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General Introduction

“As far as the laws of mathematics refer to reality, they are not certain; as
far as they are certain, they do not refer to reality.”

Albert Einstein

In the analysis of contemporary dynamical systems, scientists and engineers
are often confronted with increasingly complex models that can simultane-
ously include terms taking into account non-linear dynamics, time delays and
hysteresis effects, and uncertainties in parameters. Classical optimal control
techniques have allowed them to optimize the control systems they build for
cost and performance, but these techniques are not always tolerant of fluctua-
tions in the dynamical system or in the real world. The goal of robust control
theory is to estimate the performance changes of a dynamical system with
changing system parameters and functions, and to develop alternatives that
are insensitive to changes in the system in order to maintain the stability and
the performance. In a broad sense, the goal of the robust control is to main-
tain the transformation from the desired state to the output state as close to
unity as possible, despite these fluctuations.

In this chapter, we explain the motivations and our general ideas for us-
ing the robust control theory to study non-linear dynamical systems. Then,
we present the general process for our robust control approach and finally, in
order to explain our theoretical proposals on practical cases, we briefly give
various applications, that exhibit graceful degradation subject to many dis-
turbances, as well as more fluctuations which affect considerably the model
of the dynamical system, where the use of robust control theory is extremely
important.
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1.1 Motivations and Objectives

The differential systems that we want to study are spatially and temporally
distributed and they are governed by partial differential equations (PDEs)
which are mostly non-linear. They may represent many fields of physics or
bio-technological processes, which are modeled by systems with parameters
distributed and governed by time-dependent PDEs (with or without time
delays), in which it is of interest to prescribe a suitable dynamical behavior.

The mathematical robust control theory is a part of applied mathematics
serving perhaps the most important link between modeling, mathematics (ei-
ther from a theoretical or computational point of view), industrial processes
and technology. We note that the three main steps in the area of research in
robust control of dynamical systems are inextricably linked, as shown below:

The investigated problems are of various nature and deal both with the analy-
sis of the structural properties of parametrically dependent differential equa-
tions and with their regulation according to some task or cost. Three types of
problems arise then naturally:

(i) Identification: Certain parameters or functions intervening in these mod-
els are unknown, or rather badly known (for example, coefficients of dif-
fusion, non-linear source, initial conditions or boundary conditions, etc.).
We propose to identify these parameters or functions starting from ex-
perimental observations: these problems are called “inverse problems”
(in opposition to the resolution of equations themselves which consti-
tutes the direct problem). Indeed, certain parameters or functions can
influence considerably the material behavior or modify phenomena in
environmental, bio-economic, biological or medical matter; then their
knowledge is an invaluable help for the physicists, biologists or chemists
who, in general, use a mathematical model for their problem, but with a
great uncertainty on its parameters. The resolution of the inverse prob-
lems thus provides them essential informations which are necessary to
the comprehension of the various processes which can intervene in these
models.

(ii) Regulation: The most real physical, biological or chemical systems can
only be described by means of an uncertain model may induce instabil-
ity. Moreover, the systems are destabilizing by unmeasured noises and
disturbances. Consequently, even if some “well-posedness” property is
verified, the systems become often unstable. The idea is to regulate the
response of systems by modifying the dynamical nature of the system.
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(iii) Optimization: The physicists, biologists and chemists control, in general,
their experimental devices by using a certain number of functions of con-
trol which enable them to optimize and/or to stabilize the system. The
work of the mathematician consists in determining these functions in an
optimal way. The methods consist in designing a trajectory for the con-
trol inputs and are normally based on optimization of the performance
of the system relative to some performance functional.

The optimal control methods are used to determine the unknown parameters
or control certain functions for problems where uncertainties (disturbances,
noises, fluctuations, etc.) are neglected. But it is well known that many un-
certainties occur in more realistic studies of physical, biological or chemical
problems. The presence of these uncertainties may induce complex behaviors,
e.g., oscillations, instability, bad performances, etc. Problems with uncertain-
ties are the most challenging and difficult in control theory but their analysis
are necessary and important for applications.

The fundament of robust control theory, which is a generalization of the
optimal control theory, is to take into account these uncertain behaviours
and to analyze how the control system can deal with this problem. From
Chandrasekharan [70], “Robust control refers to the control of unknown plants
with unknown dynamics subject to unknown disturbances.”

