Prefaces

Preface to the English Edition

An entire generation of mathematicians has grown up during the time be-
tween the appearance of the first edition of this textbook and the publication
of the fourth edition, a translation of which is before you. The book is famil-
iar to many people, who either attended the lectures on which it is based or
studied out of it, and who now teach others in universities all over the world.
I am glad that it has become accessible to English-speaking readers.

This textbook consists of two parts. It is aimed primarily at university
students and teachers specializing in mathematics and natural sciences, and
at all those who wish to see both the rigorous mathematical theory and
examples of its effective use in the solution of real problems of natural science.

Note that Archimedes, Newton, Leibniz, Euler, Gauss, Poincaré, who are
held in particularly high esteem by us, mathematicians, were more than mere
mathematicians. They were scientists, natural philosophers. In mathematics
resolving of important specific questions and development of an abstract gen-
eral theory are processes as inseparable as inhaling and exhaling. Upsetting
this balance leads to problems that sometimes become significant both in
mathematical education and in science in general.

The textbook exposes classical analysis as it is today, as an integral part
of the unified Mathematics, in its interrelations with other modern mathe-
matical courses such as algebra, differential geometry, differential equations,
complex and functional analysis.

Rigor of discussion is combined with the development of the habit of
working with real problems from natural sciences. The course exhibits the
power of concepts and methods of modern mathematics in exploring spe-
cific problems. Various examples and numerous carefully chosen problems,
including applied ones, form a considerable part of the textbook. Most of the
fundamental mathematical notions and results are introduced and discussed
along with information, concerning their history, modern state and creators.
In accordance with the orientation toward natural sciences, special attention
is paid to informal exploration of the essence and roots of the basic concepts
and theorems of calculus, and to the demonstration of numerous, sometimes
fundamental, applications of the theory.
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For instance, the reader will encounter here the Galilean and Lorentz
transforms, the formula for rocket motion and the work of nuclear reac-
tor, Euler’s theorem on homogeneous functions and the dimensional analysis
of physical quantities, the Legendre transform and Hamiltonian equations
of classical mechanics, elements of hydrodynamics and the Carnot’s theo-
rem from thermodynamics, Maxwell’s equations, the Dirac delta-function,
distributions and the fundamental solutions, convolution and mathematical
models of linear devices, Fourier series and the formula for discrete coding
of a continuous signal, the Fourier transform and the Heisenberg uncertainty
principle, differential forms, de Rham cohomology and potential fields, the
theory of extrema and the optimization of a specific technological process,
numerical methods and processing the data of a biological experiment, the
asymptotics of the important special functions, and many other subjects.

Within each major topic the exposition is, as a rule, inductive, sometimes
proceeding from the statement of a problem and suggestive heuristic consider-
ations concerning its solution, toward fundamental concepts and formalisms.
Detailed at first, the exposition becomes more and more compressed as the
course progresses. Beginning ab ovo the book leads to the most up-to-date
state of the subject.

Note also that, at the end of each of the volumes, one can find the list
of the main theoretical topics together with the corresponding simple, but
nonstandard problems (taken from the midterm exams), which are intended
to enable the reader both determine his or her degree of mastery of the
material and to apply it creatively in concrete situations.

More complete information on the book and some recommendations for
its use in teaching can be found below in the prefaces to the first and second
Russian editions.

Moscow, 2003 V. Zorich
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Preface to the Fourth Russian Edition

The time elapsed since the publication of the third edition has been too short
for me to receive very many new comments from readers. Nevertheless, some
errors have been corrected and some local alterations of the text have been
made in the fourth edition.

Moscow, 2002 V. Zorich

Preface to the Third Russian edition

This first part of the book is being published after the more advanced Part
2 of the course, which was issued earlier by the same publishing house. For
the sake of consistency and continuity, the format of the text follows that
adopted in Part 2. The figures have been redrawn. All the misprints that
were noticed have been corrected, several exercises have been added, and the
list of further readings has been enlarged. More complete information on the
subject matter of the book and certain characteristics of the course as a whole
are given below in the preface to the first edition.

Moscow, 2001 V. Zorich

Preface to the Second Russian Edition

In this second edition of the book, along with an attempt to remove the mis-
prints that occurred in the first edition,! certain alterations in the exposition
have been made (mainly in connection with the proofs of individual theo-
rems), and some new problems have been added, of an informal nature as a
rule.

The preface to the first edition of this course of analysis (see below) con-
tains a general description of the course. The basic principles and the aim
of the exposition are also indicated there. Here I would like to make a few
remarks of a practical nature connected with the use of this book in the
classroom.

Usually both the student and the teacher make use of a text, each for his
OWn purposes.

At the beginning, both of them want most of all a book that contains,
along with the necessary theory, as wide a variety of substantial examples

! No need to worry: in place of the misprints that were corrected in the plates
of the first edition (which were not preserved), one may be sure that a host of
new misprints will appear, which so enliven, as Euler believed, the reading of a
mathematical text.
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of its applications as possible, and, in addition, explanations, historical and
scientific commentary, and descriptions of interconnections and perspectives
for further development. But when preparing for an examination, the student
mainly hopes to see the material that will be on the examination. The teacher
likewise, when preparing a course, selects only the material that can and must
be covered in the time alloted for the course.

In this connection, it should be kept in mind that the text of the present
book is noticeably more extensive than the lectures on which it is based. What
caused this difference? First of all, the lectures have been supplemented by
essentially an entire problem book, made up not so much of exercises as sub-
stantive problems of science or mathematics proper having a connection with
the corresponding parts of the theory and in some cases significantly extend-
ing them. Second, the book naturally contains a much larger set of examples
illustrating the theory in action than one can incorporate in lectures. Third
and finally, a number of chapters, sections, or subsections were consciously
written as a supplement to the traditional material. This is explained in the
sections “On the introduction” and “On the supplementary material” in the
preface to the first edition.

I would also like to recall that in the preface to the first edition I tried to
warn both the student and the beginning teacher against an excessively long
study of the introductory formal chapters. Such a study would noticeably
delay the analysis proper and cause a great shift in emphasis.

To show what in fact can be retained of these formal introductory chap-
ters in a realistic lecture course, and to explain in condensed form the syllabus
for such a course as a whole while pointing out possible variants depending
on the student audience, at the end of the book I give a list of problems
from the midterm exam, along with some recent examination topics for the
first two semesters, to which this first part of the book relates. From this list
the professional will of course discern the order of exposition, the degree of
development of the basic concepts and methods, and the occasional invoca-
tion of material from the second part of the textbook when the topic under
consideration is already accessible for the audience in a more general form.?

In conclusion I would like to thank colleagues and students, both known
and unknown to me, for reviews and constructive remarks on the first edition
of the course. It was particularly interesting for me to read the reviews of
A.N.Kolmogorov and V.I. Arnol’d. Very different in size, form, and style,
these two have, on the professional level, so many inspiring things in common.

Moscow, 1997 V. Zorich

2 Some of the transcripts of the corresponding lectures have been published and I
give formal reference to the booklets published using them, although I understand
that they are now available only with difficulty. (The lectures were given and
published for limited circulation in the Mathematical College of the Independent
University of Moscow and in the Department of Mechanics and Mathematics of
Moscow State University.)
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From the Preface to the First Russian Edition

The creation of the foundations of the differential and integral calculus by
Newton and Leibniz three centuries ago appears even by modern standards
to be one of the greatest events in the history of science in general and
mathematics in particular.

Mathematical analysis (in the broad sense of the word) and algebra have
intertwined to form the root system on which the ramified tree of modern
mathematics is supported and through which it makes its vital contact with
the nonmathematical sphere. It is for this reason that the foundations of
analysis are included as a necessary element of even modest descriptions of
so-called higher mathematics; and it is probably for that reason that so many
books aimed at different groups of readers are devoted to the exposition of
the fundamentals of analysis.

This book has been aimed primarily at mathematicians desiring (as is
proper) to obtain thorough proofs of the fundamental theorems, but who are
at the same time interested in the life of these theorems outside of mathe-
matics itself.

The characteristics of the present course connected with these circum-
stances reduce basically to the following:

In the exposition. Within each major topic the exposition is as a rule induc-
tive, sometimes proceeding from the statement of a problem and suggestive
heuristic considerations toward its solution to fundamental concepts and for-
malisms.

Detailed at first, the exposition becomes more and more compressed as
the course progresses.

An emphasis is placed on the efficient machinery of smooth analysis. In
the exposition of the theory I have tried (to the extent of my knowledge) to
point out the most essential methods and facts and avoid the temptation of
a minor strengthening of a theorem at the price of a major complication of
its proof.

The exposition is geometric throughout wherever this seemed worthwhile
in order to reveal the essence of the matter.

The main text is supplemented with a rather large collection of examples,
and nearly every section ends with a set of problems that [ hope will sig-
nificantly complement even the theoretical part of the main text. Following
the wonderful precedent of Pélya and Szegs, I have often tried to present
a beautiful mathematical result or an important application as a series of
problems accessible to the reader.

The arrangement of the material was dictated not only by the architecture
of mathematics in the sense of Bourbaki, but also by the position of analysis
as a component of a unified mathematical or, one should rather say, natural-
science/mathematical education.

In content. This course is being published in two books (Part 1 and Part 2).
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The present Part 1 contains the differential and integral calculus of func-
tions of one variable and the differential calculus of functions of several vari-
ables.

In differential calculus we emphasize the role of the differential as a linear
standard for describing the local behavior of the variation of a variable. In ad-
dition to numerous examples of the use of differential calculus to study func-
tional relations (monotonicity, extrema) we exhibit the role of the language
of analysis in writing simple differential equations — mathematical models of
real-world phenomena and the substantive problems connected with them.

We study a number of such problems (for example, the motion of a body of
variable mass, a nuclear reactor, atmospheric pressure, motion in a resisting
medium) whose solution leads to important elementary functions. Full use is
made of the language of complex variables; in particular, FEuler’s formula is
derived and the unity of the fundamental elementary functions is shown.

The integral calculus has consciously been explained as far as possible
using intuitive material in the framework of the Riemann integral. For the
majority of applications, this is completely adequate.? Various applications
of the integral are pointed out, including those that lead to an improper in-
tegral (for example, the work involved in escaping from a gravitational field,
and the escape velocity for the Earth’s gravitational field) or to elliptic func-
tions (motion in a gravitational field in the presence of constraints, pendulum
motion.)

The differential calculus of functions of several variables is very geometric.
In this topic, for example, one studies such important and useful consequences
of the implicit function theorem as curvilinear coordinates and local reduction
to canonical form for smooth mappings (the rank theorem) and functions
(Morse’s lemmal), and also the theory of extrema with constraint.

Results from the theory of continuous functions and differential calculus
are summarized and explained in a general invariant form in two chapters
that link up naturally with the differential calculus of real-valued functions
of several variables. These two chapters open the second part of the course.
The second book, in which we also discuss the integral calculus of functions
of several variables up to the general Newton—Leibniz—Stokes formula thus
acquires a certain unity.

We shall give more complete information on the second book in its preface.
At this point we add only that, in addition to the material already mentioned,
it contains information on series of functions (power series and Fourier series
included), on integrals depending on a parameter (including the fundamental
solution, convolution, and the Fourier transform), and also on asymptotic
expansions (which are usually absent or insufficiently presented in textbooks).

We now discuss a few particular problems.

3 The “stronger” integrals, as is well known, require fussier set-theoretic consider-
ations, outside the mainstream of the textbook, while adding hardly anything to
the effective machinery of analysis, mastery of which should be the first priority.
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On the introduction. I have not written an introductory survey of the subject,
since the majority of beginning students already have a preliminary idea of
differential and integral calculus and their applications from high school, and
I could hardly claim to write an even more introductory survey. Instead, in the
first two chapters I bring the former high-school student’s understanding of
sets, functions, the use of logical symbolism, and the theory of a real number
to a certain mathematical completeness.

This material belongs to the formal foundations of analysis and is aimed
primarily at the mathematics major, who may at some time wish to trace the
logical structure of the basic concepts and principles used in classical analysis.
Mathematical analysis proper begins in the third chapter, so that the reader
who wishes to get effective machinery in his hands as quickly as possible
and see its applications can in general begin a first reading with Chapter 3,
turning to the earlier pages whenever something seems nonobvious or raises
a question which hopefully I also have thought of and answered in the early
chapters.

