Preface

The Verilog language is a hardware description language that provides a means of
specifying a digital system at a wide range of levels of abstraction. The language sup-
ports the early conceptual stages of design with its behavioral level of abstraction, and
the later implementation stages with its structural abstractions. The language includes
hierarchical constructs, allowing the designer to control a description’s complexity.

Verilog was originally designed in the winter of 1983/84 as a proprietary verifica-
tion/simulation product. Later, several other proprietary analysis tools were developed
around the language, including a fault simulator and a timing analyzer. More recently,
Verilog has also provided the input specification for logic and behavioral synthesis
tocls. The Verilog language has been instrumental in providing consistency across
these toels. The language was originally standardized as IEEE standard #1364-1995.
It has recently been revised and standardized as IEEE standard #1364-2001. This
book presents this latest revision of the language, providing material for the beginning
student and advanced user of the language.

It is sometimes difficult to separate the language from the simulator tool because
the dynamic aspects of the language are defined by the way the simulator works. Fur-
ther, it is difficult to separate it from a synthesis tool because the semantics of the lan-
guage become limited by what a synthesis tool allows in its input specification and
produces as an implementation. Where possible, we have stayed away from simulator-
and synthesis-specific details and concentrated on design specification. But, we have
included enough information to be able to write working exccutable models.

xvi The Verilog Hardware Description Language

The book takes a tutorial approach to presenting the language. Indeed, we start
with a tutorial introduction that presents, via examples, the major features of the lan-
guage and the prevalent styles of describing systems. We follow this with a detailed
presentation on using the language for synthesizing combinational and sequential sys-
tems. We then continue with a more complete discussion of the language constructs.

Our approach is to provide a means of learning by observing the examples and
doing exercises. Numerous examples are provided to allow the reader to learn (and re-
learn!) easily by example. It is strongly recommended that you try the exercises as
early as possible with the aid of a Verilog simulator. The examples shown in the book
are available in electronic form on the enclosed CD. Also included on the CD is a
simulator. The simulator is limited in the size of description it will handle.

The majority of the bocok assumes a knowledge of introductory logic design and
software programming. As such, the book is of use to practicing integrated circuit
design engineers, and undergraduate and graduate electrical or computer engineering
students. The tutorial introduction is organized in a manner appropriate for use with
a course in introductory logic design. A separate appendix, keyed into the tutorial
introduction, provides solved exercises that discuss common errors. The book has also
been used for courses in introductory and upper level logic and integrated circuit
design, computer architecture, and computer-aided design (CAD). It provides com-
plete coverage of the language for design courses, and how a simulator works for
CAD courses, For those familiar with the language, we provide a preface that covers
most of the new additions to the 2001 language standard.

The book is organized into eleven chapters and eight appendices. The first part of
the book contains a tuterial introduction to the language which is followed by a chap-
ter on its use for logic synthesis. The second part of the book, Chapters 3 through 6,
provide a more rigorous presentation of the language’s behavioral, hierarchical, and
logic level modeling constructs. The third part of the book, Chapters 7 through 11,
covers the more specialized topics of cycle-accurate modeling, timing and event
driven simulation, user-defined primitives, and switch level modeling. Chapter 11
suggests two major Verilog projects for use in a university course. One appendix pro-
vides tutorial discussion for beginning students. The others are reserved for the dryer
topics typically found in a language manual; read those at your own risk.

Have fun designing great systems...

always,
Donald E. Thomas
Philip R. Moorby
March 2002

Logic Synthesis

In this chapter, the use of the language as an input specification for synthesis is pre-
sented. The concern is developing a functionally correct specification while allowing a
synthesis caD tool to design the final gate level structure of the system. Care must be
taken in writing a description so that it can be used in both simulation and synthesis.

2.1 Overview of Synthesis

The predominate synthesis technology in use today is logic synthesis. A system is speci~
fied at the register-transfer level of design; by using logic synthesis tools, a gate level
implementation of the system can be obtained. The synthesis tools are capable of
optimizing a design with respect to various constraints, including timing and/or area.
They use a technology library file to specify the components to be used in the design.

2.1.1 Register-Transfer Level Systems

A register-transfer level description may contain parts that are purely combinational
while others may specify sequential elements such as latches and {lip {lops. There may
also be a finite state machine description, specifying a state transition graph.

36 The Verilog Hardware Description Language

A logic synthesis tool compiles a register-transfer level design using two main
phases. The first is a technology independent phase where the design is read in and
manipulated without regard to the {inal implementation technology. In this phase,
major simplifications in the combinational logic may be made. The second phase is
technology mapping where the design is transformed to match the components in a
component library. If there are only two-input gates in the library, the design is trans-
formed so that each logic function is implementable by a component in the library.
Indeed, synthesis tools can transform one gate level description into another, provid-
ing the capability of redesigning a circuit when a new technology library is used.

The attraction of a logic synthesis cap tool is that it aids in a very complex design
process. (After all, did your logic design professor ever tell you what to do when the
Karnaugh map had more than five or six variables!) These tools target large combina-
tional design and different technelogy libraries, providing implementation trade-offs
in time and area. Further, they promise functional equivalence of the initial specifica-
tion and its resulting implementation. Given the complexity of this level of design,
these tools improve the productivity of designers in many common design situations.

To obtain this increased productivity, we must specify our design in a way that it
can be simulated for functional correctness and then synthesized. This chapter dis-
cusses methods of describing register-transfer level systems for input to logic synthe-
sis tools.

2.1.2 Disclaimer

The first part of this chapter defines what a synzhesizable description for logic synthesis
is. There are behaviors that we can describe but that common logic synthesis tools will
not be able to design. (Or they may design something you'd want your competitor to
implement!) Since synthesis technology is still young, and the task of mapping an
arbitrary behavior on to a set of library components is complex, arbitrary behavior
specifications are not allowed as inputs to logic synthesis tools. Thus, only a subset of
the language may be used for logic synthesis, and the style of writing a description
using that subset is restricted. The first part of this chapter describes the subset and
restrictions commonly found in logic synthesis specification today. Our discussion of
logic synthesis is based on experience using current tools. If you use others, your mile-
age may vary. Read the synthesis tool manual closely.

Logic Synthesis 37

2.2 Combinational Logic Using Gates and
Continuous Assign

Using gate primitives and continuous assignment statements to specify a logic func-
tion for logic synthesis is quite straightforward. Examples 2.1 and 2.2 illustrate two
synthesizable descriptions in this style. Both of the examples implement the same
combinational function; the standard sum-of-products specification is:

fla, b, c) = 2 mfa, b, c) = > m(1,2,3,4,7).

Essentially, logic synthesis tools read the logic functionality of the specification and
try to optimize the final gate level design with respect to design constraints and library
elements. Even though Example 2.1 specifies a gate level design, a logic synthesis tool
is free, and possibly constrained, to implement the functionality using different gate
primitives. The example shows a different, but functionally equivalent, gate level
design. Here, the technology library only contained two-input gates; the synthesis
tool transformed the design to the implementation on the right of the example. Other
designs are possible with alternate libraries and performance constraints.

module synGate
(output f,
input a,b,c)

and A (al,a,b,c)

and B (a2, a, ~b, ~c);

and C (a3, ~a, 01);

or D (o1,b,c);

or E {f,al, a2, a3),
endmodule

Example 2.1 A Description and Its Synthesized Implementation

The example does not contain delay (#) information, illustrating one of the key
differences between writing Verilog descriptions for simulation and synthesis. In sim-
ulation, we normally provide detailed timing information to the simulator to help the
designer with the task of timing verification. A logic synthesis tool will ignore these
timing specifications, using only the functional specification provided in the descrip-
tion. Because timing specifications are ignored, having them in a description could
give rise to differences in simulating a design being input to a logic synthesis tool ver-
sus simulating the resulting implementation.

