
365

4

Methoden des Software-
Engineerings

In Teil 4 diskutieren wir Aspekte der Software-Wiederverwendbarkeit und
Methoden des Software-Engineerings. Leser mit Vorkenntnissen bezüglich
der Grundlagen des Projektmanagements und der Prinzipien des objekt-
orientierten Entwurfs und der Programmierung sind bei diesem Kapitel im
Vorteil.

◗ Kapitel 4.1, »Software-Wiederverwertung?«, argumentiert, dass Software-
Wiederverwendbarkeit nicht ein eigenständiges Unternehmensziel ist.
Stattdessen muss Wiederverwendbarkeit im Kontext des Software-En-
gineering und der Qualitätssicherung gesehen werden und sich Zielen
wie Flexibilität, Time-to-Market und Kosteneffektivität unterordnen.
Verschiedene Entwicklungen in der Softwaretechnologie, insbesondere
im Bereich der Programmiersprachen, werden in diesem Kontext be-
trachtet.

◗ Kapitel 4.2, »Eine Wiederverwendungs-Methodologie«, diskutiert die Soft-
ware-Wiederverwendung unter besonderer Berücksichtigung von kom-
ponentenbasierten Architekturen. Dabei entwickeln wir Richtlinien, um
die Wiederverwendung von Komponenten möglichst nutzbringend zu
machen.

◗ Kapitel 4.3, »Der Software-Entwicklungszyklus«, führt Software AGs
SELC ein, ein inkrementelles und iteratives Lifecycle-Modell, das insbe-
sondere für objektorientierte Electronic Business-Anwendungen geeig-
net ist.

4.1 Software-Wiederverwertung?

366

4.1 Software-Wiederverwertung?

Seit Programmierer Software für Computer schreiben, wenden sie das glei-
che Prinzip an wie die Herrscher des Römischen Reiches: Divide et Impera.
D&I war sogar lange vor der Computerprogrammierung ein Generalprin-
zip aller Ingenieurskunst: Wenn ein Problem zu komplex ist, um es auf ei-
nen Schlag zu lösen, teilt man es in mehrere kleinere Unterprobleme und
nimmt sich diese getrennt vor.

Wenden wir dieses Prinzip wiederholt an, so finden wir schnell heraus,
dass einige Unterprobleme immer wieder auftauchen, und dass wir anfan-
gen, das Rad neu zu erfinden. Teilen wir z.B. das Problem der Wohnzim-
merreinigung in die Einzelprobleme Teppichreinigung und Fensterputzen,
so werden wir schnell merken, dass das Fensterputzen im Wohnzimmer
dem Fensterputzen in der Küche sehr ähnelt, dass wir hier also ganz ähnli-
che Prozeduren anwenden können.

Viel mehr gibt es auch über die Wiederverwendung von Software nicht zu
berichten. Software-Reuse handelt von der Wiederverwendung existieren-
der Entwürfe, Programme und Prozeduren mit dem Ziel, einen Computer
ähnliche Vorgänge in verschiedenen Kontexten ausführen zu lassen. Das
verlangt, dass wiederverwendbare Prozeduren an andere Gegebenheiten
anpassbar sind. Um bei unserem Beispiel zu bleiben: Die Prozedur für das
Fensterputzen sollte sich an verschiedene Fenstergrößen und -formen an-
passen lassen, um eine maximale Wiederverwendbarkeit zu erreichen.

Wieder-
verwendbarkeit

ein geschäftliches
Ziel?

Software-Wiederverwendbarkeit ist jedoch kein geschäftliches Ziel an sich,
sondern nur das Mittel zum Zweck. Dabei ist die Software-Wiederver-
wendbarkeit nur ein Mittel unter vielen.

Als geschäftliche Ziele seien genannt:

◗ Die Neugestaltung von Geschäftsprozessen mit dem Zweck höherer Ef-
fektivität im Unternehmen.

◗ Minimierung der Kosten für Software-Entwicklung und -Wartung.

◗ Die Bewältigung einer Software-Krise in einem Unternehmen.

◗ Die Verkürzung des Zeitraums bis zur Markteinführung eines Produk-
tes.

◗ Die Maximierung von Kundenzufriedenheit und -treue.

Diese Ziele sind oft widersprüchlich. Insbesondere der vierte Punkt kann
später viel Ärger bereiten. Zeitdruck führt oft zu Quick-and-Dirty-Lösun-
gen, die dann später hohe Wartungskosten nach sich ziehen. Normalerwei-
se schnell implementiert, um ein dringendes Problem zu lösen, entpuppen
sich diese »Lösungen« als außerordentlich langlebig. Das Y2K-Problem
war teilweise das Ergebnis solcher »Ingenieurskunst«.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

367

Die schnelle Entwicklung des Internets und des Electronic Business haben
zu ähnlichen Problemen geführt. Um Unternehmen schnell »auf’s Web« zu
bekommen, werden Abkürzungen genommen. Ingenieurmäßig sauber
konstruierte Webseiten sind die Ausnahme, nicht die Regel.

Software-
Engineering für
Internet-
Anwendungen?

Im Juni 1998 hielt IEEE Software [Pressman1998] ein Roundtable-Gespräch
ab unter dem Titel »Can Internet-based Applications Be Engineered?«.

Allein die Tatsache, dass diese Frage gestellt wurde, lässt vermuten, dass
viele Websites sich in einen chaotischen Dschungel bestehend aus Websei-
ten, CGI Skripts, Java Applets, ActiveX Controls, Active Server Pages, Dy-
namic HTML Seiten, Plug-ins u.a.m. entwickelt haben. Das Ergebnis sind
praktisch unwartbare Sites: Wartungsarbeiten, für die ein paar Stunden an-
gesetzt waren, erstrecken sich mitunter über Wochen.

Bei einer Wachstumsrate von 70% pro Jahr ist es abzusehen, dass Electronic
Business-Anwendungen in kurzer Zeit die Mehrzahl aller kommerziellen
Anwendungen ausmachen werden. Deshalb ist es heute umso dringender,
Ingenieurpraktiken für den Entwurf und die Implementierung von Electro-
nic Business-Applikationen zu diskutieren, wenn wir nicht in ein paar Jah-
ren mit Problemen konfrontiert sein wollen, die das Y2K-Problem eher
marginal erscheinen lassen.

Die richtigen
Werkzeuge

Wir argumentieren also für einen ingenieurmäßigen Ansatz für Electronic
Business-Applikationen. An die benutzten Werkzeuge und Programmier-
systeme stellen wir die folgenden Forderungen:

◗ Applikationen müssen schnell erstellt werden können.

Das heißt nicht notwendigerweise, dass eine neue Applikation schnell
kodiert werden muss. Die Erstellung einer neuen Applikation umfasst
mehrere Phasen, von denen das Schreiben des Programmcodes nur 10-
20% der Gesamtzeit in Anspruch nimmt. Zusätzliche Anstrengungen,
die während der frühen Entwurfs- und Implementierungsphasen inve-
stiert werden, zahlen sich gewöhnlich während der Test- und War-
tungsphasen aus.

Alle Programme sollten gründlich entworfen und dokumentiert wer-
den. Fehler sollten so früh wie möglich gefunden werden, wenn mög-
lich schon in der Entwurfsphase oder bei der Kompilierung. Das
Programmiersystem sollte typische Standardvorgänge bereits als
Sprachelemente anbieten, da Sprachelemente im Gegensatz zu Biblio-
theksfunktionen vom Compiler geprüft werden können.

◗ Die erzeugten Applikationen müssen robust sein.

Konstrukte, die in einer Testumgebung nur schwierig fehlerfrei zu ma-
chen sind, sollten vermieden werden. Typische Kandidaten sind hier:
Speicherplatzverwaltung auf unterer Ebene, Prozess- und Thread-Syn-
chronisierung auf unterer Ebene und Datenbanktransaktionen auf unte-
rer Ebene.

4.1 Software-Wiederverwertung?

368

Gleichermaßen ist es für Electronic Business Applikationen wesentlich,
dass nicht nur funktionale Tests durchgeführt werden, sondern auch
»Crash«-Tests mit hohem Datenvolumen, um die Skalierbarkeit zu te-
sten.

◗ Die erzeugten Applikationen müssen flexibel sein.

Es muss möglich sein, Applikationen rasch an sich ändernde Erforder-
nisse anzupassen. Dabei sollte es nicht zu Überraschungen kommen.

Der Programmcode muss leicht zu lesen und einfach zu verstehen sein;
die verwendeten Konstrukte sollten intuitiv sein. Die verschiedenen Be-
lange in einer Applikation sollten in verschiedenen Code-Einheiten er-
scheinen (Separation of Concerns). Änderungen an Komponenten sollten
keine Fernwirkungen auf andere Komponenten haben.

◗ Es muss möglich sein, existierende Entwürfe und Komponenten, inklu-
sive der Komponenten von Fremdanbietern und von existierenden
(legacy) Systemen zu nutzen.

Programmiersysteme müssen Methoden bereitstellen, externe Kompo-
nenten in eine Applikation zu integrieren. Auch muss es möglich sein,
Komponenten für die Zwecke einer Applikation anzupassen.

Wenn es so aussieht, als würden wir uns von unserem ursprünglichen The-
ma (Software-Wiederverwendung) wegbewegen, so stimmt dieser Ein-
druck. Wir betrachten die Software-Wiederverwendung als zum erweiter-
ten Bereich des Software-Engineering gehörig. Einige der Techniken, die
vordem unter dem Banner der Software-Wiederverwendung angepriesen
wurden wie z.B. Objektorientierung und Vererbung sind in Wirklichkeit
Techniken, deren Bedeutung mehr im Bereich der Qualitätssicherung wie
Korrektheit, Stabilität und Flexibilität liegt.

In den letzten Jahre sind komponentenbasierte Softwareentwicklungssy-
steme Realität geworden. Hier sehen wir die Chancen für eine Software-
Wiederverwendung, die sich auch lohnt. Nicht nur ein paar Zeilen Code
werden hier wiederverwendet, sondern komplette, schlüsselfertige (plug-
and-play) und anpassbare Softwarekomponenten.

4.1.1 Einfache Sachen zuerst

Es tut uns fast leid, aber erwähnen müssen wir es: Die Lesbarkeit einer Pro-
grammiersprache hat direkte Wirkung auf die Qualität der Software, die
damit implementiert wird. Kann der Programmcode leicht gelesen und
verstanden werden, so ist es auch leichter in dem Programm Fehler zu fin-
den, es zu ändern und erneut zu benutzen. David Parnas Geheimnisprinzip
[Parnas1972] bezieht sich auf Modularisierungstechniken – nicht gemeint
ist damit die Lesbarkeit des Codes.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

369

In der Tat ist es eine der effektivsten Techniken, um korrekten Code zu er-
zielen, die Coderevision durch Kollegen (peer review), also die Programme
noch von einer zweiten Person Korrektur lesen zu lassen. Einige der erfolg-
reichsten Softwaresysteme beruhen auf offenem Quellcode. Je mehr Leute
den Code lesen und verstehen können, umso besser. Tausend Augen sehen
mehr als zwei.

Hier sind ein paar Ratschläge für lesbaren Code:

◗ Prägnanz ist keine Tugend. Nicht in der Programmierkunst.

COBOL versus APLDie erste kommerzielle Programmiersprache war COBOL, eine Sprache,
die alles andere als prägnant ist. Anweisungen wie

ADD a TO b GIVING c

lassen uns heutzutage über so viel Beredsamkeit lächeln, machten aber
zur Zeit, als COBOL eingeführt wurde, Sinn. Zu dieser Zeit schrieben
Programmierer ihren Code noch auf Papier (mit einem Bleistift!). Der
Kodierbögen wurden dann an die Lochkartenabteilung übergeben und
dort von Datentypisten auf Lochkarten gestanzt. Die Lochkarten wur-
den ausgedruckt und vom Programmierer Korrektur gelesen, bevor sie
für die Kompilierung freigeben wurden. Bei Intervallen von Stunden
oder Tagen zwischen Kompilierungen waren Tippfehler fatal. Eine Pro-
grammiersprache wie COBOL, die alles in volle Worte fasste, war leich-
ter zu tippen und leichter Korrektur zu lesen, was das Risiko von
Tippfehlern gering hält.

Dann kam APL. APL erschien zu einer Zeit als auch Time-Sharing-Sy-
steme aktuell wurden. Programmierer bekamen eigene Endgeräte wie
die IBM-Kugelkopfschreibmaschine, ein feinmechanisches Wunder-
werk. APL konnte auf solchen Time-Sharing-Systemen laufen und war
auch eine der ersten interpretativen Sprachen. Eine Kompilierung war
überflüssig, man konnte das Programm eintippen, sofort ausführen und
augenblicklich die Ergebnisse. Welch ein Fortschritt!

Allerdings gab es ein kleines Problem. Die meisten Programmierer und
Wissenschaftler konnten nicht tippen! Die extreme Prägnanz von APL
(gewöhnlich ein Zeichen für eine Funktion) machte es populär – da gab
es schließlich nicht viel zu tippen. Und da APL auch noch griechische
Zeichen verwendete (man brauchte einen speziellen Kugelkopf), hätte
eine trainierte Datentypistin auch ihre Schwierigkeiten gehabt. So aber
sah man mit dem Zweifingersystem nicht allzu dämlich aus.

