Methoden des Software-
Engineerings

In Teil 4 diskutieren wir Aspekte der Software-Wiederverwendbarkeit und
Methoden des Software-Engineerings. Leser mit Vorkenntnissen beztglich
der Grundlagen des Projektmanagements und der Prinzipien des objekt-
orientierten Entwurfs und der Programmierung sind bei diesem Kapitel im
Vorteil.

» Kapitel 4.1, »Software-Wiederverwertung?«, argumentiert, dass Software-
Wiederverwendbarkeit nicht ein eigenstandiges Unternehmensziel ist.
Stattdessen muss Wiederverwendbarkeit im Kontext des Software-En-
gineering und der Qualitéatssicherung gesehen werden und sich Zielen
wie Flexibilitat, Time-to-Market und Kosteneffektivitat unterordnen.
Verschiedene Entwicklungen in der Softwaretechnologie, insbesondere
im Bereich der Programmiersprachen, werden in diesem Kontext be-
trachtet.

» Kapitel 4.2, »Eine Wiederverwendungs-Methodologie«, diskutiert die Soft-
ware-Wiederverwendung unter besonderer Beriicksichtigung von kom-
ponentenbasierten Architekturen. Dabei entwickeln wir Richtlinien, um
die Wiederverwendung von Komponenten mdglichst nutzbringend zu
machen.

» Kapitel 4.3, »Der Software-Entwicklungszyklus«, fuhrt Software AGs
SELC ein, ein inkrementelles und iteratives Lifecycle-Modell, das insbe-
sondere fur objektorientierte Electronic Business-Anwendungen geeig-
net ist.

365

4.1 Software-Wiederverwertung?

Wieder-
verwendbarkeit

ein geschaftliches

366

Ziel?

4.1 Software-Wiederverwertung?

Seit Programmierer Software fur Computer schreiben, wenden sie das glei-
che Prinzip an wie die Herrscher des R6mischen Reiches: Divide et Impera.
D&I war sogar lange vor der Computerprogrammierung ein Generalprin-
zip aller Ingenieurskunst: Wenn ein Problem zu komplex ist, um es auf ei-
nen Schlag zu 16sen, teilt man es in mehrere kleinere Unterprobleme und
nimmt sich diese getrennt vor.

Wenden wir dieses Prinzip wiederholt an, so finden wir schnell heraus,
dass einige Unterprobleme immer wieder auftauchen, und dass wir anfan-
gen, das Rad neu zu erfinden. Teilen wir z.B. das Problem der Wohnzim-
merreinigung in die Einzelprobleme Teppichreinigung und Fensterputzen,
so werden wir schnell merken, dass das Fensterputzen im Wohnzimmer
dem Fensterputzen in der Kuiche sehr &hnelt, dass wir hier also ganz ahnli-
che Prozeduren anwenden kénnen.

Viel mehr gibt es auch Uber die Wiederverwendung von Software nicht zu
berichten. Software-Reuse handelt von der Wiederverwendung existieren-
der Entwiirfe, Programme und Prozeduren mit dem Ziel, einen Computer
ahnliche Vorgange in verschiedenen Kontexten ausfilhren zu lassen. Das
verlangt, dass wiederverwendbare Prozeduren an andere Gegebenheiten
anpassbar sind. Um bei unserem Beispiel zu bleiben: Die Prozedur fur das
Fensterputzen sollte sich an verschiedene Fenstergréf3en und -formen an-
passen lassen, um eine maximale Wiederverwendbarkeit zu erreichen.

Software-Wiederverwendbarkeit ist jedoch kein geschaftliches Ziel an sich,
sondern nur das Mittel zum Zweck. Dabei ist die Software-Wiederver-
wendbarkeit nur ein Mittel unter vielen.

Als geschéftliche Ziele seien genannt:

» Die Neugestaltung von Geschaftsprozessen mit dem Zweck hdherer Ef-
fektivitat im Unternehmen.

» Minimierung der Kosten fur Software-Entwicklung und -Wartung.
» Die Bewadltigung einer Software-Krise in einem Unternehmen.

» Die Verkirzung des Zeitraums bis zur Markteinfihrung eines Produk-
tes.

» Die Maximierung von Kundenzufriedenheit und -treue.

Diese Ziele sind oft widerspruchlich. Insbesondere der vierte Punkt kann
spéter viel Arger bereiten. Zeitdruck fuhrt oft zu Quick-and-Dirty-Lésun-
gen, die dann spater hohe Wartungskosten nach sich ziehen. Normalerwei-
se schnell implementiert, um ein dringendes Problem zu 16sen, entpuppen
sich diese »Ldsungen« als auBerordentlich langlebig. Das Y2K-Problem
war teilweise das Ergebnis solcher »Ingenieurskunst«.

Die schnelle Entwicklung des Internets und des Electronic Business haben
zu dhnlichen Problemen gefuihrt. Um Unternehmen schnell »auf’s Web« zu
bekommen, werden Abklrzungen genommen. IngenieurmaRig sauber
konstruierte Webseiten sind die Ausnahme, nicht die Regel.

Im Juni 1998 hielt IEEE Software [Pressman1998] ein Roundtable-Gespréch
ab unter dem Titel »Can Internet-based Applications Be Engineered?«.

Allein die Tatsache, dass diese Frage gestellt wurde, l&sst vermuten, dass
viele Websites sich in einen chaotischen Dschungel bestehend aus Websei-
ten, CGI Skripts, Java Applets, ActiveX Controls, Active Server Pages, Dy-
namic HTML Seiten, Plug-ins u.a.m. entwickelt haben. Das Ergebnis sind
praktisch unwartbare Sites: Wartungsarbeiten, flr die ein paar Stunden an-
gesetzt waren, erstrecken sich mitunter Gber Wochen.

Bei einer Wachstumsrate von 70% pro Jahr ist es abzusehen, dass Electronic
Business-Anwendungen in kurzer Zeit die Mehrzahl aller kommerziellen
Anwendungen ausmachen werden. Deshalb ist es heute umso dringender,
Ingenieurpraktiken fir den Entwurf und die Implementierung von Electro-
nic Business-Applikationen zu diskutieren, wenn wir nicht in ein paar Jah-
ren mit Problemen konfrontiert sein wollen, die das Y2K-Problem eher
marginal erscheinen lassen.

Wir argumentieren also fir einen ingenieurmafigen Ansatz flr Electronic
Business-Applikationen. An die benutzten Werkzeuge und Programmier-
systeme stellen wir die folgenden Forderungen:

» Applikationen missen schnell erstellt werden kénnen.

Das heif3t nicht notwendigerweise, dass eine neue Applikation schnell
kodiert werden muss. Die Erstellung einer neuen Applikation umfasst
mehrere Phasen, von denen das Schreiben des Programmcodes nur 10-
20% der Gesamtzeit in Anspruch nimmt. Zusétzliche Anstrengungen,
die wahrend der frihen Entwurfs- und Implementierungsphasen inve-
stiert werden, zahlen sich gewdhnlich wahrend der Test- und War-
tungsphasen aus.

Alle Programme sollten grindlich entworfen und dokumentiert wer-
den. Fehler sollten so friih wie méglich gefunden werden, wenn még-
lich schon in der Entwurfsphase oder bei der Kompilierung. Das
Programmiersystem sollte typische Standardvorgédnge bereits als
Sprachelemente anbieten, da Sprachelemente im Gegensatz zu Biblio-
theksfunktionen vom Compiler geprift werden kdnnen.

» Die erzeugten Applikationen missen robust sein.

Konstrukte, die in einer Testumgebung nur schwierig fehlerfrei zu ma-
chen sind, sollten vermieden werden. Typische Kandidaten sind hier:
Speicherplatzverwaltung auf unterer Ebene, Prozess- und Thread-Syn-
chronisierung auf unterer Ebene und Datenbanktransaktionen auf unte-
rer Ebene.

Software-
Engineering fiir
Internet-
Anwendungen?

Die richtigen
Werkzeuge

367

4.1 Software-Wiederverwertung?

368

Gleichermalen ist es fur Electronic Business Applikationen wesentlich,
dass nicht nur funktionale Tests durchgefihrt werden, sondern auch
»Crash«-Tests mit hohem Datenvolumen, um die Skalierbarkeit zu te-
sten.

» Die erzeugten Applikationen mussen flexibel sein.

Es muss moglich sein, Applikationen rasch an sich &ndernde Erforder-
nisse anzupassen. Dabei sollte es nicht zu Uberraschungen kommen.

Der Programmcode muss leicht zu lesen und einfach zu verstehen sein;
die verwendeten Konstrukte sollten intuitiv sein. Die verschiedenen Be-
lange in einer Applikation sollten in verschiedenen Code-Einheiten er-
scheinen (Separation of Concerns). Anderungen an Komponenten sollten
keine Fernwirkungen auf andere Komponenten haben.

» Es muss mdglich sein, existierende Entwurfe und Komponenten, inklu-
sive der Komponenten von Fremdanbietern und von existierenden
(legacy) Systemen zu nutzen.

Programmiersysteme mussen Methoden bereitstellen, externe Kompo-
nenten in eine Applikation zu integrieren. Auch muss es moglich sein,
Komponenten fiir die Zwecke einer Applikation anzupassen.

Wenn es so aussieht, als wiirden wir uns von unserem urspriinglichen The-
ma (Software-Wiederverwendung) wegbewegen, so stimmt dieser Ein-
druck. Wir betrachten die Software-Wiederverwendung als zum erweiter-
ten Bereich des Software-Engineering gehorig. Einige der Techniken, die
vordem unter dem Banner der Software-Wiederverwendung angepriesen
wurden wie z.B. Objektorientierung und Vererbung sind in Wirklichkeit
Techniken, deren Bedeutung mehr im Bereich der Qualitatssicherung wie
Korrektheit, Stabilitat und Flexibilitat liegt.

In den letzten Jahre sind komponentenbasierte Softwareentwicklungssy-
steme Realitat geworden. Hier sehen wir die Chancen fur eine Software-
Wiederverwendung, die sich auch lohnt. Nicht nur ein paar Zeilen Code
werden hier wiederverwendet, sondern komplette, schlusselfertige (plug-
and-play) und anpassbare Softwarekomponenten.

4.1.1 Einfache Sachen zuerst

Es tut uns fast leid, aber erwdhnen mussen wir es: Die Lesbarkeit einer Pro-
grammiersprache hat direkte Wirkung auf die Qualitat der Software, die
damit implementiert wird. Kann der Programmcode leicht gelesen und
verstanden werden, so ist es auch leichter in dem Programm Fehler zu fin-
den, es zu &ndern und erneut zu benutzen. David Parnas Geheimnisprinzip
[Parnas1972] bezieht sich auf Modularisierungstechniken — nicht gemeint
ist damit die Lesbarkeit des Codes.

In der Tat ist es eine der effektivsten Techniken, um korrekten Code zu er-
zielen, die Coderevision durch Kollegen (peer review), also die Programme
noch von einer zweiten Person Korrektur lesen zu lassen. Einige der erfolg-
reichsten Softwaresysteme beruhen auf offenem Quellcode. Je mehr Leute
den Code lesen und verstehen kénnen, umso besser. Tausend Augen sehen
mehr als zwei.

Hier sind ein paar Ratschléage fur lesbaren Code:

Pragnanz ist keine Tugend. Nicht in der Programmierkunst.

Die erste kommerzielle Programmiersprache war COBOL, eine Sprache,
die alles andere als pragnant ist. Anweisungen wie

ADD a TO b GIVING ¢

lassen uns heutzutage Uber so viel Beredsamkeit lacheln, machten aber
zur Zeit, als COBOL eingefuhrt wurde, Sinn. Zu dieser Zeit schrieben
Programmierer ihren Code noch auf Papier (mit einem Bleistift!). Der
Kodierbégen wurden dann an die Lochkartenabteilung Ubergeben und
dort von Datentypisten auf Lochkarten gestanzt. Die Lochkarten wur-
den ausgedruckt und vom Programmierer Korrektur gelesen, bevor sie
fur die Kompilierung freigeben wurden. Bei Intervallen von Stunden
oder Tagen zwischen Kompilierungen waren Tippfehler fatal. Eine Pro-
grammiersprache wie COBOL, die alles in volle Worte fasste, war leich-
ter zu tippen und leichter Korrektur zu lesen, was das Risiko von
Tippfehlern gering halt.

Dann kam APL. APL erschien zu einer Zeit als auch Time-Sharing-Sy-
steme aktuell wurden. Programmierer bekamen eigene Endgerate wie
die IBM-Kugelkopfschreibmaschine, ein feinmechanisches Wunder-
werk. APL konnte auf solchen Time-Sharing-Systemen laufen und war
auch eine der ersten interpretativen Sprachen. Eine Kompilierung war
UberflUssig, man konnte das Programm eintippen, sofort ausfiihren und
augenblicklich die Ergebnisse. Welch ein Fortschritt!

Allerdings gab es ein kleines Problem. Die meisten Programmierer und
Wissenschaftler konnten nicht tippen! Die extreme Pragnanz von APL
(gewdhnlich ein Zeichen fur eine Funktion) machte es popular — da gab
es schlieBlich nicht viel zu tippen. Und da APL auch noch griechische
Zeichen verwendete (man brauchte einen speziellen Kugelkopf), hatte
eine trainierte Datentypistin auch ihre Schwierigkeiten gehabt. So aber
sah man mit dem Zweifingersystem nicht allzu démlich aus.

Die Folge war, dass APL-Programme sehr schwierig zu lesen waren —
sogar fur den Autor —und APL errang schnell den Ruf einer WOL (Write
Only Language). Der Sprache gelang es nie, grof3ere Bereiche in der kom-
merziellen Programmierung zu erobern, trotz der Anstrengungen von
IBM in den friihen Siebzigern, APL als kommerzielle Programmierspra-

COBOL versus APL

369

4.1 Software-Wiederverwertung?

370

Gleichheit und
Zuweisung

Operatoren-
tiberfrachtung

che zu vermarkten. APL ist heute immer noch in Gebrauch, aber seine
Bedeutung fur die Entwicklung geschéaftskritischer Applikationen ist
gleich Null. Inzwischen sind Programmierer auch etwas flissiger im
Umgang mit der Tastatur geworden — die extreme Pragnanz von APL
wird deshalb auch nicht mehr als so tiberaus ’cool’ angesehen.

