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Chapter 2
Lebesgue Spaces of Matrix Functions

In this Chapter, we introduce the notations and define the spaces Lp(G,Mn) of matrix
Lp functions on locally compact groups G as a setting for later developments. We
recall some basic definitions and derive some results for convolution operators in the
scalar case. We discuss differentiability of the norm in Lp(G,Mn) which is needed
later, and compute the Gateaux derivative of the norm when the matrix space Mn is
equipped with the Hilbert-Schmidt norm.

2.1 Preliminaries

We denote by G throughout a locally compact group with identity e and a right in-
variant Haar measure λ . To avoid the inconvenience of additional measure-theoretic
technicalities, we assume throughout that λ is σ -finite. If G is compact, λ is nor-
malized to λ (G) = 1.

Let 1 ≤ p < ∞. Given a complex Banach space E, we denote by Lp(G,E) the
Banach space of (equivalence classes of) E-valued Bochner integrable functions f
on G satisfying

‖ f‖p =
(∫

G
‖ f (x)‖pdλ (x)

) 1
p

< ∞

(cf. [22, p.97]). We write Lp(G) for Lp(G,E) if dimE = 1. In the sequel, E is usually
the C∗-algebra Mn of n×n complex matrices in which case, a function f : G −→ Mn
is an n×n matrix ( fi j) of complex functions fi j on G.

We denote by B(E) the Banach algebra of bonded linear self-maps on a Banach
space E.

Let Tr : Mn → C be the canonical trace of Mn. Every continuous linear functional
ϕ : Mn → C is of the form ϕ(·) = Tr(·Aϕ) where the matrix Aϕ ∈ Mn is unique and
‖ϕ‖ = Tr(|Aϕ |) = Tr((A∗

ϕ Aϕ)1/2) which is the trace-norm ‖Aϕ‖tr of Aϕ . We will
identify the dual M∗

n , via the map ϕ ∈ M∗
n �→ Aϕ ∈ Mn, with the vector space Mn

equipped with the trace-norm ‖ ·‖tr. If we equip Mn with the Hilbert-Schmidt norm
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6 2 Lebesgue Spaces of Matrix Functions

‖A‖hs = Tr(A∗A)1/2, then Mn is a Hilbert space with inner product 〈A,B〉= Tr(B∗A).
We note that the C*-norm, the trace-norm and the Hilbert-Schmidt norm on Mn are
related by

‖ · ‖ ≤ ‖ · ‖tr ≤
√

n‖ · ‖hs ≤ n‖ · ‖
and norm convergence is equivalent to entry-wise convergence in Mn.

If Mn is equipped with the Hilbert-Schmidt norm, then L2(G,(Mn,‖ · ‖hs)) is a
Hilbert space, with inner product

〈 f ,g〉2 =
∫

G
Tr( f (x)g(x)∗)dλ (x).

Since ‖ f (x)g(x)∗‖hs ≤ ‖ f (x)‖hs‖g(x)‖hs for f ,g ∈ L2(G,(Mn,‖ ·‖hs)), the Bochner
integral

〈〈 f ,g〉〉 =
∫

G
f (x)g(x)∗dλ (x)

exists in Mn and defines an Mn-valued inner product, turning L2(G,(Mn,‖·‖hs)) into
an inner product (left) Mn-module.

We denote by L∞(G,Mn) the complex Banach space of Mn-valued essentially
bounded (locally) λ -measurable functions on G, where Mn is equipped with the C*-
norm. It is a von Neumann algebra, with predual L1(G,M∗

n), under the pointwise
product and involution:

( f g)(x) = f (x)g(x), f ∗(x) = f (x)∗ ( f ,g ∈ L∞(G,Mn), x ∈ G).

We will study convolution operators on Lp(G,Mn) defined by matrix-valued mea-
sures. In this section, we first recall some basic definitions and derive some results
for convolution operators on Lp(G), for later reference. One important difference in
the matrix setting is the presence of non-commutative and non-associative algebraic
structures.

We equip the vector space C(G) of complex continuous functions on G with the
topology of uniform convergence on compact sets in G, and denote by Cc(G) the
subspace of functions with compact support. The Banach space of bounded complex
continuous functions on G is denoted by Cb(G). Let C0(G) be the Banach space of
complex continuous functions on G vanishing at infinity. The dual C0(G)∗ identifies
with the space M(G) of complex regular Borel measures on G. Each µ ∈ M(G) has
finite total variation |µ | and M(G) is a unital Banach algebra in the total variation
norm and the convolution product:

‖µ‖= |µ |(G) , 〈 f ,µ ∗ν〉=
∫

G

∫
G

f (xy)dµ(x)dν(y) ( f ∈C0(G),µ ,ν ∈M(G))

where we always denote the duality of a dual pair of Banach spaces E and F by

〈·, ·〉 : E ×F −→ C .
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We also write µ( f ) for 〈 f ,µ〉 =
∫

G f dµ . The unit mass at a point a ∈ G is denoted
by δa where δe is the identity in M(G). A measure µ ∈ M(G) is called absolutely
continuous if its total variation |µ | is absolutely continuous with respect to the Haar
measure λ .

