
Preface

This book on multimedia tools for communicating mathematics arose from
presentations at an international workshop organized at the Centro de Mate-
mática e Aplicações Fundamentais at the University of Lisbon, in Novem-
ber 2000, with the collaboration of the Sonderforschungsbereich 288 at the
University of Technology in Berlin, and of the Centre for Experimental and
Constructive Mathematics at Simon Fraser University in Burnaby, Canada.
The MTCM2000 meeting aimed at the scientific methods and algorithms at
work inside multimedia tools, and it provided an overview of the range of
present multimedia projects, of their limitations and the underlying math-
ematical problems. The workshop gathered fifty seven participants, twenty
nine presentations and a round table. It took place under the auspices of the
Sociedade Portuguesa de Matematica and the European Mathematical Soci-
ety, and was sponsored by a special grant from the Fundação para a Ciência
e a Tecnologia of Portugal.

This book presents some of the tools and algorithms currently being used
to create new ways of making enhanced interactive presentations and ex-
periments. It is, we hope, an invaluable and up-to-date reference book on
multimedia tools presently available for mathematics and related subjects.

The current sources for mathematical knowledge are still largely classical
journals and books, even if they are now often available from an electronic
archive such as the Los Alamos Server. Nevertheless, a number of new online
sources have appeared and hint at what is on the horizon: for example, Neil
Sloane’s server of integer sequences, Finch’s Constants at MathSoft, or the
newly established EG-Models server in Berlin with its peer-refereed geome-
try models. Many people are making or have made large collections of varied
mathematical resources of potential interest for a broad mathematical com-
munity. The internet has appeared in full battle dress and allows individuals
to make such material widely accessible on common platforms.

Currently, many tools and projects focus on the enhancement of digital
publications aiming to provide interactive research, experiments and teaching
tools online. As of yet they provide limited functionality. We believe that the
diversity of multimedia tools for the doing of mathematics will grow substan-
tially in the near future and will profoundly effect the way mathematicians
do mathematics.
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This was also a general outcome of the lively and participated round table
held at MTCM2000. Co-ordinated by J.F. Rodrigues, the discussion concen-
trated on four main topics, each one addressed by an invited participant:
business models for multimedia tools (R. Fitzgerald and J. Borwein), new
online services to provide mathematical knowledge (T. Banchoff), new math-
ematical algorithms and data structures for online mathematics (K. Polthier),
and multimedia tools of the future (J. Richter-Gebert).

Besides new tools, new mathematical algorithms and data structures are
needed for doing mathematics online. Although in the near future bandwidth
will increase dramatically and will open unforeseen possibilities for creative
people, the net will still limit the size of experiments, much as today’s 3d ex-
periments in numerical mathematics are limited by available computer mem-
ory. For instance, as a consequence reduction of the amount of unnecessary
data transferred during experiments will continue to be a central research
issue.

We hope that the methods and tools discussed in this book and the ac-
companying CD will provide fruitful and stimulating ground for the further
development of multimedia tools for mathematical education, communication
and research.

November 2001 Jonathan Borwein
Maria Haydée Morales

Konrad Polthier
José Francisco Rodrigues
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Abstract. In this article we survey the theoretical background that is required to
build a consistent and continuous setup of dynamic elementary geometry. Unlike
in static elementary geometry in dynamic elementary geometry the elements of a
construction are allowed to move around as long as the geometric constraints in-
tended by the construction are not violated. A typical problem in such a scenario
is to resolve ambiguous situations that arise from geometric operations like inter-
secting a circle and a line. After introducing a formal framework for dealing with
dynamic geometric constructions, we will demonstrate that a suitable resolution of
these ambiguities requires the consideration of complex projective spaces. We will
discuss several aspects where one can benefit from such a rather general approach.
Finally, we will sketch some proofs that show that several fundamental algorithmic
problems arising in such a context are NP-hard or even harder.

12.1 Introduction

Computational Geometry very often focuses on static problems, like comput-
ing the convex hull or Voronoi complex of a given set of points. Fundamen-
tally new questions arise when the objects under consideration are no longer
static, but may move around with respect to certain geometric constraints.
This scenario is not unusual, for instance every mechanism can be considered
as a dynamic geometric entity.

