
Prefaces

Preface to the English Edition

An entire generation of mathematicians has grown up during the time be-
tween the appearance of the first edition of this textbook and the publication
of the fourth edition, a translation of which is before you. The book is famil-
iar to many people, who either attended the lectures on which it is based or
studied out of it, and who now teach others in universities all over the world.
I am glad that it has become accessible to English-speaking readers.

This textbook consists of two parts. It is aimed primarily at university
students and teachers specializing in mathematics and natural sciences, and
at all those who wish to see both the rigorous mathematical theory and
examples of its effective use in the solution of real problems of natural science.

The textbook exposes classical analysis as it is today, as an integral part
of Mathematics in its interrelations with other modern mathematical courses
such as algebra, differential geometry, differential equations, complex and
functional analysis.

The two chapters with which this second book begins, summarize and
explain in a general form essentially all most important results of the first
volume concerning continuous and differentiable functions, as well as differ-
ential calculus. The presence of these two chapters makes the second book
formally independent of the first one. This assumes, however, that the reader
is sufficiently well prepared to get by without introductory considerations of
the first part, which preceded the resulting formalism discussed here. This
second book, containing both the differential calculus in its generalized form
and integral calculus of functions of several variables, developed up to the
general formula of Newton–Leibniz–Stokes, thus acquires a certain unity and
becomes more self-contained.

More complete information on the textbook and some recommendations
for its use in teaching can be found in the translations of the prefaces to the
first and second Russian editions.

Moscow, 2003 V. Zorich
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Preface to the Fourth Russian Edition

In the fourth edition all misprints that the author is aware of have been
corrected.

Moscow, 2002 V. Zorich

Preface to the Third Russian Edition

The third edition differs from the second only in local corrections (although
in one case it also involves the correction of a proof) and in the addition of
some problems that seem to me to be useful.

Moscow, 2001 V. Zorich

Preface to the Second Russian Edition

In addition to the correction of all the misprints in the first edition of which
the author is aware, the differences between the second edition and the first
edition of this book are mainly the following. Certain sections on individual
topics – for example, Fourier series and the Fourier transform – have been
recast (for the better, I hope). We have included several new examples of
applications and new substantive problems relating to various parts of the
theory and sometimes significantly extending it. Test questions are given, as
well as questions and problems from the midterm examinations. The list of
further readings has been expanded.

Further information on the material and some characteristics of this sec-
ond part of the course are given below in the preface to the first edition.

Moscow, 1998 V. Zorich

Preface to the First Russian Edition

The preface to the first part contained a rather detailed characterization of
the course as a whole, and hence I confine myself here to some remarks on
the content of the second part only.

The basic material of the present volume consists on the one hand of
multiple integrals and line and surface integrals, leading to the generalized
Stokes’ formula and some examples of its application, and on the other hand
the machinery of series and integrals depending on a parameter, including
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Fourier series, the Fourier transform, and the presentation of asymptotic
expansions.

Thus, this Part 2 basically conforms to the curriculum of the second year
of study in the mathematics departments of universities.

So as not to impose rigid restrictions on the order of presentation of these
two major topics during the two semesters, I have discussed them practically
independently of each other.

Chapters 9 and 10, with which this book begins, reproduce in compressed
and generalized form, essentially all of the most important results that were
obtained in the first part concerning continuous and differentiable functions.
These chapters are starred and written as an appendix to Part 1. This ap-
pendix contains, however, many concepts that play a role in any exposition
of analysis to mathematicians. The presence of these two chapters makes the
second book formally independent of the first, provided the reader is suffi-
ciently well prepared to get by without the numerous examples and introduc-
tory considerations that, in the first part, preceded the formalism discussed
here.

The main new material in the book, which is devoted to the integral
calculus of several variables, begins in Chapter 11. One who has completed
the first part may begin the second part of the course at this point without
any loss of continuity in the ideas.

The language of differential forms is explained and used in the discussion
of the theory of line and surface integrals. All the basic geometric concepts
and analytic constructions that later form a scale of abstract definitions lead-
ing to the generalized Stokes’ formula are first introduced by using elementary
material.

Chapter 15 is devoted to a similar summary exposition of the integration
of differential forms on manifolds. I regard this chapter as a very desirable
and systematizing supplement to what was expounded and explained using
specific objects in the mandatory Chapters 11–14.

The section on series and integrals depending on a parameter gives, along
with the traditional material, some elementary information on asymptotic
series and asymptotics of integrals (Chap. 19), since, due to its effectiveness,
the latter is an unquestionably useful piece of analytic machinery.

For convenience in orientation, ancillary material or sections that may be
omitted on a first reading, are starred.

The numbering of the chapters and figures in this book continues the
numbering of the first part.

Biographical information is given here only for those scholars not men-
tioned in the first part.

As before, for the convenience of the reader, and to shorten the text, the
end of a proof is denoted by ��. Where convenient, definitions are introduced
by the special symbols := or =: (equality by definition), in which the colon
stands on the side of the object being defined.
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Continuing the tradition of Part 1, a great deal of attention has been
paid to both the lucidity and logical clarity of the mathematical construc-
tions themselves and the demonstration of substantive applications in natural
science for the theory developed.

Moscow, 1982 V. Zorich



10 *Differential Calculus
from a more General Point of View

10.1 Normed Vector Spaces

Differentiation is the process of finding the best local linear approximation of
a function. For that reason any reasonably general theory of differentiation
must be based on elementary ideas connected with linear functions. From the
course in algebra the reader is well acquainted with the concept of a vector
space, as well as linear dependence and independence of systems of vectors,
bases and dimension of a vector space, vector subspaces, and so forth. In the
present section we shall present vector spaces with a norm, or as they are
described, normed vector spaces, which are widely used in analysis. We begin,
however, with some examples of vector spaces.

10.1.1 Some Examples of Vector Spaces in Analysis

Example 1. The real vector space R
n and the complex vector space C

n are
classical examples of vector spaces of dimension n over the fields of real and
complex numbers respectively.

Example 2. In analysis, besides the spaces R
n and C

n exhibited in Example
1, we encounter the space closest to them, which is the space  of sequences
x = (x1, . . . , xn, . . .) of real or complex numbers. The vector-space operations
in , as in R

n and C
n, are carried out coordinatewise. One peculiarity of this

space, when compared with R
n or C

n is that any finite subsystem of the
countable system of vectors {xi = (0, . . . , 0, xi = 1, 0, . . .), i ∈ N} is linearly
independent, that is,  is an infinite-dimensional vector space (of countable
dimension in the present case).

The set of finite sequences (all of whose terms are zero from some point
on) is a vector subspace 

0
of the space , also infinite-dimensional.

Example 3. Let F [a, b] be the set of numerical-valued (real- or complex-
valued) functions defined on the closed interval [a, b]. This set is a vector
space over the corresponding number field with respect to the operations of
addition of functions and multiplication of a function by a number.
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The set of functions of the form

eτ (x) =

⎧
⎨

⎩

0 , if x ∈ [a, b] and x �= τ ,

1 , if x ∈ [a, b] and x = τ

is a continuously indexed system of linearly independent vectors in F [a, b].
The set C[a, b] of continuous functions is obviously a subspace of the space

F [a, b] just constructed.

Example 4. If X1 and X2 are two vector spaces over the same field, there is a
natural way of introducing a vector-space structure into their direct product
X1 × X2, namely by carrying out the vector-space operations on elements
x = (x1, x2) ∈ X1 ×X2 coordinatewise.

Similarly one can introduce a vector-space structure into the direct prod-
uct X1 × · · · ×Xn of any finite set of vector spaces. This is completely anal-
ogous to the cases of R

n and C
n.

10.1.2 Norms in Vector Spaces

We begin with the basic definition.

Definition 1. Let X be a vector space over the field of real or complex
numbers.

A function ‖ ‖ : X → R assigning to each vector x ∈ X a real number
‖x‖ is called a norm in the vector space X if it satisfies the following three
conditions:

a) ‖x‖ = 0⇔ x = 0 (nondegeneracy);
b) ‖λx‖ = |λ| ‖x‖ (homogeneity);
c) ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖ (the triangle inequality).

Definition 2. A vector space with a norm defined on it is called a normed
vector space.

Definition 3. The value of the norm at a vector is called the norm of that
vector.

The norm of a vector is always nonnegative and, as can be seen by a),
equals zero only for the zero vector.

Proof. Indeed, by c), taking account of a) and b), we obtain for every x ∈ X,

0 = ‖0‖ = ‖x + (−x)‖ ≤ ‖x‖+ ‖ − x‖ = ‖x‖+ | − 1| ‖x‖ = 2‖x‖ . ��

By induction, condition c) implies the following general inequality.

‖x1 + · · ·+ xn‖ ≤ ‖x1‖+ · · ·+ ‖xn‖ , (10.1)
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and taking account of b), one can easily deduce from c) the following useful
inequality. ∣∣‖x1‖ − ‖x2‖

∣∣ ≤ ‖x1 − x2‖ . (10.2)

Every normed vector space has a natural metric

d(x1, x2) = ‖x1 − x2‖ . (10.3)

The fact that the function d(x1, x2) just defined satisfies the axioms for a
metric follows immediately from the properties of the norm. Because of the
vector-space structure in X the metric d in X has two additional special
properties:

d(x1 + x, x2 + x) = ‖(x1 + x)− (x2 + x)‖ = ‖x1 − x2‖ = d(x1, x2) ,

that is, the metric is translation-invariant, and

d(λx1, λx2) = ‖λx1 − λx2‖ = ‖λ(x1 − x2)‖ = |λ| ‖x1 − x2‖ = |λ| d(x1, x2) ,

that is, it is homogeneous.

Definition 4. If a normed vector space is complete as a metric space with
the natural metric (10.3), it is called a complete normed vector space or
Banach space.

Example 5. If for p ≥ 1 we set

‖x‖p :=
( n∑

i=1

|xi|p
) 1

p

(10.4)

for x = (x1, . . . , xn) ∈ R
n, it follows from Minkowski’s inequality that we

obtain a norm on R
n. The space R

n endowed with this norm will be denoted
R

n
p .

One can verify that

‖x‖p2 ≤ ‖x‖p1 , if 1 ≤ p1 ≤ p2 , (10.5)

and that
‖x‖p → max

{|x1|, . . . , |xn|} (10.6)

as p → +∞. Thus, it is natural to set

‖x‖∞ := max
{|x1|, . . . , |xn|} . (10.7)

It then follows from (10.4) and (10.5) that

‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1 ≤ n‖x‖∞ for p ≥ 1 . (10.8)

It is clear from this inequality, as in fact it is from the very definition of
the norm ‖x‖p in Eq. (10.4), that R

n
p is a complete normed vector space.
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Example 6. The preceding example can be usefully generalized as follows. If
X = X1 × · · · × Xn is the direct product of normed vector spaces, one can
introduce the norm of a vector x = (x1, . . . , xn) in the direct product by
setting

‖x‖p :=
( n∑

i=1

‖xi‖p

) 1
p

, p ≥ 1 , (10.9)

where ‖xi‖ is the norm of the vector xi ∈ Xi.
Naturally, inequalities (10.8) remain valid in this case as well.
From now on, when the direct product of normed spaces is considered,

unless the contrary is explicitly stated, it is assumed that the norm is defined
in accordance with formula (10.9) (including the case p = +∞).

Example 7. Let p ≥ 1. We denote by p the set of sequences x =

(x1, . . . , xn, . . .) of real or complex numbers such that the series
∞∑

n=1
|xn|p

converges, and for x ∈ p we set

‖x‖p :=
( ∞∑

n=1

|xn|p
) 1

p

. (10.10)

Using Minkowski’s inequality, one can easily see that p is a normed vector
space with respect to the standard vector-space operations and the norm
(10.10). This is an infinite-dimensional space with respect to which R

n
p is a

vector subspace of finite dimension.
All the inequalities (10.8) except the last are valid for the norm (10.10).

It is not difficult to verify that p is a Banach space.

Example 8. In the vector space C[a, b] of numerical-valued functions that are
continuous on the closed interval [a, b], one usually considers the following
norm:

‖f‖ := max
x∈[a,b]

|f(x)| . (10.11)

We leave the verification of the norm axioms to the reader. We remark
that this norm generates a metric on C[a, b] that is already familiar to us (see
Sect. 9.5), and we know that the metric space that thereby arises is complete.
Thus the vector space C[a, b] with the norm (10.11) is a Banach space.

Example 9. One can also introduce another norm in C[a, b]

‖f‖p :=
( b∫

a

|f |p(x) dx

) 1
p

, p ≥ 1 , (10.12)

which becomes (10.11) as p → +∞.
It is easy to see (for example, Sect. 9.5) that the space C[a, b] with the

norm (10.12) is not complete for 1 ≤ p < +∞.



10.1 Normed Vector Spaces 45

10.1.3 Inner Products in Vector Spaces

An important class of normed spaces is formed by the spaces with an inner
product. They are a direct generalization of Euclidean spaces.

We recall their definition.

Definition 5. We say that a Hermitian form is defined in a vector space X
(over the field of complex numbers) if there exists a mapping 〈 , 〉 : X×X → C

having the following properties:
a) 〈x1, x2〉 = 〈x2, x1〉,
b) 〈λx1, x2〉 = λ〈x1, x2〉,
c) 〈x1 + x2, x3〉 = 〈x1, x3〉+ 〈x2, x3〉,

where x1, x2, x3 are vectors in X and λ ∈ C.

It follows from a), b), and c), for example, that

〈x1, λx2〉 = 〈λx2, x1〉 = λ〈x2, x1〉 = λ 〈x2, x1〉 = λ〈x1, x2〉 ;
〈x1, x2 + x3〉 = 〈x2 + x3, x1〉 = 〈x2, x1〉+ 〈x3, x1〉 = 〈x1, x2〉+ 〈x1, x3〉 ;

〈x, x〉 = 〈x, x〉 , that is, 〈x, x〉 is a real number.

A Hermitian form is called nonnegative if
d) 〈x, x〉 ≥ 0

and nondegenerate if
e) 〈x, x〉 = 0⇔ x = 0.
If X is a vector space over the field of real numbers, one must of course

consider a real-valued form 〈x1, x2〉. In this case a) can be replaced by
〈x1, x2〉 = 〈x2, x1〉, which means that the form is symmetric with respect
to its vector arguments x1 and x2.

An example of such a form is the dot product familiar from analytic
geometry for vectors in three-dimensional Euclidean space. In connection
with this analogy we make the following definition.

Definition 6. A nondegenerate nonnegative Hermitian form in a vector
space is called an inner product in the space.

Example 10. An inner product of vectors x = (x1, . . . , xn) and y =
(y1, . . . , yn) in R

n can be defined by setting

〈x, y〉 :=
n∑

i=1

xiyi , (10.13)

and in C
n by setting

〈x, y〉 :=
n∑

i=1

xiyi . (10.14)
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Example 11. In 2 the inner product of the vectors x and y can be defined as

〈x, y〉 :=
∞∑

i=1

xiyi ,

The series in this expression converges absolutely since

2
∞∑

i=1

|xiyi| ≤
∞∑

i=1

|xi|2 +
∞∑

i=1

|yi|2 .

Example 12. An inner product can be defined in C[a, b] by the formula

〈f, g〉 :=

b∫

a

(f · ḡ)(x) dx . (10.15)

It follows easily from properties of the integral that all the requirements
for an inner product are satisfied in this case.

The following important inequality, known as the Cauchy–Bunyakovskii
inequality, holds for the inner product:

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉 , (10.16)

where equality holds if and only if the vectors x and y are collinear.

Proof. Indeed, let a = 〈x, x〉, b = 〈x, y〉, and c = 〈y, y〉. By hypothesis a ≥ 0
and c ≥ 0. If c > 0, the inequalities

0 ≤ 〈x + λy, x + λy〉 = a + b̄λ + bλ̄ + cλλ̄

with λ = − b
c imply

0 ≤ a− b̄b

c
− bb̄

c
+

bb̄

c
or

0 ≤ ac− bb̄ = ac− |b|2 , (10.17)

which is the same as (10.16).
The case a > 0 can be handled similarly.
If a = c = 0, then, setting λ = −b in (10.17), we find 0 ≤ −b̄b−bb̄ = −2|b|2,

that is, b = 0, and (10.16) is again true.
If x and y are not collinear, then 0 < 〈x + λy, x + λy〉 and consequently

inequality (10.16) is a strict inequality in this case. But if x and y are collinear,
it becomes equality as one can easily verify. ��
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A vector space with an inner product has a natural norm:

‖x‖ :=
√
〈x, x〉 (10.18)

and metric
d(x, y) := ‖x− y‖ .

Using the Cauchy–Bunyakovskii inequality, we verify that if 〈x, y〉 is a
nondegenerate nonnegative Hermitian form, then formula (10.18) does indeed
define a norm.

Proof. In fact,
‖x‖ =

√
〈x, x〉 = 0⇔ x = 0 ,

since the form 〈x, y〉 is nondegenerate.
Next,

‖λx‖ =
√
〈λx, λx〉 =

√
λλ̄〈x, x〉 = |λ|

√
〈x, x〉 = |λ| ‖x‖ .

We verify finally that the triangle inequality holds:

‖x + y‖ ≤ ‖x‖+ ‖y‖ .

Thus, we need to show that
√
〈x + y, x + y〉 ≤

√
〈x, x〉+

√
〈y, y〉 ,

or, after we square and cancel, that

〈x, y〉+ 〈y, x〉 ≤ 2
√
〈x, x〉 · 〈y, y〉 .

But
〈x, y〉+ 〈y, x〉 = 〈x, y〉+ 〈x, y〉 = 2Re 〈x, y〉 ≤ 2|〈x, y〉| ,

and the inequality to be proved now follows immediately from the Cauchy–
Bunyakovskii inequality (10.16). ��

In conclusion we note that finite-dimensional vector spaces with an inner
product are usually called Euclidean or Hermitian (unitary) spaces according
as the field of scalars is R or C respectively. If a normed vector space is infinite-
dimensional, it is called a Hilbert space if it is complete in the metric induced
by the natural norm and a pre-Hilbert space otherwise.
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10.1.4 Problems and Exercises

1. a) Show that if a translation-invariant homogeneous metric d(x1, x2) is defined
in a vector space X, then X can be normed by setting ‖x‖ = d(0, x).

b) Verify that the norm in a vector space X is a continuous function with respect
to the topology induced by the natural metric (10.3).

c) Prove that if X is a finite-dimensional vector space and ‖x‖ and ‖x‖′ are two
norms on X, then one can find positive numbers M , N such that

M‖x‖ ≤ ‖x‖′ ≤ N‖x‖ (10.19)

for any vector x ∈ X.

d) Using the example of the norms ‖x‖1 and ‖x‖∞ in the space �, verify that
the preceding inequality generally does not hold in infinite-dimensional spaces.

