
When I took office, only high energy physicists had ever heard of
what is called the Worldwide Web . . . Now even my cat has its
own page — Bill Clinton, 1996

This book gives a comprehensive survey of non-life insurance mathematics. Origi-
nally written for use with the actuarial science programs at the Universities of Am-
sterdam and Leuven, it is now in use at many other universities, as well as for the
non-academic actuarial education program organized by the Dutch Actuarial So-
ciety. It provides a link to the further theoretical study of actuarial science. The
methods presented can not only be used in non-life insurance, but are also effective
in other branches of actuarial science, as well as, of course, in actuarial practice.

Apart from the standard theory, this text contains methods directly relevant for
actuarial practice, for example the rating of automobile insurance policies, premium
principles and risk measures, and IBNR models. Also, the important actuarial statis-
tical tool of the Generalized Linear Models is studied. These models provide extra
possibilities beyond ordinary linear models and regression that are the statistical
tools of choice for econometricians. Furthermore, a short introduction is given to
credibility theory. Another topic which always has enjoyed the attention of risk the-
oreticians is the study of ordering of risks. The book reflects the state of the art in
actuarial risk theory; many results presented were published in the actuarial litera-
ture only recently.

In this second edition of the book, we have aimed to make the theory even more
directly applicable by using the software R. It provides an implementation of the
language S, not unlike S-Plus. It is not just a set of statistical routines but a full-
fledged object oriented programming language. Other software may provide similar
capabilities, but the great advantage of R is that it is open source, hence available
to everyone free of charge. This is why we feel justified in imposing it on the users
of this book as a de facto standard. On the internet, a lot of documentation about R
can be found. In an Appendix, we give some examples of use of R. After a general
introduction, explaining how it works, we study a problem from risk management,
trying to forecast the future behavior of stock prices with a simple model, based on
stock prices of three recent years. Next, we show how to use R to generate pseudo-
random datasets that resemble what might be encountered in actuarial practice.

vii
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Models and paradigms studied
The time aspect is essential in many models of life insurance. Between paying pre-
miums and collecting the resulting pension, decades may elapse. This time element
is less prominent in non-life insurance. Here, however, the statistical models are
generally more involved. The topics in the first five chapters of this textbook are
basic for non-life actuarial science. The remaining chapters contain short introduc-
tions to other topics traditionally regarded as non-life actuarial science.

1. The expected utility model
The very existence of insurers can be explained by the expected utility model. In
this model, an insured is a risk averse and rational decision maker, who by virtue of
Jensen’s inequality is ready to pay more than the expected value of his claims just to
be in a secure financial position. The mechanism through which decisions are taken
under uncertainty is not by direct comparison of the expected payoffs of decisions,
but rather of the expected utilities associated with these payoffs.

2. The individual risk model
In the individual risk model, as well as in the collective risk model below, the to-
tal claims on a portfolio of insurance contracts is the random variable of interest.
We want to compute, for example, the probability that a certain capital will be suf-
ficient to pay these claims, or the value-at-risk at level 99.5% associated with the
portfolio, being the 99.5% quantile of its cumulative distribution function (cdf). The
total claims is modeled as the sum of all claims on the policies, which are assumed
independent. Such claims cannot always be modeled as purely discrete random vari-
ables, nor as purely continuous ones, and we use a notation, involving Stieltjes inte-
grals and differentials, encompassing both these as special cases.

The individual model, though the most realistic possible, is not always very con-
venient, because the available dataset is not in any way condensed. The obvious
technique to use in this model is convolution, but it is generally quite awkward.
Using transforms like the moment generating function sometimes helps. The Fast
Fourier Transform (FFT) technique gives a fast way to compute a distribution from
its characteristic function. It can easily be implemented in R.

We also present approximations based on fitting moments of the distribution. The
Central Limit Theorem, fitting two moments, is not sufficiently accurate in the im-
portant right-hand tail of the distribution. So we also look at some methods using
three moments: the translated gamma and the normal power approximation.

3. Collective risk models
A model that is often used to approximate the individual model is the collective risk
model. In this model, an insurance portfolio is regarded as a process that produces
claims over time. The sizes of these claims are taken to be independent, identically
distributed random variables, independent also of the number of claims generated.
This makes the total claims the sum of a random number of iid individual claim
amounts. Usually one assumes additionally that the number of claims is a Poisson
variate with the right mean, or allows for some overdispersion by taking a negative
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binomial claim number. For the cdf of the individual claims, one takes an average

ally tractable model. Several techniques, including Panjer’s recursion formula, to
compute the cdf of the total claims modeled this way are presented.

For some purposes it is convenient to replace the observed claim severity dis-
tribution by a parametric loss distribution. Families that may be considered are for
example the gamma and the lognormal distributions. We present a number of such
distributions, and also demonstrate how to estimate the parameters from data. Fur-
ther, we show how to generate pseudo-random samples from these distributions,

4. The ruin model
The ruin model describes the stability of an insurer. Starting from capital u at time
t = 0, his capital is assumed to increase linearly in time by fixed annual premiums,
but it decreases with a jump whenever a claim occurs. Ruin occurs when the capital
is negative at some point in time. The probability that this ever happens, under the
assumption that the annual premium as well as the claim generating process remain
unchanged, is a good indication of whether the insurer’s assets match his liabili-
ties sufficiently. If not, one may take out more reinsurance, raise the premiums or
increase the initial capital.

Analytical methods to compute ruin probabilities exist only for claims distribu-
tions that are mixtures and combinations of exponential distributions. Algorithms
exist for discrete distributions with not too many mass points. Also, tight upper
and lower bounds can be derived. Instead of looking at the ruin probability ψ(u)
with initial capital u, often one just considers an upper bound e−Ru for it (Lund-
berg), where the number R is the so-called adjustment coefficient and depends on
the claim size distribution and the safety loading contained in the premium.

Computing a ruin probability assumes the portfolio to be unchanged eternally.
Moreover, it considers just the insurance risk, not the financial risk. Therefore not
much weight should be attached to its precise value beyond, say, the first relevant
decimal. Though some claim that survival probabilities are ‘the goal of risk theory’,
many actuarial practitioners are of the opinion that ruin theory, however topical still
in academic circles, is of no significance to them. Nonetheless, we recommend to
study at least the first three sections of Chapter 4, which contain the description
of the Poisson process as well as some key results. A simple proof is provided for
Lundberg’s exponential upper bound, as well as a derivation of the ruin probability
in case of exponential claim sizes.

5. Premium principles and risk measures
Assuming that the cdf of a risk is known, or at least some characteristics of it like
mean and variance, a premium principle assigns to the risk a real number used as a
financial compensation for the one who takes over this risk. Note that we study only
risk premiums, disregarding surcharges for costs incurred by the insurance company.
By the law of large numbers, to avoid eventual ruin the total premium should be at
least equal to the expected total claims, but additionally, there has to be a loading in

of the cdfs of the individual policies. This leads to a close fitting and computation-

beyond the standard facilities offered by R.
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the premium to compensate the insurer for making available his risk carrying capac-
ity. From this loading, the insurer has to build a reservoir to draw upon in adverse
times, so as to avoid getting in ruin. We present a number of premium principles,
together with the most important properties that characterize premium principles.
The choice of a premium principle depends heavily on the importance attached to
such properties. There is no premium principle that is uniformly best.

Risk measures also attach a real number to some risky situation. Examples are
premiums, infinite ruin probabilities, one-year probabilities of insolvency, the re-
quired capital to be able to pay all claims with a prescribed probability, the expected
value of the shortfall of claims over available capital, and more.

6. Bonus-malus systems
With some types of insurance, notably car insurance, charging a premium based ex-
clusively on factors known a priori is insufficient. To incorporate the effect of risk
factors of which the use as rating factors is inappropriate, such as race or quite often
sex of the policy holder, and also of non-observable factors, such as state of health,
reflexes and accident proneness, many countries apply an experience rating system.
Such systems on the one hand use premiums based on a priori factors such as type
of coverage and list-price or weight of a car, on the other hand they adjust these
premiums by using a bonus-malus system, where one gets more discount after a
claim-free year, but pays more after filing one or more claims. In this way, premi-
ums are charged that reflect the exact driving capabilities of the driver better. The
situation can be modeled as a Markov chain.

The quality of a bonus-malus system is determined by the degree in which the
premium paid is in proportion to the risk. The Loimaranta efficiency equals the
elasticity of the mean premium against the expected number of claims. Finding it
involves computing eigenvectors of the Markov matrix of transition probabilities. R
provides tools to do this.

7. Ordering of risks
It is the very essence of the actuary’s profession to be able to express preferences
between random future gains or losses. Therefore, stochastic ordering is a vital part
of his education and of his toolbox. Sometimes it happens that for two losses X and
Y , it is known that every sensible decision maker prefers losing X , because Y is in
a sense ‘larger’ than X . It may also happen that only the smaller group of all risk
averse decision makers agree about which risk to prefer. In this case, risk Y may
be larger than X , or merely more ‘spread’, which also makes a risk less attractive.
When we interpret ‘more spread’ as having thicker tails of the cumulative distribu-
tion function, we get a method of ordering risks that has many appealing properties.
For example, the preferred loss also outperforms the other one as regards zero utility
premiums, ruin probabilities, and stop-loss premiums for compound distributions
with these risks as individual terms. It can be shown that the collective model of
Chapter 3 is more spread than the individual model it approximates, hence using
the collective model, in most cases, leads to more conservative decisions regarding
premiums to be asked, reserves to be held, and values-at-risk. Also, we can prove
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that the stop-loss insurance, demonstrated to be optimal as regards the variance of
the retained risk in Chapter 1, is also preferable, other things being equal, in the eyes
of all risk averse decision makers.