Die Folge war, dass APL-Programme sehr schwierig zu lesen waren –
sogar für den Autor – und APL errang schnell den Ruf einer WOL (Write
Only Language). Der Sprache gelang es nie, größere Bereiche in der kom-
merziellen Programmierung zu erobern, trotz der Anstrengungen von
IBM in den frühen Siebzigern, APL als kommerzielle Programmierspra-

4.1 Software-Wiederverwertung?

370

che zu vermarkten. APL ist heute immer noch in Gebrauch, aber seine
Bedeutung für die Entwicklung geschäftskritischer Applikationen ist
gleich Null. Inzwischen sind Programmierer auch etwas flüssiger im
Umgang mit der Tastatur geworden – die extreme Prägnanz von APL
wird deshalb auch nicht mehr als so überaus ’cool’ angesehen.

◗ Intuitive Syntax

Gleichheit und
Zuweisung

Eine Programmiersprache sollte Operatoren und Kommandos so ver-
wenden, wie man es erwartet. Bei einem Elektroherd z.B. wird ja auch
nicht die höchste Stufe mit »0« und Aus-Stellung mit »3« gekennzeich-
net.

Nehmen wir als Beispiel die Zuweisung:

Aus der Schule wissen wir alle, dass »=« der Vergleichsoperator ist. Wir
wissen auch, dass mit a = b gemeint ist, dass die Inhalte der Variablen
a und b gleich sind. Wir wissen auch, dass wenn a = b gilt, so gilt um-
gekehrt b = a.

Dann erschien FORTRAN. FORTRAN verwendete das Gleichheitszei-
chen für eine ganz andere Operation. In FORTRAN bedeutet a = b:
Weise den Inhalt der Variablen b der Variablen a zu, wobei der frühere
Inhalt von a zerstört wird. Offensichtlich ist die Bedeutung von a = b
hier völlig verschieden von der Bedeutung von b = a. Gar nicht gut.
FORTRAN hatte damit allerdings eine Tradition begonnen. C, C++ und
Java benutzen alle das Gleichheitszeichen für die destruktive Zuwei-
sung.

COBOL geht in dieser Beziehung überhaupt kein Risiko ein, indem es
laut und deutlich sagt was Sache ist: MOVE b TO a . ALGOL drückte die
verschiedenen Semantiken von Gleichheit und Zuweisung dadurch aus,
dass a := b für die Zuweisung verwendet wird, und dieser Tradition fol-
gen Pascal, Delphi, Modula, Eiffel, Natural und Bolero. Die asymmetri-
sche Form des Operators macht auch klar, dass die Operation selbst
nicht symmetrisch ist.

Operatoren-
überfrachtung

Operatorenüberfrachtung (Operator overloading) war und ist Gegenstand
einer hitzigen Debatte in der objektorientierten Welt. Es ist aber auch ein
oft missverstandener Term. Operatorenüberfrachtung bezieht sich eben
nicht nur auf Operatoren, sondern generell auf Methoden. (Der Begriff
Operatorenüberfrachtung hat historische Gründe.) Operatorenüberfrach-
tung bedeutet, dass der gleiche Methodenname für verschiedene Me-
thodenimplementierungen verwendet werden kann, also ein Name für
verschiedene Semantiken steht.

So adressieren die beiden Methodenaufrufe

a.add(b) // b Integer
a.add(c) // c BigDecimal

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

371

verschiedene Implementierungen und könnten sehr verschiedene Se-
mantiken haben. In diesem Beispiel sind allerdings die Methoden auch
formal verschieden. (Methoden werden durch Signaturen identifiziert,
bestehend aus Methodennamen und den Typen der Parameter.)

Zusätzlich hängt die tatsächlich ausgeführte Methode auch noch vom
aktuellen Inhalt der Variablen a ab. So kann z.B. das Feld a einen Subtyp
des deklarierten, statischen Typs enthalten. Wurde bei der Definition
dieses Subtyps die Methode add() überschrieben, so wird die über-
schreibende Methode des Subtyps ausgeführt und nicht die Originalme-
thode des statischen Typs von a.

Bei den Argumenten auf der rechten Seite (b und c) hängt die Methoden-
auswahl nicht vom Inhalt der Variablen ab, sondern ausschließlich von
der statischen Definition der Variablen.

Das klingt vielleicht etwas verwirrend, und das ist auch der Grund war-
um Operatorenüberfrachtung in OO-Kreisen kontrovers diskutiert
wird. Operatorenüberfrachtung verlangt hohe Disziplin vom Program-
mierer, Methoden mit gleichen Namen auch nur mit Implementierun-
gen zu versehen, die intuitiv das gleiche bedeuten, auch wenn die
konkreten Semantiken unterschiedlich sind. So ist es durchaus sinnvoll,
Methoden, die zu Kollektionen etwas hinzufügen, mit add zu bezeich-
nen, obwohl die Implementierung für Listen, Bäume, Mengen und Ar-
rays völlig unterschiedlich aussehen kann. Sehr verwirrend wäre es
allerdings, Methoden, die etwas aus einer Kollektion entnehmen, mit
add zu bezeichnen.

Operatorenüberfrachtung ist nicht sinnvoll bei Sprachen, die eine Mehr-
fachvererbung implementieren wie C++ oder Eiffel. In diesen Sprachen
können Methoden von einer Vielzahl von Vorfahren ererbt werden, was
in Zusammenhang mit der Operatorenüberfrachtung recht unübersicht-
lich werden kann.

In Sprachen mit Einfachvererbung dagegen wie in Java oder Bolero, hal-
ten wir Operatorenüberfrachtung für nützlich – den gleichen Namen für
gleichartige Methoden zu verwenden, macht Programme verständli-
cher.

Infix-OperatorenBenutzerdefinierbare Infix-Operatoren sind ebenfalls nützlich, um die
Lesbarkeit von Programmen zu verbessern, besonders in objektorien-
tierten Sprachen. Warum sollten wir gezwungen werden, gleichartige
Funktionen mit verschiedenen Notationen auszudrücken?

So wird die Addition in Java mit ’+’ ausgedrückt, wenn sie sich auf int
Variablen bezieht:

a + b// a is Integer

4.1 Software-Wiederverwertung?

372

Wollen wir dagegen Zahlen vom Typ BigDecimal addieren, so ist das ’+
’ nicht möglich, da BigDecimal eine Bibliotheksklasse ist:

a.add(b)// a is BigDecimal

Um die Verwirrung komplett zu machen, lässt sich das ’+’ hingegen
wieder dazu verwenden, um zwei Zeichenketten miteinander zu ver-
ketten:

a + b // a is String

Eigentlich würden wir das ’+’ gern in all diesen Fällen gebrauchen. Aus
diesem Grund erlaubt es Bolero, Infix-Operatoren generell als Metho-
dennamen zu verwenden wie in Bibliotheksklassen und benutzerdefi-
nierte Klassen.

C-Syntax C wurde entwickelt, um ein Betriebssystem zu implementieren, nämlich
UNIX. C wurde aus Effizienzgründen möglichst nahe an der Hardware
entworfen. So gibt es spezielle Operatoren wie z.B. << oder ++, die sich
direkt auf elementare Hardware-Operationen wie shift und increment
beziehen. So gelang es C, Assembler aus vielen Systemanwendungen zu
verdrängen und so den Weg für plattformunabhängiges Programmie-
ren zu ebnen. C war allerdings nicht für das kommerzielle Programmie-
ren entworfen worden.

Java adoptierte die etwas kryptische Syntax von C. Aus gutem Grunde:
Es gab eine riesige Zielgruppe frustrierter C++-Programmierer, die für
Java gewonnen werden sollten. So sieht z.B. die for-Anweisung in Java
genauso aus wie in C:

for (int i=0; i<8; i++) ...

Das mehr an der Zielgruppe der kommerziellen Programmierer orien-
tierte Bolero spricht dagegen Klartext:

for i type Integer in 0..7 do
 ...
end for

Wir bemerken hier auch einen Unterschied in der Semantik der for-
Kontrollstruktur: Während C und Java mittels eines Algorithmus alle
möglichen Werte der Variable beschreiben (mit 0 initialisieren; fortset-
zen solange der Wert kleiner als 8 ist, nach jedem Durchlauf um 1 inkre-
mentieren), benutzt Bolero ein aktives Objekt (in diesem Falle vom Typ
Range), dass selbsttätig durch alle möglichen Werte iteriert. So können in
einer for-Schleife auch andere Objekte verwendet werden, die einen
Iterator implementieren wie z.B. Arrays, Kollektionen oder die Ergeb-
nisse von Datenbankabfragen.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

373

◗ Klare Kennzeichnung von Kontrollstrukturen

Sprachen wie C, C++ und Java verfügen eigentlich über explizite Kon-
trollstrukturen. Stattdessen gibt es Kontrollanweisungen wie if oder
for, die in Kombination mit einer weiteren Anweisung oder einem An-
weisungsblock verwendet werden. Anweisungsblöcke sind dabei neu-
tral und werden von neutralen Begrenzungszeichen { } umschlossen.

Geschweifte
Klammern oder
Schlüsselworte?

In komplexen Programmroutinen führt dies oft zu einer Abfolge von
Begrenzungszeichen wie z.B.:

}
}

}

Der Nachteil ist, dass wir den geschweiften Klammern nicht ansehen,
wie weit der Bereich (scope) einer Kontrollanweisung denn reicht. Pro-
grammierer helfen sich dabei oft mit Kommentaren:

} // if
} // for

} // method

Hier halten wir Programmiersprachen, die echte Kontrollstrukturen
bieten, für eleganter und sicherer. Dabei erwarten wir, dass die Endbe-
grenzung auch anzeigt, welche Kontrollstruktur denn da geschlossen
wird. (Diese Technik wird z.B. auch in XML angewandt.) So kann der
Compiler die Korrektheit der Kontrollstrukturen prüfen. Hier folgt ein
entsprechendes Codesegment in Bolero:

method m1

....

if a < b then
for i type Integer in 1..10 do

....
end for

end if

end method m1

4.1.2 Teile und herrsche

So sehr Ingenieure sich auch über dieses Prinzip einig sind, so sehr sind sie
unterschiedlicher Auffassung, wie es am besten in die Praxis umzusetzen
sei. In der kurzen Geschichte der Informatik haben sich viele verschiedene
Strategien für die Implementierung von Divide et Impera entwickelt. Wir
zählen hier nur die wichtigsten davon auf:

4.1 Software-Wiederverwertung?

374

Prozedurales
versus

funktionales
Programmieren

◗ Prozedurales Programmieren zerlegt den informationsverarbeitenden Pro-
zess in mehrere Schritte, Prozeduren genannt. Meist teilen Prozeduren
Datenbereiche mit anderen Prozeduren. Diese Datenbereiche dienen als
Zwischenspeicher und zum Zwecke der Kommunikation mit anderen
Prozeduren. Prozeduren sind so voneinander abhängig. Das macht es
nicht nur schwierig, Prozeduren in anderen Zusammenhängen wieder-
zuverwenden, sondern auch eine gegebene Prozedur zu ändern, ohne
die andern Prozeduren dabei zu beeinflussen. Deshalb haben sich in der
Geschichte des Prozeduralen Programmierens bestimmte Prinzipien
wie Datenkapselung (Data Encapsulation) und das Geheimnisprinzip
(Information Hiding) [Parnas1972] herausgebildet. Diese Prinzipien ha-
ben schließlich zur objektorientierten Programmierung geführt.

◗ Funktionales Programmieren betrachtet ein gesamtes Computerprogramm
als eine einzige mathematische Funktion. Diese Funktion wird dann in
kleinere Unterfunktionen zerlegt, bis die Ebene der primitiver, vom Sy-
stem bereitgestellter Funktionen erreicht ist. Funktionen sind zustands-
los, d.h., sie benötigen keine internen Datenbereiche. Folglich können sie
keine Datenbereiche überschreiben. Daten treten in der funktionalen
Programmierung nur in Form von Parametern und Ergebnissen auf. Das
erlaubt es, Funktionen auch leicht in anderen Zusammenhängen wieder-
zuverwenden, und die resultierenden Programme sind sehr robust. In
der kommerziellen Programmierung konnte funktionales Programmie-
ren allerdings kaum Terrain erobern, vermutlich weil das Konzept der
zustandslosen Funktion für die datengetriebenen Programme der kom-
merziellen Programmierung zu fremdartig ist.

Allerdings haben einige Konzepte, die im Rahmen der funktionalen
Programmierung entwickelt wurde wie generische Datentypen, auch Ein-
gang in moderne objektorientierte Sprachen gefunden.

4.1.3 Der objektorientierte Ansatz

Objektorientiertes Programmierung hat sich aus der prozeduralen Program-
mierung entwickelt. Dabei werden Prozeduren, die sich einen bestimmten
Datenbereich teilen, zu einem Objekt zusammengefasst. Die gemeinsame
Datenmenge definiert dabei den Zustand des Objektes, die Prozeduren, die
nun Methoden heißen, definieren das Verhalten des Objektes. Da so kon-
struierte Objekte ein ähnliches Reiz-/Reaktionsverhalten (stimulus/response
behavior) wie der Rest des Tierreichs entwickeln, sind sie recht intuitiv. So
können wir in der kommerziellen Welt Geschäftsobjekte wie Kunden, Pro-
dukte, Aufträge und Rechnungen als Software-Objekte abbilden, die wir
Business Objects (Geschäftsobjekte) nennen. Objekte lassen sich gut wieder-
verwenden, da sie klar definierte Schnittstellen haben und nicht von ihrer
Umgebung abhängen.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

375

Kommando und
Abfrage

Eine übliche Metapher für ein Objekt in der objektorientierten Program-
mierung ist die der Maschine [Meyer1997]. Dabei wird der interne Zustand
der Maschine von Kommando-Methoden verändert, während Abfrage-Me-
thoden den Zustand der Maschine ermitteln können. Abfrage-Methoden
sollten den Zustand eines Objekts nicht verändern, d.h., die Abfrage sollte
keine Seiteneffekte haben.