On the division of material. The material of the two books is divided into
chapters numbered continuously. The sections are numbered within each
chapter separately; subsections of a section are numbered only within that
section. Theorems, propositions, lemmas, definitions, and examples are writ-
ten in italics for greater logical clarity, and numbered for convenience within
each section.

On the supplementary material. Several chapters of the book are written as a
natural extension of classical analysis. These are, on the one hand, Chapters
1 and 2 mentioned above, which are devoted to its formal mathematical
foundations, and on the other hand, Chapters 9, 10, and 15 of the second
part, which give the modern view of the theory of continuity, differential and
integral calculus, and finally Chapter 19, which is devoted to certain effective
asymptotic methods of analysis.

The question as to which part of the material of these chapters should be
included in a lecture course depends on the audience and can be decided by
the lecturer, but certain fundamental concepts introduced here are usually
present in any exposition of the subject to mathematicians.

In conclusion, I would like to thank those whose friendly and competent
professional aid has been valuable and useful to me during the work on this
book.

The proposed course was quite detailed, and in many of its aspects it
was coordinated with subsequent modern university mathematics courses -
such as, for example, differential equations, differential geometry, the theory
of functions of a complex variable, and functional analysis. In this regard
my contacts and discussions with V.1. Arnol’d and the especially numerous
ones with S. P. Novikov during our joint work with the so-called “experimental
student group in natural-science/mathematical education” in the Department
of Mathematics at MSU, were very useful to me.
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I received much advice from N.V.Efimov, chair of the Section of Math-
ematical Analysis in the Department of Mechanics and Mathematics at
Moscow State University.

I am also grateful to colleagues in the department and the section for
remarks on the mimeographed edition of my lectures.

Student transcripts of my recent lectures which were made available to
me were valuable during the work on this book, and I am grateful to their
owners.

I am deeply grateful to the official reviewers L. D. Kudryavtsev, V. P. Pet-
renko, and S.B.Stechkin for constructive comments, most of which were
taken into account in the book now offered to the reader.

Moscow, 1980 V. Zorich
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Mathematical theories, as a rule, find uses because they make it possible to
transform one set of numbers (the initial data) into another set of numbers
constituting the intermediate or final purpose of the computations. For that
reason numerical-valued functions occupy a special place in mathematics and
its applications. These functions (more precisely, the so-called differentiable
functions) constitute the main object of study of classical analysis. But, as
you may already have sensed from your school experience, and as will soon be
confirmed, any description of the properties of these functions that is at all
complete from the point of view of modern mathematics is impossible with-
out a precise definition of the set of real numbers, on which these functions
operate.

Numbers in mathematics are like time in physics: everyone knows what
they are, and only experts find them hard to understand. This is one of the
basic mathematical abstractions, which seems destined to undergo significant
further development. A very full separate course could be devoted to this sub-
ject. At present we intend only to unify what is basically already known to
the reader about real numbers from high school, exhibiting as axioms the
fundamental and independent properties of numbers. In doing this, our pur-
pose is to give a precise definition of real numbers suitable for subsequent
mathematical use, paying particular attention to their property of complete-
ness or continuity, which contains the germ of the idea of passage to the limit
— the basic nonarithmetical operation of analysis.

2.1 The Axiom System and some General Properties
of the Set of Real Numbers

2.1.1 Definition of the Set of Real Numbers

Definition 1. A set R is called the set of real numbers and its elements are
real numbers if the following list of conditions holds, called the axiom system
of the real numbers.
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(I) AXIOMS FOR ADDITION

An operation
+: RxR-oR,

(the operation of addition) is defined, assigning to each ordered pair (z,y) of
elements z,y of R a certain element x +y € R, called the sum of z and y.
This operation satisfies the following conditions:

1. There exists a neutral, or identity element 0 (called zero) such that
z+0=0+z==zx

for every x € R.

2. For every element x € R there exists an element —z € R called the
negative of x such that

z+(—z)=(-2)+z2z=0.

3+. The operation + is associative, that is, the relation
c+y+z)=(@+y) +=z

holds for any elements x,y,z of R.

4, . The operation + is commutative, that is,
rt+y=y+z

for any elements z,y of R.

If an operation is defined on a set G satisfying axioms 14, 24, and 34,
we say that a group structure is defined on G or that G is a group. If the
operation is called addition, the group is called an additive group. If it is also
known that the operation is commutative, that is, condition 4, holds, the
group is called commutative or Abelian.®

Thus, Axioms 1,-4, assert that R is an additive abelian group.

(I1) AXIOMS FOR MULTIPLICATION

An operation
o RxR-R,

(the operation of multiplication) is defined, assigning to each ordered pair
(z,y) of elements z,y of R a certain element x -y € R, called the product of
x and y. This operation satisfies the following conditions:

! N.H. Abel (1802-1829) - outstanding Norwegian mathematician, who proved
that the general algebraic equation of degree higher than four cannot be solved
by radicals.
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1o. There exists a neutral, or identity element 1 € R\ 0 (called one) such
that

for every x € R.

2,. For every element x € R\ 0 there exists an element x~! € R, called
the inverse or reciprocal of x, such that

3+. The operation e is associative, that is, the relation

z-(y-z)=(z-y) 2z
holds for any elements z,y,z of R.

4,. The operation e is commutative, that is,
T y=y-zx
for any elements x,y of R.
We remark that with respect to the operation of multiplication the set
R\ 0, as one can verify, is a (multiplicative) group.
(I, IT} THE CONNECTION BETWEEN ADDITION AND MULTIPLICATION

Multiplication is distributive with respect to addition, that is
(z+y)z=2z+yz

for all z,y,z € R.

We remark that by the commutativity of multiplication, this equality
continues to hold if the order of the factors is reversed on either side.

If two operations satisfying these axioms are defined on a set G, then G
is called a field.

(IIT) ORDER AXIOMS

Between elements of R there is a relation <, that is, for elements z,y € R

one can determine whether x <y or not. Here the following conditions must
hold:

O0<. Vx e Rz < x).
. @< A< a) =
2<.(xsyn(y<z)=
3<. VzeRVyeR(z <

(z=1y).
(z < 2).

y)V(y <z)
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The relation < on R is called inequality.

A set on which there is a relation between pairs of elements satisfying
axioms O<, 1<, and 2<, as you know, is said to be partially ordered. If in
addition axiom 3< holds, that is, any two elements are comparable, the set
is linearly ordered. Thus the set of real numbers is linearly ordered by the
relation of inequality between elements.

(I, IIT) THE CONNECTION BETWEEN ADDITION AND ORDER ON R

If z,y, z are elements of R, then

z<y)=(z+2<y+z).

(I1, III) THE CONNECTION BETWEEN MULTIPLICATION AND ORDER ON R

If x and y are elements of R, then

O<)A(0<y)=>(0<z-y).

(IV) THE AXIOM OF COMPLETENESS (CONTINUITY)

If X and Y are nonempty subsets of R having the property that x <y for
every x € X and every y € Y, then there exists ¢ € R such that x < ¢ <y
forallz € X andy €Y.

We now have a complete list of axioms such that any set on which these
axioms hold can be considered a concrete realization or model of the real
numbers.

This definition does not formally require any preliminary knowledge about
numbers, and from it “by turning on mathematical thought” we should, again
formally, obtain as theorems all the other properties of real numbers. On the
subject of this axiomatic formalism we would like to make a few informal
remarks. :

Imagine that you had not passed from the stage of adding apples, cubes,
or other named quantities to the addition of abstract natural numbers; you
had not studied the measurement of line segments and arrived at rational
numbers; you did not know the great discovery of the ancients that the diag-
onal of a square is incommensurable with its side, so that its length cannot
be a rational number, that is, that irrational numbers are needed; you did not
have the concept of “greater” or “smaller” that arises in the process of mea-
surement; you did not picture order to yourself using, for example, the real
line. If all these preliminaries had not occurred, the axioms just listed would
not be perceived as the outcome of intellectual progress; they would seem at
the very least a strange, and in any case arbitrary, fruit of the imagination.

In relation to any abstract system of axioms, at least two questions arise
immmediately.
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First, are these axioms consistent? That is, does there exist a set satisfying
all the conditions just listed? This is the problem of consistency of the axioms.

Second, does the given system of axioms determine the mathematical
object uniquely? That is, as the logicians would say, is the axiom system
categorical? Here uniqueness must be understood as follows. If two people
A and B construct models independently, say of number systems R4 and
Rp, satisfying the axioms, then a bijective correspondence can be established
between the systems R4 and Rp, say f : R4 — Rpg, preserving the arithmetic
operations and the order, that is,

flz+y) = flz)+ fly),
flz-y) = f(2)- fy)
r<y & flz) < fly).

In this case, from the mathematical point of view, R4 and Rp are merely
distinct but equally valid realizations (models) of the real numbers (for ex-
ample, R4 might be the set of infinite decimal fractions and Rg the set of
points on the real line). Such realizations are said to be isormorphic and the
mapping [ is called an isomorphism. The result of this mathematical activ-
ity is thus not about any particular realization, but about each model in the
class of isomorphic models of the given axiom system.

We shall not discuss the questions posed above, but instead confine our-
selves to giving informative answers to them.

A positive answer to the question of consistency of an axiom system is
always of a hypothetical nature. In relation to numbers it has the following
appearance: Starting from the axioms of set theory that we have accepted
(see Subsect. 1.4.2), one can construct the set of natural numbers, then the
set of rational numbers, and finally the set R of real numbers satisfying all
the properties listed.

The question of the categoricity of the axiom system for the real numbers
can be established. Those who wish to do so may obtain it independently by
solving Exercises 23 and 24 at the end of this section.

2.1.2 Some General Algebraic Properties of Real Numbers

We shall show by examples how the known properties of numbers can be
obtained from these axioms.

a. Consequences of the Addition Axioms 1°. There is only one zero in
the set of real numbers.

Proof. If 0, and 0y are both zeros in R, then by definition of zero,

01201+02202+01=02. O
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20, Each element of the set of real numbers has a unique negative.

Proof. If £; and xo are both negatives of x € R, then
1 :.’131+0=.’L'1+(£U+.’L'2):(I1+I)+12:0+.’L‘2:IE2. O

Here we have used successively the definition of zero, the definition of the
negative, the associativity of addition, again the definition of the negative,
and finally, again the definition of zero.

3%, In the set of real numbers R the equation
a+z=5b

has the unique solution
z=b+(—a).

Proof. This follows from the existence and uniqueness of the negative of every
element a € R:

(a+z=b)e ((z+a)+(—a)=b+(-a)) &
e (z+(a+(-a)=b+(-a) & (z+0=b+(-a)) &
@ (x=b+(-a)).0

The expression b+ (—a) can also be written as b — a. This is the shorter
and more common way of writing it, to which we shall adhere.

b. Consequences of the Multiplication Axioms 1°. There is only one
multiplicative unit in the real numbers.
20, For each x # 0 there is only one reciprocal z~!.

3%. For a € R\ 0, the equation a-x = b has the unique solution x =b-a~".

The proofs of these propositions, of course, merely repeat the proofs of the
corresponding propositions for addition (except for a change in the symbol
and the name of the operation); they are therefore omitted.

c. Consequences of the Axiom Connecting Addition and Multi-
plication Applying the additional axiom (I, II) connecting addition and
multiplication, we obtain further consequences.

19 Forany z € R
z-0=0-z=0.

Proof.

(z-0=2z-0+0)=2-0+2-0)=(z-0=2-0+(—(z-0))=0). O
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From this result, incidentally, one can see that if z € R\0, then 27! € R\0.
20 (z-y=0)=(z=0)V(y=0).

Proof. 1f, for example, y # 0, then by the uniqueness of the solution of the
equation z -y =0forz, wefindz=0-y ' =0. O

3% Foranyz € R
—r=(-1)-x.

Proof. z+(~1)-z=(1+4(~1)) -2 =0-2=2-0=0, and the assertion now
follows from the uniqueness of the negative of a number. O

4%, For any z € R

(~1)(-2) == .
Proof. This follows from 3° and the uniqueness of the negative of —z. O

50, For any x € R
(—x)-(—z)==z z.

Proof.

(—2)(-2) = ((-1) - z)(=2) = (& (-D)(-2) = 2((-1)(-2)) =2z

Here we have made successive use of the preceding propositions and the
commutativity and associativity of multiplication. O

d. Consequences of the Order Axioms We begin by noting that the
relation z < y (read “z is less than or equal to y”) can also be written as
y > x (“y is greater than or equal to x”); when z # y, the relation z < y is
written z < y (read “z is less than y”) or y > z (read “y is greater than z”),
and is called strict inequality.