2. a) Prove inequality (10.5).

b) Verify relation (10.6).

c) Show that as p → +∞ the quantity ‖f‖p defined by formula (10.12) tends
to the quantity ‖f‖ given by formula (10.11).

3. a) Verify that the normed space �p considered in Example 7 is complete.

b) Show that the subspace of �p consisting of finite sequences (ending in zeros)
is not a Banach space.

4. a) Verify that relations (10.11) and (10.12) define a norm in the space C[a, b]
and convince yourself that a complete normed space is obtained in one of these
cases but not in the other.

b) Does formula (10.12) define a norm in the space R[a, b] of Riemann-integrable
functions?

c) What factorization (identification) must one make in R[a, b] so that the
quantity defined by (10.12) will be a norm in the resulting vector space?

5. a) Verify that formulas (10.13)–(10.15) do indeed define an inner product in the
corresponding vector spaces.

b) Is the form defined by formula (10.15) an inner product in the space R[a, b]
of Riemann-integrable functions?

c) Which functions in R[a, b] must be identified so that the answer to part b)
will be positive in the quotient space of equivalence classes?

6. Using the Cauchy–Bunyakovskii inequality, find the greatest lower bound of

the values of the product
(

b∫
a

f(x) dx

)(
b∫

a

(1/f)(x) dx
)

on the set of continuous

real-valued functions that do not vanish on the closed interval [a, b].
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10.2 Linear and Multilinear Transformations

10.2.1 Definitions and Examples

We begin by recalling the basic definition.

Definition 1. If X and Y are vector spaces over the same field (in our case,
either R or C), a mapping A : X → Y is linear if the equalities

A(x1 + x2) = A(x1) + A(x2) ,

A(λx) = λA(x)

hold for any vectors x, x1, x2 in X and any number λ in the field of scalars.
For a linear transformation A : X → Y we often write Ax instead of A(x).

Definition 2. A mapping A : X1 × · · · ×Xn → Y of the direct product of
the vector spaces X1, . . . , Xn into the vector space Y is multilinear (n-linear)
if the mapping y = A(x1, . . . , xn) is linear with respect to each variable for
all fixed values of the other variables.

The set of n-linear mappings A : X1 × · · · × Xn → Y will be denoted
L(X1, . . . , Xn;Y ).

In particular for n = 1 we obtain the set L(X;Y ) of linear mappings from
X1 = X into Y .

For n = 2 a multilinear mapping is called bilinear, for n = 3, trilinear,
and so forth.

One should not confuse an n-linear mapping A ∈ L(X1, . . . , Xn;Y ) with
a linear mapping A ∈ L(X; Y ) of the vector space X = X1 × · · · × Xn (in
this connection see Examples 9–11 below).

If Y = R or Y = C, linear and multilinear mappings are usually called
linear or multilinear functionals. When Y is an arbitrary vector space, a linear
mapping A : X → Y is usually called a linear transformation from X into
Y , and a linear operator in the special case when X = Y .

Let us consider some examples of linear mappings.

Example 1. Let 
0

be the vector space of finite numerical sequences. We define

a transformation A : 
0
→ 

0
as follows:

A
(
(x1, x2, . . . , xn, 0, . . .)

)
:= (1x1, 2x2, . . . , nxn, 0, . . .) .

Example 2. We define the functional A : C[a, b] → R by the relation

A(f) := f(x0) ,

where f ∈ C
(
[a, b], R

)
and x0 is a fixed point of the closed interval [a, b].
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Example 3. We define the functional A : C([a, b], R) → R by the relation

A(f) :=

b∫

a

f(x) dx .

Example 4. We define the transformation A : C([a, b], R) → C([a, b], R) by
the formula

A(f) :=

x∫

a

f(t) dt ,

where x is a point ranging over the closed interval [a, b].

All of these transformations are obviously linear.
Let us now consider some familiar examples of multilinear mappings.

Example 5. The usual product (x1, . . . , xn) �→ x1 · . . . · xn of n real numbers
is a typical example of an n-linear functional A ∈ L(R, . . . , R

︸ ︷︷ ︸
n

; R).

Example 6. The inner product (x1, x2)
A�−→ 〈x1, x2〉 in a Euclidean vector

space over the field R is a bilinear function.

Example 7. The cross product (x1, x2)
A�−→ [x1, x2] of vectors in three-

dimensional Euclidean space E3 is a bilinear transformation, that is, A ∈
L(E3, E3; E3).

Example 8. If X is a finite-dimensional vector space over the field R,
{e1, . . . , en} is a basis in X, and x = xiei is the coordinate representation of
the vector x ∈ X, then, setting

A(x1, . . . , xn) = det

⎛

⎜⎜⎜
⎝

x1
1 · · · xn

1

. . . . . . . . . . .

x1
n · · · xn

n

⎞

⎟⎟⎟
⎠

,

we obtain an n-linear function A : Xn → R.

As a useful supplement to the examples just given, we investigate in ad-
dition the structure of the linear mappings of a product of vector spaces into
a product of vector spaces.

Example 9. Let X = X1 × · · · × Xm be the vector space that is the direct
product of the spaces X1, . . . , Xm, and let A : X → Y be a linear mapping
of X into a vector space Y . Representing every vector x = (x1, . . . , xm) ∈ X
in the form
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x = (x1, . . . , xm) =
= (x1, 0, . . . , 0) + (0, x2, 0, . . . , 0) + · · ·+ (0, . . . , 0, xm) (10.20)

and setting
Ai(xi) := A

(
(0, . . . , 0, xi, 0, . . . , 0)

)
(10.21)

for xi ∈ Xi, i = {1, . . . , m}, we observe that the mappings Ai : Xi → Y are
linear and that

A(x) = A1(x1) + · · ·+ Am(xm) . (10.22)

Since the mapping A : X = X1 × · · · × Xm → Y is obviously linear for
any linear mappings Ai : Xi → Y , we have shown that formula (10.22) gives
the general form of any linear mapping A ∈ L(X = X1 × · · · ×Xm;Y ).

Example 10. Starting from the definition of the direct product Y =
Y1 × · · · × Yn of the vector spaces Y1, . . . , Yn and the definition of a linear
mapping A : X → Y , one can easily see that any linear mapping

A : X → Y = Y1 × · · · × Yn

has the form x �→ Ax = (A1x, . . . , Anx) = (y1, . . . , yn) = y ∈ Y , where
Ai : X → Yi are linear mappings.

Example 11. Combining Examples 9 and 10, we conclude that any linear
mapping

A : X1 × · · · ×Xm = X → Y = Y1 × · · · × Yn

of the direct product X = X1×· · ·×Xm of vector spaces into another direct
product Y = Y1 × · · · × Yn has the form

y =

⎛

⎜⎜⎜
⎝

y1

· · ·

yn

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

A11 · · · A1m

. . . . . . . . . . . . . .

An1 · · · Anm

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

x1

· · ·

xm

⎞

⎟⎟⎟
⎠

= Ax , (10.23)

where Aij : Xj → Yi are linear mappings.
In particular, if X1 = X2 = · · · = Xm = R and Y1 = Y2 = · · · = Yn = R,

then Aij : Xj → Yi are the linear mappings R � x �→ aijx ∈ R, each of which
is given by a single number aij . Thus in this case relation (10.23) becomes
the familiar numerical notation for a linear mapping A : R

m → R
n.

10.2.2 The Norm of a Transformation

Definition 3. Let A : X1 × · · · ×Xn → Y be a multilinear transformation
mapping the direct product of the normed vector spaces X1, . . . , Xn into a
normed space Y .



52 10 *Differential Calculus from a General Viewpoint

The quantity

‖A‖ := sup
x1,...,xn

xi �=0

|A(x1, . . . , xn)|Y
|x1|X1 × · · · × |xn|Xn

, (10.24)

where the supremum is taken over all sets x1, . . . , xn of nonzero vectors in the
spaces X1, . . . , Xn, is called the norm of the multilinear transformation A.

On the right-hand side of Eq. (10.24) we have denoted the norm of a
vector x by the symbol | · | subscripted by the symbol for the normed vector
space to which the vector belongs, rather than the usual symbol ‖ · ‖ for the
norm of a vector. From now on we shall adhere to this notation for the norm
of a vector; and, where no confusion can arise, we shall omit the symbol for
the vector space, taking for granted that the norm (absolute value) of a vector
is always computed in the space to which it belongs. In this way we hope to
introduce for the time being some distinction in the notation for the norm of
a vector and the norm of a linear or multilinear transformation acting on a
normed vector space.

Using the properties of the norm of a vector and the properties of a
multilinear transformation, one can rewrite formula (10.24) as follows:

‖A‖ = sup
x1,...,xn

xi �=0

∣∣∣∣A
( x1

|x1| , . . . ,
xn

|xn|
)∣∣∣∣ = sup

e1,...,en

|A(e1, . . . , en)| , (10.25)

where the last supremum extends over all sets e1, . . . , en of unit vectors in
the spaces X1, . . . , Xn respectively (that is, |ei| = 1, i = 1, . . . , n).

In particular, for a linear transformation A : X → Y , from (10.24) and
(10.25) we obtain

‖A‖ = sup
x�=0

|Ax|
|x| = sup

|e|=1
|Ae| . (10.26)

It follows from Definition 3 for the norm of a multilinear transformation
A that if ‖A‖ < ∞, then the inequality

|A(x1, . . . , xn)| ≤ ‖A‖ |x1| × · · · × |xn| (10.27)

holds for any vectors xi ∈ Xi, i = 1, . . . , n.
In particular, for a linear transformation we obtain

|Ax| ≤ ‖A‖ |x| . (10.28)

In addition, it follows from Definition 3 that if the norm of a multilinear
transformation is finite, it is the greatest lower bound of all numbers M for
which the inequality

|A(x1, . . . , xn)| ≤M |x1| × · · · × |xn| (10.29)

holds for all values of xi ∈ Xi, i = 1, . . . , n.
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Definition 4. A multilinear transformation A : X1 × · · · × Xn → Y is
bounded if there exists M ∈ R such that inequality (10.29) holds for all
values of x1, . . . , xn in the spaces X1, . . . , Xn respectively.

Thus the bounded transformations are precisely those that have a finite
norm.

On the basis of relation (10.26) one can easily understand the geometric
meaning of the norm of a linear transformation in the familiar case A : R

m →
R

n. In this case the unit sphere in R
m maps under the transformation A into

some ellipsoid in R
n whose center is at the origin. Hence the norm of A in

this case is simply the largest of the semiaxes of the ellipsoid.
On the other hand, one can also interpret the norm of a linear transforma-

tion as the least upper bound of the coefficients of dilation of vectors under
the mapping, as can be seen from the first equality in (10.26).

It is not difficult to prove that for mappings of finite-dimensional spaces
the norm of a multilinear transformation is always finite, and hence in par-
ticular the norm of a linear transformation is always finite. This is no longer
true in the case of infinite-dimensional spaces, as can be seen from the first
of the following examples.

Let us compute the norms of the transformations considered in Exam-
ples 1–8.

Example 1′. If we regard 
0

as a subspace of the normed space p, in which

the vector en = (0, . . . , 0
︸ ︷︷ ︸

n−1

, 1, 0, . . .) has unit norm, then, since Aen = nen, it

is clear that ‖A‖ =∞.

Example 2′. If |f | = max
a≤x≤b

|f(x)| ≤ 1, then |Af | = |f(x0)| ≤ 1, and |Af | = 1

if f(x0) = 1, so that ‖A‖ = 1.

We remark that if we introduce, for example, the integral norm

|f | =
b∫

a

|f |(x) dx

on the same vector space C
(
[a, b], R

)
, the result of computing ‖A‖may change

considerably. Indeed, set [a, b] = [0, 1] and x0 = 1. The integral norm of the
function fn = xn on [0, 1] is obviously 1

n+1 , while Afn = Axn = xn
∣∣
x=1 = 1.

It follows that ‖A‖ =∞ in this case.
Throughout what follows, unless the contrary is explicitly stated, the

space C
(
[a, b], R

)
is assumed to have the norm defined by the maximum of

the absolute value of the function on the closed interval [a, b].
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Example 3′. If |f | = max
a≤x≤b

|f(x)| ≤ 1, then

|Af | =
∣∣∣∣

b∫

a

f(x) dx

∣∣∣∣ ≤
b∫

a

|f |(x) dx ≤
b∫

a

1 dx = b− a .

But for f(x) ≡ 1, we obtain |A1| = b− a, and therefore ‖A‖ = b− a.

Example 4′. If |f | = max
a≤x≤b

|f(x)| ≤ 1, then

max
a≤x≤b

∣∣∣∣

x∫

a

f(t) dt

∣∣∣∣ ≤ max
a≤x≤b

∫ x

a

|f |(t) dt ≤ max
a≤x≤b

(x− a) = b− a .

But for |f(t) ≡ 1, we obtain

max
a≤x≤b

x∫

a

1 dt = b− a ,

and therefore in this example ‖A‖ = b− a.

Example 5′. We obtain immediately from Definition 3 that ‖A‖ = 1 in this
case.

Example 6′. By the Cauchy–Bunyakovskii inequality

|〈x1, x2〉| ≤ |x1| · |x2| ,

and if x1 = x2, this inequality becomes equality. Hence ‖A‖ = 1.

Example 7′. We know that
∣∣[x1, x2]

∣∣ = |x1| |x2| sinϕ ,

where ϕ is the angle between the vectors x1 and x2, and therefore ‖A‖ ≤ 1.
At the same time, if the vectors x1 and x2 are orthogonal, then sinϕ = 1.
Thus ‖A‖ = 1.

Example 8′. If we assume that the vectors lie in a Euclidean space of dimen-
sion n, we note that A(x1, . . . , xn) = det(x1, . . . , xn) is the volume of the
parallelepiped spanned by the vectors x1, . . . , xn, and this volume is maxi-
mal if the vectors x1, . . . , xn are made pairwise orthogonal while keeping their
lengths constant.

Thus,
|det(x1, . . . , xn)| ≤ |x1| · . . . · |xn| ,

equality holding for orthogonal vectors. Hence in this case ‖A‖ = 1.
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Let us now estimate the norms of the operators studied in Examples 9–11.
We shall assume that in the direct product X = X1×· · ·×Xm of the normed
spaces X1, . . . , Xm the norm of the vector x = (x1, . . . , xm) is introduced in
accordance with the convention in Sect. 10.1 (Example 6).

Example 9′. Defining a linear transformation

A : X1 × · · · ×Xm = X → Y ,

as has been shown, is equivalent to defining the m linear transformations
Ai : Xi → Y given by the relations Aixi = A

(
(0, . . . , 0, xi, 0, . . . , 0)

)
,

i = 1, . . . , m. When this is done, formula (10.22) holds, by virtue of which

|Ax|Y ≤
m∑

i=1

|Aixi|Y ≤
m∑

i=1

‖Ai‖ |xi|Xi ≤
( m∑

i=1

‖Ai‖
)
|x|X .

Thus we have shown that

‖A‖ ≤
m∑

i=1

‖Ai‖ .

On the other hand, since

|Aixi| =
∣∣A
(
(0, . . . , 0, xi, 0, . . . , 0)

)∣∣ ≤
≤ ‖A‖ ∣∣(0, . . . , 0, xi, 0, . . . , 0)

∣∣
X

= ‖A‖ |xi|Xi
,

we can conclude that the estimate

‖Ai‖ ≤ ‖A‖

also holds for all i = 1, . . . , m.

Example 10′. Taking account of the norm introduce in Y = Y1 × · · · × Yn, in
this case we immediately obtain the two-sided estimates

‖Ai‖ ≤ ‖A‖ ≤
n∑

i=1

‖Ai‖ .

Example 11′. Taking account of the results of Examples 9 and 10, one can
conclude that

‖Aij‖ ≤ ‖A‖ ≤
m∑

i=1

n∑

j=1

‖Aij‖ .
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10.2.3 The Space of Continuous Transformations

From now on we shall not be interested in all linear or multilinear transfor-
mations, only continuous ones. In this connection it is useful to keep in mind
the following proposition.

Proposition 1. For a multilinear transformation A : X1 × · · · × Xn → Y
mapping a product of normed spaces X1, . . . , Xn into a normed space Y the
following conditions are equivalent:

a) A has a finite norm,
b) A is a bounded transformation,
c) A is a continuous transformation,
d) A is continuous at the point (0, . . . , 0) ∈ X1 × · · · ×Xn.

Proof. We prove a closed chain of implications a)⇒ b) ⇒ c)⇒ d) ⇒ a).
It is obvious from relation (10.27) that a)⇒ b).
Let us verify that b) ⇒ c), that is, that (10.29) implies that the operator

A is continuous. Indeed, taking account of the multilinearity of A, we can
write that

A(x1 + h1, x2 + h2, . . . , xn + hn)−A(x1, x2, . . . , xn) =
= A(h1, x2, . . . , xn) + · · ·+ A(x1, x2, . . . , xn−1, hn) =

+ A(h1, h2, x3, . . . , xn) + · · ·+ A(x1, . . . , xn−2, hn−1, hn) +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ A(h1, . . . , hn) .

From (10.29) we now obtain the estimate

|A(x1 + h1, x2 + h2, . . . , xn + hn)−A(x1, x2, . . . , xn) ≤
≤ M

(|h1| · |x2| · . . . · |xn|+ · · ·+ |x1| · |x2| · . . . · |xn−1| · |hn|+
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ |h1| · . . . · |hn|
)

,

from which it follows that A is continuous at each point (x1, . . . , xn) ∈
X1 × · · · ×Xn.

In particular, if (x1, . . . , xn) = (0, . . . , 0) we obtain d) from c).
It remains to be shown that d) ⇒ a).
Given ε > 0 we find δ = δ(ε) > 0 such that |A(x1, . . . , xn)| < ε when

max{|x1|, . . . , |xn|} < δ. Then for any set e1, . . . , en of unit vectors we obtain

|A(e1, . . . , en)| = 1
δn
|A(δe1, . . . , δen)| < ε

δn
,

that is, ‖A‖ < ε
δn < ∞. ��
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We have seen above (Example 1) that not every linear transformation has
a finite norm, that is, a linear transformation is not always continuous. We
have also pointed out that continuity can fail for a linear transformation only
when the transformation is defined on an infinite-dimensional space.

From here on L(X1, . . . , Xn;Y ) will denote the set of c o n t i n u o u s mul-
tilinear transformations mapping the direct product of the normed vector
spaces X1, . . . , Xn into the normed vector space Y .

In particular, L(X;Y ) is the set of continuous linear transformations from
X into Y .

In the set L(X1, . . . , Xn;Y ) we introduce a natural vector-space structure:

(A + B)(x1, . . . , xn) := A(x1, . . . , xn) + B(x1, . . . , xn)

and
(λA)(x1, . . . , xn) := λA(x1, . . . , xn) .