Der Grund für die Trennung der Methoden in Kommando-Methoden und
Abfrage-Methoden liegt in der besseren Wiederverwendbarkeit der Ob-
jektklassen. Außerdem wird die Klassenspezifikation lesbarer, und es ist
sogar möglich, Beweisverfahren zur Programmverifikation anzuwenden.
Datenbankmanagementsysteme verwenden übrigens den gleichen Ansatz.
Bei den Datenbankzugriffsmethoden wird strikt zwischen Kommandos
und Abfragen unterschieden: Kommandos modifizieren die Daten, während
Abfragen Daten von der Datenbank abfordern, jedoch nicht verändern.

VererbungIn einer großen Applikation werden wir feststellen, dass viele Objektklas-
sen gemeinsame Merkmale mit anderen Objektklassen haben. Objektorien-
tierte Programmiersprachen erlauben daher die Definition von Klassen-
hierarchien. Die Klassen an der Spitze der Hierarchie enthalten die
allgemeinsten Merkmale. Subklassen ererben diese Merkmale und können
die Klassendefinition um eigene Merkmale erweitern oder ererbte Merk-
male überschreiben.

Ältere objektorientierte Sprachen wie Simula oder Smalltalk unterstützen
hier die Einfachvererbung: Jede Klasse kann nur eine Elternklasse haben.
Das wurde oft als nicht ausreichend angesehen: Klassen haben oft mehrere
Facetten, d.h., ihr Typ kann als eine Kombination mehrerer unterschiedli-
cher Eigenschaften gesehen werden. Z.B. könnte eine Klasse die Typen
Printable, Observable und Serializable implementieren.

Mehrfach-
vererbung?

Neuere Sprache so wie C++ oder Eiffel implementieren deshalb die Mehr-
fachvererbung: Eine Klasse kann Merkmale von mehreren Elternklassen
erben. Besonders in C++ kommt es zu Problemen, wenn Methodenimple-
mentierungen von mehreren Elternklassen ererbt werden. Bei der Mehr-
fachvererbung besteht grundsätzlich das Problem des Namenskonfliktes.
Der Programmierer muss dann entscheiden, wie der Konflikt aufgelöst
werden soll: Soll die Methode einer bestimmten Elternklasse vorgezogen
werden, sollen Methoden umbenannt werden, oder sollen Methoden glei-
chen Namens kombiniert werden, und wenn ja, in welcher Reihenfolge? So
werden zusätzliche Kopplungen zwischen Elternklassen und Kindklassen
eingeführt, was Applikationen komplexer werden lässt, deren Änderung
also schwieriger macht [Sakkinen1988].

Klasse und TypJava und damit auch Bolero haben aus dieser Erfahrung gelernt. In beiden
Sprachen wird das Konzept von Klasse (der Implementierung) und Typ
(der Schnittstelle) getrennt. Bei Vererbung zwischen Klassen ist nur die
Einfachvererbung erlaubt, jedoch können Klassen Schnittstelleneigen-

4.1 Software-Wiederverwertung?

376

schaften von mehreren Schnittstellendefinitionen (interface) erben. Auch
zwischen den Schnittstellendefinitionen ist eine Mehrfachvererbung mög-
lich.

Das bedeutet, dass eine Klasse nur eine einzige Implementierung pro Me-
thode erben kann, dass andererseits aber die Klasse ein Subtyp mehrerer
Elterntypen sein kann, wodurch der gewünschte Polymorphismus gege-
ben ist. Diese Lösung behält wesentliche Vorteile der Mehrfachvererbung
bei, vermeidet jedoch auf der anderen Seite eine zu enge Kopplung zwi-
schen Eltern- und Kindklassen.

Wiederver-
wendung durch

Vererbung

In der Vergangenheit wurde die objektorientierte Vererbung oft als wesent-
liches Konzept für die Softwarewiederverwendung angepriesen. Inzwi-
schen hat sich herausgestellt, dass eine übermäßige Verwendung der Ver-
erbung sich kontraproduktiv auswirkt: Die entstehenden komplexen
Vererbungshierarchien verstoßen direkt gegen das Prinzip »Divide et Impe-
ra«. Die Lesbarkeit der Programme leidet, der Begriff »Jo-Jo-Effekt » (die
Klassenhierarchie auf und ab wandern, um so zu verstehen, um was es ei-
gentlich geht) hat hier seinen Ursprung [Taenzer1989]. Also geben wir den
Rat – trotz gegenteiliger Meinung in manchen Veröffentlichungen zum
Thema objektorientiertes Programmieren – Vererbungspfade möglichst
kurz zu halten.

Die Prinzipien der Vererbung, wie sie im objektorientierten Programmieren ver-
wendet werden, wurden von dem taxonomischen System des schwedischen Biolo-
gen Carl Linné (1701-1778) übernommen. Allerdings hatte Linné sein System zur
Klassifizierung von existierendem Material verwendet, nicht als ein Hilfsmittel für
Konstruktionsaufgaben. Bertrand Meyer [Meyer1997] gibt in seinem Buch einen
schönen Drei-Seiten-Überblick über die Geschichte der Taxonomie – und natürlich
auch über alle anderen Fragen objektorientierter Programmierkunst auf den restli-
chen 1254 Seiten.

4.1.4 Sichere Software

Typsicherheit
Fast jede Programmiersprache hat einen Mechanismus, um die Kompatibi-
lität der an einer Operation beteiligten Datentypen zu prüfen oder nur be-
stimmte Daten als Parameter in einem Funktionsaufruf zuzulassen. Beson-
ders in objektorientierten Sprachen, wo jede Klasse und jede Schnittstelle
einen neuen Datentyp einführt, ist Typsicherheit besonders geboten:

Dynamische und
statische

Datentypen

◗ Sprachen wie Smalltalk führen den Quellcode einer Klasse direkt über
einen Interpreter zur Ausführung. Ein Kompilierungsschritt in einen
Zwischencode oder Maschinencode entfällt. Die Konsequenz ist, dass
erst bei der Ausführung auf Typkompatibilität hin geprüft werden
kann. Folglich braucht in solchen Sprachen auch gar nicht erst der Typ

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

377

einer Variable deklariert zu werden, es ist der Inhalt der Variable, der
zählt. Das ist nun genau das, was wir unter dynamischen Datentypen
(dynamic typing) verstehen. Die Typsicherheit in solchen Sprachen ist
niedrig, da Inkompatibilitäten erst in der Testphase gefunden werden
können.

◗ Sprachen wie Eiffel, C++, Java oder Bolero kompilieren Programme, be-
vor sie ausgeführt werden können. Das erlaubt es dem Compiler, die
Kompatibilität von Datentypen zu überprüfen. Alle diese Sprachen se-
hen deshalb vor, dass der Typ von Variablen im Programm deklariert
wird. Statische Datentypen (static typing) machen solche Prüfungen
möglich.

Type castingNicht in allen Fällen ist es möglich, der strikten Typalgebra der statischen
Datentypen zu genügen. Insbesondere, wenn Daten von externen Quellen
wie Dateien und Datenbanken bezogen werden, wenn Daten mit externen
Modulen wie DCOM-Komponenten ausgetauscht werden oder wenn wir
generische Konstrukte wie Kollektionen (siehe Kapitel 3.4.2) verwenden, ist
es oft notwendig, Inhalte Variablen zuzuweisen, die formal nicht kompati-
bel miteinander sind. Es sind deshalb Typumwandlungen (type casting) nö-
tig, die die Typüberprüfung durch den Compiler außer Kraft setzen und so
ein Element der Unsicherheit in die Programmierung einführen.

Generische TypenEine typsichere Programmiersprache sollte deshalb mit möglichst wenigen
Typumwandlungen auskommen. Eine anerkannte Strategie dabei ist, ge-
nerische Datentypen zu verwenden (siehe Kapitel 3.4.2). Während generi-
sche Typen die erforderliche Flexibilität für Kollektionen und ähnliche
Konstrukte bieten, erlauben sie trotzdem noch die Typüberprüfung durch
den Compiler, was Typumwandlung unnötig macht.

Automatische
Typabbildung

Eine andere Strategie zur Reduktion von Typfehlern ist es, die Zugriffsme-
thoden auf externe Datenquellen und Komponenten in die Sprache zu in-
tegrieren. Das wurde zuerst von den Sprachen der vierten Generation
(4GL) praktiziert, die Datenbankzugriffsmethoden auf Sprachebene abbil-
deten. Bolero geht den gleichen Weg: Mit der objektrelationalen Abbildung
und der Relational-Objekt-Abbildung werden die Strukturen und Daten-
typen der Datenbank automatisch auf Bolero-Klassen und Bolero-Daten-
typen abgebildet (siehe Kapitel 3.4.6). Die bei JDBC-Datenbankzugriffen nö-
tige Typumwandlung entfällt hier, was wiederum einige Fehlermöglich-
keiten ausschließt.

Das gilt auch für den Import von DCOM- und CORBA-Komponenten oder
von CICS-Transaktionen in das Bolero Component Studio. Datentypen von
diesen Komponentenmodellen werden automatisch auf Bolero-Datenty-
pen abgebildet, eine explizite Typumwandlung durch den Programmierer
entfällt (siehe Kapitel 3.4.4 und 3.4.12).

4.1 Software-Wiederverwertung?

378

Semantische Sicherheit
Softwarekonstrukte verlassen sich oft auf gewisse Annahmen über den
Kontext in dem sie eingesetzt werden. Das kann die Wiederverwendung
dieser Konstrukte gefährlich machen, wenn die Randbedingungen plötz-
lich nicht mehr stimmen:

Bertrand Meyer [Meyer1997], der Kontraktprogrammierung im Rahmen von Eif-
fel erstmals in die objektorientierte Programmierung einführte, erzählt die Ge-
schichte der Ariadne5-Rakete, die kurz nach ihrem Start infolge eines Softwarefeh-
lers explodierte. Eine numerische Routine verursachte eine nicht vorhergesehene
und deshalb auch nicht abgefangene Ausnahmebedingung. Die Programmautoren
gingen bei der Implementierung von durchaus korrekten Randbedingungen aus,
jedoch galten diese nur für Ariadne4. Bei der Wiederverwendung für Ariadne5 wa-
ren die Randbedingungen jedoch andere.

Kontrakte Kontraktprogrammierung (Programming by Contract) (siehe Kapitel 3.4.2)
macht eine Software-Einheit nicht generischer oder wiederverwendungsfä-
higer, vielmehr macht sie wiederverwendungsfähige Software-Einheiten
sicherer. Wird eine Softwarekomponente in einem anderen Kontext wie-
derverwendet, so könnte sie Parameterwerte erhalten, die beim Entwurf
der Komponente nicht vorgesehen waren. Der Kontrakt stellt nun sicher,
dass eine Ausnahmebedingung erzeugt wird, bevor eine unvorhergesehe-
ne Wertekombination Schaden verursacht.

Die Formulierung eines Kontraktes hat dreierlei Wirkungen:

◗ Der Programmierer wird sich über die Randbedingungen der jeweiligen
Softwareeinheit klar.

◗ Der Kontrakt dokumentiert späteren Benutzern der Softwareeinheit,
welche Randbedingungen einzuhalten sind und welche Ergebnisse ga-
rantiert werden.

◗ Eventuelle Fehler bei der Verletzung von Randbedingungen erzeugen
sofort eine Ausnahmebedingung und nicht erst dann, wenn falsche
Werte über eine lange Wirkungskette zum Absturz des Programms füh-
ren. Durch die frühe Meldung von Fehlern wird denn auch die Fehler-
analyse erleichtert, und die Wahrscheinlichkeit, dass Fehler bereits in
der Testphase gefunden werden, wächst.

4.1.5 »Separation of Concerns«

In Kapitel 2.5 hatten wir bereits Djikstras berühmte These der Separation of
Concerns (Trennung von Belangen) [Hürsch1994] im Zusammenhang mit
Aspect Oriented Programming (AOP) diskutiert.

Softwaresysteme sind oft mit einer Vielzahl von Belangen befasst. Dazu
zählen Persistenz, Transaktionskontrolle, Fehlerbehandlung, Nebenläufig-
keit, Einsatzort (welches Objekt lokal ist und welches nicht), Performanz,

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

379

Robustheit, Protokollierung, Internationalisierung, Präsentation an der Be-
nutzerschnittstelle u.a. m.

Ein Beispiel ist der Programmcode von Kapitel 3.4.2:

Abbildung 4.1
Code für Kontrakte
gemischt mit
Geschäftslogik.

Die eigentliche Geschäftlogik diese Beispiels passt in eine einzige Zeile:

result := Preis*Steuersatz/100

der Rest ist Code, der nicht direkt auf die Geschäftlogik bezogen ist, son-
dern Kontrakte und Methodenparameter definiert o.Ä.