Sometimes, stop-loss premiums have to be set under incomplete information. We
give a method to compute the maximal possible stop-loss premium assuming that
the mean, the variance and an upper bound for a risk are known.

In the individual and the collective model, as well as in ruin models, we assume
that the claim sizes are stochastically independent non-negative random variables.
Sometimes this assumption is not fulfilled, for example there is an obvious depen-
dence between the mortality risks of a married couple, between the earthquake risks
of neighboring houses, and between consecutive payments resulting from a life in-
surance policy, not only if the payments stop or start in case of death, but also in case
of a random force of interest. We give a short introduction to the risk ordering that
applies for this case. It turns out that stop-loss premiums for a sum of random vari-
ables with an unknown joint distribution but fixed marginals are maximal if these
variables are as dependent as the marginal distributions allow, making it impossible
that the outcome of one is ‘hedged’ by another.

In finance, frequently one has to determine the distribution of the sum of de-
pendent lognormal random variables. We apply the theory of ordering of risks and
comonotonicity to give bounds for that distribution.

We also give a short introduction in the theory of ordering of multivariate risks.

the same marginals if their correlation is higher. But a more robust criterion is to
restrict this to the case that their joint cdf is uniformly larger. In that case it can
be proved that the sum of these random variables is larger in stop-loss order. There

´ ¨
1940’s. For a random pair (X ,Y ), the copula is the joint cdf of the ranks FX (X) and
FY (Y ). Using the smallest and the largest copula, it is possible to construct random
pairs with arbitrary prescribed marginals and (rank) correlations.

8. Credibility theory
The claims experience on a policy may vary by two different causes. The first is
the quality of the risk, expressed through a risk parameter. This represents the aver-
age annual claims in the hypothetical situation that the policy is monitored without
change over a very long period of time. The other is the purely random good and
bad luck of the policyholder that results in yearly deviations from the risk para-
meter. Credibility theory assumes that the risk quality is a drawing from a certain
structure distribution, and that conditionally given the risk quality, the actual claims
experience is a sample from a distribution having the risk quality as its mean value.
The predictor for next year’s experience that is linear in the claims experience and
optimal in the sense of least squares turns out to be a weighted average of the claims
experience of the individual contract and the experience for the whole portfolio.
The weight factor is the credibility attached to the individual experience, hence it is
called the credibility factor, and the resulting premiums are called credibility pre-

are bounds for joints cdfs dating back to Frechet in the 1950’s and Hoffding in the

One might say that two randoms variables are more related than another pair with
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miums. As a special case, we study a bonus-malus system for car insurance based
on a Poisson-gamma mixture model.

Credibility theory is actually a Bayesian inference method. Both credibility and
generalized linear models (see below) are in fact special cases of so-called General-
ized Linear Mixed Models (GLMM), and the R function glmm is able to deal with
both the random and the fixed parameters in these models.

9. Generalized linear models
Many problems in actuarial statistics are Generalized Linear Models (GLM). In-
stead of assuming a normally distributed error term, other types of randomness are
allowed as well, such as Poisson, gamma and binomial. Also, the expected values of
the dependent variables need not be linear in the regressors. They may also be some
function of a linear form of the covariates, for example the logarithm leading to the
multiplicative models that are appropriate in many insurance situations.

This way, one can for example tackle the problem of estimating the reserve to be
kept for IBNR claims, see below. But one can also easily estimate the premiums to
be charged for drivers from region i in bonus class j with car weight w.

are fixed, though unknown. The glmm function in R can handle a multitude of mod-
els, including those with both random and fixed effects.

10. IBNR techniques
An important statistical problem for the practicing actuary is the forecasting of the
total of the claims that are Incurred, But Not Reported, hence the acronym IBNR,
or not fully settled. Most techniques to determine estimates for this total are based

and development year. Many traditional actuarial reserving methods turn out to be

We describe the workings of the ubiquitous chain ladder method to predict future
losses, as well as, briefly, the Bornhuetter-Ferguson method, which aims to incorpo-
rate actuarial knowledge about the portfolio. We also show how these methods can
be implemented in R, using the glm function. In this same framework, many exten-
sions and variants of the chain ladder method can easily be introduced. England and
Verrall have proposed methods to describe the prediction error with the chain ladder
method, both an analytical estimate of the variance and a bootstrapping method to
obtain an estimate for the predictive distribution. We describe an R implementation
of these methods.

For the second edition, we extended the material in virtually all chapters, mostly

recapitulate the Gauss-Markov theory of ordinary linear models found in many other
texts on statistics and econometrics, and explain how the algorithm by Nelder and
Wedderburn works, showing how it can be implemented in R. We also study the
stochastic component of a GLM, stating that the observations are independent ran-

In credibility models, there are random group effects, but in GLMs the effects

maximum likelihood estimations in special cases of GLMs.

11. More on GLMs

involving the use of R, but we also add some more material on GLMs. We briefly

on so-called run-off triangles, in which claim totals are grouped by year of origin



Preface xiii

dom variables with a distribution in a subclass of the exponential family. The well-
known normal, Poisson and gamma families have a variance proportional to µ p for
p = 0,1,2, respectively, where µ is the mean (heteroskedasticity). The so-called
Tweedie class contains random variables, in fact compound Poisson–gamma risks,
having variance proportional to µ p for some p ∈ (1,2). These mean-variance rela-

and Smyth provide routines computing cdf, inverse cdf, pdf and random drawings

risks.

Educational aspects
As this text has been in use for a long time now at the University of Amsterdam
and elsewhere, we could draw upon a long series of exams, resulting in long lists of
exercises. Also, many examples are given, making this book well-suited as a text-
book. Some less elementary exercises have been marked by [♠], and these might be
skipped.

The required mathematical background is on a level such as acquired in the first
stage of a bachelors program in quantitative economics (econometrics or actuarial
science), or mathematical statistics. To indicate the level of what is needed, the book
by Bain and Engelhardt (1992) is a good example. So the book can be used either
in the final year of such a bachelors program, or in a subsequent masters program in
either actuarial science proper or in quantitative financial economics with a strong
insurance component. To make the book accessible to non-actuaries, notation and
jargon from life insurance mathematics is avoided. Therefore also students in ap-
plied mathematics or statistics with an interest in the stochastic aspects of insurance
will be able to study from this book. To give an idea of the mathematical rigor and
statistical sophistication at which we aimed, let us remark that moment generating
functions are used routinely, while characteristic functions and measure theory are
avoided in general. Prior experience with regression models, though helpful, is not
required.

As a service to the student help is offered, in Appendix B, with many of the
exercises. It takes the form of either a final answer to check one’s work, or a useful
hint. There is an extensive index, and the tables that might be needed on an exam
are printed in the back. The list of references is not a thorough justification with
bibliographical data on every result used, but more a collection of useful books and
papers containing more details on the topics studied, and suggesting further reading.

Ample attention is given to exact computing techniques, and the possibilities that
R provides, but also to old fashioned approximation methods like the Central Limit
Theorem (CLT). The CLT itself is generally too crude for insurance applications,
but slight refinements of it are not only fast, but also often prove to be surprisingly
accurate. Moreover they provide solutions of a parametric nature such that one does
not have to recalculate everything after a minor change in the data. Also, we want
to stress that ‘exact’ methods are as exact as their input. The order of magnitude of
errors resulting from inaccurate input is often much greater than the one caused by
using an approximation method.

of such random variables, as well as to estimate GLMs with Tweedie distributed

tions are interesting for actuarial purposes. Extensions to R, contributed by Dunn
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The notation used in this book conforms to what is usual in mathematical statis-
tics as well as non-life insurance mathematics. See for example the book by Bowers
et al. (1986, 1997), the non-life part of which is similar in design to the first part
of this book. In particular, random variables are capitalized, though not all capitals
actually denote random variables.
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Chapter 2
The individual risk model

If the automobile had followed the same development cycle as
the computer, a Rolls-Royce would today cost $100, get a
million miles per gallon, and explode once a year, killing
everyone inside — Robert X. Cringely

2.1 Introduction

In this chapter we focus on the distribution function of the total claim amount S for
the portfolio of an insurer. We are not merely interested in the expected value and the
variance of the insurer’s random capital, but we also want to know the probability
that the amounts paid exceed a fixed threshold. The distribution of the total claim
amount S is also necessary to be able to apply the utility theory of the previous
chapter. To determine the value-at-risk at, say, the 99.5% level, we need also good
approximations for the inverse of the cdf, especially in the far tail. In this chapter
we deal with models that still recognize the individual, usually different, policies.
As is done often in non-life insurance mathematics, the time aspect will be ignored.
This aspect is nevertheless important in disability and long term care insurance. For
this reason, these types of insurance are sometimes considered life insurances.