It is obvious that if A, B ∈ L(X1, . . . , Xn; Y ), then (A + B) ∈
L(X1, . . . , Xn;Y ) and (λA) ∈ L(X1, . . . , Xn;Y ).

Thus L(X1, . . . , Xn;Y ) can be regarded as a vector space.

Proposition 2. The norm of a multilinear transformation is a norm in the
vector space L(X1, . . . , Xn;Y ) of continuous multilinear transformations.

Proof. We observe first of all that by Proposition 1 the nonnegative number
‖A‖ < ∞ is defined for every transformation A ∈ L(X1, . . . , Xn; Y ).

Inequality (10.27) shows that

‖A‖ = 0⇔ A = 0 .

Next, by definition of the norm of a multilinear transformation

‖λA‖ = sup
x1,...,xn

xi �=0

(λA)(x1, . . . , xn)|
|x1| · . . . · |xn| =

= sup
x1,...,xn

xi �=0

|λ| |A(x1, . . . , xn)|
|x1| · . . . · |xn| = |λ| ‖A‖ .

Finally, if A and B are elements of the space L(X1, . . . , Xn;Y ), then

‖A + B‖ = sup
x1,...,xn

xi �=0

|(A + B)(x1, . . . , xn)|
|x1| · . . . · |xn| =

= sup
x1,...,xn

xi �=0

|A(x1, . . . , xn) + B(x1, . . . , xn)|
|x1| · . . . · |xn| ≤

≤ sup
x1,...,xn

xi �=0

|A(x1, . . . , xn)|
|x1| · . . . · |xn| + sup

x1,...,xn
xi �=0

|B(x1, . . . , xn)|
|x1| · . . . · |xn| = ‖A‖+ ‖B‖ . ��
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From now on when we use the symbol L(X1, . . . , Xn; Y ) we shall have in
mind the vector space of continuous n-linear transformations normed by this
transformation norm. In particular L(X,Y ) is the normed space of continuous
linear transformations from X into Y .

We now prove the following useful supplement to Proposition 2.

Supplement. If X, Y , and Z are normed spaces and A ∈ L(X;Y ) and
B ∈ L(Y ;Z), then

‖B ◦A‖ ≤ ‖B‖ · ‖A‖ .

Proof. Indeed,

‖B ◦A‖ = sup
x�=0

|(B ◦A)x|
|x| ≤ sup

x�=0

‖B‖ |Ax|
|x| =

= ‖B|| sup
x�=0

|Ax|
|x| = ‖B‖ · ‖A‖ . ��

Proposition 3. If Y is a complete normed space, then L(X1, . . . , Xn;Y ) is
also a complete normed space.

Proof. We shall carry out the proof for the space L(X;Y ) of continuous linear
transformations. The general case, as will be clear from the reasoning below,
differs only in requiring a more cumbersome notation.

Let A1, A2, . . . , An . . . be a Cauchy sequence in L(X;Y ). Since for any
x ∈ X we have

|Amx−Anx| = ∣∣(Am −An)x
∣∣ ≤ ‖Am −An‖ |x| ,

it is clear that for any x ∈ X the sequence A1x, A2x, . . . , Anx, . . . is a Cauchy
sequence in Y . Since Y is complete, it has a limit in Y , which we denote by
Ax.

Thus,
Ax := lim

n→∞ Anx .

We shall show that A : X → Y is a continuous linear transformation.
The linearity of A follows from the relations

lim
n→∞ An(λ1x1 + λ2x2) = lim

n→∞(λ1Anx1 + λ2Anx2) =

λ1 lim
n→∞ Anx1 + λ2 lim

n→∞ Anx2 .

Next, for any fixed ε > 0 and sufficiently large values of m, n ∈ N we have
‖Am −An‖ < ε, and therefore

|Amx−Anx| ≤ ε|x|
at each vector x ∈ X. Letting m tend to infinity in this last relation and
using the continuity of the norm of a vector, we obtain

|Ax−Anx| ≤ ε|x| .
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Thus ‖A−An‖ ≤ ε, and since A = An + (A−An), we conclude that

‖A‖ ≤ ‖An‖+ ε .

Consequently, we have shown that A ∈ L(X;Y ) and ‖A−An‖ → 0 as n →∞,
that is, A = lim

n→∞ An in the sense of the norm of the space L(X;Y ). ��

In conclusion, we make one special remark relating to the space of mul-
tilinear transformations, which we shall need when studying higher-order
differentials.

Proposition 4. For each m ∈ {1, . . . , n} there is a bijection between the
spaces

L(X1, . . . , Xm;L(Xm+1, . . . , Xn;Y )) and L(X1, . . . , Xn;Y )

that preserves the vector-space structure and the norm.

Proof. We shall exhibit this isomorphism.
Let B ∈ L(X1, . . . , Xm;L(Xm+1, . . . , Xn;Y )), that is, B(x1, . . . , xm) ∈

L(Xm+1, . . . , Xn; Y ).
We set

A(x1, . . . , xn) := B(x1, . . . , xm)(xm+1, . . . , xn) . (10.30)

Then

‖B‖ = sup
x1,...,xm

xi �=0

‖B(x1, . . . , xm)‖
|x1| · . . . · |xm| =

= sup
x1,...,xm

xi �=0

sup
xm+1,...,xn

xj �=0

|B(x1, . . . , xm)(xm+1, . . . , xn)|
|xm+1| · . . . · |xn|

|x1| · . . . · |xm| =

= sup
x1,...,xn

xk �=0

|A(x1, . . . , xn)|
|x1| · . . . · |xn| = ‖A‖ .

We leave to the reader the verification that relation (10.30) defines an
isomorphism of these vector spaces. ��

Applying Proposition 4 n times, we find that the space

L(X1;L(X2; . . . ;L(Xn;Y )) · · ·)

is isomorphic to the space L(X1, . . . , Xn;Y ) of n-linear transformations.
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10.2.4 Problems and Exercises

1. a) Prove that if A : X → Y is a linear transformation from the normed space
X into the normed space Y and X is finite-dimensional, then A is a continuous
operator.

b) Prove the proposition analogous to that stated in a) for a multilinear oper-
ator.

2. Two normed vector spaces are isomorphic if there exists an isomorphism between
them (as vector spaces) that is continuous together with its inverse transformation.

a) Show that normed vector spaces of the same finite dimension are isomorphic.
b) Show that for the infinite-dimensional case assertion a) is generally no longer

true.
c) Introduce two norms in the space C

(
[a, b], R

)
in such a way that the identity

mapping of C
(
[a, b], R

)
is not a continuous mapping of the two resulting normed

spaces.

3. Show that if a multilinear transformation of n-dimensional Euclidean space is
continuous at some point, then it is continuous everywhere.

4. Let A : En → En be a linear transformation of n-dimensional Euclidean space
and A∗ : En → En the adjoint to this transformation.

Show the following.
a) All the eigenvalues of the operator A · A∗ : En → En are nonnegative.
b) If λ1 ≤ · · · ≤ λn are the eigenvalues of the operator A ·A∗, then ‖A‖ =

√
λn.

c) If the operator A has an inverse A−1 : En → En, then ‖A−1‖ = 1√
λ1

.

d) If (ai
j) is the matrix of the operator A : En → En in some basis, then the

estimates

max
1≤i≤n

√√√√
n∑

j=1

(ai
j)2 ≤ ‖A‖ ≤

√√√√
n∑

i,j=1

(ai
j)2 ≤ √

n‖A‖

hold.

5. Let P[x] be the vector space of polynomials in the variable x with real coefficients.
We define the norm of the vector P ∈ P[x] by the formula

|P | =

√√√√√
1∫

0

P 2(x) dx.

a) Is the operator D : P[x] → P[x] given by differentiation (D
(
P (x)

)
:= P ′(x))

continuous in the resulting space?
b) Find the norm of the operator F : P[x] → P[x] of multiplication by x, which

acts according to the rule F
(
P (x)

)
= x · P (x).

6. Using the example of projection operators in R
2, show that the inequality ‖B ◦

A‖ ≤ ‖B‖ · ‖A‖ may be a strict inequality.
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10.3 The Differential of a Mapping

10.3.1 Mappings Differentiable at a Point

Definition 1. Let X and Y be normed spaces. A mapping f : E → Y of a
set E ⊂ X into Y is differentiable at an interior point x ∈ E if there exists a
continuous linear transformation L(x) : X → Y such that

f(x + h)− f(x) = L(x)h + α(x;h) , (10.31)

where α(x;h) = o(h) as h → 0, x + h ∈ E.1

Definition 2. The function L(x) ∈ L(X; Y ) that is linear with respect to h
and satisfies relation (10.31) is called the differential, the tangent mapping,
or the derivative of the mapping f : E → Y at the point x.

As before, we shall denote L(x) by df(x), Df(x), or f ′(x).
We thus see that the general definition of differentiability of a mapping

at a point is a nearly verbatim repetition of the one already familiar to us
from Sect. 8.2, where it was considered in the case X = R

m, Y = R
n.

For that reason, from now on we shall allow ourselves to use such concepts
introduced there as increment of a function, increment of the argument, and
tangent space at a point without repeating the explanations, preserving the
corresponding notation.

We shall, however, verify the following proposition in general form.

Proposition 1. If a mapping f : E → Y is differentiable at an interior point
x of a set E ⊂ X, its differential L(x) at that point is uniquely determined.

Proof. Thus we are verifying the uniqueness of the differential.
Let L1(x) and L2(x) be linear mappings satisfying relation (10.31), that

is
f(x + h)− f(x)− L1(x)h = α1(x;h) ,
f(x + h)− f(x)− L2(x)h = α2(x;h) ,

(10.32)

where αi(x;h) = o(h) as h → 0, x + h ∈ E, i = 1, 2.
Then, setting L(x) = L2(x)−L1(x) and α(x; h) = α2(x; h)−α1(x;h) and

subtracting the second equality in (10.32) from the first, we obtain

L(x)h = α(x;h) .

Here L(x) is a mapping that is linear with respect to h, and α(x;h) = o(h)
as h → 0, x+h ∈ E. Taking an auxiliary numerical parameter λ, we can now

1 The notation “α(x; h) = o(h) as h → 0, x + h ∈ E”, of course, means that
lim

h→0, x+h∈E
|α(x; h)|Y · |h|−1

X = 0.
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write

|L(x)h| = |L(x)(λh)|
|λ| =

|α(x; λh)|
|λh| |h| → 0 as λ → 0 .

Thus L(x)h = 0 for any h �= 0 (we recall that x is an interior point of E).
Since L(x)0 = 0, we have shown that L1(x)h = L2(x)h for every value of h.
��

If E is an open subset of X and f : E → Y is a mapping that is dif-
ferentiable at each point x ∈ E, that is, differentiable on E, by the unique-
ness of the differential of a mapping at a point, which was just proved, a
function E � x �→ f ′(x) ∈ L(X;Y ) arises on the set E, which we denote
f ′ : E → L(X;Y ). This mapping is called the derivative of f , or the deriva-
tive mapping relative to the original mapping f : E → Y . The value f ′(x) of
this function at an individual point x ∈ E is the continuous linear transfor-
mation f ′(x) ∈ L(X; Y ) that is the differential or derivative of the function
f at the particular point x ∈ E.

We note that by the requirement of c o n t i n u i t y of the linear mapping
L(x) Eq. (10.31) implies that a mapping that is differentiable at a point is
necessarily continuous at that point.

The converse is of course not true, as we have seen in the case of numerical
functions.

We now make one more important remark.

Remark. If the condition for differentiability of the mapping f at some point
a is written as

f(x)− f(a) = L(x)(x− a) + α(a;x) ,

where α(a;x) = o(x−a) as x → a, it becomes clear that Definition 1 actually
applies to a mapping f : A → B of any affine spaces (A, X) and (B, Y ) whose
vector spaces X and Y are normed. Such affine spaces, called normed affine
spaces, are frequently encountered, so that it is useful to keep this remark in
mind when using the differential calculus.

Everything that follows, unless specifically stated otherwise, applies
equally to both normed vector spaces and normed affine spaces, and we use
the notation for vector spaces only for the sake of simplicity.

10.3.2 The General Rules for Differentiation

The following general properties of the operation of differentiation follow from
Definition 1. In the statements below X, Y , and Z are normed spaces and U
and V open sets in X and Y respectively.
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a. Linearity of Differentiation If the mappings fi : U → Y , i = 1, 2, are
differentiable at a point x ∈ U , a linear combination of them (λ1f1 + λ2f2) :
U → Y is also differentiable at x, and

(λ1f1 + λ2f2)′(x) = λ1f
′
1(x) + λ2f

′
2(x) .

Thus the differential of a linear combination of mappings is the corre-
sponding linear combination of their differentials.

b. Differentiation of a Composition of Mappings (Chain Rule) If the
mapping f : U → V is differentiable at a point x ∈ U ⊂ X, and the mapping
g : V → Z is differentiable at f(x) = y ∈ V ⊂ Y , then the composition g ◦ f
of these mappings is differentiable at x, and

(g ◦ f)′(x) = g′(f(x)
) ◦ f ′(x) .

Thus, the differential of a composition is the composition of the differen-
tials.

c. Differentiation of the Inverse of a Mapping Let f : U → Y be a
mapping that is continuous at x ∈ U ⊂ X and has an inverse f−1 : V → X
that is defined in a neighborhood of y = f(x) and continuous at that point.

If the mapping f is differentiable at x and its tangent mapping f ′(x) ∈
L(X;Y ) has a continuous inverse

[
f ′(x)

]−1 ∈ L(Y ;X), then the mapping
f−1 is differentiable at y = f(x) and

[
f−1]′(f(x)

)
=
[
f ′(x)

]−1
.

Thus, the differential of an inverse mapping is the linear mapping inverse
to the differential of the original mapping at the corresponding point.

We omit the proofs of a, b, and c, since they are analogous to the proofs
given in Sect. 8.3 for the case X = R

m, Y = R
n.

10.3.3 Some Examples

Example 1. If f : U → Y is a constant mapping of a neighborhood U =
U(x) ⊂ X of the point x, that is, f(U) = y0 ∈ Y , then f ′(x) = 0 ∈ L(X; Y ).

Proof. Indeed, in this case it is obvious that

f(x + h)− f(x)− 0h = y0 − y0 − 0 = 0 = o(h) . ��

Example 2. If the mapping f : X → Y is a continuous linear mapping of
a normed vector space X into a normed vector space Y , then f ′(x) = f ∈
L(X;Y ) at any point x ∈ A.
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Proof. Indeed,

f(x + h)− f(x)− fh = fx + fh− fx− fh = 0 . ��

We remark that strictly speaking f ′(x) ∈ L(TXx;TYf(x)) here and h is
a vector of the tangent space TXx. But parallel translation of a vector to
any point x ∈ X is defined in a vector space, and this allows us to identify
the tangent space TXx with the vector space X itself. (Similarly, in the case
of an affine space (A, X) the space TAa of vectors “attached” to the point
a ∈ A can be identified with the vector space X of the given affine space.)
Consequently, after choosing a basis in X, we can extend it to all the tangent
spaces TXx. This means that if, for example, X = R

m, Y = R
n, and the

mapping f ∈ L(Rm; Rn) is given by the matrix (aj
i ), then at every point

x ∈ R
m the tangent mapping f ′(x) : TR

m
x → TR

n
f(x) will be given by the

same matrix.
In particular, for a linear mapping x

f�−→ ax = y from R to R with x ∈ R

and h ∈ TRx ∼ R, we obtain the corresponding mapping TRx � h
f ′
�−→ ah ∈

TRf(x).

Taking account of these conventions, we can provisionally state the result
of Example 2 as follows: The mapping f ′ : X → Y that is the derivative of
a linear mapping f : X → Y of normed spaces is constant, and f ′(x) = f at
each point x ∈ X.

Example 3. From the chain rule for differentiating a composition of mappings
and the result of Example 2 one can conclude that if f : U → Y is a mapping
of a neighborhood U = U(x) ⊂ X of the point x ∈ X and is differentiable at
x, while A ∈ L(Y ;Z), then

(A ◦ f)′(x) = A ◦ f ′(x) .

For numerical functions, when Y = Z = R, this is simply the familiar
possibility of moving a constant factor outside the differentiation sign.

Example 4. Suppose once again that U = U(x) is a neighborhood of the
point x in a normed space X, and let

f : U → Y = Y1 × · · · × Yn

be a mapping of U into the direct product of the normed spaces Y1, . . . , Yn.
Defining such a mapping is equivalent to defining the n mappings fi :

U → Yi, i = 1, . . . , n, connected with f by the relation

x �→ f(x) = y = (y1, . . . , yn) =
(
f1(x), . . . , fn(x)

)
,

which holds at every point of U .
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If we now take account of the fact that in formula (10.31) we have

f(x + h)− f(x) =
(
f1(x + h)− f1(x), . . . , fn(x + h)− fn(x)

)
,

L(x)h =
(
L1(x)h, . . . , Ln(x)h

)
,

α(x; h) =
(
α1(x;h), . . . , αn(x;h)

)
,

then, referring to the results of Example 6 of Sect. 10.1 and Example 10 of
Sect. 10.2, we can conclude that the mapping f is differentiable at x if and
only if all of its components fi : U → Yi are differentiable at x, i = 1, . . . , n;
and when the mapping f is differentiable, we have the equality

f ′(x) =
(
f ′
1(x), . . . , f ′

n(x)
)

.

Example 5. Now let A ∈ L(X1, . . . , Xn;Y ), that is, A is a continuous n-linear
transformation from the product X1 × · · · ×Xn of the normed vector spaces
X1, . . . , Xn into the normed vector space Y .

We shall prove that the mapping

A : X1 × · · · ×Xn = X → Y

is differentiable and find its differential.

Proof. Using the multilinearity of A, we find that

A(x + h)−A(x) = A(x1 + h1, . . . , xn + hn)−A(x1, . . . , xn) =
= A(x1, . . . , xn) + A(h1, x2, . . . , xn) + · · ·+ A(x1, . . . , xn−1, hn) +

+ A(h1, h2, x3, . . . , xn) + · · ·+ A(x1, . . . , xn−2, hn−1, hn) +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ A(h1, . . . , hn)−A(x1, . . . , xn) .

Since the norm in X = X1 × · · · ×Xn satisfies the inequalities

|xi|Xi
≤ |x|X ≤

n∑

i=1

|xi|Xi
,

and the norm ‖A‖ of the transformation A is finite and satisfies

|A(ξ1, . . . , ξn)| ≤ ‖A‖ |ξ1| × · · · × |ξn| ,

we can conclude that

A(x + h)−A(x) = A(x1 + h1, . . . , xn + hn)−A(x1, . . . , xn) =
= A(h1, x2, . . . , xn) + · · ·+ A(x1, . . . , xn−1, hn) + α(x; h) ,

where α(x; h) = o(h) as h → 0.
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But the transformation

L(x)h = A(h1, x2, . . . , xn) + · · ·+ A(x1, . . . , xn−1, hn)

is a continuous transformation (because A is continuous) that is linear in
h = (h1, . . . , hn).