Oft vermischt sich dieser zusätzliche Code mit dem eigentlichen Code, der
die Geschäftslogik des Programms implementiert. Das erschwert es, den ei-
gentlichen Zweck eines Programms unmittelbar zu erkennen, und er-
schwert das Lesen der Programme, deren Änderung, Wiederverwertung
und deren Wartung [Lopez1997].

class Produkt
 is public and is persistence capable with population

instance field Name type String is public

instance field Preis type BigDecimal is public
 contract
 precondition newValue >= 0
 postcondition result >= 0
 end contract
 value 0

instance method berechneMwSt is public
 parameter Steuersatz type Decimal
 result type BigDecimal
 throws MwStFehler, SteuersatzFehler, PreisFehler
 contract
 precondition Steuersatz >= 0
 else throw SteuersatzFehler()
 precondition Preis >= 0 else throw PreisFehler()
 postcondition result >= 0 else throw MwStFehler()
 end contract

 implementation
result := Preis*Steuersatz/100

 end implementation

end method berechneMwSt
end class Produkt

4.1 Software-Wiederverwertung?

380

»Separation of Concerns« fordert nun, dass die einzelnen Aspekte eines
Programms nicht die Geschäftlogik zersplittern und verdecken sollen, son-
dern möglichst separat gehandhabt werden sollen. Auf der Ebene von Soft-
ware-Entwurfstechniken ist »Separation of Concerns« ein anerkanntes
Prinzip und wird gern praktiziert. Auf der Ebene der Implementierung
fehlten bis jetzt die Programmiersprachen, die es erlauben, bestimmte
Aspekte eines Programms separat zu formulieren. Allerdings gibt es einige
interessante Neuentwicklungen, die entlang des Prinzips der aspektorien-
tierten Programmierung entworfen wurden so z.B. AspectJ von Xerox
[Kiczales1997a]. Die verschiedenen Aspekte eines Softwarekonstrukts wer-
den hier in getrennten Programmsektionen formuliert. Diese Aspekte wer-
den später zu einem Programm zusammenge”webt«. Das kann durch ei-
nen Programmgenerator, durch einen Präprozessor oder durch einen
Compiler geschehen.

Business Class Das klingt eigentlich nicht nach objektorientierter Programmierung, oder? Das ob-
jektorientierte Paradigma fordert doch, dass alle zu einem Objekt gehörigen Funk-
tionen auch Teil der Objektdefinition sein sollen. Aber es gibt Objekte und Objekte,
so wie es Leute und Leute gibt. Da gibt es den berühmten kleinen Mann, der alles
selbst erledigen muss: Termine ausmachen, das Auto reparieren und am Wochen-
ende den Rasen mähen. Und dann gibt es den reichen Geschäftsmann: die Sekretä-
rin ist für die Termine zuständig, um das Auto kümmert sich der Chauffeur und
der Rasen wird vom Gärtner gepflegt. Der gute Mann kann sich also ohne Ablen-
kung voll ums Geschäft kümmern.

Mit den Objekten ist es genau dasselbe. Das Durchschnittsobjekt muss sich um al-
les selbst kümmern: um Fehlerbehandlung, Transaktionskontrolle und die Koordi-
nation mit anderen Objekten. Das Geschäftsobjekt dagegen wird umsorgt und
kann sich voll auf seine Geschäftslogik konzentrieren. Eine Klassengesellschaft?
Aber ja!

Als kommerzielles Programmiersystem unterstützt Bolero »Separation of
Concerns« auf zwei Ebenen:

◗ Zunächst schlägt Bolero eine grundlegende Methodologie bei der Im-
plementierung kommerzieller Applikationen vor:

Die Triade von Geschäftsobjekt, Geschäftsvorgang und Geschäftspro-
zess (abgebildet durch persistente Objekte, transaktionskontrollierende
Objekte und Lange Transaktionen) (siehe auch Kapitel 3.4.9) trennt schon
einige der Belange voneinander:

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

381

Abbildung 4.2
»Separation of
Concerns« in
Bolero.

◗ Außerdem präsentiert das Bolero Component Studio die verschiedenen
Aspekte der Programmlogik auf verschiedenen Seiten eines Notizbu-
ches, wobei jedes Notizbuch alle Definitionen von Software-Einheiten
wie Klassen, Schnittstellen, Adapter, Methoden, Felder usw. enthält.

So werden beispielsweise auf der Ebene der Klassen Aspekte wie Ob-
jektpersistenz und Transaktionskontrolle, Objekt-relationale Abbil-
dung, Eigenschaften für den Einsatz als DCOM- oder EJB-Komponente
auf getrennten Seiten präsentiert und so aus dem Programmcode her-
ausgehalten.

Abbildung 4.3
Blatt für die allge-
meinen Eigen-
schaften der
Klasse Produkt

◗ Auf der Ebene der Methoden und Felder gibt es eine ähnliche Trennung
der Aspekte. Parameter, Kontrakte, Ausnahmebedingungen u.a. wer-
den vom Code ferngehalten. So ist die eigentliche Geschäftslogik der
Methoden einfacher zu erkennen und zu verstehen. Programme, die gut
zu verstehen sind, können auch leichter an andere Zwecke angepasst

Einheit Belange

Geschäftsobjekt
(persistenzfähige Klasse)

Geschäftslogik
Persistenz
Objekt-relationale Abbildung

Geschäftsvorgang
(transaktionskontrollierende Klasse)

Kontrolle von Datenbanktransaktionen
Beziehungen zwischen Geschäftsobjekten

Geschäftsprozess
(Lange Transaktion)

Koordination zwischen Geschäftsvorgängen
Stornieren
Wiederanlauf
Protokollierung

4.1 Software-Wiederverwertung?

382

werden. So ist es möglich, bestimmte Aspekte wie Transaktionskontrol-
le oder Komponentenmodelle zu ändern, ohne die eigentliche Ge-
schäftslogik auch nur anzurühren.

Abbildung 4.4
Kontrakte-Blatt

für die be-
rechneMwSt-Me-

thode der Klasse
Produkt. Hier

werden vor und
Nachbedingungen

der Methode
definiert.

Abbildung 4.5
Code-Blatt für die

berechneMwSt-
Methode der

Klasse Produkt.
Die Geschäftslogik

könnte kaum
deutlicher sein.

4.1.6 Fehlerbehandlung

Wenn die Geschäftlogik die Regel ist, was ist dann die Ausnahme?

Ausnahmebedingungen (exceptions) sind Situation, die mit den normalen
Programmstrukturen der Geschäftslogik nicht behandelt werden können:

◗ Hardwarefehler: kein Plattenplatz, unterbrochene Datenübertragung.

◗ Netzwerkfehler: falsche URL, keine Antwort vom Server.

◗ Betriebssystemfehler: zu viele Fenster geöffnet, nicht genug Ressourcen,
Dateilesefehler.

◗ Programmfehler: Fehler im Code, fehlende Module, Versionsfehler, Ty-
pfehler.

◗ Absichtlich von einer Applikation herbeigeführte Ausnahmebedingun-
gen wie:

◗ Ausführung einer throw-Anweisung

◗ von einem Kontrakt erzeugte Ausnahmebedingung

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

383

◗ von einer Langen Transaktion erzeugte Ausnahmebedingung, z.B.
wenn eine Event Reaction Condition eine ungültige Situation entdeckt.

Dagegen sind vom Endbenutzer falsch eingegebene Daten nicht die Aus-
nahme, sondern die Regel. Die Validierung von Benutzereingaben obliegt
der normalen Programmlogik und sollte keine Ausnahmebedingungen
hervorrufen.

ZwiebelhäuteIn den meisten modernen Programmiersprachen folgt das Modell für die
Behandlung von Ausnahmebedingungen dem mit ADA eingeführten Mo-
dell der Zwiebelhäute (onion skin model): Wird eine Ausnahmebedingung in
einem inneren Programmblock erzeugt, versucht sie nach außen zu gelan-
gen. Auf jeder Ebene können Exception Handler versuchen, die Ausnahme-
bedingung abzufangen. Ausnahmebedingungen, die es bis nach draußen
schaffen, bringen die Applikation zum Absturz.

Abbildung 4.6
Das Zwiebelhaut-
modell für das Ex-
ception Handling.

Bürger erster
Klasse

In den meisten objektorientierten Sprachen sind Ausnahmebedingungen
vollgültige Objekte (first-class citizens), normalerweise Subtypen der Klasse
Exception. Die Objekte können zusätzliche Daten mit detaillierter Informa-
tion über Grund, Ort und Kontext der Ausnahmebedingung mit sich füh-
ren und damit die Diagnose der Fehlerursache erleichtern. Das ist eine be-
trächtliche Erleichterung im Vergleich zu nicht-objektorientierten
Programmiersprachen, wo oft nur eine schlichte Fehlernummer zurückge-
geben wird.

In Java und Bolero wird eine saubere Fehlerbehandlung vom Compiler er-
zwungen. Ein Programmblock, der eine Ausnahmebedingung erzeugt
oder eine Methode aufruft, die dies tut, muss entweder auch die entspre-
chende Fehlerbehandlung bereitstellen oder der Block muss deklarieren,
dass er die entsprechende Ausnahmebedingung erzeugt. Das ermöglicht es
dem Compiler, durch alle »Zwiebelhäute« hindurch die Fehlerbehandlung
zu prüfen und das Entschlüpfen einer Ausnahmebedingung nach draußen
wirksam zu verhindern.

���
���
���
���
���
���
���
���
���
���

��������������������
��������������������
��������������������
��������������������

4.1 Software-Wiederverwertung?

384

In Bolero steht dabei die Fehlerbehandlung immer am Ende eines Blockes:

Abbildung 4.7
Exception Hand-

ling in Bolero.

In diesem Beispiel prüft die on exception-Klausel den dynamischen Typ
der Ausnahmebedingung e. Der default-Fall wird ausgeführt, wenn sonst
kein Fall zutrifft. Die finally-Klausel wird immer ausgeführt und kann
dazu benutzt werden, um Aufräumarbeiten, die beim Verlassen des Blok-
kes notwendig sind, durchzuführen.

4.1.7 Entwurfsmuster

Design Patterns Innovationen entstehen äußerst selten in der Isolation, besonders beim
Schreiben von Software. Programmierer sehen sich gewöhnlich an, wie
eine ähnliche Aufgabe von anderen gelöst wurde, bevor sie daran gehen,
die Erfordernisse für eine neue Anwendung oder eine Implementierungs-
strategie festzulegen. »Make it look like a Macintosh«, so wird berichtet, war
das Entwurfsziel, dass schließlich zum Windows Betriebssystem führte.

Das heißt keineswegs, dass eine existierende Lösung einfach kopiert wird.
Die bestehende Lösung dient lediglich als eine Art Vorgabe und Orientie-
rung. Im Verlauf des Entwurfs und der Implementierung werden dann
Merkmale der Referenzlösung akzeptiert, modifiziert oder verworfen, oder
es werden neue Merkmale hinzugefügt. Während des Prozesses entwi-

begin
connect("DataBase", "User", "Password")

...
something.dangerous()

...

on exception e
 case IOException
 System.out.println("IO error")

 case OverflowException
 System.out.println("Overflow")

 default
 System.out.println("Exception" + e)
end exception

finally
 disconnect
end finally
end

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

385

ckeln sich dann oft innovative Lösungen, die nicht aufgetaucht wären, hät-
te es keinen Diskurs mit dem Stand der Kunst gegeben.

Grafische Designer z.B. benutzen ganz ähnliche Methoden. Bei einem neu-
en Projekt ist es eine der ersten Maßnahmen, Kataloge mit Vorlagen schon
existierender, erfolgreicher und preisgekrönter Designs durchzublättern.
Auf der Basis dieser Designs oder von Ideen, die beim Durchblättern ent-
stehen, werden dann neue Designs geschaffen.

Auch bei Architekten ist das ähnlich. So gibt einen vitalen Markt für Archi-
tekturmagazine und -bücher, der Architekten über die Werke der Meister,
neue Trends und Problemlösungen informiert.

Ursprung der
Design Patterns

Es sollte denn auch ein Architekt sein, der diesen Prozess der Innovation in
eine formale Methode abbildete:

Das Konzept der Design Patterns (Entwurfsmuster) wurde zuerst von dem
Architekten Christopher Alexander formalisiert. Alexander kannte sich
auch in der Mathematik aus und veröffentlichte in den späten 1970ern über
Stadtplanung und Stadtarchitektur.

In ihrer ursprünglichen Bedeutung beschreiben Design Patterns die Bezie-
hung zwischen einem Problem, dem Kontext des Problems und der Lösung
des Problems. Dabei wird diese Beziehung derart beschrieben, dass es
möglich wird, den Lösungsweg auf andere Kontexte zu übertragen. Design
Patterns werden nicht erfunden: Sie werden entdeckt, wenn ähnlich Lösun-
gen für ähnliche Probleme in verschiedenen Kontexten existieren.

Anders als objektorientierte Vererbung, bei der Wissen vertikal übergeben
wird (von Elternklasse auf Kindklasse), erfolgt der Wissenstransfer mit De-
sign Patterns horizontal: Die neue Lösung (B), die mit Hilfe der Lösung (A)
gefunden wurde, ist nach dem Transfer (A) keineswegs unterstellt, son-
dern ist unabhängig.

Im Bereich des Software-Engineerings werden Design Patterns seit den
späten Achtzigern in der Entwurfsphase angewandt. Bahnbrechend war
hier die Arbeit der »Viererbande« bestehend aus Erich Gamma, Richard
Helm, Ralph Johnson und John Vlissides [Gamma1995]. Von da an wurden
Patterns auch im Bereich der Software-Entwicklung populär.

Design Patterns
erklärt

Sehen wir uns zum Beispiel die Beziehung zwischen den Geschäftsobjekten
Kunde und Auftrag an: Customer:Order. Wir könnten die Beziehung zwi-
schen diesen beiden Klassen Customer und Order mit einem Feld in der Klas-
se Order implementieren, das den Eigentümer des Auftrags referenziert
(Customer).

