) −→WnΩi

Dλj
(log(Z ∪Dλ))

Res
Dλ

−→ ι
λj

λ∗(WnΩi−1
Dλ

(log Z|Dλ
))(−1) −→ 0.

We have the boundary morphism

(2.12.12.3) −G
λj

λ : ι
λj log

λ∗ WnΩi−1
Dλ

(log ZDλ
)(−1) −→WnΩi

Dλj
(log Z|Dλj

)[1].

of (2.12.12.2). Here we have used the Convention (4). As in (2.8.4.5), the
morphism (2.12.12.3) induces the following morphism

(2.12.12.4)
(−1)jG

λj

λ : Hh−i(Dλ,WnΩi−k(log Z|Dλ
)⊗Z �log

λ,zar(D/κ))(−k) −→

Hh−i+1(Dλj
,WnΩi+1−k(log Z|Dλj

)⊗Z �log
λj ,zar(D/κ))(−(k − 1)).

Definition 2.12.13. We call the morphism (2.12.12.4) the Gysin mor-
phism in log Hodge-Witt cohomologies associated to the closed immersion
(Dλ, Z|Dλ

) ⊂−→ (Dλj
, Z|Dλj

).

Proposition 2.12.14. Set G :=
∑

{λ0,...,λk−1 | λi �=λj (i�=j)}
∑k−1

j=0 (−1)jG
λj

λ .

Then the boundary morphism d−k,h+k
1 : E−k,h+k

1 −→ E−k+1,h+k
1 of

(2.12.12.1) is equal to −G.

Proof. The proof is the same as that of (2.8.5). ��

Proposition 2.12.15. Let i be a nonnegative integer. Then there exists the
following spectral sequence

(2.12.15.1) Ek,h−k
1 = Hh−i−k(D(k),WnΩi

D(k)(log Z|D(k))⊗Z �(k)
zar(D/κ))

=⇒ Hh−i(X,WnΩi
X(log(Z −D))).

The spectral sequences (2.12.15.1) for n’s are compatible with the projections.
The boundary morphism
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(2.12.15.2) dk,h−k
1 : Hh−i−k(D(k),WnΩi

D(k)(log Z|D(k))⊗Z �(k)
zar(D/κ)) −→

Hh−i−k(D(k+1),WnΩi
D(k+1)(log Z|D(k+1))⊗Z �(k+1)

zar (D/κ))

is equal to ι(k)∗.

Proof. (2.12.15) immediately follows from (2.12.10.1). (The compatibility
with the projection is easy to check.) ��

Remark 2.12.16. If X is proper over κ and if Z = ∅, the first-named author
has proved the E2-degeneration of the following spectral sequences modulo
torsion ([68, (5.9)]):

E−k,h+k
1 = Hh−i(D(k),WΩi−k

D(k) ⊗Z �(k)
zar(D/κ))(−k)

=⇒ Hh−i(X,WΩi
X(log D)),

Ek,h−k
1 = Hh−i−k(D(k),WΩi

D(k) ⊗Z �(k)
zar(D/κ))

=⇒ Hh−i(X,WΩi
X(− log D)).

2.13 Filtered Convergent F -isocrystal

So far we have worked over a base scheme whose structure sheaf is killed by
a power of p. We can also work over a (not necessarily affine) P -adic base
in the sense of [11, 7.17 Definition], and the analogues of results in previous
sections hold in this case.

Let V be a complete discrete valuation ring of mixed characteristics with
perfect residue field κ of characteristics p > 0. Let W be the Witt ring
of κ with fraction field K0. Let K be the fraction field of V . For a V -
module M , MK denotes the tensor product M ⊗V K. Unless otherwise
stated, from this section to §2.19, S denotes a p-adic formal V -scheme in
the sense of [74, §1], i.e., S is a noetherian formal scheme over V with the
p-adic topology such that, for any affine open formal subscheme U , there ex-
ists a surjective morphism V {x1, . . . , xn} −→ Γ(U,OU ) of topological rings
for some n. Let f : (X,D ∪ Z) −→ S denote a proper smooth morphism
of p-adic formal V -schemes (e.g., V/p-schemes) of finite type with relative
transversal SNCD. Following [74], for a p-adic formal scheme T/Spf(V ), set
T1 := Spec

T
(OT /pOT ).

By virtue of results in previous sections, we can give the compatibil-
ity of the weight filtrations on log crystalline cohomologies as convergent
F -isocrystals with some canonical operations, e.g., the base change, the
Künneth formula, the functoriality. Later, in §2.19, we shall give the compat-
ibility of them with the Poincaré duality.
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(1) Base change theorem

Theorem 2.13.1. Let k, h be two nonnegative integers. Then there exists a
convergent F -isocrystal Eh

k on S/V such that

(Eh
k )T = Rhf(XT1 ,ZT1 )/T∗(P

DT1
k E

log,ZT1
crys (O(XT1 ,DT1∪ZT1 )/T ))K

for any p-adic enlargement T of S/V . In particular, there exists a convergent
F -isocrystal Rhf∗(O(X,D∪Z)/K) on S/V such that

Rhf∗(O(X,D∪Z)/K)T = Rhf(XT1 ,DT1∪ZT1 )/T∗(O(XT1 ,DT1∪ZT1 )/T )K

for any p-adic enlargement T of S/V .

Proof. The base change theorem (2.10.3) and the argument in [74, (3.1)] show
the existence of a p-adically convergent isocrystal Eh

k .
As in the proof of [74, (3.7)], we may assume that V = W ; furthermore,

by the log version of [74, (3.4)], we may assume that pOS = 0. The spectral
sequence in (2.9.6.3) for

Rhf(XT1 ,ZT1 )/T∗(P
DT1
k E

log,ZT1
crys (O(XT1 ,DT1∪ZT1 )/T ))

shows that the Frobenius action F ∗
S(Eh

k ) −→ Eh
k is an isomorphism. Thus

Eh
k prolongs to a convergent F -isocrystal as in [74, (3.7)]. ��

Remark 2.13.2. The existence of the convergent F -isocrystal Rhf∗(O(X,D∪Z)

/K) is a special case of [76, Theorem 4] and [29, §2 (e), (f)]. This existence
also follows from the log base change theorem ([54, (6.10)]), the bijectivity of
the Frobenius [46, (2.24)], and the same proof of [74, (3.1), (3.7)].

Corollary 2.13.3. The weight filtration on Rhf∗(O(X,D∪Z)/K) with respect
to D is a convergent F -isocrystal on S/V . That is, the image PD

k Rhf∗(O(X,D∪

Z)/K) := Im(Eh
k −→ Rhf∗(O(X,D∪Z)/K)) (k ∈ N) is a convergent F -isocrystal.

Proof. The category of the convergent isocrystals on S/V is abelian ([74,
(2.10)]); hence the image Im(Eh

k −→ Rhf∗(O(X,D∪Z)/K)) is a convergent
isocrystal.

Now, by [74, (2.18), (2.21)], we have only to prove that PD
k Rhf∗(O(X,D∪Z)

/K) gives a p-adically convergent F -isocrystal for the case V = W . The exis-
tence of the Frobenius on PD

k Rhf∗(O(X,D∪Z)/K) is clear by the functoriality
which will be stated in (2.13.9) below soon. Because the Frobenius F ’s on the
E1-terms of (2.9.6.3)⊗V K for a p-adic formal V -scheme T are isomorphisms,
the Frobenius on PD

k Rhf∗(O(X,D∪Z)/K) is also an isomorphism. This com-
pletes the proof of (2.13.3). ��

Remark 2.13.4. We can also develop theory of weight filtrations by virtue of
theory of log convergent topoi ([82]). See [73] for details.
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Corollary 2.13.5. Let k, h be two nonnegative integers. For any p-adic en-
largement T of S/V ,

(2.13.5.1) P
DT1
k Rhf(XT1 ,DT1∪ZT1 )/T∗(O(XT1 ,DT1∪ZT1 )/T )K :=

Im(Rhf(XT1 ,ZT1 )/T∗(P
DT1
k E

log,ZT1
crys (O(XT1 ,DT1∪ZT1 )/T ))K −→

Rhf(XT1 ,DT1∪ZT1 )/T∗(O(XT1 ,DT1∪ZT1 )/T )K)

is a flat OT⊗V K-module.

Proof. (2.13.5) follows from [74, (2.9)] and (2.13.3). ��

Remark 2.13.6. The flatness of Rhf(XT1 ,DT1∪ZT1 )/T∗(O(XT1 ,DT1∪ZT1 )/T )K is
a special case of [76, Lemma 36] and [29, §2 (e), (f)].

(2) Künneth formula

Theorem 2.13.7. Let (Xj ,Dj ∪ Zj) (j = 1, 2) be a log scheme stated in the
beginning of this section. Let (X3,D3 ∪ Z3) be the product (X1,D1 ∪ Z1)×S

(X2,D2 ∪ Z2) in the category of fine log schemes. Then the there exists the
following canonical isomorphism

⊕

i+j=h

Rif∗(O(X1,D1∪Z1)/K)⊗OS/K
Rjf∗(O(X2,D2∪Z2)/K)(2.13.7.1)

−→ Rhf∗(O(X3,D3∪Z3)/K)

of convergent F -isocrystals on S/V which is compatible with the weight fil-
trations with respect to D1, D2 and D3.

Proof. The existence of the canonical isomorphism in (2.13.7.1) as weight-
filtered convergent F -isocrystals immediately follows from (2.10.15). ��

(3) Log crystalline cohomology sheaf with compact support

Using (2.11.11) and (2.11.19), we obtain the following as in (1) and (2).