In the insurance practice, risks usually cannot be modeled by purely discrete ran-
dom variables, nor by purely continuous random variables. For example, in liability
insurance a whole range of positive amounts can be paid out, each of them with a
very small probability. There are two exceptions: the probability of having no claim,
that is, claim size 0, is quite large, and the probability of a claim size that equals the
maximum sum insured, implying a loss exceeding that threshold, is also not negligi-
ble. For expectations of such mixed random variables, we use the Riemann-Stieltjes
integral as a notation, without going too deeply into its mathematical aspects. A
simple and flexible model that produces random variables of this type is a mixture
model, also called an ‘urn-of-urns’ model. Depending on the outcome of one draw-
ing, resulting in one of the events ‘no claim or maximum claim’ or ‘other claim’,
a second drawing is done from either a discrete distribution, producing zero or the
maximal claim amount, or a continuous distribution. In the sequel, we present some
examples of mixed models for the claim amount per policy.

Assuming that the risks in a portfolio are independent random variables, the
distribution of their sum can be calculated by making use of convolution. Even
with the computers of today, it turns out that this technique is quite laborious, so

17
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there is a need for other methods. One of the alternative methods is to make use

variables and consequently identify the distribution function. And in some cases we
can fruitfully employ a technique called the Fast Fourier Transform to reconstruct
the density from a transform.

A totally different approach is to compute approximations of the distribution of

dom variables, we could, by virtue of the Central Limit Theorem, approximate its

Especially in the tails, there is a need for more refined approximations that explicitly

tral moment of S is usually greater than 0, while for the normal distribution it equals

well as the normal power (NP) approximation. The quality of these approximations
is similar. The latter can be calculated directly by means of a N(0,1) table, the for-
mer requires using a computer.

Another way to approximate the individual risk model is to use the collective risk
models described in the next chapter.

2.2 Mixed distributions and risks

In this section, we discuss some examples of insurance risks, that is, the claims on an
insurance policy. First, we have to slightly extend the set of distribution functions we
consider, because purely discrete random variables and purely continuous random
variables both turn out to be inadequate for modeling the risks.

From the theory of probability, we know that every function F(·) that satisfies

F(−∞) = 0; F(+∞) = 1

F(·) is non-decreasing and right-continuous
(2.1)

is a cumulative distribution function (cdf) of some random variable, for example
of F−1(U) with U ∼ uniform(0,1), see Section 3.9.1 and Definition 5.6.1. If F(·)
is a step function, that is, a function that is constant outside a denumerable set of
discontinuities (steps), then F(·) and any random variable X with F(x) = Pr[X ≤ x]
are called discrete. The associated probability density function (pdf) represents the
height of the step at x, so

f (x) = F(x)−F(x−0) = Pr[X = x] for all x ∈ (−∞,∞). (2.2)

functions, probability generating functions (pgf) and cumulant generating functions

0. We present an approximation based on a translated gamma random variable, as

of moment generating functions (mgf) or of related transforms like characteristic

distribution by a normal distribution with the same mean and variance as S. We will

(cgf). Sometimes it is possible to recognize the mgf of a sum of independent random

recognize the substantial probability of large claims. More technically, the third cen-

show that this approximation usually is not satisfactory for the insurance practice.

the total claim amount S. If we consider S as the sum of a ‘large’ number of ran-
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Here, F(x− 0) is shorthand for limε↓0 F(x− ε); F(x + 0) = F(x) holds because of
right-continuity. For all x, we have f (x)≥ 0, and ∑x f (x) = 1 where the sum is taken
over the denumerable set of all x with f (x) > 0.

Another special case is when F(·) is absolutely continuous. This means that if
f (x) = F ′(x), then

F(x) =
∫ x

−∞
f (t)dt. (2.3)

In this case f (·) is called the probability density function, too. Again, f (x) ≥ 0
for all x, while now

∫
f (x)dx = 1. Note that, just as is customary in mathematical

statistics, this notation without integration limits represents the definite integral of
f (x) over the interval (−∞,∞), and not just an arbitrary antiderivative, that is, any
function having f (x) as its derivative.

In statistics, almost without exception random variables are either discrete or
continuous, but this is definitely not the case in insurance. Many distribution func-
tions to model insurance payments have continuously increasing parts, but also some
positive steps. Let Z represent the payment on some contract. There are three possi-
bilities:

1. The contract is claim-free, hence Z = 0.
2. The contract generates a claim that is larger than the maximum sum insured, say

M. Then, Z = M.
3. The contract generates a ‘normal’ claim, hence 0 < Z < M.

Apparently, the cdf of Z has steps in 0 and in M. For the part in-between we could
use a discrete distribution, since the payment will be some integer multiple of the
monetary unit. This would produce a very large set of possible values, each of them
with a very small probability, so using a continuous cdf seems more convenient. In
this way, a cdf arises that is neither purely discrete, nor purely continuous. In Figure
2.2 a diagram of a mixed continuous/discrete cdf is given, see also Exercise 1.4.1.

The following urn-of-urns model allows us to construct a random variable with
a distribution that is a mixture of a discrete and a continuous distribution. Let I be
an indicator random variable, with values I = 1 or I = 0, where I = 1 indicates that
some event has occurred. Suppose that the probability of the event is q = Pr[I = 1],
0≤ q≤ 1. If I = 1, in the second stage the claim Z is drawn from the distribution of
X , if I = 0, then from Y . This means that

Z = IX +(1− I)Y. (2.4)

If I = 1 then Z can be replaced by X , if I = 0 it can be replaced by Y . Note that we
may act as if not just I and X ,Y are independent, but in fact the triple (X ,Y, I); only
the conditional distributions of X | I = 1 and of Y | I = 0 are relevant, so we can take
for example Pr[X ≤ x | I = 0] = Pr[X ≤ x | I = 1] just as well. Hence, the cdf of Z can
be written as
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F(z) = Pr[Z ≤ z]

= Pr[Z ≤ z, I = 1]+Pr[Z ≤ z, I = 0]

= Pr[X ≤ z, I = 1]+Pr[Y ≤ z, I = 0]

= qPr[X ≤ z]+ (1−q)Pr[Y ≤ z].

(2.5)

Now, let X be a discrete random variable and Y a continuous random variable. From
(2.5) we get

F(z)−F(z−0) = qPr[X = z] and F ′(z) = (1−q)
d
dz

Pr[Y ≤ z]. (2.6)

This construction yields a cdf F(z) with steps where Pr[X = z] > 0, but it is not a
step function, since F ′(z) > 0 on the support of Y .

To calculate the moments of Z, the moment generating function E[etZ ] and the
stop-loss premiums E[(Z−d)+], we have to calculate the expectations of functions
of Z. For that purpose, we use the iterative formula of conditional expectations, also
known as the law of total expectation, the law of iterated expectations, the tower
rule, or the smoothing theorem:

E[W ] = E[E[W |V ]]. (2.7)

We apply this formula with W = g(Z) for an appropriate function g(·) and replace
V by I. Then, introducing h(i) = E[g(Z) | I = i], we get, using (2.6) at the end:

E[g(Z)] = E[E[g(Z) | I]] = qh(1)+(1−q)h(0) = E[h(I)]

= qE[g(Z) | I = 1]+ (1−q)E[g(Z) | I = 0]

= qE[g(X) | I = 1]+ (1−q)E[g(Y ) | I = 0]

= qE[g(X)]+(1−q)E[g(Y )]

= q∑
z

g(z)Pr[X = z]+ (1−q)
∫ ∞

−∞
g(z)

d
dz

Pr[Y ≤ z]dz

= ∑
z

g(z)[F(z)−F(z−0)]+
∫ ∞

−∞
g(z)F ′(z)dz.

(2.8)

Remark 2.2.1 (Riemann-Stieltjes integrals)
The result in (2.8), consisting of a sum and an ordinary Riemann integral, can be
written as a right hand Riemann-Stieltjes integral:

E[g(Z)] =

∫ ∞

−∞
g(z)dF(z). (2.9)

The integrator is the differential dF(z) = FZ(z)−FZ(z− dz). It replaces the proba-
bility of z, that is, the height of the step at z if there is one, or F ′(z)dz if there is no
step at z. Here, dz denotes a positive infinitesimally small number. Note that the cdf
F(z) = Pr[Z ≤ z] is continuous from the right. In life insurance mathematics theory,
Riemann-Stieltjes integrals were used as a tool to describe situations in which it is
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vital which value of the integrand should be taken: the limit from the right, the limit
from the left, or the actual function value. Actuarial practitioners have not adopted
this convention. We avoid this problem altogether by considering continuous inte-
grands only. ∇

We can summarize the above as follows: a mixed continuous/discrete cdf FZ(z) =
Pr[Z ≤ z] arises when a mixture of random variables

Z = IX +(1− I)Y

is used, where X is a discrete random variable, Y is a continuous random variable
and I is a Bernoulli(q) random variable, with X , Y and I independent. The cdf of Z

FZ X Y (2.11)

E[g(X)] and E[g(Y )], see (2.8):

E[g(Z)] = qE[g(X)]+(1−q)E[g(Y )]. (2.12)

It is important to make a distinction between the urn-of-urns model (2.10) leading

T = qX +(1−q)Y . Although (2.12) is valid for T = Z in case g(z) = z, the random
variable T does not have (2.11) as its cdf. See also Exercises 2.2.8 and 2.2.9. ∇