19, For any x and y in R precisely one of the following relations holds:
<y, =y, T>y.

Proof. This follows from the definition of strict inequality just given and
axioms 1< and 3<. O

20, For any z,y,z € R
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Proof. We prove the first assertion as an example. By Axiom 2<, which as-
serts that the inequality relation is transitive, we have

F<yYrny<z)e@<yYAy<)A(y#£2)=(z<2).

It remains to be verified that = # z. But if this were not the case, we would
have

T<YPYANy<2) e 2<yYry<z)e@Z<yYAY<2)A(y#2).

By Axiom 1< this relation would imply

(y=2)A(y #2),

which is a contradiction. O

e. Consequences of the Axioms Connecting Order with Addition
and Multiplication If in addition to the axioms of addition, multiplication,
and order, we use axioms {I,IIT) and (II, III), which connect the order with the
arithmetic operations, we can obtain, for example, the following propositions.

1°. For any z,y,z,w € R

(z<y)=(z+2)<(y+2),
0<z) = (—z<0),
<A z<w)=> (z+2) < (y+w),
c<yrnz<w) = (z+z<y+w).

Proof. We shall verify the first of these assertions.
By definition of strict inequality and the axiom (I,III} we have

F<y)=@<y)=>(@+z)<+2).
It remains to be verified that x + z # y + z. Indeed,
(@+2)=@w+2)=(@=@W+2)-2=y+ (-2 =y),
which contradicts the assumption z <y. O

20 If z,y,2 € R, then

O<z2)A(0<y) = (0<2y),
(z<0)A(y<0) = (0<2y),
(z<O)N0<y) = (zy < 0),
(<A (0<2) = (z2 <yz),
(z<y)n(z<0) = (yz < zz).
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Proof. We shall verify the first of these assertions. By definition of strict
inequality and the axiom (ILIII) we have

O<z)A0<y) = 0<2)A(0<Ly) = (0 xy) .
Moreover, 0 # zy since, as already shown,
(z-y=0=(z=0)V(y=0).
Let us further verify, for example, the third assertion:
(z<OAO<y)=O0< )N 0<y) =

=(0<(~z)-y) = (0<((-1)-z)y) =
= (0< (1) (zy)) = (0< —(zy)) = (xky < 0) .0

The reader is now invited to prove the remaining relations independently
and also to verify that if nonstrict inequality holds in one of the parentheses
on the left-hand side, then the inequality on the right-hand side will also be
nonstrict.

300 o<1

Proof. We know that 1 € R\ 0, that is 0 # 1. If we assume 1 < 0, then by
what was just proved,

1<0)A(1<0)={0<1-)=(0<1).

But we know that for any pair of numbers x,y € R exactly one of the possi-
bilities z < y, £ = y, * > y actually holds. Since 0 # 1 and the assumption
1 < 0 implies the relation 0 < 1, which contradicts it, the only remaining
possibility is the one in the statement of the proposition. 0O

4 (0<z)=0<z Hand O<2)A(z<y)=> O<y HAy <z,

Proof. Let us verify the first of these assertions. First of all, z7! # 0. As-
suming £~! < 0, we obtain

(zP<O)AO0<z)=>(x-27'<0)=(1<0).
This contradiction completes the proof. O

We recall that numbers larger than zero are called positive and those less
than zero negative.

Thus we have shown, for example, that 1 is a positive number, that the
product of a positive and a negative number is a negative number, and that
the reciprocal of a positive number is also positive.
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2.1.3 The Completeness Axiom and the Existence
of a Least Upper (or Greatest Lower) Bound of a Set of Numbers

Definition 2. A set X C R is said to be bounded above (resp. bounded below)
if there exists a number ¢ € R such that < ¢ (resp. ¢ < z) for all z € X.

The number ¢ in this case is called an upper bound (resp. lower bound) of
the set X. It is also called a majorant (resp. minorant) of X.

Definition 3. A set that is bounded both above and below is called bounded.

Definition 4. An element a € X is called the largest or mazimal (resp.
smallest or minimal) element of X if £ < a (resp. a < z) for all z € X.

We now introduce some notation and at the same time give a formal
expression to the definition of maximal and minimal elements:

(a=maxX) := (a€ X A\Vz € X (z < a)),
(a=minX) := (a€ XAVz € X (a< 1)) .

Along with the notation max X (read “the maximum of X”) and min X
(read “the minimum of X”) we also use the respective expressions max x and
ze

min .
zeX

It follows immediately from the order axiom 1< that if there is a maximal
(resp. minimal) element in a set of numbers, it is the only one.

However, not every set, not even every bounded set, has a maximal or
minimal element.

For example, the set X = {z € R|0 < z < 1} has a minimal element.
But, as one can easily verify, it has no maximal element.

Definition 5. The smallest number that bounds a set X C R from above
is called the least upper bound (or the ezact upper bound) of X and denoted

sup X (read “the supremum of X”) or sup z.
zeX

This is the basic concept of the present subsection. Thus
(s=supX):=Vze X ((z<s)A(Vs' <s3' € X (s <7))).

The expression in the first set of parentheses on the right-hand side here
says that s is an upper bound for X; the expression in the second set says that
s is the smallest number having this property. More precisely, the expression
in the second set of parentheses asserts that any number smaller than s is
not an upper bound of X.

The concept of the greatest lower bound (or ezact lower bound) of a set
X is introduced similarly as the largest of the lower bounds of X.
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Definition 6.
((=ifX):=VzeX((<z)A (V' >iTz' € X (z' <7))).

Along with the notation inf X (read “the infimum of X”) one also uses the

notation in}f( z for the greatest lower bound of X.
z€

Thus we have given the following definitions:
supX :=min{ceR|Vz € X (z < ¢)},
inf X := max{c e R|Vz € X (c<z)}.

But we said above that not every set has a minimal or maximal element.
Therefore the definitions we have adopted for the least upper bound and
greatest lower bound require an argument, provided by the following lemma.

Lemima. (The least upper bound principle). Every nonempty set of real num-
bers that is bounded from above has a unique least upper bound.

Proof. Since we already know that the minimal element of a set of numbers
is unique, we need only verify that the least upper bound exists.

Let X C R be a given set and ¥ = {y € R|Vz € X (z < y)}. By
hypothesis, X # @ and Y # @. Then, by the completeness axiom there
exists ¢ € R such that Vo € XVy € Y (z < ¢ < y). The number c¢ is therefore
both a majorant of X and a minorant of Y. Being a majorant of X, ¢ is an
element of Y. But then, as a minorant of Y, it must be the minimal element
of Y. Thusc=minY =supX. O

Naturally the existence and uniqueness of the greatest lower bound of a
set of numbers that is bounded from below is analogous, that is, the following
proposition holds.

Lemma. (X bounded below) = (3! inf X).

We shall not take time to give the proof.

We now return to the set X = {z € R|0 < z < 1}. By the lemma just
proved it must have a least upper bound. By the very definition of the set X
and the definition of the least upper bound, it is obvious that sup X < 1.

To prove that sup X = 1 it is thus necessary to verify that for any number
g < 1 there exists z € X such that ¢ < z; simply put, this means merely
that there are numbers between ¢ and 1. This of course, is also easy to prove
independently (for example, by showing that ¢ < 271(g+1) < 1), but we shall
not do so at this point, since such questions will be discussed systematically
and in detail in the next section.

As for the greatest lower bound, it always coincides with the minimal
element of a set, if such an element exists. Thus, from this consideration
alone we have inf X = 0 in the present example.

Other, more substantive examples of the use of the concepts introduced
here will be encountered in the next section.
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2.2 The Most Important Classes of Real Numbers
and Computational Aspects of Operations
with Real Numbers

2.2.1 The Natural Numbers and the Principle
of Mathematical Induction

a. Definition of the Set of Natural Numbers The numbers of the form
1,1+1, (1 +1)+1, and so forth are denoted respectively by 1,2,3,... and
so forth and are called natural numbers.

Such a definition will be meaningful only to one who already has a com-
plete picture of the natural numbers, including the notation for them, for
example in the decimal system of computation.

The continuation of such a process is by no means always unique, so that
the ubiquitous “and so forth” actually requires a clarification provided by
the fundamental principle of mathematical induction.

Definition 1. A set X C R is inductive if for each number z € X, it also
contains x + 1.

For example, R is an inductive set; the set of positive numbers is also
inductive.

The intersection X = () X, of any family of inductive sets X, if not
aEA
empty, is an inductive set.

Indeed,

(a:EX: nXa)é(VaeA(meXa)) =

acA

= VaecA((x+1) € Xs)) = ((w+1)€ ﬂXa:X> .

a€A
We now adopt the following definition.

Definition 2. The set of natural numbers is the smallest inductive set con-
taining 1, that is, the intersection of all inductive sets that contain 1.

The set of natural numbers is denoted N; its elements are called natural
numbers.

From the set-theoretic point of view it might be more rational to begin
the natural numbers with 0, that is, to introduce the set of natural numbers
as the smallest inductive set containing 0; however, it is more convenient for
us to begin numbering with 1.

The following fundamental and widely used principle is a direct corollary
of the definition of the set of natural numbers.
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b. The Principle of Mathematical Induction If a subset E of the set of
natural numbers N is such that 1 € E and together with each number x € F,
the number x 4+ 1 also belongs to E, then E = N.

Thus,

(ECN)A(leE)A(VzeE(zcE=(z+1)€E))= E=N.

Let us illustrate this principle in action by using it to prove several useful
properties of the natural numbers that we will be using constantly from now
on.

10, The sum and product of natural numbers are natural numbers.

Proof. Let m,n € N; we shall show that (m+n) € N. We denote by E the set
of natural numbers n for which (m +n) € N for all m € N. Then 1 € FE since
(meN)= ((m+1) € N) forany m € N.If n € E, that is, (m+n) € N, then
(n+1) € E also, since (m+ (n+1)) = ((m + n) + 1) € N. By the principle
of induction, E = N, and we have proved that addition does not lead outside
of N.

Similarly, taking F to be the set of natural numbers n for which (m-n) € N
for all m € N, we find that 1 € F, since m-1 = m, and if n € F, that is,
m-n € N, then m-(n+1) = mn+m is the sum of two natural numbers, which
belongs to N by what was just proved above. Thus (n € E) = ((n+1) € E),
and so by the principle of induction F =N. O

2. meN)A(n#£1)= ((n—1)€N).

Proof. Consider the set E consisting of all real numbers of the form n — 1,
where n is a natural number different from 1; we shall show that £ = N,
Since 1 € N, it follows that 2:=(1+1) e Nand hence 1 =(2—-1) € E.

IfmeE, thenm =n—1, wheren € N; then m+1=(n+1) -1,
and since n + 1 € N, we have (m + 1) € E. By the principle of induction we
conclude that E =N. O

39 For any n € N the set {x € Nin < z} contains a minimal element,
namely
min{reNjn<z}=n+1.

Proof. We shall show that the set E of n € N for which the assertion holds
coincides with N.
We first verify that 1 € E, that is,

min{zr e N|1<z}=2.
We shall also verify this assertion by the principle of induction. Let

M={zeN[(z=1)V(2<2)}.
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By definition of M we have 1 € M. Then if x € M, either z = 1, in which
case £+ 1 =2¢€ M, or else 2 < z, and then 2 < (z + 1), and once again
(x+1) € M. Thus M =N, and hence if (z # 1) A (z € N), then 2 < z, that
is, indeed min{z € N|1 < 2} = 2. Hence 1 € F.

We now show that if n € F, then (n+ 1) € E.

We begin by remarking that if z € {z € N|n + 1 < z}, then

(z-1)=ye{yeNn<y}.

For, by what has already been proved, every natural number is at least as
large as 1; therefore (n+1 < z) = (1 < z) = (x¢ # 1), and then by the
assertion in 2° we have (x — 1) =y € N.

Now let n € E, that is, min{y € Njn < y} =n+1. Thenz—1>y > n+1
and z > n + 2. Hence,

(ze{zeNn+l<z})=(z>n+2)

and consequently, min{z € Njn+1 <z} =n+2, thatis, (n+1) € E.
By the principle of induction F = N, and 3° is now proved. O

As immediate corollaries of 2° and 3° above, we obtain the following
properties (4%, 5°, and 6°) of the natural numbers.