Nach einigen weiteren Erfahrungen finden wir heraus, dass es noch einige
weitere Probleme gibt, die ganz ähnliche Lösungen erfordern wie z.B. die
Beziehung zwischen Lieferant und Rechnung: supplier:invoice oder zwi-
schen Abteilung und Mitarbeiter: department:employee.

4.1 Software-Wiederverwertung?

386

Diesen Problemen ist gemeinsam, dass in allen Fällen eine 1:n-Beziehung
(OneMany) vorliegt.

Um nun ein Design Pattern zu formulieren, müssen wir von den jeweiligen
konkreten Szenarien abstrahieren. Anstatt von einer konkreten 1:n-Bezie-
hung wie customer:order zu sprechen, verwenden wir verallgemeinerte
Rollenbezeichnungen: roleB:roleA. So können wir das Problem und den
Lösungsweg in allgemeiner Form, basierend auf roleB und roleA formulie-
ren.

Abbildung 4.8
Übertragung einer

Lösung mithilfe
eines Pattern.

Nachdem das neue OneMany-Entwurfsmuster nun so verallgemeinert wur-
de, können wir es auf konkrete Szenarien anwenden und dabei die allge-
meinen Rollen mit konkreten Klassen wie supplier und invoice instanziie-
ren. Das Pattern wird uns dann eine konkrete Lösung für das konkrete
Problem liefern.

Design Patterns
in Bolero

In Bolero werden Design Patterns im Bolero Component Studio unterstützt.
Dabei erfolgt die Anwendung eines Patterns auf ein konkretes Problem au-
tomatisch und die so erzeugte Lösung kann sofort ausgeführt und getestet
werden.

Bolero Design Patterns bestehen aus:

◗ Einer Pattern-Klasse so z.B. aus der OneMany Pattern-Klasse, die bereits in
Boleros Pattern-Bibliothek vorhanden ist. Die abstrakten Rollen (in un-
serem Fall roleA und roleB) sind Eigenschaften (öffentliche Felder) die-
ser Klasse.

◗ Einem Ursprungsprojekt (source), das aus allen Klassen besteht, die den
Kontext der Ausgangslösung (Source Context) festlegen wie in unserem
Beispiel die Klassen Customer und Order. Dazu kommen noch alle Klas-
sen, Felder und Methoden, die zu der Lösung dieses spezifischen Pro-
blems gehören, in unserem Falle des Customer:Order-Problems.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

387

◗ Einer Instanz der Pattern-Klasse (in unserem Beispiel der OneMany-Klas-
se), die wir Source Pattern Instance nennen. Diese Instanz enthält die Be-
ziehung zwischen Ursprungskontext und abstraktem Pattern. So sind
bei dieser Instanz die Felder, die die abstrakten Rollen implementieren,
mit den jeweils konkreten Rollen des Ursprungskontextes instanziiert.
In unserem Beispiel gilt: Order ⇔ roleA, Customer ⇔ roleB.

◗ Einem Zielprojekt (Target), das die Klassen enthält, die die Rollen des
Zielkontextes repräsentieren, hier Supplier und Invoice. Es müssen hier
nur die Klassendefinitionen für diese Rollen präsent sein. Diese Klassen-
definition können leer sein, da Felder, Methoden und Hilfsklassen bei
der Anwendung des Patterns automatisch generiert werden.

Abbildung 4.9
Design Patterns in
Bolero. Vordefi-
nierte Patterns
übertragen bereits
vorhandene
Lösungen auf
neue Szenarien.

Projekte klonenMit diesen Zutaten ist es in drei Schritten möglich, die Lösung vom Ur-
sprungskontext auf den Zielkontext zu übertragen:

◗ Im ersten Schritt wird eine Target Pattern Instance angelegt, in unserem
Fall eine zweite Instanz der OneMany-Pattern-Klasse, nur dass hier die
Rollen des Zielkontextes den abstrakten Rollen zugeordnet werden: In-
voice ⇔ roleA, Supplier ⇔ roleB.

◗ Unter der Kontrolle dieser beiden Pattern-Instanzen wird die Lösung,
die im Ursprungskontext vorhanden ist, auf den Zielkontext geklont.
Das Pattern agiert im Rahmen diese Klonens als Transportmechanis-
mus, der alle Klassendefinitionen, Felder und Methoden vom Ur-
sprungsprojekt zum Zielprojekt kopiert und dem Zielkontext
entsprechend anpasst.

◗ Die resultierenden Klassen im Zielprojekt können sofort kompiliert und
getestet werden. Wenn das Ergebnis nicht den Erwartungen entspricht,
kann das Klonen rückgängig gemacht werden, d.h., das Zielprojekt
wird in den alten Zustand zurückgesetzt.

4.1 Software-Wiederverwertung?

388

Der Transfer einer vorhandenen Lösung auf einen neuen Kontext ist natür-
lich nur der erste Schritt in einem Konstruktionsprozess. Am erzeugten
Zielprojekt können anschließend Änderungen vorgenommen werden.
(Spätere Änderungen am Ursprungsprojekt haben keinen Einfluss auf Ziel-
projekte.) Sowohl das Ursprungsprojekt als auch das modifizierte Zielpro-
jekt können wiederum Ausgangspunkte neuer Pattern-Anwendungen
werden.

Es ist wichtig, sich klar zu machen, dass nicht das Pattern eine Lösung für
ein Problem bereitstellt. Die Lösung ist im Ursprungsprojekt enthalten. Das
Pattern dient nur als Transfermechanismus.

Die Erzeugung von Zielprojekten mit Hilfe von Patterns sollte wie jede Ent-
wurfs- und Implementierungsentscheidung dokumentiert werden.

Patterns können in verschiedener Granularität angewandt werden. Es ist
möglich, Patterns auf sehr kleine Probleme (wie oben) anzuwenden, aber
auch auf große Probleme mit Hunderten von Klassen, bis hin zum Applica-
tion Framework. Hätten wir z.B. in unserem Beispiel die Geschäftsobjekte
Order und Customer noch mit grafischen Benutzeroberflächen ausgestattet,
so hätte das Pattern äquivalente Benutzeroberflächen für Invoice und Sup-
plier mitgeneriert. Obendrein lassen sich Patterns auch noch schachteln,
aber hier verlässt uns die Vorstellungskraft.

Standard-Patterns Bolero enthält bereits eine Bibliothek mit vordefinierten Design Patterns:

◗ Patterns für Beziehungen wie One-one, One-many, Many-One.

◗ Patterns für Geschäftsvorgänge wie Single-platform-elementary-object,
Single-platform-aggregate-object, Distributed-platform-elementary-object.

◗ Das Publisher-Subscriber-Pattern.

4.1.8 Komponenten

»Objekte eignen sich gut für die Wiederverwendung, da sie über klar defi-
nierte Schnittstellen verfügen und nicht von ihrem Kontext abhängen.« So
oder ähnlich schrieben wir, als wir die objektorientierte Programmierung
diskutierten, und so wurde auch die objektorientierte Programmierung an-
gepriesen.

Daran ist sicherlich wahr, dass Objekte klar definierte Schnittstellen haben
und dass sie nicht unter dem Hauptproblem prozeduraler Programmie-
rung leiden, nämlich dem gegenseitigen Überschreiben von Variablen in
gemeinsamen Speicherbereichen.

Erfahrungen mit
der Wiederver-
wendung von

Software

Die in den letzten Jahren gemachten Erfahrungen mit einer großen Zahl
von kommerziellen Softwareprojekten zeigen, dass man diesem Anspruch
jedoch nicht gerecht wird. Zwar sind Objekte unabhängig von ihrem Kon-
text, jedoch nur in einem physischen Sinn (bei der Variablenverwendung).

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

389

Auf semantischer Ebene, insbesondere in ihrem Verhalten, hängen die mei-
sten Objekte sehr wohl von ihrem Umfeld ab, weil sie mit anderen Objekten
in diesem Umfeld interagieren, also in ihrem Verhalten auf das der anderen
Objekte abgestimmt sein müssen. Außerhalb dieses Umfelds ist ihre
Brauchbarkeit begrenzt.

Selbstverständlich gibt es Objekte, die von allgemeinem Interesse und Nut-
zen sind. Die meisten dieser Objekte sind allerdings bereits in Software De-
velopment Kits (SDK) und Standardbibliotheken enthalten. In Sachen Wie-
derverwendbarkeit haben objektorientierte Techniken inzwischen teilweise
einen Sättigungspunkt erreicht.

Also wurde es Zeit für ein neues Konzept in Sachen Softwarewiederver-
wendbarkeit. Das neue Konzept heißt Komponenten (siehe Kapitel 2.6).
Komponenten sind per Definition wiederverwendbar:

Komponenten
definiert

»Eine Komponente ist ein Typ, eine Klasse oder ir-
gend ein anderes Arbeitsprodukt, das spezifisch für
die Wiederverwendung konstruiert wurde.«
[Jacobson1997]

Der Möglichkeiten, Komponenten wiederzuverwenden, sind viele. So gibt
es viele Geschäftsfunktionen, die von Sparte zu Sparte identisch oder sehr
ähnlich sind, deshalb immer wieder in Electronic Business Applikationen
auftauchen. Zum Beispiel werden Kunden, die Dienste eines Unterneh-
mens anfordern, immer wieder mit den gleichen Fragen konfrontiert: Na-
me? Geburtsdatum? Telefonnummer? E-Mail-Adresse? usw. In einem Un-
ternehmen werden derartige Funktionen von den verschiedensten
Applikationen immer wieder implementiert. Hier gemeinsame, wiederver-
wendbare Komponenten zu identifizieren, kann beträchtliche Vorteile für
die Erstellung und Wartung von Applikationen mit sich bringen.

Vorteile von
Komponenten

Der Einsatz von Komponententechnologie hat unter anderem die folgen-
den Vorteile:

◗ Mehr Produktivität für den Entwickler. Vorgefertigte und vorgetestete wie-
derverwendbare Komponenten können vom Entwickler einfach in die
Anwendung eingeklinkt (plug-in) werden und reduzieren so die nötige
Anstrengung und Zeit um neue Applikationen zu entwickeln und exi-
stierende Applikationen zu warten.

◗ Konsistente und akkurate Verarbeitung. Dies wird dadurch erreicht, dass
sich nur eine Softwareinstanz um eine gegebene Funktion kümmert,
auch wenn diese Funktion in verschiedenen Anwendungen auftaucht.

◗ Einfacheres Austesten. Wurde eine Komponente gründlich getestet, so
wird für gewöhnlich keine extensive Testphase benötigt, wenn die
Komponente in einem anderen Kontext (einer anderen Applikation)
eingesetzt wird, vorausgesetzt, ihre Schnittstellen wurden entsprechend
abgesichert (siehe Kontrakte, Kapitel 4.1.4 und 3.4.2).

4.1 Software-Wiederverwertung?

390

Um die angesprochenen Vorteile zu erzielen, ist eine geeignete Wiederver-
wendungsstrategie erforderlich:

◗ Verwendung einer Wiederverwendungsmethodologie (siehe Kapitel 4.2),
die konsistent von allen Anwendungsprogrammierern angewandt
wird.

◗ Ein Expertengremium, dessen Aufgabe es ist, die Wiederverwendung
von Komponenten durch die Begutachtung von Projekten zu fördern
und bei der Einführung von Wiederverwendungstechniken zu assistie-
ren.

◗ Dokumentation für jede Komponente. Dies schließt die exakte Definiti-
on der Eingabe- und Ausgabeparameter für jede Komponentenschnitt-
stelle mit ein.

◗ Eine Bibliothek oder Repositorium, das Informationen über wiederver-
wendbare Komponenten enthält.

◗ Integrierte Fehler- und Ausnahmebehandlung, die jede Komponente in
die Lage versetzen, unabhängig von anderen Komponenten und Appli-
kationen zu agieren.

Es wäre höchst nachlässig von uns, würden wir im Zusammenhang von
Komponententechnologie die Frage existierender (legacy) Applikationen
vergessen. Diese Applikationen repräsentieren oft den Wert von zehn bis
zwanzig Jahren fortgesetzten Investments. Ernsthafte Softwarewiederver-
wendung heißt deshalb auch, eine Strategie zu entwickeln, um existierende
Applikationsfunktionen im Kontext von Electronic Business wiederzuver-
wenden.

Application Mining Die Technik, wiederverwendbare Komponenten innerhalb existierender
Applikationen zu finden, wird auch als »harvesting« oder »application mi-
ning« bezeichnet.

Wie im echten Bergbau gibt es dabei zwei Schritte:

◗ Eine Explorationsphase, in der die existierenden Applikationen unter-
sucht werden, mit dem Ziel bestehende Geschäftsfunktionen und -ob-
jekte als eigenständige Komponenten zu isolieren.

◗ Eine Ausbeutungsphase, in der die ausgewählten Geschäftfunktionen
und -objekte als Objektklassen bereitgestellt werden. Die hier verwen-
deten Techniken heißen »wrapping« oder »Einkapselung«. Dazu wird
Code geschrieben (oder automatisch erzeugt), der existierende Ge-
schäftsfunktion oder -objekte mit einer Programmierschnittstelle (API)
umgibt.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

391

4.2 Eine Wiederverwendungs-Methodologie

Die erfolgreiche Implementierung einer Multi-Tier-Architektur mit wie-
derverwendbaren Komponenten hängt nicht ausschließlich von der Fähig-
keit ab, wiederverwendungsfähige Komponenten zu erstellen. Der Erfolg
hängt auch von der Bereitstellung geeigneter Werkzeuge und von einem
entsprechenden Management für die Wiederverwendung von Komponen-
ten ab.