Example 2.2.3 (Insurance against bicycle theft)
We consider an insurance policy against bicycle theft that pays b in case the bicycle
is stolen, upon which event the policy ends. Obviously, the number of payments
is 0 or 1 and the amount is known in advance, just as with life insurance policies.
Assume that the probability of theft is q and let X = Ib denote the claim payment,
where I is a Bernoulli(q) distributed indicator random variable, with I = 1 if the
bicycle is stolen, I = 0 if not. In analogy to (2.4), we can rewrite X as X = Ib+(1−
I)0. The distribution and the moments of X can be obtained from those of I:

Pr[X = b] = Pr[I = 1] = q; Pr[X = 0] = Pr[I = 0] = 1−q;

E[X ] = bE[I] = bq; Var[X ] = b2Var[I] = b2q(1−q).
(2.13)

Now suppose that only half the amount is paid out in case the bicycle was not locked.
Some bicycle theft insurance policies have a restriction like this. Insurers check this
by requiring that all the original keys have to be handed over in the event of a
claim. Then, X = IB, where B represents the random payment. Assuming that the
probabilities of a claim X = 400 and X = 200 are 0.05 and 0.15, we get

Pr[I = 1,B = 400] = 0.05; Pr[I = 1,B = 200] = 0.15. (2.14)

Hence, Pr[I = 1] = 0.2 and consequently Pr[I = 0] = 0.8. Also,

Remark 2.2.2 (Mixed random variables and mixed distributions)

is again a mixture, that is, a convex combination, of the cdfs of X and Y , see (2.5):

(2.10)

(z) = qF (z)+(1−q)F (z)

to a convex combination of cdfs, and a convex combination of random variables

For expectations of functions g(·) of Z we get the same mixture of expectations of
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Pr[B = 400 | I = 1] =
Pr[B = 400, I = 1]

Pr[I = 1]
= 0.25. (2.15)

This represents the conditional probability that the bicycle was locked given the fact
that it was stolen. ∇

Example 2.2.4 (Exponential claim size, if there is a claim)
Suppose that risk X is distributed as follows:

1. Pr[X = 0] = 1
2 ;

2. Pr[X ∈ [x,x+dx)] = 1
2 βe−βxdx for β = 0.1, x > 0,

where dx denotes a positive infinitesimal number. What is the expected value of X ,
and what is the maximum premium for X that someone with an exponential utility
function with risk aversion α = 0.01 is willing to pay?

The random variable X is not continuous, because the cdf of X has a step in 0.
It is also not a discrete random variable, since the cdf is not a step function; its
derivative, which in terms of infinitesimal numbers equals Pr[x ≤ X < x + dx]/dx,
is positive for x > 0. We can calculate the expectations of functions of X by dealing
with the steps in the cdf separately, see (2.9). This leads to

E[X ] =

∫ ∞

−∞
xdFX (x) = 0dFX (0)+

∫ ∞

0
xF ′X (x)dx = 1

2

∫ ∞

0
xβe−βxdx = 5. (2.16)

If the utility function of the insured is exponential with parameter α = 0.01, then
(1.21) yields for the maximum premium P+:

P+ =
1
α

log(mX (α)) =
1
α

log

(
e0dFX (0)+ 1

2

∫ ∞

0
eαxβe−βxdx

)

=
1
α

log

(
1
2

+
1
2

β
β −α

)
= 100log

(
19
18

)
≈ 5.4.

(2.17)

This same result can of course be obtained by writing X as in (2.10). ∇

Example 2.2.5 (Liability insurance with a maximum coverage)
Consider an insurance policy against a liability loss S. We want to determine the
expected value, the variance and the distribution function of the payment X on this
policy, when there is a deductible of 100 and a maximum payment of 1000. In other
words, if S≤ 100 then X = 0, if S≥ 1100 then X = 1000, otherwise X = S−100. The
probability of a positive claim (S > 100) is 10% and the probability of a large loss
(S ≥ 1100) is 2%. Given 100 < S < 1100, S has a uniform(100,1100) distribution.
Again, we write X = IB where I denotes the number of payments, 0 or 1, and B
represents the amount paid, if any. Therefore,

Pr[B = 1000 | I = 1] = 0.2;

Pr[B ∈ (x,x+dx) | I = 1] = c dx for 0 < x < 1000.
(2.18)

Integrating the latter probability over x ∈ (0,1000) yields 0.8, so c = 0.0008.
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0 1000

c
Area = 0.8

Area = 0.2

Fig. 2.1 ‘Probability density function’ of B given I = 1 in Example 2.2.5.

The conditional distribution function of B, given I = 1, is neither discrete, nor
continuous. In Figure 2.1 we attempt to depict a pdf by representing the probability
mass at 1000 by a bar of infinitesimal width and infinite height such that the area
equals 0.2. In actual fact we have plotted f (·), where f (x) = 0.0008 on (0,1000)
and f (x) = 0.2/ε on (1000,1000+ ε) with ε > 0 very small.

For the cdf F of X we have

F(x) = Pr[X ≤ x] = Pr[IB≤ x]

= Pr[IB≤ x, I = 0]+Pr[IB≤ x, I = 1]

= Pr[IB≤ x | I = 0]Pr[I = 0]+Pr[IB≤ x | I = 1]Pr[I = 1]

(2.19)

which yields

F(x) =





0×0.9+0×0.1 = 0 for x < 0
1×0.9+1×0.1 = 1 for x≥ 1000
1×0.9+ c x×0.1 for 0≤ x < 1000.

(2.20)

A graph of the cdf F is shown in Figure 2.2. For the differential (‘density’) of F , we
have

dF(x) =





0.9 for x = 0
0.02 for x = 1000
0 for x < 0 or x > 1000
0.00008 dx for 0 < x < 1000.

(2.21)

The moments of X can be calculated by using this differential. ∇

The variance of risks of the form IB can be calculated through the conditional dis-
tribution of B, given I, by use of the well-known variance decomposition rule, see
(2.7), which is also known as the law of total variance:
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0 1000

.9

.98
1

Fig. 2.2 Cumulative distribution function F of X in Example 2.2.5.

Var[W ] = Var[E[W |V ]]+E[Var[W |V ]]. (2.22)

In statistics, the first term is the component of the variance of W , not explained
by knowledge of V ; the second is the explained component of the variance. The
conditional distribution of B | I = 0 is irrelevant, so for convenience, we let it be
equal to the one of B | I = 1, meaning that we take I and B to be independent. Then,
letting q = Pr[I = 1], µ = E[B] and σ2 = Var[B], we have E[X | I = 1] = µ and
E[X | I = 0] = 0. Therefore, E[X | I = i] = µ i for both values i = 0,1, and analogously,
Var[X | I = i] = σ2i. Hence,

E[X | I]≡ µI and Var[X | I]≡ σ2I, (2.23)

from which it follows that

E[X ] = E[E[X | I]] = E[µI] = µq;

Var[X ] = Var[E[X | I]]+E[Var[X | I]] = Var[µI]+E[σ2I]

= µ2q(1−q)+σ2q.

(2.24)

Notice that a continuous cdf F is not necessarily absolutely continuous in the sense
of (2.3), as is demonstrated by the following example.

Example 2.2.6 ([♠] The Cantor cdf; continuous but not absolutely continuous)
Let X1,X2, . . . be an infinite sequence of independent Bernoulli(1/2) random vari-
ables. Define the following random variable:

W =
∞

∑
i=1

2Xi

3i =
2
3

X1 +
1
3

∞

∑
i=1

2Xi+1

3i (2.25)

Then the possible values of W are, in the ternary system, 0.d1d2d3 . . . with di ∈
{0,2} for all i = 1,2, . . . , and with di = 2 occurring if Xi = 1. Obviously, all of these
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values have zero probability as they correspond to all Xi having specific outcomes,
so FW is continuous.

Also, all intervals of real numbers in (0,1) having a ternary digit di = 1 on some
place i = 1,2, . . . ,n are not possible values of W , hence FW is constant on the union
Bn of all those intervals. But it is easy to see that the total length of these intervals
tends to 1 as n→ ∞.

So we have constructed a continuous cdf FW , known as the Cantor distribution
function, that is constant except on a set of length 0 (known as the Cantor set). The
cdf FW cannot be equal to the integral over its derivative, since this is zero almost
everywhere with respect to the Lebesgue measure (‘interval length’). So though FW

is continuous, it is not absolutely continuous as in (2.3). ∇

2.3 Convolution

In the individual risk model we are interested in the distribution of the total S of the
claims on a number of policies, with

S = X1 +X2 + · · ·+Xn, (2.26)

where Xi, i = 1,2, . . . ,n, denotes the payment on policy i. The risks Xi are assumed
to be independent random variables. If this assumption is violated for some risks, for
example in case of fire insurance policies on different floors of the same building,
then these risks could be combined into one term in (2.26).

The operation ‘convolution’ calculates the distribution function of X +Y from

FX+Y (s) = Pr[X +Y ≤ s]

=
∫ ∞

−∞
Pr[X +Y ≤ s |X = x]dFX (x)

=
∫ ∞

−∞
Pr[Y ≤ s− x |X = x]dFX (x)

=
∫ ∞

−∞
Pr[Y ≤ s− x]dFX (x)

=
∫ ∞

−∞
FY (s− x)dFX (x) =: FX ∗FY (s).

