
Preface

This book discusses how, in random media, light dramatically changes electron–
electron interaction. Despite Coulomb repulsion, the effective interaction demon-
strates attraction, even under strong pumping. Light (both coherent and natural) acts
like an optical motor, transporting electrons in a direction opposite to that of the
electric force direction: electric current flows against bias and static polarization is
aligned in opposition to the applied electric field. The uncommon electron transport
increases the initial perturbations and is the foundation of the light-driven structur-
ing of a matter. This structuring belongs to the class of self-organization phenomena
of open dissipative systems and exhibits a number of fascinating properties.

Light pushes electrons into spatially ordered macroscopic bunches observed in
fused silica under ArF-laser irradiation. It carves material balls with fixed diameters
equal to 2 microns and throws them out of the ablation crater. Moderate light inten-
sity drills material, forming long channels that align with the wave vector and drill
diameters can be as small as 2 microns, while the beam spot is a few millimeters.

Bicolor excitation causes orientational ordering in random media. We monitored
the induced transformation by measuring the emerged second harmonic signal. The
orientational ordering has been used for all optical poling of glasses. Light treat-
ment prepares phase-matched grating of second-order nonlinear susceptibility and
provides effective second harmonic generation. All optical poling was performed in
bulk materials and fibers.

We give numerous examples of spatial, orientational and temporal ordering, and
we present theoretical and experimental evidence of several kinds of light-driven
self-organization. Ordering induced by natural light gives us an idea of how the life
on Earth may have come about. The light-driven self-organization might have been
the first, prebiotic stage in the chain events that gave rise to life.

We discuss electron acceleration driven by petawatt laser pulses. Particles are ac-
celerated by an electric field of plasmon, generated by the laser. The laser wakefield
electron accelerator opens new horizons in light-mediated manipulation by matter.

Troitsk, Moscow Region, Boris P. Antonyuk
June 2008



2 Light-Driven Ordering:
Theory

Light-driven self-organization belongs to a class of nice phenomena when order
rises from chaos. It is a wonder, because we more often observe how order descends
into chaos according to the law of entropy increase in closed thermodynamic sys-
tems. In the case of Zhabotinskii reactions, the chemical system can exhibit waves
of concentration under constant flow of substances [2], while in the thermodynamic
case only melancholy dissipation to a constant level is possible. Rayleigh–Benard
convection provides an example of self-organization in a hydrodynamic system [1].
It rises when upper and lower surfaces of a layered oil are kept at different temper-
atures and the difference exceeds some threshold (heating is from the bottom). At
small temperature difference, thermal energy is transferred through the oil by ordi-
nary heat transport. When the difference reaches the threshold, phonons cannot carry
large heat flow and nontrivial convection is triggered: ordered in space, convective
cells are formed. The well-known Turing instability belongs to this family [3]. Two
diffusion equations with nonlinear coupling exhibit transition to an inhomogeneous
state, where concentrations form static waves. Similar phenomena are found in op-
tics [4]. Zhabotinskii reactions and Rayleigh–Benard convection are examples of
self-organization driven by flows of chemical substances or heat through a system,
respectively. Here, we pay attention to phenomena of the same family driven by
light transmitted through a system. Photon flux will be considered constant in space
and time and plays a role similar to that of a violin bow, triggering self-organization
in a system. Spatial and temporal scales of internal motion and ordering phenomena
in a system are its intrinsic characteristics not connected with space and time scales
of light field.

In contrast to our earlier discussion, thermodynamic diffusion light allows differ-
ent molecules of a gas to shift in opposite directions and therefore allows a decrease
in entropy. Kel’mukhanov and Shalagin [9, 10] proposed realization of Maxwell’s
demon separating molecules. If light frequency ω is shifted from the energy of an
electron transition ε/h̄, then only moving with some velocity v molecules interact
with light (Doppler effect). These particles see the light wave

E0 exp
(
ikR(t) − iωt

) = E0
(
exp ik(R0 + vt) − iωt

)

= E0 exp
(
ikR0 − i(ω − kv)t

)

with the frequency ω − kv. Radius vector R(t) points the molecule position. The
velocity of the resonance (and therefore excited) particles is determined from the
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equation
h̄(ω − kv) = ε.