Intuitive Syntax

Eine Programmiersprache sollte Operatoren und Kommandos so ver-
wenden, wie man es erwartet. Bei einem Elektroherd z.B. wird ja auch
nicht die hdchste Stufe mit »0« und Aus-Stellung mit »3« gekennzeich-
net.

Nehmen wir als Beispiel die Zuweisung:

Aus der Schule wissen wir alle, dass »=« der Vergleichsoperator ist. Wir
wissen auch, dass mit a = b gemeint ist, dass die Inhalte der Variablen
a und b gleich sind. Wir wissen auch, dass wenn a = b gilt, so gilt um-
gekehrt b = a.

Dann erschien FORTRAN. FORTRAN verwendete das Gleichheitszei-
chen fur eine ganz andere Operation. In FORTRAN bedeutet a = b:
Weise den Inhalt der Variablen b der Variablen a zu, wobei der frihere
Inhalt von a zerstért wird. Offensichtlich ist die Bedeutung vona = b
hier vollig verschieden von der Bedeutung von b = a. Gar nicht gut.
FORTRAN hatte damit allerdings eine Tradition begonnen. C, C++ und
Java benutzen alle das Gleichheitszeichen fir die destruktive Zuwei-
sung.

COBOL geht in dieser Beziehung Uberhaupt kein Risiko ein, indem es
laut und deutlich sagt was Sache ist: MOVE b T0 a . ALGOL druckte die
verschiedenen Semantiken von Gleichheit und Zuweisung dadurch aus,
dassa := b furdie Zuweisung verwendet wird, und dieser Tradition fol-
gen Pascal, Delphi, Modula, Eiffel, Natural und Bolero. Die asymmetri-
sche Form des Operators macht auch klar, dass die Operation selbst
nicht symmetrisch ist.

Operatorentberfrachtung (Operator overloading) war und ist Gegenstand
einer hitzigen Debatte in der objektorientierten Welt. Es ist aber auch ein
oft missverstandener Term. Operatorentberfrachtung bezieht sich eben
nicht nur auf Operatoren, sondern generell auf Methoden. (Der Begriff
Operatoreniberfrachtung hat historische Griinde.) Operatorentberfrach-
tung bedeutet, dass der gleiche Methodenname flr verschiedene Me-
thodenimplementierungen verwendet werden kann, also ein Name fir
verschiedene Semantiken steht.

So adressieren die beiden Methodenaufrufe

a.add(b) // b Integer
a.add(c) // c BigDecimal

verschiedene Implementierungen und kénnten sehr verschiedene Se-
mantiken haben. In diesem Beispiel sind allerdings die Methoden auch
formal verschieden. (Methoden werden durch Signaturen identifiziert,
bestehend aus Methodennamen und den Typen der Parameter.)

Zusétzlich hangt die tatsachlich ausgefuhrte Methode auch noch vom
aktuellen Inhalt der Variablen a ab. So kann z.B. das Feld a einen Subtyp
des deklarierten, statischen Typs enthalten. Wurde bei der Definition
dieses Subtyps die Methode add() Uberschrieben, so wird die Uber-
schreibende Methode des Subtyps ausgeftihrt und nicht die Originalme-
thode des statischen Typs von a.

Bei den Argumenten auf der rechten Seite (b und c) hdngt die Methoden-
auswabhl nicht vom Inhalt der Variablen ab, sondern ausschlieRlich von
der statischen Definition der Variablen.

Das klingt vielleicht etwas verwirrend, und das ist auch der Grund war-
um Operatorentberfrachtung in OO-Kreisen kontrovers diskutiert
wird. Operatorentberfrachtung verlangt hohe Disziplin vom Program-
mierer, Methoden mit gleichen Namen auch nur mit Implementierun-
gen zu versehen, die intuitiv das gleiche bedeuten, auch wenn die
konkreten Semantiken unterschiedlich sind. So ist es durchaus sinnvoll,
Methoden, die zu Kollektionen etwas hinzuftigen, mit add zu bezeich-
nen, obwohl die Implementierung fir Listen, Baume, Mengen und Ar-
rays vollig unterschiedlich aussehen kann. Sehr verwirrend ware es
allerdings, Methoden, die etwas aus einer Kollektion entnehmen, mit
add zu bezeichnen.

Operatorenuberfrachtung ist nicht sinnvoll bei Sprachen, die eine Mehr-
fachvererbung implementieren wie C++ oder Eiffel. In diesen Sprachen
kénnen Methoden von einer Vielzahl von VVorfahren ererbt werden, was
in Zusammenhang mit der Operatoreniberfrachtung recht untbersicht-
lich werden kann.

In Sprachen mit Einfachvererbung dagegen wie in Java oder Bolero, hal-
ten wir Operatorentberfrachtung fuar nttzlich — den gleichen Namen far
gleichartige Methoden zu verwenden, macht Programme verstandli-
cher.

Benutzerdefinierbare Infix-Operatoren sind ebenfalls nitzlich, um die
Lesbarkeit von Programmen zu verbessern, besonders in objektorien-
tierten Sprachen. Warum sollten wir gezwungen werden, gleichartige
Funktionen mit verschiedenen Notationen auszudriicken?

So wird die Addition in Java mit '+’ ausgedruckt, wenn sie sich auf int
Variablen bezieht:

a +b// a is Integer

Infix-Operatoren

371

4.1 Software-Wiederverwertung?

372

C-Syntax

Wollen wir dagegen Zahlen vom Typ BigDecimal addieren, so ist das '+
" nicht moglich, da BigDecimal eine Bibliotheksklasse ist:

a.add(b)// a is BigDecimal

Um die Verwirrung komplett zu machen, l&sst sich das '+’ hingegen
wieder dazu verwenden, um zwei Zeichenketten miteinander zu ver-
ketten:

a+b// ais String

Eigentlich wiirden wir das '+’ gern in all diesen Fallen gebrauchen. Aus
diesem Grund erlaubt es Bolero, Infix-Operatoren generell als Metho-
dennamen zu verwenden wie in Bibliotheksklassen und benutzerdefi-
nierte Klassen.

C wurde entwickelt, um ein Betriebssystem zu implementieren, namlich
UNIX. C wurde aus Effizienzgrinden moglichst nahe an der Hardware
entworfen. So gibt es spezielle Operatoren wie z.B. << oder ++, die sich
direkt auf elementare Hardware-Operationen wie shift und increment
beziehen. So gelang es C, Assembler aus vielen Systemanwendungen zu
verdrangen und so den Weg fur plattformunabhéngiges Programmie-
ren zu ebnen. C war allerdings nicht fiir das kommerzielle Programmie-
ren entworfen worden.

Java adoptierte die etwas kryptische Syntax von C. Aus gutem Grunde:
Es gab eine riesige Zielgruppe frustrierter C++-Programmierer, die fir
Java gewonnen werden sollten. So sieht z.B. die for-Anweisung in Java
genauso aus wie in C:

for (int i=0; i<8; i++) ...

Das mehr an der Zielgruppe der kommerziellen Programmierer orien-
tierte Bolero spricht dagegen Klartext:

for i type Integer in 0..7 do

end for

Wir bemerken hier auch einen Unterschied in der Semantik der for-
Kontrollstruktur: Wahrend C und Java mittels eines Algorithmus alle
maoglichen Werte der Variable beschreiben (mit 0 initialisieren; fortset-
zen solange der Wert kleiner als 8 ist, nach jedem Durchlauf um 1 inkre-
mentieren), benutzt Bolero ein aktives Objekt (in diesem Falle vom Typ
Range), dass selbsttétig durch alle moglichen Werte iteriert. So konnen in
einer for-Schleife auch andere Objekte verwendet werden, die einen
Iterator implementieren wie z.B. Arrays, Kollektionen oder die Ergeb-
nisse von Datenbankabfragen.

» Kilare Kennzeichnung von Kontrollstrukturen

Sprachen wie C, C++ und Java verfligen eigentlich tber explizite Kon-
trollstrukturen. Stattdessen gibt es Kontrollanweisungen wie if oder
for, die in Kombination mit einer weiteren Anweisung oder einem An-
weisungsblock verwendet werden. Anweisungsblocke sind dabei neu-
tral und werden von neutralen Begrenzungszeichen {} umschlossen.

In komplexen Programmroutinen fuhrt dies oft zu einer Abfolge von
Begrenzungszeichen wie z.B.:

J

J

Der Nachteil ist, dass wir den geschweiften Klammern nicht ansehen,
wie weit der Bereich (scope) einer Kontrollanweisung denn reicht. Pro-
grammierer helfen sich dabei oft mit Kommentaren:

b/t
b // for
b // method

Hier halten wir Programmiersprachen, die echte Kontrollstrukturen
bieten, furr eleganter und sicherer. Dabei erwarten wir, dass die Endbe-
grenzung auch anzeigt, welche Kontrollstruktur denn da geschlossen
wird. (Diese Technik wird z.B. auch in XML angewandt.) So kann der
Compiler die Korrektheit der Kontrollstrukturen prtfen. Hier folgt ein
entsprechendes Codesegment in Bolero:

method ml

if a < b then
for i type Integer in 1..10 do
end for
end if

end method ml

4.1.2 Teile und herrsche

So sehr Ingenieure sich auch Uber dieses Prinzip einig sind, so sehr sind sie
unterschiedlicher Auffassung, wie es am besten in die Praxis umzusetzen
sei. In der kurzen Geschichte der Informatik haben sich viele verschiedene
Strategien fur die Implementierung von Divide et Impera entwickelt. Wir
z&ahlen hier nur die wichtigsten davon auf:

Geschweifte
Klammern oder
Schliisselworte?

373

4.1 Software-Wiederverwertung?

374

Prozedurales
versus
funktionales
Programmieren

» Prozedurales Programmieren zerlegt den informationsverarbeitenden Pro-
zess in mehrere Schritte, Prozeduren genannt. Meist teilen Prozeduren
Datenbereiche mit anderen Prozeduren. Diese Datenbereiche dienen als
Zwischenspeicher und zum Zwecke der Kommunikation mit anderen
Prozeduren. Prozeduren sind so voneinander abhangig. Das macht es
nicht nur schwierig, Prozeduren in anderen Zusammenhéngen wieder-
zuverwenden, sondern auch eine gegebene Prozedur zu dndern, ohne
die andern Prozeduren dabei zu beeinflussen. Deshalb haben sich in der
Geschichte des Prozeduralen Programmierens bestimmte Prinzipien
wie Datenkapselung (Data Encapsulation) und das Geheimnisprinzip
(Information Hiding) [Parnas1972] herausgebildet. Diese Prinzipien ha-
ben schliel’lich zur objektorientierten Programmierung gefuhrt.

» Funktionales Programmieren betrachtet ein gesamtes Computerprogramm
als eine einzige mathematische Funktion. Diese Funktion wird dann in
kleinere Unterfunktionen zerlegt, bis die Ebene der primitiver, vom Sy-
stem bereitgestellter Funktionen erreicht ist. Funktionen sind zustands-
los, d.h., sie bendtigen keine internen Datenbereiche. Folglich kbnnen sie
keine Datenbereiche Uberschreiben. Daten treten in der funktionalen
Programmierung nur in Form von Parametern und Ergebnissen auf. Das
erlaubtes, Funktionen auch leichtin anderen Zusammenhangen wieder-
zuverwenden, und die resultierenden Programme sind sehr robust. In
der kommerziellen Programmierung konnte funktionales Programmie-
ren allerdings kaum Terrain erobern, vermutlich weil das Konzept der
zustandslosen Funktion fUr die datengetriebenen Programme der kom-
merziellen Programmierung zu fremdartig ist.

Allerdings haben einige Konzepte, die im Rahmen der funktionalen
Programmierung entwickelt wurde wie generische Datentypen, auch Ein-
gang in moderne objektorientierte Sprachen gefunden.

4.1.3 Der objektorientierte Ansatz

Objektorientiertes Programmierung hat sich aus der prozeduralen Program-
mierung entwickelt. Dabei werden Prozeduren, die sich einen bestimmten
Datenbereich teilen, zu einem Objekt zusammengefasst. Die gemeinsame
Datenmenge definiert dabei den Zustand des Objektes, die Prozeduren, die
nun Methoden heil3en, definieren das Verhalten des Objektes. Da so kon-
struierte Objekte ein &hnliches Reiz-/Reaktionsverhalten (stimulus/response
behavior) wie der Rest des Tierreichs entwickeln, sind sie recht intuitiv. So
kdnnen wir in der kommerziellen Welt Geschaftsobjekte wie Kunden, Pro-
dukte, Auftrage und Rechnungen als Software-Objekte abbilden, die wir
Business Objects (Geschéaftsobjekte) nennen. Objekte lassen sich gut wieder-
verwenden, da sie klar definierte Schnittstellen haben und nicht von ihrer
Umgebung abhangen.

Eine Ubliche Metapher fur ein Objekt in der objektorientierten Program- Kommando und

mierung ist die der Maschine [Meyer1997]. Dabei wird der interne Zustand
der Maschine von Kommando-Methoden verandert, wahrend Abfrage-Me-
thoden den Zustand der Maschine ermitteln kénnen. Abfrage-Methoden
sollten den Zustand eines Objekts nicht verandern, d.h., die Abfrage sollte
keine Seiteneffekte haben.

Der Grund fur die Trennung der Methoden in Kommando-Methoden und
Abfrage-Methoden liegt in der besseren Wiederverwendbarkeit der Ob-
jektklassen. AuRRerdem wird die Klassenspezifikation lesbarer, und es ist
sogar moglich, Beweisverfahren zur Programmuverifikation anzuwenden.
Datenbankmanagementsysteme verwenden tbrigens den gleichen Ansatz.
Bei den Datenbankzugriffsmethoden wird strikt zwischen Kommandos
und Abfragen unterschieden: Kommandos modifizieren die Daten, wahrend
Abfragen Daten von der Datenbank abfordern, jedoch nicht verandern.