Given σ ∈M(G), the support of σ is defined to be the support of its total variation
|σ | and is denoted by suppσ . We denote by Gσ the closed subgroup of G generated
by the support of |σ |. A measure σ ∈ M(G) is called adapted if Gσ = G. A measure
σ ∈ M(G) is said to be non-degenerate if supp |σ | generates a dense semigroup in
G. Evidently, every non-degenerate measure is adapted. An absolutely continuous
(non-zero) measure on a connected group must be adapted.

By a (complex) measure µ on G, we will mean a measure µ ∈ M(G)\{0}.
The convolutions for Borel functions f and g on G, when exit, are defined by

( f ∗g)(x) =
∫

G
f (xy−1)g(y)dλ (y);

( f ∗µ)(x) =
∫

G
f (xy−1)dµ(y);

(µ ∗ f )(x) =
∫

G
f (y−1x)
G(y−1)dµ(y)

where 
G is the modular function satisfying dλ (xy) =
G(x)dλ (y) and dλ (x−1) =

G(x−1)dλ (x).

We denote by �x and rx, respectively, the left and right translations by an element
x ∈ G :

�x f (y) = f (x−1y) , rx f (y) = f (yx) (y ∈ G)

for any function f on G. A complex function f on G is left uniformly continuous if
‖rx f − f‖∞ −→ 0 as x → e. It is right uniformly continuous if ‖�x f − f‖∞ −→ 0 as
x → e. We also write x f = �x−1 f and fx for rx f .

We note that each f ∈Cc(G) is both left and right uniformly continuous, and for
any µ ∈M(G), we have f ∗µ ∈Cb(G) since | f ∗µ(x)− f ∗µ(y)| ≤ ‖�xy−1 f − f‖‖µ‖.
We also have

〈 f ,µ ∗ν〉 = 〈 f̃ , ν̃ ∗ µ̃〉 (2.1)

where ν ∈ M(G) and we define f̃ (x) = f (x−1) and dµ̃(x) = dµ(x−1). Note that

µ̃( f ) = µ( f̃ ) = ( f ∗µ)(e) and µ̃ ∗ν = ν̃ ∗ µ̃

for f ∈Cc(G).
Let σ ∈M(G). For 1≤ p≤∞, we define the convolution operator Tσ : Lp(G)−→

Lp(G) by
Tσ ( f ) = f ∗σ ( f ∈ Lp(G)).

To avoid triviality, σ is always non-zero for Tσ . The definition of Tσ depends on its
domain Lp(G) although we often omit referring to it if there is no ambiguity. When
regarded as an operator on Lp(G), the operator Tσ is easily seen to be bounded
and we denote its norm by ‖Tσ‖p, or simply ‖Tσ‖ in obvious context. We have
‖Tσ‖p ≤ ‖σ‖.
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A convolution operator Tσ : Lp(G) −→ Lp(G) commutes with left translations:

�xTσ = Tσ �x (x ∈ G).

Conversely, for abelian groups G, every translation invariant operator T : L1(G)−→
L1(G) is a convolution operator Tσ for some σ ∈ M(G) [55, 3.8.4]. However, this
result does not hold for 1 < p ≤ ∞, even if G is compact and abelian [44, p.85].
We will characterise the more general matrix convolution operators in Chapter 3. In
particular, the above L1 result is generalized to the matrix-valued case, for all locally
compact groups.

For 1 ≤ p ≤ ∞, we denote by q its conjugate exponent throughout, that is,
1
p

+
1
q

= 1, and for the dual pairing 〈·, ·〉 between Lp(G) and Lq(G), we have

〈 f ∗σ ,h〉 = 〈 f ,h∗ σ̃〉 (2.2)

for f ∈ Lp(G) and h ∈ Lq(G). This implies that Tσ is weakly continuous on Lp(G)
for 1 ≤ p < ∞, and is weak* continuous on L∞(G). In particular, Tσ is a weakly
compact operator on Lp(G) for 1 < p < ∞. For p = 1,∞, we will discuss presently
weak compactness of Tσ : Lp(G)−→ Lp(G), but we note the following two lemmas
first.

Lemma 2.1.1. Let σ ∈ M(G) and p < ∞. Let T ∗
σ : Lq(G)−→ Lq(G) be the dual map

of the convolution operator Tσ : Lp(G)−→ Lp(G). Then T ∗
σ = Tσ̃ . The operator Tσ :

L2(G) −→ L2(G) is self-adjoint if σ̃ = σ is a real measure. The weak* continuous
operator Tσ : L∞(G) −→ L∞(G) has predual Tσ̃ : L1(G) −→ L1(G).