(2.27)

The cdf FX Y X Y

density function we use the same notation. If X and Y are discrete random variables,
we find for the cdf of X +Y and the corresponding density

FX ∗FY (s) = ∑
x

FY (s− x) fX (x) and fX ∗ fY (s) = ∑
x

fY (s− x) fX (x), (2.28)

∗F (·) is called the convolution of the cdfs F (·) and F (·). For the

the cdfs of two independent random variables X and Y as follows:
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where the sum is taken over all x with fX (x) > 0. If X and Y are continuous random
variables, then

FX ∗FY (s) =
∫ ∞

−∞
FY (s− x) fX (x)dx (2.29)

and, taking the derivative under the integral sign to find the density,

fX ∗ fY (s) =
∫ ∞

−∞
fY (s− x) fX (x)dx. (2.30)

Since X +Y ≡Y +X , the convolution operator ∗ is commutative: FX ∗FY is identical
to FY ∗FX . Also, it is associative, since for the cdf of X +Y + Z, it does not matter
in which order we do the convolutions, therefore

(FX ∗FY )∗FZ ≡ FX ∗ (FY ∗FZ)≡ FX ∗FY ∗FZ . (2.31)

For the sum of n independent and identically distributed random variables with mar-
ginal cdf F , the cdf is the n-fold convolution power of F , which we write as

F ∗F ∗ · · · ∗F =: F∗n. (2.32)

Example 2.3.1 (Convolution of two uniform distributions)
Suppose that X ∼ uniform(0,1) and Y ∼ uniform(0,2) are independent. What is the
cdf of X +Y ?

The indicator function of a set A is defined as follows:

IA(x) =

{
1 if x ∈ A
0 if x /∈ A.

(2.33)

Indicator functions provide us with a concise notation for functions that are defined
differently on some intervals. For all x, the cdf of X can be written as

FX (x) = xI[0,1)(x)+ I[1,∞)(x), (2.34)

while F ′Y (y) = 1
2 I[0,2)(y) for all y, which leads to the differential

dFY (y) = 1
2 I[0,2)(y)dy. (2.35)

The convolution formula (2.27), applied to Y +X rather than X +Y , then yields

FY+X (s) =
∫ ∞

−∞
FX (s− y)dFY (y) =

∫ 2

0
FX (s− y) 1

2 dy, s≥ 0. (2.36)

The interval of interest is 0≤ s < 3. Subdividing it into [0,1), [1,2) and [2,3) yields
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FX+Y (s) =

{∫ s

0
(s− y) 1

2 dy

}
I[0,1)(s)

+

{∫ s−1

0

1
2 dy+

∫ s

s−1
(s− y) 1

2 dy

}
I[1,2)(s)

+

{∫ s−1

0

1
2 dy+

∫ 2

s−1
(s− y) 1

2 dy

}
I[2,3)(s)

= 1
4 s2I[0,1)(s)+ 1

4 (2s−1)I[1,2)(s)+ [1− 1
4 (3− s)2]I[2,3)(s).

(2.37)

Notice that X +Y is symmetric around s = 1.5. Although this problem could be
solved graphically by calculating the probabilities by means of areas, see Exercise
2.3.5, the above derivation provides an excellent illustration that, even in simple
cases, convolution can be a laborious process. ∇

Example 2.3.2 (Convolution of discrete distributions)
Let f1(x) = 1

4 , 1
2 , 1

4 for x = 0,1,2, f2(x) = 1
2 , 1

2 for x = 0,2 and f3(x) = 1
4 , 1

2 , 1
4 for

x = 0,2,4. Let f1+2 denote the convolution of f1 and f2 and let f1+2+3 denote the
convolution of f1, f2 and f3. To calculate F1+2+3, we need to compute the values
as shown in Table 2.1. In the discrete case, too, convolution is clearly a laborious
exercise. Note that the more often we have fi(x) 6= 0, the more calculations need to
be done. ∇

Table 2.1 Convolution computations for Example 2.3.2

x f1(x) ∗ f2(x) = f1+2(x) ∗ f3(x) = f1+2+3(x) ⇒ F1+2+3(x)

0 1/4 1/2 1/8 1/4 1/32 1/32
1 1/2 0 2/8 0 2/32 3/32
2 1/4 1/2 2/8 1/2 4/32 7/32
3 0 0 2/8 0 6/32 13/32
4 0 0 1/8 1/4 6/32 19/32
5 0 0 0 0 6/32 25/32
6 0 0 0 0 4/32 29/32
7 0 0 0 0 2/32 31/32
8 0 0 0 0 1/32 32/32

Example 2.3.3 (Convolution of iid uniform distributions)
Let Xi, i = 1,2, . . . ,n, be independent and identically uniform(0,1) distributed. By
using the convolution formula and induction, it can be shown that for all x > 0, the
pdf of S = X1 + · · ·+Xn equals

fS(x) =
1

(n−1)!

[x]

∑
h=0

(
n
h

)
(−1)h(x−h)n−1 (2.38)

where [x] denotes the integer part of x. See also Exercise 2.3.4. ∇
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Example 2.3.4 (Convolution of Poisson distributions)
Let X ∼ Poisson(λ ) and Y ∼ Poisson(µ) be independent random variables. From
(2.28) we have, for s = 0,1,2, . . .,

fX+Y (s) =
s

∑
x=0

fY (s− x) fX (x) =
e−µ−λ

s!

s

∑
x=0

(
s
x

)
µs−xλ x

= e−(λ+µ) (λ + µ)s

s!
,

(2.39)

where the last equality is the binomial theorem. Hence, X +Y is Poisson(λ + µ)
distributed. For a different proof, see Exercise 2.4.2. ∇

2.4 Transforms

mX (t) = E
[
etX , −∞ < t < h, (2.40)

exponential moments E[eεx] for some ε > 0 exist.

mX+Y (t) = E
[
et(X+Y )

]
= E

[
etX]E

[
etY = mX (t)mY (2.41)

φX (t) = E
[
eitX]= E

[
cos(tX)+ i sin(tX)

]
, −∞ < t < ∞. (2.42)

bers, although applying the same function formula derived for real t to imaginary t
as well produces the correct results most of the time, resulting for example in the

2 2 2

istic function.
As their name indicates, moment generating functions can be used to generate

moments of random variables. The usual series expansion of ex yields

be made easier by using transforms of the cdf. The moment generating function

]

]

does not exist. The characteristic function, however, always exists. It is defined as:

Determining the distribution of the sum of independent random variables can often

So, the convolution of cdfs corresponds to simply multiplying the mgfs. Note that

for some h. The mgf is going to be used especially in an interval around 0, which

(t).

the mgf-transform is one-to-one, so every cdf has exactly one mgf. Also, it is con-

If X and Y are independent, then

mgfs. See Exercises 2.4.12 and 2.4.13.
For random variables with a heavy tail, such as the Pareto distributions, the mgf

requires h > 0 to hold. Note that this is the case only for light-tailed risks, of which

N(0,2) distribution with mgf exp(t ) having exp((it) ) = exp(−t ) as its character-

A disadvantage of the characteristic function is the need to work with complex num-

tinuous, in the sense that the mgf of the limit of a series of cdfs is the limit of the

(mgf) suits our purposes best. For a non-negative random variable X , it is defined as
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mX (t) = E[etX ] =
∞

∑
k=0

E[Xk]tk

k!
, (2.43)

so the k-th moment of X equals

k dk

dtk X (t)

∣∣∣∣
t=0

. (2.44)

Moments can also be generated from the characteristic function in similar fashion.

natural numbers as values:

gX (t) = E[tX
∞

∑
k=0

tk Pr[X = k]. (2.45)

central moment; it is defined as:

κX (t) = logmX (t). (2.46)

tk/k! for k = 1,2,3 are E[X ], Var[X ] and E[(X −E[X ])3]. The quantities generated
this way are the cumulants of X , and they are denoted by κk, k = 1,2, . . . One may
also proceed as follows: let µk denote E[Xk] and let, as usual, the ‘big O notation’

k

mX (t) = 1+ µ1t + 1
2 µ2t2 + 1

6 µ3t3 +O(t4), (2.47)

which, using log(1+ z) = z− 1
2 z2 + 1

3 z3 +O(z4), yields

logmX (t) = log
(
1+ µ1t + 1

2 µ2t2 + 1
6 µ3t3 +O(t4)

)

= µ1t + 1
2 µ2t2 + 1

6 µ3t3 +O(t4)

− 1
2

{
µ2

1 t2 + µ1µ2t3 +O(t4)
}

+ 1
3

{
µ3

1 t3 +O(t4)
}

+O(t4)

= µ1t + 1
2 (µ2−µ2

1 )t2 + 1
6 (µ3−3µ1µ2 +2µ3

1 )t3 +O(t4)

= E[X ]t +Var[X ] 1
2 t2 +E[(X−E[X ])3] 1

6 t3 +O(t4).

(2.48)

The skewness of a random variable X is defined as the following dimension-free
quantity:

γX =
κ3

σ3 =
E[(X−µ)3]

σ3 , (2.49)

Differentiating (2.46) three times and setting t = 0, one sees that the coefficients of

mE[X ] =

The probability generating function (pgf) is reserved for random variables with

sion of the pgf. The series (2.45) converges absolutely if | t | ≤ 1.