Thus we have established that

A′(x)h = A′(x1, . . . , xn)(h1, . . . , hn) =
= A(h1, x2, . . . , xn) + · · ·+ A(x1, . . . , xn−1, hn) ,

or, more briefly,

dA(x1, . . . , xn) = A(dx1, x2, . . . , xn) + · · ·+ A(x1, . . . xn−1,dxn) . ��

In particular, if:
a) x1 · . . . · xn is the product of n numerical variables, then

d(x1 · . . . · xn) = dx1 · x2 · . . . · xn + · · ·+ x1 · . . . · xn−1 · dxn ;

b) 〈x1, x2〉 is the inner product in E3, then

d〈x1, x2〉 = 〈dx1, x2〉+ 〈x1, dx2〉 ;

c) [x1, x2] is the vector cross product in E3, then

d[x1, x2] = [dx1, x2] + [x1, dx2] ;

d) (x1, x2, x3) is the scalar triple product in E3, then

d(x1, x2, x3) = (dx1, x2, x3) + (x2, dx2, x3) + (x2, x2, dx3) ;

e) det(x1, . . . , xn) is the determinant of the matrix formed from the co-
ordinates of n vectors x1, . . . , xn in an n-dimensional vector space X with a
fixed basis, then

d
(
det(x1, . . . , xn)

)
= det(dx1, x2, . . . , xn) + · · ·+ det(x1, . . . , xn−1,dxn) .

Example 6. Let U be the subset of L(X;Y ) consisting of the continuous
linear transformations A : X → Y having continuous inverse transformations
A−1 : Y → X (belonging to L(Y ;X)). Consider the mapping

U � A �→ A−1 ∈ L(Y ; X) ,

which assigns to each transformation A ∈ U its inverse A−1 ∈ L(Y ;X).
Proposition 2 proved below makes it possible to determine whether this

mapping is differentiable.
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Proposition 2. If X is a complete space and A ∈ U , then for any h ∈
L(X;Y ) such that ‖h‖ < ‖A−1‖−1, the transformation A + h also belongs to
U and the following relation holds:

(A + h)−1 = A−1 −A−1hA−1 + o(h) as h→ 0 . (10.33)

Proof. Since

(A + h)−1 =
(
A(E + A−1h)

)−1 = (E + A−1h)−1A−1 , (10.34)

it suffices to find the operator (E+A−1h)−1 inverse to (E+A−1h) ∈ L(X;X),
where E is the identity mapping eX of X into itself.

Let Δ := −A−1h. Taking account of the supplement to Proposition 2 of
Sect. 10.2, we can observe that ‖Δ‖ ≤ ‖A−1‖·‖h‖, so that by the assumptions
made with respect to the operator h we may assume that ‖Δ‖ ≤ q < 1.

We now verify that

(E −Δ)−1 = E + Δ + Δ2 + · · ·+ Δn + · · · , (10.35)

where the series on the right-hand side is formed from the linear operators
Δn = (Δ ◦ · · · ◦Δ) ∈ L(X; X).

Since X is a complete normed vector space, it follows from Proposition
3 of Sect. 10.2 that the space L(X; X) is also complete. It then follows im-
mediately from the relation ‖Δn‖ ≤ ‖Δ‖n ≤ qn and the convergence of the

series
∞∑

n=0
qn for |q| < 1 that the series (10.35) formed from the vectors in

that space converges.
The direct verification that

(E + Δ + Δ2 + · · ·)(E −Δ) =
= (E + Δ + Δ2 + · · ·)− (Δ + Δ2 + Δ3 + · · ·) = E

and

(E −Δ)(E + Δ + Δ2 + · · ·) =
= (E + Δ + Δ2 + · · ·)− (Δ + Δ2 + Δ3 + · · ·) = E

shows that we have indeed found (E −Δ)−1.
It is worth remarking that the freedom in carrying out arithmetic op-

erations on series (rearranging the terms!) in this case is guaranteed by the
absolute convergence (convergence in norm) of the series under consideration.

Comparing relations (10.34) and (10.35), we conclude that

(A + h)−1 = A−1 −A−1hA−1 + (A−1h)2A−1 − · · ·
· · · +(−1)n(A−1h)nA−1 + · · · (10.36)

for ‖h‖ ≤ ‖A−1‖−1.
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Since
∥∥∥∥

∞∑

n=2

(−A−1h)nA−1
∥∥∥∥ ≤

∞∑

n=2

‖A−1h‖n‖A−1‖ ≤

≤ ‖A−1‖3‖h‖2
∞∑

m=0

qm =
‖A−1‖3
1− q

‖h‖2 ,

Eq. (10.33) follows in particular from (10.36). ��
Returning now to Example 6, we can say that when the space X is com-

plete the mapping A
f�−→ A−1 under consideration is necessarily differen-

tiable, and
df(A)h = d(A−1)h = −A−1hA−1 .

In particular, this means that if A is a nonsingular square matrix and
A−1 is its inverse, then under a perturbation of the matrix A by a matrix h
whose elements are close to zero, we can write the inverse matrix (A + h)−1

in first approximation in the following form:

(A + h)−1 ≈ A−1 −A−1hA−1 .

More precise formulas can obviously be obtained starting from Eq.
(10.36).

Example 7. Let X be a complete normed vector space. The important map-
ping

exp : L(X;X) → L(X;X)

is defined as follows:

expA := E +
1
1!

A +
1
2!

A2 + · · ·+ 1
n!

An + · · · , (10.37)

if A ∈ L(X;X).
The series in (10.37) converges, since L(X; X) is a complete space and

‖ 1
n!A

n‖ ≤ ‖A‖n

n! , while the numerical series
∞∑

n=0

‖A‖n

n! converges.

It is not difficult to verify that

exp(A + h) = expA + L(A)h + o(h) as h →∞ , (10.38)

where

L(A)h = h +
1
2!

(Ah + hA) +
1
3!

(A2h + AhA + hA2) + · · ·

· · ·+ 1
n!

(An−1h + An−2hA + · · ·+ AhAn−2 + hAn−1) + · · ·

and ‖L(A)‖ ≤ exp ‖A‖ = e‖A‖, that is, L(A) ∈ L(L(X;X),L(X;X)
)
.
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Thus, the mapping L(X; X) � A �→ expA ∈ L(X; X) is differentiable at
every value of A.

We remark that if the operators A and h commute, that is, Ah = hA,
then, as one can see from the expression for L(A)h, in this case we have
L(A)h = (expA)h. In particular, for X = R or X = C, instead of (10.38) we
again obtain

exp(A + h) = expA + (expA)h + o(h) as h → 0 . (10.39)

Example 8. We shall attempt to give a mathematical description of the in-
stantaneous angular velocity of a rigid body with a fixed point o (a top).
Consider an orthonormal frame {e1, e2, e3} at the point o rigidly attached to
the body. It is clear that the position of the body is completely characterized
by the position of this orthoframe, and the triple {ė1, ė2, ė3} of instantaneous
velocities of the vectors of the frame obviously give a complete characteriza-
tion of the instantaneous angular velocity of the body. The position of the
frame itself {e1, e2, e3} at time t can be given by an orthogonal matrix (αj

i )
i, j = 1, 2, 3 composed of the coordinates of the vectors e1, e2, e3 with re-
spect to some fixed orthonormal frame in space. Thus, the motion of the top
corresponds to a mapping t �→ O(t) from R (the time axis) into the group
SO(3) of special orthogonal 3× 3 matrices. Consequently, the angular veloc-
ity of the body, which we have agreed to describe by the triple {ė1, ė2, ė3},
is the matrix Ȯ(t) =: (ωj

i )(t) = (α̇j
i )(t), which is the derivative of the matrix

O(t) = (αj
i )(t) with respect to time.

Since O(t) is an orthogonal matrix, the relation

O(t)O∗(t) = E (10.40)

holds at any time t, where O∗(t) is the transpose of O(t) and E is the identity
matrix.

We remark that the product A ·B of matrices is a bilinear function of A
and B, and the derivative of the transposed matrix is obviously the transpose
of the derivative of the original matrix. Differentiating (10.40) and taking
account of these things, we find that

Ȯ(t)O∗(t) + O(t)Ȯ∗(t) = 0

or
Ȯ(t) = −O(t)Ȯ∗(t)O(t) , (10.41)

since O∗(t)O(t) = E.
In particular, if we assume that the frame {e1, e2, e3} coincides with the

spatial frame of reference at time t, then O(t) = E, and it follows from (10.41)
that

Ȯ(t) = −Ȯ∗(t) , (10.42)
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that is, the matrix Ȯ(t) =: Ω(t) = (ωj
i ) of coordinates of the vectors

{ė1, ė2, ė3} in the basis {e1, e2, e3} turns out to be skew-symmetric:

Ω(t) =

⎛

⎝
ω1

1 ω2
1 ω3

1
ω1

2 ω2
2 ω3

2
ω1

3 ω2
3 ω3

3

⎞

⎠ =

⎛

⎝
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ .

Thus the instantaneous angular velocity of a top is actually characterized
by three independent parameters, as follows in our line of reasoning from rela-
tion (10.40) and is natural from the physical point of view, since the position
of the frame {e1, e2, e3}, and hence the position of the body itself, can be
described by three independent parameters (in mechanics these parameters
may be, for example, the Euler angles).

If we associate with each vector ω = ω1e1 + ω2e2 + ω3e3 in the tangent
space at the point o a right-handed rotation of space with angular velocity |ω|
about the axis defined by this vector, it is not difficult to conclude from these
results that at each instant of time t the body has an instantaneous angular
velocity and that the velocity at that time can be adequately described by
the instantaneous angular velocity vector ω(t) (see Problem 5 below).

10.3.4 The Partial Derivatives of a Mapping

Let U = U(a) be a neighborhood of the point a ∈ X = X1 × · · · × Xm in
the direct product of the normed spaces X1, . . . , Xm, and let f : U → Y be
a mapping of U into the normed space V . In this case

y = f(x) = f(x1, . . . , xm) , (10.43)

and hence, if we fix all the variables but xi in (10.43) by setting xk = ak for
k ∈ {1, . . . , m} \ i, we obtain a function

f(a1, . . . , ai−1, xi, ai+1, . . . , am) =: ϕi(xi) , (10.44)

defined in some neighborhood Ui of ai in X.

Definition 3. Relative to the original mapping (10.43) the mapping ϕi :
Ui → Y is called the partial mapping with respect to the variable xi at a ∈ X.

Definition 4. If the mapping (10.44) is differentiable at xi = ai, its deriva-
tive at that point is called the partial derivative or partial differential of f at
a with respect to the variable xi.

We usually denote this partial derivative by one of the symbols

∂if(a) , Dif(a) ,
∂f

∂xi
(a) , f ′

xi
(a) .
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In accordance with these definitions Dif(a) ∈ L(Xi;Y ). More precisely,
Dif(a) ∈ L(TXi(ai);TY

(
f(a)

))
.

The differential df(a) of the mapping (10.43) at the point a (if f is dif-
ferentiable at that point) is often called the total differential in this situation
in order to distinguish it from the partial differentials with respect to the
individual variables.

We have already encountered all these concepts in the case of real-valued
functions of m real variables, so that we shall not give a detailed discussion of
them. We remark only that by repeating our earlier reasoning, taking account
of Example 9 in Sect. 9.2, one can prove easily that the following proposition
holds in general.

Proposition 3. If the mapping (10.43) is differentiable at the point a =
(a1, . . . , am) ∈ X1 × · · · ×Xm = X, it has partial derivatives with respect to
each variable at that point, and the total differential and the partial differen-
tials are related by the equation

df(a)h = ∂1f(a)h1 + · · ·+ ∂mf(a)hm , (10.45)

where h = (h1, . . . , hm) ∈ TX1(a1)× · · · × TXm(am) = TX(a).

We have already shown by the example of numerical functions that the
existence of partial derivatives does not in general guarantee the differentia-
bility of the function (10.43).

10.3.5 Problems and Exercises

1. a) Let A ∈ L(X; X) be a nilpotent operator, that is, there exists k ∈ N such
that Ak = 0. Show that the operator (E − A) has an inverse in this case and that
(E − A)−1 = E + A + · · · + Ak−1.

b) Let D : P[x] → P[x] be the operator of differentiation on the vector space
P[x] of polynomials. Remarking that D is a nilpotent operator, write the operator
exp(aD), where a ∈ R, and show that exp(aD)

(
P (x)

)
= P (x + a) =: Ta

(
P (x)

)
.

c) Write the matrices of the operators D : Pn[x] → Pn[x] and Ta : Pn[x] →
Pn[x] from part b) in the basis ei = xn−i

(n−i)! , 1 ≤ i ≤ n, in the space Pn[x] of real
polynomials of degree n in one variable.

2. a) If A, B ∈ L(X; X) and ∃B−1 ∈ L(X; X), then exp(B−1AB) = B−1(exp A)B.
b) If AB = BA, then exp(A + B) = exp A · exp B.
c) Verify that exp 0 = E and that exp A always has an inverse, namely

(exp A)−1 = exp(−A).

3. Let A ∈ L(X; X). Consider the mapping ϕA : R → L(X; X) defined by the
correspondence R � t �→ exp(tA) ∈ L(X; X). Show the following.

a) The mapping ϕA is continuous.
b) ϕA is a homomorphism of R as an additive group into the multiplicative

group of invertible operators in L(X; X).
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4. Verify the following.
a) If λ1, . . . , λn are the eigenvalues of the operator A ∈ L(Cn; Cn), then

exp λ1, . . . , exp λn are the eigenvalues of exp A.
b) det(exp A) = exp(tr A), where tr A is the trace of the operator A ∈

L(Cn, Cn).
c) If A ∈ L(Rn, Rn), then det(exp A) > 0.
d) If A∗ is the transpose of the matrix A ∈ L(Cn, Cn) and Ā is the matrix

whose elements are the complex conjugates of those of A, then (exp A)∗ = exp A∗

and exp A = exp Ā.

e) The matrix
(−1 0

1 −1

)
is not of the form exp A for any 2 × 2 matrix A.

5. We recall that a set endowed with both a group structure and a topology is
called a topological group or continuous group if the group operation is continuous.
If there is a sense in which the group operation is even analytic, the topological
group is called a Lie group.2

A Lie algebra is a vector space X with an anticommutative bilinear operation
[ , ] : X ×X → X satisfying the Jacobi identity : [[a, b], c] + [[b, c], a] + [[c, a], b] = 0
for any vectors a, b, c ∈ X. Lie groups and algebras are closely connected with each
other, and the mapping exp plays an important role in establishing this connection
(see Problem 1 above).

An example of a Lie algebra is the oriented Euclidean space E3 with the opera-
tion of the vector cross product. For the time being we shall denote this Lie algebra
by LA1.

a) Show that the real 3× 3 skew-symmetric matrices form a Lie algebra (which
we denote LA2) if the product of the matrices A and B is defined as [A, B] =
AB − BA.

b) Show that the correspondence

Ω =

⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠↔ (ω1, ω2, ω3) = ω

is an isomorphism of the Lie algebras LA2 and LA1.
c) Verify that if the skew-symmetric matrix Ω and the vector ω correspond

to each other as shown in b), then the equality Ωr = [ω, r] holds for any vector
r ∈ E3, and the relation PΩP −1 ↔ Pω holds for any matrix P ∈ SO(3).

d) Verify that if R � t �→ O(t) ∈ SO(3) is a smooth mapping, then the matrix
Ω(t) = O−1(t)Ȯ(t) is skew-symmetric.

e) Show that if r(t) is the radius vector of a point of a rotating top and Ω(t) is
the matrix (O−1Ȯ)(t) found in d), then ṙ(t) = (Ωr)(t).

f) Let r and ω be two vectors attached at the origin of E3. Suppose a right-
handed frame has been chosen in E3, and that the space undergoes a right-handed
rotation with angular velocity |ω| about the axis defined by ω. Show that ṙ(t) =
[ω, r(t)] in this case.

2 For the precise definition of a Lie group and the corresponding reference see
Problem 8 in Sect. 15.2.
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g) Summarize the results of d), e), and f) and exhibit the instantaneous angular
velocity of the rotating top discussed in Example 8.

h) Using the result of c), verify that the velocity vector ω is independent of the
choice of the fixed orthoframe in E3, that is, it is independent of the coordinate
system.

6. Let r = r(s) =
(
x1(s), x2(s), x3(s)

)
be the parametric equations of a

smooth curve in E3, the parameter being arc length along the curve (the natu-
ral parametrization of the curve).

a) Show that the vector e1(s) = dr
ds

(s) tangent to the curve has unit length.

b) The vector de1
ds

(s) = d2r
ds2 (s) is orthogonal to e1. Let e2(s) be the unit vector

formed from de1
ds

(s). The coefficient k(s) in the equality de1
ds

(s) = k(s)e2(s) is called
the curvature of the curve at the corresponding point.

c) By constructing the vector e3(s) = [e1(s), e2(s)] we obtain a frame
{e1, e2, e3} at each point, called the Frenet frame3 or companion trihedral of the
curve. Verify the following Frenet formulas:

de1
ds

(s) = k(s)e2(s) ,
de2
ds

(s) = −k(s)e1(s) κ(s)e3(s) ,
de3
ds

(s) = −κ(s)e2(s) .

Explain the geometric meaning of the coefficient κ(s) called the torsion of the
curve at the corresponding point.

10.4 The Finite-increment Theorem
and some Examples of its Use

10.4.1 The Finite-increment Theorem

In our study of numerical functions of several variables in Subsect. 5.3.1 we
proved the finite-increment theorem for them and discussed in detail various
aspects of this important theorem of analysis. In the present section the finite-
increment theorem will be proved in its general form. So that its meaning
will be fully obvious, we advise the reader to recall the discussion in that
subsection and also to pay attention to the geometric meaning of the norm
of a linear operator (see Subsect. 10.2.2).

Theorem 1. (The finite-increment theorem). Let f : U → Y be a continuous
mapping of an open set U of a normed space X into a normed space Y .