Theorem 2.13.8. Let k, h be two nonnegative integers.
(1) There exists a convergent F -isocrystal Eh

k,c on S/V such that

(Eh
k,c)T = P

DT1
k Rhf(XT1 ,DT1∪ZT1 )/T∗,c(O(XT1 ,DT1∪ZT1 ;ZT1 )/T )K

for any p-adic enlargement T of S/V . In particular, there exists a convergent
F -isocrystal Rhf∗,c(O(X,D∪Z;Z)/K) on S/V such that

Rhf∗,c(O(X,D∪Z;Z)/K)T = Rhf(XT1 ,DT1∪ZT1 )/T∗,c(O(XT1 ,DT1∪ZT1 ;ZT1 )/T )K

for any p-adic enlargement T of S/V .
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(2) The OT⊗V K-module

P
DT1
k Rhf(XT1 ,DT1∪ZT1 )/T∗,c(O(XT1 ,DT1∪ZT1 ;ZT1 )/T )K

is flat for any p-adic enlargement T of S/V .
(3) Let (Xj ,Dj ∪ Zj) (j = 1, 2) be as in (2.13.7). Then there exists the

following canonical isomorphism
⊕

i+j=h

Rif∗,c(O(X1,D1∪Z1;Z1)/K)⊗OS/K
Rjf∗,c(O(X2,D2∪Z2;Z2)/K)

∼−→ Rhf∗,c(O(X3,D3∪Z3;Z3)/K)

of convergent F -isocrystals on S/V which is compatible with the weight fil-
trations with respect to D1, D2 and D3.

(4) Functoriality

Theorem 2.13.9. Let f : (X,D ∪ Z) −→ S be as in the beginning of this
section. Let k, h be nonnegative integers. Then the following hold:

(1) The convergent F -isocrystal P D
k Rhf∗(O(X,D∪Z)/K) (k ∈ Z) is

functorial.
(2) The convergent F -isocrystal PD

k Rhfc∗(O(X,D∪Z;Z)/K) (k ∈ Z) is func-
torial with respect to the obvious analogue of the morphism in (2.11.18).

Proof. (1) and (2) immediately follow from (2.9.1) and (2.11.18), respectively.
��

(5) Gysin morphisms

Proposition 2.13.10. The Gysin morphism (2.8.4.5) induces the following
morphism

(2.13.10.1) (−1)jG
λj

λ : Rh−kf∗(O(Dλ,Z|Dλ
)/K ⊗Z �log

λ (D/K;Z))(−k) −→

Rh−k+2f∗(O(Dλj
,Z|Dλj

)/K ⊗Z �log
λj

(D/K;Z))(−(k − 1)).

of convergent F -isocrystals on S/V . Here Rhf∗(O(Dλ,Zλ|Dλ
)/K⊗Z�log

λ (D/K;
Z)) is a convergent F -isocrystal on S/V such that Rhf∗(O(Dλ,Zλ|Dλ

)/K ⊗Z

�log
λ (D/K;Z))T = RhfXT1/T∗(O((Dλ)T1 ,(Zλ)T1 |(Dλ)T1

/T ) ⊗Z �log
λcrys(DT1/T ;

ZT1)) for a p-adic enlargement T of S/V .
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Proof. (2.13.10) immediately follows from (2.8.4). ��

Using (1), (3), (4) and (5), we obtain the following:

Theorem 2.13.11. Let Rhf∗(O(D(k),Z|
D(k) )/K⊗Z�(k)log(D/K;Z)) be a con-

vergent F -isocrystal on S/V such that

Rhf∗(OD(k)/K ⊗Z �(k)log(D/K;Z))T =

RhfXT1/T∗(O(D
(k)
T1

,Z|
D

(k)
T1

)/T
⊗Z �(k)log

crys (DT1/T ;ZT1))

for any p-adic enlargement T of S/V . Then the following hold:
(1) There exist the following weight spectral sequences of convergent

F -isocrystals

E−k,h+k
1 ((X,D ∪ Z)/K)(2.13.11.1)

= Rh−kf∗(O(D(k),Z|
D(k) )/K ⊗Z �(k)log(D/K;Z))(−k)

=⇒ Rhf∗(O(X,D∪Z)/K),

Ek,h−k
1,c ((X,D ∪ Z)/K)(2.13.11.2)

= Rh−kf∗(O(D(k),Z|
D(k) )/K ⊗Z �(k)log(D/K;Z))

=⇒ Rhf∗,c(O(X,D∪Z;Z)/K).

The boundary morphism of (2.13.11.1) (resp. (2.13.11.2)) is given by −G
(resp. ι(k)∗) induced by the morphism in (2.8.5) (resp. (2.11.1.3)).

(2) The spectral sequences (2.13.11.1) and (2.13.11.2) are functorial with
respect to the obvious analogue of the morphism in (2.9.0.1) and (2.11.18),
respectively.

Proof. (1): (1) follows from (2.9.6.2) and (2.11.14.3).
(2): Obvious. ��

Definition 2.13.12. In the case Z = ∅, we call (2.13.11.1) (resp. (2.13.11.2))
the p-adic weight spectral sequence of Rhf∗(O(X,D)/K) (resp. Rhf∗,c

(O(X,D)/K)).

2.14 Specialization Argument in Log Crystalline
Cohomology

Let us recall a specialization argument of Deligne-Illusie in log crystalline
cohomologies (cf. [49, (3.10)], [68, §3]) for later sections §2.15 and §2.18.
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Let p be a prime number. Let
◦
T be a noetherian formal scheme with

an ideal sheaf of definition aOT , where a is a global section of Γ (
◦
T ,OT ).

Assume that there exists a positive integer n such that pOT = anOT . Let

T be a fine formal log scheme with underlying formal scheme
◦
T . Assume

that OT is a-torsion-free, that is, the endomorphism a× idOT
∈ EndOT

(OT )
is injective, and that the ideal sheaf aOT has a PD-structure γ. We call
T = (T, aOT , γ) above an adic fine formal log PD-scheme. We define the
notion of a morphism g′ : T ′ −→ T of adic fine formal log PD-schemes in the
following way: the morphism g′ is nothing but a morphism of formal fine log
PD-schemes, and T ′ is a′-adically complete and separated and a′-torsion-free,
where a′ := g′∗(a). In this section we assume that, for each affine open set
Spf(R) of T , aR is a prime ideal and that the localization ring Ra at the
ideal aR is a discrete valuation ring.

Let H be an OT -module of finite type. Since Ra is a PID, there exists
a non-empty open log formal subscheme T ′ of T such that there exists an
isomorphism H|T ′ � Or

T ′ ⊕Htor, where Htor is a direct sum of OT ′ -modules
OT ′/ae (e ∈ Z>0) (Deligne’s remark ([49, (3.10)])). Let E be an a-torsion-free
OT -module. Then, as in [68, (3.1)], it is easy to see that

(2.14.0.1) TorOT ′
r (H|T ′ , E|T ′) = 0 (∀r ∈ Z>0)

and

(2.14.0.2) Torg−1(OT ′ )
r (g−1(H|T ′),OT ′′) = 0 (∀r ∈ Z>0)

for any morphism g : T ′′ −→ T ′ of adic fine formal log PD-schemes.
Set T1 := Spec

T
(OT /a), and set T ′

1 := Spec
T ′(OT ′/a) for an open log

formal subscheme T ′ of T . Let f : X −→ T1 be a proper log smooth integral
morphism. By the finiteness of log crystalline cohomologies (cf. [11, 7.24
Theorem]), there exists a non-empty open log formal subscheme T ′ of T such
that

(2.14.0.3) TorOT ′
r (RhfXT ′

1
/T ′∗(OXT ′

1
/T ′), E|T ′) = 0 (∀r ∈ Z>0)

for any a-torsion-free OT -module E and for any h ∈ Z. Assume furthermore
that the log structures on X,T are fs. Let IX/T be the ideal sheaf on OX/T

defined in [85, §5]. (In [85, §5], IX/T is defined under the condition that
◦
T

is equal to Spec Wm(κ) (κ is a perfect field of characteristic p > 0), the log
structure on T is associated to the morphism N � 1 �→ b ∈ Wm(κ) for some
b and that the morphism f is universally saturated. However, for the defin-
ition of IX/T , we do not need these assumptions.) Set RhfX/T∗,c(OX/T ) :=
RhfX/T∗(IX/T ). One can see that IX/S is a crystal on the restricted log crys-
talline site (X/T )logRcrys as in [85, (5.3)] and that, for any log smooth integral
lift X −→ T of f , the sheaf (IX/T )X is flat over OT by [85, (2.22)]. By using
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these facts, we see that the log version of the proofs of [11, (7.8), (7.13), (7.16),
(7.24)] and [74, (3.3)] work for the coefficient IX/S . Hence RhfX/T∗,c(OX/T )
is a perfect complex of OT -modules and it satisfies the base change property.
Therefore, if T ′ is sufficiently small, we have

(2.14.0.4) TorOT ′
r (RhfXT ′

1
/T ′∗,c(OXT ′

1
/T ′), E|T ′) = 0 (∀r ∈ Z>0,∀h ∈ Z).