Datenmodell des
Unternehmens

Im Zusammenhang mit der Komponentenwiederverwendung haben Un-
ternehmen, die über ein unternehmensweites Datenmodell verfügen, einen
Vorteil. Unternehmensweite Daten sind Daten, die sowohl für einzelne Ge-
schäfteinheiten zur Verfügung stehen, jedoch auch über das Gesamtunter-
nehmen hinweg zwischen mehreren Geschäftseinheiten oder Tochterge-
sellschaften geteilt und ausgetauscht werden. Applikationscode, der auf
unternehmensweite Daten zugreift oder diese pflegt, sollte ebenfalls in al-
len Abteilungen wiederverwendet und gemeinsam von verschiedenen Ein-
heiten genutzt werden. Gibt es dagegen mehrere Programminstanzen, die
auf die gleiche Datenstruktur zugreifen, so besteht immer das Risiko, dass
die verschiedenen Programminstanzen sich bei der Änderungen der Daten
verschieden voneinander verhalten, und so die Integrität der Daten verlet-
zen können.

Strategie für
Wiederver-
wendung

Das Schlüsselelement für Erfolg im Wiederverwendungsgeschäft ist eine
solide Strategie. Wird eine komponentenbasierte Architektur nicht explizit
im Hinblick auf Wiederverwendung entworfen und aktiv betreut, so wird
im Ergebnis die Softwareentwicklung nicht erleichtert, sondern erschwert.

Die Schlüsselelemente eines Wiederverwendungsprogramms sind:

◗ Bestandsaufnahme

◗ Katalog

◗ Wiederverwendungsadministrator

◗ Methodologie

◗ Entwurfsrichtlinien und -prinzipien

◗ Bewertungsverfahren

◗ Qualitätssicherung

◗ Leistungsanreize

Programme für die Wiederverwendung sollten die Wiederverwendungs-
methodologie unternehmensweit installieren. Dabei sollte eine Wiederver-
wendungsmethodologie mit dem Systementwicklungszyklus integriert
sein.

4.2 Eine Wiederverwendungs-Methodologie

392

Ein Expertenteam (component review board) sollte Projekte begutachten,
beim »harvesting« von Komponenten aus Altanwendungen (siehe Kapitel
4.1.8) und bei der Implementierung von Komponenten assistieren. Die Ex-
perten sollten dabei aus wichtigen Benutzergruppen aus allen Unterneh-
mensbereichen kommen. Die Aufgabe des Expertensystems ist es, das Pro-
gramm für die Komponentenwiederverwendung im ganzen Unternehmen
anzuwenden. Damit das Programm Erfolg hat, ist es erforderlich, dass die
Mitglieder des Expertenteams die nötige Autorität haben, um die Definiti-
on wiederverwendbarer Komponenten aushandeln zu können [Jacobson
1997].

4.2.1 Techniken für die Komponentenwieder-
verwendung

Softwarewiederverwendung ist wirklich kein neues Thema. Applikations-
programmierer haben immer schon Code wiederverwendet. Wiederver-
wendungstechniken bei komponentenbasierter Architektur baut auf den
bekannten Techniken auf:

◗ Copycode. Hier gibt es zwei Spielarten für die Wiederverwendung von
Quellcode:

� Das Kopieren von Quellcode direkt von einem Programm in den
Code eines anderen Programms (cut&paste).

� Die Einbettung ganzer Programmdateien und Codesegmente mit-
hilfe von INCLUDE-Anweisungen und von Copybooks in ein Pro-
gramm.

Allerdings entsteht bei diesem Prozess ein Code, der schwierig an neue
Aufgaben anzupassen und deshalb teuer in der Wartung ist. Implemen-
tiert ein Code-Segment eine bestimmte fachliche Regel (Business Rule),
und ändert sich diese Regel, so muss die Änderung in allen Program-
men, die dieses Codesegment importiert haben, vorgenommen werden.
Mindestens müssen bei der Verwendung von INCLUDE-Anweisungen
und Copybooks alle diese Programme neu kompiliert und getestet wer-
den.

◗ Link Libraries. Das Binden von Programmen aus vorkompilierten Bi-
bliotheksmodulen wird entweder statisch nach dem Kompilieren
durchgeführt oder beim Laden eines Programms dynamisch kurz vor
der Ausführung mit Hilfe von Dynamic Link Libraries (DLL). Diese Me-
thode der Codewiederverwendung ist besser, als Quellcode von einem
Programm ins andere zu kopieren, da hier die implementierte Fachlogik
physisch nur einmal existiert. Allerdings muss, wenn sich ein Modul in
der Bibliothek ändert, jedes Programm, das dieses Modul verwendet,
identifiziert, ggf. neu gebunden und neu getestet werden.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

393

◗ Service Request. Hier wird das benötigte Dienstprogramm nicht als
Modul in die Applikation eingebunden, sondern die jeweilige Dienst-
funktion wird durch das Versenden einer Nachricht von einem lokalen
oder entfernten Server abgefordert. So verwenden z.B. die Dienste von
Betriebssystemen diese Methode. Der Vorteil dieser Methode ist, dass
die Applikation vom Dienstprogramm unabhängig ist. Beide können in
unterschiedlichen Adressräumen oder sogar auf verschiedenen Maschi-
nen ablaufen.

Service Requests sind heute die bevorzugte Methode für den Funktionsauf-
ruf bei wiederverwendetem Code und sind die empfohlene Technik für
komponentenbasierte Architekturen. Diese Methode unterstützt auch
Multi-Tier-Architekturen wie sie für kommerzielle Applikationen empfoh-
len werden (siehe Kapitel 3.4.5).

4.2.2 Von Komponenten bereitgestellte Dienste
Wiederverwendbare Komponenten können in die folgenden Kategorien
eingeordnet werden:

◗ Applikationsdienste. Diese Komponenten umfassen Geschäftsobjekte
(Business Objects), Geschäftsvorgänge (Business Tasks) und Geschäfts-
prozesse (Business Processes).

◗ Dienste für die Benutzerschnittstelle. Diese Dienste umfassen Naviga-
tionsfunktionen, Datenansichten (views), Funktionen für die Darstellung
von Daten und Funktionen für die Interaktion mit dem Benutzer. Ein sol-
cher Dienst könnte z.B. bestehende Altanwendung webfähig machen,
indem die ursprünglichen 3270-Oberfläche durch eine HTML-Oberflä-
che ersetzt wird. Das Ziel ist hier, das System so zu implementieren, dass
es keinen Unterschied macht von welcher Benutzerschnittstelle aus das
Anwendungsprogramm betrieben wird: Der Informationsfluss in der
Altanwendung bleibt identisch.

Typische Benutzerschnittstellen umfassen:

◗ Grafische Benuterzeroberflächen (GUI)

◗ Grün-schwarze Bildschirme (z.B. UNIX- oder 3270-Endgeräte)

◗ Web-Browser

◗ Point-of-sales Geräte (z.B. Kassen)

◗ Mobile Geräte (WAP)

◗ Sprachein- und -ausgabe wie das gute alte Telefon

◗ Unterstützende Dienste. Dies sind Dienste, die betriebssystemsartige
Funktionen bieten wie z.B. Drucken, Faxen oder Bildverarbeitung. Nor-
malerweise werden diese Dienste fertig als Pakete gekauft. Dabei ist
darauf zu achten, dass sich die Dienste gut in eine Multi-Tier-Umgebung
integrieren lassen.

4.2 Eine Wiederverwendungs-Methodologie

394

◗ Kerndienste. Diese Komponenten stellen die grundlegende IT-Infra-
struktur in einem Unternehmen bereit. Dazu gehören Sicherheitsdienste
(security), Namens- und Verzeichnisdienste sowie Nachrichtentrans-
portdienste. Diese Dienste werden normalerweise in Form gekaufter
Middleware bereitgestellt.

4.2.3 Richtlinien für Komponentensysteme

Hier sind einige Richtlinien, die beim Entwurf oder Kauf von Komponen-
ten, die für anpassbare, verteilte Multi-Tier-Anwendungen geeignet sind,
helfen sollen:

◗ Das Ziel der komponentenbasierten Architektur ist die Verbesserung
des geschäftlichen Erfolgs. Eine komponentenbasierte Entwicklungs-
strategie ermöglicht adaptive Systeme, die sich den wechselnden Erfor-
dernissen des Geschäftslebens und des sich ständig ändernden
technologischen Umfelds leicht anpassen können. Eine komponenten-
basierte Entwicklungsstrategie hilft, die Informationstechnologie mit
den fachlichen Anforderungen besser zu synchronisieren.

Komponenten
über das ganz
Unternehmen

wiederverwenden

◗ Die Komponentenarchitektur erlaubt es, Komponenten über das ganze
Unternehmen hinweg wiederzuverwenden. Wiederbenutzbare Kom-
ponenten verbessern die Produktivität der Anwendungsentwicklung in
den einzelnen Entwicklungsabteilungen eines Unternehmens. Die ge-
meinsame Nutzung bestimmter Komponenten erhöht die Fähigkeit des
Gesamtsystems, sich an ändernde Erfordernisse anzupassen.

In Applikationsfamilien statt in Einzelapplikationen zu denken, erhöht
dabei die Wiederverwendbarkeit von Komponenten [Parnas1972].

Wiederverwendbare Komponenten müssen aus jeder Anwendung her-
aus aufrufbar sein. Die Wiederverwendung dieser Komponenten elimi-
niert Dopplungen bei der Entwicklung, beim Testen und der Wartung.
Die Wiederverwendung von Komponenten eliminiert Inkonsistenzen in
der Informationsverarbeitung, da fachliche Regeln (Business Rules) nur
einmal implementiert werden müssen. So entfallen möglicherweise
voneinander abweichende Mehrfachimplementierungen. Die Zeit für
die Entwicklung und Wartung von Applikationen wird damit verkürzt.

Sprachneutral und
plattform-

unabhängig

◗ Komponenten sollten so entworfen und implementiert werden, dass der
aufrufende Prozess nicht an eine bestimmte Programmiersprache oder
Umgebung gebunden ist.

Neue Komponenten sollten plattformunabhängig implementiert wer-
den, so dass Komponenten auf jeder unterstützten Plattform eingesetzt
werden können. Eine Komponente sollte von jeder unterstützten Pro-
grammiersprache und von jeder unterstützten Plattform aus aufrufbar

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

395

sein. Wenn sich die fachlichen Anforderungen ändern und ggf. eine
neue Computerplattform zum Einsatz kommen soll, können die Kom-
ponenten problemlos auf die neue Plattform übertragen werden.

Kaufen oder selber
machen?

◗ Wenn möglich, sollten Komponenten nicht selbst implementiert, son-
dern gekauft werden. Gekaufte Komponenten sollten in der Lage sein,
in einer serverbasierten Multi-Tier-Architektur abzulaufen, d.h., sie
sollten über eine angemessene Programmierschnittstelle (API) verfü-
gen. Auch Entwicklungskomponenten wie Klassenbibliotheken können
gekauft werden. Das erlaubt es den Anwendungsprogrammierern, sich
auf die Implementierung der fachlichen Regeln zu konzentrieren.

Der nächste Schritt: In Zukunft werden größere Komponenten wie Da-
tenbanken oder Office-Produkte in vielen Fällen nicht mehr gekauft
werden, sondern entsprechende Dienstleistungen werden vom Inter-
net-Provider oder vom Betreiber eines Extranets gegen eine Gebühr an-
geboten. Gerade für Internet-Provider, die durch die fallenden
Kommunikationspreise unter Druck geraten, bieten sich derartige value-
added services an. [McNealy1999]

Repositorium◗ Ein Repositorium sollte alle Information über vorhandene wiederver-
wendbare Komponenten enthalten. Das Repositorium sollte den An-
wendungsprogrammierern zugänglich gemacht werden und ein
wichtiges Werkzeug für ihre Arbeit bilden. Im Repositorium wird auch
die Dokumentation für die Programmierschnittstellen (APIs) der Kom-
ponenten gespeichert.

Qualität planen◗ Komponenten sollten so entworfen sein, dass sie vollständig selbstgenüg-
sam (self contained) sind. Funktionen für die Validierung, für die Erken-
nung und Behandlung von Ausnahmebedingungen, Berichtsfunktionen,
Protokollierung, Diagnose und Fehlerbehebung, Überwachungsfunktio-
nen, Warnfunktionen und Funktion für die Systemverwaltung müssen
von jeder Komponente bereitgestellt werden, um den Betrieb, die Admi-
nistration und die Wartung der Komponente zu unterstützen.

Eine Komponente sollte eine einzelne fachliche Regel (Business Rule),
eine Funktion oder eine kleine Menge aufeinander bezogener Regeln
und Funktionen wie z.B. einen Geschäftsvorgang implementieren. Ma-
ximale Wiederverwendungsfähigkeit wird erreicht, wenn jede Kompo-
nente nur eine einzige Regel oder Funktion implementiert.

Es sollten Richtlinien für die Optimierung der Performanz aufgestellt
werden. Richtlinien für die Länge von Nachrichten bei Anfragen und
Antworten dienen dazu, unnötigen Netzwerkverkehr und damit Per-
formanzprobleme zu vermeiden.

