
Preface

The main motivation for this book lies in the breadth of applications in which
a statistical model is used to represent small departures from, for example, a
Poisson process. Our approach uses information geometry to provide a com-
mon context but we need only rather elementary material from differential
geometry, information theory and mathematical statistics. Introductory sec-
tions serve together to help those interested from the applications side in
making use of our methods and results. We have available Mathematica note-
books to perform many of the computations for those who wish to pursue
their own calculations or developments.

Some 44 years ago, the second author first encountered, at about the same
time, differential geometry via relativity from Weyl’s book [209] during un-
dergraduate studies and information theory from Tribus [200, 201] via spatial
statistical processes while working on research projects at Wiggins Teape Re-
search and Development Ltd—cf. the Foreword in [196] and [170, 47, 58]. Hav-
ing started work there as a student laboratory assistant in 1959, this research
environment engendered a recognition of the importance of international col-
laboration, and a lifelong research interest in randomness and near-Poisson
statistical geometric processes, persisting at various rates through a career
mainly involved with global differential geometry. From correspondence in
the 1960s with Gabriel Kron [4, 124, 125] on his Diakoptics, and with Kazuo
Kondo who influenced the post-war Japanese schools of differential geometry
and supervised Shun-ichi Amari’s doctorate [6], it was clear that both had a
much wider remit than traditionally pursued elsewhere. Indeed, on moving to
Lancaster University in 1969, receipt of the latest RAAG Memoirs Volume 4
1968 [121] provided one of Amari’s early articles on information geometry [7],
which subsequently led to his greatly influential 1985 Lecture Note volume [8]
and our 1987 Geometrization of Statistical Theory Workshop at Lancaster
University [10, 59].

Reported in this monograph is a body of results, and computer-algebraic
methods that seem to have quite general applicability to statistical models
admitting representation through parametric families of probability density
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functions. Some illustrations are given from a variety of contexts for geomet-
ric characterization of statistical states near to the three important standard
basic reference states: (Poisson) randomness, uniformity, independence. The
individual applications are somewhat heuristic models from various fields and
we incline more to terminology and notation from the applications rather than
from formal statistics. However, a common thread is a geometrical represen-
tation for statistical perturbations of the basic standard states, and hence
results gain qualitative stability. Moreover, the geometry is controlled by a
metric structure that owes its heritage through maximum likelihood to infor-
mation theory so the quantitative features—lengths of curves, geodesics, scalar
curvatures etc.—have some respectable authority. We see in the applications
simple models for galactic void distributions and galaxy clustering, amino
acid clustering along protein chains, cryptographic protection, stochastic fi-
bre networks, coupled geometric features in hydrology and quantum chaotic
behaviour. An ambition since the publication by Richard Dawkins of The Self-
ish Gene [51] has been to provide a suitable differential geometric framework
for dynamics of natural evolutionary processes, but it remains elusive. On the
other hand, in application to the statistics of amino acid spacing sequences
along protein chains, we describe in Chapter 7 a stable statistical qualitative
property that may have evolutionary significance. Namely, to widely varying
extents, all twenty amino acids exhibit greater clustering than expected from
Poisson processes. Chapter 11 considers eigenvalue spacings of infinite random
matrices and near-Poisson quantum chaotic processes.

The second author has benefited from collaboration (cf. [34]) with the
group headed by Andrew Doig of the Manchester Interdisciplinary Biocentre,
the University of Manchester, and has had long-standing collaborations with
groups headed by Bill Sampson of the School of Materials, the University of
Manchester (cf.eg. [73]) and Jacob Scharcanski of the Instituto de Informatica,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil (cf.eg. [76])
on stochastic modelling. We are pleased therefore to have co-authored with
these colleagues three chapters: titled respectively, Amino Acid Clustering,
Stochastic Fibre Networks, Stochastic Porous Media and Hydrology.

The original draft of the present monograph was prepared as notes for
short Workshops given by the second author at Centro de Investigaciones de
Matematica (CIMAT), Guanajuato, Mexico in May 2004 and also in the De-
partamento de Xeometra e Topoloxa, Facultade de Matemáticas, Universidade
de Santiago de Compostela, Spain in February 2005.

The authors have benefited at different times from discussions with many
people but we mention in particular Shun-ichi Amari, Peter Jupp, Patrick
Laycock, Hiroshi Matsuzoe, T. Subba Rao and anonymous referees. However,
any overstatements in this monograph will indicate that good advice may
have been missed or ignored, but actual errors are due to the authors alone.