The symmetric portion of the molecules with the velocity −v is out of resonance
and therefore not excited. Cross-sections of the impact interaction of excited and
unexcited particles with buffer gas are different, therefore the active molecules push
buffer gas along the line of the wave propagation in the direction depending on the
energy mismatch h̄ω − ε. Buffer gas, in its turn and according to Newton’s third
law, pushes the active molecules in the reverse direction. So light separates active
and buffer gas molecules in space, producing a low entropy state.

The discussed phenomenon takes place even for a single active atom in a buffer
gas. Due to collision, it changes velocity and moves within Doppler’s distribution.
The atom interacts with light when resonance conditions are fulfilled. It pushes
buffer gas differently at the resonance velocity v and in symmetric state −v and
therefore suffers reaction shifting, the atom in opposite direction to the buffer gas
shift. So, this is a single-particle effect and may be called light-driven organiza-
tion of a matter. Here I deal with the collective effects similar to phase transitions
belonging to the class of light-driven self-organization.

Our interest here is in light-induced transitions between local electron states.
Normally frequency dependence of the corresponding absorption line is given by
the Lorenz curve. This is true for the cases when other degrees of freedoms are
not involved in process. Electron transitions between different potential wells are
of a special interest. Electrons gain energy in this case and shift in space. The ex-
cited state may be treated as an electron–hole pair in the final and initial potential
wells, respectively. Coulomb interaction contributes to the energy of the separated
charges and it depends considerably on the distance between particles, i.e. on the
vibration modes. Electron transitions in this case are accompanied by phonon emis-
sion: the main part of the absorbed photon energy (≈ 1 eV) gains electrons and
the minor part (≈ 0.01 eV) gains phonons. The absorption band in this case con-
sists of a sharp Lorenz electron part and broad phonon wings [11]. An increase in
the electron–phonon coupling results in a decrease of the electron line and an in-
crease of the phonon band. In the case of strong electron–phonon coupling (namely
this is realized in the systems discussed here) the absorption band has Gauss form.
The maximum of this band exceeds the electron energy ε to the value of so-called
Stokes shift A ≈ 0.01 eV and corresponds to the emitted phonon energy. Line width
Δ ≈ 0.01 eV is determined by the same factor and means that any of the phonons
with the energy 0 ÷ Δ may be emitted.

2.1 Ordering in Molecular Crystals

2.1.1 Spatial Ordering

In order to explain the main idea of my model of light-driven self-organization, let
us consider a molecular crystal containing a donor–acceptor pair in each unit cell
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under the action of a laser wave that is homogeneous in space and time. Electrons
transit from donor to acceptor, absorbing one laser photon and in return emitting
a photon or phonon. Due to electron–hole separation, this charge transfer exciton
(CTE) acts like a spring, deforming the lattice (strong exciton–phonon coupling).
This distortion results in large effective mass. This in turn prevents the CTE motion
and the exciton decays at the same point where it was created. Nevertheless ordering
is possible, as we shall see in the following (the idea was published in [12]).

The generation rate of the first exciton is the same for each unit cell and, accord-
ing to [11], is

W = Iσ0 exp
[−(h̄ω − ε0 − A)2/Δ2],

where I stands for photon flux, σ0 ≈ 10−18 cm2, h̄ω is photon energy, ε0 is CTE
energy, A ≈ 10−2 eV is Stokes shift and Δ ≈ 10−2 eV is bandwidth. We consider
a linear polarized wave and use the well-known formula for absorption band of an
impurity center at strong electron–phonon coupling. A second exciton is generated
in the electric field of the first exciton, therefore its energy εi , and hence genera-
tion rate Wi , depends on its relative position with respect to the first CTE (i is the
number of the cell where a new exciton is generated). In general, case energy of the
generated exciton depends on its position and the dependence is determined by the
positions of the excitons available:

εi = ε0 +
∑

j

Vij ,

where
∑

j is taken over by existing excitons and contributes to the exciton energy
due to interaction with other excitons

Vij = d2(1 − 3 cos2 θij )

|Ri − Rj |3 ,

where Ri and Rj are the exciton positions, θij is the angle between the exciton
dipole moment d and radius-vector between the interacting particles Ri − Rj (all
excitons have the same dipole moment d). So, the energy of the exciton and there-
fore the probability of its generation

Wi = Iσ0 exp
[−(h̄ω − εi − A)2/Δ2]

depends on the positions of already existing excitons and this is the reason for the
ordering. Indeed, if photons are resonant to the first exciton

h̄ω − ε0 − A = 0

and CTE is generated in the cell j there is some part of this cell where resonance
conditions are broken by interactions

∑
j Vij , so that CTE energy

εi = ε0 +
∑

j

Vij
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is out of resonance and excitons are not generated. This correlation between gen-
eration rate at some point and the distribution of already existing particles is the
mechanism of the self-organization. Absorbed photons generate the electron excita-
tion and a phonon and phonon’s break phase relations in the exciton wave function,
therefore nondiagonal elements of the density matrix become negligible. The sim-
plest rate equations for probability of the exciton population of different cells ρi are
valid in this case

dρi

dt
= Iσ0 exp

[−(h̄ω − εi − A)2/Δ2] − γρi,

where t is time, γ ≈ 108 s−1 is decay constant and ρi � 1. Dipole–dipole in-
teraction is too complicated: it depends on spatial angles and is long range in a
three-dimensional system. We will take these peculiarities into account a little bit
later. As a first step in our study, let’s consider static solutions of the above rate
equations for close-neighbor interaction Vij = V . We can find a static solution for
the equation

ρi = μ exp

[
−

(
ξ − α

∑

j

ρj

)2]

graphically. Here cells i, j are neighbors,

μ = Iσ0/γ, ξ = (h̄ω − ε0 − A)/Δ, α = V/Δ.

There is solution ρi = const at any pumping. At μ > 1 (photon flux is I >

1026 s−1 cm−2, which corresponds to light power >107 W cm−2) exciton density
forms a superlattice with period 2a in the case considered, where a is a period of
the crystal. Any cell with the probability of exciton population ρ1 is surrounded by
the cells with another population ρ2 and vice versa, therefore

ρ1 = μ exp
[−(ξ − 2pαρ2)

2],

ρ2 = μ exp
[−(ξ − 2pαρ1)

2],

where p is the dimensionality of the system. Homogeneous (ρ1 = ρ2) and inhomo-
geneous (ρ1 �= ρ2) solutions of the system of the above transcendent equations are
presented in Fig. 2.1.

Inhomogeneous solutions appear at high pumping, μ > 1, and present spatial
ordering of the excitons: they form a double-component superlattice where two val-
ues of population probability alternate in space like charges in NaCl-crystal. Our
study of stability shows that these states are stable at high pumping while the homo-
geneous states ρ1 = ρ2 become unstable [12].

New solutions at the pumping I2 (Fig. 2.1) arise when one curve touches the
other; this is similar to the new phase formation in a second-order phase transition.
The new phase is absent above temperature Tc and it emerges at temperature T < Tc.
Analogous to this behavior, the light-induced ordering takes place when the light’s
power exceeds some threshold: μ > μ0.
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Fig. 2.1. Possible homogeneous (ρ1 = ρ2) and inhomogeneous (ρ1 �= ρ2) states for different
pumping I1 < I2 < I3 < I4

Fig. 2.2. Distribution of excitons (∗) about the sites in the case of dipole–dipole interaction
at the following parameter values: a ξ = 1, α = 10, μ = 500; b ξ = 0, α = 100, μ = 500;
c ξ = 0, α = 103, μ = 102; d ξ = 3, α = 100, μ = 100

It is interesting to observe the superlattice formation via a computer experiment.
This method can give only stable states because digital noise serves as perturbation,
which breaks the unstable state so that only stable ones survive. Each cell can be
in a ground or excited state (ni = 0 or ni = 1, respectively). If at moment of
time t a series of sites are excited during the next time interval dt , each excitation
can randomly annihilate with the probability γ dt � 1 and a cell in ground state—
also randomly with the probability Widt � 1—can transit into an excited state.
The excitation rate Wi was calculated with regard to distribution of excitons at the
moment t . It is interesting to observe the intermediate information on display. At
small pumping μ � 1, as was expected, the exciton distribution over the sites is
chaotic. At μ → 1, clusters of ordered states appear as shown in Fig. 2.2.
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Excitons are packed into a superlattice, and a new period appears in the system.
Its origin can be understood from the following. If cell j is excited, then each new
exciton in cell i has addition to the energy

Vij = d2

|Ri − Rj |3
(the system is one-dimensional and the dipole moments are perpendicular to the
chain). For long distances |Ri − Rj | the interaction is negligible. It becomes impor-
tant when the addition equals the CTE absorption bandwidth Δ. This condition

d2

|Ri − Rj |3 = Δ

gives an estimation for the superlattice period

R = (
d2/Δ

)1/3
,

or
R = a

(
d2/a3Δ

)1/3 ≈ 10a,

where a is a lattice constant of the molecular crystal. Note the key role played by the
absorption bandwidth Δ, which you never see in thermodynamically built crystal.
The correlation function

Kij = 〈ninj 〉 ≡ 1

T

∫ T

0
dtni(t)nj (t) − 〈n〉2

demonstrates the spatial ordering of the excitons at high pumping (Fig. 2.3). Here
〈ninj 〉 is the time average of the population numbers ninj product in the stationary
state,

〈n〉 ≡ 〈ni〉 = 1

T

∫ T

0
dtni(t) ≡ ρ,

where ρ is the exciton concentration.
The storage time T = 100 was not long enough, therefore long-lived defects

with life spans at about the same value spoiled the right-hand part of the corre-
lation function. At T → ∞ the calculation should give, of course, a symmetric
function Kij . It can be found analytically for one-dimensional lattice and nearest
neighbor interaction at high power limit μ � 1 when superlattice is close to ideal.
Note that

Kij = 〈ninj 〉 = K
(0)
ij (1 − ρd)

|i−j |,

where K
(0)
ij is a correlation function for ideal crystal (it oscillates without decay),

ρd = nd/N � 1

is the concentration of defects, nd is the number of defects and N is the number of
cells. Factor
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Fig. 2.3. The correlation function Kij = 1/T
∫

ni(τ )nj (τ ) dτ − ρ2 at ξ = 1, α = 10, μ =
100 (interactions of closest neighbors, the integral is taken from 100 to 100 + T , T = 100)

(1 − ρd)
|i−j |

means that there are no defects between sites i and j . As far as

(1 − ρ)1/ρ → e

is concerned, at ρ → 0 the correlation function becomes

Kij = K
(0)
ij exp(−ρd|i − j |).

Defects are generated in ideal superlattice 10101010 by two CTE decays and
one CTE generation in the wrong position

10101010 → 10001010 → 10000010 → 10010010.

After that, two ideal pieces are separated by two neighboring domain walls.
A single wall separates two pieces shifted in space to lattice constant 010101001010
10. The probability Wd of this defect generation during time T is calculated directly.
The probability of CTE generation consists of following factors: the probability that
CTE did not decay up to time t ′ (equal to exp(−γ t ′)) and CTE decay during the next
time interval dt ′ (equal to γ dt ′) and the analogous factors corresponding to decay
of the next CTE at time interval dt ′′ and generation of CTE in the wrong position at
time interval dt ′′′:

Wd = 2
∫

γ dt ′ exp(−γ t ′)
∫

γ dt ′′ exp
[−(γ + W)(t ′′ − t ′)

]

×
∫

Wdt ′′′ exp
[−3W(t ′′′ − t ′′)

] = 2γ 2T

3W

at W � γ .
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Here W is the CTE generation rate. The three above integrals are taken in time
intervals (0, T ), (t ′, T ) and (t ′′, T ), respectively, and are the sum over all above-
stated events. A single domain wall in bulk can move only, but cannot annihilate.
This may happen when a domain wall meets another wall, therefore the rate of
defect decay consists of two factors: (nd/N)γ = (probability to find neighboring
defect) (CTE decay rate).

Equilibrium condition in generation and annihilation of the defects

N
2γ 2

3W
= nd

nd

N
γ

gives the estimation for the defect concentration

ρd ≡ nd

N
≈

(
γ

W

)1/2

=
(

γ

Iσ0

)1/2

at resonance condition ξ = 0, and α � 1, μ � 1. We have finally for the correlation
function

Kij = K
(0)
ij exp

[
−

(
γ

Iσ0

)1/2

|i − j |
]
,

which is in agreement with the above computer simulation. The system tends to
reach an ideal superlattice at γ /Iσ0 → 0. We observed this behavior for two di-
mensions in computer experiments. The ideal superlattice looks like a chess board
in this case. There are two ideal states: one of them is shifted to lattice constant
with respect to another (white and black sites are changed). At the first stage of our
computer simulation, a lot of these pieces are generated, divided by domain walls.
Domain walls are now closed curves inside the sample or they go from boundary to
boundary. These walls move, changing the size of the domain. Small pieces decrease
and disappear, but big pieces increase and spread over all the sample, as shown in
Fig. 2.4. Excited cells are white (occupation numbers are n = 1); unexcited cells
are black. One can see in Fig. 2.4 a nice tendency of the self-organized system to
approach an ideal state.

2.1.2 Orientational Ordering

If electron transfer from donor to acceptor is possible in both directions, then each
cell can be in three states: one ground state (ni = 0) and two excited states with
different orientation of CTE dipole moment (ni = ±1). Both the energy of the gen-
erated exciton and the probability of generation depend on its position and dipole
moment orientation. So, the probability of CTE generation in some cell with some
dipole moment orientation depends on positions and dipole moment orientation of
the excitons available. This correlation results in spatial as well as orientational
ordering.
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Fig. 2.4. Ostracism of the defect: decrease and disappearance of the small domain and in-
crease of big domain. Snaps at τ = 0.5 (a), τ = 8 (b), τ = 25.5 (c), τ = 41.5 (d), τ = 47 (e),
τ = 52 (f) (ξ = 0, V/Δ = 5, μ = 10, two-dimensional lattice)
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The exciton energy is now

εi = ε0 +
∑

j

Vij ninj ,

where Vij is again

Vij = d2(1 − 3 cos2 θij )

|Ri − Rj |3 .

The generation rate now depends on the generated exciton position i and its
dipole moment orientation n:

Wni = Iσ0 exp

[
−

(
h̄ω −

(
ε0 + ni

∑

j

Vij nj

)
− A

)2/
Δ2

]
;

n = ni = ±1.

Let ρni be the probability of state ni occupation; then in self-consistent approx-
imation the rate equation is

dρni

dt
= Iσ0 exp

[
−

(
h̄ω − ε0 − n

∑

n′j
Vij n

′ρn′j − A

)2/
Δ2

]
− γρni .

The sum ∑

n′
n′ρn′j ≡ dj

is the average dipole moment of the site j measured in d units. For the variables dj

the equation may be rewritten as

ddi

dτ
= μ exp

[
−

(
ξ −

∑

j

αij dj

)2]
− μ exp

[
−

(
ξ +

∑

j

αij dj

)2]
− dj ,

where
αij = Vij /Δ,

and temporal derivative d
dτ

is taken over dimensionless time

τ = γ t.

The dipole moments now reveal spatial self-organization together with orien-
tational ordering. In the competition between different possible states we can find
static solutions of the rate equation for nearest neighbor interaction αij ≡ α. There
is the state where each dipole moment d1 is surrounded by dipole moments d2 and
vice versa, then for the values d1 and d2 we have equations

d1 = μ exp
[−(ξ − 2pαd2)

2] − μ exp
[−(ξ + 2pαd2)

2],

d2 = μ exp
[−(ξ − 2pαd1)

2] − μ exp
[−(ξ + 2pαd1)

2],



2.2 Ordering in Random Impurity System 19

Fig. 2.5. Possible states: ξ/α < 0, antiferroelectric-type ordering (first graph); ξ/α > 0,
ferroelectric-type ordering (second graph)

where p is dimensionality of the system. Graphical solutions of the system are
shown in Fig. 2.5.

Figure 2.5 presents ferroelectric and antiferroelectric ordering of the system.
Ferroelectric-type ordering corresponds to the state with the same orientation of di-
pole moments in all unit cells. In the antiferroelectric state, the directions of dipole
moments in neighboring cells are opposite. The values of dipole moments in differ-
ent cells may be the same (solutions d∗

1 , d∗
2 , d∗

3 ) or different (solutions d∗
4 , d∗

5 ). Fig-
ure 2.5 exhibits both spatial (crystal like) and orientational ordering of CTE dipole
moments. Note that we investigated action of a linear polarized light wave; there-
fore, initial molecular crystal and light waves have the inversion symmetry which is
lost spontaneously in the ordering process. This is analogous to ferroelectric or mag-
netic phase transition. Light intensity is a governed parameter in self-organization,
similar to temperature in the phase transition. Our consideration is insensitive to the
form of the absorption band and to the type of the interaction. We shall see, in all
cases, the universality of the self-organization and its independence of the details.
This is quite analogous to the universality of the second-order phase transition. Cal-
culation of the response to static electric field, presented later, shows negative sus-
ceptibility to disordered state or positive feedback in the response. The initial field is
amplified by ordered dipole moments and the disordered state transits to the ordered
state. Ferroelectric ordering results in macroscopic polarization, which changes the
optical properties of a material. These peculiarities will be considered in detail later.

2.2 Ordering in Random Impurity System

The internal life of the self-organized system may be observed in optical experi-
ments. As we have seen, the excitation of some cells changes cross-section of the
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light absorption of the other cells. This means that direct measurement of the tem-
poral variation of the light transmitted through a sample manifests time dependence
of the site populations. We shall see by direct observation breather of a matter. Po-
larization of a sample also strongly fluctuates. It is observed in measuring the rise of
the second harmonic signal. Polarization and the signal reveal universal 1/ω spec-
trum. We shall see this characteristic spectrum in numerous measurements and in
the corresponding calculations. In any case it means that the studied process belongs
to the class of the self-organized phenomena.

We examine here time evolution of N active centers randomly distributed in
three-dimensional space. Let each center i be in ground state (ni = 0) and 10 excited
states with dipole moments di = nid , −5 ≤ ni ≤ 5, corresponding to different
charge transfer distance Ri = nia. The excitation rate decreases with transfer range
R exponentially ∝ exp(−κR), but this does not mean that long-range excitons play
minor roles. Their decay rate is decreased to the same factor and the stationary
population does not depend on this sharp factor at all. It influences kinetics only:
long-range excitons are created slowly and are long-lived. If the light pumping is
switched off, the short-distance CTEs decay but long-distance excitons survive. In
addition, they have a large dipole moment and therefore dominate in macroscopic
polarization. I shall consider

κ = 1/a,

exp(−κR) = exp(−|ni |)
and rewrite the probability of CTE generation in the form

Wni = Iσ0 exp

[
−|n| −

(
h̄ω − ε0 − n

∑

j

Vij nj − A

)2/
Δ2

]
.

This formula gives the CTE generation rate of the state n = ni at site i dependent
on spatial distribution and states of others excitons. The corresponding decay rate is

γ0 exp(−|ni |).
We performed computer simulation of CTE generation and annihilation for 800

impurities randomly introduced into a three-dimensional lattice 200 × 200 × 200
in size (in lattice constant units a = 5 × 10−8 cm). It was found that at weak
light pumping, μ � 1, the behavior of the system is linear. Total light absorp-
tion shows photobleaching and is constant in time with normal relative fluctuation
N

−1/2
e , where Ne is number of excitons. At high light pumping, μ ≥ 1, the system

becomes strongly nonlinear. At constant pumping the system never attains station-
ary state; it is constantly in motion. As a result, light absorption and macroscopic
polarization become time dependent. The total cross-section σt of resonance pho-
tons

h̄ω − ε0 − A = 0
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Fig. 2.6. Time dependence of the cross-section of photon absorption for resonant light h̄ω −
ε0 − A = 0, μ = 2, d2

0/Δa3 = 100, N = 800

was calculated as a sum over all nonexcited states at each time moment

σt =
∑

ni

σ0 exp

[
−|n| −

(
n

∑

j

Vij nj

)2/
Δ2

]

and is shown in Fig. 2.6.
It takes into account all possible absorption processes forming the CTE absorp-

tion band; in other words the total cross-section. The observed fluctuation exceeds
considerably the normal level N

−1/2
e . Transmitted light should fluctuate in the same

manner. Time dependence of total dipole moment (macroscopic polarization) is
shown in Fig. 2.7.

It strongly fluctuates with the 1/ω spectrum as ω → 0, shown in Fig. 2.8.
Macroscopic polarization P induces second-order nonlinear susceptibility χ(2) ∝ P ;
therefore, the efficiency of the frequency doubling would fluctuate with the same
spectrum.

It is interesting that the induced polarization fluctuating around zero level for
our small system (Fig. 2.7) can be oriented by external electric field and proper
choice of the light frequency. If the photon energy exceeds the maximum of the
linear absorption band (the band at the absence of other excitons)

h̄ω > ε0 + A,

then generating the exciton with dipole moment in opposition to the local electric
field is preferable to generating the exciton with dipole moment aligned with the
field. This is because the field contribution to the energy is positive and it shifts
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Fig. 2.7. Time dependence of total dipole moment d� (h̄ω − ε0 − A = 0, μ = 2, d2
0/Δa3 =

100, N = 800)

Fig. 2.8. The Fourier transform of d�(τ) dependence: 1/ω noise

the level to resonance. In contrast, the dipole moment in the direction of the local
electric field decreases the exciton energy and shifts it away from resonance. As
a result, total sample polarization is oriented opposite to the external electric field
which corresponds to the positive feedback or negative susceptibility, as already
discussed. We see again that light works like an optical motor: it prepares the high-
energy state, intensively building the ordered structure. In a closed thermodynamic
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Fig. 2.9. Time evolution of normalized dipole moment d�(τ) for ξ = 1, d2
0/Δa3 = 100,

Ẽ0 = 0.1, N = 100, sample size is 100 × 100 × 100. a μ = 0.05, averaging over time
interval δτ = 50; b μ = 1, δτ = 100; c μ = 20, δτ = 2.5; and d μ = 1 (in detail, δτ = 1)

system, on the other hand, low-energy states are predominate and this corresponds
to the normal negative feedback or positive susceptibility.

The results of our computation are shown in Figs. 2.9 and 2.10. Noise is pre-
sented in all spectral ranges (Fig. 2.9). Light-driven kinetics in the external field
exhibit preparation of the polarized state: symmetric exciton states dn and d−n are
populated differently. States d−1, d−2, d−3, d−4, d−5 (with dipole moments oriented
opposite to the external field Ẽ0 > 0 direction and positive field contribution to the
excitation energy −d−nE > 0) are populated predominantly in comparison with the
corresponding states d1, d2, d3, d4, d5 (−d−nE < 0).

Our system is strongly nonlinear and nonlinear effects are responsible for the
behavior of the system. They cannot be considered by perturbation theory of any
kind, therefore analytic study of the system is extremely difficult. We can propose
a “theorem”: there is no self-organization in the system that allows rigorous ana-
lytic study. This is the reason a lot of computer simulations and figures obtained by
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Fig. 2.10. Time dependence of dipole moment d�(τ) and fractions of centers dm(τ) in state m

(
∑

dm(τ) = 1) for μ = 10, ξ = 1, d2
0/Δa3 = 100, Ẽ0 = 0.1, N = 500, sample size is

400 × 50 × 50, δτ = 0.4. a d0, d� ; b d1, d−1; c d2, d−2; d d3, d−3; e d4, d−4, d5, d−5
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computer experiment are presented here. Fortunately, it is easy to find results using
a self-consistent approach. The more difficult problem is to explain why it works.
We compared results of self-consistent study and computer simulations and found
them to be in good agreement. This is analogous to the well-known fact that Landau
mean field theory of phase transitions is even better than it should be: it can be used,
for example, to describe the displacement-type structure phase transitions where,
rigorously speaking, it should not work.

The average dipole moment of the active center in the homogeneous ferroelectric
state may be written in the following way

〈di〉 = 〈ni〉d ≡ 〈n〉d,

where
〈n〉 =

∑

n

ρni .

Macroscopic polarization (total dipole moment of 1 cm3) is proportional to this
variable

P = c′〈n〉d,

where c′ is concentration of active centers (cm−3). This polarization results in the
corresponding static electric field

E = −4πP ≡ −4πc′〈n〉d
for plain geometry. Energy of CTE in state n (dipole moment nid) in this field is

εi = ε0 − nid(E + E0) = ε0 − nid(−4πc′〈n〉d + E0)

(E0 is external electric field). The rate equations become

dρni

dt
= Iσ0 exp

[−|ni | − (
h̄ω − ε0 − A + nid(−4πc′〈n〉d + E0)

)2
/Δ2]

− γ0 exp(−|ni |)ρni,

or for the static case

ρni = μ exp
[−(

ξ − 4πc′ni〈n〉d2/Δ + nidE0/Δ
)2]

.

Taking into account the definition for 〈n〉, we have the self-consistent equation
for the variable 〈n〉

〈n〉 =
∑

n>0

nμ
[
exp

[−(
ξ − 4πc′n〈n〉d2/Δ + ndE0/Δ

)2]

− exp
[−(

ξ + 4πc′n〈n〉d2/Δ − ndE0/Δ
)2]]

.
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A small deviation from the state 〈n〉 = 0 at E0 → 0 is found by expanding the
exponents

〈n〉 = μe−ξ2
[∑

n

n2
][

16πξ 〈n〉c′d2/Δ − 4ξdE0/Δ
]
,

and we find finally the self-consistent solution

〈n〉 = μe−ξ2
[∑

n

n2
]
[−4ξdE0/Δ]

[
1 − μe−ξ2

[∑

n

n2
]

16πξc′d2/Δ

]−1

.

Sum
∑

n n2 is taken over all states’ attained stationary conditions

tIσ0e−|ni | � 1,

tγ e−|ni | � 1.

Another restriction rises from violation of the dipole–dipole interaction at large
|ni |. The dominant role of the long-range states is seen from the earlier consider-
ations. Insofar as 〈n〉 is the average dipole moment of the site in d units, the last
formula gives the susceptibility of the system under light pumping. It is negative at
ξ > 0 (positive feedback) and diverges with increased pumping, which manifests
instability of the state 〈n〉 = 0 and further transition to polarized state. The reader is
referred to [13] for all details and corresponding references to the problem.

It is interesting that, due to the nonlinear behavior of our system, it may emit
photons with higher energy than the absorbed photons. For example, let the first
photon be resonant to an electron transition

h̄ω1 = ε0 + A,

and generate the first charge transfer exciton (CTE) with dipole moment d. Assume
that the second photon generates the second CTE with dipole moment −d at the
distance 2a from the first exciton in perpendicular to d direction. This excitation
needs energy

h̄ω2 = ε0 + A − d2

(2a)3
.

Let the third CTE with dipole moment d be generated between the first and the
second CTE. The resonance photon energy is

h̄ω3 = ε0 + A.

If the second exciton decays, then the emitted photon energy is

h̄ω̃1 = ε0 − A − d2

a3
− d2

(2a)3
.
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The next decay generates photon

h̄ω̃2 = ε0 − A + d2

a3
,

and photon
h̄ω̃3 = ε0 − A

is emitted during the last decay.
The energy of the second photon h̄ω̃2 exceeds considerably the absorbed photon

energies h̄ω1, h̄ω2 and h̄ω3.
Here

A ≈ 0.01 eV,

d2

a3
≈ 1 eV.

Total absorbed energy is

h̄ω1 + h̄ω2 + h̄ω3 = 3ε0 + 3A − d2

8a3
,

while total emitted energy is

h̄ω̃1 + h̄ω̃2 + h̄ω̃3 = 3ε0 − 3A − d2

8a3
.

Energy is conserved with the accuracy

A � ε0,

A � d2

a3
,

but the redistribution of the energy between photons happens: the first photon re-
ceived minimum energy h̄ω̃1, but the second one gained maximum energy h̄ω̃2.
Direct calculation of the emission spectrum shows that indeed high-energy bands
do exist and their energies exceed the absorbed photon energies. More exact calcu-
lation of the discussed three-photon energy reveals energy lost 6A. It is supplied to
the atom vibrations and the loss is A at each photon absorption or emission.