The uncertainty can be of two types: first, the errors (or imperfections)
coming from the model (difference between the reality and the mathematical
model, in particular if some parameters are badly known) and, second, the un-
measured noises and fluctuations that act on the physical, biological or chem-
ical systems. These uncertainty terms can have additive and/or multiplicative
components. They often lead to great instability: for example, the El Niño
phenomenon, tropical instability waves, which are essentially the consequence
of a small perturbation of ocean-surface temperature (these equatorial waves
are the precursors for hurricanes and typhoons). The goal of robust control
theory is to control these instabilities, either by acting on some parameters to
maintain the system in a desired state (target), or by calculating the limit of
these parameters before the system becomes unstable (“predict to act”). In
other words, the robust control allows engineers to analyze instabilities and
their consequences and helps them to determine the most acceptable condi-
tions for which a system remains stable. The goal is then to define the max-
imum of noises and fluctuations that can be accepted if we want to keep the
system stable. Therefore, we can predict that if the disturbances exceed this
threshold, the system becomes unstable (for example, we can predict the fluc-
tuation of ocean-surface temperature from which the El Niño phenomenon
can occur). It also allows us, in a system where we can control the perturba-
tions, to provide the threshold at which the system becomes unstable. The
robust control theory for dynamical systems can be described by the block
diagram Figure 1.1, where the function ψ corresponds to the disturbance, φ is
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Figure 1.1. Process of robust control

the control function, uobs is the observation (e.g., measurement), u represents
the perturbation of the desired target (that it is desired to keep small).

The fundamental idea of our approach is the connection between the game
theory approach and the problem of stabilizing uncertain non-linear distrib-
uted parameter systems1 where the fluctuation dynamics and noises are de-
terministic. This is motivated, by the fact that the robust control theory can
be represented as a differential game2 between an engineer seeking the best
control which stabilizes the system perturbations with limited control efforts,
and simultaneously plant (during physical, biological or chemical experiences)
or unexpected events (during the physical, biological or chemical dynamics)
seeking the maximally malevolent disturbance which destabilizes the system
perturbations with limited disturbance magnitude.

In other words, the idea of our approach is to transform robust stability and
performance problems into constrained game-type minimax optimization ones
(of infinite-dimensional dynamical systems). The objective of a robust control
is then to compensate the undesirable effects of system disturbances through
control actions such that a performance functional achieves its minimum for
the worst disturbances, i.e., to find the best control which takes into account
the worst-case disturbance. This area concerns investigation of the control,
stability and adjoint control optimization of infinite-dimensional dynamical
systems.

Since the late 1970s, a great variety of techniques have been developed for
this new area of research. Many different models describing physical, biologi-
cal or chemical systems (from chemical to mechanical engineering, from bio-
logical systems to population dynamics, etc.) with taking into account some
uncertainties are giving raise to different research directions. In the frame-
work of many robust control problems studied in the literature, the consid-
ered problems mainly correspond to the construction of controllers for linear
(or linearized) plants with additive disturbances (because by assuming these
considerations, the analysis is greatly simplified). But it is well-known that
in the real world, the systems have non-linear dynamical behaviors and dis-

1 The goal of the game is to find a controller in the presence of an adversary that
changes the process.

2 In the sense of two-person zero-sum game, see Section 5.3.2.
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turbances may act additively and/or multiplicatively. Moreover, the systems
may present hard control, disturbance or state constraints (e.g., pointwise
constraints).

Therefore, we are interested in the robust regulation of the deviation of
the systems from the desired target, by analyzing the full non-linear and time
varying systems (with or without time delays), which models large perturba-
tions to the desired target, and by considering different actions of disturbances
and controls with various constraints.

In our approach it is not assumed that the system is stabilizable or de-
tectable, as opposed to other books in the treatment of robust control prob-
lems to some classes of finite (or infinite)-dimensional systems which are con-
sidered in terms of a general Riccati operator (see, e.g., Başar and Bernhard,
[26], Chen [76], Foias et al. [125], Dullerud and Paganini [232], Petersen et
al. [241], Sanchez-Pena and Sznaier [257], Van Keulen [288], Whittle [300],
Zhou et al. [311, 312], and references therein), a hypothesis that is difficult to
verify in practice. Moreover, in the more general case, numerical realizations
based on the adjoint control optimization are preferred over techniques based
on Riccati approaches. To the best of our knowledge, the approaches and re-
sults developed in the previous and below references are not applicable to the
applications analyzed in this book.