Khadiga Arwini, Department of Mathematics, Al-Fateh University, Libya
Kit Dodson, School of Mathematics, the University of Manchester, England
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Introduction to Riemannian Geometry

This chapter is intended to help those with little previous exposure to differ-
ential geometry by providing a rather informal summary of background for
our purposes in the sequel and pointers for those who wish to pursue more
geometrical features of the spaces of probability density functions that are our
focus in the sequel. In fact, readers who are comfortable with doing calcula-
tions of curves and their arc length on surfaces in R

3 could omit this chapter
at a first reading.

A topological space is the least structure that can support arguments con-
cerning continuity and limits; our first experiences of such analytic properties
is usually with the spaces R and R

n. A manifold is the least structure that
can support arguments concerning differentiability and tangents–that is, cal-
culus. Our prototype manifold is the set of points we call Euclidean n-space
E

n which is based on the real number n-space R
n and carries the Pythagorean

distance structure. Our common experience is that a 2-dimensional Euclidean
space can be embedded in E

3, (or R
3) as can curves and surfaces. Riemannian

geometry generalizes the Euclidean geometry of surfaces to higher dimensions
by handling the intrinsic properties like distances, angles and curvature inde-
pendently of any environing simpler space.

We need rather little geometry of Riemannian manifolds in order to provide
background for the concepts of information geometry. Dodson and Poston [70]
give an introductory treatment with many examples, Spivak [194, 195] pro-
vides a six-volume treatise on Riemannian geometry while Gray [99] gave
very detailed descriptions and computer algebraic procedures using Mathe-
matica [215] for calculating and graphically representing most named curves
and surfaces in Euclidean E

3 and code for numerical solution of geodesic
equations. Our Riemannian spaces actually will appear as subspaces of R

n so
global properties will not be of particular significance and then the formulae
and Gray’s procedures easily generalize to more variables.

K. Arwini, C.T.J. Dodson, Information Geometry. 19
Lecture Notes in Mathematics 1953,
c© Springer-Verlag Berlin Heidelberg 2008



20 2 Introduction to Riemannian Geometry

2.0.2 Manifolds

A smooth n-manifold M is a (Hausdorff) topological space together with a
collection of smooth maps (the charts)

{φα : Uα −→ R
n | α ∈ A}

from open subsets Uα of M , which satisfy:

i) {Uα | α ∈ A} is an open cover of M ;
ii) each φα is a homeomorphism onto its image;
iii) whenever Uα ∩ Uβ �= ∅, then the maps between subsets of R

n

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) −→ φα(Uα ∩ Uβ) ,

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ) ,

have continuous derivatives of all orders (are C∞ or smooth).

We call {(Uα, φα) | α ∈ A} an atlas of charts for M ; the properties of M are
not significantly changed by adding more charts. The simplest example is the
n-manifold R

n with atlas consisting of one chart, the identity map.
Intuitively, an n-manifold consists of open subsets of R

n, the φα(Uα),
pasted together in a smooth fashion according to the directions given by the
φα ◦ φ−1

β . For example, the unit circle S
1 with its usual structure can be

presented as a 1-manifold by pasting together two open intervals, each like
(−π, π). Similarly, the unit 2-sphere S

2 has an atlas consisting of two charts

{(UN , φN ), (US , φS)}

where UN consists of S
2 with the north pole removed, US consists of S

2 with
the south pole removed, and the chart maps are stereographic projections.
Thus, if S

2 is the unit sphere in R
3 centered at the origin then:

φN : S
2 \ {n.p.} −→ R

2 : (x, y, z) �−→ 1
1 + z

(x, y)

φS : S
2 \ {s.p.} −→ R

2 : (x, y, z) �−→ 1
1 − z

(x, y) .

Similar chart maps work also for the higher dimensional spheres.

2.0.3 Tangent Spaces

From elementary analysis we know that the derivative of a function is a linear
approximation to that function, at the chosen point. Thus, we need vector
spaces to define linearity and these are automatically present in the form of
the vector space R

n at each point of Euclidean point space E
n. At each point

x of a manifold M we construct a vector space TxM , called the tangent space
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to M at x. For this we employ equivalence classes [Tφα(x)R
n] of tangent spaces

to the images of x, φα(x), under chart maps defined at x. That is, we borrow
the vector space structure from R

n via each chart (Uα, φα) with x ∈ Uα, then
identify the borrowed copies. The result, for x ∈ S

2 embedded in R
3, is simply

a vector space isomorphic to the tangent plane to S
2 at x. This works here

because S
2 embeds isometrically into R

3, but not all 2-manifolds embed in
R

3, some need more dimensions; the Klein bottle is an example [70]. Actually,
the formal construction is independent of M being embedded in this way;
however, the Whitney Embedding Theorem [211] says that an embedding of
an n-manifold is always possible in R

2n+1.
Once we have the tangent space TxM for each x ∈ M we can present it

in coordinates, via a choice of chart, as a copy of R
n. The derivatives of the

change of chart maps, like

∂

∂xi
β

(φα ◦ φ−1
β ) (x1

β , x2
β , · · · , xn

β) ,

provide linear transformations among the representations of TxM . Next, we
say that a map between manifolds

f : M −→ N

is differentiable at x ∈ M , if for some charts (U, φ) on M and (V, ψ) on N
with x ∈ U, f(x) ∈ V , the map

ψ ◦ f |U ◦ φ−1 : φ(U) −→ ψ(V )

is differentiable as a map between subsets of R
n and R

m, if M is an n-manifold
and N is an m-manifold. This property turns out to be independent of the
choices of charts, so we get a linear map

Txf : TxM −→ Tf(x)N .

Moreover, if we make a choice of charts then Txf appears in matrix form as
the set of partial derivatives of ψ◦f ◦φ−1. The notation Txf for the derivative
of f at x is precise, but in many texts it may be found abbreviated to Df ,
f∗, f ′ or Tf , with or without reference to the point of application. When f is
a curve in M , that is, a map from some interval

f : [0, 1] −→ M : t �→ f(t) ,

then Ttf is sometimes denoted by ḟt. This is the tangent map to f at t and
the result of its application to the standard unit vector to R at t, ḟt(1̂), is the
tangent vector to f at t . It is quite common for this tangent vector also to
be abbreviated to ḟt.
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In a natural way we can provide a topology and differential structure for
the set of all tangent vectors in all tangent spaces to an n-manifold M :

TM =
⋃

x∈M

TxM ;

details are given in [70]. So, it actually turns out that TM is a 2n-manifold,
called the tangent bundle to M . For example, if M = R

n then TM = R
n×R

n.
Similarly, if M = S

1 with the usual structure then TM is topologically (and
as a manifold) equivalent to the infinite cylinder S

1 × R. The technical term
for an n-manifold M that has a trivial product tangent bundle TM ∼= M×R

n

is parallelizable and this property is discussed in the cited texts.
On the other hand, this simple situation is quite rare and it is rather a

deep result that for spheres

TS
n is equivalent to S

n × R
n only for n = 1, 3, 7 .

For other spheres, their tangent bundles consist of twisted products of copies
of R

n over S
n. In particular, TS

2 is such a twisted product of S
2 with one

copy of R
2 at each point. An intuitive picture of a 2-manifold that is a twisted

product of R
1 (or an interval from it) over S

1 is a Möbius strip, which we
know does not embed into R

2 but does embed into R
3.

A map f : M → N between manifolds is just called differentiable if it
is differentiable at every point of M , and a diffeomorphism if it is differ-
entiable with a differentiable inverse; in the latter case M and N are said
to be diffeomorphic manifolds. Diffeomorphism implies homeomorphism, but
not conversely. For example, the sphere S

2 is diffeomorphic to an ellipsoid,
but only homeomorphic to the surface of a cube because the latter is not a
smooth manifold: it has corners and sharp edges so no well-defined tangent
space structure. We note one generalisation however, sometimes we want a
smooth manifold to have a boundary. For example a circular disc obviously
cannot have its edge points homeomorphic to open sets in R

2; so we relax our
definition for charts to allow the chart maps to patch together open subsets
like {(x, y) ∈ R

2|0 < x ≤ 1, 0 < y,< 1} to deal with edge points. This is
easily generalized to higher dimensions.

2.0.4 Tensors and Forms

For finite-dimensional real vector spaces it is easily shown that the set of all
real-valued linear maps on the space is itself a real vector space, the dual space
and similarly multilinear real-valued maps form real vector spaces; multilinear
real-valued maps are called tensors. Elementary linear algebra introduces the
notion of a real vector space X and its dual space X∗ of real-valued linear
functions on X; on manifolds we combine these types of spaces in a smooth
way using tensor and exterior products to obtain the necessary composite
bundle structures that can support the range of multilinear operations needed
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for geometry. Exterior differentiation, is the fundamental operation in the
calculus on manifolds and it recovers all of vector calculus in R

3 and extends
it to arbitrary dimensional manifolds.

An m-form is a purely antisymmetric, real-valued, multilinear function
on an argument of m tangent vectors, defined smoothly over the manifold.
The space of m-forms becomes a vector bundle ΛmM over M with coordi-
nate charts induced from those on M. A 0-form is a real valued function on
the manifold. Thus, the space Λ0M of 0-forms on M consists of sections of
the trivial bundle M×R. The space Λ1M of 1-forms on M consists of sections
of the cotangent bundle T ∗M , and ΛkM consists of sections of the antisym-
metrized tensor product of k copies of T ∗M . Locally, a 1-form has the local
coordinates of an n-vector, a 2-form has the local coordinates of an antisym-
metric n × n matrix. A k-form on an n-manifold has

(
n
k

)
independent local

coordinates. It follows that the only k-forms for k > n are the zero k-forms.
We summarize some definitions.

There are three fundamental operations on finite-dimensional vector spaces
(in addition to taking duals): direct sum ⊕, tensor product ⊗, and exterior
product ∧ on a space with itself. Let F,G be two vector spaces, of dimensions
n,m respectively. Take any bases {b1, · · · , bn} for F, {c1, · · · , cm} for G, then
we can obtain bases

{b1, · · · , bn, c1, · · · , cm} for F ⊕ G ,

{bi ⊗ cj | i = 1, · · · , n; j = 1, · · · ,m} for F ⊗ G ,

{bi ∧ bj = bi ⊗ bj − bj ⊗ bi | i = 1, · · · , n; i < j} for F ∧ F .

So, F ⊕G is essentially the disjoint union of F and G with their zero vectors
identified. In a formal sense (cf. Dodson and Poston [70], p. 104), F ⊗ G can
be viewed as the vector space L(F ∗, G) of linear maps from the dual space
F ∗ = L(F, R) to G. Recall also the natural equivalence (F ∗)∗ ∼= F . By taking
the antisymmetric part of F ⊗ F we obtain F ∧ F . We deduce immediately:

dim F ⊕ G = dimF + dimG ,

dim F ⊗ G = dimF · dim G ,

dim F ∧ F =
1
2

dim F (dimF − 1) .

Observe that only for dimF = 3 can we have dim F = dim(F ∧ F ). Actually,
this is the reason for the existence of the vector cross product × on R

3 only,
giving the uniquely important isomorphism

R
3 ∧ R

3 −→ R
3 : x ∧ y �−→ x × y

and its consequences for geometry and vector calculus on R
3.

Each of the operations ⊕,⊗ and ∧ induces corresponding operations on
linear maps between spaces. Indeed, the operations are thoroughly universal
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and categorical, so they should and do behave well in linear algebraic contexts.
Briefly, suppose that we have linear maps f, h ∈ L(F, J) g ∈ (G,K) then
the induced linear maps in L(F ⊕G, J ⊕K), L(F ⊗G, J ⊗K) and L(F ∧F,
J ∧ J) are

f ⊕ g : x ⊕ y �−→ f(x) ⊕ g(y) ,

f ⊗ g : x ⊗ y �−→ f(x) ⊗ g(y) ,

f ∧ h : x ∧ y �−→ f(x) ∧ h(y) .

Local coordinates about a point in M induce bases for the tangent vector
spaces and their spaces. The construction of the tangent spaces, directly from
the choice of the differentiable structure for the manifold, induces a definite
role for tangent vectors. An element v ∈ TxM turns out to be a derivation on
smooth real functions defined near x ∈ M . In a chart about x, v is expressible
as a linear combination of the partial derivations with respect to the chart
coordinates x1, x2, . . . , xn as

v = v1∂1 + v2∂2 + · · · + vn∂n

with ∂i = ∂
∂xi , for some vi ∈ R.

This is often abbreviated to v = vi∂i, where summation is to be understood
over repeated upper and lower indices, the summation convention of Einstein.
The dual base to {∂i} is written {dxi} and defined by

dxj(∂i) = δj
i =

{
1 if i = j ,
0 if i �= j .

So a 1-form α ∈ T ∗
x M is locally expressible as

α = α1dx1 + α2dx2 + · · · + αndxn = αidxi

for some αi ∈ R, but a 2-form γ as

γ =
∑

i<j

γijdxi ∧ dxj

for some γij ∈ R. The common summation convention here is γ = γ[ij]dxi ∧
dxj . A symmetric 2-tensor would use (ij).

Since the ∂i and dxi are well-defined in some chart (U, φ) about x, they
serve also as basis vectors [70] at other points in U . Hence, they act as basis
fields for the restrictions of sections of TM → M and T ∗M → M to U ,
generating thereby local basis fields for sections of all tensor product bundles
T k

mM → M and exterior product bundles of forms ΛkM → M , restricted
to U . The spaces of bases or frames form a structure called the frame bundle
over a manifold, details of its geometry may be found in Cordero, Dodson and
deLeon [43].
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Given two vector fields u, v on M their commutator or Lie bracket is the
new vector field [u, v] defined as a derivation on real functions f by

[u, v](f) = u(v(f)) − v(u(f)) .

Locally in coordinates using basis fields, for u = ui∂i and v = vj∂j ,

[u, v] = (ui∂iv
j − vi∂iu

j)∂j .

The exterior derivative is a linear map on k-forms satisfying

(i) d : ΛkM → Λk+1M (d has degree +1);
(ii) df = grad f if f ∈ Λ0M (locally, df = ∂if dxi);
(iii) if α ∈ ΛaM and β ∈ Λ∗M , then

d(α ∧ β) = dα ∧ β + (−1)aα ∧ dβ ;

(iv) d2 = 0.

This d is unique in satisfying these properties.

2.0.5 Riemannian Metric

We recall the importance of inner products on vector spaces—these allow the
definition of lengths or norms of vectors and angles between vectors. The
corresponding entity for the tangent vectors to an n-manifold M is a smooth
choice of inner products over its family of vector spaces {TxM | x ∈ M}. Such
a smooth choice is called a Riemannian metric on M . Formally, a Riemannian
metric g on n-manifold M is a smooth family of maps

g|x : TxM × TxM → R, x ∈ M

that is bilinear, symmetric and positive definite on each tangent space. Then
we call the pair (M, g) a Riemannian n-manifold. Locally, at each x ∈ M, each
g|x appears in coordinates as a symmetric n × n matrix [gij ] that is positive
definite, so it has positive determinant. For each v ∈ TxM, the norm of v is
defined to be ||v|| =

√
g(v, v).

We can measure the angle θ between any two vectors u, v in the same
tangent space by means of

cos θ =
g(u, v)√

g(u, u) g(v, v)
.

For a smooth curve in (M, g)

c : [0, 1] −→ M : t �−→ c(t)

with tangent vector field

ċ : [0, 1] −→ TM : t �−→ ċ(t)
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the arc length is the integral of the norm of its tangent vector along the curve:

Lc(t) =
∫ 1

0

√
gc(t)(ċ(t), ċ(t)) dt .

The arc length element ds along a curve can be expressed in terms of coordi-
nates (xi) by

ds2 =
∑

i,j

gij dxi dxj (2.1)

which is commonly abbreviated to

ds2 = gij dxi dxj (2.2)

using the convention to sum over repeated indices.
Arc length is often difficult to evaluate analytically because it contains the

square root of the sum of squares of derivatives. Accordingly, we sometimes
use the ‘energy’ of the curve instead of length for comparison between nearby
curves. Energy is given by integrating the square of the norm of ċ

Ec(a, b) =
∫ b

a

||ċ(t)||2 dt. (2.3)

A diffeomorphism f between Riemannian manifolds (M, g), (N,h) is called
an isometry if its derivative Tf preserves the norms of all tangent vectors:
g(v, v) = h(Tf(v), T f(v)). A situation of common interest is when a manifold
can be isometrically embedded as a submanifold of some Euclidean E

m or of
R

m with some specified metric. Note that if we have a Riemannian manifold
(M, g) then an open subset X of M inherits a manifold structure using the
restriction of chart maps and the metric g induces a subspace metric g|X so
(X, g|X) becomes a Riemannian submanifold of (M, g). For example, the unit
sphere S

2 in E
3 inherits the subspace metric from the Euclidean metric but

of course S
2 has spherical not Euclidean geometry. Evidently, the dimension

of a submanifold will not exceed the dimension of its host manifold.

2.0.6 Connections

In order to compare tangent vectors at different points along a curve in a
manifold M we need to have a procedure that transports tangent space vectors
along the curve, so providing a way to ‘connect up’ unambiguously the tangent
spaces passed through. A smooth assignation of tangent vectors along a curve
is called a vector field along the curve; one such field is the actual field of
tangents to the curve. A suitable connecting entity in the limiting case at a
point defines a derivative of a vector field with respect to the tangent to the
curve, and gives the result as another tangent vector at the same point. Now,
every tangent vector u ∈ TxM can be realised as the tangent vector to a curve
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through x and therefore we finish up with a smooth family of bilinear maps
∇ = {∇|x, x ∈ M} with the property

∇|x : Tx × Tx → Tx : (u, v) �→ ∇uv, defined over x ∈ M. (2.4)

In coordinates, we have a basis of TxM given by the derivations (∂i) and
so for some real components (ui), (vj), using the summation convention for
repeated indices and (∂i) as basis vector fields u = ui∂i, v = vj∂j and then

∇uv = (ui∂iv
j + ukvmΓ j

km)∂j (2.5)

for a smooth n×n×n array of functions Γ j
km called the Christoffel symbols. It

turns out that ∇ provides a derivative for vector valued maps on the manifold,
that is of vector field maps v : M → TM, and returns the answer as another
vector field; this derivation operator is called the covariant derivative. The
smooth family of bilinear maps (2.4) is called a linear connection and there
are many ways to formalise its definition [70]. The important theorem here is
that for a given Riemannian manifold there is a unique linear connection
that preserves the metric and has symmetric Christoffel symbols, this is the
Levi-Civita or symmetric metric connection.

Now, we have seen above §2.0.3 that the derivative of a smooth map be-
tween manifolds f : M → N gives a corresponding map Tf : TM → TN.
Also, a vector field v on M, is a section v : M → TM of the tangent bundle
projection π : TM → M ; this means that π ◦ v is the identity map on M.
Therefore the derivative of the vector field will not be another vector field but
a map Tv : TM → TTM. This is why we need the connection, it provides a
projection of a derivative Tv back onto the the tangent bundle; the covariant
derivative of a vector field is precisely the projection of a derivative.

Formally, a linear connection ∇ gives a smooth bundle splitting at each
u ∈ TTM of the space TuTM into a direct sum

TuTM ∼= HuTM ⊕ VuTM

where VuTM = ker(Tπ : TuTM → Tπ(u)M). We call HuTM the horizontal
subspace (of TTM) at u ∈ TM and VuTM the vertical subspace at u ∈ TM .
They comprise the horizontal and vertical subbundles, respectively, of TTM .

TTM = HTM ⊕ V TM.

For our purposes, the important role of a connection is that it induces isomor-
phisms called horizontal lifts from tangent spaces on the base M to horizontal
subspaces of the tangent spaces to TM :

↑ : Tπ(u)M −→ HuTM ⊂ TuTM : v �−→ v↑.

Technically, a connection splits the exact sequence of vector bundles

0 −→ V TM −→ TTM −→ TM −→ 0
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by providing a bundle morphism TM → TTM with image the bundle of
horizontal subspaces.

Along any curve c : [0, 1) → M in M we can construct through each
u0 ∈ π−1(c(0)) ⊂ TM a unique curve c↑ : [0, 1) −→ TM with horizontal
tangent vector and π ◦ c↑ = c, c↑(0) = u0. The map

τt : π−1(c(0)) −→ π−1(c(t)) : u0 �−→ c↑(t)

defined by the curve is called parallel transport along c. Parallel transport
is always a linear isomorphism. An associated parallel transport map satisfies
τ̃t ◦ v(c(t)) = v(c(t)). The covariant derivative of v along c is defined to be
the limit, if it exists

lim
h→0

1
h

(
τ̃−1
h ◦ v(c(t + h)) − v(c(t))

)

and is usually denoted by ∇ċ(t)v. Using integral curves c, this extends easily
to ∇wv for any vector field w. Evidently, the operator ∇ is linear and a
derivation:

∇w(u + v) = ∇wu + ∇wv and ∇w(fv) = w(f)v + f∇wv ;

it measures the departure from parallelism. The local appearance of ∇ on
basis fields (∂i) about x ∈ M is

∇∂i
∂j = Γ k

ij ∂k

where the Γ k
ij are the Christoffel symbols defined earlier.