In this article we focus on the new areas of problems that arise from
genuinely dynamic effects. Constructions from elementary geometry play a
crucial role in this context, since they form natural instances of non-trivial
examples where it is reasonable to study the dynamic behavior. In partic-
ular, we study computational aspects that arise if one wants to implement
a Dynamic Geometry System (DGS) where constructions can be graphically
performed by a sequence of mouse clicks. A DGS is usually equipped with
a so called “drag mode” that allows – after the construction is completed
– to pick a free element with the mouse, drag it, and watch the movement
of the entire construction following the motion according to the geometric
constraints of the construction. In the best case a DGS could be considered
as a generic visualization tool for elementary geometric configurations. The
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research that led to the results presented here was motivated by the desire
(and the actual work) of implementing a concrete software package for doing
dynamic geometry on a computer [11,12].

We start with an informal description of what we consider to be dynamic
geometry. Imagine any construction of elementary geometry (say a ruler and
compass construction of the midpoint of two points A and B). It consists of
certain free elements (the points A and B) and certain dependent elements
whose position is determined by the position of the free elements. Each spe-
cific picture of such a construction is a snapshot taken from the continuum
of all possible drawings for all possible locations of the free elements. By
moving the free elements we can walk continuously from one instance of the
construction to another one. During such a walk a continuous motion of the
free elements should be reflected in a continuous movement of the dependent
elements.

One of the most fundamental problems for the “drag mode” arises when
one considers one point of an intersection of a line and a circle and allows
the line to be moved around. Since the point of intersection is not unique,
a computer program that visualizes the movement has to decide for every
“discrete snapshot” which of the two intersection points is meant. If this
decision is not made correctly a “path-jumping” of the point may occur
(while the line performs just a tiny movement the position of the intersection
may suddenly jump from one possible place to the other).

(a) (b)

Fig. 12.1. (a) Dynamic image of the angular bisector theorem. How can a system
reliably make the “correct” choices of the angular bisectors during the movement.
(b) Geometric locus under the motion of a “three bar linkage”. The use of complex
path tracing generates reliably complete real branches of algebraic curves. The
orientation heuristics that are usually used by other software can only generate
partial loci (see color plate 12.1 on p. 155)
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A careful analysis of the situation shows that for a satisfactory resolution
of the problem one has to embed the configuration in an ambient complex
projective space. One even has to take monodromy effects and underlying
Riemann surfaces into account. We will later on explain how such a complex-
ified setup can be used to obtain continuity of the dependent elements. For
this we first specify how a desired continuous behavior of a dynamic geometry
system should look like. After this we show how embedding the entire config-
uration in the ambient complex space suddenly allows to avoid degenerate or
singular situations. By choosing “complex detours” for the input parameters
we manage to reliably follow the different branches of ambiguous operations.
The purpose of the article is to outline these results and not to give a rigorous
treatment. For a more elaborate treatment see [6,13].

After this survey of the theoretical background, we will investigate the
algorithmic complexity of “making the right decisions”. It will turn out that
even in very weak versions this problem is NP-hard. In some stronger versions
it is PSPACE hard or even undecidable. In particular one can prove that . . .

. . . it is in general PSPACE-hard to decide whether two instances of the same
construction can be continuously deformed into each other by moving the
base elements along a real path.

. . . it is NP-hard to calculate the position of the dependent elements after a
specific move of a free element.

Detailed proves of these results can be found in [13].
Although the results of this article arose from the study of configuration

spaces of elementary geometric constructions they are naturally related to
many other setups in the area of geometry. Among those are the study of
configuration spaces of mechanical linkages [2,5], realization spaces of ori-
ented matroids [8,1,9,16] and polytopes [10], and the piano movers problem
(with possibly many pianos) [4,15]. Our complexity results are partially gen-
eralizations and strengthenings of known complexity results in these areas.

Besides the narrow context of dynamic geometry our results are rele-
vant for all areas where geometric objects are moved around under certain
geometric constraints, like robotics, parametric CAD [3], virtual reality, or
computational kinematics. Our results imply that many problems of these
areas are computationally difficult. A typical problem of this kind arises in
parametric CAD and is know as the persistent naming problem [3]. It asks
for reasonable generic algorithms that allow to maintain the so called “design
intend” under the continuous change of the controlling parameters.