In einer groRRen Applikation werden wir feststellen, dass viele Objektklas-
sen gemeinsame Merkmale mit anderen Objektklassen haben. Objektorien-
tierte Programmiersprachen erlauben daher die Definition von Klassen-
hierarchien. Die Klassen an der Spitze der Hierarchie enthalten die
allgemeinsten Merkmale. Subklassen ererben diese Merkmale und kénnen
die Klassendefinition um eigene Merkmale erweitern oder ererbte Merk-
male Uberschreiben.

Altere objektorientierte Sprachen wie Simula oder Smalltalk unterstiitzen
hier die Einfachvererbung: Jede Klasse kann nur eine Elternklasse haben.
Das wurde oft als nicht ausreichend angesehen: Klassen haben oft mehrere
Facetten, d.h., ihr Typ kann als eine Kombination mehrerer unterschiedli-
cher Eigenschaften gesehen werden. Z.B. konnte eine Klasse die Typen
Printable, Observable und Serializable implementieren.

Neuere Sprache so wie C++ oder Eiffel implementieren deshalb die Mehr-
fachvererbung: Eine Klasse kann Merkmale von mehreren Elternklassen
erben. Besonders in C++ kommt es zu Problemen, wenn Methodenimple-
mentierungen von mehreren Elternklassen ererbt werden. Bei der Mehr-
fachvererbung besteht grundsétzlich das Problem des Namenskonfliktes.
Der Programmierer muss dann entscheiden, wie der Konflikt aufgeldst
werden soll: Soll die Methode einer bestimmten Elternklasse vorgezogen
werden, sollen Methoden umbenannt werden, oder sollen Methoden glei-
chen Namens kombiniert werden, und wenn ja, in welcher Reihenfolge? So
werden zusétzliche Kopplungen zwischen Elternklassen und Kindklassen
eingefiihrt, was Applikationen komplexer werden lasst, deren Anderung
also schwieriger macht [Sakkinen1988].

Java und damit auch Bolero haben aus dieser Erfahrung gelernt. In beiden
Sprachen wird das Konzept von Klasse (der Implementierung) und Typ
(der Schnittstelle) getrennt. Bei Vererbung zwischen Klassen ist nur die
Einfachvererbung erlaubt, jedoch kénnen Klassen Schnittstelleneigen-

Abfrage

Vererbung

Mehrfach-
vererbung?

Klasse und Typ

375

4.1 Software-Wiederverwertung?

376

Wiederver-
wendung durch
Vererbung

Dynamische und
statische
Datentypen

schaften von mehreren Schnittstellendefinitionen (interface) erben. Auch
zwischen den Schnittstellendefinitionen ist eine Mehrfachvererbung még-
lich.

Das bedeutet, dass eine Klasse nur eine einzige Implementierung pro Me-
thode erben kann, dass andererseits aber die Klasse ein Subtyp mehrerer
Elterntypen sein kann, wodurch der gewlnschte Polymorphismus gege-
ben ist. Diese Losung behélt wesentliche Vorteile der Mehrfachvererbung
bei, vermeidet jedoch auf der anderen Seite eine zu enge Kopplung zwi-
schen Eltern- und Kindklassen.

In der Vergangenheit wurde die objektorientierte Vererbung oft als wesent-
liches Konzept fur die Softwarewiederverwendung angepriesen. Inzwi-
schen hat sich herausgestellt, dass eine GbermaRige Verwendung der Ver-
erbung sich kontraproduktiv auswirkt: Die entstehenden komplexen
Vererbungshierarchien verstoRen direkt gegen das Prinzip »Divide et Impe-
ra«. Die Lesbarkeit der Programme leidet, der Begriff »Jo-Jo-Effekt » (die
Klassenhierarchie auf und ab wandern, um so zu verstehen, um was es ei-
gentlich geht) hat hier seinen Ursprung [Taenzer1989]. Also geben wir den
Rat — trotz gegenteiliger Meinung in manchen Veroffentlichungen zum
Thema objektorientiertes Programmieren — Vererbungspfade moglichst
kurz zu halten.

Die Prinzipien der Vererbung, wie sie im objektorientierten Programmieren ver-
wendet werden, wurden von dem taxonomischen System des schwedischen Biolo-
gen Carl Linné (1701-1778) Gbernommen. Allerdings hatte Linné sein System zur
Klassifizierung von existierendem Material verwendet, nicht als ein Hilfsmittel fur
Konstruktionsaufgaben. Bertrand Meyer [Meyer1997] gibt in seinem Buch einen
schonen Drei-Seiten-Uberblick tiber die Geschichte der Taxonomie — und natdrlich
auch tber alle anderen Fragen objektorientierter Programmierkunst auf den restli-
chen 1254 Seiten.

4.1.4 Sichere Software

Typsicherheit

Fast jede Programmiersprache hat einen Mechanismus, um die Kompatibi-
litat der an einer Operation beteiligten Datentypen zu prufen oder nur be-
stimmte Daten als Parameter in einem Funktionsaufruf zuzulassen. Beson-
ders in objektorientierten Sprachen, wo jede Klasse und jede Schnittstelle
einen neuen Datentyp einfuhrt, ist Typsicherheit besonders geboten:

» Sprachen wie Smalltalk fihren den Quellcode einer Klasse direkt tber
einen Interpreter zur Ausfiihrung. Ein Kompilierungsschritt in einen
Zwischencode oder Maschinencode entféllt. Die Konsequenz ist, dass
erst bei der Ausfuhrung auf Typkompatibilitdt hin geprift werden
kann. Folglich braucht in solchen Sprachen auch gar nicht erst der Typ

einer Variable deklariert zu werden, es ist der Inhalt der Variable, der
zahlt. Das ist nun genau das, was wir unter dynamischen Datentypen
(dynamic typing) verstehen. Die Typsicherheit in solchen Sprachen ist
niedrig, da Inkompatibilitaten erst in der Testphase gefunden werden
kodnnen.

» Sprachen wie Eiffel, C++, Java oder Bolero kompilieren Programme, be-
vor sie ausgefuhrt werden kdénnen. Das erlaubt es dem Compiler, die
Kompatibilitdt von Datentypen zu Uberprufen. Alle diese Sprachen se-
hen deshalb vor, dass der Typ von Variablen im Programm deklariert
wird. Statische Datentypen (static typing) machen solche Priifungen
maoglich.

Nicht in allen Fallen ist es moéglich, der strikten Typalgebra der statischen
Datentypen zu gentigen. Insbesondere, wenn Daten von externen Quellen
wie Dateien und Datenbanken bezogen werden, wenn Daten mit externen
Modulen wie DCOM-Komponenten ausgetauscht werden oder wenn wir
generische Konstrukte wie Kollektionen (siehe Kapitel 3.4.2) verwenden, ist
es oft notwendig, Inhalte Variablen zuzuweisen, die formal nicht kompati-
bel miteinander sind. Es sind deshalb Typumwandlungen (type casting) no-
tig, die die Typuberprifung durch den Compiler aufer Kraft setzen und so
ein Element der Unsicherheit in die Programmierung einfthren.

Eine typsichere Programmiersprache sollte deshalb mit méglichst wenigen
Typumwandlungen auskommen. Eine anerkannte Strategie dabei ist, ge-
nerische Datentypen zu verwenden (siehe Kapitel 3.4.2). Wahrend generi-
sche Typen die erforderliche Flexibilitat fur Kollektionen und ahnliche
Konstrukte bieten, erlauben sie trotzdem noch die Typuberprifung durch
den Compiler, was Typumwandlung unnétig macht.

Eine andere Strategie zur Reduktion von Typfehlern ist es, die Zugriffsme-
thoden auf externe Datenquellen und Komponenten in die Sprache zu in-
tegrieren. Das wurde zuerst von den Sprachen der vierten Generation
(4GL) praktiziert, die Datenbankzugriffsmethoden auf Sprachebene abbil-
deten. Bolero geht den gleichen Weg: Mit der objektrelationalen Abbildung
und der Relational-Objekt-Abbildung werden die Strukturen und Daten-
typen der Datenbank automatisch auf Bolero-Klassen und Bolero-Daten-
typen abgebildet (siehe Kapitel 3.4.6). Die bei JDBC-Datenbankzugriffen no-
tige Typumwandlung entféllt hier, was wiederum einige Fehlermdglich-
keiten ausschlief3t.

Das gilt auch fur den Import von DCOM- und CORBA-Komponenten oder
von CICS-Transaktionen in das Bolero Component Studio. Datentypen von
diesen Komponentenmodellen werden automatisch auf Bolero-Datenty-
pen abgebildet, eine explizite Typumwandlung durch den Programmierer
entfallt (siehe Kapitel 3.4.4 und 3.4.12).

Type casting

Generische Typen

Automatische
Typabbildung

377

4.1 Software-Wiederverwertung?

378

Kontrakte

Semantische Sicherheit

Softwarekonstrukte verlassen sich oft auf gewisse Annahmen Uber den
Kontext in dem sie eingesetzt werden. Das kann die Wiederverwendung
dieser Konstrukte gefahrlich machen, wenn die Randbedingungen plétz-
lich nicht mehr stimmen:

Bertrand Meyer [Meyer1997], der Kontraktprogrammierung im Rahmen von Eif-
fel erstmals in die objektorientierte Programmierung einfiihrte, erzéhlt die Ge-
schichte der Ariadne5-Rakete, die kurz nach ihrem Start infolge eines Softwarefeh-
lers explodierte. Eine numerische Routine verursachte eine nicht vorhergesehene
und deshalb auch nicht abgefangene Ausnahmebedingung. Die Programmautoren
gingen bei der Implementierung von durchaus korrekten Randbedingungen aus,
jedoch galten diese nur fur Ariadne4. Bei der Wiederverwendung fir Ariadne5 wa-
ren die Randbedingungen jedoch andere.

Kontraktprogrammierung (Programming by Contract) (siehe Kapitel 3.4.2)
macht eine Software-Einheit nicht generischer oder wiederverwendungsfa-
higer, vielmehr macht sie wiederverwendungsfahige Software-Einheiten
sicherer. Wird eine Softwarekomponente in einem anderen Kontext wie-
derverwendet, so kdnnte sie Parameterwerte erhalten, die beim Entwurf
der Komponente nicht vorgesehen waren. Der Kontrakt stellt nun sicher,
dass eine Ausnahmebedingung erzeugt wird, bevor eine unvorhergesehe-
ne Wertekombination Schaden verursacht.

Die Formulierung eines Kontraktes hat dreierlei Wirkungen:

» Der Programmierer wird sich Gber die Randbedingungen der jeweiligen
Softwareeinheit Klar.

» Der Kontrakt dokumentiert spateren Benutzern der Softwareeinheit,
welche Randbedingungen einzuhalten sind und welche Ergebnisse ga-
rantiert werden.

» Eventuelle Fehler bei der Verletzung von Randbedingungen erzeugen
sofort eine Ausnahmebedingung und nicht erst dann, wenn falsche
Werte Uber eine lange Wirkungskette zum Absturz des Programms fuh-
ren. Durch die frihe Meldung von Fehlern wird denn auch die Fehler-
analyse erleichtert, und die Wahrscheinlichkeit, dass Fehler bereits in
der Testphase gefunden werden, wéchst.

4.1.5 »Separation of Concerns«

In Kapitel 2.5 hatten wir bereits Djikstras berihmte These der Separation of
Concerns (Trennung von Belangen) [Hiirsch1994] im Zusammenhang mit
Aspect Oriented Programming (AOP) diskutiert.

Softwaresysteme sind oft mit einer Vielzahl von Belangen befasst. Dazu
zahlen Persistenz, Transaktionskontrolle, Fehlerbehandlung, Nebenlaufig-
keit, Einsatzort (welches Objekt lokal ist und welches nicht), Performanz,

Robustheit, Protokollierung, Internationalisierung, Prasentation an der Be-
nutzerschnittstelle u.a. m.

Ein Beispiel ist der Programmcode von Kapitel 3.4.2:

Abbildung 4.1
Code fiir Kontrakte
gemischt mit
Geschaftslogik.

class Produkt
is public and is persistence capable with population

instance field Name type String is public

instance field Preis type BigDecimal is public
contract
precondition newValue >= 0
postcondition result >= 0
end contract
value 0

instance method berechneMwSt is public
parameter Steuersatz type Decimal
result type BigDecimal
throws MwStFehler, SteuersatzFehler, PreisFehler
contract
precondition Steuersatz >= 0
else throw SteuersatzFehler()
precondition Preis >= 0 else throw PreisFehler()
postcondition result >= 0 else throw MwStFehler()
end contract

implementation
result := Preis*Steuersatz/100
end implementation

end method berechneMwSt
end class Produkt

Die eigentliche Geschéaftlogik diese Beispiels passt in eine einzige Zeile:
result := Preis*Steuersatz/100

der Rest ist Code, der nicht direkt auf die Geschéftlogik bezogen ist, son-
dern Kontrakte und Methodenparameter definiert 0. A.

Oft vermischt sich dieser zuséatzliche Code mit dem eigentlichen Code, der
die Geschéftslogik des Programms implementiert. Das erschwert es, den ei-
gentlichen Zweck eines Programms unmittelbar zu erkennen, und er-
schwert das Lesen der Programme, deren Anderung, Wiederverwertung
und deren Wartung [Lopez1997].