Proposition 2.14.1. Let T = (T, aOT , γ) be as above. Let g : T ′′ −→ T ′ be
a morphism from an adic fine formal log scheme into an open log formal
subscheme of T . If T ′ is small enough, then the following hold:

(1) The canonical morphism

g∗RhfXT ′
1
/T ′∗(OXT ′

1
/T ′)−→RhfXT ′′

1
/T ′′∗(OXT ′′

1
/T ′′)

is an isomorphism of OT ′′-modules.
(2) The canonical morphism

g∗RhfXT ′
1
/T ′∗,c(OXT ′

1
/T ′)−→RhfXT ′′

1
/T ′′∗,c(OXT ′′

1
/T ′′)

is an isomorphism of OT ′′-modules.

Proof. We may assume that (2.14.0.2), (2.14.0.3) and (2.14.0.4) hold.
(1): As in [68, (3.2)], we immediately obtain (1) using the existence of a

strictly perfect complex of OT ′ -modules representing RΓ (XT ′
1
/T ′,OXT ′

1
/T ′)

(cf. [11, 7.14 Definition, 7.24.3 Theorem]), using (2.14.0.2) and (2.14.0.3), and
using the log base change theorem ([54, (6.10)], cf. [74, (3.3)]).

(2): By the facts described before (2.14.0.4), the same proof as that of (1)
works.

��

We will use the following proposition in §2.18 below.

Proposition 2.14.2. Let T be an adic formal scheme. Let g : T ′′ −→ T ′ be
a morphism from an adic scheme into an open formal subscheme of T . Let
f : (X,D ∪ Z) −→ T1 be a proper smooth scheme with a relative SNCD over
T1. If T ′ is small enough, then the following hold:

(1) The canonical morphism

g∗P
DT ′

1
k Rhf(X,D∪Z)T ′

1
/T ′∗(O(X,D∪Z)T ′

1
/T ′) −→

P
DT ′′

1
k Rhf(X,D∪Z)T ′′

1
/T ′′∗(O(X,D∪Z)T ′′

1
/T ′′)

is an isomorphism.
(2) The canonical morphism

g∗P
DT ′

1
k Rhf(X,D∪Z)T ′

1
/T ′∗,c(O(X,D∪Z;Z)T ′

1
/T ′) −→
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P
DT ′′

1
k Rhf(X,D∪Z)T ′′

1
/T ′′∗,c(O(X,D∪Z;Z)T ′′

1
/T ′′)

is an isomorphism

Proof. By (2.9.6.2), there exist the following two spectral sequences

E−k,h+k
1 = Rh−kf(D(k),Z|

D(k) )T ′
1
/T ′∗(O(D(k),Z|

D(k) )T ′
1
/T ′

(2.14.2.1)

⊗Z �(k)log
crys (DT ′

1
/T ′;ZT ′

1
))(−k)

=⇒ Rhf(X,D∪Z)T ′
1
/T ′∗(O(X,D∪Z)T ′

1
/T ′),

E−k,h+k
1 = Rh−kf(D(k),Z|

D(k) )T ′′
1

/T ′′∗(O(D(k),Z|
D(k) )T ′′

1
/T ′′

(2.14.2.2)

⊗Z �(k)log
crys (DT ′′

1
/T ′′;ZT ′′))(−k)

=⇒ Rhf(X,D∪Z)T ′′
1

/T ′′∗(O(X,D∪Z)T ′′
1

/T ′′).

By (2.9.1) (2), there exists a canonical morphism

g−1((2.14.2.1))⊗g−1(OT ′ ) OT ′′ −→ (2.14.2.2).

Then, by (2.14.0.3), there exists a non-empty open formal subscheme T ′ such
that

T orOT ′
r (Rhf(D(k),Z|

D(k) )T ′
1
/T ′∗(O(D(k),Z|

D(k) )T ′
1
/T ′), E|T ′) = 0

for any OT -module E without a-torsion and for all r ∈ Z>0. Hence we have
an isomorphism

g−1E−k,h+k
1 ((X,D∪Z)T ′

1
/T ′)⊗g−1(OT ′ )OT ′′

∼−→ E−k,h+k
1 ((X,D∪Z)T ′′

1
/T ′′)

as in the proof of (2.14.1) (1), and therefore the morphism in (1) is an
isomorphism.

The proof of (2) is the same as that of (1). ��

2.15 The E2-degeneration of the p-adic Weight Spectral
Sequence of an Open Smooth Variety

Let κ be a perfect field of characteristic p > 0. Let W be the Witt ring of
κ. Let K0 be the fraction field of W . In [68, (5.2)] we have proved the E2-
degenerations modulo torsion of the weight spectral sequences (2.9.6.2) and
(2.11.14.3) when Z = ∅ and S = Spf(W ). To prove the degenerations, we
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have used a somewhat tricky argument in [68, (5.2)] (cf. [68, (3.2), (3.4), (3.5),
(3.6)]) based on Deligne’s remark ([49, 3.10]). Though we also use Deligne’s
remark in this book, the proof in this section is not tricky by virtue of the
existence of the weight spectral sequences (2.9.6.2) and (2.11.14.3) over a
general base (cf. [68, (3.7)]).

Let (X,D) be a proper smooth scheme with an SNCD over κ. By [40,
3, (8.9.1) (iii), (8.10.5)] and [40, 4, (17.7.8)] , there exist a smooth affine
scheme S1 over a finite field Fq and a model (X ,D) of (X,D) over S1.
By a standard deformation theory ([41, III (6.10)]), there exists a formally
smooth scheme S such that S ⊗W (Fq) Fq = S1. Let T be an affine open
subscheme of S, and set T1 := T⊗W (Fq)Fq. Take a closed point t of T1.
The point t is the spectrum of a finite field κt. We fix a lift FT : T −→ T
of the Frobenius(=p-th power morphism) FT1 of T1. Then we have the Te-
ichmüller lift Γ (T,OT ) −→W (κt) (resp. Γ (T,OT ) −→ W ) of the morphism
Γ (T1,OT1) −→ κt (resp. Γ (T1,OT1) −→ κ) (e.g., [50, 0 1.3]). The rings W (κt)
and W become Γ (T,OT )-algebras by these lifts.

To prove the E2-degenerations, we prove some elementary lemmas.
Let A be a p-adically complete and separated p-torsion-free ring with a

lift f of the Frobenius endomorphism of A1 := A/p. Then there exists a
unique section τ̃ : A −→ W (A) of the projection W (A) −→ A such that
τ̃ ◦ f = F ◦ τ̃ , where F is the Frobenius of W (A) (e.g., [50, 0 (1.3.16)]). This
morphism induces morphisms τ : A −→ W (A1) and τn : A/pn −→ Wn(A1).
Then the following holds:

Lemma 2.15.1. If A1 is reduced, then the morphism τ : A −→ W (A1) is
injective.

Proof. Let Fn
∗ (A1) be the restriction of scalars of A1 by the n-th power

of the Frobenius endomorphism of A1. By the assumption, the morphism
Fn : A1 −→ Fn

∗ (A1) is injective. (2.15.1) follows from the following commu-
tative diagram in [50, 0 (1.3.22)]:

A1
F n

−−−−→ Fn
∗ (A1)

pn

⏐

⏐

�
� V n

⏐

⏐

�
� (∀n ∈ N)

pnA/pn+1A
grnτn+1−−−−−→ V nW (A1)/V n+1W (A1).

��

Lemma 2.15.2. (1) Let B be a commutative ring whose Jacobson radical
rad(B) is the zero. Let M(B) be the set of the maximal ideals of B. Then
the morphism W (B) −→

∏

m∈M(B)

W (B/m) is injective.

(2) Let C be a commutative ring with unit element and let D be a smooth
C-algebra. If rad(C) = 0, then rad(D) = 0.
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Proof. (1): By the assumption, the natural morphism B −→
∏

m∈M(B)

B/m is

injective. Thus W (B) −→ W (
∏

m∈M(B)

B/m) =
∏

m∈M(B)

W (B/m) is injective.

(2): Let {fi}i be a family of elements of D such that Spec(D) =
⋃

i Spec
(Dfi

). Then the natural morphism D −→
∏

i Dfi
is injective since D −→

∏

m∈M(D)

Dm is injective. Thus the problem is local; we may assume that there

exists a finite etale morphism C[X1, . . . , Xm] −→ D. Let (
√

0)C and (
√

0)D be
the nilpotent radicals of C and D, respectively. Since (

√
0)C ⊂ rad(C) = 0,

(
√

0)C = 0. Hence C is a Jacobson ring and D is also by [13, V §3, n◦4,
Theorem 3]. Therefore (

√
0)D = rad(D). Since C[X1, . . . , Xm] is reduced, D

is also by [41, I Proposition 9.2]. Hence (
√

0)D = 0. ��

Corollary 2.15.3. Let κ′ be a perfect field of characteristic p > 0. Let A
be a p-adically complete and separated formally smooth algebra over W (κ′)
with a lift of the Frobenius morphism of A1. Then the morphism A −→

∏

m∈M(A1)

W (A1/m) is injective.

Proof. (2.15.3) follows from (2.15.1) and (2.15.2). ��

Theorem 2.15.4 ([68, (5.2)]). If Z = ∅ and S = Spf(W ), then (2.9.6.2)
and (2.11.14.3) degenerate at E2 modulo torsion.