Consider gate instance A in Example 2.1. If it had been specified as:

38 The Verilog Hardware Description Language

and #5 Afal,a,b, o)

then simulation of the description would have shown a 5 time unit delay between
changes on the input to changes on the output of this gate. The implementation
shown in Example 2.1 does not have a gate corresponding to A. Thus, the timing of
the simulation of that implementation would be different. Logic synthesis does not
try to meet such timing specifications. Rather, synthesis tools provide means of speci-
fying timing requirements such as the clock period. The tool will then try to design
the logic so that all set-up times are met within that clock period.

module synAssign
(output f,
input a,b,¢);

assign f=(a&b&c)|(@ad&~b&~c)|{(~a&(db|c));

endmodule

Example 2.2 A Synthesizable Description Using Continuous Assign

Using a continuous assign statement, as shown in Example 2.2, is similar to speci-
fying logic in Boolean algebra, except Verilog has far more operators to use in the
specification. The assign statement allows us to describe a combinational logic func-
tion without regard to its actual structural implementation — that is, there are no
instantiated gates with wires and port connections. In a simulation of the circuit, the
result of the logical expression on the right-hand side of the equal sign is evaluated
anytime one of its values changes and the result drives the output £

In this example, the same sum of products functionality from Example 2.1 is used
but the assign statement is written combining products 1, 2, and 3 into the last prod-
uct term. Of note is the fact that a continuous assign may call 2 function which con-
tains procedural assignment statements. The use of procedural assignment statements
to describe combinational logic will be discussed in section 2.3; thus we will limit the
discussion here to continuous assigns without function calls.

Logic Synthesis 39

Continuous assign staten.le.nts module addWithAssign
are often used for describing _
#(parameter WIDTH = 4)
datapath elements. These mod- (output car
ules tend to have one-line speci- ou tpu t [WIDTH-1:0] sunrly,
fications as compared to the logic in gt [W'IDTH-1:01 A B,
specifications for next state and ing ut ' Cfm)t

output logic in a finite state
machine. In Example 2.3 both
an adder and a multiplexer are
described with continuous
assign. The addWithAssign
module is parameterized with
the width of the words being
added and include carry in (Cin)
and carry out (carry) ports. Note
that the sum generated on the
right-hand side of the assign
generates a result larger than
output sum. The concatenation

operat(?r specifies that tl'-xe tO_P- Example 2.3 Datapath Elements Described
most bit (the carry out) will drive With Continuous Assign
the carry output and the rest of

the bits will drive the sum out-
put. The multiplexor is described using the conditional operator.

assign {carry, sum} = A + B + Cin;
endmodule

module muxWithAssign
#(parameter WIDTH = 4)
{output [WIDTH-1:0] out,
input [WIDTH-1:0] A,B,
input sel);

assign out = (sel) ? A: B;
endmodule

There are limits on the operators that may be used as well as the ways in which
unknowns (x) are used. An unknown may be used in a synthesizable description but
only in certain situations. The following fragment is not synthesizable because it com-
pares a value to an unknown.

assign y={a===1bx)?c:1;

An unknown used in this manner is a value in a simulator; it is useful in determining
if the value of a has become unknown. But we do not build digital hardware to com-
pare with unknowns and thus this construct is not synthesizable. However, the fol-
lowing fragment, using an unknown in a non-comparison fashion, is allowable:

assign y=(a==b)?1bx:c;

In this case, we are specifying a don’t-care situation to the logic synthesizer. That is,
when a equals b, we don’t care what value is assigned to y. If they are not equal, the
value ¢ is assigned. In the hardware synthesized from this assign statement, either 1 or
0 will be assigned to y (after all, there are no unknowns in real hardware). A don't-care
specification used in this manner allows the synthesizer additional freedom in opti-
mizing a logic circuit. The best implementation of this specification is just y = c.

40 The Verilog Hardware Description Language

References: assign 6.3; primitive gates 6.2; parameters 5.2

2.3 Procedural Statements to Specify
Combinational Logic

In addition to using continuous assign statements and primitive gate instantiations to
specify combinational logic, procedural statements may be used. The procedural state-
ments are specified in an always statement, within a task called from an always state-
ment, or within a function called from an always statement or a continuous assign. In
spite of the fact that a description using procedural statements appears sequential,
combinational logic may be specified with them. Section 1.2 introduced this approach
to specifying combinational logic. This section covers the topic in more detail.

2.3.1 The Basics

The basic form of a procedural descrip- module synCombinational Always
tion of combinational logic is shown in (output reg f,

Example 2.4. It includes an always state- input a,b,c)k

ment with an event statement containing

all of the input variables to the combina- always @ (a, b, ¢)

tional function. The example shows a ifa==1)

multiplexor described procedurally. In f=b;

this case, input a selects between passing else

inputs b or ¢ to output £, Even though fis f=¢

defined to be a register, a synthesis tool endmodule

will treat this module as a specification of

combinational logic. Example 2.4 Combinational Logic

Described With Procedural Statements
A few definitions will clarify the rules

on how to read and write such descriptions. Let’s define the inpus set of the always
block to be the set of all registers, wires, and inputs used on the right-hand side of the
procedural statements in the always block. In Example 2.4, the input set contains a, b,
and c. Further, let’s define the sensitiwity Jist of an always block to be the list of names
appearing in the event statement (“@”). In this example, the sensitivity list contains a,
b, and ¢. When describing combinational logic using procedural statements, every
element of the always block’s input set must appear without any edge specifiers {e.g.,
posedge) in the sensitivity list of the event statement. This follows from the very
definition of combinational logic — any change of any input value may have an
immediate eflect on the resulting output. If an element of the input set is not in the
sensitivity list, or only one edge-change is specified, then it cannot have an immediate
effect. Rather, it must always wait for some other input to change; this is not true of
combinational circuits.

Logic Synthesis 41

Considering Example 2.4 further, we note that the combinational cutput f is
assigned in every branch of the always block. A control path is defined to be a sequence
of operations performed when executing an always loop. There may be many different
control paths in an always block due to the fact that conditional statements (e.g. case
and if) may be used. The output of the combinational function must be assigned in
each and every one of the possible control paths. Thus, for every conceivable input
change, the combinational output will be calculated anew; this is a characteristic of
combinational logic.

The above example and discussion essentially outline the rules for specifying com-
binational hardware using procedural statements: the sensitivity list must be the input
set and contain no edge-sensitive specifiers, and the combinational output(s) must be
assigned to in every control path.

A common error in specifying combi- module synAutoSensitivity
national circuits with procedural state- (output reg f,
ments is to incorrectly specify the input a,b,)
sensitivity list. Example 2.4 is revised to
use the @(*) construct as shown in always @ (*)
Example 2.5 — the two examples will if{a==1)
simulate and synthesize identically. f=b:
Essentially, @(*) is shorthand for “all the else
signals on the right-hand side of the f=c
statement or in a conditional expression.” endmodule

The basic form of the “@” event state- Example 2.5 Automaticall
ment is: Determining the Sensitivity List

@ (sensitivity_list) statement;

When using the construct @(*) — or @* which is equivalent — only the statement’s
right-hand side or conditional expression is included. Thus, if several procedural
statements are needed to specify the combinational function, a begin-end block must
be used to group them into a compound statement, The “@(*) begin-end” will then
include the registers and nets from the right-hand sides and conditionals of all of the
statements in the compound statement,

42 The Verilog Hardware Description Language

Although this relieves the problem of

module synAssignQutputFirst
correctly specifying the sensitivity list for

(output reg f,

combinational functions, the rule con- input a,b, c);
cerning assigning to the combinational

output(s) during any execution of the always @ (*) begin
always block must still be followed. An f=c

approach to organizing descriptions so if(a==1)

that an assighment is always made is f=b;

shown in Example 2.6. This module has end

the same multiplexor functionality as endmodule

Example 2.5. However, here the output f

is assigned to first. In a complex descrip- Example 2.6 Automaticall
tion, this approach ensures that a latch Determining the Sensitivity List

will not be inferred because of a forgotten
output assignment.

References: always 3.1; sensitivity list 8.1; @ 4.2; edge specifications 4.2; input set 7.2.1, functions and
tasks 3.5.

2.3.2 Complications — Inferred Latches

If there exists a control path that does not assign to the output, then the previous out-
put value needs to be remembered. This is not a characteristic of combinational hard-
ware. Rather it is indicative of a sequential system where the previous state is
remernbered in a latch and gated to the output when the inputs specify this control
path. A logic synthesis tool will recognize this situation and infer that a latch is
needed in the circuit. Assuming that we are trying to describe combinational hard-
ware, we want to insure that this inferred latch is not added to our design. Assigning
to the combinational output in every control path will insure this.