The previous references give an interesting background though most of
these references consider linear systems (of finite or infinite dimensions) and
optimizations over the infinite time horizon, and are referred to differential
games and H∞-control theory3 (that is well described in Green and Limebeer
[140] and Zhou et al. [311]) or its stochastic counterpart, i.e., risk-sensitive
control theory. For the robust design where the H∞-control problem is re-
garded as loop-shaping problem, the reader can refer to Vinnicombe [290], in
which the author introduces a new metric for systems. Other methods based
on Lyapunov design method were proposed for robust stabilization of non-
linear uncertain systems see, e.g., Qu [246], in which the author considers the
robust stabilization of systems described by ordinary differential equations.
For practical examples, we can cite Ackermann et al. [3], in which the au-
thors present stability analysis for problems described by linear time-invariant,
based on Kharitonov-type criteria. Finally, for robust control of time-delay
systems, the reader may refer to Zhong [310], in which used tools are chain-
scattering approach and J-spectral factorizations and Niculescu [230], in which
the author treats the stability of finite-dimensional delay differential equations
(we can also refer to Mahmoud [213]). The reader can find other references
which complete this survey in the introduction of each chapter.

The approach described in this book, which is based on minimax theorems
in relation with non-linear PDEs in finite time horizon and motivated by prac-
tical application, has been highlighted from the beginning of the 2000s. For

3 H∞-control problem is worked and posed in Hardy spaces (spaces of all stable
transfer functions).
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these developments, we can mention for the robust control of a class of non-
linear parabolic systems with time-varying delays, Belmiloudi [38, 39]; for ro-
bust control of the incompressible Navier–Stokes equations, Bewley et al. [52];
for the Kuramoto–Sivashinsky model, Hu and Temam [162]; for the stability
of solidification processes, Belmiloudi et al. [40, 41]; and for the Ginzburg–
Landau system and superconductivity, Belmiloudi [45].

We shall now present the process of our control robust approach.

1.2 General Process of the Robust Control Theory

In contrast to the optimal control problems,4 the relation between the prob-
lems of identification, regulation and optimization, lies in the fact that it acts,
in these cases, to find a saddle point of a functional calculus depending on
the control, the disturbance and the solution of the perturbed PDEs. Indeed,
the problems of control can be formulated as the robust regulation of the
deviation of the systems from the desired target; the considered control and
disturbance variables, in this case, can be in the parameters or in the functions
to be identified. This optimization problem (a minimax problem), depending
on the solution of PDEs, with respect to control and disturbance variables (in-
tervening either in the initial conditions, or boundary conditions or equation
itself), is the base of the robust control theory of PDEs.

The essential data used in our robust control problem are the following:

1. A “control” variable ϕ in a set Uad (known as set of “admissible controls”)
and a “disturbance” variable ψ in a set Vad (known as set of “admissible
disturbances”).

2. The state u(ϕ, ψ) of the system to be controlled, which is given, for a cho-
sen control-disturbance (ϕ, ψ), by the resolution of a perturbed equation

F̃(t)(u(ϕ, ψ)) = “given function of (ϕ, ψ)”

where F̃(.) is an operator (supposed to be known) which represents the
system to be controlled and u is the perturbation of the desired target U .
The operator F̃(.), which depends on U , is the perturbation of the model
F(.) of the studied system.

3. An “observation” uobs which is supposed to be known exactly (for ex-
ample, the desired tolerance for the perturbation or the offset given by
measurements).

4. A “cost” functional (or “objective” functional) J(ϕ, ψ) which is defined
from a real-valued and positive function G(X,Y ) by

J(ϕ, ψ) = G((ϕ, ψ), u(ϕ, ψ)).

4 The optimal control problem corresponds to minimize or maximize a calculus
function depending on the control and the solution of PDEs.
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The goal is to find a saddle point of J , i.e., a solution (ϕ∗, ψ∗) ∈ Uad×Vad

of
J(ϕ∗, ψ) ≤ J(ϕ∗, ψ∗) ≤ J(ϕ, ψ∗) ∀ϕ ∈ Uad, ψ ∈ Vad.

It should be noted that there is no general method to analyze the problems
of robust control (it is necessary to adapt it in each situation). Moreover,
in non-linear systems or bilinear systems, the analysis is more complicated
than in the case of optimal control problems, because we are interested in the
robust regulation of the deviation of the systems from the desired target, by
analyzing the full non-linear systems which model large perturbations to the
desired target. Consequently the perturbations of the initial models, governed
by PDEs, which show additional operators (and then difficulties) generate
new primal problem and then new dual problem which, often, seem of a new
type.

On the other hand, we can define the process to be followed for each
situation:

(i) Solve the initial problem (analysis of PDEs, existence of solutions, sta-
bility according to the data, regularity, etc.).

(ii) Define the function or the parameter to be identified and the type of
disturbance to be controlled.

(iii) Introduce and solve the perturbed problem which plays the role of the
primal problem (analysis of PDEs, existence of solutions, stability ac-
cording to the data, regularity, differentiability of the operator solution,
etc.).

(iv) Define the cost (or objective) functional, which depends on control and
disturbance functions.

(v) Obtain the existence of an optimal solution (as a saddle point of the
cost functional) and analyze the necessary (and if possible the suffi-
cient) conditions of optimality (which require to obtain before a very
fine regularity on the state functions).

(vi) Characterize the optimal solutions.

(vii) Define an algorithm allowing to solve numerically the robust control
problem (which requires sometimes the development of new methods of
numerical resolution).

We now present some applications to biological and physical sciences (which
are studied and analyzed in the third part of this book).

1.3 Applications to Biological and Physical Sciences

The mathematical, physical and biological systems studied in the third part
of the book include the following:
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• reaction-diffusion equations from population growth (e.g., Lotka–Volterra
model)

• bioheat transfer and Pennes-type model

• Ginzburg–Landau system and superconductivity

• Warren–Boettinger-type model and solidification

• incompressible Navier–Stokes equations coupled with transport-diffusion
equations and other equations of fluid mechanics

• micropolar fluid model.

For all these problems, the following questions will be addressed:

(a) modeling and governing system

(b) existence, uniqueness, regularity and continuous dependence on the data
of the model

(c) perturbation model and same points as in (b)

(d) motivation and formulation of the robust control problem in different
situations

(e) existence of an optimal solution (a saddle point)

(f) optimality conditions and identification of gradients

(g) uniqueness of the optimal solution.

Applications are of three main types and are described next.

1.3.1 Material Sciences

Material sciences concern with the synthesis and manufacture of new ma-
terials, the modification of materials, the understanding and prediction of
material properties, and the evolution and control of these properties over a
time period. Today it is a vast growing body of knowledge based on physical
sciences, engineering, and mathematics.

The goal is to present some mathematical treatments for the non-linear
evolution systems which arise in material sciences. During the manufacture of
the material, small perturbations caused by the introduction of noises terms
in the data (which are regarded as impurities) give rise to surface and con-
vective instabilities. To manufacture the materials free from impurities, it is
essential to control both surface and convective instabilities.
• Vortex dynamics in superconducting films with Ginzburg–Landau systems:
The phase transitions taking place in superconductor films with variable thick-
ness is modeled by a two-dimensional, time-dependent Ginzburg–Landau type
model with Robin boundary conditions on a phase-field parameter. To take
into account thermal fluctuations and material impurities (which affect the
motion of vortices in superconductors), we use a variant of Ginzburg–Landau
type model containing additive noise (this work is a generalization of the re-
cent research developed by Belmiloudi in [45]); we can note that the unknown
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phase-field parameters are complex valued. The objective is to control and
stabilize the motion of vortices in superconductors.
• Multi-scale modeling solidification of binary alloys and phase-field model:
The isothermal solidification of a binary alloy (i.e., a mixture of two ele-
ments) is modeled by a two-dimensional, time-dependent and solutal phase
field model of Warren–Boettinger type. To take into account thermal fluctu-
ations and material impurities, we use a variant of the Warren–Boettinger
model containing additive noise due to thermal fluctuations (this work is a
generalization of the recent research developed by Belmiloudi in [40]). This
studied model involves dentrite growth of highly supersatured binary melts.
The objective is to predict and stabilize the microstructure dynamics by tak-
ing into account thermal fluctuations and material impureties. The developed
technique can be used to study different general physical models concern-
ing the solidification process, for example the problems presented recently by
Granasy et al. [139], and Warren et al. [295].