42 meN)AmReN)A(n<m)= (n+1<m).

50. The number (n+1) € N is the immediate successor of the number n € N;
that is, if n € N, there are no natural numbers x satisfyingn < x <n + 1.

6°. If n € Nand n # 1, then (n — 1) € N and (n — 1) is the immediate
predecessor of n in N; that is, if n € N, there are no natural numbers x
satisfyingn — 1 <z < n.

We now prove one more property of the set of natural numbers.

7°. In any nonempty subset of the set of natural numbers there is a minimal
element.

Proof. Let M C N. If 1 € M, then min M = 1, since ¥n € N(1 < n).

Now suppose 1 ¢ M, that is, 1 € E = N\ M. The set E must contain a
natural number n such that all natural numbers not larger than n belong to
E, but (n+ 1) € M. If there were no such n, the set E C N, which contains
1, would contain along with each of its elements 7, the number (n + 1) also;
by the principle of induction, it would therefore equal N. But the latter is
impossible, since N\ E = M # @.

The number (n + 1) so found must be the smallest element of M, since
there are no natural numbers between n and n + 1, as we have seen. 0O
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2.2.2 Rational and Irrational Numbers

a. The Integers

Definition 3. The union of the set of natural numbers, the set of negatives
of natural numbers, and zero is called the set of integers and is denoted Z.

Since, as has already been proved, addition and multiplication of natural
numbers do not take us outside N, it follows that these same operations on
integers do not lead outside of Z.

Proof. Indeed, if m,n € Z, either one of these numbers is zero, and then the
sum m + n equals the other number, so that (m+n) € Zand m-n=0¢€ Z,
or both numbers are non-zero. In the latter case, either m,n € N and then
(m+n) e NCZand (m-n) € NCZ, or (—m),(—n) € N and then
m-n = ((-1)m)((~1)n) € Nor (—m),n € N and then (—m - n) € N, that
is, m - n € Z, or, finally, m,—n € N and then (—m - n) € N and once again
m-n€Z 0O

Thus Z is an Abelian group with respect to addition. With respect to
multiplication Z is not a group, nor is Z \ 0, since the reciprocals of the
integers are not in Z (except the reciprocals of 1 and —1).

Proof. Indeed, if m € Z and m # 0, 1, then assuming first that m € N, we
have 0 < 1 < m, and, sincem -m~! =1 > 0, we must have 0 < m~! < 1
(see the consequences of the order axioms in the previous subsection). Thus
m~! ¢ Z. The case when m is a negative integer different from —1 reduces
immediately to the one already considered. O

When k =m-n~! € Z for two integers m,n € Z, that is, when m = k-n
for some k € Z, we say that m is divisible by n or a multiple of n, or that n
is a divisor of m.

The divisibility of integers reduces immediately via suitable sign changes,
that is, through multiplication by —1 when necessary, to the divisibility of
the corresponding natural numbers. In this context it is studied in number
theory.

We recall without proof the so-called fundamental theorem of arithmetic,
which we shall use in studying certain examples.

A number p € N, p # 1, is prime if it has no divisors in N except 1 and p.

The fundamental theorem of arithmetic. Fach natural number admits
a representation as a product

n=pi Pk,

where pi,...,pr are prime numbers. This representation is unique except for
the order of the factors.
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Numbers m,n € Z are said to be relatively prime if they have no common
divisors except 1 and —1.

It follows in particular from this theorem that if the product m - n of
relatively prime numbers m and n is divisible by a prime p, then one of the
two numbers is also divisible by p.

b. The Rational Numbers

Definition 4. Numbers of the form m - n~!, where m,n € Z, are called
rational.

We denote the set of rational numbers by Q.

Thus, the ordered pair (m,n) of integers defines the rational number
g=m-n~tifn #0.

The number ¢ = m - n~! can also be written as a quotient? of m and n,
that is, as a so-called rational fraction 7.

The rules you learned in school for operating with rational numbers in
terms of their representation as fractions follow immediately from the defi-
nition of a rational number and the axioms for real numbers. In particular,
“the value of a fraction is unchanged when both numerator and denominator
are multiplied by the same non-zero integer”, that is, the fractions ’7’1’—,2“ and
Z represent the same rational number. In fact, since (nk)(k™'n~!) = 1, that
is(n k)" =k71-n7!, we have (mk)(nk)~! = (mk)(k"'n"') =m -n~L

Thus the different ordered pairs (m,n) and (mk,nk) define the same
rational number. Consequently, after suitable reductions, any rational number
can be presented as an ordered pair of relatively prime integers.

On the other hand, if the pairs (my,n;) and (mg,ny) define the same
rational number, that is, m; - n]7" = mq - nz_l, then miny = man,, and if,
for example, m; and n; are relatively prime, it follows from the corollary
of the fundamental theorem of arithmetic mentioned above that ng - n;' =
mg-my'=keZ

We have thus demonstrated that two ordered pairs (mj,n;) and {ma,n2)
define the same rational number if and only if they are proportional. That
is, there exists an integer k£ € Z such that, for example, ms = km, and
g = k’l’Ll.

1

c. The Irrational Numbers
Definition 5. The real numbers that are not rational are called irrational.
The classical example of an irrational real number is /2, that is, the

number s € R such that s > 0 and s2 = 2. By the Pythagorean theorem, the

2 The notation Q comes from the first letter of the English word quotient, which
in turn comes from the Latin quota, meaning the unit part of something, and
quot, meaning how many.
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irrationality of v/2 is equivalent to the assertion that the diagonal and side
of a square are incommensurable.

Thus we begin by verifying that there exists a real number s € R whose
square equals 2, and then that s ¢ Q.

Proof. Let X and Y be the sets of positive real numbers such that Vz €
X(z2<2),Vye Y (2<y?).Sincel € X and 2 €Y, it follows that X and
Y are nonempty sets.

Further, since (z < y) & (2% < y?) for positive numbers z and y, every
element of X is less than every element of Y. By the completeness axiom
there exists s€e Rsuch that r <s<yforallzx € X andallye Y.

We shall show that s2 = 2.

If s2 < 2, then, for example, the number s + %, which is larger than
s, would have a square less than 2. Indeed, we know that 1 € X, so that
12<s?2 <2 and 0 < A:=2— 52 < 1. It follows that

AN, A (A . A, A,
<S+3s> =s5"+2- 3 (3) <s +3-3S<s +3-3S——s +A=2.
Consequently, (s + gA—) € X, which is inconsistent with the inequality = < s
forall z € X. s
If2 < s, 53;2,
a square larger than 2. Indeed, we know that 2 € Y, so that 2 < s < 22 or
0<A:=s2-2<3and0< §<1. Hence,

AN, A A2 A
-_—— el —2—— o 2— . — = 2—-A:
(3 35) s Ht(5) >3 35 ° 2

and we have now contradicted the fact that s is a lower bound of Y.

Thus the only remaining possibility is that s = 2.

Let us show, finally, that s ¢ Q. Assume that s €eQ and let 2 be an
irreducible representation of s. Then m? = 2-n2, so that m? is d1v151b1e by 2
and therefore m also is divisible by 2. But, if m = 2k, then 2k? = n?, and for
the same reason, n must be divisible by 2. But this contradicts the assumed
irreducibility of the fraction 7:. O

We have worked hard just now to prove that there exist irrational num-
bers. We shall soon see that in a certain sense nearly all real numbers are
irrational. It will be shown that the cardinality of the set of irrational num-
bers is larger than that of the set of rational numbers and that in fact the
former equals the cardinality of the set of real numbers.

Among the irrational numbers we make a further distinction between the
so-called algebraic irrational numbers and the transcendental numbers.

A real number is called algebraic if it is the root of an algebraic equation

agx™ + -+ ap_1x+a, =0

with rational (or equivalently, integer) cofficients.
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Otherwise the number is called transcendental.

We shall see that the cardinality of the set of algebraic numbers is the
same as that of the set of rational numbers, while the cardinality of the set
of transcendental numbers is the same as that of the set of real numbers.
For that reason the difficulties involved in exhibiting specific transcendental
numbers — more precisely, proving that a given number is transcendental —
seem at first sight paradoxical and unnatural.

For example, it was not proved until 1882 that the classical geometric
number 7 is transcendental,® and one of the famous Hilbert* problems was
to prove the transcendence of the number af, where o is algebraic, (o >
0) A (@ # 1) and (3 is an irrational algebraic number (for example, o = 2,

8=2).

2.2.3 The Principle of Archimedes

We now turn to the principle of Archimedes,® which is important in both its
theoretical aspect and the application of numbers in measurement and com-
putations. We shall prove it using the completeness axiom (more precisely,
the least-upper-bound principle, which is equivalent to the completeness ax-
iom). In other axiom systems for the real numbers this fundamental principle
is frequently included in the list of axioms.

We remark that the propositions that we have proved up to now about the
natural numbers and the integers have made no use at all of the complete-
ness axiom. As will be seen below, the principle of Archimedes essentially
reflects the properties of the natural numbers and integers connected with
completeness. We begin with these properties.

3 The number 7 equals the ratio of the circumference of a circle to its diameter
in Euclidean geometry. That is the reason this number has been conventionally
denoted since the eighteenth century, following Euler by 7, which is the initial
letter of the Greek word mepepépiar — periphery (circumference). The transcen-
dence of ® was proved by the German mathematician F. Lindemann (1852-1939).
It follows in particular from the transcendence of 7 that it is impossible to con-
struct a line segment of length 7 with compass and straightedge (the problem
of rectification of the circle), and also that the ancient problem of squaring the
circle cannot be solved with compass and straightedge.

4 D.Hilbert (1862-1943) — outstanding German mathematician who stated 23
problems from different areas of mathematics at the 1900 International Congress
of Mathematicians in Paris. These problems came to be known as the “Hilbert
problems”. The problem mentioned here (Hilbert’s seventh problem) was given
an affirmative answer in 1934 by the Soviet mathematician A. O. Gel’fond (1906
1968) and the German mathematician T. Schneider (1911-1989).

5 Archimedes (287-212 BCE) - brilliant Greek scholar, about whom Leibniz, one
of the founders of analysis said, “When you study the works of Archimedes, you
cease to be amazed by the achievements of modern mathematicians.”
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1°. Any nonempty subset of natural numbers that is bounded from above con-
tains a mazximal element.

Proof. If E C N is the subset in question, then by the least-upper-bound
lemma, lsup F = s € R. By definition of the least upper bound there is
a natural number n € F satisfying the condition s — 1 < n < s. But then,
n = max F, since a natural number that is larger than n must be at least
n+l,andn+1>s O

Corollaries 20. The set of natural numbers is not bounded above.

Proof. Otherwise there would exist a maximal natural number. But n < n+1.
0

3%, Any nonempty subset of the integers that is bounded from above contains
a mazimal element.

Proof. The proof of 1° can be repeated verbatim, replacing N with Z. O

40, Any nonempty subset of integers that is bounded below contains a minimal
element.

Proof. One can, for example, repeat the proof of 1°, replacing N by Z and
using the greatest-lower-bound principle instead of the least-upper-bound
principle.

Alternatively, one can pass to the negatives of the numbers (“change
signs”) and use what has been proved in 3°. O

59. The set of integers is unbounded above and unbounded below.
Proof. This follows from 3° and 4°, or directly from 2°. O

We can now state the principle of Archimedes.

6. (Theprinciple of Archimedes). For any fized positive number h and
any real number x there exists a unique integer k such that (k—1)h < z < kh.

Proof. Since Z is not bounded above, the set {n € Z| £ < n} is a nonempty
subset of the integers that is bounded below. Then (see 4°) it contains a
minimal element k, that is (k —1) < z/h < k. Since h > 0, these inequalities
are equivalent to those given in the statement of the principle of Archimedes.
The uniqueness of k € Z satisfying these two inequalities follows from the
uniqueness of the minimal element of a set of numbers (see Subsect. 2.1.3).
0O

And now some corollaries:

70, For any positive number ¢ there ezists a natural number n such that
0<i<e
n
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Proof. By the principle of Archimedes there exists n € Z such that 1 < ¢-n.
Since0<1and0<a,wehave0<n.ThusneNandO<%<6. O

80. If the number x € R is such that 0 < z and z < 1 for alln € N, then
xz =0.

Proof. The relation 0 < z is impossible by virtue of 7°. 0O

90, For any numbers a,b € R such that a < b there is a rational number
r € Q such that a < r < b.