Proof. For a W (Fq)-module M , MK0(Fq) denotes M ⊗W (Fq) K0(Fq). First
we prove (2.15.4) for (2.9.6.2). Replace T by a sufficiently small affine
open sub log formal scheme in order that, for any h, k ∈ Z, r ∈ Z>0,
E−k,h+k

r ((XT1 ,DT1)/T ) has the form O⊕n
T ⊕ N (n ∈ N), where N is a di-

rect sum of modules of type OT /pe (e ∈ Z>0). Then we have

Torg−1(OT )
s (g−1E−k,h+k

r ((XT1 ,DT1)/T ),OT ′) = 0 (∀s ∈ Z>0)

for any morphism g : T ′ −→ T of p-adic fine log PD-schemes and for any
h, k ∈ Z, r ∈ Z>0. Then we have

g∗E−k,h+k
r ((XT1 ,DT1)/T ) = E−k,h+k

r ((XT ′
1
,DT ′

1
)/T ′)

for any morphism g : T ′ −→ T of p-adic fine log PD-schemes and for any
h, k ∈ Z, r ∈ Z>0. Indeed, for r = 1, it is nothing but (2.14.1) (1); for general
r, it follows from the functoriality of the spectral sequence (2.9.6.2) and
induction. Hence, to prove the theorem for the spectral sequence (2.9.6.2),
we have to only to prove that the morphism

d−k,h+k
r ((XT1 ,DT1)/T )K0(Fq) : E−k,h+k

r ((XT1 ,DT1)/T )K0(Fq) −→
E−k+r,h+k−r+1

r ((XT1 ,DT1)/T )K0(Fq)

is zero for any r ≥ 2. Let us express



202 2 Weight Filtrations on Log Crystalline Cohomologies

E−k,h+k
r ((XT1 ,DT1)/T ) = O⊕n

T ⊕N ,

E−k+r,h+k−r+1
r ((XT1 ,DT1)/T ) = O⊕n′

T ⊕N ′,

where N ,N ′ are direct sums of modules of type OT /pe (e ∈ Z>0). Then we
have

d−k,h+k
r ((XT1 ,DT1)/T ) ∈ HomOT

(O⊕n
T ⊕N ,O⊕n′

T ⊕N ′)

= HomOT
(O⊕n

T ,O⊕n′

T )⊕N,

where N is a direct sum of modules of type Γ (T,OT )/pe (e ∈ Z>0). Then,
for any closed point t of T1, we have

d−k,h+k
r ((Xt,Dt)/W (κt))

=d−k,h+k
r ((XT1 ,DT1)/T )⊗OT

W (κt)

∈HomW (κt)(W (κt)⊕n,W (κt)⊕n′
)⊕ (N ⊗Γ (T,OT ) W (κt)).

By the purity of the weight [15, (1.2)] or [68, (2.2) (4)], we have
d−k,h+k

r ((Xt,Dt)/W (κt))K0(Fq) = 0 for any closed point t of T1, that is,
d−k,h+k

r ((Xt,Dt)/W (κt)) is contained in N ⊗Γ (T,OT ) W (κt). From this
and (2.15.3), we see that d−k,h+k

r ((XT1 ,DT1)/T ) is contained in N . Hence
d−k,h+k

r ((XT1 ,DT1)/T )K0(Fq) = 0.
The proof of the degeneration of (2.11.14.3) is the same as the above. (One

may use the duality between (2.9.6.2)⊗W K0 and (2.11.14.3)⊗W K0 for the
case Z = ∅ and S = Spf(W ).) ��

2.16 The Filtered Log Berthelot-Ogus Isomorphism

In this section we prove a filtered version of Berthelot-Ogus isomorphism.
Because the proof of this isomorphism is almost the same as that in [12] and
[74], we give only the sketch of the proof.

Proposition 2.16.1. Let S be a scheme of characteristic p > 0 and let
S0

⊂−→ S be a nilpotent immersion. Let S
⊂−→ T be a PD-closed immersion

into a formal scheme with p-adic topology such that OT is p-torsion-free. Let
f : (X,D∪Z) −→ S and f ′ : (X ′,D′∪Z ′) −→ S be smooth schemes with rel-
ative transversal SNCD’s. Assume that X, X ′, S and T are noetherian. Set
(X0,D0 ∪Z0) := (X,D∪Z)×S S0 and (X ′

0,D
′
0 ∪Z ′

0) := (X ′,D′ ∪Z ′)×S S0.
Let g : (X0,D0∪Z0) −→ (X ′

0,D
′
0∪Z ′

0) be a morphism of log schemes over S0

which induces morphisms (X0,D0) −→ (X ′
0,D

′
0) and (X0, Z0) −→ (X ′

0, Z
′
0).

Then the following hold:
(1) There exists a canonical filtered morphism
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(2.16.1.1) g∗ : (Rf ′
(X′,D′∪Z′)/T∗(O(X′,D′∪Z′)/T )⊗L

Z
Q, PD′

) −→

(Rf(X,D∪Z)/T∗(O(X,D∪Z)/T )⊗L
Z

Q, PD),

which is compatible with compositions. If g has a lift g̃ : (X,D ∪ Z) −→
(X ′,D′ ∪ Z ′), then g∗ = g̃log ∗

crys .

(2) Assume that g induces a morphism g(k) : (D(k)
0 , Z0|D(k)

0
) −→ (D′(k)

0 , Z ′
0

|
D′(k)

0
) for all k ∈ N. Then there exists a canonical filtered morphism

(2.16.1.2) g∗c : (Rf ′
(X′,D′∪Z′)/T∗,c(O(X′,D′∪Z′;Z′)/T )⊗L

Z
Q, PD′

c ) −→

(Rf(X,D∪Z)/T∗,c(O(X,D∪Z;Z)/T )⊗L
Z

Q, PD
c ),

which is compatible with compositions. If g has a lift g̃ : (X,D ∪ Z) −→
(X ′,D′ ∪ Z ′), then g∗c = g̃log ∗

crys .

Proof. (1): The relative Frobenius F(X,D∪Z)/S : (X,D∪Z) −→ (X(p),D(p) ∪
Z(p)) over S induces an isomorphism

PD(p)

k Rf(X(p),D(p)∪Z(p))/T∗(O(X(p),D(p)∪Z(p))/T )⊗L
Z

Q

∼−→ PD
k Rf(X,D∪Z)/T∗(O(X,D∪Z)/T )⊗L

Z
Q (k ∈ Z)

by (2.9.6.3) and (2.10.2.1) because the relative Frobenius induces an isomor-
phism of the classical iso-crystalline cohomology of a smooth scheme over S
([12, (1.3)]). Hence the same proof as that in [12, (2.1)] shows that we have
the morphism (2.16.1.1).

(2): The proof for (2.16.1.2) is the same as that for (2.16.1.1) by using
(2.11.14.4) instead of (2.9.6.3) and using (2.11.18). ��

Corollary 2.16.2. If (X0,D0 ∪ Z0) = (X ′
0,D

′
0 ∪ Z ′

0), then

(Rf(X,D∪Z)/T∗(O(X,D∪Z)/T )⊗L
Z

Q, PD) =

(Rf(X′,D′∪Z′)/T∗(O(X′,D′∪Z′)/T )⊗L
Z

Q, PD′
)

and
(Rf(X,D∪Z)/T∗,c(O(X,D∪Z;Z)/T )⊗L

Z
Q, PD

c ) =

(Rf(X′,D′∪Z′)/T∗,c(O(X′,D′∪Z′;Z′)/T )⊗L
Z

Q, PD′

c ).

Proof. Obvious (cf. [12, (2.2)]). ��

Theorem 2.16.3 (Filtered log Berthelot-Ogus isomorphism). Let V
be a complete discrete valuation ring of mixed characteristics with perfect
residue field κ. Let p be the characteristic of κ. Set K := Frac(V ). Let S be
a p-adic formal V -scheme in the sense of [74, §1]. Let (X,D ∪Z) −→ S be a
proper formally smooth scheme with a relative transversal SNCD over S. Let
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T be an enlargement of S with morphism z : T0 := (Spec
T
(OT /p))red −→ S.

Set T1 := Spec
T
(OT /p). Let f0 : (X0,D0 ∪ Z0) := (X,D ∪ Z)×S,z T0 −→ T0

be the base change of f : (X,D ∪ Z) −→ S. Then the following hold:
(1) If there exists a log smooth lift f1 : (X1,D1 ∪ Z1) −→ T1 of f0, then

there exist the following canonical filtered isomorphisms

σT : (Rhf(X1,D1∪Z1)/T∗(O(X1,D1∪Z1)/T )K , PD1)

∼−→ (Rhf∗(O(X,D∪Z)/K)T , PD),

σT,c : (Rhf(X1,D1∪Z1)/T∗,c(O(X1,D1∪Z1;Z1)/T )K , PD1
c )

∼−→ (Rhf∗,c(O(X,D∪Z;Z)/K)T , PD
c ).

(2) If there exists a log smooth lift f : (X ,D ∪ Z) −→ T of f0, then there
exist the following canonical filtered isomorphisms

σlog
crys,T : (Rhf∗(Ω•

X/T (log(D ∪ Z)))K , PD) ∼−→ (Rhf∗(O(X,D∪Z)/K)T , PD),

σlog
crys,T,c : (Rhf∗(Ω•

X/T (log(Z−D)))K , PD
c ) ∼−→(Rhf∗,c(O(X,D∪Z;Z)/K)T , PD

c ).

Proof. The proof is the same as that of [74, (3.8)]. ��

Remark 2.16.4. Let V , κ and p be as in (2.16.3). Then V/p is a κ-algebra by
[79, II Proposition 8].