Proof. By (2.2), we have 〈 f ,T ∗
σ h〉 = 〈 f ,Tσ̃ h〉 for f ∈ Lp(G) and h ∈ Lq(G). The

adjoint of Tσ in B(L2(G)) is Tσ̃ where σ is the complex conjugate of σ . ��

Lemma 2.1.2. Let σ ∈ M(G) and let Tσ be the convolution operator on Lp(G) for
p = 1,∞. We have ‖Tσ‖1 = ‖Tσ‖∞ = ‖σ‖.

Proof. We have ‖σ‖ = sup{|
∫

G f dσ | : f ∈Cc(G) and ‖ f‖ ≤ 1} in which
∣∣∣∣
∫

G
f dσ

∣∣∣∣ = | f̃ ∗σ(e)| ≤ ‖ f̃ ∗σ‖∞ ≤ ‖Tσ‖∞

where f̃ ∗σ ∈Cb(G). Next, we have ‖Tσ‖1 = ‖T ∗
σ ‖∞ = ‖Tσ̃‖∞ = ‖σ̃‖= ‖σ‖. ��

Remark 2.1.3. We note that ‖Tσ‖p need not equal ‖σ‖ if 1 < p < ∞. Indeed, if σ is
an adapted probability measure whose support contains the identity e and if ‖Tσ‖p =
1 for some 1 < p < ∞, then G is amenable (see, for example, [4, Theorem 1]). On
the other hand, if G is amenable and σ is a probability measure, then ‖Tσ‖p = 1 for
all p (cf. [33, p.48]).

By Lemma 2.1.2, the spectral radius of Tσ ∈ B(Lp(G)), for p = 1,∞, is
limn ‖T n

σ ‖
1
n = limn ‖Tσn‖ 1

n = limn ‖σn‖ 1
n where σn is the n-fold convolution of

σ with itself.
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Lemma 2.1.4. Let G be a compact group and let σ ∈ M(G) be absolutely contin-
uous. Then the convolution operator Tσ : Lp(G) −→ Lp(G) is compact for every
p ∈ [1,∞].

Proof. Let σ = h · λ for some h ∈ L1(G). Consider first Tσ : L∞(G) −→ L∞(G).
By absolute continuity of σ , we have Tσ (L∞(G)) ⊂C(G). Hence, by Arzela-Ascoli
theorem, we need only show that the set

{Tσ ( f ) : ‖ f‖∞ ≤ 1}

is equicontinuous in C(G). Let ε > 0. Pick ϕ ∈ Cc(G) with support K and
‖ϕ − h‖1 < ε

4 . Let W be a compact neighbourhood of the identity e ∈ G. By
uniform continuity, we can choose a compact neighbourhood V ⊂W of e such that

|ϕ(x)−ϕ(y)| < ε
2λ (KW )

whenever x−1y ∈V . Then

‖ϕx −ϕy‖1 =
∫

G
|ϕ(zx)−ϕ(zy)|dλ (z)

=
∫

KW
|ϕ(z)−ϕ(zx−1y)|dλ (z) <

ε
2
.

It follows that, for x−1y ∈V and ‖ f‖∞ ≤ 1, we have

|Tσ ( f )(x)−Tσ ( f )(y)| =
∣∣∣∣
∫

G
f (xz−1)h(z)dλ (z)−

∫
G

f (yz−1)h(z)dλ (z)
∣∣∣∣

≤
∫

G
| f (z−1)h(zx)− f (z−1)h(zy)|dλ (z)

≤ ‖ f‖∞‖hx −hy‖1

≤ ‖ f‖∞(‖hx −ϕx‖1 +‖ϕx −ϕy‖1 +‖hy −ϕy‖1) < ε

which proves equicontinuity and hence, compactness of Tσ : L∞(G) −→ L∞(G).
Likewise Tσ̃ : L∞(G) −→ L∞(G) is compact and therefore Tσ : L1(G) −→ L1(G)

is compact.
Let 1 < p < ∞. Let (hn) be a sequence in C(G) such that ‖hn −h‖1 −→ 0. Then

Tσ = lim
n→∞

Tσn in B(Lp(G)), where σn = hn ·λ . Hence it suffices to show compactness

of Tσ on Lp(G) for the case h ∈C(G).
Let ( fn) be a sequence in the unit ball of Lp(G). Then ‖ fn‖1 ≤ 1 for all n and

compactness of Tσ : L1(G) −→ L1(G) implies that the sequence ( fn ∗σ) contains a
subsequence L1-converging to some f ∈ L1(G), and hence a subsequence ( fk ∗σ)
converging pointwise to f λ -almost everywhere. Since h ∈ C(G), we have ‖ fk ∗
σ‖∞ ≤ ‖ fk‖p‖h‖q ≤ ‖h‖q for all k, and f ∈ L∞(G). It follows that
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‖ fk ∗σ − f‖p
p ≤ ‖ fk ∗σ − f‖1‖ fk ∗σ − f‖p−1

∞ −→ 0 as k → ∞.