379

4.1 Software-Wiederverwertung?

380

Business Class

»Separation of Concerns« fordert nun, dass die einzelnen Aspekte eines
Programms nicht die Geschéftlogik zersplittern und verdecken sollen, son-
dern moglichst separat gehandhabt werden sollen. Auf der Ebene von Soft-
ware-Entwurfstechniken ist »Separation of Concerns« ein anerkanntes
Prinzip und wird gern praktiziert. Auf der Ebene der Implementierung
fehlten bis jetzt die Programmiersprachen, die es erlauben, bestimmte
Aspekte eines Programms separat zu formulieren. Allerdings gibt es einige
interessante Neuentwicklungen, die entlang des Prinzips der aspektorien-
tierten Programmierung entworfen wurden so z.B. Aspect) von Xerox
[Kiczales1997a]. Die verschiedenen Aspekte eines Softwarekonstrukts wer-
den hier in getrennten Programmsektionen formuliert. Diese Aspekte wer-
den spéter zu einem Programm zusammenge”webt«. Das kann durch ei-
nen Programmgenerator, durch einen Préprozessor oder durch einen
Compiler geschehen.

Das klingt eigentlich nicht nach objektorientierter Programmierung, oder? Das ob-
jektorientierte Paradigma fordert doch, dass alle zu einem Objekt gehdrigen Funk-
tionen auch Teil der Objektdefinition sein sollen. Aber es gibt Objekte und Objekte,
so wie es Leute und Leute gibt. Da gibt es den beriihmten kleinen Mann, der alles
selbst erledigen muss: Termine ausmachen, das Auto reparieren und am Wochen-
ende den Rasen méhen. Und dann gibt es den reichen Geschaftsmann: die Sekreta-
rin ist fur die Termine zustédndig, um das Auto kiimmert sich der Chauffeur und
der Rasen wird vom Gartner gepflegt. Der gute Mann kann sich also ohne Ablen-
kung voll ums Geschéft kimmern.

Mit den Objekten ist es genau dasselbe. Das Durchschnittsobjekt muss sich um al-
les selbst kimmern: um Fehlerbehandlung, Transaktionskontrolle und die Koordi-
nation mit anderen Objekten. Das Geschéftsobjekt dagegen wird umsorgt und
kann sich voll auf seine Geschéftslogik konzentrieren. Eine Klassengesellschaft?
Aber ja!

Als kommerzielles Programmiersystem unterstlitzt Bolero »Separation of
Concerns« auf zwei Ebenen:

» Zunéachst schlagt Bolero eine grundlegende Methodologie bei der Im-
plementierung kommerzieller Applikationen vor:

Die Triade von Geschéftsobjekt, Geschaftsvorgang und Geschaftspro-
zess (abgebildet durch persistente Objekte, transaktionskontrollierende
Objekte und Lange Transaktionen) (siehe auch Kapitel 3.4.9) trennt schon
einige der Belange voneinander:

Einheit Belange
Geschaftsobjekt Geschaftslogik
(persistenzfahige Klasse) Persistenz

Objekt-relationale Abbildung

Geschéaftsvorgang Kontrolle von Datenbanktransaktionen
(transaktionskontrollierende Klasse) ~ Beziehungen zwischen Geschaftsobjekten

Geschaftsprozess Koordination zwischen Geschéaftsvorgangen
(Lange Transaktion) Stornieren

Wiederanlauf

Protokollierung

Aullerdem prasentiert das Bolero Component Studio die verschiedenen
Aspekte der Programmlogik auf verschiedenen Seiten eines Notizbu-
ches, wobei jedes Notizbuch alle Definitionen von Software-Einheiten
wie Klassen, Schnittstellen, Adapter, Methoden, Felder usw. enthélt.

So werden beispielsweise auf der Ebene der Klassen Aspekte wie Ob-
jektpersistenz und Transaktionskontrolle, Objekt-relationale Abbil-
dung, Eigenschaften fur den Einsatz als DCOM- oder EJB-Komponente
auf getrennten Seiten préasentiert und so aus dem Programmcode her-
ausgehalten.

B Claas Mamg i
fProouk | & Cancrefe
&) Buperchiss Class Property

- I B FErsiidenss L spablp

fl Implements injerisces Yo ™ Pequines Trarsa clan

=il & ¥ith Fopulafion

@ [JawaBean
B Fackage Wi
[rkaut rE L
Germral | Ti® Paramesers | Imparts | Parsistenta | o

Auf der Ebene der Methoden und Felder gibt es eine dhnliche Trennung
der Aspekte. Parameter, Kontrakte, Ausnahmebedingungen u.a. wer-
den vom Code ferngehalten. So ist die eigentliche Geschaftslogik der
Methoden einfacher zu erkennen und zu verstehen. Programme, die gut
zu verstehen sind, kénnen auch leichter an andere Zwecke angepasst

Abbildung 4.2
»Separation of
Concerns« in
Bolero.

Abbildung 4.3
Blatt fur die allge-
meinen Eigen-
schaften der
Klasse Produkt

381

4.1 Software-Wiederverwertung?

Abbildung 4.4
Kontrakte-Blatt
far die be-
rechneMwSt-Me-
thode der Klasse
Produkt. Hier
werden vor und
Nachbedingungen
der Methode
definiert.

Abbildung 4.5
Code-Blatt fiir die
berechneMwSt-
Methode der
Klasse Produkt.
Die Geschaftslogik
konnte kaum
deutlicher sein.

382

werden. So ist es moglich, bestimmte Aspekte wie Transaktionskontrol-
le oder Komponentenmodelle zu andern, ohne die eigentliche Ge-
schaftslogik auch nur anzurthren.

Hredu] BeErst hna RS =lockied=

= Presondiion
Seirgriz == 0

Eetaplior

StaijarssiaF ahilam

= Ppekondion

Gegneral| Rasull| Faramelers | Copirac] | Exceplons | Type Faramaters | Code

Erodukt berechnektwS =locked>

result ! Preiz*Jceagersste /100

Ganeral | Resul | Paramelen | Coniact EIIZE'FHIJI'IEI T':n'IE Faramesrs Code

4.1.6 Fehlerbehandlung

Wenn die Geschaftlogik die Regel ist, was ist dann die Ausnahme?

Ausnahmebedingungen (exceptions) sind Situation, die mit den normalen
Programmstrukturen der Geschéftslogik nicht behandelt werden kdnnen:

» Hardwarefehler: kein Plattenplatz, unterbrochene Datentibertragung.
» Netzwerkfehler: falsche URL, keine Antwort vom Server.

» Betriebssystemfehler: zu viele Fenster gedffnet, nicht genug Ressourcen,
Dateilesefehler.

» Programmfehler: Fehler im Code, fehlende Module, Versionsfehler, Ty-
pfehler.

» Absichtlich von einer Applikation herbeigefihrte Ausnahmebedingun-
gen wie:

Ausfihrung einer throw-Anweisung

von einem Kontrakt erzeugte Ausnahmebedingung

von einer Langen Transaktion erzeugte Ausnahmebedingung, z.B.
wenn eine Event Reaction Condition eine ungultige Situation entdeckt.

Dagegen sind vom Endbenutzer falsch eingegebene Daten nicht die Aus-
nahme, sondern die Regel. Die Validierung von Benutzereingaben obliegt
der normalen Programmlogik und sollte keine Ausnahmebedingungen
hervorrufen.

In den meisten modernen Programmiersprachen folgt das Modell fir die
Behandlung von Ausnahmebedingungen dem mit ADA eingefihrten Mo-
dell der Zwiebelh&ute (onion skin model): Wird eine Ausnahmebedingung in
einem inneren Programmblock erzeugt, versucht sie nach auen zu gelan-
gen. Auf jeder Ebene kénnen Exception Handler versuchen, die Ausnahme-
bedingung abzufangen. Ausnahmebedingungen, die es bis nach drauBen
schaffen, bringen die Applikation zum Absturz.

Handlers

In den meisten objektorientierten Sprachen sind Ausnahmebedingungen
vollgultige Objekte (first-class citizens), normalerweise Subtypen der Klasse
Exception. Die Objekte kdnnen zusatzliche Daten mit detaillierter Informa-
tion tber Grund, Ort und Kontext der Ausnahmebedingung mit sich fiih-
ren und damit die Diagnose der Fehlerursache erleichtern. Das ist eine be-
trachtliche Erleichterung im Vergleich zu nicht-objektorientierten
Programmiersprachen, wo oft nur eine schlichte Fehlernummer zuriickge-
geben wird.

In Java und Bolero wird eine saubere Fehlerbehandlung vom Compiler er-
zwungen. Ein Programmblock, der eine Ausnahmebedingung erzeugt
oder eine Methode aufruft, die dies tut, muss entweder auch die entspre-
chende Fehlerbehandlung bereitstellen oder der Block muss deklarieren,
dass er die entsprechende Ausnahmebedingung erzeugt. Das ermdglicht es
dem Compiler, durch alle »Zwiebelh&ute« hindurch die Fehlerbehandlung
zu prufen und das Entschlipfen einer Ausnahmebedingung nach draufRen
wirksam zu verhindern.

Zwiebelhaute

Abbildung 4.6

Das Zwiebelhaut-
modell fur das Ex-
ception Handling.

Biirger erster
Klasse

383

4.1 Software-Wiederverwertung?

384

Abbildung 4.7
Exception Hand-
ling in Bolero.

Design Patterns

In Bolero steht dabei die Fehlerbehandlung immer am Ende eines Blockes:

begin
connect("DataBase", "User", "Password")

something.dangerous()

on exception e
case I0Exception
System.out.printin("I0 error")

case OverflowException
System.out.printin("Overflow")

default
System.out.printIn("Exception" + e)
end exception

finally
disconnect

end finally

end

In diesem Beispiel prift die on exception-Klausel den dynamischen Typ
der Ausnahmebedingung e. Der default-Fall wird ausgefuhrt, wenn sonst
kein Fall zutrifft. Die finally-Klausel wird immer ausgefihrt und kann
dazu benutzt werden, um Aufraumarbeiten, die beim Verlassen des Blok-
kes notwendig sind, durchzufihren.

4.1.7 Entwurfsmuster

Innovationen entstehen &uflerst selten in der Isolation, besonders beim
Schreiben von Software. Programmierer sehen sich gewohnlich an, wie
eine @hnliche Aufgabe von anderen geldst wurde, bevor sie daran gehen,
die Erfordernisse fur eine neue Anwendung oder eine Implementierungs-
strategie festzulegen. »Make it look like a Macintosh«, so wird berichtet, war
das Entwurfsziel, dass schlieRlich zum Windows Betriebssystem fuhrte.

Das heil3t keineswegs, dass eine existierende Losung einfach kopiert wird.
Die bestehende L6sung dient lediglich als eine Art Vorgabe und Orientie-
rung. Im Verlauf des Entwurfs und der Implementierung werden dann
Merkmale der Referenzlésung akzeptiert, modifiziert oder verworfen, oder
es werden neue Merkmale hinzugefligt. Wahrend des Prozesses entwi-

ckeln sich dann oft innovative Lésungen, die nicht aufgetaucht waren, hat-
te es keinen Diskurs mit dem Stand der Kunst gegeben.

Grafische Designer z.B. benutzen ganz dhnliche Methoden. Bei einem neu-
en Projekt ist es eine der ersten Malinahmen, Kataloge mit VVorlagen schon
existierender, erfolgreicher und preisgekronter Designs durchzublattern.
Auf der Basis dieser Designs oder von Ideen, die beim Durchblattern ent-
stehen, werden dann neue Designs geschaffen.

Auch bei Architekten ist das ahnlich. So gibt einen vitalen Markt fir Archi-
tekturmagazine und -btcher, der Architekten Uber die Werke der Meister,
neue Trends und Problemlésungen informiert.

Es sollte denn auch ein Architekt sein, der diesen Prozess der Innovation in
eine formale Methode abbildete:

Das Konzept der Design Patterns (Entwurfsmuster) wurde zuerst von dem
Architekten Christopher Alexander formalisiert. Alexander kannte sich
auch in der Mathematik aus und verdéffentlichte in den spaten 1970ern tber
Stadtplanung und Stadtarchitektur.

In ihrer urspringlichen Bedeutung beschreiben Design Patterns die Bezie-
hung zwischen einem Problem, dem Kontext des Problems und der Ldsung
des Problems. Dabei wird diese Beziehung derart beschrieben, dass es
mdoglich wird, den Losungsweg auf andere Kontexte zu Gibertragen. Design
Patterns werden nicht erfunden: Sie werden entdeckt, wenn &hnlich Lsun-
gen fur ahnliche Probleme in verschiedenen Kontexten existieren.

Anders als objektorientierte Vererbung, bei der Wissen vertikal Gibergeben
wird (von Elternklasse auf Kindklasse), erfolgt der Wissenstransfer mit De-
sign Patterns horizontal: Die neue Losung (B), die mit Hilfe der Losung (A)
gefunden wurde, ist nach dem Transfer (A) keineswegs unterstellt, son-
dern ist unabhéngig.

Im Bereich des Software-Engineerings werden Design Patterns seit den
spaten Achtzigern in der Entwurfsphase angewandt. Bahnbrechend war
hier die Arbeit der »Viererbande« bestehend aus Erich Gamma, Richard
Helm, Ralph Johnson und John Vlissides [Gammal995]. Von da an wurden
Patterns auch im Bereich der Software-Entwicklung populér.

Sehen wir uns zum Beispiel die Beziehung zwischen den Geschéaftsobjekten
Kunde und Auftrag an: Customer:0rder. Wir kénnten die Beziehung zwi-
schen diesen beiden Klassen Customer und Order mit einem Feld in der Klas-
se Order implementieren, das den Eigentimer des Auftrags referenziert
(Customer).

Nach einigen weiteren Erfahrungen finden wir heraus, dass es noch einige
weitere Probleme gibt, die ganz dhnliche Lésungen erfordern wie z.B. die
Beziehung zwischen Lieferant und Rechnung: supplier:invoice oder zwi-
schen Abteilung und Mitarbeiter: department:employee.

Ursprung der
Design Patterns

Design Patterns
erklart

385

4.1 Software-Wiederverwertung?

Abbildung 4.8

Ubertragung einer

386

Lésung mithilfe
eines Pattern.