For a linear connection we define two important tensor fields in terms of
their action on tangent vector fields: the torsion tensor field T is defined by

T (u, v) = ∇uv −∇vu − [u, v]

and the curvature tensor field is the section of T 1
3 M defined by

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w .

The connection is called torsion-free or symmetric when T = 0 and flat when
R = 0.

In local coordinates with respect to base fields (∂i),

T (∂j , ∂k) = (Γ i
jk − Γ i

kj)∂i ,

R(∂k, ∂l)∂j = (∂kΓ i
lj − ∂lΓ

i
kj + Γh

ljΓ
i
kh − Γh

kjΓ
i
lh)∂i .

The connection form ω is an R
n2

-valued linear function on vector fields and
is expressible as a matrix valued 1-form with components

ωi
j = Γ i

jk dxk . (2.6)
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Hence

dωi
j = d(Γ i

jk) ∧ dxk

= ∂r Γ i
jk dxr ∧ dxk

ωi
h ∧ ωh

j = Γ i
hr Γh

jk dxr ∧ dxk

The curvature form Ω is an R
n2

-valued antisymmetric bilinear function on
pairs of vector fields and it has the local expression

Ωi
j =

1
2
Ri

jrk dxr ∧ dxk

= Ri
jrk dxr ∧ dxk .

2.1 Autoparallel and Geodesic Curves

A curve c : [0, 1) → M that has a parallel tangent vector field ċ = ċj∂j

satisfies:
∇ċ(t)ċ(t) = 0 (2.7)

which in coordinate components from (2.5) becomes

c̈i + Γ i
jk ċj ċk = 0 for each i.

It is then called an autoparallel curve . In the case that the connection ∇ is the
Levi-Civita connection of a Riemannian manifold (M, g), all the parallel trans-
port maps are actually isometries and then the autoparallel curves c satisfying
(2.7) are called geodesic curves (cf. [70] for more discussion of geodesic curves).
Geodesic curves have extremal properties—between close enough points they
provide uniquely shortest length curves. For example, in Euclidean E

3 the
geodesics are straight lines and so provide shortest distances between points;
on the standard unit sphere S

2 ⊂ E
3 the geodesics are arcs of great circles

and so between pairs of points the two arcs provide maximal and minimal
geodesic distances.

2.2 Universal Connections and Curvature

A connection, §2.0.6 encodes geometrical choices, and through its curvature,
underlying topological information. In some situations, both in geometry and
in theoretical physics, it is necessary to consider a family of connections, for
example with regard to stability of certain properties [36]. Also, it is common
for statisticians to consider a number of linear connections on a given statisti-
cal manifold and so it can be important to be able to handle these connections
as a geometrical family of some kind.
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In general, the space of linear connections on a manifold is infinite di-
mensional, but Mangiarotti and Modugno [140, 152] introduced the idea of a
system (or structure) of connections which gives a representation of the space
of linear connections as a finite dimensional bundle. On this system there is a
‘universal’ connection and corresponding ‘universal’ curvature; then all linear
connections and their curvatures are pullbacks of these universal objects.

A full account of the underlying geometry of jet bundles and their mor-
phisms is beyond our present scope so we refer the interested reader to
Mangiarotti and Modugno [140, 152]. Dodson and Modugno [69] provided a
universal calculus for this context. An application of universal linear connec-
tions to a stability problem in spacetime geometry was given by Canarutto and
Dodson [36] and further properties of the system of linear connections were
given by Del Riego and Dodson [53]. An explicit set of geometrical exam-
ples with interesting topological properties was provided by Cordero, Dodson
and Parker [44]. The first application to information geometry was given by
Dodson [59] for the system of α-connections.

The technical details would take us too far from our present theme but
our recent results on statistical manifolds are given in Arwini, Del Riego and
Dodson [16]. There we describe the system of all linear connections on the
manifold of exponential families, using the tangent bundle, §2.0.3, to give the
system space. We provide formulae for the universal connections and curva-
tures and give an explicit example for the manifold of gamma distributions,
§3.5. It seems likely that there could be significant developments from the
results on universal connections for exponential families §3.2, for example in
the context of group actions on random variables.