An example of a
situation that infers a
latch is shown 1in

module synInferredLatch
(output reg f,

input a, b, c);
Example 2.7. If we
follow the control always @(*)
paths in this exam- if (a == 1)
ple, we see that if a is f=b &g
equal to one, then fis o041 odule

assigned the value of

b & c. However, if a Example 2.7 An Inferred Latch

is equal to zero, then £

is not assigned to in

the execution of the always block. Thus, there is a control path in which f is not
assigned to. In this case a latch is inferred and the circuit shown on the right of the
example is synthesized. The latch is actually a gated latch — a level-sensitive device

Logic Synthesis

43

that passes the value on its input [» when the latch’s gate input (G which is connected
to a) is one, and holds the value when the latch’s gate input is zero.

2.3.3 Using Case Statements

Example 2.8 illustrates using a case state-
ment to specify a combinational function in
a truth table form. (This example specifies
the same logic function as Examples 2.1
and 2.2.) The example illustrates and fol-
lows the rules for specifying combinational
logic using procedural statements: all mem-
bers of the always’ input set are contained
in the always' sensitivity list — the @(*)
insures this, the combinational output is
assigned to in every control path, and there
are no edge specifications in the sensitivity
list.

The first line of the case specifies the
concatenation of inputs a, b, and c¢ as the
means to select a case item to execute. The
line following the case keyword specifies a
numeric value followed by a colon. The
number 3000 is the Verilog notation for a

module synCase
(output reg f,

input a,b,c);
always @(*)
case ({a, b, c})
3'b000: f=1b0;
3'b001: f=1'bl;
3'b010: =1l
3'0011: f=1Bl;
3'b100: =1l
3'b101: f=1'b0;
3'p110: f=1'b0;
3b111: £=1b1;
endcase

endmodule

Example 2.8 Combinational Logic
Specified With a Case Statement

3-bit number, specified here in binary as 000. The b indicates binary. The right-hand
sides of the assignments to f need not be constants. Other expressions may be used
that include other names. The @(*) will include them in the sensitivity list.

Of course, when using a case statement
it is possible to incompletely specify the
case. If there are n bits in the case’s con-
trolling expression, then a synthesis tool

will know that there are 2" possible con-
trol paths through the case. If not all of
them are specified, then there will be a
control path in which the output is not
assigned to; a latch will be inferred. The
default case item can be used to define the
remaining unspecified case items. Thus
Example 2.8 could also be written as
shown in Example 2.9. Here, we explicitly
list all of the zeros of the function using

module synCaseWithDefault

(output reg f,

input a, b, c);

always @(a, b, ¢)

case ({a, b, c})
3'5000:
3'b101:
3'b110:
default:
endcase
endmodule

f=1b0,
f=1b0;
f=10,
f=1b1;

Example 2.9 Using Default to Fully
pecify a Case Statement

44 The Verilog Hardware Description Language

separate case items. If the input does not match one of these items, then by default f is
assigned the value one.

References: case 3.4, numbers B.3.

2.3.4 Specifying Don’t Care Situations

Logic synthesis tools p54ule synCaseWithDC
make great use of logi- (output reg f,

cal don’t care situations

input a, b, c);
to optimize a logic cir- f
cuit. Example 2.10 always @(*)
illustrates specifying a case ({a, b, c})
logic function that con- 3b001: £=1b1;
tains a don’t care. Often 3b010: f=1bL;
these can be specified in 3b011: f=1%1;
the default statement of 3b100: f=1bL;
a case. As shown, 3b110: f=1'b0;
assigning the value x to 3b111: f=1b1;
the output is inter- default: f=1bx
preted in this example endcase

as specifying input cases o dmodule
3'b000 and 3'b101 to be

dor't carcs. An opti- Example 2.10 A Logic Function With a Don’t Care
mized implementation

of this function is

shown on the right; only the single zero of the function {input case 3'b110) is imple-
mented and inverted. In general, specifying an input to be x allows the synthesis tool
to treat 1t as a logic don’t care specification.

Two attributes are often used to help synthesis tools optimize a function. These are
the full_case and parallel_case attributes illustrated in Example 2.11. The case state-
ment in Example 2.10 is full by definition because all of the case items are specified
either explicitly or by using a default. Thus all of the control paths are also specified.
Synthesis tools look for the full_case attribute specified on a case statement indicating
that the case is to be considered full even though all case items are not specified. In
this situation, the unspecified cases are considered to be don’t cares for synthesis, and
a latch is not inferred.

Logic Synthesis 45

An attribute 1s specified as shown on line 5 qule synAttributes
6 of Example 2.11. Attributes are declared {output reg f,

as a prefix to the statement to which they input a, b, o);

refer; in this situation it is on the line before

the case statement it refers to. (Attributes always @(*)

are not comments, nor are their names (* full_case, paralle]_case *)

defined by the language. Rather, other tools case ({a, b, c})

that use the language, such as a synthesis 3'b001: f=1bl:

tool, define their names and meanings. Tb010: f= 1'b1;

Consult their user manuals for details and Ih011: f=1'b1-

examples of usage.) 1b100: f= I'bI;

3'b110: f=1'b0;

Also shown in the example is a parallel 3'b111: f=1'bl;

case attribute. A Verilog case statement is endcase

allowed to have overlapping case items. In op 300 dule

this situation, the statements for the match-

ing items are executed in the order speci- Example 2.11 Case Attributes

fied. This can result in some complex logic

because a priority among the case items is

specified. A parallel case is a case statement where thete is no overlap among the case
items. That is, only ene of the case items can be true at any time. If the case is parallel
(and full), it can be regarded as a sum-of-products specification which could be imple-
mented by a multiplexor. Specifying the parallel case attribute enables this interpreta-
tion and generally simplifies the logic generated.

A casex statement, module synUsingDC
which allows for the use (output reg f, a
of x, z, or ? in the con- input a, b); b 0 1
trolling expression or in
a case-item expression, always @(*) 0 " 0
can be used for specify- casex ({z, b))
ing don’t cares for syn- 2b02 f=1;
thesis. However, x, z, or 2b10: f=0;
? may only be specified 2b11: f=1; 1 1 1
in a case item expres- endcase
sion for synthesis. endmodule

Consider the mod- Example 2.12 Specifying a Logical Function Using a
ule shown in

Example 2.12. The first case item specifies that if a is zero, then the output fis one.
The use of the ? in this statement specifies that the value of b does not matter in this
situation. Thus this case item covers the first column of the Karnough map. Although
we could have specified the two case items (2'b00 and 2'b01) and assigned fto be xin
both situations, the approach shown is more compact. Since this first case item covers

46

The Verilog Hardware Description Language

two of the four possible case-items, it along with the other two case-items make this a

full casex.

When using the ? in the
case-item expressions, the
case items can overlap.
Example 2.13 illustrates how
a one-hot state assignment
could lead to overlapping
case items. Specify the case
with the full and
parallel_case attributes; the
synthesizer will then treat
each case as exclusive and

module oneHotEncoding
(output reg [2:0] state,
input in, ck);

always @(posedge ck)
(* full_case, parallel_case *)
casex (state)
3'b1??; state <= 3'b010;
3'br1?: state <= in ? 3'b010: 3'b001;
3'b?r1: state <= in ? 3'b100: 3'b001;
endcase

generate more optimized
logic.

endmodule

Example 2.13 Use of Full and Parallel Case
The casez statement can

also be used to specify logical
don't cares. In this situation, only z or ? are used for the don’t care in the case-item
expression.

Care should be taken when using don’t cares in a specification because they give
rise to differences between simulation and synthesis. In a simulator, an x is one of the
four defined logic values that will be printed when tracing values. However, in the
synthesized circuit, the value printed for the same situation will either be 1 or 0. Fur-
ther, comparing to an x makes sense in a simulation but not in synthesis. To reduce
the differences between simulation and synthesis, a synthesizable description does not
compare with x or z.

References: casex and casez 3.4.

2.3.5 Procedural Loop Constructs

A reading of the above examples might suggest that the only means to specify logic
functions is through if and case statements. The for loop in Verilog may be used to
specify combinational logic. The while and forever loops are used for synthesizing
sequential systems. The repeat loop Is not allowed in any synthesizable specifications.