12.2 Geometric Straight Line Programs

We restrict ourselves to the following particularly simple scenario, which
arises in the context of interactive geometry software: a dynamic setup for el-
ementary geometry. Nonetheless, we want to emphasize the underlying meth-
ods apply also to much more general contexts.



206 Ulrich H. Kortenkamp and Jürgen Richter-Gebert

Fig. 12.2. Jumping elements are also a typical problem in parametric CAD. In this
example (taken from Hoffmann [3]) a hole was drilled on the boundary of a block,
and one of the edges was beveled. After moving the hole the bevel jumps from one
edge to the other.

Large parts of elementary geometry are based on the theory of ruler and
compass constructions. Such constructions are usually done by first drawing a
set of “free points” in the plane and then proceeding by adding new objects
with operations like: “join of two points”, “intersection”, “circle given by
midpoint and perimeter point”. We formalize constructions that use these
operations by the concept of geometric straight line programs.

We assume that the objects are given by suitable parameters (coordi-
nates). A geometric straight line program (GSP) is a sequence of program
statements, where each statement describes the position of a new elementary
object. The operations we allow are:

L=Join(P1,P2) Line L is the join of points P1 and P2
P=Meet(L1,L2) Point P is the meet of lines L1 and L2
C=Circle(M,P) Circle P is the a circle with center M through P
P=FreePoint Point P is at random position (x,y)
P=IntCL(C,L) Point P is an intersection of line L and circle C
P=IntCC(C1,C2) Point P is an intersection of the circles C1 and C2
L=Bisector(L1,L2) Line L is an angular bisector of the lines L1 and L2

The first three of these operations produce a unique element. The last
three operations have an intrinsic ambiguity: A line and a circle, or two circles,
can have more than one intersection; two lines have two angular bisectors.
It can even happen that a line and a circle do not intersect at all. Hence, in
general a GSP does not describe a unique geometric situation. One may even
“get stuck” during the execution of a GSP if an intersection does not exist.
However, for a given geometric configuration of points, lines and circles it is
easy to check whether it is compatible with the definition of a given GSP.
Such a configuration is then called an instance of the GSP. It is clear that
for every GSP and for each choice of concrete values for the coordinates of
the free points, there are at most finitely many possible compatible instances,
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since this number is bounded by 2n with n being the number of ambiguous
choices.

A rigorous definition of GSPs and instances can be found in [6,13]. The
crucial point for such a definition is that each statement of a GSP rep-
resents a relation between input variables and the output variables rather
than an assignment operation. This allows to respect the intrinsic ambigu-
ities and to give a proper definition of operations like the intersection of a
circle and a line. Let us consider this operation a little closer. Let P,L, C de-
note the spaces of points, lines and circles, respectively1. The operation p =
IntersectionCL(c, l) is represented by a ternary relationRIntCL ∈ (C×L)×P.
A triple (c, l, p) of a circle c a line l and a point p is in RIntCL if and only if p is
an intersection of c and l. For a circle c and a line l there may in general be two
points p1 and p2 with (c, l, p1) ∈ RIntCL and (c, l, p2) ∈ RIntCL. On a semantic
level we may call c and l the input of the operation and p1 and p2 the output.
To each statement of a GSP we may associate a corresponding type (point,
line or circle) of the output element. If we restrict ourselves to objects with
real coordinates a line and a circle may have no intersection at all. In other
words there may be c ∈ C and l ∈ L with {p ∈ P | (c, l, p) ∈ RIntCL} = ∅. We
have to distinguish three major kinds of relations:

• deterministic operations, where the position of the output element is
uniquely determined by the input elements (like join and meet),

• non-deterministic operations, where there is a finite number of possible
positions for the output elements (like intersection-circle-line, intersection-
circle-circle, and angular bisector),

• the “free”-operation, which is a special operation to introduce free points
that underly no further restriction. Considered as a relation the operation
is simply a unary operation that admits all points RFree = P.

In the rigorous definition of GSPs additional care has to be taken to ex-
clude degenerate situations like taking the join of two coincident points. Such
situations are called non-admissible. However, we neglect these technicalities
here. An instance of a GSP is an assignment of actual values to the variables
of a GSP such that all relations are satisfied. The type of each variable has
to match the type of the corresponding program statement.

Example: The GSP in Fig. 3 encodes a construction of the midpoint of
two points A and B.

The picture shows one possible instance for A = (1, 1) and B = (5, 3).
In this GSP points E and F have the same definition, namely being the
intersection of the two circles. Only for the “right” choices you will obtain an
actual instance of the GSP in which the final point is indeed the midpoint of
A and B.
1 We will later on specify the exact mathematical content of these spaces.
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1: A=FreePoint;

2: B=FreePoint;

3: C=Circle(A,B);

4: D=Circle(B,A);

5: E=IntCC(C,D);

6: F=IntCC(C,D);

7: G=Join(A,B);

8: H=Join(E,F);

9: I=Meet(G,H); 1.0

H

G

A

B

E

F

I

C

D

Fig. 12.3. A GSP for constructiong the midpoint of A and B, and a picture of one
possible instance.

12.3 The Problem of Continuity

We now study a GSP in a dynamic setup. We want to model the situation
that one (or many) free elements are moved from one position to another. We
specify how a preferrable behavior of the dependent elements under such a
motion should look like. (To have a more vivid image of this problem assume
you constructed the above picture with an interactive geometry program.
How should the dependent elements behave, when you move point A or point
B?)

For a more formal treatment consider the coordinates of the free points
parametrized by a single parameter λ ∈ [0, 1]. For each position of the free
elements we want to single out a reasonable choice of the dependent elements.
For a given GSP P we consider only those selections of dependent elements
that lead to admissible instances of P, i.e. all elements satisfy all relations
specified by the program and no “degenerate” situation arises in the technical
sense that we have not closer specified.

It is clear that the only freedom for the choice of dependent elements
comes from the ambiguities of non-deterministic operations. A desirable be-
havior would be the following:

“While the free points move continuously all dependent objects move
continuously as well.” In other words: “The coordinates of all ele-
ments are continuous functions in λ.”

More formally letP be a specific GSP with n lines. Assume that the spaces
P,L and C are equipped with a suitable topology. An instance (v1, v2 . . . , vn)
of P can be considered as an element of T1 × T2 × · · · × Tn, where for all i we
have Ti ∈ {P,L, C} according to the output type of line i in P. W.l.o.g. we
may assume that the first k operations of the GSP are the Free-operations. A
continuous movement of the free elements is given by continuous functions vi :
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[0, 1] → Ti for i = 1, . . . , k. Our above requirement of continuity translates
to the problem of generating continuous functions vi : [0, 1] → Ti for i =
k + 1, . . . , n such that for each t ∈ [0, 1] the sequence (v1(t), v2(t) . . . , vn(t))
is an admissible instance of P.

At first sight it is not clear whether this requirement is satisfiable at all
(compare [7]). In fact, all geometry systems and programs for parametric
CAD that are currently available suffer from non-continuous behavior of de-
pendent elements; while one moves a free point it may happen that parts of
the construction jump from one place to another. In particular, we must find
a way to deal with the problem of vanishing intersections.

12.4 Complex Projective Geometry

To fulfill the continuity requirements we first need to fix a topology. We first
consider the space P of all points. A first rough approach would be to iden-
tify P with the euclidean plane. However, this would not be suitable for our
requirements. We will have to view the euclidean plane as a subset of the pro-
jective plane. This gives us “points at infinity” and the desired topology is
induced by the topology of the manifold structure that underlies the projec-
tive plane. In particular a point can move to infinity and can “continuously”
come back from the opposite side of the (embedded euclidean) plane. On an
algebraic level such a point may be represented by homogeneous coordinates
(x, y, z) where vectors that differ only by a scalar multiple are identified. For
finite points (i.e. those with z �= 0) the original position in the euclidean
plane can always be recovered as (x/z, y/z).

The next and more important enlargement of the setup comes from em-
bedding the whole situation in complex space. For this we simply assume
that the coordinates of the objects may take also values in the field of com-
plex numbers and study complex two-dimensional projective geometry. Since
every complex number can be described by two real numbers this space has
real dimension four. Nevertheless, the euclidean plane can still be found as a
substructure of this space.

Compared to the real setup complex calculations have a great advantage:
Intersections never (!) vanish. Even if a line and a circle do not intersect in
the real euclidean plane, it is still reasonable to consider intersection points
with complex coordinates, since the coordinates are just solutions of suitable
quadratic equations.

Roughly speaking, we identify the space P with CP
2, the complex projec-

tive plane equipped with the natural topology. In a similar way we identify
L (the space of lines) with the corresponding dual space of CP

2. We may
think of a line given by the parameters (a, b, c) as the solution set of the
equation ax+ by + cz = 0. Again the parameters may also become complex
numbers and parameter vectors that only differ by scalar multiples have to
be identified.
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The space C of all circles consists of all complex 4-tuples (a, b, c, d) (with
scalar multiples identified). The circle represented by the parameters (a, b, c, d)
is the solution set of the homogeneous circle equation ax2+ay2+bxz+cyz+
dz2 = 0.

12.5 Moving in Complex Spaces

Assuming that the free points perform a continuous motion there is an easy
strategy of dealing with multiple intersections: Consider both intersections
as individual objects and trace their paths through complex space. As long as
the intersection points do not coincide one can easily tell them apart and (in
a continuous model of computation) trace them as individual objects.

However, at first sight there seems to be a major obstacle for making this
strategy a reasonable algorithm. Consider the simple case of intersecting a
line and a circle. Assume that the circle is at a fixed position and that the
line is moved from a position at which the two objects intersect to a position
where they do not intersect (in real space). Mark the two intersections in the
start situation by a black and a white dot, and try to trace them during the
movement. Even if we consider the vanishing intersections as still existent
in complex space there will be a tangent situation where the black and the
white point do coincide. At first sight there seems to be no reasonable choice
of how to associate the colors “black” and “white” to the complex intersection
points that arise after the tangent situation. In fact, there is no such preferable
choice, since in the tangent situation the situation is completely symmetric.

However, there is an easy way to break this symmetry by choosing a suit-
able path for the movement of the line. To see this, let us consider the situa-
tion in terms of coordinates. Let the circle be the unit circle {(x, y, z) | x2 +
y2 −z2 = 0} and let the line be a horizontal line {(x, y, z) | 0x+y−2λz = 0}
parametrized by λ. As λ moves from 0 to 1 the line moves from the x-axis
to a horizontal position where it cuts the y-axis at y = 2. The intersections
of the two objects have homogeneous coordinates (±√

1 − 4λ2, 2λ, 1) (for the
purpose of an easy “de-homogenization” we set z = 1, then the x and y
entries represent the usual euclidean coordinates). We see that for λ = 0 we
have two real solutions (0,±1, 1), for λ = 1 we have two complex solutions
(2,±√−15, 1), and for λ = 1 the two solutions coincide.

How can we avoid the situations where the intersection points coincide?
For this we again take advantage of the complex setup. Let us call an instance
of a GSP non-singular if no “double intersections” occur. If we move from
one non-singular instance of a GSP to another non-singular instance of the
GSP there is always a path through complex space that avoids all singular
situations. This is a consequence of the fact that the roots of a non-constant
analytic have no accumulation points. This means that we can always take a
“complex detour” that allows us to individually trace all dependent objects
of a construction. For such paths we obtain perfect continuity.
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Fig. 12.4. In the euclidean plane there can be one, two or none intersections of a
line and a circle. In complex space these intersections never vanish. If we can avoid
“singular situations” it is always possible to trace the two intersections individually.

To obtain such a detour in our example we may take a reparameterization
of the parameter λ according to λ(t) = (cos(t) + 1)/2 + i · sin(t)/2. While
t moves along the real segment [0, π] the parameter λ(t) moves from 0 to 1
along a complex semi-circle. If we parameterize our geometric configuration
with this parameter, the start- and end-positions coincide with the start-
and end-positions we previously had. However in between the line becomes
complex and so do the two points of intersection. The important point is
that along this path the two points never coincide. Thus for this specific path
one can clearly distinguish which of the points in the final position has to be
“black” and which has to be “white”.

In fact, for an analytic path that avoids all singularities the coordinates
of the dependent objects can be expressed by analytic functions of the input
parameter.

12.6 From Discrete Samples to Continuous Movement

How can we apply these insights to the implementation of a dynamic geome-
try program? The crucial point here is that in a dynamic geometry program
no explicit paths of the free elements are determined by the user. If the user
picks a free point with the mouse and moves it from one position to another
one gets the impression that the path of the point makes a continuous move-
ment. However the only information the computer gets consists of a discrete
set of mouse events that indicate the position of the point at a sequence of
sample points. Between these sample points the program has the “freedom”
to take an arbitrary path. This means that, as long as the sample points
correspond to non-singular situation it is always possible to connect them by
piecewise continuous (even analytic) paths that avoid all singular situations.
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(One may view the entire situation as if the mouse pointer that dragges the
point escapes “off screen” to complex space between each of the sample points
of a dragging action.)

Clearly, this theoretical approach still does not give a concrete algorithm
how to perform this dragging and tracing of elements numerically. In fact, in
Section 9 we will see that this problem is indeed intrinsically hard.

12.7 Real Benefits

The approach above may sound far too complicated to resolve the original
problem of having a dynamic setup for euclidean geometry. However, it can be
proved that as soon as we want to have continuous behavior of the dependent
elements, there is only one way to make the decisions and that this choice
coincides with our solution. Although the setup uses complex numbers we
have several benefits in the real case. Here is a list of keywords of what
becomes possible under this setup:

• All derived elements behave analytically:
After an analytic path for the free elements has been chosen, the coordi-
nates of the dependent elements can be expressed as analytic functions
in λ as well. This is the case, since each of the primitive operations is
expressible by an analytic function (with possibly several branches). The
composition of analytic functions is again analytic.

• The solution is unique:
After the path is chosen there is no more ambiguity in the system. Each
element follows the unique path that we get by analytic continuation.

• There are no jumping elements:
After a path is chosen at least in theory no jumps of ambiguous elements
occur.

• The behavior is globally consistent:
Assume that one already has a construction that has a certain dynamic
behavior. It is not possible to enlarge this construction in such a way
that elements that constructed later perform a jump. The system makes
anticipatorily the right decisions.

• Geometric theorems are true once-and-forever:
If a certain geometric property (that can be expressed by a polynomial
equation) holds in an arbitrary small neighborhood of the parameter
space, then it also holds in the entire parameter space. This is a con-
sequence of the fact that an analytic function either vanishes always or
only very “sporadically”.

• Randomized proving works:
The last fact can be used to test geometric relations on a randomized ba-
sis. The system performs a random walk within the parameter space and
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tests whether for each choice of the parameters a conjectured relation is
satisfied. By testing a large number of samples the probability of making
a wrong statement can be kept arbitrary small.

• Self exploring Loci:
The fact that performing a full cycle around a singular situation may
cause a monodromy effect on the depending elements can be used to get
animations and loci that explore the entire configuration space by generic
methods.

• We get generic tools for computational kinematics:
Besides the narrow field of dynamic geometry the same methods apply
to areas such as computational kinematics, parametric CAD and virtual
reality.

12.8 Randomized Proving and Continuity

To keep its own data structures clean, our program needs consistent infor-
mation about incidences and equalities that occur in configurations. Such
incidences may either be trivial consequences of the construction or arise
from geometric theorems like the altitudes of a triangle meeting in a point.
We actually get this information by a randomized theorem checking technique.
Enough random instances of a configuration are generated and for each of
them the conjectured incidence is checked. This is done until the program
either accepts the theorem with a certain high probability or it rejects it, if
a counterexample has been found.

To be really reliable, the randomized theorem checking engine needs
enough (!) random (!) examples. Again there arises a theoretical problem
which originates from ambiguities in geometric constructions. Consider the
theorem stating that the angular bisectors of the sides of a triangle meet in
a point. Due to the intrinsic ambiguity of the angular bisector operation this
statement stated as such is not true. Consider the drawing in the picture
below. It shows two valid instances of the construction: Take three points —
form the three joins of any pair of them — draw the three angular bisectors
of any pair of lines. In one of the drawings the chosen angular bisectors meet
in the other they do not.

For the theorem checking the algorithm does a “random walk” that stays
always in the desired component of the configuration space. Staying in the
correct component during this random walk again depends on consistent and
continuous behavior of dependent elements.

12.9 Complexity Issues

Let us now briefly sketch the issues of algorithmic complexity that arise in
this context (details, proofs and further results can be found in [13,14]). Two
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Fig. 12.5. Depending on the choices the angular bisectors of a triangle can intersect
or not. A randomized proving algorithm has to generate only samples that lie in
the “correct” (i.e. intended) component of the configuration space. This can be
achieved by performing random walks (using our continuity setup) rather than
random jumps.

fundamental questions can be formulated that capture the main algorithmic
questions of dynamic geometry:

• Reachability problem: Given two instances of a GSP. Is it possible to
move the free points such that a first instance is smoothly deformed into
a specific second one?

• Tracing problem: How can a dynamic geometry program decide after a
move what instance to draw for the new position of the free elements?

In fact it makes an essential difference whether one allows in the reachability
problem only real coordinates of the elements or also complex paths. For the
real version it can be proved that (after suitable formalization) the reacha-
bility problem is in general PSPACE-hard. It is still NP-hard if one restricts
oneself to constructions that only use join, meet, and angular bisector oper-
ations. The tracing problem turns out to be (at least) NP-hard. We briefly
sketch how the above results can be achieved. We first focus on the following
result:

Theorem 1. Let P be a geometric straight line program that uses at most
three angular bisector operations and except of this only join and meet op-
erations. Furthermore let I1 and I2 be two instances of P that differ only in
the choice of one angular bisector. It is NP-hard to decide whether I1 can
be moved continuously into I2 by a real continuous motion of the free points
of P.

In order to sketch a proof of this theorem we describe how a reduction of the
well known 3-SAT problem to the real reachability problem can be achieved.
Our reduction proceeds in several steps. The first step consists of transforming
3-SAT to an algebraic setup. For this let us first formally state the 3-SAT
decision problem:
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3-SAT: Let B = (b1, . . . , bn) be boolean variables, and let the literals
over B be B̃ = (b1, . . . , bn,¬b1, . . . ,¬bn). Furthermore let C1, . . . , Ck be
clauses formed by disjunction of three literals from B̃. Decide whether there is
a truth assignment for B that satisfies all clauses C1, . . . , Ck simultaneously.

We may w.l.o.g. assume that each variable occurs at most once in each
clause. We give a (polynomial time) procedure that transfers each instance of
3-SAT into a corresponding problem concerning the roots of a multivariate
polynomial. Let b1, . . . , bn be the boolean variables and let C1, . . . , Ck be
the clauses of a concrete 3-SAT S. To each bi we assign a formal variable xi.
For a literal li ∈ {bi,¬bi} we set

f(xi) :=
{
xi if li = bi,
1 − xi if li = ¬bi,

Assume that for each j = 1, . . . , k the clause Cj is of the form ljr ∨ ljs ∨ ljt
where the literal lji is either bi or ¬bi. We set

Fj := f(ljr) · f(ljs) · f(ljt ).
Finally we set

FS =
k∑

j=1

Fj .

By this translation for instance the 3-SAT formula (b1 ∨¬b3 ∨ b5)∧ (¬b2 ∨
b4 ∨ ¬b5) is translated to (x1 · (1 − x3) · x5) + ((1 − x2) · x4 · (1 − x5)). The
satisfying truth assignments for S and the roots of FS in [0, 1]n are related
by the following lemma (here [0, 1] denotes the closed interval between 0 and
1).

Lemma 1. S has a satisfying truth assignment if and only if there are
(x1, . . . , xn) ∈ [0, 1]n with FS(x1, . . . , xn) = 0.

Proof. If S has a concrete satisfying truth assignment
(b1, . . . , bn) ∈ {True,False}n

we set

xi :=
{
0 if bi = True,
1 if bi = False.