] =

O(t ) denote ‘terms of order t to the power k or higher’. Then

The cumulant generating function (cgf) is convenient for calculating the third

So, the probabilities Pr[X = k] in (2.45) are just the coefficients in the series expan-
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with µ = E[X ] and σ2 = Var[X ]. If γX > 0, large values of X−µ are likely to occur,
hence the (right) tail of the cdf is heavy. A negative skewness γX < 0 indicates
a heavy left tail. If X is symmetric then γX = 0, but having zero skewness is not
sufficient for symmetry. For some counterexamples, see the exercises.

acteristic function and the moment generating function are related by

κX (t) = logm (t); g (t) = mX (log t); φX (t) = mX (2.50)

In Exercise 2.4.14 the reader is asked to examine the last of these equalities. Often

operates on the real axis, the characteristic function on the imaginary axis.

2.5 Approximations

A well-known method to approximate a cdf is based on the Central Limit Theorem
(CLT). We study this approximation as well as two more accurate ones that involve
three moments rather than just two.

2.5.1 Normal approximation

Next to the Law of Large Numbers, the Central Limit Theorem is the most impor-
tant theorem in statistics. It states that by adding up a large number of independent

Theorem 2.5.1 (Central Limit Theorem)
If X1,X2, . . . ,Xn are independent and identically distributed random variables with
mean µ and variance σ2 < ∞, then

lim
n→∞

Pr

[
n

∑
i=1

Xi ≤ nµ + xσ
√

n

]
= Φ(x). (2.51)

Let S∗ = (X1 + · · ·+Xn−nµ)/σ
√

n, then for n→ ∞ and for all t:

logmS∗(t) =−
√

nµt
σ

+n

{
logmX (

t
σ
√

n
)

}

=−
√

nµt
σ

+n

{
µ
( t

σ
√

n

)
+ 1

2 σ2( t
σ
√

n

)2
+O

(( 1√
n

)3
)}

= 1
2 t2 +O

( 1√
n

)
,

(2.52)

X (it).

The cumulant generating function, the probability generating function, the char-

the mgf can be extended to the whole complex plane in a natural way. The mgf

X

simplest form, the Central Limit Theorem (CLT) is as follows:

Proof.

random variables, we get a normally distributed random variable in the limit. In its

We restrict ourselves to proving the convergence of the sequence of cgfs.
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1
2 t2). As a

consequence, the cdf of S∗ ∇

As a result, if the summands are independent and have finite variance, we can ap-
proximate the cdf of S = X1 + · · ·+Xn by

FS(s)≈Φ

(
s;

n

∑
i=1

E[Xi],
n

∑
i=1

Var[Xi]

)
. (2.53)

‘large’, as is shown in the following examples.

Example 2.5.2 (Generating approximately normal random deviates fast)
If pseudo-random numbers can be generated fast (using bit-manipulations), but

N(0,1) distributed pseudo-random drawings numbers can conveniently be produced
by adding up twelve uniform(0,1) numbers and subtracting 6 from their sum. This
technique is based on the CLT with n = 12. Comparing this cdf with the normal cdf,
using (2.38), yields a maximum difference of 0.002. Hence, the CLT performs quite
well in this case. See also Exercise 2.4.5. ∇

Example 2.5.3 (Illustrating the various approximations)
Suppose that n = 1000 young men take out a life insurance policy for a period of
one year. The probability of dying within this year is 0.001 for everyone and the
payment for every death is 1. We want to calculate the probability that the total
payment is at least 4. This total payment is binomial(1000,0.001) distributed and
since n = 1000 is large and p = 0.001 is small, we will approximate this probability
by a Poisson(np) distribution. Calculating the probability at 3 + 1

2 instead of at 4,
applying a continuity correction needed later on, we find

Pr[S≥ 3.5] = 1− e−1− e−1− 1
2 e−1− 1 e−1 = 0.01899. (2.54)

Note that the exact binomial probability is 0.01893. Although n is much larger than
in the previous example, the CLT gives a poor approximation: with µ = E[S] = 1
and σ2 = Var[S] = 1, we find

Pr[S≥ 3.5] = Pr

[
S−µ

σ
≥ 3.5−µ

σ

]
≈ 1−Φ(2.5) = 0.0062. (2.55)

The CLT approximation is not very good because of the extreme skewness of the
terms Xi and the resulting skewness of S, which is γS = 1. In the previous example,
we started from symmetric terms, leading to a higher order of convergence, as can
be seen from derivation (2.52). ∇

As an alternative for the CLT, we give two more refined approximations: the trans-
lated gamma approximation and the normal power approximation (NP). In numeri-
cal examples, they turn out to be much more accurate than the CLT approximation.
As regards the quality of the approximations, there is not much to choose between

This approximation can safely be used if n is ‘large’. But it is difficult to define

converges to the standard normal cdf Φ .
which converges to the cgf of the N(0,1) distribution, with mgf exp(

computing logarithms and the inverse normal cdf takes a lot of time, approximately

6
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the two. Their inaccuracies are minor compared with the errors that result from the
lack of precision in the estimates of the first three moments that are involved.

2.5.2 Translated gamma approximation

Most total claim distributions are skewed to the right (skewness γ > 0), have a non-
negative support and are unimodal. So they have roughly the shape of a gamma
distribution. To gain more flexibility, apart from the usual parameters α and β we
allow a shift over a distance x0. Hence, we approximate the cdf of S by the cdf of

0 0 in such a
way that the approximating random variable has the same first three moments as S.

The translated gamma approximation can then be formulated as follows:

FS(s)≈ G(s− x0;α,β ),

where G(x;α,β ) =
1

Γ (α)

∫ x

0
yα−1β α e−βydy, x≥ 0.

(2.56)

Here G(x;α,β ) is the gamma cdf. We choose α , β and x0 such that the first three
moments are the same, hence µ = x0 + α

β , σ2 = α
β 2 and γ = 2√

α (see Table A), so

α =
4
γ2 , β =

2
γσ

and x0 = µ− 2σ
γ

. (2.57)

mal approximation appears. Note that if the first three moments of the cdf F(·) are
equal to those of G(·), by partial integration it can be shown that the same holds
for

∫ ∞
0

j

different from each other.

Example 2.5.4 (Illustrating the various approximations, continued)
If S ∼ Poisson(1), we have µ = σ = γ = 1, and (2.57) yields α = 4, β = 2 and
x0 =−1. Hence, Pr[S≥ 3.5]≈ 1−G(3.5−(−1);4,2) = 0.0212. This value is much
closer to the exact value than the CLT approximation. ∇

The translated gamma approximation leads to quite simple formulas to approximate
the moments of a stop-loss claim (S− d)+ or of the retained loss S− (S− d)+. To
evaluate the gamma cdf is easy in R, and in spreadsheet programs the gamma distri-
bution is also included, although the accuracy sometimes leaves much to be desired.
Note that in many applications, for example MS Excel, the parameter β should be
replaced by 1/β . In R, specify β = 2 by using rate=2, or by scale=1/2.

Example 2.5.5 (Translated gamma approximation)
A total claim amount S has expected value 10000, standard deviation 1000 and
skewness 1. From (2.57) we have α = 4, β = 0.002 and x0 = 8000. Hence,

It is required that the skewness γ is strictly positive. In the limit γ ↓ 0, the nor-

x [1−F(x)]dx, j = 0,1,2. This leaves little room for these cdfs to be very

Z + x , where Z ∼ gamma(α,β ) (see Table A). We choose α , β and x
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Pr[S > 13000]≈ 1−G(13000−8000;4,0.002) = 0.010. (2.58)

The regular CLT approximation is much smaller: 0.0013. Using the inverse of the
gamma distribution function, the value-at-risk on a 95% level is found by reversing
the computation (2.58), resulting in 11875. ∇

2.5.3 NP approximation

Another approximation that uses three moments of the approximated random vari-
able is the Normal Power approximation. It goes as follows.

If E[S] = µ , Var[S] = σ2 and γS = γ , then, for s≥ 1,

Pr

[
S−µ

σ
≤ s+

γ
6
(s2−1)

]
≈Φ(s) (2.59)

or, equivalently, for x≥ 1,

Pr

[
S−µ

σ
≤ x

]
≈Φ

(√
9
γ2 +

6x
γ

+1− 3
γ

)
. (2.60)

The second formula can be used to approximate the cdf of S, the first produces
approximate quantiles. If s < 1 (or x < 1), the correction term is negative, which
implies that the CLT gives more conservative results.

Example 2.5.6 (Illustrating the various approximations, continued)
If S ∼ Poisson(1), then the NP approximation yields Pr[S ≥ 3.5] ≈ 1−Φ(2) =
0.0228. Again, this is a better result than the CLT approximation.

The R-calls needed to produce all the numerical values are the following:

x <- 3.5; mu <- 1; sig <- 1; gam <- 1; z <- (x-mu)/sig
1-pbinom(x, 1000, 0.001) ## 0.01892683
1-ppois(x,1) ## 0.01898816
1-pnorm(z) ## 0.00620967
1-pnorm(sqrt(9/gamˆ2 + 6*z/gam + 1) - 3/gam) ## 0.02275013
1-pgamma(x-(mu-2*sig/gam), 4/gamˆ2, 2/gam/sig)## 0.02122649

Equations (2.53), (2.60) and (2.56)–(2.57) were used. ∇

Example 2.5.7 (Recalculating Example 2.5.5 by the NP approximation)
We apply (2.59) to determine the capital that covers loss S with probability 95%:

Pr

[
S−µ

σ
≤ s+

γ
6
(s2−1)

]
≈Φ(s) = 0.95 if s = 1.645, (2.61)

hence for the desired 95% quantile of S we find

E[S]+σS

(
1.645+

γ
6
(1.6452−1)

)
= E[S]+1.929σS = 11929. (2.62)
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To determine the probability that capital 13000 will be insufficient to cover the
losses S, we apply (2.60) with µ = 10000, σ = 1000 and γ = 1:

Pr[S > 13000] = Pr

[
S−µ

σ
> 3

]
≈ 1−Φ(

√
9+6×3+1−3)

= 1−Φ(2.29) = 0.011.

(2.63)

Note that the translated gamma approximation gave 0.010, against only 0.0013 for
the CLT. ∇

Remark 2.5.8 (Justifying the NP approximation)
For U ∼N(0,1) consider the random variable Y =U + γ

6 (U2−1). It is easy to verify

that (see Exercise 2.5.21), writing w(x) =

√(
9
γ2 + 6x

γ +1
)

+
, we have

FY (x) = Φ
(

+w(x)− 3
γ

)
−Φ

(
−w(x)− 3

γ

)
≈Φ

(
w(x)− 3

γ

)
. (2.64)

The term Φ(−w(x)− 3/γ) accounts for small U leading to large Y . It is generally
negligible, and vanishes as γ ↓ 0.

Also, using E[U6] = 15, E[U4] = 3 and E[U2] = 1, for small γ one can prove

E[Y ] = 0; E[Y 2] = 1+O(γ2); E[Y 3] = γ
(
1+O(γ2)

)
. (2.65)

S−µ
σ

with (2.64), justifies the use of formula (2.60) to approximate the cdf of S−µ
σ . ∇

Remark 2.5.9 ([♠] Deriving NP using the Edgeworth expansion)
Formula (2.59) can be derived by the use of a certain expansion for the cdf, though√

Var[S], and let γ =
3

logmZ(t) = 1
2 t2 + 1

6 γt3 + . . . , (2.66)

hence
mZ(t) = et2/2 · exp

{
1
6 γt3 + . . .

}
= et2/2 ·

(
1+ 1

6 γt3 + . . .
)
. (2.67)

(3)(x), with ϕ(x) the
N(0,1) density, can be found by partial integration:

∫ ∞

−∞
etxϕ(3)(x)dx = etxϕ(2)(x)

∣∣∣
∞

−∞
−
∫ ∞

−∞
tetxϕ(2)(x)dx

= 0−0+
∫ ∞

−∞
t2etxϕ(1)(x)dx

= 0−0+0−
∫ ∞

−∞
t3etxϕ(x)dx =−t3et2/2.

(2.68)

Therefore, the first three moments of and Y as defined above are alike. This,

The ‘mgf’ (generalized to functions that are not a density) of ϕ

not in a mathematically rigorous way. Define Z = (S−E[S])/
E[Z ] be the skewness of S (and Z). For the cgf of Z we have
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FZ(x) = Φ(x)− 1
6 γΦ (3)(x)+ . . . (2.69)

Z

find a correction δ = δ (s) to the argument s such that

FZ(s+δ )≈Φ(s). (2.70)

That means that we have to find a zero for the auxiliary function g(δ ) defined by

g(δ ) = Φ(s)−
{

Φ(s+δ )− 1
6 γΦ (3)(s+δ )

}
. (2.71)

′

δ ≈−g(0)/g′(0), so

δ ≈ − 1
6 γΦ (3)(s)

−Φ ′(s)+ 1
6 γΦ (4)(s)

=
− 1

6 γ(s2−1)ϕ(s)(
−1+ 1

6 γ(−s3 +3s)
)
ϕ(s)

. (2.72)

Since the skewness γ is of order λ−1/2, see for example (2.48), therefore small for
large portfolios, we drop the term with γ in the denominator of (2.72), leading to

FZ(s+δ )≈Φ(s) when δ = 1
6 γ(s2−1). (2.73)

This is precisely the NP approximation (2.59) given earlier.

It is not possible to show that the terms replaced by dots in this formula are small,
let alone their absolute sum. So it is an exaggeration to say that the approximations

approximate inversion, are justified by theoretical arguments. ∇

2.6 Application: optimal reinsurance

An insurer is looking for an optimal reinsurance for a portfolio consisting of 20000
one-year life insurance policies that are grouped as follows:

Insured amount bk Number of policies nk

1 10 000
2 5 000
3 5 000

Using a Taylor expansion g(δ )≈ g(0)+δg (0) we may conclude that g(δ ) = 0 for

Formula (2.69) is called the Edgeworth expansion for F ; leaving out the dots gives

creasing function. To derive the NP approximation formula (2.59) from it, we try to

Therefore we recognize the cdf corresponding to mgf (2.67) as:

an Edgeworth approximation for it. There is no guarantee that the latter is an in-

obtained this way, dropping terms of a possibly divergent series and then using an

The dots in formula (2.69) denote the inverse mgf-transform of the dots in (2.67).
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The probability of dying within one year is qk = 0.01 for each insured, and the
policies are independent. The insurer wants to optimize the probability of being
able to meet his financial obligations by choosing the best retention, which is the
maximum payment per policy. The remaining part of a claim is paid by the reinsurer.
For example, if the retention is 1.6 and someone with insured amount 2 dies, then the
insurer pays 1.6, the reinsurer pays 0.4. After collecting the premiums, the insurer
holds a capital B from which he has to pay the claims and the reinsurance premium.
This premium is assumed to be 120% of the net premium.

First, we set the retention equal to 2. From the point of view of the insurer, the
policies are then distributed as follows:

Insured amount bk Number of policies nk

1 10 000
2 10 000

The expected value and the variance of the insurer’s total claim amount S are equal
to

E[S] = n1b1q1 +n2b2q2

= 10000×1×0.01+10000×2×0.01 = 300,

Var[S] = n1b2
1q1(1−q1)+n2b2

2q2(1−q2)

= 10000×1×0.01×0.99+10000×4×0.01×0.99 = 495.

(2.74)

By applying the CLT, we get for the probability that the costs S plus the reinsurance
premium 1.2×0.01×5000×1 = 60 exceed the available capital B:

Pr[S +60 > B] = Pr

[
S−E[S]

σS
>

B−360√
495

]
≈ 1−Φ

(
B−360√

495

)
. (2.75)

We leave it to the reader to determine this same probability for retentions between
2 and 3, as well as to determine which retention for a given B leads to the largest
probability of survival. See the exercises with this section.

2.7 Exercises

Section 2.2

1. Determine the expected value and the variance of X = IB if the claim probability equals 0.1.
First, assume that B equals 5 with probability 1. Then, let B∼ uniform(0,10).

2. Throw a true die and let X denote the outcome. Then, toss a coin X times. Let Y denote the
number of heads obtained. What are the expected value and the variance of Y ?



2.7 Exercises 37

3. In Example 2.2.4, plot the cdf of X . Also determine, with the help of the obtained differential,
the premium the insured is willing to pay for being insured against an inflated loss 1.1X . Do
the same by writing X = IB. Has the zero utility premium followed inflation exactly?

4. Calculate E[X ], Var[X ] and the moment generating function mX (t) in Example 2.2.5 with the
help of the differential. Also plot the ‘density’.

5. If X = IB, what is mX (t)?

6. Consider the following cdf F : F(x) =





0 for x < 2,
x
4 for 2≤ x < 4,
1 for 4≤ x.

Determine independent random variables I, X and Y such that Z = IX +(1− I)Y has cdf F ,
I ∼ Bernoulli, X is a discrete and Y a continuous random variable.

7. The differential of cdf F is dF(x) =





dx/3 for 0 < x < 1 and 2 < x < 3,
1
6 for x ∈ {1,2},
0 elsewhere.

Find a discrete cdf G, a continuous cdf H and a real constant c with the property that F(x) =
cG(x)+(1− c)H(x) for all x.

8.
independent. Compare E[T k] with E[Zk], k = 1,2.

9. In the previous exercise, assume additionally that X and Y are independent N(0,1). What
distributions do T and Z have?

10. [♠] In Example 2.2.6, show that E[W ] = 1
2 and Var[W ] = 1

8 .
Also show that mW (t) = et/2 ∏∞

i=1 cosh(t/3i). Recall that cosh(t) = (et + e−t)/2.

Section 2.3

1. Calculate Pr[S = s] for s = 0,1, . . . ,6 when S = X1 +2X2 +3X3 and Xj ∼ Poisson( j).

2. Determine the number of multiplications of non-zero numbers that are needed for the calcula-
tion of all probabilities f1+2+3(x) in Example 2.3.2. How many multiplications are needed to
calculate F1+···+n(x), x = 0, . . . ,4n−4 if fk = f3 for k = 4, . . . ,n?

3.

4. [♠] Verify the expression (2.38) in Example 2.3.3 for n = 1,2,3 by using convolution. Deter-
S

5. Assume that X ∼ uniform(0,3) and Y ∼ uniform(−1,1). Calculate FX+Y (z) graphically by

Section 2.4

1. 1 +X2 where the Xk are independent and exponential(k) distributed.

density using the method of partial fractions.

2.

3. What is the fourth cumulant κ4 in terms of the central moments?

Determine the cdf of S = X
Do this both by convolution and by calculating the mgf and identifying the corresponding

mine F (x) for these values of n. Using induction, verify (2.38) for arbitrary n.

Same as Example 2.3.4, but now by making use of the mgfs.

using the area of the sets {(x,y) |x+ y≤ z,x ∈ (0,3) and y ∈ (−1,1)}.

has a normal distribution.

Suppose that T = qX +(1−q)Y and Z = IX +(1− I)Y with I ∼ Bernoulli(q) and I, X and Y

Prove by convolution that the sum of two independent normal random variables, see Table A,
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4. Prove that cumulants actually cumulate in the following sense: if X and Y are independent,

5. Prove that the sum of twelve independent uniform(0,1) random variables has variance 1 and
expected value 6. Determine κ3 and κ4.
Plot the difference between the cdf of this random variable and the N(6,1) cdf, using the
expression for FS(x) found in Exercise 2.3.4.

6.

7. Determine the skewness of a gamma(α,β ) distribution.

8. If S is symmetric, then γS = 0. this, but also, for S = X1 + X2 + X3 with X1 ∼
Bernoulli(0.4), X2 ∼ Bernoulli(0.7) and X3 ∼ Bernoulli(p), all independent, calculate the value

S

9. Determine the skewness of a risk of the form Ib where I∼ Bernoulli(q) and b is a fixed amount.

actually symmetric?

Table A.

and gamma.

1 2 i

i

for all x.

14. Examine the equality φX (t) = mX

For which values of p is Z symmetric?

16. For which values of δ is the skewness of X − δY equal to 0, if X ∼ gamma(2,1) and Y ∼
exponential(1)?

valued random variable be used to generate probabilities?

Section 2.5

1. What happens if we replace the argument 3.5 in Example 2.5.3 by 3−0, 3+0, 4−0 and 4+0?
Is a correction for continuity needed here?

2. Prove that both versions of the NP approximation are equivalent.

3. If Y ∼ gamma(α,β ) and γY = 2√
α ≤ 4, then

√
4βY −

√
4α−1

≈∼ N(0,1). See ex. 2.5.14 for
a comparison of the first four moments. So approximating a translated gamma approximation
with parameters α , β and x0, we also have Pr[S≤ s]≈Φ

(√
4β (s− x0)−

√
4α−1

)
.

Show Pr[S≤ s]≈Φ
(√

8
γ

s−µ
σ + 16

γ2 −
√

16
γ2 −1

)
if α = 4

γ2 ,β = 2
γσ ,x0 = µ− 2σ

γ .

Inversely, show Pr
[
S≤ x0 + 1

4β (y+
√

4α−1)2
]
≈ 1− ε if Φ(y) = 1− ε ,

as well as Pr
[ S−µ

σ ≤ y+ γ
8 (y2−1)+ y(

√
1− γ2/16−1)

]
≈Φ(y).

Show that the characteristic function is real-valued if X is symmetric around 0.

13. Show that X and Y are equal in distribution if they have the same support {0,δ ,2δ , . . . ,nδ}

Prove

Determine the skewness of a Poisson(µ) distribution.

10. Determine the pgf of the binomial, the Poisson and the negative binomial distribution, see

11. Determine the cgf and the cumulants of the following distributions: Poisson, binomial, normal

= 0, and verify that S is not symmetric.

then the kth cumulant of X +Y equals the sum of the kth cumulants of X and Y .

converge to the pgf of Y for each argument t when i→∞, verify that also Pr[X = x]→ Pr[Y = x]

For which values of q and b is the skewness equal to zero, and for which of these values is I

for some δ > 0 and moreover, they have the same mgf.

the same pgf. If X ,X , . . . are risks, again with range {0,1, . . . ,n}, such that the pgfs of X

15. Show that the skewness of Z = X + 2Y is 0 if X ∼ binomial(8, p) and Y ∼ Bernoulli(1− p).

(it) from (2.50), for the special case that X ∼ exponential(1).

17. Can the pgf of a random variable be used to generate moments? Can the mgf of an integer-

12. Show that X and Y are equal in distribution if they have the same support {0,1, . . . ,n} and

of p such that S has skewness γ
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4. Show that the translated gamma approximation as well as the NP approximation result in the
normal approximation (CLT) if µ and σ2 are fixed and γ ↓ 0.

5. Approximate the critical values of a χ2
18 distribution for ε = 0.05,0.1,0.5,0.9,0.95 with the

NP approximation and compare the results with the exact values.

6. In the previous exercise, what is the result if the translated gamma approximation is used?

7. Use the identity ‘having to wait longer than x for the nth event’ ≡ ‘at most n−1 events occur
in (0,x)’ in a Poisson process to prove that Pr[Z > x] = Pr[N < n] if Z ∼ gamma(n,1) and N ∼
Poisson(x). How can this fact be used to calculate the translated gamma approximation?

8. Compare the exact critical values of a χ2
18 distribution for ε = 0.05,0.1,0.5,0.9,0.95 with the

approximations obtained in exercise 2.5.3.

9. An insurer’s portfolio contains 2 000 one-year life insurance policies. Half of them are charac-
terized by a payment b1 = 1 and a probability of dying within 1 year of q1 = 1%. For the other
half, we have b2 = 2 and q2 = 5%. Use the CLT to determine the minimum safety loading, as a
percentage, to be added to the net premium to ensure that the probability that the total payment
exceeds the total premium income is at most 5%.

10. As the previous exercise, but now using the NP approximation. Employ the fact that the third

11. Show that the right hand side of (2.60) is well-defined for all x ≥−1. What are the minimum
and the maximum values? Is the function increasing? What happens if x = 1?

12. Suppose that X has expected value µ = 1000 and standard deviation σ = 2000. Determine
the skewness γ if (i) X is normal, (ii) X/φ ∼ Poisson(µ/φ ), (iii) X ∼ gamma(α,β ), (iv) X ∼
inverse Gaussian(α,β ) or (v) X ∼ lognormal(ν ,τ2). Show that the skewness is infinite if (vi)
X ∼ Pareto. See also Table A.

13. A portfolio consists of two types of contracts. For type k, k = 1,2, the claim probability is qk
and the number of policies is nk. If there is a claim, then its size is x with probability pk(x):

nk q pk(1) pk(2) pk(3)

Type 1 1000 0.01 0.5 0 0.5
Type 2 2000 0.02 0.5 0.5 0

Assume that the contracts are independent. Let Sk denote the total claim amount of the con-
tracts of type k and let S = S1 +S2. Calculate the expected value and the variance of a contract
of type k, k = 1,2. Then, calculate the expected value and the variance of S. Use the CLT to
determine the minimum capital that covers all claims with probability 95%.

14. [♠] Let U ∼ gamma(α,1), Y ∼ N(
√

4α−1,1) and T =
√

4U . Show that E[Ut ] = Γ (α +
t)/Γ (α), t > 0. Then show that E[Y j] ≈ E[T j], j = 1,3, by applying Γ (α + 1/2)/Γ (α) ≈√

α−1/4 and αΓ (α) = Γ (α +1). Also, show that E[Y 2] = E[T 2] and E[Y 4] = E[T 4]−2.

15. [♠] A justification for the ‘correction for continuity’, see Example 2.5.3, used to approximate

continuous cdf of some non-negative random variable, and construct cdf H by H(k + ε) =
G(k + 0.5),k = 0,1,2, . . . ,0 ≤ ε < 1. Using the midpoint rule with intervals of length 1 to
approximate the right hand side of (1.33) at d = 0, show that the means of G and H are about
equal. Conclude that if G is a continuous cdf that is a plausible candidate for approximating
the discrete cdf F and has the same mean as F , by taking F(x) := G(x + 0.5) one gets an
approximation with the proper mean value. [Taking F(x) = G(x) instead, one gets a mean that
is about µ + 0.5 instead of µ . Thus very roughly speaking, each tail probability of the sum
approximating (1.33) will be too big by a factor 1

2µ .]

16. To get a feel for the approximation error as opposed to the error caused by errors in the esti-
mates of µ , σ and γ needed for the NP approximation and the gamma approximation, recal-

k

cdfs of integer valued random variables by continuous ones, goes as follows. Let G be the

cumulant of the total payment equals the sum of the third cumulants of the risks.
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culate Example 2.5.5 if the following parameters are changed: (i) µ = 10100 (ii) σ = 1020
(iii) µ = 10100 and σ = 1020 (iv) γ = 1.03. Assume that the remaining parameters are as they
were in Example 2.5.5.

17. The function pNormalPower, when implemented carelessly, sometimes produces the value
NaN (not a number). Why and when could that happen? Build in a test to cope with this

ution using the calls pTransGam(0:10,1,1,1) and ppois(0:10,1).
To see the effect of applying a correction for continuity, compare also with the result of
pTransGam(0:10+0.5,1,1,1).

19. Repeat the previous exercise, but now for the Normal Power approximation.

quantile functions qTransGam and qNormalPower, and do some testing.

21. Prove (2.64) and (2.65).

Section 2.6

1. In the situation of Section 2.6, calculate the probability that B will be insufficient for retentions
d ∈ [2,3]. Give numerical results for d = 2 and d = 3 if B = 405.

2. Determine the retention d ∈ [2,3] that minimizes this probability for B = 405. Which retention
is optimal if B = 404?

3. Calculate the probability that B will be insufficient if d = 2 by using the NP approximation.

18. Compare the results of the translated gamma approximation with an exact Poisson(1) distrib-

situation more elegantly.

20. Note that we have prefixed the (approximate) cdfs with p, as is customary in R. Now write