Logic Synthesis 47

For loops allow for a repetitive module synXor8
specification as shown in (output reg [1:8] xout,
Example 2.14 (Generate loops are input [1:8] xinl,xin2)
discussed in more detail in
Section 5.4.) In this example, each reg [1:8] i
iteration of the loop specifies a dif-
ferent logic element indexed by the always @(*)
loop variable i. Thus, eight xor gates for(i=1i<=8i=i+1)
are connected between the inputs xout[i] = xin1[i] A xin2[i];
and the outputs. Since this is a speci- endmodule

fication of cembinational logic, i
does not appear as a register in the Example 2.14 Using for to Specify an Array

final implementation.

The example illustrates several points about using for statements for specifying
logic. The for loop is highly structured, clearly specifying the step variable and its lim-
its. It will have an index i that must either start with a low limit and step up to a high
limit, or start with a high limit and step down to a low limit. The comparison for end
of loop may be <, >, <=, or >=, and the step size need not be one. The general form
shown below illustrates the count down version:

for (i = highLimit; i >= lowLimit; 1 = i - step);

Example 2.15 shows a more complex design. The design is of a digital correlator
which takes two inputs {message and pattern) and counts the number of bits that
match. If message was 8'b00001111 and pattern was 8'b01010101, then the number
of bits that match is four. At first glance this module appears to be a sequential algo-
rithm. However, the for loop specifies a cascade of adders summing up the correla-
tions of each bit-pair; a combinational circuit results.

The bitwidth of the inputs and outputs are parameterized. Starting with bit posi-
tion zero, the two inputs are xnor'd together producing their correlation — 1 if the
input bits are the same, else 0. The next iteration of the for loop specifies another cor-
relation, this time of bit one of message and pattern; this correlation is added with the
previous result. The result of all iterations of the for loop is to specify dataWidth lev-
els of adders. A logic synthesizer can work hard on optimizing that! When simulated,
the initialization to matchCount starts it at zero.

References: Unallowed constructs 2.8, parameters 5.2, generate 5.4.

48 The Verilog Hardware Description Language

module DigitalCorrelator
#(parameter dataWidth = 40,
countWidth= 6,)
(output reg [countWidth-1:0] matchCount =0,

input [dataWidth-1:0] message, pattern);
int i
always @(*) begin

for (i=0;i < dataWidth;1 =i+ 1)
matchCount = matchCount + ~(message[i] A pattern[i});
end
endmodule

Example 2.15 Digital Correlator

2.4 Inferring Sequential Elements

Sequential elements are the latches and flip flops that make up the storage elements of
a register-transfer level system. Although they are a fundamental component of a dig-
ital system, they are difficult to describe to a synthesis tool; the main reason being that
their behavior can be quite intricate. The form of the description of some of these ele-
ments (especially flip flops) are almost prescribed so that the synthesis tool will know
which Library element to map the behavior to.

2.4.1 Latch Inferences

Latches are fevel sensitive storage devices. Typically, their behavior is controlled by a
systemn wide clock that is connected to a gate input (G). While the gate is asserted
(either high or low), the output Q of the latch follows the input D — it is a combina-
tional function of D. When the gate is unasserted, the output Q_remembers the last
value of the D input. Sometimes these devices have asynchronous set and/or reset
inputs. As we have seen in section 2.3.2, latches are not explicitly specified. Rather,
they arise by inference from the way in which a description is written. We say that
latches are inferred. One example of an inferred latch was shown in Example 2.7.

Latches are inferred using the always statement as a basis. Within an always state-
ment, we define a control path to be a sequence of operations performed when execut-
ing an always loop. There may be many diflerent control paths in an always block due
to the fact that conditional statements (e.g. case and if) may be used. To produce a
combinational circuit using procedural statements, the output of the combinational

Logic Synthesis 49

function must be assigned in each and every one of the different control paths. Thus,
for every conceivable input change, the combinational output will be calculated anew.

To infer a latch, two situations must exist module synLatchReset
in the always statement: at least one centrol (output reg Q,
path must exist that does not assign to an out- input g, d, reset);
put, and the sensitivity list must not contain
any edge-sensitive specifications. The first always @(*)
gives rise to the fact that the previous output if (~reset)
value needs to be remembered. The second Q=0;
leads to the use of level-sensitive latches (as else if {g)
opposed to edge-sensitive flip flops). The Q=d;
requirement for memory is indicative of a endmodule

sequential element where the previous state is
remembered in a latch when the inputs spec-
ify this control path. A logic synthesis tool
will recognize this situation and infer that a latch is needed in the circuit. Assuming
that we are trying to describe a sequential element, leaving the output variable unas-
signed in at least one path will cause a latch to be inferred.

Example 2.16 Latch With Reset

Example 2.16 shows a latch with module syn ALUwithELatchedOutput

a reset input. Although we have
specified output Q_to be a register,
that alone does not cause a latch to
be inferred. To see how the latch
inference arises, note that in the
control flow of the always state-
ment, not all of the possible input
combinations of g and reset are
specified. The specification says that
if there is a change on cither g, d or
reset, the always loop is executed. If
reset is zero, then Q js set to zero. If
that is not the case, then if g is one,
then Q_is set to the d input. How-
ever, because there is no specifica-
tion for what happens when reset is
one and g is zero, a latch is needed

#{parameter Width = 4)
(output reg [Width-1:0] Q,

input [Width-1:01 a,b,
input g, addsub);
always @(*) begin
if (g) begin
if (addsub)
Q=a+b;
else Q=a-b;
end
end
endmodule

Example 2.17 ALU With Latched Output

to remember the previous value of Q. This is, in fact, the behavior of a level sensitive
latch with reset. The latch behavior could also have been inferred using case or other

statements,

The latch synthesized does not need to be a simple gated latch; other functionality
can be included as shown in Example 2.17. Here an ALU capable of adding and sub-
tracting is synthesized with an output latch, The module’s width is parameterized.

50 The Verilog Hardware Description Language

While gate g is TRUE, the output Q_will follow the inputs, producing either the sum
or difference on the output. Input addsub selects between the two functions. When g
1s not TRUE, the latch holds the last result.

2.4.2 Flip Flop Inferences

Flip flops are edge-triggered storage devices. Typically, their behavior is controlled by a
positive or negative edge that occurs on a special input, called the clock. When the
edge event occurs, the input d is remembered and gated to the output Q, They often
have set and/or reset inputs that may change the flip flop state either synchronously or
asynchronously with respect to the clock. At no time is the output Q_a combinational
function of the input d. These {lip flops are not explicitly specified. Rather, they are
inferred from the behavior. Since some of their behavior can be rather complex, there
is essentially a template for how to specify it. Indeed some synthesis tools provide spe-
cial compiler directives for specifying the flip flop type.

Example 2.18 shows a synthesizable model module synDFF

of a flip flop. The main characteristic of a {lip (output reg q,

flop description is that the event expression on input clock, d);
the always statement specifies an edge. It is this

edge event that infers a {lip flop in the final always @(ncgedge clock)
design (as opposed to a level sensitive latch). q<=d

As we will see, an always block with an edge- endmodule

triggered event expression will cause {lip flops

to be inferred for all of the registers assigned to Example 2.18 A Synthesizable D
in procedural assignments in the always block. Flip Flop

(Thus, an always block with an edge-triggered

event expression cannot be used to define a fully combinational function.)

Typically flip flops include reset signals to initialize their state at system start-up.
The means for specifying these signals is very stylized so that the synthesis tool can
determine the behavior of the device to synthesize. Example 2.19 shows a D flip flop
with asynchronous set and reset capabilities. In this example, the reset signal is
asserted low, the set signal is asserted high, and the clock event occurs on the positive
edge of clock.

Examples 2.18 and 2.19 both use non-blocking assignments in their specification.
This specification allows for correct simulation if multiple instances of these modules
are connected together.

Although the Example 2.19 appears straight-forward, the format is quite strict and
semantic meaning is inferred from the order of the statements and the expressions
within the statements. The form of the description must follow these rules:

Logic Synthesis 51

module synDFFwithSetReset

(output reg q,
input d, reset, set, clock);

always @(posedge clock, negedge reset, posedge set) begin
if (~reset)
q<=0;
else if (set)
q<=1
else q<=4d;
end
endmodule

Example 2.19 A Synthesizable D Flip Flop With Set and Reset

* The always statement must specify the edges for each signal. Even though asyn-
chronous reset and set signals are not edge triggered they must be specified this
way. (They are not edge triggered because q will be held at zero as long as reset is
zero — not just when the negative edge occurs.)

e The first statement following the always must be an if.

e The tests for the set and reset conditions are done first in the always statement
using else-if constructs. The expressions for set and reset cannot be indexed; they
must be one-bit variables. The tests for their value must be simple and must be
done in the order specified in the event expression.