Proof. Taking account of 7°, we choose n € N such that 0 < % < b—a. By the
principle of Archimedes we can find a number m € Z such that ﬂ;—l <a< 7t
Then % < b, since otherwise we would have ’”T_l <a<b< %, from which
it would follow that % >b—a Thusr="cQanda< 7 <b O

10%. For any number x € R there exists a unique integer k € Z such that
k<z<k+1.

Proof. This follows immediately from the principle of Archimedes. O

The number & just mentioned is denoted [z] and is called the integer part
of z. The quantity {z} := z — [z] is called the fractional part of z. Thus
z = |z] + {z}, and {z} > 0.

2.2.4 The Geometric Interpretation of the Set of Real Numbers
and Computational Aspects of Operations with Real Numbers

a. The Real Line In relation to real numbers we often use a descriptive
geometric language connected with a fact that you know in general terms
from school. By the axioms of geometry there is a one-to-one correspondence
f : L — R between the points of a line L. and the set R of real numbers.
Moreover this correspondence is connected with the rigid motions of the line.
To be specific, if T is a parallel translation of the line L along itself, there
exists a number ¢ € R (depending only on T) such that f(T(z)) = f(z) +¢
for each point z € L.

The number f(z) corresponding to a point z € L is called the coordinate of
z. In view of the one-to-one nature of the mapping f : L — R, the coordinate
of a point is often called simply a point. For example, instead of the phrase
“let us take the point whose coordinate is 17 we say “let us take the point 17.
Given the correspondence f : L — R, we call the line L. the coordinate azis
or the number axis or the real line. Because f is bijective, the set R itself is
also often called the real line and its points are called points of the real line.

As noted above, the bijective mapping f : L. — R that defines coordinates
on L has the property that under a parallel translation T the coordinates of
the images of points of the line L differ from the coordinates of the points
themselves by a number ¢ € R, the same for every point. For this reason f
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is determined completely by specifying the point that is to have coordinate
0 and the point that is to have coordinate 1, or more briefly, by the point 0,
called the origin, and the point 1. The closed interval determined by these
points is called the unit interval. The direction determined by the ray with
origin at 0 containing 1 is called the positive direction and a motion in that
direction (from 0 to 1) is called a motion from left to right. In accordance
with this convention, 1 lies to the right of 0 and 0 to the left of 1.

Under a parallel translation T that moves the origin zg to the point
x1 = T'(x0) with coordinate 1, the coordinates of the images of all points are
one unit larger than those of their pre-images, and therefore we locate the
point xo = T'(x;) with coordinate 2, the point z3 = T(z>) with coordinate
3,..., and the point z,,41 = T'(x,) with coordinate n+1, as well as the point
x_y = T~ Y(zo) with coordinate —1,..., the point z_,_; = T~ (z_,) with
coordinate —n — 1. In this way we obtain all points with integer coordinates
m € Z.

Knowing how to double, triple,... the unit interval, we can use Thales’
theorem to partition this interval into n congruent subintervals. By taking
the subinterval having an endpoint at the origin, we find that the coordinate
of its other end, which we denote by z, satisfies the equation n -z = 1, that
is, z = % From this we find all points with rational coordinates 7 € Q.

But there still remain points of L, since we know there are intervals in-
commensurable with the unit interval. Each such point, like every other point
of the line, divides the line into two rays, on each of which there are points
with integer or rational coordinates. (This is a consequence of the original
geometric principle of Archimedes.) Thus a point produces a partition, or, as
it is called, a cut of Q into two nonempty sets X and Y corresponding to the
rational points (points with rational coordinates) on the left-hand and right-
hand rays. By the axiom of completeness, there is a number ¢ that separates
XandY,thatis,z <e<yforallz € X andally €Y. Since XUY =Q, it
follows that sup X = s = ¢ = inf Y. For otherwise, s < 7 and there would be a
rational number between s and 4 lying neither in X norin Y. Thus s =4 =c.
This uniquely determined number c¢ is assigned to the corresponding point of
the line.

The assignment of coordinates to points of the line just described provides
a visualizable model for both the order relation in R (hence the term “linear
ordering”) and for the axiom of completeness or continuity in R, which in
geometric language means that there are no “holes” in the line L, which would
separate it into two pieces having no points in common. (Such a separation
could only come about by use of some point of the line L.)

We shall not go into further detail about the construction of the mapping
f : L — R, since we shall invoke the geometric interpretation of the set of
real numbers only for the sake of visualizability and perhaps to bring into
play the reader’s very useful geometric intuition. As for the formal proofs,
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just as before, they will rely either on the collection of facts we have obtained
from the axioms for the real numbers or directly on the axioms themselves.

Geometric language, however, will be used constantly.

We now introduce the following notation and terminology for the number
sets listed below:

la,bl:= {z € R|a < z < b} is the open interval ab;

[a,b] := {z € R|a < z < b} is the closed interval ab;

la,b) := {z € R|a < z < b} is the half-open interval ab containing b;

(a,b]:= {z € R|a < z < b} is the half-open interval ab containing a.

Definition 6. Open, closed, and half-open intervals are called numerical in-
tervals or simply intervals. The numbers determining an interval are called
its endpoints.

The quantity b—a is called the length of the interval ab. If I is an interval,
we shall denote its length by |I|. (The origin of this notation will soon become

clear.)
The sets
la, +oo[:= {z € R|a < z}, ] — o0, b= {z € R|z < b}
[a, +oo[:= {z € R|a < z}, | —o0,b] :={z € R|z < b}

and | — oo, +oo[:= R are conventionally called unbounded intervals or infinite
intervals.

In accordance with this use of the symbols +oco (read “plus infinity”)
and —oo (read “minus infinity”) it is customary to denote the fact that the
numerical set X is not bounded above (resp. below), by writing sup X = +oo
(inf X = —o0).

Definition 7. An open interval containing the point x € R will be called a
neighborhood of this point.

In particular, when ¢ > 0, the open interval |z — é,z + §[ is called the
d-neighborhood of x. Its length is 26.

The distance between points z,y € R is measured by the length of the
interval having them as endpoints.

So as not to have to investigate which of the points is “left” and which is
“right”, that is, whether z < y or y < x and whether the length is y — z or
T — y, we can use the useful function

x whenz >0,
lz}=4¢ 0 whenz =0,
—x when z < 0,

which is called the modulus or absolute value of the number.

Definition 8. The distance between z,y € R is the quantity |z — y|.
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The distance is nonnegative and equals zero only when the points z and
y are the same. The distance from z to y is the same as the distance from y
to z, since |x —y| = |y — z|. Finally, if z € R, then |z — y| < |z — z| + |z — y|.
That is, the so-called triangle inequality holds.

The triangle inequality follows from a property of the absolute value that
is also called the triangle inequality (since it can be obtained from the pre-
ceding triangle inequality by setting z = 0 and replacing y by —y). To be
specific, the inequality

|z +y| < 2] + |yl

holds for any numbers x and y, and equality holds only when the numbers x
and y are both negative or both positive.

Proof 10 <zand 0 <y, then0<z+y, lz+yl=2x+y, |z| =z, and
ly| = y, so that equality holds in this case.

Ifz<Oandy <0,thenz+y <0, |z+yl=—(z+y)=—z—y,|z| = -z,
ly| = —y, and again we have equality.

Now suppose one of the numbers is negative and the other positive, for
example, < 0 < y. Then either z <z +y <0 o0r 0 < z+y < y. In the first
case |z + y| < |z|, and in the second case |z + y| < ly|, so that in both cases
lz+yl <lz|+yl. O

Using the principle of induction, one can verify that

[T1+ -+ x| < z1| 4+ + |2a]

and equality holds if and only if the numbers xi,...,z, are all nonnegative
or all nonpositive.
The number a—g—b is often called the midpoint or center of the interval with

endpoints ¢ and b, since it is equidistant from the endpoints of the interval.
In particular, a point € R is the center of its §-neighborhood |z -4, z+4[
and all points of the é-neighborhood lie at a distance from z less than 4.

b. Defining a Number by Successive Approximations In measuring a
real physical quantity, we obtain a number that, as a rule, changes when the
measurement is repeated, especially if one changes either the method of mak-
ing the measurement or the instrument used. Thus the result of measurement
is usually an approximate value of the quantity being sought. The quality or
precision of a measurement is characterized, for example, by the magnitude
of the possible discrepancy between the true value of the quantity and the
value obtained for it by measurement. When this is done, it may happen
that we can never exhibit the exact value of the quantity (if it exists theo-
retically). Taking a more constructive position, however, we may {or should)
consider that we know the desired quantity completely if we can measure it
with any preassigned precision. Taking this position is tantamount to identi-
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fying the number with a sequence® of more and more precise approximations
by numbers obtained from measurement. But every measurement is a finite
set of comparisons with some standard or with a part of the standard com-
mensurable with it, so that the result of the measurement will necessarily be
expressed in terms of natural numbers, integers, or, more generally, rational
numbers. Hence theoretically the whole set of real numbers can be described
in terms of sequences of rational numbers by constructing, after due analysis,
a mathematical copy or, better expressed, a model of what people do with
numbers who have no notion of their axiomatic description. The latter add
and multiply the approximate values rather than the values being measured,
which are unknown to them. (To be sure, they do not always know how to
say what relation the result of these operations has to the result that would
be obtained if the computations were carried out with the exact values. We
shall discuss this question below.)

Having identified a number with a sequence of approximations to it, we
should then, for example, add the sequences of approximate values when we
wish to add two numbers. The new sequence thus obtained must be regarded
as a new number, called the sum of the first two. But is it a number? The sub-
tlety of the question resides in the fact that not every randomly constructed
sequence is the sequence of arbitrarily precise approximations to some quan-
tity. That is, one still has to learn how to determine from the sequence itself
whether it represents some number or not. Another question that arises in
the attempt to make a mathematical copy of operations with approximate
numbers is that different sequences may be approximating sequences for the
same quantity. The relation between sequences of approximations defining
a number and the numbers themselves is approximately the same as that
between a point on a map and an arrow on the map indicating the point.
The arrow determines the point, but the point determines only the tip of the
arrow, and does not exclude the use of a different arrow that may happen to
be more convenient.

A precise description of these problems was given by Cauchy,” who carried
out the entire program of constructing a model of the real numbers, which we
have only sketched. One may hope that after you study the theory of limits
you will be able to repeat these constructions independently of Cauchy.

What has been said up to now, of course, makes no claim to mathematical
rigor. The purpose of this informal digression has been to direct the reader’s
attention to the theoretical possibility that more than one natural model of
the real numbers may exist. I have also tried to give a picture of the relation

8 If n is the number of the measurement and z,, the result of that measurement,
the correspondence n +— x, is simply a function f : N — R of a natural-number
argument, that is, by definition a sequence (in this case a sequence of numbers).
Section 3.1 is devoted to a detailed study of numerical sequences.

7 A. Cauchy (1789-1857) — French mathematician, one of the most active creators
of the language of mathematics and the machinery of classical analysis.
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of numbers to the world around us and to clarify the fundamental role of
natural and rational numbers. Finally, I wished to show that approximate
computations are both natural and necessary.

The next part of the present section is devoted to simple but important
estimates of the errors that arise in arithmetic operations on approximate
quantities. These estimates will be used below and are of independent interest.

We now give precise statements.

Definition 9. If z is the exact value of a quantity and Z a known approxi-
mation to the quantity, the numbers

and

b

z
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are called respectively the absolute and relative error of approximation by Z.
The relative error is not defined when & = 0.

Since the value z is unknown, the values of A(Z) and 6(Z) are also un-
known. However, one usually knows some upper bounds A(Z) < A and
&(Z) < 6 for these quantities. In this case we say that the absolute or relative
error does not exceed A or § respectively. In practice we need to deal only
with estimates for the errors, so that the quantities A and é§ themselves are
often called the absolute and relative errors. But we shall not do this.

The notation z =Z+ Ameans that T - A<z <z + A.

For example,

gravitational constant G (6.672598 + 0.00085) - 10 1IN - m?/kg?,
speed of light in vacuo ¢ = 299792458 m/s (exactly),

Planck’s constant h = (6.6260755 % 0.0000040) - 10734J - s,
charge of an electron e (1.60217733 & 0.00000049) - 10~ *Coul,
rest mass of an electron m, = (9.1093897 + 0.0000054) - 10~ kg .