This proves compactness of Tσ : Lp(G) −→ Lp(G). ��

Remark 2.1.5. The above result is clearly false if σ is not absolute continuous, for
instance, Tσ is the identity operator if σ = δe.

A compactness criterion has been given in [48] for a class of convolution oper-
ators of the form f ∈ L1(G) �→ f ∗F ∈ C(G) where F ∈ L∞(G) and G is compact
abelian. Compactness of the composition of a convolution operator with a multi-
plier has also been considered in [59, 60]. Fredholmness of convolution operators
on locally compact groups has been studied in [54, 59, 61].

Proposition 2.1.6. Let σ be a positive measure on a group G such that σ2 ∗ σ̃2 is
adapted. Let Tσ be the associated convolution operator. The following conditions
are equivalent.

(i) Tσ : L1(G) −→ L1(G) is weakly compact.
(ii) Tσ : L1(G) −→ L1(G) is compact.

(iii) Tσ : L∞(G) −→ L∞(G) is weakly compact.
(iv) Tσ : L∞(G) −→ L∞(G) is compact.
(v) Tσ : Lp(G) −→ Lp(G) is compact for all p ∈ [1,∞].

(vi) G is compact and σ is absolutely continuous.

Proof. (i) =⇒ (vi). We first prove compactness of G. Note that L1(G) has the
Dunford-Pettis property and in particular, every weakly compact operator on L1(G)
sends weakly compact subsets to norm compact sets [22, p.154]. Hence weak com-
pactness of Tσ implies that the operator T 2

σ : L1(G) −→ L1(G) is compact, and so
is the operator Tσ∗σ∗σ̃∗σ̃ = T 2

σ̃ T 2
σ . Since σ2 ∗ σ̃2 is a positive measure, the spectral

radius of Tσ2∗σ̃2 is σ(G)4, by a remark before Lemma 2.1.4. On the Hilbert space
L2(G), the operator Tσ2∗σ̃2 = T ∗

σ2 Tσ2 is a positive operator and therefore has only
non-negative eigenvalues. The eigenvalues of Tσ2∗σ̃2 ∈ B(L1(G)) are also eigen-
values of Tσ2∗σ̃2 ∈ B(L2(G)) and therefore non-negative. It follows that σ(G)4 is
an eigenvalue of the compact operator Tσ2∗σ̃2 ∈ B(L1(G)), that is, there is a non-
zero function f ∈ L1(G) satisfying f ∗σ2 ∗ σ̃2 = σ(G)4 f . Note that the measure
σ(G)−4σ2 ∗ σ̃2 is an adapted probability measure on G. Now, by [10, Theorem
3.12], f is constant which implies that G must be compact.

Next, we show that σ is absolutely continuous. By the Dunford-Pettis-Phillips
Theorem [22, p.75], there is an essentially bounded function g : G −→ L1(G) such
that

Tσ ( f ) =
∫

G
f gdλ ( f ∈ L1(G)).

Now the arguments in [22, p.91] can still be applied without commutativity of G.
Let a ∈ G. For each f ∈ L1(G), we have, for λ -a.e. y,
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∫

G
f (x)g(x)(y)dλ (x) = Tσ f (y) = �a−1Tσ (�a f )(y)

=
∫

G
(�a f )(x)g(x)(ay)dλ (x)

=
∫

G
f (a−1x)g(x)(ay)dλ (x)

=
∫

G
f (x)g(ax)(ay)dλ (x).

It follows that
g(ax)(ay) = g(x)(y)

for λ -a.e. x and y. This implies that, for each f ∈C(G), the function

F(y) =
∫

G
f (x)g(yx−1)(y)dλ (x) (y ∈ G)

is invariant under the left translations �a for all a ∈ G. Using compactness of G, one
can show that F is constant λ -almost every on G, as in [22, p.91], and hence we
have,

F(y) =
∫

G
F(z)dλ (z) =

∫
G

∫
G

f (x)g(zx−1)(x)dλ (x)dλ (z) (2.3)

for λ -a.e. y. Let h ∈ L1(G) be defined by

h(x) =
∫

G
g(yx−1)(y)dλ (y).

We show that f ∗σ = f ∗h for each f ∈C(G)⊂ L1(G) which then yields absolutely
continuity of σ . Indeed, for each k ∈ L∞(G), we have

〈k, f ∗h〉 =
∫

G
k(y)

∫
G

f (yx−1)h(x)dλ (x)dλ (y)

=
∫

G
k(y)

∫
G

∫
G

f (yx−1)g(zx−1)(z)dλ (x)dλ (z)dλ (y)

=
∫

G
k(y)

∫
G

f (yx−1)g(yx−1)(y)dλ (x)dλ (y) (by (2.3))

=
∫

G
k(y) f ∗σ(y)dλ (y) = 〈k, f ∗σ〉

which concludes the proof.
(vi) =⇒ (v). By Lemma 2.1.4.
(v) =⇒ (iv) =⇒ (iii). Trivial.
(iii) =⇒ (ii). The given condition implies that Tσ̃ : L1G) −→ L1(G) is weakly

compact. Repeating (i) =⇒ (v) =⇒ (iv) for σ̃ , we see that Tσ̃ : L∞(G)−→ L∞(G) is
compact, and hence Tσ : L1(G) −→ L1(G) is compact.