» Ifa negative edge was specified as in reset above, then the test should be:
if (~reset) ...
or
if (reset == 1'b0) ...

e Ifapositive edge was specified as in set above, then the test should be:

if (set) ...
or

if (set == 1'b1) ...

o After all of the set and resets are specified, the {inal statement specifies the action
that occurs on the clock edge. In the above example, q is loaded with input d.
Thus, “clock” is not a reserved word. Rather, the synthesis tools infer the special
clock input from assignment’s position in the control path; it is the action that
oceurs when none of the set or reset actions occur.

e All procedural assignments in an always block must either be blocking or non-
blocking assignments. They cannot be mixed within an always block. Non-block-
ing assignments (“<=") are the assignment operator of choice when specifying the
edge-sensitive behavior of a circuit. The “<=" states that all the transfers in the
whole system that are specified to occur on the edge in the sensitivity list should

52 The Verilog Hardware Description Language

w_»

occur concurrently. Although descriptions using the regular “=” will synthesize
properly, they may not simulate properly. Since both simulation and synthesis are
generally of importance, use “<=" for edge sensitive circuits.

» The sensitivity list of the always block includes only the edges for the clock, reset
and preset conditions.

These are the only inputs that can cause a state change. For instance, if we are
describing a D {lip flop, a change on D will not change the flip {lop state. So the D
input is not included in the sensitivity list.

* Any register assigned to in the sequential always block will be implemented using
flip flops in the resulting synthesized circuit. Thus you cannot describe purely
combinational logic in the same always block where you describe sequential logic.
You can write a combinational expression, but the result of that expression will be
evaluated at a clock edge and loaded into a register.

References: non-blocking versus blocking assignment 8.4,

2.4.3 Summary

Latches and {lip flops are fundamental components of register-transfer level systems.
Their complex behavior requires that a strict format be used in their specification. We
have only covered the basics of their specification. Most synthesis tools provide com-
piler directives to aid in making sure the proper library element is selected to imple-
ment the specified behavior. Read the synthesis tool manual closely.

2.5 Inferring Tri-State Devices

Tri-state devices are combinational logic module syn'TriState
circuits that have three output values: (output reg bus,
one, zero, and high impedance (z}. Hav- input in, driveEnable);
ing special, non-typical capabilities,
these devices must be inferred from the always @(*)
description. Example 2.20 illustrates a if (driveEnable)
tri-state inference. bus = in;
else bus = 1'bz;
The always statement in this module endmodule

follows the form for describing a combi-

national logic function. The special situ- Example 2.20 Inferring a Tri-State
ation here is that a condition (in this Device

case, driveEnable) specifies a case where

the output will be high impedance. Synthesis tools infer that this condition will be the
tri-state enable in the {inal implementation.

Logic Synthesis 53

2.6 Describing Finite State Machines

We have seen how to specify combinational logic and sequential elements to a synthe-
sis tool. In this section we will combine these into the specification of a finite state
machine. The standard form of a finite state machine is shown in Figure 2.1. The
machine has inputs x;, outputs z;, and flip flops Q; holding the current state. The out-
puts can either be a function solely of the current state, in which case this is a Moore
machine. Or, they can be a function of the current state and input, in which case this
is a Mlealy machine. The input to the {lip flops is the next state; this is a combinational
function of the current state and inputs.

Xi———p -z
Combinational
Logic
Q
Current

State

clock———p» Flip Flops

reset —f———o»|

Figure 2.1 Standard Model of a Finite State Machine

The Verilog description of a finite state machine (FSM) follows this model closely.
The outer box of Figure 2.1 will be the FSM module. The two inner boxes will be two
separate always statements. One will describe the combinational logic functions of the
next state and output. The other will describe the state register.

2.6.1 An Example of a Finite State Machine

An example of an FSM description will be presented using the explicif style of FSM
description. In this style, a case statement is used to specify the actions in each of the
machine’s states and the transitions between states. Consider the state transition dia-
gram shown in Figure 2.2. Six states and their state transitions are shown with one
input and three output bits specified. Example 2.21 is the Verilog description of this
FSM.

The {irst always statement is a description of the combinational output (out) and
next state (nextState) functions. The input set for these functions contains the input i
and the register currentState. Any change on either of these will cause the always
statement to be re-evaluated. The single statement within the always is a case state-

54 The Verilog Hardware Description Ltanguage

1100 1101

Figure 2.2 State Transition Diagram for Example 2.21

ment indicating the actions to be performed in each state. The controlling expression
for the case is the state variable {currentState). Thus, depending on what state the
machine is in, only the specified actions occur. Note that in each case item, the two
combinational functions being computed (out and nextState) are assigned to. In addi-
tion, a default case item is listed representing the remaining unassigned states. The
default sends the machine to state A which is equivalent to a reset. By arbitrary
choice, out is set to dor't care in the unassigned states.

This always statement will result in combinational logic because: the sensitivity list
contains all of the input set, there are no edge specifiers in the sensitivity list, and for
every control path, both of the combinational outputs have been assigned to. This
includes every possible case item. Thus, there will be no inferred latches. Note that a
default case item was used here instead of specifying that this is a full case. This allows
us to specify the reset state as the next state in case there is an error in operation — for
instance, the logic circuit somehow gets inte an undefined state. Although we speci-
fied that the output in this situatien is a don’t care, we could have made a specification
here too.

The second always statement infers the-state register with its reset condition. In
this case, reset is asserted low and will cause the machine to go into state A. If reset is
not asserted, then the normal action of the always will be to load currentState with
the value of nextState, changing the state of the FSM on the positive edge of clock.

Notice that currentState is assigned to in every control path of the always — so
why is a {lip flop inferred? The reason is that the edge specifications in the event
expression cause any register assigned to in the block to be implemented using flip
flops. You cannot specify combinational logic in an always block with edge triggers in
the sensitivity list. This is why we need two always blocks to specify an FSM: one for
the state register, and the other for the combinational logic.

The localparam statement specifies the state assignment for the system. Since these
are treated as constants, they cannot be directly overridden by instantiation.

Together, these two always statements work together to implement the functional-
ity of a finite state machine. The output of the second always is the current state of the

Logic Synthesis 55

module fsm
(input i, clock, reset,

output reg [2:0] out);
reg [2:0] currentState, nextState;

localparam [2:0] A = 3'b000,// The state labels and their assignments
B = 3'5001,
C =3'b010,
D = 3011,
E =3b100,
F =3'b101;

always @(*) // The combinational logic
case (currentState)
A: begin
nextState = (1==0)? A : B;
out = (i == 0) ? 3'b000 : 3'b100;
end
B: begin
nextState = i == 0) ? A : C;
out = (i == 0) ? 3'b000 : 3'b100;
end
C: begin
nextState = (1 ==0)? A: D;
out = (1==0) ? 3'b000 : 3'b101;
end
D: begin
nextState = (i==0}? D E;
out = (i == 0) ? 3'b010 : 3'b110;
end
E: begin
nextState = 1==0)? D : F;
out = (i ==0) ? 3'b010 : 3'b110;
end
F: begin
nextState = I;
out = (i == 0) ? 3'b000 : 3'b101;
end
default: begin // oops, undefined states. Go to state A
nextState = A;
out = (1 ==0) ? 3'bxxx : 3'bxocx;
end
endcase

56

The Verilog Hardware Description Language

always @(posedge clock or negedge reset) // The state register

if (~reset)

currentState <= A;// the reset state

else

currentState <= nextState;

endmodule

Example 2.21 A Simple Finite State Machine

FSM and it is in the input set of the first always statement. The first always statement
is a description of combinational logic that produces the output and the next state

functions.

References: parameters 5.2; non-blocking assignment 8.4; implicit style 2.6.2.

2.6.2 An Alternate Approach to FSM Specification

The above explicit approach for specifying FSMs is quite general, allowing for arbi-
trary state machines to be specified. If an FSM is a single loop without any condi-
tional next states, an implicit style of specification may be used.

The basic form of an implicit
FSM specification is illustrated in
Example 2.22. The single always
statement lists several clock events,
all based on the same edge (positive
or negative). Since the always speci-
fies a sequential loop, each state is
executed in order and the loop exe-
cutes continucusly. Thus, there is no
next state function to be specified.