Jede Komponente muss mindestens eine veröffentlichte Programmier-
schnittstelle (API) besitzen. Jedes veröffentlichte API definiert eine Ein-
/Ausgabe-Schnittstelle für eine Komponente oder einen Dienst. Die Do-

4.2 Eine Wiederverwendungs-Methodologie

396

kumentation sollte die Ein- und Ausgabeparameter vollständig wieder-
geben: welche Parameter benötigt werden, welche Parameter optional
sind sowie Typen und Längen von Parametern. Das API sollte dem
Komponentenrepositorium beigegeben werden, das jedem Entwickler
zugänglich ist.

Wiederbenutzbare Testsuiten sollten für jede Komponente entwickelt
werden. Eine Testsuite enthält spezielle Programme, die für den Aufruf
einer Komponente benötigt werden, darüber hinaus Eingabedaten, die
für die Tests benötigt werden, und vorgegebene Ausgabedaten, mit de-
nen die Testergebnisse verglichen werden können. Die Testsuiten wer-
den wie jede andere wiederverwendungsfähige Komponente gewartet
und gepflegt.

Methodologie ◗ Wiederverwendungsmethodologien für die Identifizierung und Imple-
mentierung von wiederverwendungsfähigen Komponenten sollten ein-
gesetzt werden. Dazu gehören effektive Methodologien für die
Verwaltung von Komponenten, inklusive der Werkzeuge für Kompo-
nentenwiederverwendung. Gerade in einer verteilten Umgebung muss
es eine Methodologie geben, mit der die vorhandenen Komponenten
über Plattformen hinweg verwaltet werden können. Die Methodologie
muss die notwendigen Schritte enthalten, um wiederverwendbare
Komponenten identifizieren, definieren und entwickeln zu können.
Wird eine solche Methodologie nicht eingesetzt, ist es sehr schwierig,
die Wiederverwendung von Komponenten effektiv zu organisieren.

Eine Wiederverwendungsmethodologie besteht aus folgenden Schrit-
ten:

� Die fachlichen Anforderungen (Business Requirements) nach Dienst-
kategorie (Anwendung, Benutzeroberfläche, Unterstützung, Kern-
dienste) klassifizieren.

� Das Repositorium nach wiederverwendbaren Komponenten absu-
chen, die die gegebenen fachlichen oder funktionalen Anforderung
abdecken.

� Die möglichen Kandidaten daraufhin prüfen, ob sie der Anforde-
rung vollständig genügen.

� Die ausgewählten Komponenten in eine neue oder überarbeitete Ap-
plikation unter Benutzung von Standard-Programmierschnittstellen
(API) einbringen.

� Komponenten aus existierenden Applikation herauslösen (harvest).
Altapplikationen sind gute Quellen für den Aufbau eines Kompo-
nentenrepositoriums. Sogenannte Legacy-Applikationen bestehen oft
aus reifer, robuster und effizienter Software (freilich gibt es auch
überalterte und unwartbare Exemplare!). Auf jeden Fall besteht hier

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

397

nicht die Notwendigkeit, das Rad neu zu erfinden und eine schon
existierende Funktionalität noch einmal neu zu implementieren.
Wenn möglich, sollte die Altfunktion als Komponente eingepackt,
also mit einem API versehen werden, das zu dem jeweiligen Dienst
eine Programmierschnittstelle definiert. Damit werden Altapplika-
tionen ohne größere Änderungen und Aufwand zu wiederverwend-
baren Komponenten.

Die Wiederverwendungsmethodologie sollte in den Softwareentwick-
lungszyklus integriert werden (siehe Kapitel 4.3).

Eigentümer
benennen

◗ Komponenten sollten designierte Eigentümer und Verantwortliche für
die Wartung haben. Die Verantwortung liegt dabei bei dem Team, das
die Komponente im Rahmen der Anwendungsentwicklung erstellt hat,
oder bei einem solchen, das sich auf Komponentenentwicklung spezia-
lisiert hat. Oft gibt es verschiedene Teams für verschiedene Komponen-
tenkategorien. Die fachliche Verantwortung für die Definition einer
Komponente sollte bei der Geschäftseinheit liegen, die auch mit der ent-
sprechenden fachlichen Funktion betraut ist.

Expertenteam◗ Die Aufstellung eines Expertenteams für Komponentenwiederverwen-
dung (component review board) ist nötig, um gemeinsam zu nutzende
Komponenten zu identifizieren. Komponenten, die von mehreren Ge-
schäftseinheiten verwendet werden, müssen auch von allen Benutzern
verstanden und referenziert werden. Die Komponentenentwicklung
kann dabei im Rahmen von Projektarbeiten betrieben werden. Das Ex-
pertenteam sollte mit kleinen, durchführbaren und extrem strategischen
Projekten beginnen. Um wiederverwendbare Komponenten zu erstel-
len, ist eine Zusammenarbeit zwischen den Eigentümern der jeweiligen
Geschäftsprozesse unabdinmgbar. Dazu wird ein gewisser Organisati-
onsrahmen benötigt:

◗ Zentralisierte Verwaltung von wiederverwendbaren Komponenten,
die sich für die gemeinsame Nutzung eignen.

◗ Begutachtung der Entwürfe von neuen und existierenden Projekten,
um derartige Komponenten zu identifizieren.

◗ Zugang zu den Information über wiederverwendbare Komponenten
auf Unternehmensebene.

Der Entwurf von Komponenten sollte in allen laufenden Projekten re-
gelmäßig begutachtet werden. Dabei muss bestimmt werden, ob die
fachlichen Anforderungen von den existierenden Komponenten abge-
deckt werden. Falls nicht, muss entschieden werden, ob bestehende
Komponenten erweitert werden können, um die Anforderungen abzu-
decken, allerdings ohne dabei die Wiederverwendbarkeit der Kompo-
nente zu gefährden.

4.3 Der Software-Entwicklungszyklus

398

4.3 Der Software-Entwicklungszyklus

Die Informationstechnologie scheint sich mit exponentiell ansteigender
Rate zu verändern. Produktentwicklungszyklen haben sich zunächst von
10 auf 5 Jahre reduziert, dann auf 1 Jahr, auf 6 Monate und werden nun in
»Web-Zeit« gemessen – 3 Monate bis 6 Wochen. Die Folge davon ist, dass
die »best practices« von heute zu den schlimmsten Albträume von morgen
werden können.

Fachliche
Architektur versus

Technische
Architektur

Organisationen, die ihre fachlichen Anforderungen an eine spezifische
technischen Implementierung binden, haben deshalb die Aussicht, dass sie
ihre fachlichen Regeln ständig neu implementieren müssen, um der sich
ändernden Technologie zu folgen. Ein typisches Beispiel für die Verquik-
kung von Fachfunktion und Implementierung ist EDI/EDIFACT (siehe Ka-
pitel 3.4.11). Ein sicherer Ansatz ist es, die Spezifikation der fachlichen
Funktionalität soweit wie möglich unabhängig von der zugrunde liegen-
den Technologie zu machen, also die fachliche von der technischen Archi-
tektur zu trennen.

Allerdings fordern wir nicht, die Fachfunktionalität in kompletter Ignoranz
der technologischen Möglichkeiten zu definieren. Schließlich wird ja der
Einsatzbereich einer Applikation grundsätzlich von der jeweils existieren-
den Technologie definiert: Kein Electronic Business ohne das Internet!

Beim Planen einer neuen Anwendung ist jedoch das klare Verständnis der
fachlichen Anforderungen und der Architektur des Geschäftsmodells der
erste Schritt. Dieser Schritt definiert denn auch die ersten Phasen im Le-
benszyklus eines Projekts [Yourdon1995].

4.3.1 Phasen eines objektorientierten Projektzyklus

SELC Software AGs Software Engineering Lifecycle Model (SELC), das wir hier prä-
sentieren, unterstützt einen solchen Ansatz. Die Schritte in SELC sind:

� Konzeptphase

Das SELC deckt auch eine dem eigentlichen Entwicklungsprozess vor-
angestellte Konzeptphase mit ab, in der mittels Modellierung der Ge-
schäftsprozesse – Business Process Modeling (BPM) – versucht wird, den
Anwendungsbereich zu verstehen, das Projekt zu visualisieren und den
Umfang des Projektes zu bestimmen.

� Analyse der Anforderungen

Was Requirements Analysis Modeling ist die grundlegende Aktivität für den
gesamten Projektzyklus. Die Assets und Artefakte, die in dieser Phase
entwickelt werden, bilden die Grundlage für spätere Entwicklungsakti-
vitäten, und erlauben die etwaige Rückverfolgung (traceability) von Ent-
wurfsentscheidungen.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

399

Ein Artefakt ist ein greifbares Arbeitsergebnis, das notwendig ist, um die
Funktionalität zu definieren oder zu erweitern, so z.B. Diagramme, Pro-
jektpläne oder Schemata.

Ein Asset ist ein Artefakt, der auch einen Zweck außerhalb des jeweili-
gen Projektes hat. Beispiele von Assets sind Artefakte, die wiederver-
wendbare Komponenten definieren, Pläne und Zeitpläne, die dazu
benutzt werden, um das Projekt dem höheren Management darzustel-
len, und funktionale Beschreibungen für den Vertrieb und das Marke-
ting.

Die Analyse der Anforderungen ergibt einen externen Blick auf das Sy-
stem aus der Perspektive des Fachklienten. Diese Phase erfasst und ent-
wickelt die inhärente Fachfunktionalität und die fachlichen Regeln. Alle
Aktivitäten und Arbeitsergebnisse werden in der Semantik des Fachbe-
reiches ausgedrückt, also in der Sprache und den Begriffen des fachli-
chen Klienten. Alle in dieser Phase erzielten Arbeitsergebnisse sind für
alle fachlichen Benutzer unmittelbar verständlich.

KandidatenEinige der während der Anforderungsanalyse erforschten Konzepte
können möglicherweise nicht in ein Produktionssystem abgebildet wer-
den. Bestimmte fachliche Interaktionen, die notwendig sind, fachliche
Regeln auszuarbeiten und zu beurteilen, können außerhalb des Bereichs
eines bestimmten Produktionssystems liegen. Die Konsequenz ist, dass
viele dieser Konstrukte einen Kandidatenstatus erhalten (candidate Use
Cases, candidate Business Concepts). Zu bestimmen, welche Kandidaten
schließlich in das Produktionssystem überführt werden, ist Zweck der
folgenden Entwicklungsphase.

� Analytisches Modell

Die Phase der Systemanalyse umfasst Entscheidungen, die den Pro-
blembereich des Gesamtsystems betreffen.

Analysis Modeling übersetzt die Ergebnisse der Requirements Analysis in
ein objektorientiertes Format. Dabei ist jede objektorientierte Notation
angemessen, sofern diese Notation integrierte statische und dynamische
Aspekte unterstützt. Im Kontext unserer Diskussion setzen wir UML
(Unified Modeling Language) als objektorientierte Modellierungssprache
voraus [Rumbough1998].

Die fachlichen Anforderungen (Business Requirements) werden in Use
Cases übersetzt: Jede mögliche Art, in der ein Endbenutzer das System
benutzt, definiert einen Use Case. Jeder Use Case definiert so eine Anzahl
von Interaktionen mit dem System [Jacobson1993].

Mittels einer formalen Methode wie UML transferiert die Systemanaly-
se das Wissen, das in der Anforderungsanalyse erworben wurde, vom
fachlichen Bereich in den Bereich der Entwickler. Insofern kennzeichnet

4.3 Der Software-Entwicklungszyklus

400

die Erstellung das analytischen Modells einen ’Crew’-Wechsel: Die for-
malen Spezifikationen werden vom Systemanalytiker den Entwicklern
übergeben. Der Systemanalytiker stellt dabei sicher, dass das analyti-
sche Modell die fachlichen Anforderungen reflektiert.

Der formale Charakter der benutzten Methoden erlaubt die Rückverfol-
gung (traceability) von Entscheidungen im Entwicklungsprozess: Späte-
re Artefakte können bis zu ihren Wurzeln, nämlichen den fachlichen
Anforderungen zurückverfolgt werden und umgekehrt.

Das analytische Modell ist auch die Phase, in der Analysis Patterns iden-
tifiziert werden. Im Unterschied zu Design Patterns [Gamma1995] (siehe
Kapitel 4.1), die gemeinsame Implementierungskonstrukte adressieren,
beziehen sich Analysis Patterns auf fachliche Konstrukte. Analysis Pat-
terns führen keine neue Funktionalität in ein Modell ein, vielmehr iden-
tifizieren sie bestehende Lösungen.

� Entwurfsmodell

Wie Nun ist es Zeit, die Technologie einzuführen und die technische Archi-
tektur zu definieren. Das Entwurfsmodell (Design Model) ist die Anwen-
dung der Technischen Architektur auf das analytische Modell. In der
Anforderungsanalyse und der Systemanalyse hatten wird das »Was«
adressiert; nun bringen wir das »Wie« zum Ausdruck.

Die technische Architektur enthält den kompletten Satz von technischen
Konstrukten, die benötigt werden, das analytische Modell zu imple-
mentieren – Konstrukte und Techniken, wie sie in den vorigen Kapiteln
dieses Buches diskutiert wurden. Das schließt die Aufteilung der Appli-
kation in Teilbereiche (Kommentensysteme, Packages) und die Definiti-
on von Anwendungsschichten mit ein.

� Implementierungsmodell

Wo Die Erstellung des Implementierungsmodells ist die Phase in der wir die
Aspekte des Einsatzes (deployment) in der technischen Architektur
adressieren. Wenn Anforderungsanalyse und Systemanalyse das »Was«
behandelten und das Entwurfsmodell das »Wie«, so definiert das Imple-
mentierungsmodell das »Wo«. Das Implementierungsmodell ist eine
entscheidende Aktivität für komponentenbasierte und verteilte Systeme
(siehe auch Kapitel 2.6). Im Gegensatz dazu ist das Implementierungsmo-
dell für monolithische Applikationen trivial: Die Frage des »Wo« ist dort
leicht zu beantworten.