Since every clause contains at least one true literal we the get that all
f1, . . . , fk are zero. This yields that FS is zero as well. Conversely, assume
that there are values (x1, . . . , xn) ∈ [0, 1]n such that

FS(x1, . . . , xn) = 0.
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If the xi are chosen in the interval [0, 1] all fj are non-negative. Thus if∑k
j=1 fj = 0 implies that all fj are zero. However each fi can only be zero if

at least one of its factors is zero. By setting

bi :=
{

True if xi = 0,
False if xi �= 0,

we get a satisfying truth assignment for S.

In the next step of our reduction we simulate the algebraic computation
of the polynomial FS by an elementary geometric construction. For this we
take a line on which we fix positions of the points 0 and 1 to define a scale
of measurement. Then each point on the line corresponds to a certain value.
Multiplication and addition of values on the line can be performed by the
classical von Staudt constructions (see picture below). (The parallelisms that
occur in these constructions can – after fixing a line at infinity – entirely be
expressed by joins and meets.)

x y x+ y0 x y1 x � y0

Fig. 12.6. Von Staudt constructions for addition and multiplication.

The calculation of the polynomial FS can be decomposed into elementary
arithmetic operations. The entire construction of the geometric counterpart
to FS contains n free points x1, . . . , xn as input variables and one dependent
point q as output variable. If we restrict the positions of the input points
to the interval [0, 1] on the computation line, we see that the point q can
only be moved to the origin if the original 3-SAT problem S was satisfiable.
Restricting the input points to the interval can be done by a small geometric
gadget that uses Thales Theorem.

Finally, we construct a semi-free point that can move only on a small
circle around the output point. We can detect whether this point can circle
around the origin by an angular bisector construction. For this we join this
point to the origin and form the three times iterated angular bisector with
our calculation line. Schematically the construction is shown in the following
picture.

We associate the following reachability problem to this construction: Is
it possible from an arbitrary position of the input points to move in a real
path such that the final angular bisector is rotated by an angle of 90◦ and
all free points reached their initial position again? The whole construction
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Fig. 12.7. Construction of a “geometric combination lock” (see color plate 12.7 on
p. 155)

forms a kind of geometric combination lock. Opening the lock corresponds to
achieving the desired position of the angular bisector, but for this one has to
know the correct positions of the code dials (the input variables). Opening the
lock proceeds by first moving the dials to the right position, then changing
the angular bisectors position and finally moving the dials back to the original
position.

It is not difficult to prove that the corresponding reachability question
is equivalent to finding a satisfying truth assignment for our original 3-SAT
problem S. The argument for this goes as follows:

• The only way that the final angular bisector can make this 90◦ turn is
that the line through the origin and through the point that is restricted
to the circle around q makes a full turn.

• This is only possible if p and the origin get so close such that the circle
around p contains the origin.

• This is only possible if the input points xi can be moved to a position
that corresponds to a satisfying truth assignment of S.

Thus changing the position of the final angular bisector requires that we
know a satisfying truth assignment for S. This finishes our sketch of the proof
of Theorem 7.1.

The other main theorem one can proof is the following.

Theorem 2. Given a geometric straight line Program P that contains ex-
actly one free point p. Furthermore given two instances A and B such that p
is at position a in A and p is at position b in B. Let p(t) : [0, 1] → [a, b] be a
concrete (straight) movement of p with p(0) = a and p(1) = b. It is NP-hard
to decide whether a continuous evaluation of P under this movement that
starts at instance A ends up at instance B.
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We very briefly sketch the idea behind the proof of this theorem. We
combine our previous construction with a kind of “automatic safe cracker”
that while moving the point p explores systematically all positions of the input
variables, and for every position tries to change the location of the angular
bisector. If the original 3-SAT instance S had a satisfying truth assignment,
then the final angular bisector will have changed its position when p reached
its end situation p(1). Hence from the final instance of the configuration we
can read of whether S had a satisfying truth assignment.

12.10 Remarks

More information about the software and the underlying mathematics can
be found on the Cinderella website at http://www.cinderella.de.
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