In this particular example, a flow
of data is described. Each state com-
putes an output (temp and dataOut)
that is used in later states. The output
of the final state (dataQut) is the
output of the FSM. Thus, a new
result is produced every third clock
period in dataQut.

module synImplicit
(input [7:0] dataln,cl,c2,
input clock,

output reg [7:0] dataOut);
reg [7:0] temp;

always begin

@ (posedge clock)
temp = dataln + cl;
@ (posedge clock)
temp = temp & ¢2;
@ (posedge clock)
dataOut = temp - ¢1;
end
endmodule

Example 2.22 An Implicit FSM

Logic Synthesis 57
Another example of a flow of module synPipe

data is a pipeline, illustrated in (input [7:0] dataln,el,c2,

Example 2.23 using a slightly input clock,

different calculation. Here a
result is produced every clock
period in dataOut. In this case,
three FSMs are specified; one for
each stage of the pipe. At every
clock event, each stage computes
a new output (stageOne, stag-
eTwo, and dataQut). Since these
variables are used on the left-
hand side of a procedural state-
ment in an always block with an
edge specifier, there are imple-
mented with registers. The non-
blocking assignment (<=) must
be used here so that the simula-
tion results will be correct.
Figure 2.3 shows a simplified
form of the implementation of
module synPipe.

output reg [7:0] dataOut);

reg [7:0]
reg [7:0]

stageOne;
stage Two;

always @ (posedge clock)
stageOne <= dataln + c1;

always @ (posedge clock)
stageTwo <= stageOne & c2;

always @ (posedge clock)
dataOut <= stage Two + stageOne;

endmodule

Example 2.23 A Pipeline

dataln

register
stageOne

register
stageTwo

register [
dataOut

c2 l‘>

cl |_>
clock—

'J>

Figure 2.3 The Data Path of Example 2.23

References: explicit style 2.6.1

58 The Verilog Hardware Description Language

2.7 Finite State Machine and Datapath

We've used the language to specify combinational logic and finite state machines.
Now we'll move up to specifying register transfer level systems. We’ll use a method of
specification known as {inite state machine and datapath, or FSM-D. Our system will
be made up of two parts: a datapath that can do computations and store results in reg-
isters, and a finite state machine that will control the datapath.

2.7.1 A Simple Computation

We begin with a simple computation and show how to specify the logic hardware
using Verilog. The computation is shown below in a C-like syntax:

for(x=0,i=0;i<=10;i=1+1)

X_'X+Y)
if (x < 0)

y=0;
else x=0;

The computation starts ofl by clearing x and i to 0. Then, while i is less than or equal
to 10, x is assigned the sum of x and y, and i is incremented. When the loop is exited,
if x is less than zero, y is assigned the value 0. Otherwise, x is assigned the value 0.
Although simple, this example will illustrate building larger systems.

We'll assume that these are to be 8-bit computations and thus all registers in the
system will be 8-bit.

2.7.2 A Datapath For Our System

There are many ways to implement this computation in hardware and we will focus
on only one of them. A datapath for this system must have registers for x, i, and y. It
needs to be able to increment i, add x and y, and clear i, x, and y. It also needs to be
able to compare i with 10 and x with 0. Figure 2.4 illustrates a datapath that could
execute these register transfers.

The name in each box in the figure suggests its functionality. Names with overbars
are control signals that are asserted low. Looking at the block labeled register i, we see
that its output (coming from the bottom) is connected back to the input of an adder
whose other input is connected to 1. The output of that adder (coming from the bot-
tom) is connected to the input of register i. Given that the register stores a value and
the adder is a combinational circuit, the input to register i will always be one greater
than the current value of register i. The register also has two control inputs: iLoad
and iClear. When one of these inputs is asserted, the specified function will occur at

Logic Synthesis 59

yload]
m —d register y

| —po-yLoad I I |
P -y Clear adder adder

e xLoad

Lo xClear

il oad xLoad —d iLoad) "

- iClear xClear —gf register x iClear —gf register i

g —x < 10 0 I—I— I ? I—I—

i <= 10 l

gt — clock compare compare

{
e L__x<0 I——i<=|0

Figure 2.4 Finite State Machine and Datapath

the next clock edge. If we assert iLoad, then after the next clock edge register i will
load and store its input, incrementing i. Alternately, iClear will load a zero into regis-

ter i. The compare modules are also combinational and produce the Boolean result
indicated.

The register transfers shown in our computation arex = 0,1=0,y=0,i=1+ 1,and
x = x +y. From the above description of how the datapath works, we can see that all of
the register transfers in our computation can be executed on this datapath. Further, all

of the conditional values needed for branching in the FSM are generated in the data-
path.

The FSM shown on the left sequences through a series of states to cause the com-
putation to occur. The FSM’s outputs are yLoad, yClear, xLoad, xClear, iLoad, and
iClear. Its inputs are x<0 and i<=10. A master clock drives the state registers in the
FSM as well as the datapath registers. A reset signal is also connected.

60 The Verilog Hardware Description Language

2.7.3 Details of the Functional Datapath Modules

The datapath is made up module register

of three basic modules: #(parameter Width = 8)
registers, adders, and (output reg [Width-1:0] out,
comparators. The register input [Width-1:0] in,
module definition is input clear, load, clock);
shown in Example 2.24.

Looking first at the always @(posedge clock)

always block, we see that if (~clear)

it is very similar to those out <=0

we've seen in sequential else if (~load)

circuit descriptions so far. out <= in;

The register is positive endmodule

edge triggered but does

not have an asynchro- Example 2.24 Register Module

nous resct. To go along

with the register modules

defined for our datapath, it has two control points: clear and load. These control
points, when asserted, cause the register to perform the specified function. If input
clear is asserted, it will load 0 at the clock edge. If foad is asserted, it will load input in
into register out at the clock edge. If both are asserted, then the register will perform
the clear function.

This example introduces a new statement, the parameter statement. The parameter
defines a name to have a constant value; in this case Width has the value 8. This name
is known within the module and can be used in any of the statements. Here we see it
being used to define the default value for the left-most bit number in the vector defin-
itions of the output and register out and the input in. Given that Width is defined to
be 8, the left-most bit is numbered 7 {i.e., 8-1) and out and in both have a bitwidth of
eight (i.e., bits 7 through 0). What is interesting about a parameter is that the default
value can be overridden at instantiation time; however it cannot be changed during
the simulation. Thus, this module definition can be used to instantiate registers of

different bitwidth. We will see how shortly.

The adder module is shown in module adder
Example 2.25. It is parameterized to have #(parameter Width = 8)
a default bitwidth of eight. The assign (input [Width-1:0] a,b,
statement in this example shows a means output [Width-1:0] sum);
of generating our “adder” function. The
output sum is assigned the arithmetic assign sum = a + b;
surn of inputs a and b using the “+” opera- endmodule

tor, The assign statement is discussed fur-
ther in Chapter 6. Example 2.25 The Adder Module

Logic Synthesis 61

The compareLT and com- module compareL’T’ // comparesa < b
pareLEQ_modules are shown in #(parameter Width = 8)
Example 2.26, again using the (input [Width-1:0] a,b,
continuous assign statement. In output out);
the comparellT' module, a is
compared to b, If a is less than b, assign out =a < b;
then out is set to rrRUE, Other- endmodule

wise it is set to FALSE. The com-

pareLEQ_module for comparing module compareLEQ // compares a <= b

i with 10 in our computation is #(parameter ~ Width = 8)
similar to this module except (input [Width-1:0] a,b,
with the “<=” operator instead of output out);
the “<* operator. The width of

these modules are also parame- assign out = a <= b;

terized. Don’t be confused by the endmodule

second assign statement, namely:

Example 2.26 The CompareL'T and
CompareLEQ Modules

assign out=a <=b;

This does not assign b to awith a

non-blocking assignment, and then assign a to out with a blocking assignment, Only
one assignment is allowed in a statement. Thus by their position in the statement, we
know that the first is an assignment and the second is a less than or equal comparison.

The adder, compareLEQ, and comparel’T' modules could have written using the
combinational version of the always block. As used in these examples, the two forms
are equivalent. Typically, the continuous assign approach is used when a combina-
tional function can be described in a simple statement. More complex combinational
functions, including ones with don’t care specifications, are typically easier to describe
with a combinational always statement.