(1) Let (X ,D∪Z) a proper smooth scheme over Spec(V ) with an (S)NCD.
Set UK := XK\(DK∪ZK). Then, by (2.16.3) and (2.16.2) and the base change
theorem of the log crystalline cohomology ([54, (6.10)]), there are canonical
isomorphisms:

Hh
log-crys((Xκ,Dκ ∪ Zκ)/W (κ))K

∼−→ Hh(XK ,Ω•
XK/K(log(DK ∪ ZK)))

(2.16.4.1)

= Hh
dR(UK/K),

Hh
log-crys,c((Xκ,Dκ ∪ Zκ;Zκ)/W (κ))K

∼−→ Hh(XK ,Ω•
XK/K(log(ZK −DK)))

(2.16.4.2)

which are compatible with the weight filtrations with respect to Dκ and DK .
See also [17] for analogous statements by the rigid analytic method in the
case Z = ∅.

(2) Let (X,D) be a proper smooth scheme with a relative SNCD
over κ. Set U := X \ D. By the finite base change theorem ([5, (1.8)])
and by Shiho’s comparison theorems [82, Theorem 2.4.4, Corollary 2.3.9,
Theorem 3.1.1]), there exists a canonical isomorphism Hh

rig(U/K) ∼−→
Hh

log-crys((X,D)/W ) ⊗W K. As a result, Hh
rig(U/K) has a weight filtration.
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By [85], [82, Theorem 2.4.4, Corollary 2.3.9, Theorem 3.1.1] and [6, (2.4)],
we obtain Hh

log-crys,c((X,D)/W ) ⊗W K = Hh
rig,c(U/K). In particular,

Hh
rig,c(U/K) has a weight filtration.
If (X,D) is the special fiber of (X ,D) in (1), there exists a weight-filtered

isomorphism Hh
rig(U/K) ∼−→ Hh

dR(UK/K). An analogous statement can be
found in [17].

(3) Let U be a separated scheme of finite type over κ. Let Z/κ be a closed
subscheme of U . In [70] the first-named author has defined a finite increasing
filtration on Hh

rig,Z(U/K) which deserves the name “weight filtration”. In
particular, the weight filtration on Hh

rig(U/K) defined in (2) is independent
of the choice of (X,D). See §3.4 below for more details. In [loc. cit.] he has
also defined a finite increasing filtration on Hh

rig,c(U/K) which deserves the
name “weight filtration” in the case where U is embeddable into a smooth
scheme over κ as a closed subscheme. See also §3.6 below for more details.

2.17 The E2-degeneration of the p-adic Weight Spectral
Sequence of a Family of Open Smooth Varieties

Let V be a complete discrete valuation ring of mixed characteristics with
perfect residue field κ of characteristic p > 0. Let B be a topologically finitely
generated ring over V . For a V -module M , MK denotes the tensor product
M ⊗V K. In particular, BK = B⊗V K. Let m be a maximal ideal of BK . By
the proof of [84, (4.5)], BK/m is a finite extension of K. Set K ′ := BK/m.
Let C be the image of B in BK/m = K ′. Let V ′ be the integer ring of K ′.
Then the following is well-known (cf. [74, the proof of (4.2)]):

Lemma 2.17.1. V ⊂ C ⊂ V ′.

Proof. The inclusion V ⊂ C is obvious. Let π be a uniformizer of V . Let v
be a normalized valuation of V ′. Let e be the ramification index of V ′/V . By
the definition of B, there exists a surjection V {x1, . . . , xr} −→ B. It suffices
to show that the image yi (1 ≤ i ≤ r) of xi in K ′ belongs to V ′. If not,
v(yi) < 0 for some i. Set

an =

{

πn/(e+1) (n ∈ N, e + 1|n),
0 (n ∈ N, e + 1 � n).

Then the image of an element
∑∞

n=0 anxn
i ∈ V {x1, . . . , xr} in K ′ does not

converge in K ′. This is a contradiction. ��

We keep the notations in §2.4 except that S is a p-adic formal V -scheme
in the sense of [74, §1] and that X is a proper smooth scheme with a relative
SNCD D over S1 := Spec

S
(OS/p). The main result in this section is the

following:
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Theorem 2.17.2 (E2-degeneration). Assume that S is a p-adic formal
V -scheme and that X is a proper smooth scheme over S1. Then (2.9.6.2)⊗V K
and (2.11.14.3)⊗V K degenerate at E2 in the case Z = ∅ and S0 = S1.

Proof. (Compare the following proof with [20, (5.5)].)
We first prove the theorem for (2.9.6.2)⊗V K for the case Z = ∅ and

S0 = S1. We may assume that S is a p-adic affine flat formal scheme Spf(B)
over Spf(V ). Consider the following boundary morphism:

(2.17.2.1)
d−k,h+k

r : E−k,h+k
r ((X,D)/S)K −→ E−k+r,h+k−r+1

r ((X,D)/S)K (r ≥ 2).

We prove that d−k,h+k
r = 0 (r ≥ 2).

Case I: First we consider a case where B is a topologically finitely gen-
erated ring over V such that BK is an artinian local ring. Let m be the
maximal ideal of BK . Then m is nilpotent. Set K ′ := BK/m. Consider the
following ideal of B: I := Ker(B −→ BK/m). Then C = B/I, CK = K ′ and
V ⊂ C ⊂ V ′ ((2.17.1)). Let ι : Spf(C) ⊂−→ Spf(B) be the nilpotent closed im-
mersion. Since the characteristic of K is 0, the morphism Spec(CK) −→
Spec(K) is smooth and hence there exists a section sK : Spec(BK) −→
Spec(CK) of the nilpotent closed immersion Spec(CK) −→ Spec(BK). By
[74, (1.17)], there exists a finite modification π : Spf(B′) −→ Spf(B), a nilpo-
tent closed immersion ι′ : Spf(C) ⊂−→ Spf(B′) with π ◦ ι′ = ι and a morphism
s : Spf(B′) −→ Spf(C) such that s induces sK and that s ◦ ι′ = id. Set
S′ := Spf(B′). Because the boundary morphisms {d−k,h+k

1 } are summations
of Gysin morphisms (with signs) ((2.8.5)), the E2-terms of (2.9.6.2) ⊗V K
are convergent F -isocrystals by [74, (3.7), (3.13), (2.10)]. Hence we have
E−k,h+k

2 ((X,D)/S)K = E−k,h+k
2 ((XS′

1
,DS′

1
)/S′)K since B′

K = BK . Let
{d′••

r } (r ≥ 1) be the boundary morphism of (2.9.6.2)⊗V K for (XS′
1
,DS′

1
)/S′.

Because {d••r } (r ≥ 2) are functorial with respect to a morphism of p-adic
enlargements, we have the following commutative diagram for r ≥ 2:

E−k,h+k
r ((X,D)/S)K −−−−→ E−k,h+k

r ((XS′
1
,DS′

1
)/S′)K

d−k,h+k
r

⏐

⏐

�

⏐

⏐

�
d′

r
−k,h+k

E−k+r,h+k−r+1
r ((X,D)/S)K −−−−→ E−k+r,h+k−r+1

r ((XS′
1
,DS′

1
)/S′)K .

Here, if r = 2, then the two horizontal morphisms above are isomorphisms.
By induction on r ≥ 2, we see that d••r vanishes if d′r

•• does. Hence it suffices
to prove that the boundary morphism

d′
r
−k,h+k : E−k,h+k

r ((XS′
1
,DS′

1
)/S′)K(2.17.2.2)

−→ E−k+r,h+k−r+1
r ((XS′

1
,DS′

1
)/S′)K (r ≥ 2)

is the zero. Let l(M) be the length of a finitely generated B′
K = BK-module

M . Furthermore, to prove the vanishing of d′r
••, it suffices to prove that
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(2.17.2.3)
l(Rhf(XS′

1
,DS′

1
)/S′∗(O(XS′

1
,DS′

1
)/S′)K) = l(

⊕

k
E−k,h+k

2 ((XS′
1
,DS′

1
)/S′)K).

Set S′′ := Spf(C). Then we have the morphism (XS′′
1
,DS′′

1
) −→ S′′. Let us

denote the pull-back of the morphism (XS′′
1
,DS′′

1
) −→ S′′ by s : S′ −→ S′′

by (X ′
S′

1
,D′

S′
1
) −→ S′. Then, since we have π ◦ ι′ = ι and s ◦ ι′ = id, both

(XS′
1
,DS′

1
) and (X ′

S′
1
,D′

S′
1
) are deformations of (XS′′

1
,DS′′

1
) to S′

1. Hence, by
(2.16.2), the spectral sequence (16.6.2)⊗V K for (XS′

1
,DS′

1
)/S′ and that for

(X ′
S′

1
,D′

S′
1
)/S′ are isomorphic. Therefore we have

E−k,h+k
2 ((XS′

1
,DS′

1
)/S′)K = E−k,h+k

2 ((X ′
S′

1
,D′

S′
1
)/S′)K

= B′ ⊗C E−k,h+k
2 ((XS′′

1
,DS′′

1
)/S′′)K .

Hence, to prove (2.17.2.3), it suffices to prove that

dimK′(Rhf(XS′′
1

,DS′′
1

)/S′′∗(O(XS′′
1

,DS′′
1

)/S′′)K)
(2.17.2.4)

= dimK′(
⊕

k
E−k,h+k

2 ((XS′′
1
,DS′′

1
)/S′′)K).

Set V ′
1 := V ′/p. Because there exists a morphism Spf(V ′) −→ Spf(C) of

p-adic enlargements of S, it suffices to prove that

dimK′(Rhf(XV ′
1
,DV ′

1
)/V ′∗(O(XV ′

1
,DV ′

1
)/V ′)K)

(2.17.2.5)

= dimK′(
⊕

k
E−k,h+k

2 ((XV ′
1
,DV ′

1
)/V ′)K).