The main indicator of the precision of a measurement is the relative error
in approximation, usually expressed as a percent.
Thus in the examples just given the relative errors are at most (in order):

13-107%; 0; 6-1077; 31-107%; 6-1077
or, as percents of the measured values,
13-1072%; 0%: 6-1075%; 31-107%%; 6-107%%.

We now estimate the errors that arise in arithmetic operations with ap-
proximate quantities.
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Proposition. If

then

(z+y) - E+9| <A@)+A®D), (2.1)
y <|Z1A(g) + 191A(E) + A@@) - A®@) 5 (2.2)

y#0, §#0 and §(y) %(;li—) 1,
fher ; i | 121A0) +191AG) 1
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Proof. Let x =Z +a and y =y + 3. Then
AE+9) =l(z+y) - @+ P =la+8] <o +18] = A@) + A(Y) ,
AE-g) =lzy—-2-§l=|@+)(F+B) -2 9|l =
= |£8 + Ja + af| < |Z]16] + |7l laf + |eb] =
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These estimates for the absolute errors imply the following estimates for
the relative errors:

Lo A+ A®G) /
5($+y)S—m—, (2.1)
5(z-§) < 6(2) +6(g) +6(9) - 6(9) , (2.2))
8(z) + (%) )

o(3) < e 23)

In practice, when working with sufficiently good approximations, we have
A(E) - A(G) = 0, §(&) - 6(F) = 0, and 1 — §(F) ~ 1, so that one can use the
following simplified and useful, but formally incorrect, versions of formulas
(2.2), (2.3), (2.2), and (2.3'):
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Formulas (2.3) and (2.3") show that it is necessary to avoid dividing by a
number that is near zero and also to avoid using rather crude approximations
in which g or 1 — §(%) is small in absolute value.

Formula (2.1") warns against adding approximate quantities if they are
close to each other in absolute value but opposite in sign, since then [Z + g
is close to zero.

In all these cases, the errors may increase sharply.

For example, suppose your height has been measured twice by some de-
vice, and the precision of the measurement is +0.5 cm. Suppose a sheet of
paper was placed under your feet before the second measurement. It may
nevertheless happen that the results of the measurement are as follows:
H; =(200+0.5)cm and Hy = (199.8 + 0.5) cm respectively.

It does not make sense to try to find the thickness of the paper in the
form of the difference Hy — Hy, from which it would follow only that the
thickness of the paper is not larger than 0.8 cm. That would of course be a
crude reflection (if indeed one could even call it a “reflection”) of the true
situation.

However, it is worthwhile to consider another more hopeful computational
effect through which comparatively precise measurements can be carried out
with crude devices. For example, if the device just used for measuring your
height was used to measure the thickness of 1000 sheets of the same paper,
and the result was (20 £ 0.5) cm, then the thickness of one sheet of paper
is {0.02 £+ 0.0005) cm, which is (0.2 £ 0.005) mm, as follows from formula
(2.1).

That is, with an absolute error not larger than 0.005 mm, the thickness of
one sheet is 0.2 mm. The relative error in this measurement is at most 0.025
or 2.5%.

This idea can be developed and has been proposed, for example, as a way
of detecting a weak periodic signal amid the larger random static usually
called white noise.

c¢. The Positional Computation System It was stated above that every
real number can be presented as a sequence of rational approximations. We
now recall a method, which is important when it comes to computation, for
constructing in a uniform way a sequence of such rational approximations
for every real number. This method leads to the positional computation sys-
tem.
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Lemma. If a number q > 1 is fized, then for every positive number z € R
there exists a unique integer k € Z such that

Fl<z<gt.

Proof. We first verify that the set of numbers of the form ¢*, k € N, is
not bounded above. If it were, it would have a least upper bound s, and by
definition of the least upper bound, there would be a natural number m € N
such that £ < ¢™ < s. But then s < ¢™*1, so that s could not be an upper
bound of tfle set.

Since 1 < ¢, it follows that ¢" < ¢" when m < n for all m,n € Z. Hence
we have also shown that for every real number ¢ € R there exists a natural
number N € N such that ¢ < ¢” for all n > N.

It follows that for any € > 0 there exists M € N such that qu < ¢ for all
natural numbers m > M.

Indeed, it suffices to set ¢ = % and N = M; then % < q¢™ whenm > M.

Thus the set of integers m € 7Z satisfying the inequality < ¢ for x > 0
is bounded below. It therefore has a minimal element &, which obviously will
be the one we are seeking, since, for this integer, ¢*~! < z < ¢*.

The uniqueness of such an integer k follows from the fact that if m,n € Z
and, for example, m < n, then m < n — 1. Hence if ¢ > 1, then ¢™ < ¢"~ 1.

Indeed, it can be seen from this remark that the inequalities ¢™ ! <z < g™
and ¢"~! < z < ¢, which imply ¢"~! < z < ¢™, are incompatible if m # n.
d

We shall use this lemma in the following construction. Fix ¢ > 1 and take
an arbitrary positive number z € R. By the lemma we find a unique number
p € Z such that

@ <z <gtth. (2.4)

Definition 10. The number p satisfying (2.4) is called the order of x in the
base q or (when ¢ is fixed) simply the order of x.

By the principle of Archimedes, we find a unique natural number o, € N

such that
apg? < < apg® + 4P . (2.5)

Taking (2.4) into account, one can assert that o, € {1,...,¢ — 1}.

All of the subsequent steps in our construction will repeat the step we are
about to take, starting from relation (2.5).

It follows from relation (2.5) and the principle of Archimedes that there
exists a unique number a,_1 € {0,1,...,¢ — 1} such that

apg® +ap_1¢P <z < apgf +ap_1¢P Tt + gt (2.6)

If we have made n such steps, obtaining the relation
apgP + ozp_lqp“l + ot apng? ™ <
<z <opg? +ap1gP T o apng? T g,
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then by the principle of Archimedes there exists a unique number op..p_q €
{0,1,...,q9 — 1} such that
apqp 4.4 ap_nqp—n + apwn_lqp—n—l <
T<opg? + -+ opng? "+ ap_n_lqp—n—l +gP L,
Thus we have exhibited an algorithm by means of which a sequence of
numbers ap, 0p—1, - - -, Ap—n, - .. from the set {0,1,...,¢—1} is placed in cor-

respondence with the positive number x. Less formally, we have constructed
a sequence of rational numbers of the special form

Tr=0pq" +- -+ ap_ng? ", (2.7)

and such that
T LT <1y +

e (2.8)

In other words, we construct better and better appproximations from
below and from above to the number = using the special sequence (2.7). The
symbol ap ... ap_p ... is a code for the entire sequence {r,}. To recover the
sequence {r,} from this symbol it is necessary to indicate the value of p, the
order of x.

For p > 0 it is customary to place a period or comma after ap; for p < 0,
the convention is to place |p| zeros left of a,, and a period or comma right of
the leftmost zero (we recall that a, # 0).

For example, when g = 10,

123.45:=1-102+2-10* +3-10°+4-1071 +5-.1072,
0.00123:=1-1072+2-107%4+3-1075;

and when g = 2,
1000.001 :=1-23 +1-.273.

Thus the value of a digit in the symbol &, ..., ... depends on the position
it occupies relative to the period or comma.

With this convention, the symbol a, . . . ag. . .. makes it possible to recover
the whole sequence of approximations.

It can be seen by inequalities (2.8) (verify this!) that different sequences
{r.} and {r} }, and therefore different symbols o, ... ag. ... and 0, ... 5. . . .,
correspond to different numbers z and z'.

We now answer the question whether some real number x € R corresponds
to every symbol oy, ... ap.. ... The answer turns out to be negative.

We remark that by virtue of the algorithm just described for obtaining
the numbers ap_,, € {0,1,...,g — 1} successively, it cannot happen that all
these numbers from some point on are equal to g — 1.

Indeed, if

Tn=apq® 4y k@ (gD 4 (g - )P
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for all n > k, that is,

then by (2.8) we have

1
rk+qk—p_qn—p S.’L‘<Tk+qk_p .
Then for any n > k
1\
0<7"k+qk_p_x<qn—_p,

which, as we know from 8% above, is impossible.
It is also useful to note that if at least one of the numbers
Qp—k—1,--+,0p_n i less than ¢ — 1, then instead of (2.9) we can write

1 1
qk_P - qn—P

Tn < T+

or, what is the same

rn + qn%p < 7rE+ pr— (2.10)
We can now prove that any symbol a,, . .. ap. ... composed of the numbers
ar € {0,1,...,q — 1}, and in which there are numbers different from ¢ — 1
with arbitrarily large indices, corresponds to some number x > 0.
Indeed, from the symbol a, ... ap_p, . .. let us construct the sequence {r,}
of the form (2.7). By virtue of the relations ro < r; <1, < ---, taking account

of (2.9) and (2.10), we have

1
qnP

1 1
T‘0ST1S~"S"'<"'§T7L+ SSTl—*—FSTO—*—q—_;(?ll)
The strict inequalities in this last relation should be understood as follows:
every element of the left-hand sequence is less than every element of the right-
hand sequence. This follows from (2.10).

If we now take z = sup rn( = inf (r, + q_("_p))), then the sequence
neN neN
{rn} will satisfy conditions (2.7) and (2.8), that is, the symbol a ... ap—p . ..

corresponds to the number z € R.

Thus, we have established a one-to-one correspondence between the pos-
itive numbers z € R and symbols of the form a,...qq,... f p > 0 or
0,0...004... if p < 0. The symbol assigned to z is called the g-ary rep-
——

|p| zeros
resentation of z; the numbers that occur in the symbol are called its digits,

and the position of a digit relative to the period is called its rank.

We agree to assign to a number z < 0 the symbol for the positive number
—z, prefixed by a negative sign. Finally, we assign the symbol 0.0...0... to
the number 0.
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In this way we have constructed the positional g-ary system of writing
real numbers.

The most useful systems are the decimal system (in common use) and for
technical reasons the binary system (in electronic computers). Less common,
but also used in some parts of computer engineering are the ternary and octal
systems.

Formulas (2.7) and (2.8) show that if only a finite number of digits
are retained in the g-ary expression of z (or, if we wish, we may say that
the others are replaced with zeros), then the absolute error of the result-
ing approximation (2.7) for = does not exceed one unit in the last rank re-
tained.

This observation makes it possible to use the formulas obtained in Para-
graph b to estimate the errors that arise when doing arithmetic operations
on numbers as a result of replacing the exact numbers by the corresponding
approximate values of the form (2.7).

This last remark also has a certain theoretical value. To be specific, if
we identify a real number x with its g-ary expression, as was suggested in
Paragraph b, once we have learned to perform arithmetic operations di-
rectly on the g-ary symbols, we will have constructed a new model of the
real numbers, seemingly of greater value from the computational point of
view.

The main problems that need to be solved in this direction are the fol-
lowing:

To two g-ary symbols it is necessary to assign a new symbol representing
their sum. It will of course be constructed one step at a time. To be specific,
by adding more and more precise rational approximations of the original
numbers, we shall obtain rational approximations corresponding to their sum.
Using the remark made above, one can show that as the precision of the
approximations of the terms increases, we shall obtain more and more g-ary
digits of the sum, which will then not vary under subsequent improvements
in the approximation.

This same problem needs to be solved with respect to multiplication.

Another, less constructive, route for passing from rational numbers to all
real numbers is due to Dedekind.

Dedekind identifies a real number with a cut in the set @ of rational
numbers, that is, a partition of Q into two disjoint sets A and B such that
a < bforall a € A and all b € B. Under this approach to real numbers
our axiom of completeness (continuity) becomes a well-known theorem of
Dedekind. For that reason the axiom of completeness in the form we have
given it is sometimes called Dedekind’s axiom.

To summarize, in the present section we have exhibited the most impor-
tant classes of nurmbers. We have shown the fundamental role played by the
natural and rational numbers. It has been shown how the basic properties of
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these numbers follow from the axiom system® we have adopted. We have given
a picture of various models of the set of real numbers. We have discussed the
computational aspects of the theory of real numbers: estimates of the errors
arising during arithmetical operations with approximate magnitudes, and the
g-ary positional computation system.

2.2.5 Problems and Exercises

1. Using the principle of induction, show that

a) the sum z;+- - -+, of real numbers is defined independently of the insertion
of parentheses to specify the order of addition;

b) the same is true of the product z; - - - Tpn;

O lar+ -+ zal < Jaal o+ foal;

d) |z1---2n| = |21} - - |2Z0);
e) ((m,neN)/\(m<n)) = ((n—m) c N);

f) 1+ 2z)" > 1+ nz for £ > —1 and n € N, equality holding only when n =1
or z = 0 (Bernoulli’s inequality);

g) (a+b)" =a"+ Za™ b+ %a"db2 +---+ %abn_1 +b" (Newton’s

binomial formula);

2. a) Verify that Z and Q are inductive sets.
b) Give examples of inductive sets different from N, Z, Q, and R.