References: continuous assign 6.3

2.7.4 Wiring the Datapath Together

Now we build a module to instantiate all of the necessary FSM and datapath modules
and wire them together. This module, shown in Example 2.27, begins by declaring
the 8-bit wires needed to connect the datapath modules together, followed by the 1-
bit wires to connect the control lines to the FSM. Following the wire definitions, the
meodule instantiations specify the interconnection shown in Figure 2.4.

Note that this module also defines a Width parameter, uses it in the wire defini-
tions, and also in the module instantiations. Consider the module instantiation for the
register I from Example 2.27.

62 The Verilog Hardware Description Language

module sillyComputation
#(parameter Width = 8)
(input ck, reset,
input [Width-1:0] yIn,
output [Width-1:0] y,x);
wire [Width-1:0] 1, addiOut, addxQut;
wire yLoad, yClear, xLoad, xClear, iL.oad, iClear;

register #(Width) 1 {1, addiOut, iClear, iL.oad, ck),
Y {y, yIn, yClear, yLoad, ck),
X (x, addxQut, xClear, xLoad, ck);

adder #(Width) addl (addiOut, 'bl, i),
addX (addxOut, y, x);
comparel’T #{Width) empX (x, 'b0, xLXT0);
compareLEQ_ #{Width) cmpl (3, 'd10,iLEQ10);
fsm ctl
(xLT0, iLEQ10, yLoad, yClear, xLoad, xClear, iL.oad, iClear, ck, reset);
endmodule

Example 2.27 Combining the FSM and Datapath

register # Width) I (4, addiOut, iClear, il.oad, ck),

What is new here is the second item on the line, “4(Width)”. This value is substituted
in the module instantiation for its parameter. Thus, by changing the parameter Width
in module sillyComputation to, say 23, then all of the module instantiations for the
datapath would be 23 bits wide. Parameterizing modules allows us to reuse a generic
module definition in more places, making a description easier to write. If #{Width)
had not been specified in the module instantiation statement, then the default value of
8, specified in module register, would be used. The example also illustrates the use of
unsized constants. The constant 1 specification (given as 'b1 in the port list of adder
instance addl) specifies that regardless of the parameterized Width of the module,
the value 1 will be input to the adder. That is the least significant bit will be 1 with as
many Os padded to the left as needed to fill out the parameterized width. This is also
grue of unsized constants ‘b0 and 'd10 in the compare module instantiations.

Logic Synthesis 63

2.7.5 Specifying the FSM

Now that the datapath has been specified, a finite state machine is needed to evoke
the register transfers in the order and under the conditions specified by the original
computation. We first present a state transition diagram for this system and then
describe the Verilog fsm module to implement it.

The state transition diagram is shown in Figure 2.5 along with the specification for
the computation. The states marked “...” represent the computation before and after
the portion of interest to us. Each state “bubble” indicates the FSM outputs that are
to be asserted during that state; all others will be unasserted. The arrows indicate the
next state; a conditional expression beside an arrow indicates the condition in which
that state transition is taken. The diagram is shown as a Moore machine, where the
outputs are a function only of the current state. Finally, the states are labeled A
through F for discussion purposes.

for (x=0,i=0i<=10;i=i+ 1}

x=x+y;
if (x < 0)

y=0;
else x=0;

~(i<=10) && (x<0)

i<=10

Figure 2.5 State Transition Diagram

Following through the computation and the state transition diagram, we see that
the first action is to clear both the x and i registers in state A. This means that while
the machine is in state A, xClear and iClear are asserted (low). Note though that the
registers 1 and x will not become zero until after the positive clock edge and we're in
the next state (B). State B then asserts the load signals for x and i. The datapath in
Figure 2.4 shows us what values are actually being loaded: x + y and i + 1 respectively.
Thus, state B executes both the loop body and the lcop update. From state B the sys-
tem goes to state C where there is no FSM output asserted. However, from state C
there are three possible next states depending on whether we are staying in the loop
(going to state B), exiting the loop and going to the then part of the conditional (state
D}, or exiting the loop and going to the else part of the conditional (state E). The
next state after D or E is state F, the rest of the computation.

64 The Verilog Hardware Description Language

It is useful to understand why state C is needed in this implementation of the sys-
tem. After all, couldn’t the conditional transitions from state C have come from state
B where x and i are loaded? The answer is no. The timing diagram in Figure 2.6 illus-
trates the transitions between states A, B, and C. During the time when the system is
in state B, the asserted outputs of the finite state machine are xLoad and iLoad,
meaning that the x and i registers are enabled to load from their inputs. But they will
not be loaded until the next clock edge, the same clock edge that will transit the finite
state machine into state C. Thus the values of i, on which the end of loop condition is
based, and x, on which the if-then-else condition is based, are not available for com-
parison until the system is in state C. In the timing diagram, we sce that since 1 is less
than or equal to 10, the next state after C is B.

clock

xClear

__/

iClear \ _/
I
| ./
state :x A X & X ¢ X s x: c

Figure 2.6 Timing Diagram For States A, B, and C.

iLoad

It is interesting to note that in this implementation of the system, the exit condi-
tion of the for loop is not checked before entering the loop. However, given that we
just cleared i before entering the loop, it is not necessary to check that is less than or
equal to 10. Further, with a different datapath, state C might not be necessary. For
instance, the comparisons with i and x could be based on the input value to these reg-
isters, thus comparing with the future value. Or the constants with which the compar-
isons are made could be changed. Of course, these are all at the discretion of the
designer.

Logic Synthesis 65

Now consider the Verilog model of the finite state machine for this system shown
in Example 2.28. The machine’s inputs are the two conditions, x < 0 and i <= 10.
Internal to the fsm module, they are called LT and LEQ_respectively. Module fsm
also has a reset input and a clock (ck} input. The module outputs are the control
points on the registers (yLoad, yClear, xLoad, xClear, iLoad, iClear). Like our previ-
ous fsm examples, there are two always blocks, one for the sequential state change and
the other to implement the next state and output combinational logic. Registers are
declared for all of the combinational outputs.

Our state machine will only implement the states shown in the state transition dia-
gram, even though there would be many mere states in the rest of the computation.
Thus, the width of the state register (cState) was chosen to be three bits. Further, the
reset state is shdwn to be state 0 although in the full system it would be some other
state. A very simple state assignment has been chosen, with state A encoded by 0, B
encoded by 1, and so on.

The first always block is very similar to our previous state machine examples. If
reset is asserted, then the reset state is entered. Otherwise, the combinational value
nState is loaded into cState at the positive clock edge.

The second always block implements the next state and output combinational
logic. The inputs to this combinational logic are the current state (¢State) and fsm
inputs (LT and LEQ). The body of the always block is organized around the value of
cState. A case statement, essentially a multiway branch, is used to specify what is to
happen given each possible value of cState. The value of the expression in parenthe-
ses, in this case cState, is compared to the values listed on each line. The line with the
matching value is executed.

If the current state changes to state A, then the value of cState is 0 given our
encoding. Thus, when this change occurs, the always block will execute, and the state-
ment on the right side of the 3'b000: will execute. This statement specifies that all of
the outputs are unasserted (1) except iClear and xClear, and the next state is 3'b001
(which is state B). If the current state is B, then the second case item (3'b001) is exe-
cuted, asserting iL.oad and xI.oad, and unasserting all of the other outputs. The next
state from state B is C, encoded as 3'6010. State C shows a more complex next state
calculation; the three if statements specify the possible next states from state C and
the conditions when each would be selected.

The last case item specifies the default situation. This is the statement that is exe-
cuted if none of the other items match the value of cState. For simulation purposes,
you might want to have a $display statement to print out an error warning that you've
reached an illegal state. The $display prints a message on the screen during simula-
tion, acting much like a print statement in a programming language. This one dis-
plays the message “Oops, unknown state: %b” with the binary representation of cState
substituted for %b.

66 The Verilog Hardware Description Language

To make this always block a combinational synthesizable function, the default is
required. Consider what happens if we didn’t have the default statement and the value
of cState was something other than one of the five values specified. In this situation,
the case statement would execute, but none of the specified actions would be exe-
cuted. And thus, the outputs would not be assigned to. This breaks the combinational
synthesis rule that states that every possible path through the always block must
assign to every combinational cutput. Thus, although it is optional to have the default
case for debugging a description through simulation, the default is required for this
always block to synthesize to a combinational circuit. Of course a default is not
required for synthesis if all known value cases have been specified or ¢State was
assigned a value before the case statement.