We reduce (2.17.2.5) to a result of [68, (5.2) (1)](=(2.15.4) for (2.9.6.2) in
this book) by using (a log version of) a result of Berthelot-Ogus ([12, §2]) as
follows.

Let κ′ be the residue field of V ′. Since κ is perfect and since κ′ is a finite
extension of κ, κ′ is also perfect. Let W ′ be the Witt ring of κ′. The ring V ′

1

is an artinian local κ′-algebra with residue field κ′ ([79, II Proposition 8]).
Set X ′ := XV ′

1
⊗V ′

1
κ′ and D′ := DV ′

1
⊗V ′

1
κ′. Then (X ′ ⊗κ′ V ′

1 ,D′ ⊗κ′ V ′
1) and

(XV ′
1
,DV ′

1
) are two log deformations of (X ′,D′). Therefore, by (2.16.2), the

spectral sequence (2.9.6.2)⊗V K for (X ′ ⊗κ′ V ′
1 ,D′ ⊗κ′ V ′

1)/V ′ and that for
(XV ′

1
,DV ′

1
)/V ′ are isomorphic. From this fact, the log base change theorem

([54, (6.10)]) and the compatibility of Gysin morphisms with base change ([3,
VI Théorème 4.3.12]), we have

Rhf(XV ′
1
,DV ′

1
)/V ′∗(O(XV ′

1
,DV ′

1
)/V ′)⊗V ′ K ′(2.17.2.6)

∼−→ Rhf(X′,D′)/W ′∗(O(X′,D′)/W ′)⊗W ′K ′,
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(2.17.2.7)
E−k,h+k

2 ((XV ′
1
,DV ′

1
)/V ′)⊗V ′ K ′ ∼−→ E−k,h+k

2 ((X ′,D′)/W ′)⊗W ′K ′.

Hence it suffices to prove that

E−k,h+k
2 ((X ′,D′)/W ′)⊗W ′K ′ = E−k,h+k

∞ ((X ′,D′)/W ′)⊗W ′K ′.

We have already proved this in [68, (5.2) (1)](=(2.15.4)).
Case II: Next, we consider the general case. Let m be a maximal ideal

of BK . Consider the following ideal I(n) and the following ring B(n) in
[74, p. 780]:

I(n) := Ker(B −→ BK/mn), B(n) := B/I(n) (n ∈ N).

The ring B(n) defines a p-adic enlargement S(n) of S. Let

d−k,h+k
r,(n) : E−k,h+k

r ((X(S(n))1 ,D(S(n))1)/S(n))K

−→ E−k+r,h+k−r+1
r ((X(S(n))1 ,D(S(n))1)/S(n))K

be the boundary morphism. Because {d••r } is functorial, we have the following
commutative diagram:

E−k,h+k
r ((X, D)/S)⊗B(B(n))K −−−−−−−→ E−k,h+k

r ((X(S(n))1
, D(S(n))1

)/S(n))K

d−k,h+k
r ⊗BK

(B(n))K

⏐

⏐

�

⏐

⏐

�
d
−k,h+k
r,(n)

E−k+r,h+k−r+1
r ((X, D)/S)⊗B(B(n))K −−−−−−−→E−k+r,h+k−r+1

r ((X(S(n))1
, D(S(n))1

)/S(n))K .

Because E−k,h+k
2 ((X,D)/S)K is a convergent F -isocrystal, the two horizon-

tal morphisms are isomorphisms if r = 2. By induction on r and by the
proof for the Case I, the boundary morphism d••

r ⊗BK
(B(n))K (r ≥ 2) van-

ishes. Thus lim←−n
(d••r ⊗BK

BK/mn) = 0. Because BK is a noetherian ring and

E−k,h+k
2 ((X,D)/S)K is a finitely generated BK-module, we have

d••r ⊗BK
(lim←−n

BK/mn) = lim←−
n

(d••r ⊗BK
BK/mn) = 0.

Since (BK)m is a Zariski ring, lim←−n
(BK)m/mn(BK)m is faithfully flat over

(BK)m ([13, III §3 Proposition 9]). Therefore d••r ⊗BK
(BK)m = 0. Since m is

an arbitrary maximal ideal of BK , d••r = 0 (r ≥ 2). Hence we have proved
(2.17.2) for (2.9.6.2)⊗V K.

Next we prove (2.17.2) for (2.11.14.3)⊗V K for the case Z = ∅ and S0 = S1.
As we remarked before (2.14.0.4), we have the base change property for

Rqf(X,D)/S∗,c(O(X,D)/S)K = (Rqf(X,D)/S∗I(X,D)/S) ⊗V K. Hence the proof
is analogous to the proof of (2.17.2) for (2.9.6.2)⊗V K for the case Z = ∅ and
S0 = S1: we have only to use (2.16.2) for Rf(X,D)/S∗,c(O(X,D)/S)K , (2.11.17)
and use [68, (5.2) (2)] (=(2.15.4) for (2.11.14.3)). ��
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We can reprove (2.13.3) in the case Z = ∅ and more:

Corollary 2.17.3. Let k be a nonnegative integer. Then the following hold:
(1) There exists a convergent F -isocrystal E−k,h+k

2 ((X,D)/K) such that

E−k,h+k
2 ((X,D)/K)T = grP

h+kRhf(XT1 ,DT1 )/T∗(O(XT1 ,DT1 )/T )K

for any p-adic enlargement T of S over Spf(V ).
(2) There exists a convergent F -isocrystal PkRhf∗(O(X,D)/K) such that

PkRhf∗(O(X,D)/K)T = PkRhf(XT1 ,DT1 )/T∗(O(XT1 ,DT1 )/T )K

for any p-adic enlargement T of S over Spf(V ).
(3) There exists a spectral sequence of convergent F -isocrystals on (X,D)

/S over Spf(V ) :

E−k,h+k
1 ((X,D)/K) = Rh−kf∗(OD(k)/K ⊗Z �(k)(D/K))(−k)(2.17.3.1)

=⇒ Rhf∗(O(X,D)/K).

This spectral sequence degenerates at E2.

Proof. (1): By (2.8.5), the boundary morphism d••1 of (2.9.6.2) ⊗V K is a
summation (with signs) of Gysin morphisms, and thus d••1 is a morphism of
convergent F -isocrystals by [74, (3.13)]. By [74, (3.1)] and by (2.17.2), we
obtain (1).

(2): By (1), for a morphism g : T ′ −→ T of p-adic affine enlargements of S
over Spf(V ), PkRhf(XT ′

1
,DT ′

1
)/T ′∗(O(XT ′

1
,DT ′

1
)/T ′)K = g∗PkRhf(XT1 ,DT1 )/T∗(O

(XT ,DT )/T )K . The claim on the F -isocrystal follows as in [74, (3.7)].
(3): (3) immediately follows from (2.17.2). ��

We can reprove (2.13.8) (1) and (2) in the case Z = ∅ and more:

Corollary 2.17.4. Let k be a nonnegative integer. Then the following hold:
(1) There exists a convergent F -isocrystal Ek,h−k

2,c ((X,D)/K) such that

Ek,h−k
2,c ((X,D)/K)T = grP

h−kRhf(XT1 ,DT1 )/T∗,c(O(XT1 ,DT1 )/T )K

for any p-adic enlargement T of S over Spf(V ).
(2) There exists a convergent F -isocrystal PkRhf∗,c(O(X,D)/K) on S/

Spf(V ) such that

(PkRhf∗,c(O(X,D)/K))T = PkRhf(XT1 ,DT1 )/T∗,c(O(XT1 ,DT1 )/T )K

for any p-adic enlargement T of S/Spf(V ).
(3) There exists a spectral sequence of convergent F -isocrystals on X/S

over Spf(V ) :
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Ek,h−k
1,c ((X,D)/K) = Rh−kf∗(OD(k)/K ⊗Z �(k)(D/K))(2.17.4.1)

=⇒ Rhf∗,c(O(X,D)/K).

This spectral sequence degenerates at E2.

Proof. (1), (2), (3): We obtain (1), (2) and (3) as in (2.17.3). ��

As in [11, §7], for a p-adic formal V -scheme S, we have a log crystalline

topos ( ˜(X,D)/S)logcrys and the forgetting log morphism ε(X,D)/S : ( ˜(X,D)/S)

log
crys −→ (

◦̃
X/S)crys. The following is nothing but a restatement of a part of

(2.17.2) by the p-adic version of (2.7.6):

Corollary 2.17.5. The following Leray spectral sequence

Ek,h−k
2 = Rh−k

◦
f (X,D)/S∗R

kε(X,D)/S∗(O(X,D)/S)K(2.17.5.1)

=⇒ Rhf(X,D)/S∗(O(X,D)/S)K

degenerates at E3.

2.18 Strict Compatibility

In this section, using a specialization argument of Deligne-Illusie (§2.14) and
by using the convergence of the weight filtration (§2.13, §2.17), we prove
the strictness of the induced morphism of log crystalline cohomologies by a
morphism of log schemes with respect to the weight filtration.

Let V be a complete discrete valuation ring of mixed characteristics with
perfect residue field κ of characteristic p > 0 and with fraction field K. Let
g : (X ′,D′) −→ (X,D) be a morphism of two proper smooth schemes with
SNCD’s over κ. Let W be the Witt ring of κ and K0 the fraction field of W .
Then the following holds:

Theorem 2.18.1. Let h be an integer. Then the following hold:
(1) The induced morphism

(2.18.1.1) glog∗
crys : Hh

log-crys(X/W )K −→ Hh
log-crys(X

′/W )K

is strictly compatible with the weight filtration.
(2) Assume that g induces morphisms g(k) : D′(k) −→ D(k) for all k ∈ N.