If the closed interval [x, x + h] = {ξ ∈ X| ξ = x + θh, 0 ≤ θ ≤ 1} is
contained in U and the mapping f is differentiable at all points of the open
interval ]x, x + h[= {ξ ∈ X| ξ = x + θh, 0 < θ < 1}, then the following

3 J. F. Frenet (1816–1900) – French mathematician.
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estimate holds:

|f(x + h)− f(x)|Y ≤ sup
ξ∈]x,x+h[

‖f ′(ξ)‖L(X;Y )|h|X . (10.46)

Proof. We remark first of all that if we could prove the inequality

|f(x′′)− f(x′)| ≤ sup
ξ∈[x′,x′′]

‖f ′(ξ)‖ |x′′ − x′| (10.47)

in which the supremum extends over the whole interval [x′, x′′], for every
closed interval [x′, x′′] ⊂]x, x + h[, then, using the continuity of f and the
norm together with the fact that

sup
ξ∈[x′,x′′]

‖f ′(ξ)‖ ≤ sup
ξ∈]x,x+h[

‖f ′(ξ)‖ ,

we would obtain inequality (10.46) in the limit as x′ → x and x′′ → x + h.
Thus, it suffices to prove that

|f(x + h)− f(x)| ≤M |h| , (10.48)

where M = sup
0≤θ≤1

‖f ′(x + θh)‖ and the function f is assumed differentiable

on the entire closed interval [x, x + h].
The very simple computation

|f(x3)− f(x1)| ≤ |f(x3)− f(x2)|+ |f(x2)− f(x1)| ≤
≤ M |x3 − x2|+ M |x2 − x1| = M

(|x3 − x2|+ |x2 − x1|
)

=
= M |x3 − x1| ,

which uses only the triangle inequality and the properties of a closed interval,
shows that if an inequality of the form (10.48) holds on the portions [x1, x2]
and [x2, x3] of the closed interval [x1, x3], then it also holds on [x1, x3].

Hence, if estimate (10.48) fails for the closed interval [x, x + h], then by
successive bisections, one can obtain a sequence of closed intervals [ak, bk] ⊂
]x, x + h[ contracting to some point x0 ∈ [x, x + h] such that (10.48) fails on
each interval [ak, bk]. Since x0 ∈ [ak, bk], consideration of the closed intervals
[ak, x0] and [x0, bk] enables us to assume that we have found a sequence of
closed intervals of the form [x0, x0 +hk] ⊂ [x, x+h], where hk → 0 as k →∞
on which

|f(x0 + hk)− f(x0)| > M |hk| . (10.49)

If we prove (10.48) with M replaced by M + ε, where ε is any positive
number, we will still obtain (10.48) as ε → 0, and hence we can also replace
(10.49) by

|f(x0 + hk)− f(x0)| > (M + ε)|hk| (10.49′)
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and we can now show that this is incompatible with the assumption that f
is differentiable at x0.

Indeed, by the assumption that f is differentiable,

|f(x0 + hk)− f(x0)| = |f ′(x0)hk + o(hk)| ≤
≤ ‖f ′(x0)‖ |hk|+ o(|hk|) ≤ (M + ε)|hk|

as hk → 0. ��
The finite-increment theorem has the following useful, purely technical

corollary.

Corollary. If A ∈ L(X; Y ), that is, A is a continuous linear mapping of
the normed space X into the normed space Y and f : U → Y is a mapping
satisfying the hypotheses of the finite-increment theorem, then

|f(x + h)− f(x)−Ah| ≤ sup
ξ∈]x,x+h[

‖f ′(ξ)−A‖ |h| .

Proof. For the proof it suffices to apply the finite-increment theorem to the
mapping

t �→ F (t) = f(x + th)−Ath

of the unit interval [0, 1] ⊂ R into Y , since

F (1)− F (0) = f(x + h)− f(x)−Ah ,

F ′(θ) = f ′(x + θh)h−Ah for 0 < θ < 1 ,

‖F ′(θ)‖ ≤ ‖f ′(x + θh)−A‖ |h| ,
sup

0<θ<1
‖F ′(θ)‖ ≤ sup

ξ∈]x,x+h[
‖f ′(ξ)−A‖ |h| . ��

Remark. As can be seen from the proof of Theorem 1, in its hypotheses there
is no need to require that f be differentiable as a mapping f : U → Y ; it
suffices that its restriction to the closed interval [x, x + h] be a continuous
mapping of that interval and differentiable at the points of the open interval
]x, x + h[.

This remark applies equally to the corollary of the finite-increment theo-
rem just proved.

10.4.2 Some Applications of the Finite-increment Theorem

a. Continuously Differentiable Mappings Let

f : U → Y (10.50)

be a mapping of an open subset U of a normed vector space X into a normed
space Y . If f is differentiable at each point x ∈ U , then, assigning to the
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point x the mapping f ′(x) ∈ L(X; Y ) tangent to f at that point, we obtain
the derivative mapping

f ′ : U → L(X; Y ) . (10.51)

Since the space L(X;Y ) of continuous linear transformations from X into
Y is, as we know, a normed space (with the transformation norm), it makes
sense to speak of the continuity of the mapping (10.51).

Definition. When the derivative mapping (10.51) is continuous in U , the
mapping (10.50), in complete agreement with our earlier terminology, will be
said to be continuously differentiable.

As before, the set of continuously differentiable mappings of type (10.50)
will be denoted by the symbol C(1)(U, Y ), or more briefly, C(1)(U), if it is
clear from the context what the range of the mapping is.

Thus, by definition

f ∈ C(1)(U, Y ) ⇔ f ′ ∈ C
(
U,L(X; Y )

)
.

Let us see what continuous differentiability of a mapping means in differ-
ent particular cases.

Example 1. Consider the familiar situation when X = Y = R, and hence
f : U → R is a real-valued function of a real argument. Since any linear
mapping A ∈ L(R; R) reduces to multiplication by some number a ∈ R, that
is, Ah = ah and obviously ‖A‖ = |a|, we find that f ′(x)h = a(x)h, where
a(x) is the numerical derivative of the function f at the point x.

Next, since
(
f ′(x + δ) − f ′(x)

)
h = f ′(x + δ)h− f ′(x)h =

= a(x + δ)h− a(x)h =
(
a(x + δ)− a(x)

)
h , (10.52)

it follows that
‖f ′(x + δ)− f ′(x)‖ = |a(x + δ)− a(x)|

and hence in this case continuous differentiability of the mapping f is equiv-
alent to the concept of a continuously differentiable numerical function (of
class C(1)(U, R)) studied earlier.

Example 2. This time suppose that X is the direct product X1 × · · · × Xn

of normed spaces. In this case the mapping (10.50) is a function f(x) =
f(x1, . . . , xm) of m variables xi ∈ Xi, i = 1, . . . , m, with values in Y .

If the mapping f is differentiable at x ∈ U , its differential df(x) at that
point is an element of the space L(X1 × · · · ×Xm = X;Y ).

The action of df(x) on a vector h = (h1, . . . , hm), by formula (10.45), can
be represented as

df(x)h = ∂1f(x)h1 + · · ·+ ∂mf(x)hm ,
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where ∂if(x) : Xi → Y , i = 1, . . . , m, are the partial derivatives of the
mapping f at the point x under consideration.

Next,

(
df(x + δ)− df(x)

)
h =

m∑

i=1

(
∂if(x + δ)− ∂if(x)

)
hi . (10.53)

But by the properties of the standard norm in the direct product of normed
spaces (see Example 6 in Subsect. 10.1.2) and the definition of the norm of
a transformation, we find that

‖∂if(x + δ)− ∂if(x)‖L(Xi;Y ) ≤ ‖df(x + δ) − df(x)‖L(X;Y ) ≤

≤
m∑

i=1

‖∂if(x + δ) − ∂if(x)‖L(Xi;Y ) . (10.54)

Thus in this case the differentiable mapping (10.50) is continuously differen-
tiable in U if and only if all its partial derivatives are continuous in U .

In particular, if X = R
m and Y = R, we again obtain the familiar concept

of a continuously differentiable numerical function of m real variables (a
function of class C(1)(U, R), where U ⊂ R

m).

Remark. It is worth noting that in writing (10.52) and (10.53) we have made
essential use of the canonical identification TXx ∼ X, which makes it possible
to compare or identify vectors lying in different tangent spaces.

We shall now show that continuously differentiable mappings satisfy a
Lipschitz condition.

Proposition 1. If K is a convex compact set in a normed space X and
f ∈ C(1)(K, Y ), where Y is also a normed space, then the mapping f : K → Y
satisfies a Lipschitz condition on K, that is, there exists a constant M > 0
such that the inequality

|f(x2)− f(x1)| ≤M |x2 − x1| (10.55)

holds for any points x1, x2 ∈ K.

Proof. By hypothesis f ′ : K → L(X;Y ) is a continuous mapping of the
compact set K into the metric space L(X; Y ). Since the norm is a continuous
function on a normed space with its natural metric, the mapping x �→ ‖f ′(x)‖,
being the composition of continuous functions, is itself a continuous mapping
of the compact set K into R. But such a mapping is necessarily bounded.
Let M be a constant such that ‖f ′(x)‖ ≤ M at any point x ∈ K. Since K is
convex, for any two points x1 ∈ K and x2 ∈ K the entire interval [x1, x2] is
contained in K. Applying the finite-increment theorem to that interval, we
immediately obtain relation (10.55). ��
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Proposition 2. Under the hypotheses of Proposition 1 there exists a non-
negative function ω(δ) tending to 0 as δ → +0 such that

|f(x + h)− f(x)− f ′(x)h| ≤ ω(δ)|h| (10.56)

at any point x ∈ K for |h| < δ if x + h ∈ K.

Proof. By the corollary to the finite-increment theorem we can write

|f(x + h)− f(x)− f ′(x)h| ≤ sup
0<θ<1

‖f ′(x + θh)− f ′(x)‖ |h|

and, setting
ω(δ) = sup

x1,x2∈K
|x1−x2|<δ

‖f ′(x2)− f ′(x1)‖ ,

we obtain (10.56) in view of the uniform continuity of the function x �→ f ′(x),
which is continuous on the compact set K. ��
b. A Sufficient Condition for Differentiability We shall now show that
by using the general finite-increment theorem, we can obtain a general suffi-
cient condition for differentiability of a mapping in terms of its partial deriva-
tives.

Theorem 2. Let U be a neighborhood of the point x in a normed space X =
X1 × · · · ×Xm, which is the direct product of the normed spaces X1 × · · · ×
Xm, and let f : U → Y be a mapping of U into a normed space Y . If the
mapping f has partial derivatives with respect to all its variables in U , then
it is differentiable at the point x if the partial derivatives are all continuous
at that point.

Proof. To simplify the writing we carry out the proof for the case m = 2. We
verify immediately that the mapping

Lh = ∂1f(x)h1 + ∂2f(x)h2 ,

which is linear in h = (h1, h2), is the total differential of f at x.
Making the elementary transformations

f(x + h)− f(x)− Lh =
= f(x1 + h1, x2 + h2)− f(x1, x2)− ∂1f(x)h1 − ∂2f(x)h2 =
= f(x1 + h1, x2 + h2)− f(x1, x2 + h2)− ∂1f(x1, x2)h1 +

+ f(x1, x2 + h2)− f(x1, x2)− ∂2f(x1, x2)h2 ,

by the corollary to Theorem 1 we obtain

|f(x1 + h1, x2 + h2)− f(x1, x2) − ∂1f(x1, x2)h1 − ∂2f(x1, x2)h2| ≤
≤ sup

0<θ1<1
‖∂1f(x1 + θ1h1, x2 + h2)− ∂1f(x1, x2)‖ |h1|+

+ sup
0<θ2<1

‖∂2f(x1, x2 + θ2h2)− ∂2f(x1, x2)‖ |h2| . (10.57)
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Since max{|h1|, |h2} ≤ |h|, it follows obviously from the continuity of the
partial derivatives ∂1f and ∂2f at the point x = (x1, x2) that the right-hand
side of inequality (10.57) is o(h) as h = (h1, h2) → 0. ��

Corollary. A mapping f : U → Y of an open subset U of the normed space
X = X1 × · · · ×Xm into a normed space Y is continuously differentiable if
and only if all the partial derivatives of the mapping f are continuous.

Proof. We have shown in Example 2 that when the mapping f : U → Y is
differentiable, it is continuously differentiable if and only if its partial deriva-
tives are continuous.

We now see that if the partial derivatives are continuous, then the map-
ping f is automatically differentiable, and hence (by Example 2) also contin-
uously differentiable. ��

10.4.3 Problems and Exercises

1. Let f : I → Y be a continuous mapping of the closed interval I = [0, 1] ⊂ R into
a normed space Y and g : I → R a continuous real-valued function on I. Show that
if f and g are differentiable in the open interval ]0, 1[ and the relation ‖f ′(t)‖ ≤ g′(t)
holds at points of this interval, then the inequality |f(1)− f(0)| ≤ g(1)− g(0) also
holds.

2. a) Let f : I → Y be a continuously differentiable mapping of the closed interval
I = [0, 1] ⊂ R into a normed space Y . It defines a smooth path in Y . Define the
length of that path.

b) Recall the geometric meaning of the norm of the tangent mapping and give
an upper bound for the length of the path considered in a).

c) Give a geometric interpretation of the finite-increment theorem.

3. Let f : U → Y be a continuous mapping of a neighborhood U of the point a in
a normed space X into a normed space Y . Show that if f is differentiable in U \ a
and f ′(x) has a limit L ∈ L(X; Y ) as x → a, then the mapping f is differentiable
at a and f ′(a) = L.

4. a) Let U be an open convex subset of a normed space X and f : U → Y a
mapping of U into a normed space Y . Show that if f ′(x) ≡ 0 on U , then the
mapping f is constant.

b) Generalize the assertion of a) to the case of an arbitrary domain U (that is,
when U is an open connected subset of X).

c) The partial derivative ∂f
∂y

of a smooth function f : D → R defined in a domain
D ⊂ R

2 of the xy-plane is identically zero. Is it true that f is then independent of
y in this domain? For which domains D is this true?
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10.5 Higher-order Derivatives

10.5.1 Definition of the nth Differential

Let U be an open set in a normed space X and

f : U → Y (10.58)

a mapping of U into a normed space Y .
If the mapping (10.58) is differentiable in U , then the derivative of f ,

given by
f ′ : U → L(X; Y ) , (10.59)

is defined in U .
The space L(X;Y ) =: Y1 is a normed space relative to which the mapping

(10.59) has the form (10.58), that is, f ′ : U → Y1, and it makes sense to speak
of differentiability for it.

If the mapping (10.59) is differentiable, its derivative

(f ′)′ : U → L(X;Y1) = L(X;L(X; Y ))

is called the second derivative or second differential of f and denoted f ′′ or
f (2). In general, we adopt the following inductive definition.

Definition 1. The derivative of order n ∈ Nor nth differential of the map-
ping (10.58) at the point x ∈ U is the mapping tangent to the derivative of
f of order n− 1 at that point.

If the derivative of order k ∈ N at the point x ∈ U is denoted f (k)(x),
Definition 1 means that

f (n)(x) :=
(
f (n−1))′(x) . (10.60)

Thus, if f (n)(x) is defined, then

f (n)(x) ∈ L(X; Yn) = L(X;L(X;Yn−1)) = · · ·
· · · = L(X;L(X; . . . ;L(X;Y )) . . .) .

Consequently, by Proposition 4 of Sect. 10.2, f (n)(x), the differential of order
n of the mapping (10.58) at the point x can be interpreted as an element of
the space L(X, . . . , X

︸ ︷︷ ︸
n factors

;Y ) of continuous n-linear transformations.

We note once again that the tangent mapping f ′(x) : TXx → TYf(x) is
a mapping of tangent spaces, each of which, because of the affine or vector-
space structure of the spaces being mapped, we have identified with the
corresponding vector space and said on that basis that f ′(x) ∈ L(X;Y ).
It is this device of regarding elements f ′(x1) ∈ L(TXx1 ; TYf(x1)) and
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f ′(x2) ∈ L(TXx2 , TYf(x2)), which lie in different spaces, as vectors in the
same space L(X; Y ) that provides the basis for defining higher-order dif-
ferentials of mappings of normed vector spaces. In the case of an affine or
vector space there is a natural connection between vectors in the different
tangent spaces corresponding to different points of the original space. In the
final analysis, it is this connection that makes it possible to speak of the
continuous differentiability of both the mapping (10.58) and its higher-order
differentials.

10.5.2 Derivative with Respect to a Vector and Computation
of the Values of the nth Differential

When we are making the abstract Definition 1 specific, the concept of the
derivative with respect to a vector may be used to advantage. This concept
is introduced for the general mapping (10.58) just as was done earlier in the
case X = R

m, Y = R.

Definition 2. If X and Y are normed vector spaces over the field R, the
derivative of the mapping (10.58) with respect to the vector h ∈ TXx ∼ X at
the point x ∈ U is defined as the limit

Dhf(x) := lim
R
t→0

f(x + th)− f(x)
t

,

provided this limit exists.

It can be verified immediately that

Dλhf(x) = λDhf(x) (10.61)

and that if the mapping f is differentiable at the point x ∈ U , it has a
derivative at that point with respect to every vector; moreover

Dhf(x) = f ′(x)h , (10.62)

and, by the linearity of the tangent mapping,

Dλ1h1+λ2h2f(x) = λ1Dh1f(x) + λ2Dh2f(x) . (10.63)

It can also be seen from Definition 2 that the value Dhf(x) of the deriva-
tive of the mapping f : U → Y with respect to a vector is an element of the
vector space TYf(x) ∼ Y , and that if L is a continuous linear transformation
from Y to a normed space Z, then

Dh(L ◦ f)(x) = L ◦Dhf(x) . (10.64)

We shall now try to give an interpretation to the value f (n)(h1, . . . , hn)
of the nth differential of the mapping f at the point x on the set (h1, . . . , hn)
of vectors hi ∈ TXx ∼ X, i = 1, . . . , n.
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We begin with n = 1. In this case, by formula (10.62)

f ′(x)(h) = f ′(x)h = Dhf(x) .

We now consider the case n = 2. Since f (2)(x) ∈ L(X;L(X; Y )), fixing a
vector h1 ∈ X, we assign a linear transformation

(
f (2)(x)h1

) ∈ L(X;Y ) to
it by the rule

h1 �→ f (2)(x)h1 .

Then, after computing the value of this operator at the vector h2 ∈ X, we
obtain an element of Y :

f (2)(x)(h1, h2) :=
(
f (2)(x)h1

)
h2 ∈ Y . (10.65)

But
f (2)(x)h = (f ′)′(x)h = Dhf ′(x) ,

and therefore
f (2)(x)(h1, h2) =

(
Dh1f

′(x)
)
h2 . (10.66)

If A ∈ L(X;Y ) and h ∈ X, this pairing with Ah can be regarded not
only as a mapping h �→ Ah from X into Y , but as a mapping A �→ Ah from
L(X; Y ) into Y , the latter mapping being linear, just like the former.

Comparing relations (10.62), (10.64), and (10.66), we can write
(
Dh1f

′(x)
)
h2 = Dh1

(
f ′(x)h2

)
= Dh1Dh2f(x) .

Thus we finally obtain

f (2)(x)(h1, h2) = Dh1Dh2f(x) .

Similarly, one can show that the relation

f (n)(x)(h1, . . . , hn) :=
(
. . . (f (n)(x)h1) . . . hn

)
= Dh1Dh2 · · ·Dhnf(x)

(10.67)
holds for any n ∈ N, the differentiation with respect to the vectors being
carried out sequentially, starting with differentiation with respect to hn and
ending with differentiation with respect to h1.