(ii) =⇒ (i). Trivial. ��
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Remark 2.1.7. In (i) =⇒ (vi) above, the proof of absolute continuity of σ from weak
compactness of Tσ ∈ B(L1(G)) is valid for any measure σ on a compact group G,
without adaptedness of σ2 ∗ σ̃2.

Corollary 2.1.8. Given a positive absolutely continuous measure σ on a connected
group G, the following conditions are equivalent.

(i) Tσ : L1(G) −→ L1(G) is weakly compact.
(ii) Tσ : L∞(G) −→ L∞(G) is weakly compact.

(iii) Tσ : Lp(G) −→ Lp(G) is compact for all p ∈ [1,∞].
(iv) G is compact.

Proof. This is because absolutely continuous measures on a connected group are
adapted. ��

Definition 2.1.9. The spectrum of an element a in a unital Banach algebra A is
denoted by SpecA a which is often shortened to Speca if the Banach algebra A is
understood. For 1 ≤ p ≤ ∞, we write Spec(Tσ ,Lp(G)), or simply, Spec(Tσ ,Lp), for
the spectrum SpecTσ , when regarding Tσ ∈ B(Lp(G)). We denote by Λ(Tσ ,Lp(G)),
or simply, Λ(Tσ ,Lp), the set of eigenvalues of Tσ : Lp(G) −→ Lp(G).

Given any Banach algebra A and an element a ∈ A, we define, as usual, the
quasi-spectrum of a, denoted by Spec′A a, to be the spectrum SpecA1 a of a in the
unit extension A1 of A. We always have 0 ∈ Spec′A a. If A has an identity, then
we have

Spec′A a = SpecA a∪{0}.
We recall that

Spec(Tσ ,Lp) = Λ(Tσ ,Lp)∪Specr(Tσ ,Lp)∪Specc(Tσ ,Lp)

where Specr(Tσ ,Lp) denotes the residue spectrum of Tσ , consisting of α ∈
Spec(Tσ ,Lp)\Λ(Tσ ,Lp) satisfying

(Tσ −αI)(Lp(G)) �= Lp(G)

and Specc(Tσ ,Lp) denotes the continuous spectrum of Tσ , consisting of α ∈
Spec(Tσ ,Lp)\Λ(Tσ ,Lp) such that

(Tσ −αI)(Lp(G)) = Lp(G).

Since T ∗
σ = Tσ̃ for p < ∞, we have

Spec(Tσ ,Lp) = Spec(Tσ̃ ,Lq)

for 1 ≤ p < ∞, and also Spec(Tσ ,L∞) = Spec(Tσ̃ ,L1).
We denote by Specσ the spectrum of σ in the measure algebra M(G). Note that

Specσ = Spec σ̃ since σ̃ ∗ µ̃ = µ̃ ∗σ for each µ ∈ M(G).
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Given a locally compact group G, we let Ĝ be the dual space consisting of (the
equivalence classes of) continuous unitary irreducible representations π : G −→
B(Hπ), where Hπ is a Hilbert space. Let ι ∈ Ĝ be the one-dimensional iden-
tity representation. For π ∈ Ĝ, σ ∈ M(G) and f ∈ L1(G), we define the Fourier
transforms:

σ̂(π) =
∫

G
π(x−1)dσ(x) ∈ B(Hπ),

f̂ (π) =
∫

G
f (x)π(x−1)dλ (x) ∈ B(Hπ).

We have f̂ ∗σ(π) = σ̂(π) f̂ (π) and µ̂ ∗σ(π) = σ̂(π)µ̂(π) for µ ∈ M(G).
The spectrum SpecB(Hπ ) σ̂(π) of σ̂(π) ∈ B(Hπ) will be written as Spec σ̂(π) if

no confusion is likely.
If G is abelian, Ĝ is the group of characters and we often use the letter χ to denote

an element in Ĝ. For 1 < p < 2 and f ∈ Lp(G), we define the Fourier transform
f̂ ∈ Lq(Ĝ) via Riesz-Thorin interpolation.

A continuous homomorphism χ from an abelian group G to the multiplica-
tive group C\{0} is called a generalized character. For such a character χ with
|χ(·)| ≤ 1, one can still define σ̂(χ) as above. The spectrum Ω(G) of the Banach
algebra M(G), i.e., the non-zero multiplicative functionals on M(G), identifies with
the generalized characters χ of G with |χ(·)| ≤ 1, and by Gelfand theory, we have
Specσ = σ̂(Ω(G)) which contains σ̂(Ĝ). The spectrum of L1(G) identifies with the
dual group Ĝ and if G is discrete, then M(G) = �1(G) and Specσ = Spec�1(G) σ =
σ̂(Ĝ). For arbitrary groups, we have the following result.