Design Patterns
in Bolero

Diesen Problemen ist gemeinsam, dass in allen Féllen eine 1:n-Beziehung
(OneMany) vorliegt.

Um nun ein Design Pattern zu formulieren, missen wir von den jeweiligen
konkreten Szenarien abstrahieren. Anstatt von einer konkreten 1:n-Bezie-
hung wie customer:order zu sprechen, verwenden wir verallgemeinerte
Rollenbezeichnungen: roleB:roleA. So kénnen wir das Problem und den

Losungsweg in allgemeiner Form, basierend auf roleB und roleA formulie-
ren.

Order |+orders_owned_by +customer_owns_order| Customer
0.* 1.1 0
N .
. -
- _\ ______________________________ < /_ -
i N Prs I
I I
I I
| roleA OneMany roleB |
\ Pattern |
I ~ - I
L o e oo
7 - N > >
Invoice |*invoices_owned_by +supplier_owns_invoice | Supplier
0.* 1.1

Nachdem das neue OneMany-Entwurfsmuster nun so verallgemeinert wur-
de, kdnnen wir es auf konkrete Szenarien anwenden und dabei die allge-
meinen Rollen mit konkreten Klassen wie supplier und invoice instanziie-

ren. Das Pattern wird uns dann eine konkrete Losung fur das konkrete
Problem liefern.

In Bolero werden Design Patterns im Bolero Component Studio unterstitzt.
Dabei erfolgt die Anwendung eines Patterns auf ein konkretes Problem au-

tomatisch und die so erzeugte Losung kann sofort ausgeftihrt und getestet
werden.

Bolero Design Patterns bestehen aus:

» Einer Pattern-Klasse so z.B. aus der OneMany Pattern-Klasse, die bereits in
Boleros Pattern-Bibliothek vorhanden ist. Die abstrakten Rollen (in un-

serem Fall roleA und roleB) sind Eigenschaften (6ffentliche Felder) die-
ser Klasse.

» Einem Ursprungsprojekt (source), das aus allen Klassen besteht, die den
Kontext der Ausgangslosung (Source Context) festlegen wie in unserem
Beispiel die Klassen Customer und Order. Dazu kommen noch alle Klas-
sen, Felder und Methoden, die zu der Losung dieses spezifischen Pro-
blems gehdéren, in unserem Falle des Customer:0rder-Problems.

Einer Instanz der Pattern-Klasse (in unserem Beispiel der OneMany-Klas-
se), die wir Source Pattern Instance nennen. Diese Instanz enthalt die Be-
ziehung zwischen Ursprungskontext und abstraktem Pattern. So sind
bei dieser Instanz die Felder, die die abstrakten Rollen implementieren,
mit den jeweils konkreten Rollen des Ursprungskontextes instanziiert.
In unserem Beispiel gilt: Order < roleA, Customer < roleB.

Einem Zielprojekt (Target), das die Klassen enthélt, die die Rollen des
Zielkontextes représentieren, hier Supplier und Invoice. Es mussen hier
nur die Klassendefinitionen fur diese Rollen présent sein. Diese Klassen-
definition kénnen leer sein, da Felder, Methoden und Hilfsklassen bei
der Anwendung des Patterns automatisch generiert werden.

ar DCOW srables ke banine s

B s " Clhami ¥ b e B s
Tlaliaeen Maw ey et Cifiax
| R TR R I e e =
BF CTRBE ok O T N R T
2% Cromis robs many' far & mardon Clrml & Orilar B i
B Criid redad 1ol P W e iR i
: E'::.:""“"‘-' a = remEr Eir | e kg Eale
BF CTRBE N30 R irms L Com oy
M Tazeaicsisa el wry
| eSS ol 8 !
o by T

) -ﬁ...-rr..r..n.'huann.l-r_.":.l

This paeracrn 30 chd Utariel wecoses of & orsdsany calscionship rods coscassr Owros (rdec sassciscing
Uit il Cislaai G bt Cldsd Bidei, (R Ut pelalisndhly, the Clads Bidei pipiesHid Ohe il &'
slarr wred the clnne Curteses copcesmats the ‘sols B clase.The paccscn tho isplassrer s ‘cole @'
chlacicrabdp cols curcossa Uwra_fcidsc ineids the claas Scdsc.The odcsss Tesk clasr (réscEsiscEin
OO Bl BLLDURILES OF BIe Fedbaess a0t ©lddd BpdEr &iwl, if 8 LEPELAT, 118 &ddddiared
Buriprerr Tnct cloze Duricssc mazag @ relwsiorabap cole curtessmc_Uwma_Bcdece The pastsce alen
dmeroretsy b cadivioral clopiag cepebdlicy for ChE CHRECES BT ERE Crals &' ssdacicealip rals
AT TA_ (AN Cddoms T 110 CLF DLaSS CLATORH -

o | o]

Abbildung 4.9
Design Patterns in
Bolero. Vordefi-
nierte Patterns
libertragen bereits
vorhandene
Lésungen auf
neue Szenarien.

Mit diesen Zutaten ist es in drei Schritten moglich, die Losung vom Ur- Projekte klonen
sprungskontext auf den Zielkontext zu tbertragen:

Im ersten Schritt wird eine Target Pattern Instance angelegt, in unserem
Fall eine zweite Instanz der OneMany-Pattern-Klasse, nur dass hier die
Rollen des Zielkontextes den abstrakten Rollen zugeordnet werden: In-
voice < roleA, Supplier < roleB.

Unter der Kontrolle dieser beiden Pattern-Instanzen wird die Ldsung,
die im Ursprungskontext vorhanden ist, auf den Zielkontext geklont.
Das Pattern agiert im Rahmen diese Klonens als Transportmechanis-
mus, der alle Klassendefinitionen, Felder und Methoden vom Ur-
sprungsprojekt zum Zielprojekt kopiert und dem Zielkontext
entsprechend anpasst.

Die resultierenden Klassen im Zielprojekt konnen sofort kompiliert und
getestet werden. Wenn das Ergebnis nicht den Erwartungen entspricht,
kann das Klonen riickgédngig gemacht werden, d.h., das Zielprojekt
wird in den alten Zustand zurtickgesetzt.

387

4.1 Software-Wiederverwertung?

Standard-Patterns

388

Erfahrungen mit
der Wiederver-
wendung von
Software

Der Transfer einer vorhandenen L&sung auf einen neuen Kontext ist nattir-
lich nur der erste Schritt in einem Konstruktionsprozess. Am erzeugten
Zielprojekt konnen anschlieRend Anderungen vorgenommen werden.
(Spatere Anderungen am Ursprungsprojekt haben keinen Einfluss auf Ziel-
projekte.) Sowohl das Ursprungsprojekt als auch das modifizierte Zielpro-
jekt konnen wiederum Ausgangspunkte neuer Pattern-Anwendungen
werden.

Es ist wichtig, sich klar zu machen, dass nicht das Pattern eine L6sung fur
ein Problem bereitstellt. Die Losung ist im Ursprungsprojekt enthalten. Das
Pattern dient nur als Transfermechanismus.

Die Erzeugung von Zielprojekten mit Hilfe von Patterns sollte wie jede Ent-
wurfs- und Implementierungsentscheidung dokumentiert werden.

Patterns kénnen in verschiedener Granularitdt angewandt werden. Es ist
maoglich, Patterns auf sehr kleine Probleme (wie oben) anzuwenden, aber
auch auf groRe Probleme mit Hunderten von Klassen, bis hin zum Applica-
tion Framework. Hatten wir z.B. in unserem Beispiel die Geschéaftsobjekte
Order und Customer noch mit grafischen Benutzeroberflachen ausgestattet,
so hatte das Pattern aquivalente Benutzeroberflachen fiir Invoice und Sup-
plier mitgeneriert. Obendrein lassen sich Patterns auch noch schachteln,
aber hier verlasst uns die Vorstellungskraft.

Bolero enthalt bereits eine Bibliothek mit vordefinierten Design Patterns:
» Patterns fur Beziehungen wie One-one, One-many, Many-One.

» Patterns fur Geschaftsvorgdnge wie Single-platform-elementary-object,
Single-platform-aggregate-object, Distributed-platform-elementary-object.

» Das Publisher-Subscriber-Pattern.

4.1.8 Komponenten

»Objekte eignen sich gut fur die Wiederverwendung, da sie Uber klar defi-
nierte Schnittstellen verfiigen und nicht von ihrem Kontext abhéngen.« So
oder &hnlich schrieben wir, als wir die objektorientierte Programmierung
diskutierten, und so wurde auch die objektorientierte Programmierung an-
gepriesen.

Daran ist sicherlich wahr, dass Objekte klar definierte Schnittstellen haben
und dass sie nicht unter dem Hauptproblem prozeduraler Programmie-
rung leiden, namlich dem gegenseitigen Uberschreiben von Variablen in
gemeinsamen Speicherbereichen.

Die in den letzten Jahren gemachten Erfahrungen mit einer groRen Zahl
von kommerziellen Softwareprojekten zeigen, dass man diesem Anspruch
jedoch nicht gerecht wird. Zwar sind Objekte unabhéngig von ihrem Kon-
text, jedoch nur in einem physischen Sinn (bei der Variablenverwendung).

Auf semantischer Ebene, insbesondere in ihrem Verhalten, hdngen die mei-
sten Objekte sehr wohl von ihrem Umfeld ab, weil sie mit anderen Objekten
in diesem Umfeld interagieren, also in ihrem Verhalten auf das der anderen
Objekte abgestimmt sein mussen. AulRerhalb dieses Umfelds ist ihre
Brauchbarkeit begrenzt.

Selbstverstéandlich gibt es Objekte, die von allgemeinem Interesse und Nut-
zen sind. Die meisten dieser Objekte sind allerdings bereits in Software De-
velopment Kits (SDK) und Standardbibliotheken enthalten. In Sachen Wie-
derverwendbarkeit haben objektorientierte Techniken inzwischen teilweise
einen Sattigungspunkt erreicht.

Also wurde es Zeit fur ein neues Konzept in Sachen Softwarewiederver-
wendbarkeit. Das neue Konzept heilit Komponenten (siehe Kapitel 2.6).
Komponenten sind per Definition wiederverwendbar:

»Eine Komponente ist ein Typ, eine Klasse oder ir-
gend ein anderes Arbeitsprodukt, das spezifisch fur
die Wiederverwendung konstruiert wurde.«
[Jacobson1997]

Der Moglichkeiten, Komponenten wiederzuverwenden, sind viele. So gibt
es viele Geschéaftsfunktionen, die von Sparte zu Sparte identisch oder sehr
ahnlich sind, deshalb immer wieder in Electronic Business Applikationen
auftauchen. Zum Beispiel werden Kunden, die Dienste eines Unterneh-
mens anfordern, immer wieder mit den gleichen Fragen konfrontiert: Na-
me? Geburtsdatum? Telefonnummer? E-Mail-Adresse? usw. In einem Un-
ternehmen werden derartige Funktionen wvon den verschiedensten
Applikationen immer wieder implementiert. Hier gemeinsame, wiederver-
wendbare Komponenten zu identifizieren, kann betrachtliche Vorteile fir
die Erstellung und Wartung von Applikationen mit sich bringen.

Der Einsatz von Komponententechnologie hat unter anderem die folgen-
den Vorteile:

» Mehr Produktivitét fur den Entwickler. Vorgefertigte und vorgetestete wie-
derverwendbare Komponenten kénnen vom Entwickler einfach in die
Anwendung eingeklinkt (plug-in) werden und reduzieren so die notige
Anstrengung und Zeit um neue Applikationen zu entwickeln und exi-
stierende Applikationen zu warten.

» Konsistente und akkurate Verarbeitung. Dies wird dadurch erreicht, dass
sich nur eine Softwareinstanz um eine gegebene Funktion kiimmert,
auch wenn diese Funktion in verschiedenen Anwendungen auftaucht.

» Einfacheres Austesten. Wurde eine Komponente griindlich getestet, so
wird fur gewdhnlich keine extensive Testphase bendétigt, wenn die
Komponente in einem anderen Kontext (einer anderen Applikation)
eingesetzt wird, vorausgesetzt, ihre Schnittstellen wurden entsprechend
abgesichert (siehe Kontrakte, Kapitel 4.1.4 und 3.4.2).

Komponenten
definiert

Vorteile von
Komponenten

389

4.1 Software-Wiederverwertung?

Application Mining

390

Um die angesprochenen Vorteile zu erzielen, ist eine geeignete Wiederver-
wendungsstrategie erforderlich:

» Verwendung einer Wiederverwendungsmethodologie (siehe Kapitel 4.2),
die konsistent von allen Anwendungsprogrammierern angewandt
wird.

» Ein Expertengremium, dessen Aufgabe es ist, die Wiederverwendung
von Komponenten durch die Begutachtung von Projekten zu fordern
und bei der Einfihrung von Wiederverwendungstechniken zu assistie-
ren.

» Dokumentation fir jede Komponente. Dies schlie3t die exakte Definiti-
on der Eingabe- und Ausgabeparameter fiir jede Komponentenschnitt-
stelle mit ein.

» Eine Bibliothek oder Repositorium, das Informationen tber wiederver-
wendbare Komponenten enthélt.

» Integrierte Fehler- und Ausnahmebehandlung, die jede Komponente in
die Lage versetzen, unabhéngig von anderen Komponenten und Appli-
kationen zu agieren.

Es wére hochst nachléssig von uns, wirden wir im Zusammenhang von
Komponententechnologie die Frage existierender (legacy) Applikationen
vergessen. Diese Applikationen reprasentieren oft den Wert von zehn bis
zwanzig Jahren fortgesetzten Investments. Ernsthafte Softwarewiederver-
wendung hei3t deshalb auch, eine Strategie zu entwickeln, um existierende
Applikationsfunktionen im Kontext von Electronic Business wiederzuver-
wenden.

Die Technik, wiederverwendbare Komponenten innerhalb existierender
Applikationen zu finden, wird auch als »harvesting« oder »application mi-
ning« bezeichnet.

Wie im echten Bergbau gibt es dabei zwei Schritte:

» Eine Explorationsphase, in der die existierenden Applikationen unter-
sucht werden, mit dem Ziel bestehende Geschéaftsfunktionen und -ob-
jekte als eigensténdige Komponenten zu isolieren.

» Eine Ausbeutungsphase, in der die ausgewahlten Geschéftfunktionen
und -objekte als Objektklassen bereitgestellt werden. Die hier verwen-
deten Techniken heiRen »wrapping« oder »Einkapselung«. Dazu wird
Code geschrieben (oder automatisch erzeugt), der existierende Ge-
schaftsfunktion oder -objekte mit einer Programmierschnittstelle (API)
umgibt.

4.2 Eine Wiederverwendungs-Methodologie

Die erfolgreiche Implementierung einer Multi-Tier-Architektur mit wie-
derverwendbaren Komponenten hangt nicht ausschlief3lich von der Fahig-
keit ab, wiederverwendungsfahige Komponenten zu erstellen. Der Erfolg
héngt auch von der Bereitstellung geeigneter Werkzeuge und von einem
entsprechenden Management fiir die Wiederverwendung von Komponen-
ten ab.

Im Zusammenhang mit der Komponentenwiederverwendung haben Un-
ternehmen, die tGber ein unternehmensweites Datenmodell verfiigen, einen
Vorteil. Unternehmensweite Daten sind Daten, die sowohl fiir einzelne Ge-
schafteinheiten zur Verfiigung stehen, jedoch auch Gber das Gesamtunter-
nehmen hinweg zwischen mehreren Geschéftseinheiten oder Tochterge-
sellschaften geteilt und ausgetauscht werden. Applikationscode, der auf
unternehmensweite Daten zugreift oder diese pflegt, sollte ebenfalls in al-
len Abteilungen wiederverwendet und gemeinsam von verschiedenen Ein-
heiten genutzt werden. Gibt es dagegen mehrere Programminstanzen, die
auf die gleiche Datenstruktur zugreifen, so besteht immer das Risiko, dass
die verschiedenen Programminstanzen sich bei der Anderungen der Daten
verschieden voneinander verhalten, und so die Integritat der Daten verlet-
zen kdnnen.

Das Schlusselelement fur Erfolg im Wiederverwendungsgeschéft ist eine
solide Strategie. Wird eine komponentenbasierte Architektur nicht explizit
im Hinblick auf Wiederverwendung entworfen und aktiv betreut, so wird
im Ergebnis die Softwareentwicklung nicht erleichtert, sondern erschwert.

Die Schlusselelemente eines Wiederverwendungsprogramms sind:
» Bestandsaufnahme

» Katalog

» Wiederverwendungsadministrator

» Methodologie

» Entwurfsrichtlinien und -prinzipien

» Bewertungsverfahren

» Qualitatssicherung

» Leistungsanreize

Programme fur die Wiederverwendung sollten die Wiederverwendungs-
methodologie unternehmensweit installieren. Dabei sollte eine Wiederver-
wendungsmethodologie mit dem Systementwicklungszyklus integriert
sein.

Datenmodell des
Unternehmens

Strategie fiir
Wiederver-
wendung

391

4.2 Eine Wiederverwendungs-Methodologie

392

Ein Expertenteam (component review board) sollte Projekte begutachten,
beim »harvesting« von Komponenten aus Altanwendungen (siehe Kapitel
4.1.8) und bei der Implementierung von Komponenten assistieren. Die Ex-
perten sollten dabei aus wichtigen Benutzergruppen aus allen Unterneh-
mensbereichen kommen. Die Aufgabe des Expertensystems ist es, das Pro-
gramm fur die Komponentenwiederverwendung im ganzen Unternehmen
anzuwenden. Damit das Programm Erfolg hat, ist es erforderlich, dass die
Mitglieder des Expertenteams die notige Autoritat haben, um die Definiti-
on wiederverwendbarer Komponenten aushandeln zu kénnen [Jacobson
1997].

4.2.1 Techniken fiir die Komponentenwieder-
verwendung

Softwarewiederverwendung ist wirklich kein neues Thema. Applikations-
programmierer haben immer schon Code wiederverwendet. Wiederver-
wendungstechniken bei komponentenbasierter Architektur baut auf den
bekannten Techniken auf:

» Copycode. Hier gibt es zwei Spielarten fur die Wiederverwendung von
Quellcode:

@ Das Kopieren von Quellcode direkt von einem Programm in den
Code eines anderen Programms (cut&paste).

@ Die Einbettung ganzer Programmdateien und Codesegmente mit-
hilfe von INCLUDE-Anweisungen und von Copybooks in ein Pro-
gramm.

Allerdings entsteht bei diesem Prozess ein Code, der schwierig an neue
Aufgaben anzupassen und deshalb teuer in der Wartung ist. Implemen-
tiert ein Code-Segment eine bestimmte fachliche Regel (Business Rule),
und &dndert sich diese Regel, so muss die Anderung in allen Program-
men, die dieses Codesegment importiert haben, vorgenommen werden.
Mindestens mussen bei der Verwendung von INCLUDE-Anweisungen
und Copybooks alle diese Programme neu kompiliert und getestet wer-
den.

» Link Libraries. Das Binden von Programmen aus vorkompilierten Bi-
bliotheksmodulen wird entweder statisch nach dem Kompilieren
durchgefiihrt oder beim Laden eines Programms dynamisch kurz vor
der Ausfihrung mit Hilfe von Dynamic Link Libraries (DLL). Diese Me-
thode der Codewiederverwendung ist besser, als Quellcode von einem
Programm ins andere zu kopieren, da hier die implementierte Fachlogik
physisch nur einmal existiert. Allerdings muss, wenn sich ein Modul in
der Bibliothek andert, jedes Programm, das dieses Modul verwendet,
identifiziert, ggf. neu gebunden und neu getestet werden.

Service Request. Hier wird das bendétigte Dienstprogramm nicht als
Modul in die Applikation eingebunden, sondern die jeweilige Dienst-
funktion wird durch das Versenden einer Nachricht von einem lokalen
oder entfernten Server abgefordert. So verwenden z.B. die Dienste von
Betriebssystemen diese Methode. Der Vorteil dieser Methode ist, dass
die Applikation vom Dienstprogramm unabhéangig ist. Beide kdnnen in
unterschiedlichen Adressrdumen oder sogar auf verschiedenen Maschi-
nen ablaufen.

Service Requests sind heute die bevorzugte Methode fiir den Funktionsauf-
ruf bei wiederverwendetem Code und sind die empfohlene Technik fir
komponentenbasierte Architekturen. Diese Methode unterstiitzt auch
Multi-Tier-Architekturen wie sie fur kommerzielle Applikationen empfoh-
len werden (siehe Kapitel 3.4.5).

4.2.2 Von Komponenten bereitgestellte Dienste

Wiederverwendbare Komponenten kénnen in die folgenden Kategorien
eingeordnet werden:

Applikationsdienste. Diese Komponenten umfassen Geschaftsobjekte
(Business Objects), Geschaftsvorgange (Business Tasks) und Geschéfts-
prozesse (Business Processes).

Dienste fur die Benutzerschnittstelle. Diese Dienste umfassen Naviga-
tionsfunktionen, Datenansichten (views), Funktionen flr die Darstellung
von Daten und Funktionen fur die Interaktion mit dem Benutzer. Ein sol-
cher Dienst kdnnte z.B. bestehende Altanwendung webfahig machen,
indem die urspringlichen 3270-Oberflache durch eine HTML-Oberfla-
che ersetzt wird. Das Ziel ist hier, das System so zu implementieren, dass
es keinen Unterschied macht von welcher Benutzerschnittstelle aus das
Anwendungsprogramm betrieben wird: Der Informationsfluss in der
Altanwendung bleibt identisch.

Typische Benutzerschnittstellen umfassen:
Grafische Benuterzeroberflachen (GUI)
Griin-schwarze Bildschirme (z.B. UNIX- oder 3270-Endgeréte)
Web-Browser
Point-of-sales Geréte (z.B. Kassen)
Mobile Geréate (WAP)
Sprachein- und -ausgabe wie das gute alte Telefon

Unterstitzende Dienste. Dies sind Dienste, die betriebssystemsartige
Funktionen bieten wie z.B. Drucken, Faxen oder Bildverarbeitung. Nor-
malerweise werden diese Dienste fertig als Pakete gekauft. Dabei ist
darauf zu achten, dass sich die Dienste gut in eine Multi-Tier-Umgebung
integrieren lassen.

393

4.2 Eine Wiederverwendungs-Methodologie

Komponenten
liber das ganz
Unternehmen

wiederverwenden

Kerndienste. Diese Komponenten stellen die grundlegende IT-Infra-
struktur in einem Unternehmen bereit. Dazu gehéren Sicherheitsdienste
(security), Namens- und Verzeichnisdienste sowie Nachrichtentrans-
portdienste. Diese Dienste werden normalerweise in Form gekaufter
Middleware bereitgestellt.

4.2.3 Richtlinien fiir Komponentensysteme

Hier sind einige Richtlinien, die beim Entwurf oder Kauf von Komponen-
ten, die fUr anpassbare, verteilte Multi-Tier-Anwendungen geeignet sind,
helfen sollen:

Sprachneutral und »

394

plattform-
unabhangig

Das Ziel der komponentenbasierten Architektur ist die Verbesserung
des geschéftlichen Erfolgs. Eine komponentenbasierte Entwicklungs-
strategie ermoglicht adaptive Systeme, die sich den wechselnden Erfor-
dernissen des Geschéftslebens und des sich standig &ndernden
technologischen Umfelds leicht anpassen kdnnen. Eine komponenten-
basierte Entwicklungsstrategie hilft, die Informationstechnologie mit
den fachlichen Anforderungen besser zu synchronisieren.

Die Komponentenarchitektur erlaubt es, Komponenten Uber das ganze
Unternehmen hinweg wiederzuverwenden. Wiederbenutzbare Kom-
ponenten verbessern die Produktivitat der Anwendungsentwicklung in
den einzelnen Entwicklungsabteilungen eines Unternehmens. Die ge-
meinsame Nutzung bestimmter Komponenten erhoht die Fahigkeit des
Gesamtsystems, sich an &ndernde Erfordernisse anzupassen.

In Applikationsfamilien statt in Einzelapplikationen zu denken, erhéht
dabei die Wiederverwendbarkeit von Komponenten [Parnas1972].

Wiederverwendbare Komponenten mussen aus jeder Anwendung her-
aus aufrufbar sein. Die Wiederverwendung dieser Komponenten elimi-
niert Dopplungen bei der Entwicklung, beim Testen und der Wartung.
Die Wiederverwendung von Komponenten eliminiert Inkonsistenzen in
der Informationsverarbeitung, da fachliche Regeln (Business Rules) nur
einmal implementiert werden mussen. So entfallen moglicherweise
voneinander abweichende Mehrfachimplementierungen. Die Zeit fur
die Entwicklung und Wartung von Applikationen wird damit verkurzt.

Komponenten sollten so entworfen und implementiert werden, dass der
aufrufende Prozess nicht an eine bestimmte Programmiersprache oder
Umgebung gebunden ist.

Neue Komponenten sollten plattformunabhangig implementiert wer-
den, so dass Komponenten auf jeder unterstiitzten Plattform eingesetzt
werden kdnnen. Eine Komponente sollte von jeder unterstutzten Pro-
grammiersprache und von jeder unterstitzten Plattform aus aufrufbar

sein. Wenn sich die fachlichen Anforderungen adndern und ggf. eine
neue Computerplattform zum Einsatz kommen soll, kénnen die Kom-
ponenten problemlos auf die neue Plattform Ubertragen werden.

Wenn moglich, sollten Komponenten nicht selbst implementiert, son-
dern gekauft werden. Gekaufte Komponenten sollten in der Lage sein,
in einer serverbasierten Multi-Tier-Architektur abzulaufen, d.h., sie
sollten Uber eine angemessene Programmierschnittstelle (API) verfu-
gen. Auch Entwicklungskomponenten wie Klassenbibliotheken kdnnen
gekauft werden. Das erlaubt es den Anwendungsprogrammierern, sich
auf die Implementierung der fachlichen Regeln zu konzentrieren.

Der néchste Schritt: In Zukunft werden gréRBere Komponenten wie Da-
tenbanken oder Office-Produkte in vielen Fallen nicht mehr gekauft
werden, sondern entsprechende Dienstleistungen werden vom Inter-
net-Provider oder vom Betreiber eines Extranets gegen eine Gebuhr an-
geboten. Gerade fur Internet-Provider, die durch die fallenden
Kommunikationspreise unter Druck geraten, bieten sich derartige value-
added services an. [McNealy1999]

Ein Repositorium sollte alle Information Uber vorhandene wiederver-
wendbare Komponenten enthalten. Das Repositorium sollte den An-
wendungsprogrammierern zuganglich gemacht werden und ein
wichtiges Werkzeug fur ihre Arbeit bilden. Im Repositorium wird auch
die Dokumentation fur die Programmierschnittstellen (APIs) der Kom-
ponenten gespeichert.

Komponenten sollten so entworfen sein, dass sie vollstandig selbstgeniig-
sam (self contained) sind. Funktionen fur die Validierung, fur die Erken-
nung und Behandlung von Ausnahmebedingungen, Berichtsfunktionen,
Protokollierung, Diagnose und Fehlerbehebung, Uberwachungsfunktio-
nen, Warnfunktionen und Funktion fiir die Systemverwaltung mussen
von jeder Komponente bereitgestellt werden, um den Betrieb, die Admi-
nistration und die Wartung der Komponente zu unterstitzen.

Eine Komponente sollte eine einzelne fachliche Regel (Business Rule),
eine Funktion oder eine kleine Menge aufeinander bezogener Regeln
und Funktionen wie z.B. einen Geschéaftsvorgang implementieren. Ma-
ximale Wiederverwendungsfahigkeit wird erreicht, wenn jede Kompo-
nente nur eine einzige Regel oder Funktion implementiert.

Es sollten Richtlinien fur die Optimierung der Performanz aufgestellt
werden. Richtlinien fuir die Lange von Nachrichten bei Anfragen und
Antworten dienen dazu, unnétigen Netzwerkverkehr und damit Per-
formanzprobleme zu vermeiden.

Jede Komponente muss mindestens eine verdffentlichte Programmier-
schnittstelle (API) besitzen. Jedes veréffentlichte API definiert eine Ein-
/ Ausgabe-Schnittstelle fiir eine Komponente oder einen Dienst. Die Do-

Kaufen oder selber

machen?

Repositorium

Qualitat planen

395

4.2 Eine Wiederverwendungs-Methodologie

396

Methodologie »

kumentation sollte die Ein- und Ausgabeparameter vollstandig wieder-
geben: welche Parameter benétigt werden, welche Parameter optional
sind sowie Typen und L&ngen von Parametern. Das API sollte dem
Komponentenrepositorium beigegeben werden, das jedem Entwickler
zuganglich ist.

Wiederbenutzbare Testsuiten sollten fur jede Komponente entwickelt
werden. Eine Testsuite enthalt spezielle Programme, die fur den Aufruf
einer Komponente bendtigt werden, daruber hinaus Eingabedaten, die
fur die Tests bendtigt werden, und vorgegebene Ausgabedaten, mit de-
nen die Testergebnisse verglichen werden kdnnen. Die Testsuiten wer-
den wie jede andere wiederverwendungsfahige Komponente gewartet
und gepflegt.

Wiederverwendungsmethodologien fir die Identifizierung und Imple-
mentierung von wiederverwendungsfahigen Komponenten sollten ein-
gesetzt werden. Dazu gehodren effektive Methodologien fur die
Verwaltung von Komponenten, inklusive der Werkzeuge fiir Kompo-
nentenwiederverwendung. Gerade in einer verteilten Umgebung muss
es eine Methodologie geben, mit der die vorhandenen Komponenten
Uber Plattformen hinweg verwaltet werden kdnnen. Die Methodologie
muss die notwendigen Schritte enthalten, um wiederverwendbare
Komponenten identifizieren, definieren und entwickeln zu kdnnen.
Wird eine solche Methodologie nicht eingesetzt, ist es sehr schwierig,
die Wiederverwendung von Komponenten effektiv zu organisieren.

Eine Wiederverwendungsmethodologie besteht aus folgenden Schrit-
ten:

@ Die fachlichen Anforderungen (Business Requirements) nach Dienst-
kategorie (Anwendung, Benutzeroberflache, Unterstitzung, Kern-
dienste) klassifizieren.

@ Das Repositorium nach wiederverwendbaren Komponenten absu-
chen, die die gegebenen fachlichen oder funktionalen Anforderung
abdecken.

® Die moglichen Kandidaten daraufhin prtfen, ob sie der Anforde-
rung vollstandig gentigen.

@ Die ausgewdhlten Komponenten in eine neue oder Uberarbeitete Ap-
plikation unter Benutzung von Standard-Programmierschnittstellen
(API) einbringen.

® Komponenten aus existierenden Applikation herauslosen (harvest).
Altapplikationen sind gute Quellen fur den Aufbau eines Kompo-
nentenrepositoriums. Sogenannte Legacy-Applikationen bestehen oft
aus reifer, robuster und effizienter Software (freilich gibt es auch
Uberalterte und unwartbare Exemplare!). Auf jeden Fall besteht hier

nicht die Notwendigkeit, das Rad neu zu erfinden und eine schon
existierende Funktionalitdit noch einmal neu zu implementieren.
Wenn maglich, sollte die Altfunktion als Komponente eingepackt,
also mit einem API versehen werden, das zu dem jeweiligen Dienst
eine Programmierschnittstelle definiert. Damit werden Altapplika-
tionen ohne groRere Anderungen und Aufwand zu wiederverwend-
baren Komponenten.

Die Wiederverwendungsmethodologie sollte in den Softwareentwick-
lungszyklus integriert werden (siehe Kapitel 4.3).

Komponenten sollten designierte Eigentiimer und Verantwortliche fur
die Wartung haben. Die Verantwortung liegt dabei bei dem Team, das
die Komponente im Rahmen der Anwendungsentwicklung erstellt hat,
oder bei einem solchen, das sich auf Komponentenentwicklung spezia-
lisiert hat. Oft gibt es verschiedene Teams fur verschiedene Komponen-
tenkategorien. Die fachliche Verantwortung fiir die Definition einer
Komponente sollte bei der Geschéftseinheit liegen, die auch mit der ent-
sprechenden fachlichen Funktion betraut ist.

Die Aufstellung eines Expertenteams fiir Komponentenwiederverwen-
dung (component review board) ist notig, um gemeinsam zu nutzende
Komponenten zu identifizieren. Komponenten, die von mehreren Ge-
schéaftseinheiten verwendet werden, missen auch von allen Benutzern
verstanden und referenziert werden. Die Komponentenentwicklung
kann dabei im Rahmen von Projektarbeiten betrieben werden. Das Ex-
pertenteam sollte mit kleinen, durchfiihrbaren und extrem strategischen
Projekten beginnen. Um wiederverwendbare Komponenten zu erstel-
len, ist eine Zusammenarbeit zwischen den Eigentiimern der jeweiligen
Geschaftsprozesse unabdinmgbar. Dazu wird ein gewisser Organisati-
onsrahmen bendétigt:

Zentralisierte Verwaltung von wiederverwendbaren Komponenten,
die sich fur die gemeinsame Nutzung eignen.

Begutachtung der Entwirfe von neuen und existierenden Projekten,
um derartige Komponenten zu identifizieren.

Zugang zu den Information Uber wiederverwendbare Komponenten
auf Unternehmensebene.

Der Entwurf von Komponenten sollte in allen laufenden Projekten re-
gelmaRig begutachtet werden. Dabei muss bestimmt werden, ob die
fachlichen Anforderungen von den existierenden Komponenten abge-
deckt werden. Falls nicht, muss entschieden werden, ob bestehende
Komponenten erweitert werden kdnnen, um die Anforderungen abzu-
decken, allerdings ohne dabei die Wiederverwendbarkeit der Kompo-
nente zu gefahrden.

Eigentiimer
benennen

Expertenteam

397

4.3 Der Software-Entwicklungszyklus

Fachliche

Architektur versus

398

Technische
Architektur

SELC

Was

4.3 Der Software-Entwicklungszyklus

Die Informationstechnologie scheint sich mit exponentiell ansteigender
Rate zu verdndern. Produktentwicklungszyklen haben sich zunéchst von
10 auf 5 Jahre reduziert, dann auf 1 Jahr, auf 6 Monate und werden nun in
»Web-Zeit« gemessen — 3 Monate bis 6 Wochen. Die Folge davon ist, dass
die »best practices« von heute zu den schlimmsten Albtraume von morgen
werden kdnnen.

Organisationen, die ihre fachlichen Anforderungen an eine spezifische
technischen Implementierung binden, haben deshalb die Aussicht, dass sie
ihre fachlichen Regeln stdndig neu implementieren mussen, um der sich
andernden Technologie zu folgen. Ein typisches Beispiel fuir die Verquik-
kung von Fachfunktion und Implementierung ist EDI/EDIFACT (siehe Ka-
pitel 3.4.11). Ein sicherer Ansatz ist es, die Spezifikation der fachlichen
Funktionalitat soweit wie moglich unabhangig von der zugrunde liegen-
den Technologie zu machen, also die fachliche von der technischen Archi-
tektur zu trennen.

Allerdings fordern wir nicht, die Fachfunktionalitat in kompletter Ignoranz
der technologischen Mdglichkeiten zu definieren. SchlieBlich wird ja der
Einsatzbereich einer Applikation grundsétzlich von der jeweils existieren-
den Technologie definiert: Kein Electronic Business ohne das Internet!

Beim Planen einer neuen Anwendung ist jedoch das klare Verstandnis der
fachlichen Anforderungen und der Architektur des Geschéftsmodells der
erste Schritt. Dieser Schritt definiert denn auch die ersten Phasen im Le-
benszyklus eines Projekts [Yourdon1995].

4.3.1 Phasen eines objektorientierten Projektzyklus

Software AGs Software Engineering Lifecycle Model (SELC), das wir hier pra-
sentieren, unterstitzt einen solchen Ansatz. Die Schritte in SELC sind:

© Konzeptphase

Das SELC deckt auch eine dem eigentlichen Entwicklungsprozess vor-
angestellte Konzeptphase mit ab, in der mittels Modellierung der Ge-
schéftsprozesse — Business Process Modeling (BPM) — versucht wird, den
Anwendungsbereich zu verstehen, das Projekt zu visualisieren und den
Umfang des Projektes zu bestimmen.

@ Analyse der Anforderungen

Requirements Analysis Modeling ist die grundlegende Aktivitat fir den
gesamten Projektzyklus. Die Assets und Artefakte, die in dieser Phase
entwickelt werden, bilden die Grundlage fur spatere Entwicklungsakti-
vitaten, und erlauben die etwaige Ruckverfolgung (traceability) von Ent-
wurfsentscheidungen.

Ein Artefakt ist ein greifbares Arbeitsergebnis, das notwendig ist, um die
Funktionalitéat zu definieren oder zu erweitern, so z.B. Diagramme, Pro-
jektplane oder Schemata.

Ein Asset ist ein Artefakt, der auch einen Zweck auerhalb des jeweili-
gen Projektes hat. Beispiele von Assets sind Artefakte, die wiederver-
wendbare Komponenten definieren, Plane und Zeitpléne, die dazu
benutzt werden, um das Projekt dem héheren Management darzustel-
len, und funktionale Beschreibungen fur den Vertrieb und das Marke-
ting.

Die Analyse der Anforderungen ergibt einen externen Blick auf das Sy-
stem aus der Perspektive des Fachklienten. Diese Phase erfasst und ent-
wickelt die inharente Fachfunktionalitat und die fachlichen Regeln. Alle
Aktivitaten und Arbeitsergebnisse werden in der Semantik des Fachbe-
reiches ausgedriickt, also in der Sprache und den Begriffen des fachli-
chen Klienten. Alle in dieser Phase erzielten Arbeitsergebnisse sind fur
alle fachlichen Benutzer unmittelbar verstandlich.

Einige der wahrend der Anforderungsanalyse erforschten Konzepte Kandidaten
kdnnen moglicherweise nicht in ein Produktionssystem abgebildet wer-

den. Bestimmte fachliche Interaktionen, die notwendig sind, fachliche

Regeln auszuarbeiten und zu beurteilen, kdnnen auRerhalb des Bereichs

eines bestimmten Produktionssystems liegen. Die Konsequenz ist, dass

viele dieser Konstrukte einen Kandidatenstatus erhalten (candidate Use

Cases, candidate Business Concepts). Zu bestimmen, welche Kandidaten

schlieBlich in das Produktionssystem uUberfuhrt werden, ist Zweck der

folgenden Entwicklungsphase.

© Analytisches Modell

Die Phase der Systemanalyse umfasst Entscheidungen, die den Pro-
blembereich des Gesamtsystems betreffen.

Analysis Modeling tbersetzt die Ergebnisse der Requirements Analysis in
ein objektorientiertes Format. Dabei ist jede objektorientierte Notation
angemessen, sofern diese Notation integrierte statische und dynamische
Aspekte unterstiitzt. Im Kontext unserer Diskussion setzen wir UML
(Unified Modeling Language) als objektorientierte Modellierungssprache
voraus [Rumbough1998].

Die fachlichen Anforderungen (Business Requirements) werden in Use
Cases Ubersetzt: Jede mogliche Art, in der ein Endbenutzer das System
benutzt, definiert einen Use Case. Jeder Use Case definiert so eine Anzahl
von Interaktionen mit dem System [Jacobson1993].

Mittels einer formalen Methode wie UML transferiert die Systemanaly-
se das Wissen, das in der Anforderungsanalyse erworben wurde, vom
fachlichen Bereich in den Bereich der Entwickler. Insofern kennzeichnet

399

4.3 Der Software-Entwicklungszyklus

400

Wie

Wo

die Erstellung das analytischen Modells einen 'Crew’-Wechsel: Die for-
malen Spezifikationen werden vom Systemanalytiker den Entwicklern
Ubergeben. Der Systemanalytiker stellt dabei sicher, dass das analyti-
sche Modell die fachlichen Anforderungen reflektiert.

Der formale Charakter der benutzten Methoden erlaubt die Ruckverfol-
gung (traceability) von Entscheidungen im Entwicklungsprozess: Spate-
re Artefakte kdnnen bis zu ihren Wurzeln, ndmlichen den fachlichen
Anforderungen zuruckverfolgt werden und umgekehrt.

Das analytische Modell ist auch die Phase, in der Analysis Patterns iden-
tifiziert werden. Im Unterschied zu Design Patterns [Gammal995] (siehe
Kapitel 4.1), die gemeinsame Implementierungskonstrukte adressieren,
beziehen sich Analysis Patterns auf fachliche Konstrukte. Analysis Pat-
terns fuhren keine neue Funktionalitat in ein Modell ein, vielmehr iden-
tifizieren sie bestehende Ldsungen.

O Entwurfsmodell

Nun ist es Zeit, die Technologie einzufihren und die technische Archi-
tektur zu definieren. Das Entwurfsmodell (Design Model) ist die Anwen-
dung der Technischen Architektur auf das analytische Modell. In der
Anforderungsanalyse und der Systemanalyse hatten wird das »Was«
adressiert; nun bringen wir das »Wie« zum Ausdruck.

Die technische Architektur enthalt den kompletten Satz von technischen
Konstrukten, die benétigt werden, das analytische Modell zu imple-
mentieren — Konstrukte und Techniken, wie sie in den vorigen Kapiteln
dieses Buches diskutiert wurden. Das schlieRt die Aufteilung der Appli-
kation in Teilbereiche (Kommentensysteme, Packages) und die Definiti-
on von Anwendungsschichten mit ein.

@ Implementierungsmodell

Die Erstellung des Implementierungsmodells ist die Phase in der wir die
Aspekte des Einsatzes (deployment) in der technischen Architektur
adressieren. Wenn Anforderungsanalyse und Systemanalyse das »Was«
behandelten und das Entwurfsmodell das »Wie«, so definiert das Imple-
mentierungsmodell das »Wo«. Das Implementierungsmodell ist eine
entscheidende Aktivitat flir komponentenbasierte und verteilte Systeme
(siehe auch Kapitel 2.6). Im Gegensatz dazu ist das Implementierungsmo-
dell fir monolithische Applikationen trivial: Die Frage des »Wo« ist dort
leicht zu beantworten.

In dieser Phase behandeln wir auch die Frage der Integration von Altan-
wendungen und von Systemen von Fremdherstellern.

O Kodieren und Zusammenbau

In dieser Phase kommen wir zur Produktion des ausfiihrbaren Codes.
Das schlieRt gewohnlich die folgenden Aktivitaten ein: Code schreiben,
Applikationsteile aus bereits existierenden Komponenten zusammen-
stellen, Verpackungstechniken (wrapping) auf Altsoftware anwenden
u.s.w.

@ Qualitatssicherung und Testen

Auch in dieser Methodologie haben Qualitatssicherung und Testen die-
selbe Funktion wie auch in anderen Methodologien: Die Verifikation
und Validierung der technischen und fachlichen Funktionalitat Giber alle
Phasen des Projektzyklus hinweg.

Bei den objektorientierten Entwurfs- und Implementierungsmethoden
schliel3t die Teststrategie fur eine Applikation die folgenden Schritte mit
ein:

Klassentest. Klassen sind die kleinsten Einheiten innerhalb einer ob-
jektorientierten Teststrategie. Der Entwickler stellt sicher, dass die
Methoden der Klasse sich korrekt ausfiihren lassen und dass der in-
terne Zustand der Klasse und die veroffentlichen Eigenschaften (Fel-
der) korrekt gesetzt werden. Erinnern wir uns, dass der interne
Zustand eines Objektes sich wahrend des Lebenszyklus des Objektes
adndert und dass die Methoden ihr Verhalten abhédngig vom Status
des Objektes ebenfalls &ndern kdnnen.

Szenariotest. Hier testen die Entwickler die Interaktion zwischen
Klassen, und zwar auf Grundlage von Szenarien und Mustern (pat-
terns), die in den Modellierungsphasen entwickelt wurden. In dieser
Phase sind die Details der Codierung noch sichtbar und zugéanglich.

Use Case Test. Bei der Validierung der Use Cases liegt der Schwer-
punkt auf der Verifikation der fachlichen Funktionalitat. Verant-
wortlich ist hier das Qualitatssicherungsteam, das keinen Zugang
zum Programmcode hat.

Package Test. Packages fassen aufeinander bezogene Klassen zu gro-
Reren Einheiten zusammen, die die Funktionalitat der Applikation in
koharente Untermengen zerlegen. Der Schwerpunkt in dieser Test-
phase liegt auf den Interaktionen zwischen diesen Packages.

System Test. Die letzte Aktivitat im Qualitatssicherungsprozess. Der
Schwerpunkt liegt hier auf dem Gesamtsystem und seinen Inter-
aktionen mit anderen Systemen. Hier sind nicht nur funktionelle
Themen wichtig, sondern auch Themen wie Performanz und Skalier-
barkeit.

401

4.3 Der Software-Entwicklungszyklus

402

Peer Review

Zusétzliche Qualitatssicherungsmethoden erganzen das Testen. Ein oft
wiederholter Satz ist der, dass Testen nur das Vorhandensein von Feh-
lern feststellen kann, nicht aber deren Abwesenheit. Wir wiederholen
diesen Satz gerne noch einmal.

Unter dem Begriff des Peer Review verbirgt sich eine der effektivsten Me-
thoden der Qualitatssicherung. Peer Review bedeutet, dass Arbeitsergeb-
nisse auf allen Ebenen von unabhéngigen Kollegen tberprift werden.
Das fangt bei der Anforderungsanalyse an, kulminiert im Code Review
und endet mit dem Uberpriifen der Teststrategien.

@ Einsatz

Der letzte Schritt ist der Einsatz (deployment) der Applikation. Dieser
Schritt schlie3t nicht nur die Verteilung der Software Uber die Server mit
ein, sondern umfasst auch korrelierte Aktivitaten: Die Verteilung der
Systemdokumentation, das Benutzertraining, den Aufbau von Support-
Kanélen, usw. In Electronic Business-Szenarien ist das Trainieren der
Endbenutzer und die Verteilung von Benutzerhandbuchern oft nicht
maoglich — hier werden effektive Support-Kanéle noch wichtiger.

© Wartung

Im Ansatz des SELC wird die Wartung einfach zu einer erneuten An-
wendung der Phasen des Projektzyklus — ein neuer Zyklus in einem ite-
rativen Prozess. Einer der wichtigsten Belange der Wartung ist es,
herauszufinden, wann die eingegangenen Anderungswiinsche und
Verbesserungsvorschlége eine weitere Entwicklungsanstrengung recht-
fertigen. Das beste Vorgehen ist hier, die Anderungswiinsche auf Use
Cases abzubilden und von dort aus festzustellen, wie viel Aufwand n6-
tig wird.

Fir jede Phase im Projektzyklus kdnnen wir drei Komponenten identifizieren:

Rollen und Ressourcen. Die Personen, die an dieser Phase teilnehmen.

Aktivitaten. Was diese Rollen und Ressourcen wahrend dieser Phase
tun.

Assets und Artefakte. Was in dieser Phase produziert wird.

Kein Projektzyklus kann als statisch angesehen werden. Jeder Projektzy-
klus muss sich anpassen und wachsen, um Fortschritte in der Technologie
zu berucksichtigen, neuen fachlichen Anforderungen und Umgebungen
nachzukommen und die wachsende Erfahrung des Projektteams zu reflek-
tieren.

4.3.2 Der iterative inkrementelle Projektzyklus

Das Konzept der inkrementellen und evolutiondren Entwicklung hat sich Evolutionérer

bereits Mitte der Achtzigerjahre entwickelt. Die inkrementelle Entwicklung
bertcksichtigt, dass es fast unmdéglich ist, ein perfektes System in einem
einzigen Schritt — ohne Ruckkopplung (feedback) vom Endbenutzer — abzu-
liefern. Oft ist es besser, zunachst nur Kernbereiche des Geschaftsmodells
in einer ersten Version zu implementieren, anstatt eine vollstandige und
perfekte Lésung in einem Schritt erreichen zu wollen. Die praktischen Er-
fahrungen, die mit frihen Versionen des Systems gewonnen werden, sind
wertvolle Schétze, die helfen, weitere Funktionalitat in zukinftigen Inkre-
menten zu modellieren und zu implementieren. Die Implementierung neu-
er Funktionalitat kann so auf einen stetig wachsenden Schatz von Erfah-
rungen gegrundet werden und so die fachlichen Anforderungen besser
erfullen als ein System, das nur am ’Reif3brett’ entsteht.

Der SELC unterstltzt einen solchen inkrementellen Entwicklungsprozess
und erlaubt mehrere Iterationen innerhalb eines jeden Inkrements.

Im inkrementellen Ansatz wird das Projekt in eine Anzahl Mini-Projekte
aufgebrochen. Jedes dieser Mini-Projekte liefert eine komplette Implemen-
tierung ausgewahlter fachlicher Funktionen. Jedes Inkrement enthalt eine
Untermenge der Use Cases des Gesamtsystems. Wenn das Inkrement fertig-
gestellt ist, sind auch die Use Cases vollstandig implementiert.

Ein Projekt in diskrete Inkremente aufzubrechen, hat den Vorteil, dass die
Entwicklungsaktivitaten zunéchst auf ein engeres Feld fokussiert werden
und wichtige Funktionalitat friher geliefert werden kann. Allerdings ist
noch offen, wie diese Aktivitaten innerhalb eines bestimmten Inkrements
organisiert werden.

Im iterativen Ansatz zerlegen wir jedes Inkrement in eine Anzahl von Ite-
rationen, gewohnlich drei. Diese Iteration decken alle Phasen des Projekt-
zyklus ab, aber im Unterschied zu Inkrementen entwickelt nicht jede Itera-
tion notwendigerweise die gesamte Funktionalitit eines Use Cases.

Diese Iterationen sind:
@ Exploration. Die anfangliche Phase der Entdeckung.

@ Evolution. Die Erweiterung der Konstrukte und Prozesse, die wahrend
der Exploration entdeckt wurden.

© Verfeinerung. Die endgultigen Verfeinerungen (refinements) fir die
vollstandige Ablieferung.

Ansatz

Was ist ein
Inkrement?

Was ist eine
Iteration?

403

4.3 Der Software-Entwicklungszyklus

404

Das Konvergenzprinzip

Dieser Drei-lterationen-Ansatz ermdoglicht die Anwendung einer Kernstra-
tegie des Projektmanagements, namlich die des Konvergenzprinzips. Dieses
Prinzip sagt aus, dass — unter konsistenter Anwendung objektorientierter
Technologie — die Lésungsmenge innerhalb von drei Iterationen mit einer
maximalen Abweichung von 10% auf die tatsdchlich benétigte Lésung kon-
vergiert. Wenn korrekt angewandt, erhélt man mit diesem Prinzip klare
und frihe Warnzeichen fur Fehler in der Spezifikation, mangelndes Ver-
standnis der Anforderung, unangemessene Architektur oder instabile Um-
gebung.

Aufwandsverteilung auf Iterationen
Wie viel Aufwand muss auf jede Iteration verwendet werden?
Im Wesentlichen gibt es drei Strategien (loading strategies):

» Back-end Loading. Indiesem Ansatz wird der Grof3teil der Arbeitin der
letzten Iteration ausgefuhrt.

Exploration < 20%
Evolution 33%
Verfeinerung > 50%

Diese Strategie wird paradoxerweise verwendet, wenn ein Problem nur
mangelhaft verstanden wird oder die Entwickler unerfahren sind.
Wenn man mit einem unbekannten Terrain oder Problemraum konfron-
tiert ist, ist es besser, zunachst rasch durch den Entwicklungsprozess zu
gehen, um schnell einen breiten Uberblick tiber alle Themen zu gewin-
nen.

» Front-end Loading. In diesem Ansatz wird der Hauptteil der Arbeit auf
die erste Iteration verwendet.

Exploration > 50%
Evolution 33%
Verfeinerung <20%

Dieser Ansatz eignet sich am besten fur Probleme, die trivial sind und
gut verstanden werden. Hier kann die meiste Arbeit im ersten Durch-
gang erfolgen, ohne dass man Gefahr lauft, dass spatere Entdeckungen
die gesamte Arbeit gefahrden.

» Linear Loading. In diesem Ansatz werden die Anstrengungen gleich-
mafig Uber alle drei Iterationen verteilt.

Exploration 33%
Evolution 33%
Verfeinerung 33%

Kaum Uberraschend wird dieser Ansatz dann verwendet, wenn es nicht
klar ist, wie gut ein Problem verstanden wird.

Integration

Waéhrend Inkremente lose gekoppelt sein sollten, gibt es doch klare Abhén-
gigkeiten zwischen ihnen. So wird es immer die Notwendigkeit geben, Ko-
ordinierungsprobleme zwischen den Inkrementen zu l6sen. Dieser Prozess
wird Integration genannt.

Integration muss als eigenstéandige Projektaktivitat eingeplant und adres-
siert werden. Dabei kénnen zwei Integrationsstrategien verwendet wer-
den:

» Inkrementabhéngige Integration. In diesem Ansatz liegt es in der Ver-
antwortung jeder Entwicklungsuntergruppe, die von ihnen abzuliefern-
den Arbeitsergebnisse mit denen vorheriger Inkremente abzustimmen.

» Getrennte Integration. Hier ist eine getrennte Untergruppe fir alle In-
tegrationsaktivitaten verantwortlich. Das Team nimmt die Arbeitser-
gebnisse der andern Entwicklungsteams entgegen, koordiniert sie und
16st Diskrepanzen.

Unabhangig von der Strategie muss ein Projektleiter gentigend Zeit fur die-
se Aktivitaten bereit stellen.

Werkzeuge

Auf dem Markt sind verschiedene Werkzeuge, die den Softwareentwick-
lungsprozess oder Teile davon unterstutzen wie z.B. die Systeme von Rose
und TogetherSoft.

Zusétzlich kdnnen diese Werkzeuge bestimmte Qualitatssicherungsaufga-
ben automatisieren:

» Eine automatische Bewertung erlaubt es, die Komplexitat der Modelle und
der Implementierung zu tberwachen.

» Audits sichern die Verwendung von Unternehmensstandards und die
Befolgung von Konventionen.

405

4.3 Der Software-Entwicklungszyklus

» Die Rickverfolgung von Anforderungen (Requirements Traceability) erlaubt
es, zu verfolgen, wie die definierten Anforderung in den verschiedenen
Phasen des Modellierungs- und Implementierungsprozesses abgebildet
werden.

Rundreise mit Software AGs Entwicklungssystem Bolero speichert Entwicklungsobjekte

Bolero und wie Klassen, Schnittstellen, Methoden und Felder in einem Repositorium

Together ynd benutzt dabei zur internen Darstellung XML. Das erlaubt es, gegen-
Uber Modellierungswerkzeugen offene Schnittstellen anzubieten.

Insbesondere kann hier Bolero mit Together von TogetherSoft zusammenar-
beiten. Die Integration der beiden Produkte erlaubt ein Round-Trip-Enginee-
ring: So kdnnen UML-Diagramme in Code Ubersetzt werden, wéhrend um-
gekehrt Anderungen im Code auch wieder zuriick in die Diagramme
reflektiert werden kdnnen.

406