10.5.3 Symmetry of the Higher-order Differentials

In connection with formula (10.67), which is perfectly adequate for compu-
tation as it now stands, the question naturally arises: To what extent does
the result of the computation depend on the order of differentiation?

Proposition. If the form f (n)(x) is defined at the point x for the mapping
(10.58), it is symmetric with respect to any pair of its arguments.
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Proof. The main element in the proof is to verify that the proposition holds
in the case n = 2.

Let h1 and h2 be two arbitrary fixed vectors in the space TXx ∼ X. Since
U is open in X, the following auxiliary function of t is defined for all values
of t ∈ R sufficiently close to zero:

Ft(h1, h2) = f(x + t(h1 + h2))− f(x + th1)− f(x + th2) + f(x) .

We consider also the following auxiliary function:

g(v) = f(x + t(h1 + v))− f(x + tv) ,

which is certainly defined for vectors v that are collinear with the vector h2
and such that |v| ≤ |h2|.

We observe that
Ft(h1, h2) = g(h2)− g(0) .

We further observe that, since the function f : U → Y has a second
differential f ′′(x) at the point x ∈ U , it must be differentiable at least in
some neighborhood of x. We shall assume that the parameter t is sufficiently
small that the arguments on the right-hand side of the equality that defines
Ft(h1, h2) lie in that neighborhood.

We now make use of these observations and the corollary of the mean-
value theorem in the following computations:

|Ft(h1, h2)− t2f ′′(x)(h1, h2)| =
= |g(h2)− g(0)− t2f ′′(x)(h1, h2)| ≤
≤ sup

0<θ2<1
‖g′(θ2h2)− t2f ′′(x)h1‖ |h2| =

= sup
0<θ2<1

‖(f ′(x + t(h1 + θ2h2))− f ′(x + tθ2h2))t− t2f ′′(x)h1‖ |h2| .

By definition of the derivative mapping we can write that

f ′(x + t(h1 + θ2h2)
)

= f ′(x) + f ′′(x)
(
t(h1 + θ2h2)

)
+ o(t)

and
f ′(x + tθ2h2) = f ′(x) + f ′′(x)(tθ2h2) + o(t)

as t → 0. Taking this relation into account, one can continue the preceding
computation, finding after cancellation that

|Ft(h1, h2)− t2f ′′(x)(h1, h2)| = o(t2)

as t → 0. But this equality means that

f ′′(x)(h2, h2) = lim
t→0

Ft(h1, h2)
t2

.



84 10 *Differential Calculus from a General Viewpoint

Since it is obvious that Ft(h1, h2) = Ft(h2, h1), it follows from this relation
that f ′′(x)(h1, h2) = f ′′(x)(h2, h1).

One can now complete the proof of the proposition by induction, repeating
verbatim what was said in the proof that the values of the mixed partial
derivatives are independent of the order of differentiation. ��

Thus we have shown that the nth differential of the mapping (10.58) at
the point x ∈ U is a symmetric n-linear transformation

f (n)(x) ∈ L(TXx, . . . , TXx;TYf(x)) ∼ L(X, . . . , X;Y )

whose value on the set (h1, . . . , hn) of vectors hi ∈ TXx = X, i = 1, . . . , n,
can be computed by formula (10.67).

If X is a finite-dimensional space having a basis {e1, . . . , ek} and hj = hi
jei

is the expansion of the vector hj , j = 1, . . . , n, with respect to that basis,
then by the multilinearity of f (n)(x) we can write

f (n)(x)(h1, . . . , hn) = f (n)(x)(hi1
1 ei1 , . . . , h

in
n ein

) =

= f (n)(x)(ei1 , . . . , ein)hi1
1 · . . . · hin

n .

Using our earlier notation ∂i1···inf(x) for De1 · · ·Denf(x), we find finally that

f (n)(x)(h1, . . . , hn) = ∂i1···inf(x)hi1
1 · · ·hin

n ,

where as usual summation extends over the repeated indices on the right-
hand side within their range of variation, that is, from 1 to k.

Let us agree to use the following abbreviation:

f (n)(x)(h, . . . , h) =: f (n)(x)hn . (10.68)

In particular, if we are discussing a finite-dimensional space X and h =
hiei, then

f (n)(x)hn = ∂i1···in
f(x)hi1 · . . . · hin ,

which is already very familiar to us from the theory of numerical functions
of several variables.

10.5.4 Some Remarks

In connection with the notation (10.68) consider the following example, which
is quite useful and will be used in the next section.

Example. Let A ∈ L(X1, . . . , Xn;Y ), that is, y = A(x1, . . . , xn) is a contin-
uous n-linear transformation from the product of the normed vector spaces
X1, . . . , Xn into the normed vector space Y .

It was shown in Example 5 of Sect. 10.4 that A is a differentiable mapping
A : X1 × · · · ×Xn → Y and
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A′(x1, . . . , xn)(h1, . . . , hn) =
= A(h1, x2, . . . , xn) + · · ·+ A(x1, . . . , xn−1, hn) .

Thus, if X1 = · · · = Xn = X and A is symmetric, then

A′(x, . . . , x)(h, . . . , h) = nA(x, . . . , x
︸ ︷︷ ︸

n−1

, h) =: (nAxn−1)h .

Hence, if we consider the function F : X → Y defined by the condition

X � x �→ F (x) = A(x, . . . , x) =: Axn ,

it turns out to be differentiable and

F ′(x)h = (nAxn−1)h ,

that is, in this case
F ′(x) = nAxn−1 ,

where Axn−1 := A(x, . . . , x
︸ ︷︷ ︸

n−1

, ·).

In particular, if the mapping (10.58) has a differential f (n)(x) at a point
x ∈ U , then the function F (h) = f (n)(x)hn is differentiable, and

F ′(h) = nf (n)(x)hn−1 . (10.69)

To conclude our discussion of the concept of an nth-order derivative, it is
useful to add the remark that if the original function (10.58) is defined on a
set U in a space X that is the direct product of normed spaces X1, . . . , Xm,
one can speak of the first-order partial derivatives ∂1f(x), . . . , ∂mf(x) of f
with respect to the variables xi ∈ Xi, i = 1, . . . , m, and the higher-order
partial derivatives ∂i1···in

f(x).
On the basis of Theorem 2 of Sect. 10.4, we obtain by induction in this

case that if all the partial derivatives ∂i1···inf(x) of a mapping f : U → Y
are continuous at a point x ∈ X = X1 × · · · ×Xm, then the mapping f has
an n-th order differential f (n)(x) at that point.

If we also take account of the result of Example 2 from the same sec-
tion, we can conclude that the mapping U � x �→ f (n)(x) ∈ L(X, . . . , X

︸ ︷︷ ︸
n factors

;Y )

is continuous if and only if all the nth-order partial derivatives U � x �→
∂i1···in

f(x) ∈ L(Xi1 , . . . , Xin
;Y ) of the original mapping f : U → Y are con-

tinuous (or, what is the same, the partial derivatives of all orders up to n
inclusive are continuous).

The class of mappings (10.58) having continuous derivatives up to order
n inclusive in U is denoted C(n)(U, Y ), or, where no confusion can arise, by
the briefer symbol C(n)(U) or even C(n).
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In particular, if X = X1 × · · · ×Xn, the conclusion reached above can be
written in abbreviated form as

(f ∈ C(n)) ⇐⇒ (∂i1···in
f ∈ C, i1, . . . , in = 1, . . . , m) ,

where C, as always, denotes the corresponding set of continuous functions.

10.5.5 Problems and Exercises

1. Carry out the proof of Eq. (10.64) in full.

2. Give the details at the end of the proof that f (n)(x) is symmetric.

3. a) Show that if the functions Dh1Dh2f and Dh2Dh1f are defined and continuous
at a point x ∈ U for a pair of vectors h1, h2 and the mapping (10.58) in the domain
U , then the equality Dh1Dh2f(x) = Dh2Dh1f(x) holds.

b) Show using the example of a numerical function f(x, y) that, although the
continuity of the mixed partial derivatives ∂2f

∂x∂y
and ∂2f

∂y∂x
implies by a) that they

are equal at this point, it does not in general imply that the second differential of
the function exists at the point.

c) Show that, although the existence of f (2)(x, y), guarantees that the mixed
partial derivatives ∂2f

∂x∂y
and ∂2f

∂y∂x
exist and are equal, it does not in general guar-

antee that they are continuous at that point.

4. Let A ∈ L(X, . . . , X; Y ) where A is a symmetric n-linear transformation. Find
the successive derivatives of the function x �→ Axn := A(x, . . . , x) up to order n+1
inclusive.

10.6 Taylor’s Formula and the Study of Extrema

10.6.1 Taylor’s Formula for Mappings

Theorem 1. If a mapping f : U → Y from a neighborhood U = U(x) of a
point x in a normed space X into a normed space Y has derivatives up to
order n − 1 inclusive in U and has an n-th order derivative f (n)(x) at the
point x, then

f(x + h) = f(x) + f ′(x)h + · · ·+ 1
n!

f (n)(x)hn + o(|h|n) (10.70)

as h → 0.

Equality (10.70) is one of the varieties of Taylor’s formula, written here
for rather general classes of mappings.
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Proof. We prove Taylor’s formula by induction.
For n = 1 it is true by definition of f ′(x).
Assume formula (10.70) is true for some (n− 1) ∈ N.
Then by the mean-value theorem, formula (10.69) of Sect. 10.5, and the

induction hypothesis, we obtain
∣∣∣f(x + h)− (f(x) + f ′(x)h + · · ·+ 1

n!
f (n)(x)hn

)∣∣∣ ≤

≤ sup
0<θ<1

∥∥∥f ′(x + θh)−
(
f ′(x) + f ′′(x)(θh) + · · ·

· · ·+ 1
(n− 1)!

f (n)(x)(θh)n−1
)∥∥∥ |h| = o

(|θh|n−1)|h| = o
(|h|n)

as h → 0. ��
We shall not take the time here to discuss other versions of Taylor’s for-

mula, which are sometimes quite useful. They were discussed earlier in detail
for numerical functions. At this point we leave it to the reader to derive them
(see, for example, Problem 1 below).

10.6.2 Methods of Studying Interior Extrema

Using Taylor’s formula, we shall exhibit necessary conditions and also suffi-
cient conditions for an interior local extremum of real-valued functions defined
on an open subset of a normed space. As we shall see, these conditions are
analogous to the differential conditions already known to us for an extremum
of a real-valued function of a real variable.

Theorem 2. Let f : U → R be a real-valued function defined on an open
set U in a normed space X and having continuous derivatives up to order
k − 1 ≥ 1 inclusive in a neighborhood of a point x ∈ U and a derivative
f (k)(x) of order k at the point x itself.

If f ′(x) = 0, . . . , f (k−1)(x) = 0 and f (k)(x) �= 0, then for x to be an
extremum of the function f it is:

n e c e s s a r y that k be even and that the form f (k)(x)hk be semidefinite,4

and
s u f f i c i e n t that the values of the form f (k)(x)hk on the unit sphere

|h| = 1 be bounded away from zero; moreover, x is a local minimum if the
inequalities

f (k)(x)hk ≥ δ > 0

hold on that sphere, and a local maximum if

f (k)(x)hk ≤ δ < 0 .

4 This means that the form f (k)(x)hk cannot take on values of opposite signs,
although it may vanish for some values h �= 0. The equality f (i)(x) = 0, as usual,
is understood to mean that f (i)(x)h = 0 for every vector h.
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Proof. For the proof we consider the Taylor expansion (10.70) of f in a neigh-
borhood of x. The assumptions enable us to write

f(x + h)− f(x) =
1
k!

f (k)(x)hk + α(h)|h|k ,

where α(h) is a real-valued function, and α(h) → 0 as h → 0.
We first prove the necessary conditions.
Since f (k)(x) �= 0, there exists a vector h0 �= 0 on which f (k)(x)hk

0 �= 0.
Then for values of the real parameter t sufficiently close to zero,

f(x + th0)− f(x) =
1
k!

f (k)(x)(th0)k + α(th0)|th0|k =

=
( 1

k!
f (k)(x)hk

0 ± α(th0)|h0|k
)
tk

and the expression in the outer parentheses has the same sign as f (k)(x)hk
0 .

For x to be an extremum it is necessary for the left-hand side (and hence
also the right-hand side) of this last equality to be of constant sign when t
changes sign. But this is possible only if k is even.

This reasoning shows that if x is an extremum, then the sign of the differ-
ence f(x + th0)− f(x) is the same as that of f (k)(x)hk

0 for sufficiently small
t; hence in that case there cannot be two vectors h0, h1 at which the form
f (k)(x) assumes values with opposite signs.

We now turn to the proof of the sufficiency conditions. For definiteness
we consider the case when f (k)(x)hk ≥ δ > 0 for |h| = 1. Then

f(x + h)− f(x) =
1
k!

f (k)(x)hk + α(h)|h|k =

=
(

1
k!

f (k)(x)
( h

|h|
)k

+ α(h)
)
|h|k ≥

( 1
k!

δ + α(h)
)
|h|k ,

and, since α(h) → 0 as h → 0, the last term in this inequality is positive for
all vectors h �= 0 sufficiently close to zero. Thus, for all such vectors h,

f(x + h)− f(x) > 0 ,

that is, x is a strict local minimum.
The sufficient condition for a strict local maximum is verified simil-

iarly. ��
Remark 1. If the space X is finite-dimensional, the unit sphere S(x, 1) with
center at x ∈ X, being a closed bounded subset of X, is compact. Then the
continuous function f (k)(x)hk = ∂i1...ik

f(x)hi1 · . . . ·hik (a k-form) has both a
maximal and a minimal value on S(x, 1). If these values are of opposite sign,
then f does not have an extremum at x. If they are both of the same sign,
then, as was shown in Theorem 2, there is an extremum. In the latter case, a
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sufficient condition for an extremum can obviously be stated as the equivalent
requirement that the form f (k)(x)hk be either positive- or negative-definite.

It was this form of the condition that we encountered in studying real-
valued functions on R

n.

Remark 2. As we have seen in the example of functions f : R
n → R, the

semi-definiteness of the form f (k)hk exhibited in the necessary conditions for
an extremum is not a sufficient criterion for an extremum.

Remark 3. In practice, when studying extrema of differentiable functions one
normally uses only the first or second differentials. If the uniqueness and type
of extremum are obvious from the meaning of the problem being studied,
one can restrict attention to the first differential when seeking an extremum,
simply finding the point x where f ′(x) = 0.

10.6.3 Some Examples

Example 1. Let L ∈ C(1)(R3, R) and f ∈ C(1)
(
[a, b], R

)
. In other words,

(u1, u2, u3) �→ L(u1, u2, u3) is a continuously differentiable real-valued func-
tion defined in R

3 and x �→ f(x) a smooth real-valued function defined on
the closed interval [a, b] ⊂ R.

Consider the function

F : C(1)([a, b], R
)→ R (10.71)

defined by the relation

C(1)([a, b], R
) � f �→ F (f) =

b∫

a

L
(
x, f(x), f ′(x)

)
dx ∈ R . (10.72)

Thus, (10.71) is a real-valued functional defined on the set of functions
f ∈ C(1)

(
[a, b], R

)
.

The basic variational principles connected with motion are known in
physics and mechanics. According to these principles, the actual motions
are distinguished among all the conceivable motions in that they proceed
along trajectories along which certain functionals have an extremum. Ques-
tions connected with the extrema of functionals are central in optimal control
theory. Thus, finding and studying the extrema of functionals is a problem
of intrinsic importance, and the theory associated with it is the subject of a
large area of analysis – the calculus of variations. We have already done a
few things to make the transition from the analysis of the extrema of numer-
ical functions to the problem of finding and studying extrema of functionals
seem natural to the reader. However, we shall not go deeply into the special
problems of variational calculus, but rather use the example of the functional
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(10.72) to illustrate only the general ideas of differentiation and study of local
extrema considered above.

We shall show that the functional (10.72) is a differentiable mapping and
find its differential.

We remark that the function (10.72) can be regarded as the composition
of the mappings

F1 : C(1)([a, b], R
)→ C

(
[a, b], R

)
(10.73)

defined by the formula

F1(f)(x) = L
(
x, f(x)f ′(x)

)
(10.74)

followed by the mapping

C
(
[a, b], R

) � g �→ F2(g) =

b∫

a

g(x) dx ∈ R . (10.75)

By properties of the integral, the mapping F2 is obviously linear and
continuous, so that its differentiability is clear.

We shall show that the mapping F1 is also differentiable, and that

F ′
1(f)h(x) = ∂2L

(
x, f(x), f ′(x)

)
h(x) + ∂3L

(
x, f(x)f ′(x)

)
h′(x) (10.76)

for h ∈ C(1)
(
[a, b], R

)
.

Indeed, by the corollary to the mean-value theorem, we can write in the
present case

∣∣∣L(u1 + Δ1, u2 + Δ2, u3 + Δ3)− L(u1, u2, u3)−

−
3∑

i=1

∂iL(u1, u2, u3)Δi
∣∣∣ ≤ sup

0<θ<1
‖(∂1L(u + θΔ)− ∂1L(u) ,

∂2 L(u + θΔ)− ∂2L(u), ∂3L(u + θΔ)− ∂3L(u))‖ · |Δ| ≤
≤ 3 max

0≤θ≤1
i=1,2,3

|∂iL(u + θu)− ∂iL(u)| · max
i=1,2,3

|Δi| , (10.77)

where u = (u1, u2, u3) and Δ = (Δ1, Δ2, Δ3).
If we now recall that the norm |f |C(1) of the function f in C(1)

(
[a, b], R

)
is

max
{|f |C , |f ′|C

}
(where |f |C is the maximum absolute value of the function

on the closed interval [a, b]), then, setting u1 = x, u2 = f(x), u3 = f ′(x),
Δ1 = 0, Δ2 = h(x), and Δ3 = h′(x), we obtain from inequality (10.77), taking
account of the uniform continuity of the functions ∂iL(u1, u2, u3), i = 1, 2, 3,
on bounded subsets of R

3, that

max
a≤x≤b

|L(x, f(x) + h(x), f ′(x) + h′(x))− L(x, f(x), f ′(x))−
− ∂2L(x, f(x), f ′(x))h(x)− ∂3L(X, f(x)f ′(x))h′(x)| =

= o
(|h|C(1)

)
as |h|C(1) → 0 .
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But this means that Eq. (10.76) holds.
By the chain rule for differentiating a composite function, we now conclude

that the functional (10.72) is indeed differentiable, and

F ′(f)h =

b∫

a

(
(
∂2L(x, f(x)f ′(x)

)
h(x) + ∂3L

(
x, f(x), f ′(x))

)
h′(x)

)
dx .