Lemma 2.1.10. Let σ be a complex measure on a group G. Then

Λ(Tσ ,L1) ⊂
⋃

π∈Ĝ

Spec σ̂(π) ⊂ Specσ .

The inclusions are strict in general.

Proof. Similar inclusions hold in the more general matrix setting for which a simple
proof will be given in Proposition 3.3.8. If σ is an adapted probability measure and
G is non-compact, then by [10, Theorem 3.12], 1 /∈ Λ(Tσ ,L1) while 1 ∈ Spec ι(σ)
where ι ∈ Ĝ is the identity representation.

If G is abelian, then σ̂(Ĝ) =
⋃

π∈Ĝ Spec σ̂(π) and Example 3.3.4 shows that the

last inclusion can be strict. In fact, even the closure σ̂(Ĝ) may not equal Specσ by
Remark 3.3.24. ��

It has been shown in [10, Lemma 3.11] that 1 /∈ ⋃
π∈Ĝ\{ι} Spec σ̂(π) if σ is an

adapted probability measure on a locally compact group G. In general, there seem
to be few definitive results concerning the spectrum of Tσ for non-abelian groups.
We will consider this case in Chapter 3 and prove various results there.



14 2 Lebesgue Spaces of Matrix Functions

We will make use of a version of the Wiener-Levy theorem, stated below, which
has been proved in [55, Theorem 6.2.4] and will be generalized to the matrix setting
in Chapter 3.

Lemma 2.1.11. Let Ω be an open set in C and let F : Ω −→ C be a real analytic
function satisfying F(0) = 0 if 0 ∈ Ω. Given an abelian group G and a function

f ∈ L1(G) such that f̂ (Ĝ) ⊂ Ω, then F( f̂ ) is the Fourier transform of an L1(G)-
function.

Example 2.1.12. For the Cauchy distribution

dσt(x) =
t

π(t2 + x2)
dx (t > 0)

on R , we have σ̂t(R̂) = {exp(−t|x|) : x ∈ R} = (0,1] = Spec(Tσ ,Lp)\{0} =
Λ(Tσt ,L

∞).

Example 2.1.13. Let G be any locally compact group and let σ = δa be the unit
mass at a ∈ G. Then Tσ is a translation on Lp(G) and we have

Spec(Tσ ,L∞) ⊂ {α : |α| = 1}.

If G = T and a = i, then L∞(T) ⊂ L2(T) and Spec(Tσ ,L∞) = Spec(Tσ ,L2) =
σ̂(Z) = {exp(−inπ/2) : n ∈ Z} = {±1,±i} �= {α : |α| = 1}.

If G = Z and a = 1, then Spec(Tσ , �2) = {α : |α| = 1} = Spec(Tσ , �∞).
If G = R and a �= 0, then Spec(Tσ ,Lp) = {α : |α| = 1} = Λ(Tσ ,L∞) as δ̂a(R̂) =

{exp(−iaθ) : θ ∈ R}.

Next consider the measure µ =
1
2

(δ0 +δ1) on R. Its n-fold convolution

µn =
1
2n

n

∑
k=0

(
n
k

)
δk

is a convex sum of discrete measures and we have

Spec(Tµn ,L∞) = Λ(Tµn ,L∞) =

{
1
2n

n

∑
k=0

(
n
k

)
exp(−ikθ) : θ ∈ R

}

where, for example, Spec(Tµ ,L∞) is the circle containing 0 and internally tangent to
the unit circle at 1, with sinπx as a 0-eigenfunction.

2.2 Differentiability of Norm in Lp(G,Mn)

We will be working with the complex Lebesgue spaces Lp(G,Mn) where, for con-
venience and consistency with previous and related works elsewhere, we equip Mn
with the C*-norm unless otherwise stated. Some remarks are in order here. First,
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there is no essential difference if one chooses to equip Mn with the trace norm
since it amounts to considering the space Lp(G,M∗

n) which is, for p > 1, the dual of
Lq(G,Mn). Also, the Lebesgue spaces Lp(G,Mn) defined in terms of the C*, trace
and Hilbert-Schmidt norms on Mn are all isomorphic and most results for these three
cases are identical. There is, however, a difference among the three cases if one con-
siders the differentiability of the norm of Lp(G,Mn) which will be needed later.

Let us first consider the differentiability of the C*-norm ‖·‖, the trace norm ‖·‖tr
and the Hilbert-Schmidt norm ‖ · ‖hs on Mn, regarded as a real Banach space.