Then the induced morphism

(2.18.1.2) glog∗
crys,c : Hh

log-crys,c(X/W )K −→ Hh
log-crys,c(X

′/W )K

is strictly compatible with the weight filtration.
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Proof. (1): In this proof, for the sake of clarity, denote by P and P ′ the weight
filtrations on Hh

log-crys(X/W )K0 and Hh
log-crys(X

′/W )K0 , respectively.
Since PkHh

log-crys(X/W )K0⊗K0 K = (PkHh
log-crys(X/W ))K (k ∈ Z∪{∞}),

we may assume that V = W . By (2.9.1) the morphism g induces a morphism

(2.18.1.3)
glog∗
crys : PkHh

log-crys(X/W )K0 −→ P ′
kHh

log-crys(X
′/W )K0 (k ∈ Z ∪ {∞}).

Let P ′′
k Hh

log-crys(X
′/W )K0 be the image of PkHh

log-crys(X/W )K0 by glog ∗
crys .

Then we prove that

(2.18.1.4) P ′
k ∩ P ′′

∞ = P ′′
k .

By [40, 3, (8.9.1) (iii), (8.10.5)] and [40, 4, (17.7.8)], there exists a model of
g, that is, there exists a morphism g : (X ′,D′) −→ (X ,D) of proper smooth
schemes with relative SNCD’s over the spectrum S1 := Spec(A1) of a smooth
algebra A1(⊂ κ) over a finite field Fq such that g⊗A1 κ = g. By a standard
deformation theory ([41, III (6.10)]), there exists a formally smooth scheme
S = Spf(A) over Spf(W (Fq)) such that S ⊗W (Fq) Fq = S1. We fix a lift
F : S −→ S of the Frobenius of S1. Then, as in §2.15, W is an A-algebra. Let
P ′ and P ′′ be the analogous filtrations on RhfX ′/S∗(OX ′/S)⊗W (Fq) K0(Fq),
where K0(Fq) is the fraction field of W (Fq). By (2.14.2), in order to prove
(2.18.1.4), it suffices to prove that

(2.18.1.5) P ′
k ∩ P ′′

∞ = P ′′
k

by shrinking S. Here, note that the extension κ/Frac(A1) of fields may be
infinite and transcendental. Because P ′

k and P ′′
∞ are convergent isocrystals

((2.13.3) or (2.17.3)), so is P ′
k ∩ P ′′

∞ by [74, (2.10)]. Since two inclusions
(P ′

k ∩P ′′
∞)∩P ′′

k −→ P ′′
k and (P ′

k ∩P ′′
∞)∩P ′′

k −→ P ′
k ∩P ′′

∞ are morphisms of
convergent isocrystals, it suffice to prove that

(2.18.1.6) (P ′
k ∩ P ′′

∞)s = (P ′′
k )s

for any closed point s ∈ S by [74, (3.17)]. In this case, (2.18.1.6) immediately
follows from the purity of the weight of the crystalline cohomologies ([15,
(1.2)] or [68, (2.2) (4))]) and by the spectral sequence (2.9.6.2). Thus we have
proved (1).

(2): By the assumption of g, the analogue of (2.18.1.3) for the log crys-
talline cohomology with compact support holds. Using (2.13.8) instead of
(2.13.3), we obtain (2) in a similar way. ��

Theorem 2.18.2 (Strict compatibility). Let S be a p-adic formal V -
scheme. Let f : (X,D) −→ S1 and f ′ : (X ′,D′) −→ S1 be proper smooth
schemes with relative SNCD’s over S1. Let g : (X ′,D′) −→ (X,D) be a mor-
phism of log schemes over S1. Let h be an integer. Then the following hold:

(1) The induced morphism
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(2.18.2.1)
g∗ : Rhf(X,D)/S∗(O(X,D)/S)K −→ Rhf ′

(X′,D′)/S∗(O(X′,D′)/S)K (h ∈ Z)

is strictly compatible with the weight filtration.
(2) Assume that g induces morphisms g(k) : D′(k) −→ D(k) for all k ∈ N.
Then the induced morphism

(2.18.2.2)
g∗c : Rhf(X,D)/S∗,c(O(X,D)/S)K −→ Rhf ′

(X′,D′)/S∗,c(O(X′,D′)/S)K (h ∈ Z)

is strictly compatible with the weight filtration.

Proof. Since the proofs of (1) and (2) are similar, we give only the proof of
(1).

By (2.13.3) (or (2.17.3)) and by the proof of [74, (3.17)], we may assume
that S is the formal spectrum of a finite extension V ′ of V . Let κ′ be the
residue field of V ′. As mentioned in the proof of (2.17.2), V ′/p is an κ′-algebra;
the two pairs (X,D) and ((X,D) ⊗V ′ κ′) ⊗κ′ V ′/p are two deformations of
(X,D) ⊗V ′ κ′; the obvious analogue for (X ′,D′) also holds. Hence, by the
deformation invariance of log crystalline cohomologies with weight filtrations
((2.16.2)), we may assume that S = Spf(W (κ′)) and that (X,D) and (X ′,D′)
are smooth schemes with SNCD’s over a perfect field κ′ of characteristic
p > 0. Hence (1) follows from (2.18.1) (1). ��

Corollary 2.18.3. Let the notations be as in (2.18.2). Let g : (X ′,D′) −→
(X,D) be a log etale morphism such that Rg∗(OX′) = OX (e.g., the blowing
up along center a smooth component of D(k)). Then g∗ in (2.18.2.1) is a
filtered isomorphism.

Proof. We may assume that S is flat over Spf(V ). By the second proof of [65,
(2.2)] and by [loc. cit., (2.4)], the induced morphism

Rf∗(Ω•
X/S1

(log D)) −→ Rf ′
∗(Ω

•
X′/S1

(log D′))

is an isomorphism (cf. [43, VII (3.5)], (2.18.7) below). By the log version of
a triangle in the proof of [11, 7.16 Theorem] and by the log version of [11,
7.22.2], the induced morphism

g∗ : RfX/S∗(O(X,D)/S) −→ Rf ′
(X′,D′)/S∗(O(X′,D′)/S)

is an isomorphism; in particular, g∗ : Rhf(X,D)/S∗(O(X,D)/S)K −→ Rhf(X′,D′)

/S∗(O(X′,D′)/S)K is an isomorphism. (2.18.3) follows from (2.18.2) (1). ��

Remark 2.18.4. Let the notations be as in (2.18.2). We do not know an ex-
ample such that the induced morphism g∗ : (Rhf(X,D)/S∗(O(X,D)/S), P ) −→
(Rhf ′

(X′,D′)/S∗(O(X′,D′)/S), P ) is not strictly compatible with the weight fil-
tration.
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Theorem 2.18.5. Let the notations be as in (2.18.2). Assume that g induces
morphisms g(k) : D′(k) −→ D(k) for all k ∈ N. Assume, moreover, that g is
log etale, that Rg∗(OX′) = OX and that g∗(OX(−D)) = OX′(−D′). Then g∗c
in (2.18.2.2) is a filtered isomorphism.

Proof. We may assume that S is flat over Spf(V ). Because g is log etale, we
have g∗(Ωi

X/S1
(log D)) = Ωi

X′/S1
(log D′) (i ∈ N). Hence, by the assumption,

we have g∗(Ωi
X/S1

(− log D)) = Ωi
X′/S1

(− log D′). By using the projection
formula as in [65, p. 168], we have Ωi

X/S1
(− log D) = Rg∗(Ωi

X′/S1
(− log D′)).

Consequently, as in [65, (2.4)], we have Ω•
X/S1

(− log D) = Rg∗(Ω•
X′/S1

(− log
D′)) by using the spectral sequence

Eij
1 = Rjg∗(Ωi

X′/S1
(− log D′)) =⇒ Ri+jg∗(Ω•

X′/S1
(− log D′)).

Let n be a positive integer, and set Sn := Spec
S
(OS/pn). Then we have

an exact sequence

0 −→ pnOS/pn+1OS −→ OSn+1 −→ OSn
−→ 0.

By using the base change theorem of the log crystalline cohomology sheaf
with compact support ((2.11.11.1)), we have the following triangle as in [11,
7.16 Theorem]:

−→ Rf(X,D)/S1∗,c(O(X,D)/S)⊗L
OS1

pnOS/pn+1OS(2.18.5.1)

−→ Rf(X,D)/Sn+1∗,c(O(X,D)/Sn+1)

−→ Rf(X,D)/Sn∗,c(O(X,D)/Sn
) +1−→ · · · .

Hence, by induction on n and by (2.11.7.1) and [11, 7.22.2], we have

Rhf(X′,D′)/S∗,c(O(X′,D′)/S) = Rhf(X,D)/S∗,c(O(X,D)/S).

In particular, g∗c is an isomorphism of OS ⊗V K-modules. Moreover, by
(2.18.2) (2), g∗c is a filtered isomorphism. ��

Remark 2.18.6. It is straightforward to generalize (2.18.2), (2.18.3), (2.18.5)
into the framework of convergent F -isocrystals.

Remark 2.18.7. The following example (=a very special case of [65, (2.3)])
shows that the strictness of the induced morphism on sheaves of log differen-
tial forms by a morphism of smooth schemes with relative SNCD’s does not
hold.