In dieser Phase behandeln wir auch die Frage der Integration von Altan-
wendungen und von Systemen von Fremdherstellern.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

401

� Kodieren und Zusammenbau

In dieser Phase kommen wir zur Produktion des ausführbaren Codes.
Das schließt gewöhnlich die folgenden Aktivitäten ein: Code schreiben,
Applikationsteile aus bereits existierenden Komponenten zusammen-
stellen, Verpackungstechniken (wrapping) auf Altsoftware anwenden
u.s.w.

� Qualitätssicherung und Testen

Auch in dieser Methodologie haben Qualitätssicherung und Testen die-
selbe Funktion wie auch in anderen Methodologien: Die Verifikation
und Validierung der technischen und fachlichen Funktionalität über alle
Phasen des Projektzyklus hinweg.

Bei den objektorientierten Entwurfs- und Implementierungsmethoden
schließt die Teststrategie für eine Applikation die folgenden Schritte mit
ein:

◗ Klassentest. Klassen sind die kleinsten Einheiten innerhalb einer ob-
jektorientierten Teststrategie. Der Entwickler stellt sicher, dass die
Methoden der Klasse sich korrekt ausführen lassen und dass der in-
terne Zustand der Klasse und die veröffentlichen Eigenschaften (Fel-
der) korrekt gesetzt werden. Erinnern wir uns, dass der interne
Zustand eines Objektes sich während des Lebenszyklus des Objektes
ändert und dass die Methoden ihr Verhalten abhängig vom Status
des Objektes ebenfalls ändern können.

◗ Szenariotest. Hier testen die Entwickler die Interaktion zwischen
Klassen, und zwar auf Grundlage von Szenarien und Mustern (pat-
terns), die in den Modellierungsphasen entwickelt wurden. In dieser
Phase sind die Details der Codierung noch sichtbar und zugänglich.

◗ Use Case Test. Bei der Validierung der Use Cases liegt der Schwer-
punkt auf der Verifikation der fachlichen Funktionalität. Verant-
wortlich ist hier das Qualitätssicherungsteam, das keinen Zugang
zum Programmcode hat.

◗ Package Test. Packages fassen aufeinander bezogene Klassen zu grö-
ßeren Einheiten zusammen, die die Funktionalität der Applikation in
kohärente Untermengen zerlegen. Der Schwerpunkt in dieser Test-
phase liegt auf den Interaktionen zwischen diesen Packages.

◗ System Test. Die letzte Aktivität im Qualitätssicherungsprozess. Der
Schwerpunkt liegt hier auf dem Gesamtsystem und seinen Inter-
aktionen mit anderen Systemen. Hier sind nicht nur funktionelle
Themen wichtig, sondern auch Themen wie Performanz und Skalier-
barkeit.

4.3 Der Software-Entwicklungszyklus

402

Zusätzliche Qualitätssicherungsmethoden ergänzen das Testen. Ein oft
wiederholter Satz ist der, dass Testen nur das Vorhandensein von Feh-
lern feststellen kann, nicht aber deren Abwesenheit. Wir wiederholen
diesen Satz gerne noch einmal.

Peer Review Unter dem Begriff des Peer Review verbirgt sich eine der effektivsten Me-
thoden der Qualitätssicherung. Peer Review bedeutet, dass Arbeitsergeb-
nisse auf allen Ebenen von unabhängigen Kollegen überprüft werden.
Das fängt bei der Anforderungsanalyse an, kulminiert im Code Review
und endet mit dem Überprüfen der Teststrategien.

� Einsatz

Der letzte Schritt ist der Einsatz (deployment) der Applikation. Dieser
Schritt schließt nicht nur die Verteilung der Software über die Server mit
ein, sondern umfasst auch korrelierte Aktivitäten: Die Verteilung der
Systemdokumentation, das Benutzertraining, den Aufbau von Support-
Kanälen, usw. In Electronic Business-Szenarien ist das Trainieren der
Endbenutzer und die Verteilung von Benutzerhandbüchern oft nicht
möglich – hier werden effektive Support-Kanäle noch wichtiger.

	 Wartung

Im Ansatz des SELC wird die Wartung einfach zu einer erneuten An-
wendung der Phasen des Projektzyklus – ein neuer Zyklus in einem ite-
rativen Prozess. Einer der wichtigsten Belange der Wartung ist es,
herauszufinden, wann die eingegangenen Änderungswünsche und
Verbesserungsvorschläge eine weitere Entwicklungsanstrengung recht-
fertigen. Das beste Vorgehen ist hier, die Änderungswünsche auf Use
Cases abzubilden und von dort aus festzustellen, wie viel Aufwand nö-
tig wird.

Für jede Phase im Projektzyklus können wir drei Komponenten identifizieren:

◗ Rollen und Ressourcen. Die Personen, die an dieser Phase teilnehmen.

◗ Aktivitäten. Was diese Rollen und Ressourcen während dieser Phase
tun.

◗ Assets und Artefakte. Was in dieser Phase produziert wird.

Kein Projektzyklus kann als statisch angesehen werden. Jeder Projektzy-
klus muss sich anpassen und wachsen, um Fortschritte in der Technologie
zu berücksichtigen, neuen fachlichen Anforderungen und Umgebungen
nachzukommen und die wachsende Erfahrung des Projektteams zu reflek-
tieren.

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

403

4.3.2 Der iterative inkrementelle Projektzyklus

Evolutionärer
Ansatz

Das Konzept der inkrementellen und evolutionären Entwicklung hat sich
bereits Mitte der Achtzigerjahre entwickelt. Die inkrementelle Entwicklung
berücksichtigt, dass es fast unmöglich ist, ein perfektes System in einem
einzigen Schritt – ohne Rückkopplung (feedback) vom Endbenutzer – abzu-
liefern. Oft ist es besser, zunächst nur Kernbereiche des Geschäftsmodells
in einer ersten Version zu implementieren, anstatt eine vollständige und
perfekte Lösung in einem Schritt erreichen zu wollen. Die praktischen Er-
fahrungen, die mit frühen Versionen des Systems gewonnen werden, sind
wertvolle Schätze, die helfen, weitere Funktionalität in zukünftigen Inkre-
menten zu modellieren und zu implementieren. Die Implementierung neu-
er Funktionalität kann so auf einen stetig wachsenden Schatz von Erfah-
rungen gegründet werden und so die fachlichen Anforderungen besser
erfüllen als ein System, das nur am ’Reißbrett’ entsteht.

Der SELC unterstützt einen solchen inkrementellen Entwicklungsprozess
und erlaubt mehrere Iterationen innerhalb eines jeden Inkrements.

Was ist ein
Inkrement?

Im inkrementellen Ansatz wird das Projekt in eine Anzahl Mini-Projekte
aufgebrochen. Jedes dieser Mini-Projekte liefert eine komplette Implemen-
tierung ausgewählter fachlicher Funktionen. Jedes Inkrement enthält eine
Untermenge der Use Cases des Gesamtsystems. Wenn das Inkrement fertig-
gestellt ist, sind auch die Use Cases vollständig implementiert.

Was ist eine
Iteration?

Ein Projekt in diskrete Inkremente aufzubrechen, hat den Vorteil, dass die
Entwicklungsaktivitäten zunächst auf ein engeres Feld fokussiert werden
und wichtige Funktionalität früher geliefert werden kann. Allerdings ist
noch offen, wie diese Aktivitäten innerhalb eines bestimmten Inkrements
organisiert werden.

Im iterativen Ansatz zerlegen wir jedes Inkrement in eine Anzahl von Ite-
rationen, gewöhnlich drei. Diese Iteration decken alle Phasen des Projekt-
zyklus ab, aber im Unterschied zu Inkrementen entwickelt nicht jede Itera-
tion notwendigerweise die gesamte Funktionalität eines Use Cases.

Diese Iterationen sind:

� Exploration. Die anfängliche Phase der Entdeckung.

� Evolution. Die Erweiterung der Konstrukte und Prozesse, die während
der Exploration entdeckt wurden.

� Verfeinerung. Die endgültigen Verfeinerungen (refinements) für die
vollständige Ablieferung.

4.3 Der Software-Entwicklungszyklus

404

Das Konvergenzprinzip
Dieser Drei-Iterationen-Ansatz ermöglicht die Anwendung einer Kernstra-
tegie des Projektmanagements, nämlich die des Konvergenzprinzips. Dieses
Prinzip sagt aus, dass – unter konsistenter Anwendung objektorientierter
Technologie – die Lösungsmenge innerhalb von drei Iterationen mit einer
maximalen Abweichung von 10% auf die tatsächlich benötigte Lösung kon-
vergiert. Wenn korrekt angewandt, erhält man mit diesem Prinzip klare
und frühe Warnzeichen für Fehler in der Spezifikation, mangelndes Ver-
ständnis der Anforderung, unangemessene Architektur oder instabile Um-
gebung.

Aufwandsverteilung auf Iterationen
Wie viel Aufwand muss auf jede Iteration verwendet werden?

Im Wesentlichen gibt es drei Strategien (loading strategies):

◗ Back-end Loading. In diesem Ansatz wird der Großteil der Arbeit in der
letzten Iteration ausgeführt.

Diese Strategie wird paradoxerweise verwendet, wenn ein Problem nur
mangelhaft verstanden wird oder die Entwickler unerfahren sind.
Wenn man mit einem unbekannten Terrain oder Problemraum konfron-
tiert ist, ist es besser, zunächst rasch durch den Entwicklungsprozess zu
gehen, um schnell einen breiten Überblick über alle Themen zu gewin-
nen.

◗ Front-end Loading. In diesem Ansatz wird der Hauptteil der Arbeit auf
die erste Iteration verwendet.

Dieser Ansatz eignet sich am besten für Probleme, die trivial sind und
gut verstanden werden. Hier kann die meiste Arbeit im ersten Durch-
gang erfolgen, ohne dass man Gefahr läuft, dass spätere Entdeckungen
die gesamte Arbeit gefährden.

Exploration < 20%

Evolution 33%

Verfeinerung > 50%

Exploration > 50%

Evolution 33%

Verfeinerung < 20%

K
ap

it
el

 4
 –

 M
et

h
o

d
en

 d
es

 S
o

ft
w

ar
e-

En
g

in
ee

ri
n

g
s

405

◗ Linear Loading. In diesem Ansatz werden die Anstrengungen gleich-
mäßig über alle drei Iterationen verteilt.

Kaum überraschend wird dieser Ansatz dann verwendet, wenn es nicht
klar ist, wie gut ein Problem verstanden wird.

Integration
Während Inkremente lose gekoppelt sein sollten, gibt es doch klare Abhän-
gigkeiten zwischen ihnen. So wird es immer die Notwendigkeit geben, Ko-
ordinierungsprobleme zwischen den Inkrementen zu lösen. Dieser Prozess
wird Integration genannt.

Integration muss als eigenständige Projektaktivität eingeplant und adres-
siert werden. Dabei können zwei Integrationsstrategien verwendet wer-
den:

◗ Inkrementabhängige Integration. In diesem Ansatz liegt es in der Ver-
antwortung jeder Entwicklungsuntergruppe, die von ihnen abzuliefern-
den Arbeitsergebnisse mit denen vorheriger Inkremente abzustimmen.

◗ Getrennte Integration. Hier ist eine getrennte Untergruppe für alle In-
tegrationsaktivitäten verantwortlich. Das Team nimmt die Arbeitser-
gebnisse der andern Entwicklungsteams entgegen, koordiniert sie und
löst Diskrepanzen.

Unabhängig von der Strategie muss ein Projektleiter genügend Zeit für die-
se Aktivitäten bereit stellen.

Werkzeuge
Auf dem Markt sind verschiedene Werkzeuge, die den Softwareentwick-
lungsprozess oder Teile davon unterstützen wie z.B. die Systeme von Rose
und TogetherSoft.

Zusätzlich können diese Werkzeuge bestimmte Qualitätssicherungsaufga-
ben automatisieren:

◗ Eine automatische Bewertung erlaubt es, die Komplexität der Modelle und
der Implementierung zu überwachen.

◗ Audits sichern die Verwendung von Unternehmensstandards und die
Befolgung von Konventionen.

Exploration 33%

Evolution 33%

Verfeinerung 33%

4.3 Der Software-Entwicklungszyklus

406

◗ Die Rückverfolgung von Anforderungen (Requirements Traceability) erlaubt
es, zu verfolgen, wie die definierten Anforderung in den verschiedenen
Phasen des Modellierungs- und Implementierungsprozesses abgebildet
werden.

Rundreise mit
Bolero und

Together

Software AGs Entwicklungssystem Bolero speichert Entwicklungsobjekte
wie Klassen, Schnittstellen, Methoden und Felder in einem Repositorium
und benutzt dabei zur internen Darstellung XML. Das erlaubt es, gegen-
über Modellierungswerkzeugen offene Schnittstellen anzubieten.

Insbesondere kann hier Bolero mit Together von TogetherSoft zusammenar-
beiten. Die Integration der beiden Produkte erlaubt ein Round-Trip-Enginee-
ring: So können UML-Diagramme in Code übersetzt werden, während um-
gekehrt Änderungen im Code auch wieder zurück in die Diagramme
reflektiert werden können.