1.3.2 Fluid Mechanics

Our aim is to describe some non-linear time-dependent PDEs which arise in
fluid mechanics. In each case, we present briefly the physical model and the
governing equations. Then we present the mathematical setting of the ob-
tained equation and we study the robust control problem in order to control
the fluctuations of the system. We also discuss the mechanisms of control of
these instabilities. Different techniques and methods, used to investigate these
instabilities, are developed.
• Large-scale ocean in the climate system: The phenomenon of long waves in
tropical ocean is modeled by equations of non-linear Navier–Stokes type for
the velocity and pressure, and of transport-diffusion type for the temperature
and the salinity. The oceanic currents, which play a key role in the regulation
of the climate, are characterized, in the tropical zone, by steady zonal currents
and by long waves propagating westward along the equator and superimposed
to the mean currents. The equatorial waves can be connected with strong ver-
tical currents, which are very sensitive to small changes in temperature (for
example the El Niño phenomenon begins with a temperature elevation of 2
or 3 ◦C of surface waters). The goal is to predict the deviation of circula-
tion from the mean circulation caused by these small variations of the surface
temperature. Our work therefore complements and generalizes research works
developed for several years by Belmiloudi (by using the optimal control tech-
niques) on the analysis of fluctuations and perturbations in the equatorial
zone. We study this problem with two types of hypothesis: the Boussinesq
approximation and the Hydrostatic approximation with vertical viscosity.

1.3.3 Biological Models

The goal is to present some mathematical treatments for the non-linear evolu-
tion systems which arise in life sciences. The questions that we address are the
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same as developed in the previous applications. We provide a brief review of
various models in mathematical biology, and describes how these models arise.
Then we study the properties of solutions of non-linear time-dependent partial
differential systems (with and without time delays). In particular, the exis-
tence and the uniqueness of these solutions are discussed. Various mechanisms
of control of the perturbations of the system by using different techniques un-
der different boundary conditions, are also presented.
• Impact of heat transfer laws on temperature distribution in biological tissues:
The temperature distribution in living tissues is modeled by some generalized
transient bioheat transfer type models with directional blood flow and Robin
boundary conditions. The model equation depends on the blood perfusion
rate, the heat transfer parameter, the distributed energy source terms and
the heat flux due to the evaporation, which affect the effects of thermal and
physical properties on the transient temperature of biological tissues. The
knowledge about the behavior of the temperature in tissues can be very bene-
ficial for thermal diagnostics and treatments in medical practices, for example
thermotherapy for regional hyperthermia, often used in treatment of cancer
(the aim of the thermal therapy is to destroy the pathological tissues by rising
the temperature with minimal damage to the surrounding tissues). The goal
of our study is to control and stabilize the desired online temperature.
• Parabolic Lotka–Volterra type systems with logistic time-varying delays: The
studied systems are governed by parabolic equations governing diffusive bio-
logical species with logistic growth terms and multiple time-varying delays. A
very important ecological and economical problem is resource management,
i.e., the stabilization of uncertain biological species taking into account the
influence of the population at earlier times on the regulatory effect. In pop-
ulation dynamics, this includes the multiple time-varying delay model, for
example the birth rate, which does not act instantaneously (time to reach
maturity), the finished period of gestation, etc. The applications are varied
and include: forest or agriculture (trapping animals, damage cost to environ-
ment), fisheries (resource stock to prevent overfishing), etc.

1.3.4 Other Systems

We also develop two very interesting systems: first, we analyze the motion
of animal blood which is described by micropolar fluid models and, second,
we present the semiconductor melts in zone-melting and Czochralski growth
configuration.

Most of the topics developed here are new or have recently appeared. More-
over, the methods developed in this book can be extended to the well-
posedness non-linear hyperbolic systems. Relevant questions which are not
developed here include those of hybrid systems involving a mixture of contin-
uous and discrete dynamics. These aspects are currently being investigated
and will be the object of publications in the near future.