3. Show that an inductive set is not bounded above.

4. a) An inductive set is infinite (that is, equipollent with one of its subsets different
from itself).

b) The set E, = {x € N|z < n} is finite. (We denote card E, by n.)

5. (The Euclidean algorithm) Let m,n € N and m > n. Their greatest common
divisor (ged (m,n) = d € N) can be found in a finite number of steps using the
following algorithm of Euclid involving successive divisions with remainder.

m=qn+n (ri <mn),
n=gqgri+rz (rz2<r),
L m=gratrs  (rs<ra),

To—1 = gey17x + 0.

Then d = 7.

b) If d = ged (m,n), one can choose numbers p,q € Z such that pm + gn = d;
in particular, if m and n are relatively prime, then pm + qn = 1.

8 It was stated by Hilbert in almost the form given above at the turn of the twen-
tieth century. See for example Hilbert, D. Foundations of Geometry, Chap. 111,
§ 13. (Translated from the second edition of Grundlagen der Geometrie, La Salle,
Illinois: Open Court Press, 1971. This section was based on Hilbert’s article
“Uber den Zahlbegriff” in Jahresbericht der deutschen Mathematikervereinigung
8 (1900).).
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6. Try to give your own proof of the fundamental theorem of arithmetic (Paragraph
a in Subsect. 2.2.2).

7. If the product m - n of natural numbers is divisible by a prime p, that is,
m-n =p-k, where k € N, then either m or n is divisible by p.

8. It follows from the fundamental theorem of arithmetic that the set of prime
numbers is infinite.

9. Show that if the natural number n is not of the form k™, where k, m € N, then
the equation £ = n has no rational roots.

10. Show that the expression of a rational number in any g-ary computation system
is periodic, that is, starting from some rank it consists of periodically repeating
groups of digits.

11. Let us call an irrational number o € R well approzimated by rational numbers
if for any natural numbers n, N € N there exists a rational number § such that

_e 1
@ Ngw -

a] <

a) Construct an example of a well-approximated irrational number.

b) Prove that a well-approximated irrational number cannot be algebraic, that
is, it is transcendental (Liouville’s theorem).®

12. Knowing that = :=m - n~! by definition, where m € Z and n € N, derive the
“rules” for addition, multiplication, and division of fractions, and also the condition
for two fractions to be equal.

13. Verify that the rational numbers Q satisfy all the axioms for real numbers
except the axiom of completeness.

14. Adopting the geometric model of the set of real numbers (the real line), show
how to construct the numbers a +b, a — b, ab, and § in this model.

15. a) Illustrate the axiom of completeness on the real line.

b) Prove that the least-upper-bound principle is equivalent to the axiom of
completeness.

16. a) If A C B C R, then sup A < sup B and inf A > inf B.

b)let ROX #Gand RDODY #2. lfz<yforallz e X and all y €Y, then
X is bounded above, Y is bounded below, and sup X < inf Y.

c) If the sets X,Y in b) are such that X UY =R, then supX = infY.

d) If X and Y are the sets defined in c¢), then either X has a maximal element
or Y has a minimal element. ( Dedekind’s theorem.)

e) (Continuation.) Show that Dedekind’s theorem is equivalent to the axiom of
completeness.

9 J. Liouville (1809-1882) - French mathematician, who wrote on complex analysis,
geometry, differential equations, number theory, and mechanics.
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17. Let A+ B be the set of numbers of the form a+b and A - B the set of numbers
of the form a - b, where a € A C R and b € B C R. Determine whether it is always
true that

a) sup{A + B) = sup A + sup B,

b) sup(A - B) =sup A -sup B.

18. Let —A be the set of numbers of the form —a, where a € A C R. Show that
sup(—A) = — inf A.

19. a) Show that for n € N and a > 0 the equation z™ = a has a positive root
(denoted {/a or a*/™).

b) Verify that for a > 0, 6> 0, and n,mm € N
Vab=%a- Vb and }/ ¥Wa= "Ta.

) (a%)m = (am)% =:a™"™ and a}/" - gV/™ = g!/"t1/m™,
d) (am/n)—l — (a—l)m/n = a—m/n'
e} Show that for all ri,m2 € Q

Ty T2 ri+re 172

at-a?=a T2 =gq

and (a
20. a) Show that the inclusion relation is a partial ordering relation on sets (but
not a linear ordering!).

b) Let A, B, and C be sets such that A C C, BC C, A\B # &,and B\A # ©.
We introduce a partial ordering into this triple of sets as in a). Exhibit the maximal
and minimal elements of the set {A, B, C}. (Pay attention to the non-uniqueness!)

21. a) Show that, just like the set Q of rational numbers, the set Q(y/n) of numbers
of the form a + by/n, where a,b € Q and n is a fixed natural number that is not the
square of any integer, is an ordered set satisfying the principle of Archimedes but
not the axiom of completeness.

b) Determine which axioms for the real numbers do not hold for Q(y/n) if the
standard arithmetic operations are retained in Q(y/n) but order is defined by the
rule (a +byn < a' +b'\/n) = ((b <b)v ((b =b)A(a< a')))- Will Q(v/n) now
satisfy the principle of Archimedes?

¢) Order the set P{z] of polynomials with rational or real coefficients by speci-
fying that

Po(z)=av+a1iz+---+amz™ >0, if am>0.

d) Show that the set Q(z) of rational fractions

a0+ a1z + - + amz™
bo+biz+ -+ bz

Rm,n =

with coefficients in Q or R becomes an ordered field, but not an Archimedean
ordered field, when the order relation Rm . > 0 is defined to mean anb, > 0
and the usual arithmetic operations are introduced. This means that the principle
of Archimedes cannot be deduced from the other axioms for R without using the
axiom of completeness.
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22. Let ne Nandn > 1. In the set E, = {0,1,...,n — 1} we define the sum and
product of two elements as the remainders when the usual sum and product in R
are divided by n. With these operations defined on it, the set E,, is denoted Z,.

a) Show that if n is not a prime number, then there are nonzero numbers m, k
in Z,, such that m-k = 0. (Such numbers are called zero divisors.) This means that
in Z, the equation a - b = c - b does not imply that a = ¢, even when b # 0.

b) Show that if p is prime, then there are no zero divisors in Z, and Z, is a
field.

¢) Show that, no matter what the prime p, Z, cannot be ordered in a way
consistent with the arithmetic operations on it.

23. Show that if R and R’ are two models of the set of real numbers and f : R — R’

is a mapping such that f(z +y) = f(z) + f(y) and f(z-y) = f(z) - f(y) for any
z,y € R, then

a) f(0) =0

b) f(1) = 1 if f(z) # 0, which we shall henceforth assume;

c) f(m) = m’ where m € Z and m’ € Z/, and the mapping f : Z — Z' is
injective and preserves the order.

d) f(%) = T:—,,, where myn € Z, n # 0, m',n' € Z', n' # 0, f(m) = m’,
f(n) =n'. Thus f:Q — Q' is a bijection that preserves order.
e) f: R — R’ is a bijective mapping that preserves order.

24. On the basis of the preceding exercise and the axiom of completeness, show
that the axiom system for the set of real numbers determines it completely up to an
isomorphism (method of realizing it), that is, if R and R’ are two sets satisfying these
axioms, then there exists a one-to-one correspondence f : R — R’ that preserves the
arithmetic operations and the order: f(z +y) = f(z) + f(y), flz-y) = f(z)- fly),

and (z <) & (£(2) < )

25. A number z is represented on a computer as
L a
z=x¢" ) T
n=1

k
where p is the order of z and M = S# is the mantissa of the number z
=1
(t<M<). "
Now a computer works only with a certain range of numbers: for ¢ = 2 usually
|p| < 64, and k = 35. Evalute this range in the decimal system.

26. a) Write out the (6 x 6) multiplication table for multiplication in base 6.

b) Using the result of a), multiply “columnwise” in the base-6 system

(5326
X
(145)¢

and check your work by repeating the computation in the decimal system.
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¢) Perform the “long” division

(1301)s |(25)s

and check your work by repeating the computation in the decimal system.

d) Perform the “columnwise” addition

(4052)6
(3125)s

27. Write (100)10 in the binary and ternary systems.

28. a) Show that along with the unique representation of an integer as
(anom—1...00)3,

where o; € {0,1,2}, it can also be written as

(BrnBn-1-..0o)s,

where 8 € {-1,0,1}.

b} What is the largest number of coins from which one can detect a counterfeit
in three weighings with a pan balance, if it is known in advance only that the
counterfeit coin differs in weight from the other coins?

29. What is the smallest number of questions to be answered “yes” or “no” that
one must pose in order to be sure of determining a 7-digit telephone number?

30. a) How many different numbers can one define using 20 decimal digits (for
example, two ranks with 10 possible digits in each)? Answer the same question for
the binary system. Which system does a comparison of the results favor in terms
of efficiency?

b) Evaluate the number of different numbers one can write, having at one’s
disposal n digits of a g-ary system. (Answer: ¢*/9.)

¢) Draw the graph of the function f(z) = 2™/® over the set of natural-number
values of the argument and compare the efficiency of the different systems of com-
putation.

2.3 Basic Lemmas Connected with the Completeness
of the Real Numbers

In this section we shall establish some simple useful principles, each of which
could have been used as the axiom of completeness in our construction of the
real numbers.'0

We have called these principles basic lemmas in view of their extensive
application in the proofs of a wide variety of theorems in analysis.

10 See Problem 4 at the end of this section.
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2.3.1 The Nested Interval Lemma (Cauchy—Cantor Principle)

Definition 1. A function f : N = X of a natural-number argument is called
a sequence or, more fully, a sequence of elements of X.

The value f(n) of the function f corresponding to the number n € N is
often denoted z,, and called the nth term of the sequence.

Definition 2. Let X;,Xs,...,X,,... be a sequence of sets. If X; D X3 D
.- D Xp D -, that is X,, D X4 for all n € N, we say the sequence is
nested.

Lemma. (Cauchy—Cantor). For any nested sequence Iy DI D --- DI, D ---
of closed intervals, there exists a point ¢ € R belonging to all of these intervals.

If in addition it is known that for any € > 0 there is an interval Iy
whose length |Ii| is less than €, then c is the unique point common to all the
intervals.

Proof. We begin by remarking that for any two closed intervals I,, = [am, by]
and I,, = [an, by] of the sequence we have a,, < b,. For otherwise we would
have a,, < bp < ay, < by, that is, the intervals I,,, and I,, would be mutually
disjoint, while one of them (the one with the larger index) is contained in the
other.

Thus the numerical sets A = {am|m € N} and B = {b,|n € N} satisfy
the hypotheses of the axiom of completeness, by virtue of which there is a
number ¢ € R such that a,, < ¢ < b, foralla,, € Aand all by, € B. In
particular, a, < ¢ < b, for all n € N. But that means that the point ¢
belongs to all the intervals I,.

Now let ¢; and c3 be two points having this property. If they are different,
say c; < cg, then for any n € N we have a, < ¢1 < ¢z < b, and therefore
0 < cg —cy < by —ay, so that the length of an interval in the sequence cannot
be less than ¢; — ¢;. Hence if there are intervals of arbitrarily small length in
the sequence, their common point is unique. O

2.3.2 The Finite Covering Lemma (Borel-Lebesgue Principle,
or Heine—Borel Theorem)

Definition 3. A system S = {X} of sets X is said to cover a set Y if

Y ¢ U X, (that is, if every element y € Y belongs to at least one of the
XeSs
sets X in the system S).

A subset of a set S = {X} that is a system of sets will be called a
subsystem of S. Thus a subsystem of a system of sets is itself a system of sets
of the same type.
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Lemma. (Borel-Lebesgue).!! Every system of open intervals covering a
closed interval contains a finite subsystem that covers the closed interval.

Proof. Let S = {U} be a system of open intervals U that cover the closed
interval [a,b] = I . If the interval I; could not be covered by a finite set of
intervals of the system S, then, dividing I; into two halves, we would find
that at least one of the two halves, which we denote by I, does not admit
a finite covering. We now repeat this procedure with the interval I, and so
on.