Consider now how the whole FSM-Datapath system works together. Assume that
the current state is state C and the values of i and x are 1 and y respectively, as shown
in the timing diagram of Figure 2.6. Assume further that the clock edge that caused
the system to enter state C has just happened and cState has been loaded with value
3'b010 {the encoding for state C}. Not only has cState changed, but registers x and i
were also loaded as a result of coming from state B.

In our description, several always blocks are were waiting for changes to cState, x,
and 1. These include the fsm’s combinational always block, the adders, and the com-
pare modules. Because of the change to cState, x, and i, these always blocks are now
enabled to execute. The simulator will execute them, in arbitrary order. Indeed, the
simulator may execute some of them several times. (Consider the situation where the
fsm'’s combinational always block executes first. Then after the compare modules exe-
cute, it will have to execute again.) Eventually, new values will be generated for the
outputs of the comparators. Changes in LT" and LEQ _in the fsm module will cause its
combinational always block to execute, generating a value for nState. At the next pos-
itive clock edge, this value will be loaded into cState and another state will be entered.

Refereaces: case 3.4; number representation B.3

2.8 Summary on Logic Synthesis

We have seen that descriptions used for logic synthesis are very stylized and that some
of the constructs are ovetloaded with semantic meaning for synthesis. In addition,
there are several constructs that are not allowed in a synthesizable description.
Because these can vary by vendor and version of the tool, we chose not to include a
table of such constructs. Consult the user manual for the synthesis tool you are using.

Table 2.1 summarizes some of the basic rules of using procedural statements to
describe combinational logic and how to infer sequential elements in a description.

Logic Synthesis

module fsm
(input
output reg

LT, LEQ, ek, reset,
yLoad, yClear, xLoad, xClear, iLoad, iClear);

reg [2:0] cState, nState;

always @(posedge ck, negedge reset)

if (~reset)
cState <= 0
else cState <= nState;

always @(cState, LT, LEQ)
case (cState)

3'b000 :

3'b001 :

3010 :

3'b011:

3'b100 :

default :

endcase
endmodule

begin // state A
yLoad = 1; yClear = 1; xLoad = 1; xClear = 0;
iLoad = 1; iClear = 0; nState = 3'b001;

end

begin //state B
yLoad = 1; yClear = 1; xLoad = 0; xClear = 1;
il.oad = 0; iClear = 1; nState = 3'b010;

end

begin // state C :
yLoad = 13 yClear = 1; xLoad = 1; xClear = 1;
iL.oad = 1; iClear = 1;
if (LEQ) nState = 3'b001;
if (~LEQ & LT} nState = 3'b011;
if (~LEQ & ~LT) nState = 3'b100;

end

begin // state D
yLoad = 1; yClear = 0; xLoad = 1; xClear = 1;
il.oad = 1; iClear = 1; nState = 3'b101;

end

begin // state E
yLoad = 1; yClear = 1; xLoad = 1; xClear = 0;
il.oad = 1; iClear = 1; nState = 3'b101;

end

begin // required to satisfy combinational synthesis rules
yLoad = 1; yClear = 1; xLoad = 1; xClear = 1;
il.oad = 1; iClear = 1; nState = 3'b000;
$display ("Oops, unknown state: %b", cState);

end

Example 2.28 FSM For the Datapath

67

68

The Verileg Hardware Description Language

Table 2.1 Basic Rules for Using Procedural Statements in Logic Synthesis

Output Assigned
Type of Logic To Edge Specifiers in Sensitivity List
Combinational An output must be Not allowed. The whole input set must be
assigned to in all in the sensitivity list. The censtruct @(*)
control paths. assures this.
Inferred latch There must exist at Not allowed,

least one control
pathwhere an output
1s not assigned to.
From this “omis-
sion,” the tool infers
a latch.

Inferred dlip flop No affect Required — from the presence of an edge

speciﬁer, the tool infers a flip flop. All reg-
isters in the always block are clocked by
the specified edge.

2.9 Exercises

21

22

23
24
25

2.6

2.7

In section 2.2 on page 37, we state that a synthesis tool is capable, and possibly
constrained, to implement the functionality using different gate primitives.
Explain why it might be “constrained” to produce an alternate implementation.

Alter the description of Example 2.7 so that there is no longer an inferred latch.
When a is not one, b and ¢ should be or-d together to produce the output.

Alter the description of Example 2.16. Use a case statement to infer the latch.
‘Why can’t while and forever loops be used to specify combinational hardware?

Rewrite Example 2.21 as a Moore machine. An extra state will have to be
added.

Rewrite Example 2.21 using a one-hot state encoding. Change the description
to be fully parameterized so that any state encoding may be used.

Write a description for the FSM shown in Figure 2.7 with inputs Ain, Bin,
Cin, clock, and reset, and output Y.

A A single always block

B. Two always blocks; one for the combinational logic and the other for the
sequential.

Logic Synthesis 69

2.8

€. Oops, this circuit 1s too slow. We can’t have three gate delays between the flip
flop outputs and inputs; rather only two. Change part B so that Y is a combina-
tional output. i.e. Move the gate generating d2 to the other side of the flip {lops.

D. Simulate all of the above to show that they are all functionally equivalent.

Ain Qo

do

Q1

Q1

reset

Figure 2.7 Control Over Synthesis

Design, implement, and simulate a 4-bit two’s complement adder/subtractor
circuit to compute (A+B), (A-B), sat{A+B), or sat(A-B) when a two-bit add_sel
bit is 00, 01, 10, or 11, respectively. sat(x) is saturating addition. Saturating
arithmetic is analogous to other kinds of saturation — numbers can only get so
big (or so small) and no bigger {or smaller), but they don’t wrap, unlike in mod-
ulo arithmetic.

For example, for a three-bit saturating adder, 010 + 001 = 011 (2+1=3, OK|
fine), but 011 + 001 = 011 (3+1=3, huh?), i.¢, instead of “wrapping” to obtain a
negative result, let’s just represent the result as close as we can, given our limited
number of bits.

Similarly for negative results, 111+101 = 100 (-14(-3) = -4), but 100 + 111 = 100
{-4 + (-1) = -4, i.e, the smallest, or most negative representation in 3-bit, two’s
complement).

Assume complemented inputs for B are no# available. Write your description
entirely in a synthesizable procedural Verilog style. Simulate and show enough
test cases to verify your design (that does not mean all possible input cases this
time!).

70

2.9

2.10

The Verilog Hardware Description Language

Consider the state
transition diagram
shown to the right.
The output of the
FSM is three bits,
but states A and C
only use two bits for
the output. For each
of the following
encoding styles,
(binary encoding,
output encoding, one-
hot encoding:):

A. Show the state assignment

B. Derive boolean equations for the next state logic and output logic in mini-
mized SOP. Show all your work and reasoning for full credit.

C. Design (draw) the circuit using positive edge-triggered D flip-flops with
negative-logic preset and reset signals. Show the reset logic of the FSM.

D. Write a synthesizable Verilog simulation of your design. Write a test module
to test your module with input sequence (read left to right) 11010001100, Use
decimal format for the FSM outputs. Hand in the source code and output.

For the Mealy Reset
finite state
machine shown to
the right,

A. Write a proce-
dural Verilog
implementation
for your mealy
machine.

B. Simulate and
test your circuit
for an input 0/00
sequence (read left

to right) of 100101101111. Display the output sequence of your machine in
decimal (i.e., 0,1,2,3) and relate it back to your input sequence. Your simulation

Logic Synthesis 71

results must show that your machine behaves like a Mealy machine. In a Mealy,
if you change inputs between block events, the output should follow, no matter
how many times you change the inputs. Your simulation results must show this!

2.11 Design a Mealy finite state machine with one input, X, and one cutput,Y. With
this state machine, you get an output of Y=1 every time the input sequence has
exactly two or exactly four 1's in a row. Y=0 otherwise. Make sure your machine
does this:

Input: 0110111011110111110
Output:0001000000001000000

Notice how you can't tell if you get exactly two or exactly four 1’s until you see the
next input, It sort of makes the timing look like a Moore machine, but it isn't.
It’s a Mealy. And you must design the machine as a Mealy! Write a Verilog
implementation for your mealy machine, Simulate and test your circuit using
the input sequence given above.