We recall that the norm ‖ · ‖ of a real Banach space E is said to be Gateaux
differentiable at a point u ∈ E if the following limit exists

∂‖u‖(x) = lim
t→0

‖u+ tx‖−‖u‖
t

for each x ∈ E, in which case, the limit is called the Gateaux derivative of the norm
at u, in the direction of x. We note that the right directional derivative

∂+‖u‖(x) = lim
t↓0

‖u+ tx‖−‖u‖
t

always exists. In fact, it is equal to

sup{ψ(x) : ψ is a subdifferential at u}

where a linear functional ψ in the dual E∗ is called a subdifferential at u if

ψ(x−u) ≤ ‖x‖−‖u‖

for each x ∈ E. The norm is Gateaux differentiable at u if, and only if, there is a
unique subdifferential at u, in which case, the subdifferential is the Gateaux deriva-
tive (cf. [53, Proposition 1.8]).

The Hilbert-Schmidt norm ‖ · ‖hs on Mn is Gateaux differentiable at every A ∈
Mn\{0}. Indeed, we have

lim
t→0

‖A+ tX‖hs −‖A‖hs

t
= lim

t→0

Tr((A+ tX)∗(A+ tX))−Tr(A∗A)
t(‖A+ tX‖hs +‖A‖hs)

=
Tr(A∗X +X∗A)

2‖A‖hs

=
1

‖A‖hs
ReTr(A∗X).

Although the norm of a separable Banach space is Gateaux differentiable on a dense
Gδ set, it is easy to see that the C*-norm and the trace norm need not be Gateaux
differentiable at every non-zero A ∈ Mn.

Lemma 2.2.1. Let A ∈ Mn\{0}. The C*-norm on Mn is Gateaux differentiable at A
if, and only if, given any unit vectors ξ ,η ∈ C

n with ‖Aξ‖ = ‖Aη‖ = ‖A‖, we have



16 2 Lebesgue Spaces of Matrix Functions

〈Aξ ,Xξ 〉 = 〈Aη ,Xη〉 (X ∈ Mn).

In the above case, the Gateaux derivative at A is given by

∂‖A‖(X) =
1

‖A‖Re〈Aξ ,Xξ 〉 (X ∈ Mn)

where ξ ∈ C
n is a unit vector satisfying ‖Aξ‖ = ‖A‖.

Proof. Suppose the norm is Gateaux differentiable at A. Let ξ ∈ C
n be a unit vector

such that ‖A‖ = ‖Aξ‖. Define a real continuous linear functional ψξ : Mn −→ R by

ψξ (X) =
1

‖A‖Re〈Aξ ,Xξ 〉 (X ∈ Mn).

Then for each X ∈ Mn, we have

ψξ (X −A) =
1

‖A‖Re〈Aξ ,X −Aξ 〉

=
1

‖A‖Re(〈Aξ ,Xξ 〉−〈Aξ ,Aξ 〉) ≤ ‖X‖−‖A‖.

Hence ψξ is a subdifferential at A. If η is a unit vector in C
n such that ‖Aη‖ =

‖A‖, then we must have ψη = ψξ , by uniqueness of the subdifferential, which gives
〈Aξ ,Xξ 〉 = 〈Aη ,Xη〉 for every X ∈ Mn.

To show the converse, we note that (cf. [5, Proposition 4.12]),

lim
t↓0

‖A+ tX‖−‖A‖
t

= sup
{

lim
t↓0

‖(A+ tX)ξ‖−‖Aξ‖
t

: ‖ξ‖ = 1,‖Aξ‖ = ‖A‖
}

where

lim
t↓0

‖(A+ tX)ξ‖−‖Aξ‖
t

= lim
t↓0

〈(A+ tX)ξ ,(A+ tX)ξ 〉−〈Aξ ,Aξ 〉
t(‖(A+ tX)ξ‖+‖Aξ‖)

=
〈Aξ ,Xξ 〉+ 〈Xξ ,Aξ 〉

2‖A‖ .

Hence the necessary condition implies that the above set on the right reduces to a
singleton which gives the right directional derivative. We also have

lim
t↑0

‖(A+ tX)ξ‖−‖Aξ‖
t

= − lim
t↓0

‖(A− tX)ξ‖−‖Aξ‖
t

= −〈Aξ ,−Xξ 〉+ 〈−Xξ ,Aξ 〉
2‖A‖

= lim
t↓0

‖(A+ tX)ξ‖−‖Aξ‖
t

.
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This proves Gateaux differentiability at A. The last assertion is clear from the above
computation. ��

Example 2.2.2. Let A =
(

1 0
0 0

)
∈M2. Then the unit vectors in C

2 where A achieves

its norm are of the form (α,0) with |α| = 1. For any matrix X = (xi j) in M2, we
have 〈A(α,0)T ,X(α,0)T 〉 = x12 + x21 which is independent of α , and the C*-norm
is Gateaux differentiable at A with derivative

∂‖A‖(X) = Re〈A(1,0)T ,X(1,0)T 〉 = Rex11.