In this way a nested sequence I D Iy D --- D I, D --- of closed intervals
arises, none of which admit a covering by a finite subsystem of S. Since
the length of the interval I, is |I,,| = |[1] - 27", the sequence {I,} contains
intervals of arbitrarily small length (see the lemma in Paragraph c of Subsect.
2.2.4). But the nested interval theorem implies that there exists a point ¢
belonging to all of the intervals I,,, n € N. Since ¢ € I} = [a, b] there exists
an open interval |o, = U € S containing ¢, that is, @ < ¢ < 3. Let ¢ =
min{c—a, f—c}. In the sequence just constructed, we find an interval I,, such
that |I,| < e. Since ¢ € I, and |I,| < €, we conclude that I,, C U =|a, g[.
But this contradicts the fact that the interval I, cannot be covered by a finite
set of intervals from the system. 0O

2.3.3 The Limit Point Lemma (Bolzano—Weierstrass Principle)

We recall that we have defined a neighborhood of a point z € R to be an open
interval containing the point and the d-neighborhood about z to be the open
interval |z — 6,z + 8].

Definition 4. A point p € R is a limit point of the set X C R if every
neighborhood of the point contains an infinite subset of X.

This condition is obviously equivalent to the assertion that every neigh-
borhood of p contains at least one point of X different from p itself. (Verify
this!)

We now give some examples.

If X = {% eR|ne N}, the only limit point of X is the point 0 € R.

For an open interval ]a, b] every point of the closed interval [a, ] is a limit
point, and there are no others.

For the set Q of rational numbers every point of R is a limit point; for, as
we know, every open interval of the real numbers contains rational numbers.

11 £ Borel (1871-1956) and H. Lebesgue (1875-1941) — well-known French mathe-
maticians who worked in the theory of functions.
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Lemma. (Bolzano-Weierstrass).!? Every bounded infinite set of real numbers
has at least one limit point.

Proof. Let X be the given subset of R. It follows from the definition of bound-
edness that X is contained in some closed interval I C R. We shall show that
at least one point of [ is a limit point of X.

If such were not the case, then each point x € I would have a neighbor-
hood U(z) containing either no points of X or at most a finite number. The
totality of such neighborhoods {U(z)} constructed for the points z € I forms
a covering of I by open intervals U(z). By the finite covering lemma we can
extract a system U(z1),...,U(x,) of open intervals that cover I. But, since
X C I, this same system also covers X. However, there are only finitely many
points of X in U(x;), and hence only finitely many in their union. That is,
X is a finite set. This contradiction completes the proof. O

2.3.4 Problems and Exercises

1. Show that

a) if T is any system of nested closed intervals, then
sup{aER| [a,b] € I} =« Sﬁ:inf{beRl[a,b] € I}

and

[aHB] = m [avb];

[a,bler

b) if I is a system of nested open intervals ]a, b[ the intersection () ]a,b[ may
la,blel
happen to be empty.

Hint: ]an,bn[:]O,%[.

2. Show that

a) from a system of closed intervals covering a closed interval it is not always
possible to choose a finite subsystem covering the interval;

b) from a system of open intervals covering an open interval it is not always
possible to choose a finite subsystem covering the interval,

¢) from a system of closed intervals covering an open interval it is not always
possible to choose a finite subsystem covering the interval.

3. Show that if we take only the set Q of rational numbers instead of the complete
set R of real numbers, taking a closed interval, open interval, and neighborhood of
a point r € @ to mean respectively the corresponding subsets of Q, then none of
the three lemmas proved above remains true.

12 B. Bolzano (1781-1848) — Czech mathematician and philosopher.
K. Weierstrass (1815-1897) — German mathematician who devoted a great deal
of attention to the logical foundations of mathematical analysis.
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4. Show that we obtain an axiom system equivalent to the one already given if we
take as the axiom of completeness

a) the Bolzano—Weierstrass principle

or

b) the Borel-Lebesgue principle (Heine-Borel theorem).

Hint: The principle of Archimedes and the axiom of completeness in the earlier
form both follow from a).

c) Replacing the axiom of completeness by the Cauchy—Cantor principle leads
to a system of axioms that becomes equivalent to the original system if we also
postulate the principle of Archimedes. (See Problem 21 in Subsect. 2.2.2.)

2.4 Countable and Uncountable Sets

We now make a small addition to the information about sets that was pro-
vided in Chap. 1. This addition will be useful below.

2.4.1 Countable Sets

Definition 1. A set X is countable if it is equipollent with the set N of
natural numbers, that is, card X = card N.

Proposition. a) An infinite subset of a countable set is countable.
b) The union of the sets of a finite or countable system of countable sets
is a countable set.

Proof. a) It suffices to verify that every infinite subset E of N is equipollent
with N. We construct the needed bijective mapping f : N — E as follows.
There is a minimal element of Fy := F, which we assign to the number 1 € N
and denote e; € E. The set F is infinite, and therefore Ey := Ej \ e is
nonempty. We assign the minimal element of E5 to the number 2 and call it
ez € Ey. We then consider F3 := E \ {e1,ez2}, and so forth. Since E is an
infinite set, this construction cannot terminate at any finite step with index
n € N. As follows from the principle of induction, we assign in this way a
certain number e, € F to each n € N. The mapping f : N — E is obviously
injective.

It remains to verify that it is surjective, that is, f(N}) = E. Let e € E.
The set {rn € Nfn < e} is finite, and hence the subset of it {n € E|n < ¢}
is also finite. Let k& be the number of elements in the latter set. Then by
construction e = ey.

b) If X;,...,X,,... is a countable system of sets and each set X, =
{z},...,z7,...} is itself countable, then since the cardinality of the set X =

{J X., which consists of the elements x7, where m,n € N, is not less than
neN
the cardinality of each of the sets X,,, it follows that X is an infinite set.
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The element z}, € X,, can be identified with the pair (m,n) of natural
numbers that defines it. Then the cardinality of X cannot be greater than the
cardinality of the set of all such odered pairs. But the mapping f : NxN - N
given by the formula (m,n) — w + m, as one can easily verify,
is bijective. (It has a visualizable meaning: we are enumerating the points of
the plane with coordinates (m,n) by successively passing from points of one
diagonal on which m + n is constant to the points of the next such diagonal,
where the sum is one larger.)

Thus the set of ordered pairs (m, n) of natural numbers is countable. But
then card X < card N, and since X is an infinite set we conclude on the basis
of a) that card X = cardN. O

It follows from the proposition just proved that any subset of a countable
set is either finite or countable. If it is known that a set is either finite
or countable, we say it is at most countable. (An equivalent expression is
card X < cardN.)

We can now assert, in particular, that the union of an at most countable
family of at most countable sets is at most countable.

Corollaries 1) cardZ = card N.

2) card N? = card N.
(This result means that the direct product of countable sets is countable.)

3) card Q = card N, that is, the set of rational numbers is countable.

Proof. A rational number 7' is defined by an ordered pair (m,n) of integers.
Two pairs (m,n) and (m’,n’) define the same rational number if and only if
they are proportional. Thus, choosing as the unique pair representing each
rational number the pair (m,n) with the smallest possible positive integer
denominator n € N, we find that the set @ is equipollent to some infinite
subset of the set Z x Z. But card Z? = card N and hence card Q = cardN. O

4) The set of algebraic numbers is countable.

Proof. We remark first of all that the equality Q x Q = card N implies, by
induction, that card Q% = card N for every k € N.

An element r € QF is an ordered set (ry,...,7%) of k rational numbers.

An algebraic equation of degree k with rational coefficients can be written
in the reduced form z* 4+ r12*~1 4+ ... + r, = 0, where the leading coefficient
is 1. Thus there are as many different algebraic equations of degree k as there
are different ordered sets (rq,...,7%) of rational numbers, that is, a countable
set.

The algebraic equations with rational coefficients (of arbitrary degree)
also form a countable set, being a countable union (over degrees) of countable
sets. Each such equation has ouly a finite number of roots. Hence the set of
algebraic numbers is at most countable. But it is infinite, and hence countable.
[
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2.4.2 The Cardinality of the Continuum

Definition 2. The set R of real numbers is also called the number contin-
uum,'® and its cardinality the cardinality of the continuum.

Theorem.(Cantor). card N < card R.

This theorem asserts that the infinite set R has cardinality greater than
that of the infinite set N.

Proof. We shall show that even the closed interval [0, 1] is an uncountable
set.

Assume that it is countable, that is, can be written as a sequence
Z1,%2,...,%n,... . Take the point z; and on the interval [0,1] = I fix a
closed interval of positive length [; not containing the point z;. In the in-
terval I, construct an interval Iy not containing x,. If the interval I,, has
been constructed, then, since |I,,| > 0, we construct in it an interval I,
so that x,41 ¢ Iny1 and |I,41] > 0. By the nested set lemma, there is a

point ¢ belonging to all of the intervals Iy, Iy,...,I,,... . But this point of
the closed interval Iy = [0,1] by construction cannot be any point of the
sequence T, To,...,Lpy... . U

Corollaries 1) Q # R, and so irrational numbers exist.

2) There exist transcendental numbers, since the set of algebraic numbers is
countable.

(After solving Exercise 3 below, the reader will no doubt wish to reinter-
pret this last proposition, stating it as follows: Algebraic numbers are occa-
stonally encountered among the real numbers.)

At the very dawn of set theory the question arose whether there exist
sets of cardinality between countable sets and sets having cardinality of the
continuum, and the conjecture was made, known as the continuum hypothesis,
that there are no intermediate cardinalities.

The question turned out to involve the deepest parts of the foundations of
mathematics. It was definitively answered in 1963 by the contemporary Amer-
ican mathematician P. Cohen. Cohen proved that the continuum hypothesis
is undecidable by showing that neither the hypothesis nor its negation con-
tradicts the standard axiom system of set theory, so that the continuum
hypothesis can be neither proved nor disproved within that axiom system.
This situation is very similar to the way in which FEuclid’s fifth postulate on
parallel lines is independent of the other axioms of geometry.

2.4.3 Problems and Exercises

1. Show that the set of real numbers has the same cardinality as the points of the
interval | — 1, 1].

13 From the Latin continuum, meaning continuous, or solid.
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2. Give an explicit one-to-one correspondence between
a) the points of two open intervals;
b) the points of two closed intervals;
c¢) the points of a closed interval and the points of an open interval;

d) the points of the closed interval [0,1] and the set R.

3. Show that
a) every infinite set contains a countable subset;

b) the set of even integers has the same cardinality as the set of all natural
numbers.

c) the union of an infinite set and an at most countable set has the same
cardinality as the original infinite set;

d) the set of irrational numbers has the cardinality of the continuum;

e) the set of transcendental numbers has the cardinality of the continuum.

4. Show that

a) the set of increasing sequences of natural numbers {n1 < ny < ---} has the
same cardinality as the set of fractions of the form 0.a1a2 ..

b) the set of all subsets of a countable set has cardinality of the continuum.

5. Show that

a) the set P(X) of subsets of a set X has the same cardinality as the set of all
functions on X with values 0, 1, that is, the set of mappings f: X — {0,1};

b) for a finite set X of n elements, card P(X) = 27;

¢) taking account of the results of Exercises 4b) and 5a), one can write
card P(X) = 2°24 X and, in particular, card P(N) = 2°"" = card R;

d) for any set X
card X < 2°** in particular, n < 2" forany n € N .
Hint: See Cantor’s theorem in Subsect. 1.4.1.
6. Let X1,..., X, be a finite system of finite sets. Show that

card < O X,-) = anrd X —

i=1 i
— ) card(Xi, NXi,)+ Y card (Xi, N Xiy N X)) —
13 <ig i1 <ig<i3z
— ()™ teard (X1 0N X)),

the summation extending over all sets of indices from 1 to m satisfying the inequal-
ities under the summation signs.
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7. On the closed interval [0,1] C R describe the sets of numbers z € [0, 1] whose
ternary representation z = Q.a1azas ..., a; € {0,1,2}, has the property:

a) [63] 7& 1;
b) (a1 # 1) A (o2 # 1);
¢} Vi € N(a; # 1) (the Cantor set).

8. (Continuation of Exercise 7.) Show that

a) the set of numbers z € [0,1] whose ternary representation does not contain
1 has the same cardinality as the set of all numbers whose binary representation
has the form 0.5:1082 ..

b) the Cantor set has the same cardinality as the closed interval [0, 1].