(10.78)
We often consider the restriction of the functional (10.72) to the affine

space consisting of the functions f ∈ C(1)
(
[a, b], R

)
that assume fixed values

f(a) = A, f(b) = B at the endpoints of the closed interval [a, b]. In this case,
the functions h in the tangent space TC

(1)
f must have the value zero at the

endpoints of the closed interval [a, b]. Taking this fact into account, we may
integrate by parts in (10.78) and bring it into the form

F ′(f)h =

b∫

a

(
∂2L
(
x, f(x), f ′(x)

)− d
dx

∂3L
(
x, f(x)f ′(x)

))
h(x) dx , (10.79)

of course under the assumption that L and f belong to the corresponding
class C(2).

In particular, if f is an extremum (extremal) of such a functional, then
by Theorem 2 we have F ′(f)h = 0 for every function h ∈ C(1)

(
[a, b], R

)
such

that h(a) = h(b) = 0. From this and relation (10.79) one can easily conclude
(see Problem 3 below) that the function f must satisfy the equation

∂2L(x, f(x), f ′(x))− d
dx

∂3L(x, f(x), f ′(x)) = 0 . (10.80)

This is a frequently-encountered form of the equation known in the cal-
culus of variations as the Euler–Lagrange equation.

Let us now consider some specific examples.

Example 2. The shortest-path problem.
Among all the curves in a plane joining two fixed points, find the curve

that has minimal length.
The answer in this case is obvious, and it rather serves as a check on the

formal computations we will be doing later.
We shall assume that a fixed Cartesian coordinate system has been chosen

in the plane, in which the two points are, for example, (0, 0) and (1, 0). We
confine ourselves to just the curves that are the graphs of functions f ∈
C(1)

(
[0, 1], R

)
assuming the value zero at both ends of the closed interval

[0, 1]. The length of such a curve

F (f) =

1∫

0

√
1 + (f ′)2(x) dx (10.81)
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depends on the function f and is a functional of the type considered in
Example 1. In this case the function L has the form

L(u1, u2, u3) =
√

1 + (u3)2 ,

and therefore the necessary condition (10.80) for an extremal here reduces to
the equation

d
dx

(
f ′(x)

√
1 + (f ′)2(x)

)
= 0 ,

from which it follows that

f ′(x)
√

1 + (f ′)2(x)
≡ const (10.82)

on the closed interval [0, 1].
Since the function u√

1+u2 is not constant on any interval, Eq. (10.82)
is possible only if f ′(x) ≡ const on [a, b]. Thus a smooth extremal of this
problem must be a linear function whose graph passes through the points
(0, 0) and (1, 0). It follows that f(x) ≡ 0, and we arrive at the closed interval
of the line joining the two given points.

Example 3. The brachistochrone problem.
The classical brachistochrone problem, posed by Johann Bernoulli I in

1696, was to find the shape of a track along which a point mass would pass
from a prescribed point P0 to another fixed point P1 at a lower level under
the action of gravity in the shortest time.

We neglect friction, of course. In addition, we shall assume that the trivial
case in which both points lie on the same vertical line is excluded.

In the vertical plane passing through the points P0 and P1 we introduce
a rectangular coordinate system such that P0 is at the origin, the x-axis
is directed vertically downward, and the point P1 has positive coordinates
(x1, y1). We shall find the shape of the track among the graphs of smooth
functions defined on the closed interval [0, x1] and satisfying the condition
f(0) = 0, f(x1) = y1. At the moment we shall not take time to discuss this
by no means uncontroversial assumption (see Problem 4 below).

If the particle began its descent from the point P0 with zero velocity, the
law of variation of its velocity in these coordinates can be written as

v =
√

2gx (10.83)

Recalling that the differential of the arc length is computed by the formula

ds =
√

(dx)2 + (dy)2 =
√

1 + (f ′)2(x) dx , (10.84)

we find the time of descent
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F (f) =
1√
2g

x1∫

0

√
1 + (f ′)2(x)

x
dx (10.85)

along the trajectory defined by the graph of the function y = f(x) on the
closed interval [0, x1].

For the functional (10.85)

L(u1, u2, u3) =

√
1 + (u3)2

u1 ,

and therefore the condition (10.80) for an extremum reduces in this case to
the equation

d
dx

(
f ′(x)

√
x(1 + (f ′)2(x)

)
= 0 ,

from which it follows that

f ′(x)
√

1 + (f ′)2(x)
= c
√

x , (10.86)

where c is a nonzero constant, since the points are not both on the same
vertical line.

Taking account of (10.84), we can rewrite (10.86) in the form

dy

ds
= c
√

x . (10.87)

However, from the geometric point of view

dx

ds
= cos ϕ ,

dy

ds
= sinϕ , (10.88)

where ϕ is the angle between the tangent to the trajectory and the positive
x-axis.

By comparing Eq. (10.87) with the second equation in (10.88), we find

x =
1
c2 sin2 ϕ . (10.89)

But it follows from (10.88) and (10.89) that

dy

dϕ
=

dy

dx
· dx

dϕ
= tanϕ

dx

dϕ
= tanϕ

d
dϕ

( sin2 ϕ

c2

)
= 2

sin2 ϕ

c2 ,

from which we find
y =

2
c2 (2ϕ− sin 2ϕ) + b . (10.90)
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Setting 2/c2 =: a and 2ϕ =: t, we write relations (10.89) and (10.90) as

x = a(1− cos t) ,
y = a(t− sin t) + b .

(10.91)

Since a �= 0, it follows that x = 0 only for t = 2kπ, k ∈ Z. It follows from
the form of the function (10.91) that we may assume without loss of generality
that the parameter value t = 0 corresponds to the point P0 = (0, 0). In this
case Eq. (10.90) implies b = 0, and we arrive at the simpler form

x = a(1− cos t) ,
y = a(t− sin t) (10.92)

for the parametric definition of this curve.
Thus the brachistochrone is a cycloid having a cusp at the initial point P0

where the tangent is vertical. The constant a, which is a scaling coefficient,
must be chosen so that the curve (10.92) also passes through the point P1.
Such a choice, as one can see by sketching the curve (10.92), is by no means
always unique, and this shows that the necessary condition (10.80) for an
extremum is in general not sufficient. However, from physical considerations
it is clear which of the possible values of the parameter a should be preferred
(and this, of course, can be confirmed by direct computation).

10.6.4 Problems and Exercises

1. Let f : U → Y be a mapping of class C(n)(U ; Y ) from an open set U in a normed
space X into a normed space Y . Suppose the closed interval [x, x + h] is entirely
contained in U , that f has a differential of order (n + 1) at the points of the open
interval ]x, x + h[, and that ‖f (n+1)(ξ)‖ ≤ M at every point ξ ∈]x, x + h[.

a) Show that the function

g(t) = f(x + th) −
(
f(x) + f ′(x)(th) + · · · + 1

n!
f (n)(x)(th)n

)

is defined on the closed interval [0, 1] ⊂ R and differentiable on the open interval
]0, 1[, and that the estimate

‖g′(t)‖ ≤ 1
n!

M |th|n|h|

holds for every t ∈]0, 1[.

b) Show that |g(1) − g(0)| ≤ 1
(n+1)!M |h|n+1.

c) Prove the following version of Taylor’s formula:
∣∣∣∣∣f(x + h) −

(
f(x) + f ′(x)h + · · · + 1

n!
f (n)(x)hn

)∣∣∣∣∣ ≤
M

(n + 1)!
|h|n+1 .

d) What can be said about the mapping f : U → Y if it is known that
f (n+1)(x) ≡ 0 in U?
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2. a) If a symmetric n-linear operator A is such that Axn = 0 for every vector
x ∈ X, then A(x1, . . . , xn) ≡ 0, that is, A equals zero on every set x1, . . . , xn of
vectors in X.

b) If a mapping f : U → Y has an nth-order differential f (n)(x) at a point
x ∈ U and satisfies the condition

f(x + h) = L0 + L1h + · · · + 1
n!

Lnhn + α(h)|h|n ,

where Li, i = 0, 1, . . . , n, are i-linear operators, and α(h) → 0 as h → 0, then
Li = f (i)(x), i = 0, 1, . . . , n.

c) Show that the existence of the expansion for f given in the preceding problem
does not in general imply the existence of the n-th order differential f (n)(x) (for
n > 1) for the function at the point x.

d) Prove that the mapping L(X; Y ) � A �→ A−1 ∈ L(X; Y ) is infinitely
differentiable in its domain of definition, and that (A−1)(n)(A)(h1, . . . , hn) =
(−1)nA−1h1A

−1h2 · . . . · A−1hnA−1.

3. a) Let ϕ ∈ C
(
[a, b], R

)
. Show that if the condition

b∫

a

ϕ(x)h(x) dx = 0

holds for every function h ∈ C(2)
(
[a, b], R

)
such that h(a) = h(b) = 0, then ϕ(x) ≡ 0

on [a, b].

b) Derive the Euler–Lagrange equation (10.80) as a necessary condition for
an extremum of the functional (10.72) restricted to the set of functions f ∈
C(2)

(
[a, b], R

)
assuming prescribed values at the endpoints of the closed interval

[a, b].

4. Find the shape y = f(x), a ≤ x ≤ b, of a meridian of the surface of revolution
(about the x-axis) having minimal area among all surfaces of revolution having
circles of prescribed radius ra and rb as their sections by the planes x = a and
x = b respectively.

5. a) The function L in the brachistochrone problem does not satisfy the conditions
of Example 1, so that we cannot justify a direct application of the results of Example
1 in this case. Show by repeating the derivation of formula (10.79) with necessary
modifications that this equation and Eq. (10.80) remain valid in this case.

b) Does the equation of the brachistochrone change if the particle starts from
the point P0 with a nonzero initial velocity (the motion is frictionless in a closed
pipe)?

c) Show that if P is an arbitrary point of the brachistochrone corresponding
to the pair of points P0, P1, the arc of that brachistochrone from P0 to P is the
brachistochrone of the pair P0, P .

d) The assumption that the brachistochrone corresponding to a pair of points
P0, P1 can be written as y = f(x), is not always justified, as was revealed by the



96 10 *Differential Calculus from a General Viewpoint

final formulas (10.92). Show by using the result of c) that the derivation of (10.92)
can be carried out without any such assumption as to the global structure of the
brachistochrone.

e) Locate a point P1 such that the brachistochrone corresponding to the pair of
points P0, P1 in the coordinate system introduced in Example 3 cannot be written
in the form y = f(x).

f) Locate a point P1 such that the brachistochrone corresponding to the pair
of points P0, P1 in the coordinate system introduced in Example 3) has the form
y = f(x), and f /∈ C(1)

(
[a, b], R

)
. Thus it turns out that in this case the functional

(10.85) we are interested in has a greatest lower bound on the set C(1)
(
[a, b], R

)
,

but not a minimum.

g) Show that the brachistochrone of a pair of points P0, P1 of space is a smooth
curve.

6. Let us measure the distance d(P0, P1) of the point P0 of space from the point
P1 in a homogeneous gravitational field by the time required for a point mass to
move from one point to the other along the brachistochrone corresponding to the
points.

a) Find the distance from the point P0 to a fixed vertical line, measured in this
sense.

b) Find the asymptotic behavior of the function d(P0, P1) as the point P1 is
raised along a vertical line, approaching the height of the point P0.

c) Determine whether the function d(P0, P1) is a metric.

10.7 The General Implicit Function Theorem

In this concluding section of the chapter we shall illustrate practically all
of the machinery we have developed by studying an implicitly defined func-
tion. The reader already has some idea of the content of the implicit theo-
rem, its place in analysis, and its applications from Chap. 8. For that rea-
son, we shall not go into detail here with preliminary explanations of the
essence of the matter preceding the formalism. We note only that this time
the implicitly defined function will be constructed by an entirely different
method, one that relies on the contraction mapping principle. This method
is often used in analysis and is quite useful because of its computational
efficiency.

Theorem. Let X, Y , and Z be normed spaces (for example, R
m, R

n, and
R

k), Y being a complete space. Let W = {(x, y) ∈ X × Y | |x− x0| < α∧ |y−
y0| < β} be a neighborhood of the point (x0, y0) in the product X × Y of the
spaces X and Y .

Suppose that the mapping F : W → Z satisfies the following conditions:
1. F (x0, y0) = 0;
2. F (x, y) is continuous at (x0, y0);
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3. F ′(x, y) is defined in W and continuous at (x0, y0);
4. F ′

y(x0, y0) is an invertible5 transformation.
Then there exists a neighborhood U = U(x0) of x0 ∈ X, a neighborhood

V = V (y0) of y0 ∈ Y , and a mapping f : U → V such that:
1′. U × V ⊂ W ;
2′.
(
F (x, y) = 0 in U × V

)⇔ (y = f(x), where x ∈ U and f(x) ∈ V
)
;

3′. y0 = f(x0);
4′. f is continuous at x0.

In essence, this theorem asserts that if the linear mapping F ′
y is invertible

at a point (hypothesis 4), then in a neighborhood of this point the relation
F (x, y) = 0 is equivalent to the functional dependence y = f(x) (conclu-
sion 2′).

Proof. 10 To simplify the notation and obviously with no loss of generality,
we may assume that x0 = 0, y0 = 0, and consequently

W = {(x, y) ∈ X × Y | |x| < α ∧ |y| < β} .

20 The main role in the proof is played by the auxiliary family of functions

gx(y) := y − (F ′
y(0, 0)

)−1 · F (x, y) , (10.93)

which depend on the parameter x ∈ S, |x| < α, and are defined on the set
{y ∈ Y | |y| < β}.

Let us discuss formula (10.93). We first determine whether the mappings
gx are unambiguously defined and where their values lie.

The mapping F is defined for (x, y) ∈ W , and its value F (x, y) at the
pair (x, y) lies in Z. The partial derivative F ′

y(x, y) at any point (x, y) ∈ W ,
as we know, is a continuous linear mapping from Y into Z.

By hypothesis 4 the mapping F ′
y(0, 0) : Y → Z has a continuous inverse

(
F ′

y(0, 0)
)−1 : Z → Y . Hence the composition

(
F ′

y(0, 0)
)−1 · F (x, y) really is

defined, and its values lie in Y .
Thus, for any x in the α-neighborhood BX(0, α) := {x ∈ X| |x| < α} of

the point 0 ∈ X, the function gx is a mapping gx : BY (0, β) → Y from the
β-neighborhood BY (0, β) := {y ∈ Y | |y| < β} of the point 0 ∈ Y into Y .

The connection of the mappings (10.93) with the problem of solving the
equation F (x, y) = 0 for y obviously consists of the following: the point yx is
a fixed point of gx if and only if F (x, yx) = 0.

Let us state this important observation firmly:

gx(yx) = yx ⇐⇒ F (x, yx) = 0 . (10.94)

Thus, finding and studying the implicitly defined function y = yx = f(x)
reduces to finding the fixed points of the mappings (10.93) and studying the
way in which they depend on the parameter x.
5 That is, ∃ [F ′

y(x0, y0)]−1 ∈ L(Z; Y ).
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30 We shall show that there exists a positive number γ < min{α, β} such
that for each x ∈ X satisfying the condition |x| < γ < α, the mapping
gx : BY (0, γ) → Y of the ball BY (0, γ) := {y ∈ Y | |y| < γ < β} into Y
is a contraction with a coefficient of contraction that does not exceed, say
1/2. Indeed, for each fixed x ∈ BX(0, α) the mapping gx : BY (0, β) → Y is
differentiable, as follows from hypothesis 3 and the theorem on differentiation
of a composite mapping. Moreover,

g′
x(y) = eY −

(
F ′

y(0, 0)
)−1 · (F ′

y(x, y)
)

=

=
(
F ′

y(0, 0)
)−1(

F ′
y(0, 0)− F ′

y(x, y)
)

. (10.95)

By the continuity of F ′
y(x, y) at the point (0, 0) (hypothesis 3), there exists

a neighborhood {(x, y) ∈ X×Y | |x| < γ < α∧|y| < γ < β} of (0, 0) ∈ X×Y
in which

‖g′
x(y)‖ ≤ ‖(F ′

y(0, 0))−1‖ · ‖F ′
y(0, 0)− F ′

y(x, y)‖ <
1
2

. (10.96)

Here we are using the relation
(
F ′

y(0, 0)
)−1 ∈ L(Z;Y ) , that is, ‖(F ′

y(0, 0))−1‖ < ∞ .

Throughout the following we shall assume that |x| < γ and |y| < γ, so
that estimate (10.96) holds.

Thus, at any x ∈ BX(0, γ) and for any y1, y2 ∈ BY (0, γ), by the mean-
value theorem, we indeed now find that

|gx(y1)− gx(y2)| ≤ sup
ξ∈]y1,y2[

‖g′(ξ)‖ |y1 − y2| < 1
2
|y1 − y2| . (10.97)

40. In order to assert the existence of a fixed point yx for the mapping gx,
we need a complete metric space that maps into (but not necessarily onto)
itself under this mapping.

We shall verify that for any ε satisfying 0 < ε < γ there exists δ = δ(ε) in
the open interval ]0, γ[ such that for any x ∈ BX(0, δ) the mapping gx maps
the closed ball By(0, ε) into itself, that is, gx

(
BY (0, ε)

) ⊂ BY (0, ε).
Indeed, we first choose a number δ ∈]0, γ[ depending on ε such that

|gx(0)| = |(F ′
y(0, 0))−1 · F (x, 0)‖ ≤ ‖(F ′

y(0, 0))−1‖ |F (x, 0)| < 1
2
ε (10.98)

for |x| < δ.
This can be done by hypotheses 1 and 2, which guarantee that F (0, 0) = 0

and F (x, y) is continuous at (0, 0).
Now if |x| < δ(ε) < γ and |y| ≤ ε < γ, we find by (10.97) and (10.98)

that
|gx(y)| ≤ |gx(y)− gx(0)|+ |gx(0)| < 1

2
|y|+ 1

2
ε < ε ,

and hence for |x| < δ(ε)

gx

(
BY (0, ε)

) ⊂ BY (0, ε) . (10.99)
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Being a closed subset of the complete metric space Y , the closed ball
BY (0, ε) is itself a complete metric space.

50 Comparing relations (10.97) and (10.99), we can now assert by the
fixed-point principle (Sect. 9.7) that for each x ∈ BX(0, δ(ε)) =: U there
exists a unique point y = yx =: f(x) ∈ BY (0, ε) =: V that is a fixed point of
the mapping gx : BY (0, ε) → BY (0, ε).

By the basic relation (10.94), it follows from this that the function f :
U → V so constructed has property 2′ and hence also property 3′, since
F (0, 0) = 0 by hypothesis 1.

Property 1′ of the neighborhoods U and V follows from the fact that, by
construction, U × V ⊂ BX(0, α)×BY (0, β) = W .

Finally, the continuity of the function y = f(x) at x = 0, that is, property
4′, follows from 2′ and the fact that, as was shown in part 40 of the proof, for
every ε > 0 (ε < γ) there exists δ(ε) > 0 (δ(ε) < γ) such that gx

(
BY (0, ε)

) ⊂
BY (0, ε) for any x ∈ BX(0, δ(ε)), that is, the unique fixed point yx = f(x) of
the mapping gx : BY (0, ε) → BY (0, ε) satisfies the condition |f(x)| < ε for
|x| < δ(ε). ��

We have now proved the existence of the implicit function. We now prove
a number of extensions of these properties of the function, generated by
properties of the original function F .

Extension 1. (Continuity of the implicit function.) If in addition to hypothe-
ses 2 and 3 of the theorem it is known that the mappings F : W → Z and F ′

y

are continuous not only at the point (x0, y0) but in some neighborhood of this
point, then the function f : U → V will be continuous not only at x0 ∈ U but
in some neighborhood of this point.

Proof. By properties of the mapping L(Y ;Z) � A �→ A−1 ∈ L(Z; Y ) it
follows from hypotheses 3 and 4 of the theorem (see Example 6 of Sect. 10.3)
that at each point (x, y) in some neighborhood of (x0, y0) the transformation
f ′

y(x, y) ∈ L(Y ; Z) is invertible. Thus under the additional hypothesis that F
is continuous all points (x̃, ỹ) of the form (x, f(x)) in some neighborhood of
(x0, y0) satisfy hypotheses 1–4, previously satisfied only by the point (x0, y0).

Repeating the construction of the implicit function in a neighborhood of
these points (x̃, ỹ), we would obtain a function y = f̃(x) that is continuous at
x̃ and by 2′ would coincide with the function y = f(x) in some neighborhood
of x. But that means that f itself is continuous at x̃. ��
Extension 2. (Differentiability of the implicit function.) If in addition to the
hypotheses of the theorem it is known that a partial derivative F ′

x(x, y) exists
in some neighborhood W of (x0, y0) and is continuous at (x0, y0), then the
function y = f(x) is differentiable at x0, and

f ′(x0) = −(F ′
y(x0, y0)

)−1 · (F ′
x(x0, y0)

)
. (10.100)
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Proof. We verify immediately that the linear transformation L ∈ L(X;Y )
on the right-hand side of formula (10.100) is indeed the differential of the
function y = f(x) at x0.

As before, to simplify the notation, we shall assume that x0 = 0 and
y0 = 0, so that f(0) = 0.

We begin with a preliminary computation.

|f(x)− f(0)− Lx| = |f(x)− Lx| =
=
∣∣f(x) +

(
F ′

y(0, 0)
)−1 · (F ′

x(0, 0)
)
x
∣∣ =

=
∣∣(F ′

y(0, 0)
)−1(

F ′
x(0, 0)x + F ′

y(0, 0)f(x)
)∣∣ =

=
∣∣(F ′

y(0, 0)
)−1(

F (x, f(x))− F (0, 0)− F ′
x(0, 0)x− F ′

y(0, 0)f(x)
)∣∣ ≤

≤ ∥∥(F ′
y(0, 0)

)−1∥∥∣∣(F (x, f(x))− F (0, 0)− F ′
x(0, 0)x− F ′

y(0, 0)f(x)
)∣∣ ≤

≤ ∥∥(F ′
y(0, 0)

)−1∥∥ · α(x, f(x)
)(|x|+ |f(x)|) ,

where α(x, y) → 0 as (x, y) → (0, 0).
These relations have been written taking account of the relation

F
(
x, f(x)

) ≡ 0 and the fact that the continuity of the partial derivatives
F ′

x and F ′
y at (0, 0) guarantees the differentiability of the function F (x, y) at

that point.
For convenience in writing we set a := ‖L‖ and b :=

∥∥(F ′
y(0, 0)

)−1∥∥.
Taking account of the relations

|f(x)| = |f(x)− Lx + Lx| ≤ |f(x)− Lx|+ |Lx| ≤ |f(x)− Lx|+ a|x| ,
we can extend the preliminary computation just done and obtain the relation

|f(x)− Lx| ≤ bα(x, f(x))
(
(a + 1)|x|+ |f(x)− Lx|) ,

or

|f(x)− Lx| ≤ (a + 1)b
1− bα(x, f(x))

α(x, f(x))|x| .

Since f is continuous at x = 0 and f(0) = 0, we also have f(x) → 0 as
x→ 0, and therefore α(x, f(x)) → 0 as x→ 0.

It therefore follows from the last inequality that

|f(x)− f(0)− Lx| = |f(x)− Lx| = o
(|x|) as x→ 0. ��

Extension 3. (Continuous differentiability of the implicit function.) If in
addition to the hypotheses of the theorem it is known that the mapping F
has continuous partial derivatives F ′

x and F ′
y in some neighborhood W of

(x0, y0), then the function y = f(x) is continuously differentiable in some
neighborhood of x0, and its derivative is given by the formula

f ′(x) = −(F ′
y(x, f(x))

)−1 · (F ′
x(x, f(x))

)
. (10.101)
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Proof. We already know from formula (10.100) that the derivative f ′(x) exists
and can be expressed in the form (10.101) at an individual point x at which
the transformation F ′

y(x, f(x)) is invertible.
It remains to be verified that under the present hypotheses the function

f ′(x) is continuous in some neighborhood of x = x0.
The bilinear mapping (A, B) �→ A ·B – the product of linear transforma-

tions A and B – is a continuous function.
The transformation B = −F ′

x(x, f(x)) is a continuous function of x, being
the composition of the continuous functions x �→ (x, f(x)) �→ −F ′

x(x, f(x)).
The same can be said about the linear transformation A−1 = F ′

y(x, f(x)).
It remains only to recall (see Example 6 of Sect. 10.3) that the mapping

A−1 �→ A is also continuous in its domain of definition.
Thus the function f ′(x) defined by formula (10.101) is continuous in some

neighborhood of x = x0, being the composition of continuous functions. ��
We can now summarize and state the following general proposition.

Proposition. If in addition to the hypotheses of the implicit function theorem
it is known that the function F belongs to the class C(k)(W, Z), then the
function y = f(x) defined by the equation F (x, y) = 0 belongs to C(k)(U, Y )
in some neighborhood U of x0.

Proof. The proposition has already been proved for k = 0 and k = 1. The
general case can now be obtained by induction from formula (10.101) if we
observe that the mapping L(Y ;Z) � A �→ A−1 ∈ L(Z;Y ) is (infinitely)
differentiable and that when Eq. (10.101) is differentiated, the right-hand
side always contains a derivative of f one order less than the left-hand side.
Thus, successive differentiation of Eq. (10.101) can be carried out a number
times equal to the order of smoothness of the function F . ��

In particular, if

f ′(x)h1 = −(F ′
y(x, f(x))

)−1 · (F ′
x(x, f(x))

)
h1 ,

then

f ′′(x)(h1, h2) = −d
(
F ′

y(x, f(x))
)−1

h2F
′
x(x, f(x))h1 −

− (F ′
y(x, f(x))

)−1d
(
F ′

x(x, f(x))h1
)
h2 =

=
(
F ′

y(x, f(x))
)−1dF ′

y(x, f(x))h2
(
F ′

y(x, f(x))
)−1

F ′
x(x, f(x))h1 −

− (F ′
y(x, f(x))

)−1((F ′′
xx(x, f(x)) + F ′′

yy(x, f(x))f ′(x))h1
)
h2 =

=
(
F ′

y(x, f(x)))−1((F ′′
yx(x, f(x)) + F ′′

yy(x, f(x))f ′(x)))h2
)×

× (F ′
y(x, f(x))

)−1
F ′

x(x, f(x))h1)
(
F ′

y(x, f(x))
)−1 ×

× ((F ′′
xx(x, f(x)) + F ′′

xy(x, f(x))f ′(x))h1
)
h2 .
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In less detailed, but more readable notation, this means that

f ′′(x)(h1, h2) = (F ′
y)−1[((F ′′

yx + F ′′
yyf ′)h2

)
(F ′

y)−1F ′
xh1 −

− ((F ′′
xx + F ′′

yyf ′)h1
)
h2
]

. (10.102)

In this way one could theoretically obtain an expression for the derivative
of an implicit function to any order; however, as can be seen even from formula
(10.102), these expressions are generally too cumbersome to be conveniently
used. Let us now see how these results can be made specific in the important
special case when X = R

m, Y = R
n, and Z = R

n.
In this case the mapping z = F (x, y) has the coordinate representation

z1 = F 1(x1, . . . , xm, y1, . . . , yn) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

zn = Fn(x1, . . . , xm, y1, . . . , yn) .

(10.103)

The partial derivatives F ′
x ∈ L(Rm; Rn) and F ′

y ∈ L(Rn; Rn) of the map-
ping are defined by the matrices

F ′
x =

⎛

⎜⎜⎜⎜
⎝

∂F 1

∂x1 · · · ∂F 1

∂xm

. . . . . . . . . . . . . .

∂F n

∂x1 · · · ∂F n

∂xm

⎞

⎟⎟⎟⎟
⎠

, F ′
y =

⎛

⎜⎜⎜⎜
⎝

∂F 1

∂y1 · · · ∂F 1

∂yn

. . . . . . . . . . . . . .

∂F n

∂y1 · · · ∂F n

∂yn

⎞

⎟⎟⎟⎟
⎠

,

computed at the corresponding point (x, y).
As we know, the condition that F ′

x and F ′
y be continuous is equivalent to

the continuity of all the entries of these matrices.
The invertibility of the linear transformation F ′

y(x0, y0) ∈ L(Rn; Rn) is
equivalent to the nonsingularity of the matrix that defines this transforma-
tion.

Thus, in the present case the implicit function theorem asserts that if
1) F 1(x1

0, . . . , x
m
0 , y1

0 , . . . , yn
0 ) = 0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fn(x1

0, . . . , x
m
0 , y1

0 , . . . , yn
0 ) = 0 ;

2) F i(x1, . . . , xm, y1, . . . , yn), i = 1, . . . , n, are continuous functions at the
point (x1

0, . . . , x
m
0 , y1

0 , . . . , yn
0 ) ∈ R

m × R
n;

3) all the partial derivatives ∂F i

∂yj (x1, . . . , xm, y1, . . . , yn), i = 1, . . . , n,
j = 1, . . . , n, are defined in a neighborhood of (x1

0, . . . , x
m
0 , y1

0 , . . . , yn
0 ) and

are continuous at this point;
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4) the determinant ∣∣∣∣∣∣∣∣∣∣

∂F 1

∂y1 · · · ∂F 1

∂yn

. . . . . . . . . . . . . .

∂F n

∂y1 · · · ∂F n

∂yn

∣∣∣∣∣∣∣∣∣∣

of the matrix F ′
y is nonzero at the point (x1

0, . . . , x
m
0 , y1

0 , . . . , yn
0 );

then there exist a neighborhood U of x0 = (x1
0, . . . , x

m
0 ) ∈ R

m, a neighbor-
hood V of y0 = (y1

0 , . . . , yn
0 ) ∈ R

n, and a mapping f : U → V having a
coordinate representation

y1 = f1(x1, . . . , xm) ,

. . . . . . . . . . . . . . . . . . . . . . . .

yn = fn(x1, . . . , xm) ,

(10.104)

such that
1′) inside the neighborhood U × V of (x1

0, . . . , x
m
0 , y1

0 , . . . , yn
0 ) ∈ R

m ×R
n

the system of equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F 1(x1, . . . , xm, y1, . . . , yn) = 0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fn(x1, . . . , xm, y1, . . . , yn) = 0

is equivalent to the functional relation f : U → V expressed by (10.104);

2′) y1
0 = f1(x1

0, . . . , x
m
0 ) ,

. . . . . . . . . . . . . . . . . . . . . . . . . .

yn
0 = fn(x1

0, . . . , x
m
0 ) ;

3′) the mapping (10.104) is continuous at (x1
0, , . . . , x

m
0 , y1

0 , . . . , yn
0 ).

If in addition it is known that the mapping (10.103) belongs to the class
C(k), then, as follows from the proposition above, the mapping (10.104) will
also belong to C(k), of course within its own domain of definition.

In this case formula (10.101) can be made specific, becoming the matrix
equality
⎛

⎜⎜
⎜⎜
⎝

∂f1

∂x1 · · · ∂f1

∂xm

. . . . . . . . . . . . . .

∂fn

∂x1 · · · ∂fn

∂xm

⎞

⎟⎟
⎟⎟
⎠

= −

⎛

⎜⎜⎜
⎜
⎝

∂F 1

∂y1 · · · ∂F 1

∂yn

. . . . . . . . . . . . . .

∂F n

∂y1 · · · ∂F n

∂yn

⎞

⎟⎟
⎟⎟
⎠

−1⎛

⎜⎜
⎜⎜
⎝

∂F 1

∂x1 · · · ∂F 1

∂xm

. . . . . . . . . . . . . .

∂F n

∂x1 · · · ∂F n

∂xm

⎞

⎟⎟
⎟⎟
⎠

,
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in which the left-hand side is computed at (x1, . . . , xm) and the right-
hand side at the corresponding point (x1, . . . , xm, y1, . . . , yn), where yi =
f i(x1, . . . , xm), i = 1, . . . , n.

If n = 1, that is, when the equation

F (x1, . . . , xm, y) = 0

is being solved for y, the matrix F ′
y consists of a single entry – the number

∂F
∂y (x1, . . . , xm, y). In this case y = f(x1, . . . , xm), and

(
∂f

∂x1 , . . . ,
∂f

∂xm

)
= −

(
∂F

∂y

)−1(
∂F

∂x1 , . . . ,
∂F

∂xm

)
. (10.105)

In this case formula (10.102) also simplifies slightly; more precisely, it can
be written in the following more symmetric form:

f ′′(x)(h1, h2) = − (F ′′
xx + F ′′

xyf ′)h1F
′
yh2 − (F ′′

yx + F ′′
yyf ′)h2F

′
xh1

(F ′
y)2

. (10.106)

And if n = 1 and m = 1, then y = f(x) is a real-valued function of one
real argument, and formulas (10.105) and (10.106) simplify to the maximum
extent, becoming the numerical equalities

f ′(x) = −F ′
x

F ′
y

(x, y) ,

f ′′(x) = − (F ′′
xx + F ′′

xyf ′)F ′
y − (F ′′

yx + F ′′
yyf ′)F ′

x

(F ′
y)2

(x, y)

for the first two derivatives of the implicit function defined by the equation
F (x, y) = 0.

10.7.1 Problems and Exercises

1. a) Assume that, along with the function f : U → Y given by the implicit
function theorem, we have a function f̃ : Ũ → Y defined in some neighborhood
Ũ of x0 and satisfying y0 = f̃(x0) and F (x, f̃(x)) ≡ 0 in Ũ . Prove that if f̃ is
continuous at x0, then the functions f and f̃ are equal on some neighborhood of
x0.

b) Show that the assertion in a) is generally not true without the assumption
that f̃ is continuous at x0.

2. Analyze once again the proof of the implicit function theorem and the extensions
to it, and show the following.

a) If z = F (x, y) is a continuously differentiable complex-valued function of
the complex variables x and y, then the implicit function y = f(x) defined by the
equation F (x, y) = 0 is differentiable with respect to the complex variable x.

b) Under the hypotheses of the theorem X is not required to be a normed space,
and may be any topological space.
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3. a) Determine whether the form f ′′(x)(h1, h2) defined by relation (10.102) is
symmetric.

b) Write the forms (10.101) and (10.102) for the case of numerical functions
F (x1, x2, y) and F (x, y1, y2) in matrix form.

c) Show that if R � t �→ A(t) ∈ L(Rn; Rn) is family of nonsingular matrices
A(t) depending on the parameter t in an infinitely smooth manner, then

d2A−1

dt2
= 2A−1

(
dA

dt
A−1

)2

− A−1 d2A

dt2
A−1 , where A−1 = A−1(t)

denotes the inverse of the matrix A = A(t).

4. a) Show that Extension 1 to the theorem is an immediate corollary of the sta-
bility conditions for the fixed point of the family of contraction mappings studied
in Sect. 9.7.

b) Let {At : X → X} be a family of contraction mappings of a complete normed
space into itself depending on the parameter t, which ranges over a domain Ω in a
normed space T . Show that if At(x) = ϕ(t, x) is a function of class C(n)(Ω×X, X),
then the fixed point x(t) of the mapping At belongs to class C(n)(Ω, X) as a function
of t.

5. a) Using the implicit function theorem, prove the following inverse function
theorem.

Let g : G → X be a mapping from a neighborhood G of a point y0 in a complete
normed space Y into a normed space X. If

10 the mapping x = g(y) is differentiable in G,

20 g′(y) is continuous at y0,

30 g′(y0) is an invertible transformation,

then there exists a neighborhood V ⊂ Y of y0 and a neighborhood U ⊂ X of x0

such that g : V → U is bijective, and its inverse mapping f : U → V is continuous
in U and differentiable at x0; moreover,

f ′(x0) =
(
g′(y0)

)−1
.

b) Show that if it is known, in addition to the hypotheses given in a), that the
mapping g belongs to the class C(n)(V, U), then the inverse mapping f belongs to
C(n)(U, V ).

c) Let f : R
n → R

n be a smooth mapping for which the matrix f ′(x) is nonsin-
gular at every point x ∈ R

n and satisfies the inequality ‖(f ′)−1(x)‖ > C > 0 with
a constant C that is independent of x. Show that f is a bijective mapping.

d) Using your experience in solving c), try to give an estimate for the radius
of a spherical neighborhood U = B(x0, r) centered at x0 in which the mapping
f : U → V studied in the inverse function theorem is necessarily defined.

6. a) Show that if the linear mappings A ∈ L(X; Y ) and B ∈ L(X; R) are such
that ker A ⊂ ker B (here ker, as usual, denotes the kernel of a transformation), then
there exists a linear mapping λ ∈ L(Y ; R), such that B = λ · A.
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b) Let X and Y be normed spaces and f : X → R and g : X → Y smooth
functions on X with values in R and Y respectively. Let S be the smooth surface
defined in X by the equation g(x) = y0. Show that if x0 ∈ S is an extremum of
the function f

∣∣∣
S
, then any vector h tangent to S at X0 simultaneously satisfies two

conditions: f ′(x0)h = 0 and g′(x0)h = 0.

c) Prove that if x0 ∈ S is an extremum of the function f
∣∣∣
S

then f ′(x0) =

λ · g′(x0), where λ ∈ L(Y ; R).

d) Show how the classical Lagrange necessary condition for an extremum with
constraint of a function on a smooth surface in R

n follows from the preceding result.

7. As is known, the equation zn + c1z
n−1 + · · · + cn = 0 with complex coefficients

has in general n distinct complex roots. Show that the roots of the equation are
smooth functions of the coefficients, at least where all the roots are distinct.