Let S be a scheme and let X be an affine plane A
2
S = Spec

S
(OS [x, y]).

Let D be a relative SNCD on X/S defined by xy = 0. Let g : X ′ −→ X
be the blow up of X along the center (0, 0). Let D′ be the union of
the strict transform of D and the exceptional divisor of g; then D′ is a
relative SNCD on X ′/S. Let i be an integer. Then Mokrane has proved that
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Rjg∗(Ωi
X′/S(log D′)) = 0 (j ∈ Z>0) and g∗(Ωi

X′/S(log D′)) = Ωi
X/S(log D) (a

very special case of [65, (2.2)]; however, note that in the notations in [loc. cit.],
the condition that the closed immersion Y

⊂−→ X is a regular embedding is
necessary for [loc. cit.] because the fact Rf∗(OX′) = OX in [43, VII (3.5)]
has been shown under this assumption.). The pull-back morphism

g∗ : (Ω2
X/S(log D), P ) −→ g∗(Ω2

X′/S(log D′), P )

is a morphism of filtered sheaves; however, as remarked in [loc. cit.], g∗ is not
strict. (Consequently g∗ does not induce an isomorphism of filtered sheaves
of log differential forms.)

Note that the number of smooth components of D′ is more than those of
D; the log structure of (X ′,D′) is “bigger” than that of (X,D).

Remark 2.18.8. The following remark is the crystalline analogue of a part of
results in [24, (9.2)].

Let (S, I, γ) and S0 be as in §2.4. Let f : (X,D) −→ S0 be a smooth scheme
with a smooth relative divisor over S0. Let a : D

⊂−→ X be the natural closed
immersion. Then, by (2.6.1.1), we have the following exact sequence

0 −→ Q∗
X/S(OX/S) −→ Q∗

X/SCRcrys(O(X,D)/S)(2.18.8.1)

−→ Q∗
X/Sacrys∗(OD/S)(−1){−1} −→ 0.

Applying the higher direct image functor R•fX/S∗ to (2.18.8.1), we have the
following exact sequence

· · · −→ Rh−2fD/S∗(OD/S)(−1) −→ RhfX/S∗(OX/S)
(2.18.8.2)

−→ Rhf(X,D)/S∗(O(X,D)/S) −→ · · · .

The spectral sequence (2.9.6.2) degenerates at E2 in this case since Eij
2 = 0

if i = 0 or i = −1. It is easy to check that the exact sequence (2.18.8.2) is
strictly compatible with the preweight filtration.

Using (2.11.7.1), we also have the following exact sequence which is strictly
compatible with the preweight filtration

· · · −→ RhfX/S∗(OX/S) −→ RhfD/S∗(OD/S)
(2.18.8.3)

−→ Rh+1f(X,D)/S∗,c(O(X,D)/S) −→ · · · .

Now assume that S is a p-adic formal V -scheme (in the sense of [74, §1])
over a complete discrete valuation ring V of mixed characteristics with perfect
residue field. Assume also that S0 = Spec

S
(OS/p), that X is projective over

S0 of pure relative dimension d and that D is a smooth hypersurface section.
Let K be the fraction field of V . Then the induced morphism



2.19 The Weight-Filtered Poincaré Duality 215

(2.18.8.4) RhfX/S∗(OX/S)K −→ RhfD/S∗(OD/S)K

by the closed immersion D
⊂−→ X is an isomorphism for h ≤ d − 2 and an

injection for h = d− 1 (cf. [2, Théorème]). Indeed, first consider the case h ≤
d−2. Then we can assume that S is the formal spectrum of a finite extension
of V by [74, (3.17)]. In this case, the argument in the proof of (2.18.2) and
the specialization argument of Deligne-Illusie ([49, 3.10], cf. the argument in
(2.18.1)) show that the hard Lefschetz theorem holds for RhfX/S∗(OX/S)K

(cf. [49, 3.8]). Hence the proof of [57, p. 76 Corollary] shows that (2.18.8.4) is
an isomorphism for h ≤ d−2. As to the case h = d−1, the same proof works
by considering the image of Rd−1fX/S∗(OX/S)K in Rd−1fD/S∗(OD/S)K . By
the Poincaré duality ([74, (3.12)]), the Gysin morphism

Gh : Rh−2fD/S∗(OD/S)K(−1) −→ RhfX/S∗(OX/S)K

is an isomorphism for h ≥ d + 2 and a surjection for h ≥ d + 1. Set

Rd−1fD/S∗,ev(OD/S)K(−1) := Ker Gd+1.

Then Rd−1fD/S∗,ev(OD/S)K(−1) is the orthogonal part of the image of the
injective morphism Rd−1fX/S∗(OX/S)K −→ Rd−1fD/S∗(OD/S)K . Therefore
we have the following direct decomposition:

(2.18.8.5)
Rd−1fD/S∗(OD/S)K = Rd−1fD/S∗,ev(OD/S)K ⊕Rd−1fX/S∗(OX/S)K .

2.19 The Weight-Filtered Poincaré Duality

The following is the Poincaré duality:

Theorem 2.19.1 (Weight-filtered Poincaré duality). Let V be a com-
plete discrete valuation ring of mixed characteristics with perfect residue field
of characteristic p > 0. Let S be a p-adic formal V -scheme. Let (X,D) be
a formally smooth scheme with a relative SNCD over S. Assume that X/S
is projective and that the relative dimension of X/S is of pure dimension d.
Then there exists a perfect pairing of convergent F -isocrystal on S/Spf(V )

(2.19.1.1) Rhf∗,c(O(X,D)/K)⊗R2d−hf∗(O(X,D)/K) −→ OS/K(−d),

which is strictly compatible with the weight filtration. That is, the natural
morphism

(2.19.1.2)
Rhf∗,c(O(X,D)/K) −→ HomOS/K

(R2d−hf∗(O(X,D)/K),OS/K(−d))

is an isomorphism of weight-filtered convergent F -isocrystals on S/V .
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Proof. By (2.11.3), there exists a canonical morphism R2df∗,c(O(X,D)/K) −→
R2df∗(OX/K) of convergent isocrystals on S/Spf(V ), which is constructed
from natural morphisms R2df∗,c(O(XT1 ,DT1 )/T ) −→ R2df∗(OXT1/T ) for p-
adic enlargements T of S/Spf(V ). Using the cup product, we have the fol-
lowing composite morphism

Rhf∗,c(O(X,D)/K)⊗R2d−hf∗(O(X,D)/K) ∪−→ R2df∗,c(O(X,D)/K)

(2.19.1.3)

−→ R2df∗(OX/K)
Tr ◦

f−→ OS/K(−d).

by [74, (3.12.1)]. The morphism (2.19.1.2) is an isomorphism. Indeed, by [74,
(3.17)], we may assume that S is the spectrum of a perfect field κ of finite
characteristic. In this case Tr ◦

f
is the classical trace map ([74, pp. 809–810]),

Therefore (2.19.1.2) for S = Spec(κ) is an isomorphism by [85, (5.6)], and
hence we have an isomorphism (2.19.1.2).

By using the arguments in (2.18.1) and (2.18.2), we obtain the strict com-
patibility of the isomorphism (2.19.1.2) with the weight filtration. ��

2.20 l-adic Weight Spectral Sequence

Let S be a scheme. Let (X,D)/S be a proper smooth scheme with a relative
SNCD. Set U := X \ D and let f : U −→ S be the structural mor-
phism. Let f (k) : D(k) −→ S (k ∈ Z≥0) be the structural morphism and
a(k) : D(k) −→ X also the natural morphism. Let l be a prime number
which is invertible on S. Let �

(k)
et (D/S)(−k) (k ∈ N) be the etale orien-

tation sheaf of D(k): �
(k)
et (D/S)(−k) := {u−1(

k
∧

(M(D)/O∗
X))}|

D
(k)
et

, where

u is the canonical morphism ˜Xet −→ ˜Xzar of topoi. Here note that we do
not define “�(k)

et (D/S)”. If S is of characteristic p > 0, then the Frobenius
of (X,D) acts on �

(k)
et (D/S)(−k) by the multiplication by pk. Almost all

the results in the previous sections have l-adic analogues. For example, the
excision spectral sequence

(2.20.0.1) Ek,h−k
1 = Rh−kf

(k)
∗ (Ql(k)⊗Z �

(k)
et (D/S)(−k)) =⇒ Rhf∗,c(Ql).

calculates Rhf∗,c(Ql).
Let j : U

⊂−→ X be the open immersion. By Grothendieck’s absolute pu-
rity, which has been solved by O. Gabber ([33]), we obtain Rkj∗(Ql)

∼−→
a
(k)
∗ (Ql,D(k)⊗Z �

(k)
et (D/S)(−k)). As in the Introduction, we use the following

isomorphism
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Rkj∗(Ql)
∼−→ a

(k)
∗ (Ql,D(k) ⊗Z �

(k)
et (D/S)(−k))(2.20.0.2)

(−1)k

∼−→ a
(k)
∗ (Ql,D(k) ⊗Z �

(k)
et (D/S)(−k)).

Then we have the following spectral sequence:

(2.20.0.3) Ek,h−k
2 = Rh−kf

(k)
∗ (Ql ⊗Z �

(k)
et (D/S)(−k)) =⇒ Rkf∗(Ql).

The spectral sequence (2.20.0.1) (resp. (2.20.0.3)) degenerates at E2

(resp. E3) by the standard specialization argument (e.g., [34]) and the
Weil conjecture ([26, (3.3.9)]).