The matrix B =
(

1 1
0 0

)
achieves its norm at (

√
2,0) and (

√
2

2 ,
√

2
2 ); but

〈
B(
√

2,0)T ,X(
√

2,0)T
〉
�=

〈
B

(√
2

2
,

√
2

2

)T

,X

(√
2

2
,

√
2

2

)T 〉

if X is the identity matrix, say. Hence the C*-norm is not Gateaux differentiable at
B, however, we have the right I-directional derivative

∂+‖B‖(I) = lim
t↓0

‖B+ tI‖−‖B‖
t

= lim
t↓0

√
1+ t + t2 +

√
1+2t +2t2 −

√
2

t
=

√
2

2
.

On the other hand, the trace norm ‖ · ‖tr is not Gateaux differentiable at A since

‖A+ tX‖tr −‖A‖tr

t
=

|t|
t

for X =
(

0 0
0 −1

)
, say.

Lemma 2.2.3. Let A∈Mn\{0} with polar decomposition A = u|A|. If the trace norm
‖ · ‖tr on Mn is Gateaux differentiable at A, then the Gateaux derivative is given by

∂‖A‖tr(X) = ReTr(u∗X) (X ∈ Mn).

Proof. We only need to show that ψ(X) = ReTr(u∗X) is a subdifferential. Indeed,
we have |A| = u∗A and

ψ(X −A) = ReTr(u∗X)−ReTr(u∗A)
≤ ‖u∗‖‖X‖tr −‖A‖tr

= ‖X‖tr −‖A‖tr.

��



18 2 Lebesgue Spaces of Matrix Functions

Example 2.2.4. In Example 2.2.2 above, we have u = A in the polar decomposition

of A and ReTr(u∗X) = 0 for X =
(

0 0
0 −1

)
, while the right X-directional derivative

is given by

lim
t↓0

‖A+ tX‖tr −‖A‖tr

t
= lim

t↓0

|t|
t

= 1.

Due to the non-smoothness of the C*-norm and trace norm on Mn, we will
consider the Lebesgue spaces Lp(G,(Mn,‖·‖hs)) with Mn equipped with the Hilbert-
Schmidt norm when we need to make use of norm differentiability later. We com-
pute below the Gateaux derivatives for Lp(G,(Mn,‖ · ‖hs)).

Since the function u ∈ E �→ ‖u‖p is convex on any Banach space E, we have, for
0 < t < 1 and u,v ∈ E,

‖u+ tv‖p ≤ (1− t)‖u‖p + t‖u+ v‖p

and

‖u‖p ≤ t
1+ t

‖u− v‖p +
1

1+ t
‖u+ tv‖p

which gives

‖u‖p −‖u− v‖p ≤ 1
t
(‖u+ tv‖p −‖u‖p) ≤ ‖u+ v‖p −‖u‖p. (2.4)

Proposition 2.2.5. Let 1 < p < ∞. The norm of Lp(G,(Mn,‖ · ‖hs)) is Gateaux dif-
ferentiable at each non-zero f with Gateaux derivative

∂‖ f‖p(g) = Re‖ f‖1−p
p

∫
{x: f (x)�=0}

‖ f (x)‖p−2
hs Tr( f (x)∗g(x))dλ (x)

for g ∈ Lp(G,(Mn,‖ · ‖hs)).

Proof. Given A ∈ Mn\{0}, we have, by the chain rule,

d
dt

∣∣∣∣
t=0

‖A+ tX‖p
hs = p‖A‖p−1

hs
d
dt

∣∣∣∣
t=0

‖A+ tX‖hs = p‖A‖p−1
hs ReTr(A∗X)

for X ∈ Mn.
Fix a non-zero f in Lp(G,(Mn,‖ ·‖hs)). Given p > 1 and g ∈ Lp(G,(Mn,‖ ·‖hs)),

we have
d
dt

∣∣∣∣
t=0

‖tg(x)‖p
hs = 0.

By (2.4) and the dominated convergence theorem, we have
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p‖ f‖p−1
p

d
dt

∣∣∣∣
t=0

‖ f + tg‖p =
d
dt

∣∣∣∣
t=0

‖ f + tg‖p
p

=
∫

G

d
dt

∣∣∣∣
t=0

‖ f (x)+ tg(x)‖p
hsdλ (x)

=
∫
{x: f (x)�=0}

d
dt

∣∣∣∣
t=0

‖ f (x)+ tg(x)‖p
hsdλ (x)

=
∫
{x: f (x)�=0}

p‖ f (x)‖p−2
hs ReTr( f (x)∗g(x))dλ (x)

which gives the formula for the Gateaux derivative at f . ��

Corollary 2.2.6. For 1 < p < ∞, the Lebesgue space Lp(G,(Mn,‖ · ‖hs)) is strictly
convex, that is, the extreme points of its closed unit ball are exactly the functions of
unit norm.

Proof. This follows from the fact that a Banach space E is strictly convex if, and
only if, the norm of its dual E∗ is Gateaux differentiable on the unit sphere. ��


