
Preface

A little over five years have passed since the first edition of this book appeared
in print. Seems like an instant but also eternity, especially considering numerous
developments in the hardware and software that have made it from the laboratory
test beds into the real world of powder diffraction. This prompted a revision, which
had to be beyond cosmetic limits. The book was, and remains focused on standard
laboratory powder diffractometry. It is still meant to be used as a text for teaching
students about the capabilities and limitations of the powder diffraction method. We
also hope that it goes beyond a simple text, and therefore, is useful as a reference to
practitioners of the technique.

The original book had seven long chapters that may have made its use as a text in-
convenient. So the second edition is broken down into 25 shorter chapters. The first
fifteen are concerned with the fundamentals of powder diffraction, which makes it
much more logical, considering a typical 16-week long semester. The last ten chap-
ters are concerned with practical examples of structure solution and refinement,
which were preserved from the first edition and expanded by another example –
solving the crystal structure of Tylenol R©.

Major revisions include an expanded discussion of nonconventional crystallo-
graphic symmetry in Chap. 5, a short description of two new types of detectors that
are becoming common in laboratory powder diffractometry – real-time multiple
strip and multi wire detectors in Chap. 6, a brief introduction to the total scattering
analysis in Chap. 10, a short section in Chap. 11 describing nonambient powder
diffractometry, an expanded discussion of quantitative phase analysis, including the
basics of how to quantify amorphous component in Chap. 13, an update about the
recent advancements in the ab initio indexing, together with an example of a dif-
ficult pseudo-symmetric case represented by Li[B(C2O4)2], and a major update of
Chap. 15 dedicated to the fundamentals of Rietveld analysis, including a brief intro-
duction of the mechanism of restraints, constraints, and rigid bodies. The collection
of problems that may be used by instructors to assess students’ progress and as self-
exercises has also expanded. All problems related to the solution and refinement of
crystal structures from powder diffraction data are assembled at the end of Chap. 25.
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Considering all these additions, something had to go. A major deletion from the
earlier paper version is the section on X-ray safety, which has been moved to the
electronic part of the book. Readers familiar with the first edition know that the book
included a CD with electronic figures, experimental data, and solutions of all prob-
lems. Over the years, both the publisher and we have had numerous inquiries from
people who accidentally used the CD as a coaster, clay pigeon, or simply sat on it
before making a backup copy. While each and every request about sending a copy of
the CD was fulfilled, we thought that it makes more sense to have the electronic files
available online. The files are hosted by Springer (http://www.springer.com/978-0-
387-09578-3) and they are made available to everyone who has the book. The files
include color figures, powder diffraction data, examples, web links, and solutions to
all the problems found throughout the book. Files with the solutions of the problems
are only available to instructors, who must register with the publisher.

Finally, we would like to thank everyone who provided critique and feedback.
Most important, we thank the readers who opted to buy our book with their hard-
earned money thus providing enough votes for the publisher to consider this second,
revised edition. It is our hope that this edition is met with even better acceptance
by our readers of students, practitioners, and instructors of the truly basic materials
characterization technique, which is the powder diffraction method.

Ames, Iowa, October 2008 Vitalij K. Pecharsky
College Park, Maryland, October 2008 Peter Y. Zavalij



Preface to the First Edition

Without a doubt, crystals such as diamonds, emeralds and rubies, whose beauty has
been exposed by jewelry-makers for centuries, are enjoyed by everybody for their
perfect shapes and astonishing range of colors. Far fewer people take pleasure in
the internal harmony – atomic structure – which defines shapes and other proper-
ties of crystals but remains invisible to the naked eye. Ordered atomic structures are
present in a variety of common materials, for example, metals, sand, rocks or ice,
in addition to the easily recognizable precious stones. The former usually consist
of many tiny crystals and therefore, are called polycrystals, for example metals and
ice, or powders, such as sand and snow. Besides external shapes and internal struc-
tures, the beauty of crystals can be appreciated from an infinite number of distinct
diffraction patterns they form upon interaction with certain types of waves, for ex-
ample, X-rays. Similarly, the beauty of the sea is largely defined by a continuously
changing but distinctive patterns formed by waves on the water’s surface.

Diffraction patterns from powders are recorded as numerical functions of a sin-
gle independent variable, the Bragg angle, and they are striking in their fundamen-
tal simplicity. Yet, a well-executed experiment encompasses an extraordinarily rich
variety of structural information, which is encoded in a material- and instrument-
specific distribution of the intensity of coherently scattered monochromatic waves
whose wavelengths are commensurate with lattice spacing. The utility of the pow-
der diffraction method – one of the most essential tools in the structural character-
ization of materials – has been tested for over 90 years of successful use in both
academia and industry. A broad range of general-purpose and specialized powder
diffractometers are commonly available today, and just about every research project
that involves polycrystalline solids inevitably begins with collecting a powder dif-
fraction pattern. The pattern is then examined to establish or verify phase composi-
tion, purity, and the structure of the newly prepared material. In fact, at least a basic
identification by employing powder diffraction data as a fingerprint of a substance,
coupled with search-and-match among hundreds of thousands of known powder
diffraction patterns stored in various databases, is an unwritten mandate for every
serious work that involves crystalline matter.
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Throughout the long history of the technique, its emphasis underwent several
evolutionary and revolutionary transformations. Remarkably, the new developments
have neither taken away, nor diminished the value of earlier applications of the
powder diffraction method; on the contrary, they enhanced and made them more
precise and dependable. A noteworthy example is phase identification from powder-
diffraction data, which dates back to the late 1930s (Hanawalt, Rinn, and Frevel).
Over the years, this application evolved into the Powder Diffraction File

TM
contain-

ing reliable patterns of some 300,000 crystalline materials in a readily searchable
database format (Powder Diffraction File is maintained and distributed by the Inter-
national Centre for Diffraction Data, http://www.icdd.com).

As it often happens in science and engineering, certain innovations may go unno-
ticed for some time but when a critical mass is reached or exceeded, they stimulate
unprecedented growth and expansion, never thought possible in the past. Both the
significance and applications of the powder diffraction method have been drastically
affected by several directly related as well as seemingly unrelated developments that
have occurred in the recent past. First was the widespread transition from analogue
(X-ray film) to digital (point, line, and area detectors) recording of scattered inten-
sity, which resulted in the improved precision and resolution of the data. Second was
the groundbreaking work by Rietveld, Young and many others, who showed that full
profile powder diffraction data may be directly employed in structure refinement and
solution. Third was the availability of personal computers, which not only function
as instrument controllers, but also provide the much needed and readily available
computing power. Computers thus enable the processing of large arrays of data col-
lected in an average powder diffraction experiment. Fourth was the invention and
rapid evolution of the internet, which puts a variety of excellent, thoroughly tested
computer codes at everyone’s fingertips, thanks to the visionary efforts of many
bright and dedicated crystallographers.

Collectively, these major developments resulted in the revolutionary changes and
opened new horizons for the powder diffraction technique. Not so long ago, if you
wanted to establish the crystal structure of a material at the atomic resolution, vir-
tually the only reliable choice was to grow an appropriate quality single crystal.
Only then could one proceed with the collection of diffraction data from the crys-
tal followed by a suitable data processing to solve the structure and refine relevant
structural parameters. A common misconception among the majority of crystallo-
graphers was that powder diffraction has a well-defined niche, which is limited to
phase identification and precise determination of unit cell dimensions. Over the past
ten to twenty years the playing field has changed dramatically, and the ab initio
structure determination from powder diffraction data is now a reality. This raises the
bar and offers no excuse for those who sidestep the opportunity to establish details
of the distribution of atoms in the crystal lattice of every polycrystalline material,
whose properties are under examination. Indeed, accurate structural knowledge ob-
tained from polycrystals is now within reach. We believe that it will eventually lead
to a much better understanding of structure-property relationships, which are critical
for future advancements in materials science, chemistry, physics, natural sciences,
and engineering.
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Before a brief summary recounting the subject of this book, we are obliged to
mention that our work was not conducted in a vacuum. Excellent texts describing
the powder diffraction method have been written, published, and used by the gener-
ations of professors teaching the subject and by the generations of students learning
the trade in the past. Traditional applications of the technique have been excep-
tionally well-covered by Klug and Alexander (1954), Azaroff and Buerger (1958),
Lipson and Steeple (1970), Cullity (1956 and 1978), Jenkins and Snyder (1996),
and Cullity and Stock (2001). There has never been a lack of reports describing the
modern capabilities of powder diffraction, and they remain abundant in technical
literature (Journal of Applied Crystallography, Acta Crystallographica, Powder Dif-
fraction, Rigaku Journal, and others). A collective monograph, dedicated entirely to
the Rietveld method, was edited by Young and published in 1993. A second col-
lection of reviews, describing the state of the art in structure determination from
powder diffraction data, appeared in 2002, and it was edited by David, Shankland,
McCusker, and Baerlocher. These two outstanding and highly professional mono-
graphs are a part of the multiple-volume series sponsored by the International Union
of Crystallography, and are solid indicators that the powder diffraction method has
been indeed transformed into a powerful and precise, yet readily accessible, struc-
ture determination tool. We highly recommend all the books mentioned in this para-
graph as additional reading to everyone, although the older editions are out of print.

Our primary motivation for this work was the absence of a suitable text that
can be used by both the undergraduate and graduate students interested in pursu-
ing in-depth knowledge and gaining practical experience in the application of the
powder diffraction method to structure solution and refinement. Here, we place em-
phasis on powder diffraction data collected using conventional X-ray sources and
general-purpose powder diffractometers, which remain primary tools for thousands
of researchers and students in their daily experimental work. Brilliant synchrotron
and powerful neutron sources, which are currently operational or in the process of
becoming so around the world, are only briefly mentioned. Both may, and often
do provide unique experimental data, which are out-of-reach for conventional pow-
der diffraction especially when high pressure, high and low temperature, and other
extreme environments are of concern. The truth, however, is that the beam time is
precious, and both synchrotron and neutron sources are unlikely to become available
to everyone on a daily basis. Moreover, diffraction fundamentals remain the same,
regardless of the nature of the employed radiation and the brilliance of the source.

This book has spawned from our affection and lasting involvement with the tech-
nique, which began long ago in a different country, when both of us were working
our way through the undergraduate and then graduate programs in Inorganic Chem-
istry at L’viv State University, one of the oldest and finest institutions of higher edu-
cation in Ukraine. As we moved along, powder diffraction has always remained on
top of our research and teaching engagements. The major emphasis of our research
is to obtain a better understanding of the structure–property relationships of crys-
talline materials, and both of us teach graduate-level powder diffraction courses at
our respective departments – Materials Science and Engineering at Iowa State Uni-
versity and Chemistry at the State University of New York (SUNY) at Binghamton.
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Even before we started talking about this book, we were unanimous in our goals:
the syllabi of two different courses were independently designed to be useful for any
background, including materials science, solid-state chemistry, physics, mineralogy,
and literally any other area of science and engineering, where structural information
at the atomic resolution is in demand. This philosophy, we hope, resulted in a text
that requires no prior knowledge of the subject. Readers are expected to have a gen-
eral scientific and mathematical background of the order of the first two years of a
typical liberal arts and sciences or engineering college.

The book is divided into seven chapters. The first chapter deals with essential
concepts of crystallographic symmetry, which are intended to facilitate both the un-
derstanding and appreciation of crystal structures. This chapter will also prepare the
reader for the realization of the capabilities and limitations of the powder diffrac-
tion method. It begins with the well-established notions of the three-dimensional
periodicity of crystal lattices and conventional crystallographic symmetry. It ends
with a brief introduction to the relatively young subject – the symmetry of aperiodic
crystals. Properties and interactions of symmetry elements, including examination
of both point and space groups, the concept of reciprocal space, which is employed
to represent diffraction from crystalline solids, and the formal algebraic treatment
of crystallographic symmetry are introduced and discussed to the extent needed in
the context of the book.

The second chapter is dedicated to properties and sources of radiation suitable
for powder diffraction analysis, and gives an overview of the kinematical theory
of diffraction along with its consequences in structure determination. Here, readers
learn that the diffraction pattern of a crystal is a transformation of an ordered atomic
structure into a reciprocal space rather than a direct image of the former. Diffraction
from crystalline matter, specifically from polycrystalline materials is described as
a function of crystal symmetry, atomic structure, and conditions of the experiment.
The chapter ends with a general introduction to numerical techniques enabling the
restoration of the three-dimensional distribution of atoms in a lattice by the trans-
formation of the diffraction pattern back into direct space.

The third chapter begins with a brief historical overview describing the powder
diffraction method and explains the principles, similarities, and differences among
the variety of powder diffractometers available today. Since ionizing radiation and
highly penetrating and energetic particles are employed in powder diffraction, safety
is always a primary concern. Basic safety issues are concisely spelled out using
policies and procedures established at the US DOE’s Ames Laboratory as a prac-
tical example. Sample preparation and proper selection of experimental conditions
are exceedingly important in the successful implementation of the technique. There-
fore, the remainder of this chapter is dedicated to a variety of issues associated with
specimen preparation, data collection, and analysis of most common systematic er-
rors that have an impact on every powder diffraction experiment.

Beginning from chapter four, key issues that arise during the interpretation of
powder diffraction data, eventually leading to structure determination, are con-
sidered in detail and illustrated by a variety of practical examples. This chapter
describes preliminary processing of experimental data, which is critical in both
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qualitative and quantitative phase analyses. In addition to a brief overview of phase
identification techniques and quantitative analysis, readers will learn how to deter-
mine both the integrated intensities and angles of the observed Bragg peaks with the
highest achievable precision.

Chapter five deals with the first major hurdle, which is encountered in powder
diffraction analysis: unavoidably, the determination of any crystal structure starts
from finding the shape, symmetry, and dimensions of the unit cell of the crystal lat-
tice. In powder diffraction, finding the true unit cell from first principles may present
considerable difficulty because experimental data are a one-dimensional projection
of the three-dimensional reciprocal lattice. This chapter, therefore, introduces the
reader to a variety of numerical techniques that result in the determination of precise
unit cell dimensions. The theoretical background is followed by multiple practical
examples with varying complexity.

Chapter six is dedicated to the solution of materials’ structures, that is, here we
learn how to find the distribution of atoms in the unit cell and create a complete
or partial model of the crystal structure. The problem is generally far from trivial,
and many structure solution cases in powder diffraction remain unique. Although
structure determination from powder data is not a wide-open and straight highway,
knowing where to enter, how to proceed, and where and when to exit is equally vital.
Hence, in this chapter both direct and reciprocal space approaches and some practical
applications of the theory of kinematical diffraction to solving crystal structures
from powder data are explained and broadly illustrated. Practical examples start from
simple, nearly transparent cases, and end with quite complex inorganic structures.

The solution of a crystal structure is considered complete only when multiple
profile variables and crystallographic parameters of a model have been fully refined
against the observed powder diffraction data. Thus, the last, the seventh chapter
of this book describes the refinement technique, most commonly employed today,
which is based on the idea suggested in the middle 1960s by Rietveld. Successful
practical use of the Rietveld method, though directly related to the quality of pow-
der diffraction data (the higher the quality, the more reliable the outcome), largely
depends on the experience and the ability of the user to properly select a sequence
in which various groups of parameters are refined. In this chapter, we introduce
the basic theory of Rietveld’s approach, followed by a series of hands-on exam-
ples that demonstrate the refinement of crystal structures with various degrees of
completeness and complexity, models of which were partially or completely built in
chapter six.

The book is supplemented by an electronic volume – compact disk – containing
powder diffraction data collected from a variety of materials that are used as exam-
ples and in the problems offered at the end of every chapter. In addition, electronic
versions of some 330 illustrations found throughout the book are also on the CD.
Electronic illustrations, which we hope is useful to both instructors and students be-
cause electronic figures are in color, are located in a separate folder /Figures on the
CD. Three additional folders named /Problems, /Examples and /Solutions contain
experimental data, which are required for solving problems, as self-exercises, and
our solutions to the problems, respectively. The disk is organized as a web page,
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which makes it easy to navigate. All web links found in the book, are included on
the CD and can be followed by simply clicking on them. Every link is current as
of January 2003. The compact disk is accessible using both Mac’s and PC’s, and
potential incompatibility problems have been avoided by using portable document,
HTML, and ASCII formats.

Many people have contributed in a variety of ways in the making of this book.
Our appreciation and respect goes to all authors of books, monographs, research
articles, websites, and computer programs cited and used as examples through-
out this text. We are indebted to our colleagues, Professor Karl Gschneidner, Jr.
from Iowa State University, Professor Scott R.J. Oliver from SUNY at Bingham-
ton, Professor Alexander Tishin from Moscow State University, Dr. Aaron Holm
from Iowa State University, and Dr. Alexandra (Sasha) Pecharsky from Iowa State
University, who read the entire manuscript and whose helpful advice and friendly
criticism made this book better. It also underwent a common-sense test, thanks to
Lubov Zavalij and Vitalij Pecharsky, Jr. Some of the experimental data and samples
used as the examples have been provided by Dr. Lev Akselrud from L’viv State
University, Dr. Oksana Zaharko from Paul Scherrer Institute, Dr. Iver Anderson,
Dr. Matthew Kramer, and Dr. John Snyder (all from Ames Laboratory, Iowa State
University), and we are grateful to all of them for their willingness to share the
results of their unpublished work. Special thanks are in order to Professor Karl
Gschneidner, Jr. (Iowa State University) and Professor M. Stanley Whittingham
(SUNY at Binghamton), whose perpetual attention and encouragement during our
work on this book have been invaluable. Finally yet significantly, we extend our
gratitude to our spouses, Alexandra (Sasha) Pecharsky and Lubov Zavalij, and to
our children, Vitalij Jr., Nadya, Christina, Solomia, and Martha, who handled our
virtual absence for countless evenings and weekends with exceptional patience and
understanding.

Ames, Iowa, January 2003 Vitalij K. Pecharsky
Binghamton, New York, January 2003 Peter Y. Zavalij



Chapter 2
Finite Symmetry Elements
and Crystallographic Point Groups

In addition to simple translations, which are important for understanding the concept
of the lattice, other types of symmetry may be, and are present in the majority of
real crystal structures. Here we begin with considering a single unit cell, because
it is the unit cell that forms a fundamental building block of a three-dimensionally
periodic, infinite lattice, and therefore, the vast array of crystalline materials.

2.1 Content of the Unit Cell

To completely describe the crystal structure, it is not enough to characterize only
the geometry of the unit cell. One also needs to establish the distribution of atoms
in the unit cell, and consequently, in the entire lattice. The latter is done by simply
translating each point inside the unit cell using (1.1). Hence, the three noncoplanar
vectors a, b, and c form a basis of the coordinate system with three noncoplanar
axes X ,Y , and Z, which is called the crystallographic coordinate system or the crys-
tallographic basis. The coordinates of a point inside the unit cell, i.e., the coordinate
triplets x, y, z, are expressed in fractions of the unit cell edge lengths, and therefore,
they vary from 0 to 1 along the corresponding vectors (a, b, or c).1 Thus, the coor-
dinates of the origin of the unit cell are always 0, 0, 0 (x = 0, y = 0 and z = 0), and
for the ends of a-, b-, and c-vectors, they are 1, 0, 0; 0, 1, 0 and 0, 0, 1, respectively.
Again, using capital italic X , Y, and Z, we will always refer to crystallographic axes
coinciding with a, b, and c directions, respectively, while small italic x, y, and z are
used to specify the corresponding fractional coordinates along the X , Y, and Z axes.

An example of the unit cell in three dimensions and its content given in terms of
coordinates of all atoms is shown in Fig. 2.1. Here, the centers of gravity of three
atoms (“large,” “medium,” and “small” happy faces) have coordinates x1,y1,z1;
x2,y2,z2 and x3,y3,z3, respectively. Strictly speaking, the content of the unit cell

1 In order to emphasize that the coordinate triplets list fractional coordinates of atoms, in crystal-
lographic literature these are often denoted as x/a, y/b, and z/c.

V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural 17
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should be described by specifying other relevant atomic parameters in addition
to the position of each atom in the unit cell. These include types of atoms (i.e.,
their chemical symbols or sequential numbers in a periodic table instead of “large,”
“medium” and “small”), site occupancy, and individual displacement parameters.
All these quantities are defined and explained later in the book, see Chap. 9.

2.2 Asymmetric Part of the Unit Cell

It is important to realize that the case shown in Fig. 2.1 is rarely observed in reality.
Usually, unit cell contains more than one molecule or a group of atoms that are
converted into each other by simple geometrical transformations, which are called
symmetry operations. Overall, there may be as many as 192 transformations in some
highly symmetric unit cells. A simple example is shown in Fig. 2.2, where each unit
cell contains two molecules that are converted into one another by 180◦ rotation
around imaginary lines, which are perpendicular to the plane of the figure. The
location of one of these lines (rotation axes) is indicated using small filled ellipse.
The original molecule, chosen arbitrarily, is white, while the derived, symmetrically
related molecule is black.

The independent part of the unit cell (e.g., the upper right half of the unit cell
separated by a dash-dotted line and hatched in Fig. 2.2) is called the asymmetric
unit. It is the only part of the unit cell for which the specification of atomic positions
and other atomic parameters are required. The entire content of the unit cell can be
established from its asymmetric unit using the combination of symmetry operations
present in the unit cell. Here, this operation is a rotation by 180◦ around the line
perpendicular to the plane of the projection at the center of the unit cell. It is worth
noting that the rotation axis shown in the upper left corner of Fig. 2.2 is not the only
axis present in this crystal lattice – identical axes are found at the beginning and in
the middle of every unit cell edge as shown in one of the neighboring cells.2

a (X )

c (Z )

b (Y )x3x1x2

z2 z1
z3

y2

y1
y3

Fig. 2.1 Illustration of the content of the unit cell. The coordinates of the center of gravity of each
atom are given as triplets, i.e., x1,y1,z1; x2,y2,z2 and x3,y3,z3.

2 The appearance of additional rotation axes in each unit cell is the result of the simultaneous pres-
ence of both rotational and translational symmetry, which interact with one another (see Sects. 2.5
and 3.3, below).
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Fig. 2.2 Asymmetric unit (hatched vertically) contains an independent molecule, which is clear.
Black molecules are related to clear molecules in each unit cell via rotation by 180◦ around the
lines perpendicular to the plane of the projection at the center of each unit cell. The difference in
color is used only to highlight symmetrical relationships, since the clear and the black molecules
are indeed identical. All rotation axes intersecting every unit cell are shown in a neighboring cell.

Symmetry operations, therefore, can be visualized by means of certain symmetry
elements represented by various graphical objects. There are four so-called simple
symmetry elements: a point to visualize inversion, a line for rotation, a plane for
reflection, and the already mentioned translation is also a simple symmetry element,
which can be visualized as a vector. Simple symmetry elements may be combined
with one another, producing complex symmetry elements that include roto-inversion
axes, screw axes, and glide planes.

2.3 Symmetry Operations and Symmetry Elements

From the beginning, it is important to acknowledge that a symmetry operation is not
the same as a symmetry element. The difference between the two can be defined
as follows: a symmetry operation performs a certain symmetrical transformation
and yields only one additional object, for example, an atom or a molecule, which is
symmetrically equivalent to the original. On the other hand, a symmetry element is a
graphical or a geometrical representation of one or more symmetry operations, such
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as a mirror reflection in a plane, a rotation about an axis, or an inversion through
a point. A much more comprehensive description of the term “symmetry element”
exceeds the scope of this book.3

Without the presence of translations, a single crystallographic symmetry element
may yield a total from one to six objects symmetrically equivalent to one another.
For example, a rotation by 60◦ around an axis is a symmetry operation, whereas the
sixfold rotation axis is a symmetry element which contains six rotational symme-
try operations: by 60◦, 120◦, 180◦, 240◦, 300◦, and 360◦ about the same axis. The
latter is the same as rotation by 0◦ or any multiple of 360◦. As a result, the sixfold
rotation axis produces a total of six symmetrically equivalent objects counting the
original. Note that the 360◦ rotation yields an object identical to the original and
literally converts the object into itself. Hence, symmetry elements are used in vi-
sual description of symmetry operations, while symmetry operations are invaluable
in the algebraic or mathematical representation of crystallographic symmetry, for
example, in computing.

Four simple symmetry operations – rotation, inversion, reflection, and translation
– are illustrated in Fig. 2.3. Their association with the corresponding geometrical
objects and symmetry elements is summarized in Table 2.1. Complex symmetry
elements are shown in Table 2.2. There are three new complex symmetry elements,
which are listed in italics in this table:

Fig. 2.3 Simple symmetry operations. From left to right: rotation, inversion, reflection, and trans-
lation.

3 It may be found in: P.M. de Wolff, Y. Billiet, J.D.H. Donnay, W. Fischer, R.B. Galiulin, A.M.
Glazer, Marjorie Senechal, D.P. Schoemaker, H. Wondratchek, Th. Hahn, A.J.C. Wilson, and
S.C. Abrahams, Definition of symmetry elements in space groups and point groups. Report of
the International Union of Crystallography ad hoc committee on the nomenclature in symmetry,
Acta Cryst. A45, 494 (1989); P.M. de Wolff, Y. Billiet, J.D.H. Donnay, W. Fischer, R.B. Galiulin,
A.M. Glazer, Th. Hahn, M. Senechal, D.P. Schoemaker, H. Wondratchek, A.J.C. Wilson, and S.C.
Abrahams, Symbols for symmetry elements and symmetry operations. Final report of the Interna-
tional Union of Crystallography ad hoc committee on the nomenclature in symmetry, Acta Cryst.
A48, 727 (1992); H.D. Flack, H. Wondratchek, Th. Hahn, and S.C. Abrahams, Symmetry elements
in space groups and point groups. Addenda to two IUCr reports on the nomenclature in symmetry,
Acta Cryst. A56, 96 (2000).
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Table 2.1 Simple symmetry operations and conforming symmetry elements.

Symmetry operation Geometrical representation Symmetry element

Rotation Line (axis) Rotation axis
Inversion Point (center) Center of inversion
Reflection Plane Mirror plane
Translation Vector Translation vector

Table 2.2 Derivation of complex symmetry elements.

Symmetry operation Rotation Inversion Reflection Translation

Rotation – Roto-inversion axisa Nob Screw axis
Inversion – – Nob Nob

Reflection – – – Glide plane
Translation – – – –
a The prefix “roto” is nearly always omitted and these axes are called “inversion axes.”
b No new complex symmetry element is formed as a result of this combination.

– Roto-inversion axis (usually called inversion axis), which includes simultaneous
rotation and inversion.4

– Screw axis, which includes simultaneous rotation and translation.
– Glide plane, which combines reflection and translation.

Symmetry operations and elements are sometimes classified by the way they
transform an object as proper and improper. An improper symmetry operation in-
verts an object in a way that may be imaged by comparing the right and left hands:
the right hand is an inverted image of the left hand, and if you have ever tried to put
a right-handed leather glove on your left hand, you know that it is quite difficult,
unless the glove has been turned inside out, or in other words, inverted. The inverted
object is said to be enantiomorphous to the direct object and vice versa. Thus, sym-
metry operations and elements that involve inversion or reflection, including when
they are present in complex symmetry elements, are improper. They are: center of
inversion, inversion axes, mirror plane, and glide planes. On the contrary, proper
symmetry elements include only operations that do not invert an object, such as ro-
tation and translation. They are rotation axes, screw axes, and translation vectors.
As is seen in Fig. 2.3 both the rotation and translation, which are proper symmetry
operations, change the position of the object without inversion, whereas both the
inversion and reflection, that is, improper symmetry operations, invert the object in
addition to changing its location.

Another classification is based on the presence or absence of translation in a
symmetry element or operation. Symmetry elements containing a translational com-
ponent, such as a simple translation, screw axis, or glide plane, produce infinite
numbers of symmetrically equivalent objects, and therefore, these may be called

4 Alternatively, roto-reflection axes combining simultaneous rotation and reflection may be used,
however, each of them is identical in its action to one of the roto-inversion axes.
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infinite symmetry elements. For example, the lattice is infinite because of the pres-
ence of translations. All other symmetry elements that do not contain translations
always produce a finite number of objects, and they may be called finite symmetry
elements. Center of inversion, mirror plane, rotation, and roto-inversion axes are all
finite symmetry elements. Finite symmetry elements and operations are used to de-
scribe the symmetry of finite objects, for example, molecules, clusters, polyhedra,
crystal forms, unit cell shape, and any noncrystallographic finite objects, for exam-
ple, the human body. Both finite and infinite symmetry elements are necessary to de-
scribe the symmetry of infinite or continuous structures, such as a crystal structure,
two-dimensional wall patterns, and others. We begin the analysis of crystallographic
symmetry from simpler finite symmetry elements, followed by the consideration of
more complex infinite symmetry elements.

2.4 Finite Symmetry Elements

Symbols of finite crystallographic symmetry elements and their graphical represen-
tations are listed in Table 2.3. The full name of a symmetry element is formed by
adding “N-fold” to the words “rotation axis” or “inversion axis.” The numeral N
generally corresponds to the total number of objects generated by the element,5 and
it is also known as the order or the multiplicity of the symmetry element. Orders of
axes are found in columns 2 and 4 in Table 2.3, for example, a threefold rotation
axis or a fourfold inversion axis.

Note that the onefold inversion axis and the twofold inversion axis are identical
in their action to the center of inversion and the mirror plane, respectively. Both the
center of inversion and mirror plane are commonly used in crystallography, mostly

Table 2.3 Symbols of finite crystallographic symmetry elements.

Rotation
angle, ϕ

Rotation axes Roto-inversion axes

International
symbol

Graphical
symbola

International
symbol

Graphical
symbola

360◦ 1 none 1̄b

180◦ 2 2̄ = mc

120◦ 3 3̄ = 3+ 1̄
90◦ 4 4̄
60◦ 6 6̄ = 3+m⊥3
a When the symmetry element is perpendicular to the plane of the projection.
b Identical to the center of inversion.
c Identical to the mirror plane.

5 Except for the center of inversion, which results in two objects, and the threefold inversion axis,
which produces six symmetrically equivalent objects. See (4.27) and (4.28) in Sect. 4.2.4 for an
algebraic definition of the order of a symmetry element.
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because they are described by simple geometrical elements: point or plane, respec-
tively. The center of inversion is also often called the “center of symmetry.”

Further, as we see in Sects. 2.4.3 and 2.4.5, below, transformations performed
by the threefold inversion and the sixfold inversion axes can be represented by two
independent simple symmetry elements. In the case of the threefold inversion axis,
3̄, these are the threefold rotation axis and the center of inversion present indepen-
dently, and in the case of the sixfold inversion axis, 6̄, the two independent sym-
metry elements are the mirror plane and the threefold rotation axis perpendicular
to the plane, as denoted in Table 2.3. The remaining fourfold inversion axis, 4̄, is a
unique symmetry element (Sect. 2.4.4), which cannot be represented by any pair of
independently acting symmetry elements.

Numerals in the international symbols of the center of inversion and all inversion
axes are conventionally marked with the bar on top6 and not with the dash or the
minus sign in front of the numeral (see Table 2.3). The dash preceding the numeral
(or the letter “b” following the numeral – shorthand for “bar”), however, is more
convenient to use in computing for the input of symmetry data, for example, −1 (or
1b), −3 (3b), −4 (4b), and −6 (6b) rather than 1̄, 3̄, 4̄, and 6̄, respectively.

The columns labeled “Graphical symbol” in Table 2.3 correspond to graphical
representations of symmetry elements when they are perpendicular to the plane of
the projection. Other orientations of rotation and inversion axes are conventionally
indicated using the same symbols to designate the order of the axis with properly ori-
ented lines, as shown in Fig. 2.4. Horizontal and diagonal mirror planes are normally
labeled using bold lines, as shown in Fig. 2.4, or using double lines in stereographic
projections (see Table 2.3 and Sect. 2.8).

When we began our discussion of crystallographic symmetry, we used a happy
face and a cherry to illustrate simple concepts of symmetry. These objects are incon-
venient to use with complex symmetry elements. On the other hand, the commonly
used empty circles with or without a comma inside to indicate enantiomorphous
objects, for example, as in the International Tables for Crystallography,7 are not
intuitive. For example, both inversion and reflection look quite similar. Therefore,
we will use a trigonal pyramid, shown in Fig. 2.5. This figure illustrates two pyra-

Fig. 2.4 From left to right: horizontal twofold rotation axis (top) and its alternative symbol (bot-
tom), diagonal threefold inversion axis inclined to the plane of the projection, horizontal fourfold
rotation axis, horizontal, and diagonal mirror planes. Horizontal or vertical lines are commonly
used to indicate axes located in the plane of the projection, and diagonal lines are used to indicate
axes, which form an angle other than the right angle or zero with the plane of the projection.

6 As in the “Crystallography” true-type font for Windows developed by Len Barbour. The font file
is available from http://x-seed.net/freestuff.html. This font has been used by the authors to typeset
crystallographic symbols in the manuscript of this book.
7 International Tables for Crystallography, vol. A, Fifth revised edition, Theo Hahn, Ed., Published
jointly with the International Union of Crystallography (IUCr) by Springer, Berlin (2002).
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Fig. 2.5 Trigonal pyramid with its apex up (left) and down (right) relative to the plane of the paper.
Hatching is used to emphasize enantiomorphous objects.

mids, one with its apex facing upward, where lines connect the visible apex with the
base corners, and another with its apex facing downward, which has no visible lines.
In addition, the pyramid with its apex down is hatched to accentuate the enantiomor-
phism of the two pyramids.

To review symmetry elements in detail we must find out more about rotational
symmetry, since both the center of inversion and mirror plane can be represented as
rotation plus inversion (see Table 2.3). The important properties of rotational sym-
metry are the direction of the axis and the rotation angle. It is almost intuitive that
the rotation angle: (ϕ) can only be an integer fraction (1/N) of a full turn (360◦), oth-
erwise it can be substituted by a different rotation angle that is an integer fraction of
the full turn, or it will result in the noncrystallographic rotational symmetry. Hence,

ϕ =
360◦

N
(2.1)

By comparing (2.1) with Table 2.3, it is easy to see that N, which is the order
of the axis, is also the number of elementary rotations required to accomplish a
full turn around the axis. In principle, N can be any integer number, for example,
1, 2, 3, 4, 5, 6, 7, 8. . . However, in periodic crystals only a few specific values
are allowed for N due to the presence of translational symmetry. Only axes with
N = 1, 2, 3, 4, or 6 are compatible with the periodic crystal lattice, that is, with
translational symmetry in three dimensions. Other orders, such as 5, 7, 8, and higher
will inevitably result in the loss of the conventional periodicity of the lattice, which
is defined by (1.1). The not so distant discovery of fivefold and tenfold rotational
symmetry continue to intrigue scientists even today, since it is quite clear that it is
impossible to build a periodic crystalline lattice in two dimensions exclusively from
pentagons, as depicted in Fig. 2.6, heptagons, octagons, etc. The situation shown in
this figure may be rephrased as follows: “It is impossible to completely fill the area
in two dimensions with pentagons without creating gaps.”

It is worth noting that the structure in Fig. 2.6 not only looks ordered, but it is
indeed perfectly ordered. Moreover, in recent decades, many crystals with fivefold
symmetry have been found and their approximant structures have been determined
with various degrees of accuracy. These crystals, however, do not have translational
symmetry in three directions, which means that they do not have a finite unit cell
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Fig. 2.6 Filling the area with
shaded pentagons. White
parallelograms represent
voids in the two-dimensional
pattern of pentagons.

Fig. 2.7 Onefold rotation axis (left, unmarked since it can be located anywhere) and center of
inversion (right).

and, therefore, they are called quasicrystals: quasi – because there is no translational
symmetry, crystals – because they produce discrete, crystal-like diffraction patterns.

2.4.1 Onefold Rotation Axis and Center of Inversion

The onefold rotation axis, shown in Fig. 2.7 on the left, rotates an object by 360◦, or
in other words converts any object into itself, which is the same as if no symmetrical
transformation had been performed. This is the only symmetry element which does
not generate additional objects except the original.

The center of inversion (onefold inversion axis) inverts an object through a point
as shown in Fig. 2.7, right. Thus, the clear pyramid with its apex up, which is the
original object, is inverted through a point producing its symmetrical equivalent –
the hatched (enantiomorphous) pyramid with its apex down. The latter is converted
back into the original clear pyramid after the inversion through the same point. The
center of inversion, therefore, generates one additional object, giving a total of two
related objects.
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Fig. 2.8 Twofold rotation axis perpendicular to the plane of the projection (left), and mirror planes
(middle and right). In the middle – the mirror plane nearly coincides with the plane of the projection
(the equivalent twofold inversion axis is tilted by a few degrees away from the vertical) for clarity.
On the right – the mirror plane is perpendicular to the plane of the projection. Also shown in the
middle and on the right is how the twofold inversion axis, which is perpendicular to the mirror
plane, yields the same result as the mirror plane.

2.4.2 Twofold Rotation Axis and Mirror Plane

The twofold rotation axis (Fig. 2.8, left) simply rotates an object around the axis by
180◦, and this symmetry element results in two symmetrically equivalent objects:
original plus transformed. Note that the 180◦ rotation of the new pyramid around
the same axis converts it to the original pyramid. Hence, it is correct to state that the
twofold rotation axis rotates the object by 0 (360◦) and 180◦.

The mirror plane (twofold inversion axis) reflects a clear pyramid in a plane to
yield the hatched pyramid, as shown in Fig. 2.8, in the middle and on the right.
Similar to the inversion center and the twofold rotation axis, the same mirror plane
reflects the resulting (hatched) pyramid yielding the original (clear) pyramid. The
equivalent symmetry element, that is, the twofold inversion axis first rotates an ob-
ject (clear pyramid) by 180◦ around the axis, as shown by the dotted image of a
pyramid with its apex up in the middle or apex down on the right of Fig. 2.8. The
pyramid does not remain in this position because the twofold axis is combined
with the center of inversion, and the pyramid is immediately (or simultaneously)
inverted through the center of inversion located on the axis. The final locations are
shown by the hatched pyramids in Fig. 2.8. The mirror plane is used to describe
this combined operation rather than the twofold inversion axis because of its sim-
plicity and a better graphical representation of the reflection operation versus the
roto-inversion. Similar to the twofold rotation axis, the mirror plane results in two
symmetrically equivalent objects.

2.4.3 Threefold Rotation Axis and Threefold Inversion Axis

The threefold rotation axis (Fig. 2.9, left) results in three symmetrically equivalent
objects by rotating the original object around the axis by 0 (360◦), 120◦, and 240◦.
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Fig. 2.9 Threefold rotation (left) and threefold inversion (right) axes perpendicular to the plane of
the projection. The dashed arrows on the right schematically show the counterclockwise rotation
by 120◦ and a simultaneous inversion through the center of symmetry located on the axis.

The threefold inversion axis (Fig. 2.9, right) produces six symmetrically equiva-
lent objects. The original object, for example, any of the three clear pyramids with
apex up, is transformed as follows: it is rotated by 120◦ counterclockwise and then
immediately inverted from this intermediate position through the center of inversion
located on the axis, as shown by the dashed arrows in Fig. 2.9. These operations re-
sult in a hatched pyramid with its apex down positioned 60◦ clockwise from the
original pyramid. By applying the same transformation to this hatched pyramid,
the third symmetrically equivalent object would be a clear pyramid next to the first
hatched pyramid rotated by 60◦ clockwise. These transformations are carried out
until the next obtained object repeats the original pyramid.

It is easy to see that the six symmetrically equivalent objects are related to one
another by a threefold rotation axis (the three clear pyramids are connected by an
independent threefold axis, and so are the three hatched pyramids) and by a cen-
ter of inversion, which relates the pairs of opposite pyramids. Hence, the threefold
inversion axis is not only the result of two simultaneous operations (3 then1̄), but
the same symmetrical relationships can be established as a result of two symmetry
elements present independently. In other words, 3̄ is identical to 3 and 1̄.

2.4.4 Fourfold Rotation Axis and Fourfold Inversion Axis

The fourfold rotation axis (Fig. 2.10, left) results in four symmetrically equiva-
lent objects by rotating the original object around the axis by 0 (360◦), 90◦, 180◦,
and 270◦.
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Fig. 2.10 Fourfold rotation (left) and fourfold inversion (right) axes perpendicular to the plane of
the projection.

The fourfold inversion axis (Fig. 2.10, right) also produces four symmetrically
equivalent objects. The original object, for example, any of the two clear pyramids
with apex up, is rotated by 90◦ counterclockwise and then it is immediately inverted
from this intermediate position through the center of inversion located on the axis.
This transformation results in a hatched pyramid with its apex down in the position
next to the original pyramid, but in the clockwise direction. By applying the same
transformation to this hatched pyramid, the third symmetrically equivalent object
would be a clear pyramid next to the hatched pyramid in the clockwise direction.
The fourth object is obtained in the same fashion. Unlike in the case of the threefold
inversion axis (see Sect. 2.4.3), this combination of four objects cannot be produced
by applying the fourfold rotation axis and the center of inversion separately, and
therefore, this is a unique symmetry element. In fact, the combination of four pyra-
mids shown in Fig. 2.10 (right), does not have an independent fourfold symmetry
axis, nor does it have the center of inversion! As can be seen from Fig. 2.10, both
fourfold axes contain a twofold rotation axis (180◦ rotations) as a subelement.

2.4.5 Sixfold Rotation Axis and Sixfold Inversion Axis

The sixfold rotation axis (Fig. 2.11, left) results in six symmetrically equivalent
objects by rotating the original object around the axis by 0 (360◦), 60◦, 120◦, 180◦,
240◦, and 300◦.

The sixfold inversion axis (Fig. 2.11, right) also produces six symmetrically
equivalent objects. Similar to the threefold inversion axis, this symmetry element
can be represented by two independent simple symmetry elements: the first one
is the threefold rotation axis, which connects pyramids 1–3–5 and 2–4–6, and the
second one is the mirror plane perpendicular to the threefold rotation axis, which
connects pyramids 1–4, 2–5, and 3–6. As an exercise, try to obtain all six symmet-
rically equivalent pyramids starting from the pyramid 1 as the original object by
applying 60◦ rotations followed by immediate inversions. Keep in mind that objects
are not retained in the intermediate positions because the sixfold rotation and inver-
sion act simultaneously.
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Fig. 2.11 Sixfold rotation (left) and sixfold inversion (right) axes. The sixfold inversion axis is
tilted by a few degrees away from the vertical to visualize all six symmetrically equivalent pyra-
mids. The numbers next to the pyramids represent the original object (1), and the first generated
object (2), etc. The odd numbers are for the pyramids with their apexes up.

The sixfold rotation axis also contains one threefold and one twofold rotation
axes, while the sixfold inversion axis contains a threefold rotation and a twofold
inversion (mirror plane) axes as subelements. Thus, any N-fold symmetry axis with
N > 1 always includes either rotation or inversion axes of lower order(s), which is
(are) integer divisor(s) of N.

2.5 Interaction of Symmetry Elements

So far we have considered a total of ten different crystallographic symmetry ele-
ments, some of which were combinations of two simple symmetry elements, acting
either simultaneously or consecutively. The majority of crystalline objects, for ex-
ample, crystals and molecules, have more than one nonunity symmetry element.

Symmetry elements and operations interact with one another, producing new
symmetry elements and symmetry operations, respectively. When applied to sym-
metry, an interaction means consecutive (and not simultaneous, as in the case of
complex symmetry elements) application of symmetry elements. The appearance of
new symmetry operations can be understood from a simple deduction, using the fact
that a single symmetry operation produces only one new object:

– Assume that symmetry operation No. 1 converts object X into object X1.
– Assume that another symmetry operation, No. 2, converts object X1 into

object X2.
– Since object X1 is symmetrically equivalent to object X, and object X2 is sym-

metrically equivalent to object X1, then objects X and X2 should also be related
to one another.

The question is: what converts object X into object X2? The only logical answer is:
there should be an additional symmetry operation, No. 3, that converts object X into
object X2.



30 2 Finite Symmetry Elements and Crystallographic Point Groups
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Fig. 2.12 Schematic illustrating the interaction of symmetry elements. A twofold rotation axis (2)
and a center of inversion (1) located on the axis (left) result in a mirror plane perpendicular to the
axis intersecting it at the center of inversion (right). The important difference from Fig. 2.8 (middle
and right), where neither the twofold axis nor the center of inversion are present independently, the
combination of four pyramids (A, B, C, and D) here includes either of these symmetry elements.

Consider the schematic shown in Fig. 2.12 (left), and assume that initially we
have only the twofold rotation axis, 2, and the center of inversion, 1̄. Also assume
that the center of inversion is located on the axis (if not, translational symmetry will
result, see Sects. 3.1 and 3.2).

Beginning with the Pyramid A as the original object, and after rotating it around
the axis by 180◦ we obtain Pyramid B, which is symmetrically equivalent to Pyra-
mid A. Since we also have the center of inversion, it converts Pyramid A into Pyra-
mid D, and Pyramid B into Pyramid C. It is easy to see from Fig. 2.12 (right) that
Pyramid C is nothing else but the reflected image of Pyramid A and vice versa,
and Pyramid D is the reflected copy of Pyramid B. Remembering that these mirror
reflection relationships between A and C, and B and D were not present from the
beginning, we conclude that a new symmetry element – a mirror plane, m – has
emerged as the result of the sequential application of two symmetry elements to the
original object (2 and 1̄).

The mirror plane is, therefore, a derivative of the twofold rotation axis and the
center of inversion located on the axis. The derivative mirror plane is perpendicular
to the axis, and intersects the axis in a way that the center of inversion also belongs to
the plane. If we start from the same Pyramid A and apply the center of inversion first
(this results in Pyramid D) and the twofold axis second (i.e., A→B and D→C), the
resulting combination of four symmetrically equivalent objects and the derivative
mirror plane remain the same.

This example not only explains how the two symmetry elements interact, but it
also serves as an illustration to a broader conclusion deduced at the beginning of
this section: any two symmetry operations applied in sequence to the same object
create a third symmetry operation, which applies to all symmetrically equivalent
objects. Note that if the second operation is the inverse of the first, then the resulting
third operation is unity (the onefold rotation axis, 1). For example, when a mirror
plane, a center of inversion, or a twofold rotation axis are applied twice, all result in
a onefold rotation axis.
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The example considered in Fig. 2.12 can be also written in a form of an equa-
tion using the international notations of the corresponding symmetry elements (see
Table 2.3):

2× 1̄(on2) = 1̄(on2)×2 = m(⊥2 through 1̄) (2.2)

where “×” designates the interaction between (successive application of) symmetry
elements. The same example (Fig. 2.12) can be considered starting from any two of
the three symmetry elements. As a result, the following equations are also valid:

2×m(⊥2) = m(⊥2)×2 = 1̄(at m⊥2) (2.3)

m× 1̄(on m) = 1̄(on m)×m = 2(⊥m through 1̄) (2.4)

2.5.1 Generalization of Interactions Between Finite
Symmetry Elements

In the earlier examples (Fig. 2.12 and Table 2.5), the twofold rotation axis and the
mirror plane are perpendicular to one another. However, symmetry elements may in
general intersect at various angles (φ). When crystallographic symmetry elements
are of concern, and since only one-, two-, three-, four- and sixfold rotation axes
are allowed, only a few specific angles φ are possible. In most cases they are: 0◦

(e.g., when an axis belongs to a plane), 30◦, 45◦, 60◦ and 90◦. The latter means
that symmetry elements are mutually perpendicular. Furthermore, all symmetry el-
ements should intersect along the same line or in one point, otherwise a translation
and, therefore, an infinite symmetry results.

An example showing that multiple symmetry elements appear when a twofold
rotation axis intersects with a mirror plane at a 45◦ angle is seen in Fig. 2.13. All
eight pyramids can be obtained starting from a single pyramid by applying the two
symmetry elements (i.e., the mirror plane and the twofold rotation axis), first to the

m2 m2

2

m ρ

Fig. 2.13 Mirror plane (m) and twofold rotation axis (2) intersecting at 45◦ (left) result in addi-
tional symmetry elements: two mirror planes, twofold rotation axis and fourfold inversion axis
(right).
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Table 2.4 Typical interactions between finite symmetry elements.

First
element

Second element Derived element
(major)

Comments,
examples

1̄ N-fold axis m for even N 2̄ = m
N-fold inversion axis
for odd N

3̄

2 2 at φ = 30◦, 45◦, 60◦,
or 90◦

N-fold rotation axis,
N = 180/φ

6, 4, 3, or 2
perpendicular to
first and second
axes

m m at φ = 30◦, 45◦, 60◦,
or 90◦

Same as above 6, 4, 3, or 2-fold
axis along the
common line

m 2 at 90◦ Center of inversion 1̄ where m and 2
intersect

m 2 at φ = 30◦, 45◦, 60◦ N-fold inversion
axis,
N = 180/(90−φ)

3̄, 4̄ or 6̄ in m and
perpendicular to 2

3 or 3̄ 2, 4, or 4̄ at 54.74◦; Four intersecting 3
or 3̄ plus

Symmetry of a
cube or

3 or 3̄ at 70.53◦ other symmetry
elements

tetrahedron

original pyramid and, second to the pyramids that appear as a result of symmetrical
transformations. As an exercise, try to obtain all eight pyramids beginning from a
selected pyramid using only the mirror plane and the twofold axis that are shown in
Fig. 2.13 (left). Hints: original pyramid (1), rotate it (2), reflect both (4), rotate all
(6), and reflect all (8). Numbers in parenthesis indicate the total number of different
pyramids that should be present in the figure after each symmetrical transformation.

So far, we have enough evidence that when two symmetry elements interact, they
result in additional symmetry element(s). Moreover, when three symmetry elements
interact, they will also produce derivative symmetry elements. For example, three
mutually perpendicular mirror planes yield a center of inversion in a point, which
is common for all three planes, plus three twofold rotation axes along the lines
where any two planes intersect. However, all cases when more than two elements
interact with one another can be reduced to the interactions of pairs. The most
typical interactions of the pairs of symmetry elements and their results are shown in
Table 2.4.

2.5.2 Symmetry Groups

As established earlier, the interaction between a pair of symmetry elements (or sym-
metry operations) results in another symmetry element (or operation). The former
may be new, or it may already be present in a given combination of symmetrically
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Table 2.5 Symmetry elements resulting from all possible combinations of 1, 1̄, 2, and m when 2
is perpendicular to m, and 1̄ is located at the intersection of 2 and m.

Symmetry operation 1 1̄ 2 m

1 1 1̄ 2 m
1̄ 1̄ 1 m 2
2 2 m 1 1̄
m m 2 1̄ 1

equivalent objects. If no new symmetry element(s) appear, and when interactions
between all pairs of the existing ones are examined, the generation of all symmetry
elements is completed. The complete set of symmetry elements is called a symmetry
group.

Table 2.5 illustrates the generation of a simple symmetry group using symmetry
elements from Fig. 2.12. The only difference is that in Table 2.5, a onefold rota-
tion axis has been added to the earlier considered twofold rotation axis, center of
inversion, and mirror plane for completeness. It is easy to see that no new symmetry
elements appear when interactions between all four symmetry elements have been
taken into account.

Considering only finite symmetry elements and all valid combinations among
them, a total of 32 crystallographic symmetry groups can be constructed. The 32
symmetry groups can be derived in a number of ways, one of which has been illus-
trated in Table 2.5, but this subject falls beyond the scope of this book. Nevertheless,
the family of finite crystallographic symmetry groups, which are also known as the
32 point groups, is briefly discussed in Sect. 2.9.

2.6 Fundamentals of Group Theory

Since the interaction of two crystallographic symmetry elements results in a third
crystallographic symmetry element, and the total number of them is finite, valid
combinations of symmetry elements can be assembled into finite groups. As a re-
sult, mathematical theory of groups is fully applicable to crystallographic symmetry
groups.

The definition of a group is quite simple: a group is a set of elements G1,
G2, . . .,GN, . . . , for which a binary combination law is defined, and which together
satisfy the four fundamental properties: closure, associability, identity, and the in-
verse property. Binary combination law (a few examples are shown at the end of
this section) describes how any two elements of a group interact (combine) with
one other. When a group contains a finite number of elements (N), it represents a
finite group, and when the number of elements in a group is infinite then the group
is infinite. All crystallographic groups composed from finite symmetry elements are
finite, that is, they contain a limited number of symmetry elements.
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The four properties of a group are: closure, associability, identity, and inversion.
They can be defined as follows:

– Closure requires that the combination of any two elements, which belong to a
group, is also an element of the same group:

Gi ×Gj = Gk

Note that here and below “×” designates a generic binary combination law, and
not multiplication. For example, applied to symmetry groups, the combination
law (×) is the interaction of symmetry elements; in other words, it is their se-
quential application, as has been described in Sect. 2.5. For groups containing
numerical elements, the combination law can be defined as, for example, addi-
tion or multiplication. Every group must always be closed, even a group which
contains an infinite number of elements.

– Associability requires that the associative law is valid, that is,

(Gi ×Gj)×Gk = Gi × (Gj ×Gk).

As established earlier, the associative law holds for symmetry groups. Returning
to the example in Fig. 2.12, which includes the mirror plane, the twofold rotation
axis, the center of inversion and onefold rotation axis (the latter symmetry ele-
ment is not shown in the figure, and we did not discuss its presence explicitly, but
it is always there), the resulting combination of symmetrically equivalent objects
is the same, regardless of the order in which these four symmetry elements are
applied. Another example to consider is a group formed by numerical elements
with addition as the combination law. For this group, the associative law always
holds because the result of adding three numbers is always identical, regardless
of the order in which the sum was calculated.

– Identity requires that there is one and only one element, E (unity), in a group,
such that

E×Gi = Gi ×E = Gi

for every element of the group. Crystallographic symmetry groups have the iden-
tity element, which is the onefold rotation axis – it always converts an object into
itself, and its interaction with any symmetry element produces the same sym-
metry element (e.g., see Table 2.5). Further, this is the only symmetry element
which can be considered as unity. In a group formed by numerical elements with
addition as the combination law, the unity element is 0, and if multiplication is
chosen as the combination law, the unity element is 1.

– Inversion requires that each element in a group has one, and only one inverse
element such that

G−1
i ×Gi = Gi ×G−1

i = E.

As far as symmetry groups are concerned, the inversion rule also holds since the
inverse of any symmetry element is the same symmetry element applied twice,
for example, as in the case of the center of inversion, mirror plane and twofold
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rotation axis, or the same rotation applied in the opposite direction, as in the
case of any rotation axis of the third order or higher. In a numerical group with
addition as the combination law, the inverse element would be the element which
has the sign opposite to the selected element, that is, M+(−M) = (−M)+M = 0
(unity), while when the combination law is multiplication, the inverse element is
the inverse of the selected element, or MM−1 = M−1M = 1 (unity).

It may be useful to illustrate how the rules defined here can be used to establish
whether a certain combination of elements forms a group or not. The first two ex-
amples are noncrystallographic, while the third represents a simple crystallographic
group.

1. Consider an integer number 1, and multiplication as the combination law. Since
there are no limitations on the number of elements in a group, then a group may
consist of a single element. Is this group closed? Yes, 1×1 = 1. Is the associative
rule applicable? Yes, since 1× 1 = 1 no matter in which order you multiply the
two ones. Is there one and only one unity element? Yes, it is 1, since 1×1 = 1.
Is there one and only one inverse element for each element of the group? Yes,
because 1×1 = 1. Hence, this is a group. It is a finite group.

2. Consider all integer numbers (. . .− 3,−2,−1,0,1,2,3. . .) with addition as the
combination law. Is this group closed? Yes, since a sum of any two integers is
also an integer. How about associability? Yes, since the result of adding three
integers is always identical, regardless of the order in which they were added to
one another. Is there a single unity element? Yes, this group has one, and only
one unity element, 0, since adding 0 to any integer results in the same integer.
Is there one and only one inverse element for any of the elements in the group?
Yes, for any positive M, the inverse is −M; for any negative M, the inverse is
+M, since M+(−M) = (−M)+M = 0 (unity). Hence, this is a group. Since the
number of elements in the group is infinite, this group is infinite.

3. Consider the combination of symmetry elements shown in Fig. 2.12. The com-
bination law here has been defined as interaction of symmetry elements (or their
consecutive application to the object). The group contains the following sym-
metry elements: 1, 1̄,2 and m. Associability, identity, and inversion have been
established earlier, when we were considering group rules. Is this group closed?
Yes, it is closed as shown in Table 2.5. Therefore, these four symmetry elements
form a group as well. This group is finite.

2.7 Crystal Systems

As described earlier, the number of finite crystallographic symmetry elements is
limited to a total of ten. These symmetry elements can intersect with one another
only at certain angles, and the number of these angles is also limited (e.g., see
Table 2.4). The limited number of symmetry elements and the ways in which they
may interact with each other leads to a limited number of the completed (i.e., closed)
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Table 2.6 Seven crystal systems and the corresponding characteristic symmetry elements.

Crystal system Characteristic symmetry element or combination of symmetry
elements

Triclinic No axes other than onefold rotation or onefold inversion
Monoclinic Unique twofold axis and/or single mirror plane
Orthorhombic Three mutually perpendicular twofold axes, either rotation or

inversion
Trigonal Unique threefold axis, either rotation or inversion
Tetragonal Unique fourfold axis, either rotation or inversion
Hexagonal Unique sixfold axis, either rotation or inversion
Cubic Four threefold axes, either rotation or inversion, along four body

diagonals of a cube

sets of symmetry elements – symmetry groups. When only finite crystallographic
symmetry elements are considered, the symmetry groups are called point groups.
The word “point” is used because symmetry elements in these groups have at least
one common point and, as a result, they leave at least one point of an object un-
moved.

The combination of crystallographic symmetry elements and their orientations
with respect to one another in a group defines the crystallographic axes, that is,
establishes the coordinate system used in crystallography. Although in general, a
crystallographic coordinate system can be chosen arbitrarily (e.g., see Fig. 1.3), to
keep things simple and standard, the axes are chosen with respect to the orientation
of specific symmetry elements present in a group. Usually, the crystallographic axes
are chosen to be parallel to rotation axes or perpendicular to mirror planes. This
choice simplifies both the mathematical and geometrical descriptions of symmetry
elements and, therefore, the symmetry of a crystal in general.

As a result, all possible three-dimensional crystallographic point groups have
been divided into a total of seven crystal systems, based on the presence of a specific
symmetry element, or a specific combination of symmetry elements present in the
point group. The seven crystal systems are listed in Table 2.6.

2.8 Stereographic Projection

All symmetry elements that belong to any of the three-dimensional point groups
can be easily depicted in two dimensions by using the so-called stereographic pro-
jections. The visualization is achieved similar to projections of northern or southern
hemispheres of the globe in geography. Stereographic projections are constructed as
follows:

– A sphere with a center that coincides with the point (if any) where all symmetry
elements intersect (Fig. 2.14, left) is created. If there is no such common point,
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then the selection of the center of the sphere is random, as long as it is located on
one of the characteristic symmetry elements (see Table 2.6).

– This sphere is split by the equatorial plane into the upper and lower hemispheres.
– The lines corresponding to the intersections of mirror planes and the points cor-

responding to the intersections of rotation axes with the upper (“northern”) hemi-
sphere are projected on the equatorial plane using the lower (“southern”) pole as
the point of view.

– The projected lines and points are labeled using appropriate symbols (see
Table 2.3 and Fig. 2.4).

– The presence of the center of inversion, if any, is shown by adding letter C to the
center of the projection.

Figure 2.14 (right) shows an arbitrary stereographic projection of the point group
symmetry formed by the following symmetry elements: twofold rotation axis, mir-
ror plane and center of inversion (compare it with Fig. 2.12, which shows the same
symmetry elements without the stereographic projection). The presence of onefold
rotation axis is never indicated on the stereographic projection.

Arbitrary orientations are inconvenient because the same point-group symmetry
results in an infinite number of possible stereographic projections. Thus, Fig. 2.15

Point of view

Equatorial
plane

C

Fig. 2.14 The schematic of how to construct a stereographic projection. The location of the center
of inversion is indicated using letter C in the middle of the stereographic projection.

C C

Fig. 2.15 The two conventional stereographic projections of the point group symmetry containing
a twofold axis, mirror plane and center of inversion. The onefold rotation is not shown.
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Fig. 2.16 Examples of the stereographic projections with tetragonal (left) and cubic (right)
symmetry.

shows two different stereographic projections of the same point-group symmetry
with the horizontal (left) and vertical (right) orientations of the plane, both of which
are standard.

Figure 2.16 (left) is an example of the stereographic projection of a tetrag-
onal point group symmetry containing symmetry elements discussed earlier (see
Fig. 2.13). Figure 2.16 (right) shows the most complex cubic point group symmetry
containing three mutually perpendicular fourfold rotation axes, four threefold rota-
tion axes located along the body diagonals of a cube, six twofold rotation axes, nine
mirror planes, and a center of inversion. More information about the stereographic
projection can be found in the International Union of Crystallography (IUCr) teach-
ing pamphlets8 and in the International Tables for Crystallography, Vol. A.

2.9 Crystallographic Point Groups

The total number of symmetry elements that form a crystallographic point group
varies from one to as many as 24. However, since symmetry elements interact with
one another, there is no need to use each and every symmetry element that belongs
to a group in order to uniquely define and completely describe any of the crystallo-
graphic groups. The symbol of the point-group symmetry is constructed using the
list of basic symmetry elements that is adequate to generate all derivative symmetry
elements by applying the first property of the group (closure).

The orientation of each symmetry element with respect to the three major crys-
tallographic axes is defined by its position in the sequence that forms the symbol
of the point-group symmetry. The complete list of all 32 point groups is found in
Table 2.7.

The columns labeled “first position,” “second position” and “third position”
describe both the symmetry elements found in the appropriate position of the
symbol and their orientation with respect to the crystallographic axes. When the
corresponding symmetry element is a rotation axis, it is parallel to the specified

8 E.J.W. Whittaker, The stereographic projection, http://www.iucr.org/iucr-top/comm/cteach/
pamphlets/11/index.html.
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Table 2.7 Symbols of crystallographic point groups.

Crystal First position Second position Third position Point group
system Element Direction Element Direction Element Direction

Triclinic 1 or 1̄ N/A None None 1, 1̄
Monoclinic 2, m or 2/m Y None None 2, m, 2/m
Orthorhombic 2 or m X 2 or m Y 2 or m X 222, mm2, mmm
Tetragonal 4, 4̄ or Z None or X None or Base 4, 4̄, 4/m, 422,

4/m 2 or m 2 or m diagonal 4mm, 4̄2m,
4/mmm

Trigonal 3 or 3̄ Z None or X None 3, 3̄, 32, 3m, 3̄m
2 or m

Hexagonal 6, 6̄ or 6/m Z None or X None or Base 6, 6̄, 6/m, 622,
2 or m 2 or m diagonal 6mm, 6̄2m,

6/mmm
Cubic 2, m, 4 X 3 or 3̄ Body None or Face 23, m3, 432, 4̄3m,

or 4̄ diagonal 2 or m diagonal m3̄m

Table 2.8 Crystallographic point groups arranged according to their merohedry.

Crystal system Na N̄a N⊥mb N⊥2b N||m N̄||m N⊥m||m

Triclinic 1 1̄
Monoclinic 2 m 2/m
Orthorhombic 222 mm2 mmm
Tetragonal 4 4̄ 4/m 422 4mm 4̄m2 4/mmm

Trigonal 3 3̄ 32 3m 3̄m
Hexagonal 6 6̄ 6/m 622 6mm 6̄m2 6/mmm
Cubic 23 m3̄ 432 4̄3m m3̄m
a N and N̄ are major N-fold rotation and inversion axes, respectively.
b m and two are mirror plane and twofold rotation axis, respectively, which are parallel (||) or
perpendicular (⊥) to the major axis.

crystallographic direction but mirror planes are always perpendicular to the corre-
sponding direction.9 When the crystal system has a unique axis, for example, 2 in
the monoclinic crystal system, 4 in the tetragonal crystal system, and so on, and
when there is a mirror plane that is perpendicular to the axis, this combination is
always present in the point-group symbol. The axis is listed first and the plane is
listed second with the two symbols separated by a slash (/). According to Table 2.7,
the crystallographic point group shown in Fig. 2.15 is 2/m, and those in Fig. 2.16
are 4̄m2 (left) and m3̄m (right), respectively.

The list of crystallographic point groups appears not very logical, even when
arranged according to the crystal systems, as has been done in Table 2.7. Therefore,
in Table 2.8 the 32-point groups are arranged according to their merohedry, or in

9 In fact, since a mirror plane can be represented by a two-fold inversion axis, this is the same as
the latter being parallel to the corresponding direction, see Fig. 2.8 (right).
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other words, according to the presence of symmetry elements other than the major
(or unique) axis.

Another classification of point groups is based on their action. Thus, centrosym-
metric point groups, or groups containing a center of inversion are shown in
Table 2.8 in bold, while the groups containing only rotational operation(s) and,
therefore, not changing the enantiomorphism (all hands remain either left of right),
are in italic. Point groups shown in rectangular boxes do not have the inversion cen-
ter; however, they change the enantiomorphism. An empty cell in the table means
that the generated point group is already present in a different place in Table 2.8,
sometimes in a different crystal system.

2.10 Laue10 Classes

Radiation and particles, that is, X-rays, neutrons, and electrons interact with a crystal
in a way that the resulting diffraction pattern is always centrosymmetric, regardless
of whether an inversion center is present in the crystal or not. This leads to another
classification of crystallographic point groups, called Laue classes. The Laue class
defines the symmetry of the diffraction pattern produced by a single crystal, and
can be easily inferred from a point group by adding the center of inversion (see
Table 2.9).

For example, all three monoclinic point groups, that is, 2, m, and 2/m will result
in 2/m symmetry after adding the center of inversion. In other words, the 2, m, and
2/m point groups belong to the Laue class 2/m, and any diffraction pattern obtained
from any monoclinic structure will always have 2/m symmetry. The importance of
this classification is easily appreciated from the fact that Laue classes, but not crys-

Table 2.9 The 11 Laue classes and six “powder” Laue classes.

Crystal system Laue class “Powder” Laue class Point groups

Triclinic 1̄ 1̄ 1, 1̄
Monoclinic 2/m 2/m 2, m, 2/m
Orthorhombic mmm mmm 222, mm2, mmm
Tetragonal 4/m 4/mmm 4, 4̄,4/m

4/mmm 4/mmm 422, 4mm, 4̄m2, 4/mmm
Trigonal 3̄ 6/mmm 3, 3̄

3̄m 6/mmm 32, 3m, 3̄m
Hexagonal 6/m 6/mmm 6, 6̄, 6/m

6/mmm 6/mmm 622, 6mm, 6̄m2, 6/mmm
Cubic m3̄ m3̄m 23, m3̄

m3̄m m3̄m 432, 4̄3m, m3̄m

10 Max von Laue (1879–1960). German physicist who was the first to observe and explain the
phenomenon of X-ray diffraction in 1912. Laue was awarded the Nobel Prize in Physics in 1914
“for his discovery of the diffraction of X-rays by crystals.” For more information about Max von
Laue see http://www.nobel.se/physics/laureates/1914/.
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Table 2.10 Lattice symmetry and unit cell shapes.

Crystal family Unit cell symmetry Unit cell shape/parameters

Triclinic 1̄ a �= b �= c; α �= β �= γ �= 90◦

Monoclinic 2/m a �= b �= c; α = γ = 90◦,β �= 90◦

Orthorhombic mmm a �= b �= c; α = β = γ = 90◦

Tetragonal 4/mmm a = b �= c; α = β = γ = 90◦

Hexagonal and Trigonal 6/mmm a = b �= c; α = β = 90◦,γ = 120◦

Cubic m3̄m a = b = c; α = β = γ = 90◦

tallographic point groups, are distinguishable from diffraction data, which is caused
by the presence of the center of inversion. All Laue classes (a total of 11) listed
in Table 2.9 can be recognized from three-dimensional diffraction data when ex-
amining single crystals. However, conventional powder diffraction is fundamentally
one-dimensional, because the diffracted intensity is measured as a function of one
variable (Bragg11 angle), which results in six identifiable “powder” Laue classes.

As seen in Table 2.9, there is one “powder” Laue class per crystal system, ex-
cept for the trigonal and hexagonal crystal systems, which share the same “powder”
Laue class, 6/mmm. In other words, not every Laue class can be distinguished from
a simple visual analysis of powder diffraction data. This occurs because certain dif-
fraction peaks with potentially different intensities (the property which enables us
to differentiate between Laue classes 4/m and 4/mmm; 3̄, 3̄m, 6/m, and 6/mmm;
m3̄ and m3̄m) completely overlap since they are observed at identical Bragg angles.
Hence, only Laue classes that differ from one another in the shape of the unit cell
(see Table 2.10), are ab initio discernible from powder diffraction data without a
complete structural determination.

2.11 Selection of a Unit Cell and Bravais12 Lattices

The symmetry group of a lattice always has the highest symmetry in the conform-
ing crystal system. Taking into account that trigonal and hexagonal crystal systems
are usually described in the same type of the lattice, seven crystal systems can be
grouped into six crystal families, which are identical to the six “powder” Laue
classes. Different types of lattices, or in general crystal systems, are identified by
the presence of specific symmetry elements and their relative orientation. Further-
more, lattice symmetry is always the same as the symmetry of the unit cell shape

11 Sir William Henry Bragg (1862–1942). British physicist and mathematician who together with
his son William Lawrence Bragg (1890–1971) founded X-ray diffraction science in 1913–1914.
Both were awarded the Nobel Prize in Physics in 1915 “for their services in the analysis of crystal
structure by means of X-rays.” See http://www.nobel.se/physics/laureates/1915/ for more details.
12 Auguste Bravais (1811–1863). French crystallographer, who was the first to derive the 14 dif-
ferent lattices in 1848. A brief biography is found on WikipediA at http://en.wikipedia.org/wiki/
Auguste Bravais.
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Fig. 2.17 Illustration of different ways to select a unit cell in the same two-dimensional lattice.

(except that the lattice has translational symmetry but the unit cell does not), which
establishes unique relationships between the unit cell dimensions (a, b, c, α, β and
γ) in each crystal family as shown in Table 2.10. Thus, the fundamental rule number
one for the proper selection of the unit cell can be formulated as follows: symmetry
of the unit cell should be identical to the symmetry of the lattice, excluding transla-
tions.

We have already briefly mentioned that in general, the choice of the unit cell
is not unique (e.g., see Fig. 1.3). The uncertainty in the selection of the unit cell
is further illustrated in Fig. 2.17, where the unit cell in the same two-dimensional
lattice has been chosen in four different ways.

The four unit cells shown in Fig. 2.17 have the same symmetry (a twofold rotation
axis, which is perpendicular to the plane of the projection and passes through the
center of each unit cell), but they have different shapes and areas (volumes in three
dimensions). Further, the two unit cells located at the top of Fig. 2.17 do not contain
lattice points inside the unit cell, while each of the remaining two has an additional
lattice point in the middle. We note that all unit cells depicted in Fig. 2.17 satisfy the
rule for the monoclinic crystal system established in Table 2.10. It is quite obvious,
that more unit cells can be selected in Fig. 2.17, and an infinite number of choices
are possible in the infinite lattice, all in agreement with Table 2.10.

Without adopting certain conventions, different unit cell dimensions might, and
most definitely would be assigned to the same material based on preferences of
different researchers. Therefore, long ago the following rules (Table 2.11) were es-
tablished to designate a standard choice of the unit cell, dependent on the crystal
system. This set of rules explains both the unit cell shape and relationships between
the unit cell parameters listed in Table 2.10 (i.e., rule number one), and can be con-
sidered as rule number two in the proper selection of the unit cell.

Applying the rules established in Table 2.11 to two of the four unit cells shown at
the top of Fig. 2.17, the cell based on vectors a1 and b1 is the standard choice. The
unit cell based on vectors a2 and b2 has the angle between the vectors much farther
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Table 2.11 Rules for selecting the unit cell in different crystal systems.

Crystal family Standard unit cell choice Alternative unit cell choice

Triclinic Angles between crystallographic axes should be
as close to 90◦ as possible but greater than or
equal to 90◦

Angle(s) less than or equal
to 90◦ are allowed

Monoclinic Y -axis is chosen parallel to the unique twofold
rotation axis (or perpendicular to the mirror
plane) and angle β should be greater than but as
close to 90◦ as possible

Same as the standard
choice, but Z-axis in place
of Y , and angle γ in place of
β are allowed

Orthorhombic Crystallographic axes are chosen parallel to the
three mutually perpendicular twofold rotation
axes (or perpendicular to mirror planes)

None

Tetragonal Z-axis is always parallel to the unique fourfold
rotation (inversion) axis. X- and Y -axes form a
90◦ angle with the Z-axis and with each other

None

Hexagonal
and
trigonal

Z-axis is always parallel to three- or sixfold
rotation (inversion) axis. X- and Y -axes form a
90◦ angle with the Z-axis and a 120◦ angle with
each other

In a trigonal symmetry,a

threefold axis is chosen
along the body diagonal of
the primitive unit cell, then
a = b = c and
α = β = γ �= 90◦

Cubic Crystallographic axes are always parallel to the
three mutually perpendicular two- or fourfold
rotation axes, while the four threefold rotation
(inversion) axes are parallel to three body
diagonals of a cube

None

aInstead of a rhombohedrally centered trigonal unit cell shown in Fig. 2.20, below.

from 90◦ than the first one. The remaining two cells contain additional lattice points
in the middle. This type of the unit cell is called centered, while the unit cell without
a point in the middle is primitive. In general, a primitive unit cell is preferred over a
centered one, otherwise it is possible to select a unit cell with any number of points
inside, and ultimately it can be made as large as the entire crystal. However, because
rule number one requires that the unit cell has the same symmetry as the entire lattice
except translational symmetry, it is not always possible to select a primitive unit cell,
and so centered unit cells are used.

The third rule used to select a standard unit cell is the requirement of the min-
imum volume (or the minimum number of lattice points inside the unit cell). All
things considered, the following unit cells are customarily used in crystallography.

– Primitive, that is, noncentered unit cell. A primitive unit cell is shown schemat-
ically in Fig. 2.18 (left). It always contains a single lattice point per unit cell
(lattice points are located in eight corners of the parallelepiped, but each corner
is shared by eight neighboring unit cells in three dimensions).

– Base-centered unit cell (Fig. 2.18, right) contains additional lattice points in the
middle of the two opposite faces (as indicated by the vector pointing toward the
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Fig. 2.18 Primitive unit cell (left) and base-centered unit cell (right).
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Fig. 2.19 Body-centered unit cell (left) and face-centered unit cell (right).

middle of the base and by the dotted diagonals on both faces). This unit cell
contains two lattice points, since each face is shared by two neighboring unit
cells in three dimensions.

– Body-centered unit cell (Fig. 2.19, left) contains one additional lattice point in
the middle of the body of the unit cell. Similar to a base-centered unit cell, the
body-centered unit cell contains a total of two lattice points.

– Face-centered unit cell (Fig. 2.19, right) contains three additional lattice points
located in the middle of each face, which results in a total of four lattice points
in a single face-centered unit cell.

– Rhombohedral unit cell (Fig. 2.20) is a special unit cell that is allowed only
in a trigonal crystal system. It contains two additional lattice points located at
1/3,2/3,2/3 and 2/3,1/3,1/3 as shown by the ends of the two vectors inside the unit
cell, which results in a total of three lattice points per unit cell.

Since every unit cell in the crystal lattice is identical to all others, it is said that
the lattice can be primitive or centered. We already mentioned (1.1) that a crys-
tallographic lattice is based on three noncoplanar translations (vectors), thus the
presence of lattice centering introduces additional translations that are different
from the three basis translations. Properties of various lattices are summarized in
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Fig. 2.20 Primitive (left) and hexagonal rhombohedral (right) unit cells.

Table 2.12 Possible lattice centering.

Centering of the Lattice points International Lattice translation(s)
lattice per unit cell symbol due to centering

Primitive 1 P None
Base-centered 2 A 1/2(b+ c)
Base-centered 2 B 1/2(a+ c)
Base-centered 2 C 1/2(a+b)
Body-centered 2 I 1/2(a+b+ c)
Face-centered 4 F 1/2(b+ c); 1/2(a+ c); 1/2(a+b)
Rhombohedral 3 R 1/3a+ 2/3b+ 2/3c; 2/3a+ 1/3b+ 1/3c

Table 2.12 along with the international symbols adopted to differentiate between
different lattice types. In a base-centered lattice, there are three different possibili-
ties to select a pair of opposite faces if the coordinate system is fixed, which is also
reflected in Table 2.12.

The introduction of lattice centering makes the treatment of crystallographic
symmetry much more elegant when compared to that where only primitive lattices
are allowed. Considering six crystal families (Table 2.11) and five types of lattices
(Table 2.12), where three base-centered lattices which are different only by the ori-
entation of the centered faces with respect to a fixed set of basis vectors being taken
as one, it is possible to show that only 14 different types of unit cells are required to
describe all lattices using conventional crystallographic symmetry. These are listed
in Table 2.13, and they are known as Bravais lattices.

Empty positions in Table 2.13 exist because the corresponding lattices can be
reduced to a lattice with different centering and a smaller unit cell (rule number
three), or they do not satisfy rules number one or two. For example:

– In the triclinic crystal system, any of the centered lattices can be reduced to a
primitive lattice with the smaller volume of the unit cell (rule number three).

– In the monoclinic crystal system, the body-centered lattice can be converted into
a base-centered lattice (C), which is standard. The face-centered lattice is reduced
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Table 2.13 The 14 Bravais lattices.

Crystal system P C I F R

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Hexagonal, Trigonal

Cubic

to a base-centered lattice with half the volume of the unit cell (rule number three).
Even though the base-centered lattice may be reduced to a primitive cell and fur-
ther minimize the volume of the unit cell, this reduction is incompatible with rule
number one since more complicated relationships between the unit cell parame-
ters would result instead of the standard α = γ = 90◦ and β �= 90◦.

– In the tetragonal crystal system the base-centered lattice (C) is reduced to a prim-
itive (P) one, whereas the face-centered lattice (F) is reduced to a body-centered
(I) cell; both reductions result in half the volume of the corresponding unit cell
(rule number three).

The latter example is illustrated in Fig. 2.21, where a tetragonal face-centered
lattice is reduced to a tetragonal body-centered lattice, which has the same sym-
metry, but half the volume of the unit cell. The reduction is carried out using the
transformations of basis vectors as shown in (2.5)–(2.7).

aI = 1/2(aF −bF) (2.5)

bI = 1/2(aF +bF) (2.6)

cI = cF (2.7)
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Fig. 2.21 The reduction of the tetragonal face-centered lattice (left) to the tetragonal body-centered
lattice with half the volume of the unit cell (right). Small circles indicate lattice points.

The relationships between the unit cell dimensions and unit cell volumes of the
original face-centered (VF) and the reduced body-centered (VI) lattices are:

aI = bI =
aF√

2
=

bF√
2

; cI = cF (2.8)

VI = VF/2 (2.9)
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2.13 Problems

1. Consider two mirror planes that intersect at φ = 90◦. Using geometrical repre-
sentation of two planes establish which symmetry element(s) appear as the result
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of this combination of mirror planes. What is(are) the location(s) of new symmetry
element(s)? Name point-group symmetry formed by this combination of symmetry
elements.

2. Consider two mirror planes that intersect at φ = 45◦. Using geometrical repre-
sentation of two planes establish which symmetry element(s) appear as the result
of this combination of mirror planes. What is(are) the location(s) of new symmetry
element(s)? Name point-group symmetry formed by this combination of symmetry
elements.

3. Consider the following sequence of numbers: 1, 1/2,1/3,1/4, . . . ,1/N, . . . Is this a
group assuming that the combination law is multiplication, division, addition or
subtraction? If yes, identify the combination law in this group and establish whether
this group is finite or infinite.

4. Consider the group created by three noncoplanar translations (vectors) using the
combination law defined by (1.1). Which geometrical form can be chosen to illus-
trate this group? Is the group finite?

5. Determine both the crystal system and point group symmetry of a parallelepiped
(a brick), which is shown schematically in Fig. 2.22 and in which a �= b �= c and
α = β = γ = 90◦?

6. Determine both the crystal system and point group symmetry of benzene mole-
cule, C6H6, which is shown in Fig. 2.23. Treat atoms as spheres, not as dimension-
less points.

7. Determine both the crystal system and point-group symmetry of the ethylene
molecule, C2H4, shown schematically in Fig. 2.24. Using the projection on the left,

Fig. 2.22 Illustration of a
parallelepiped (a brick) in
which three independent
edges have different lengths. b

a
c

Fig. 2.23 The schematic of
benzene molecule. Carbon
atoms are white and hydrogen
atoms are black.

x

y
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Fig. 2.24 The schematic of
ethylene molecule. Carbon
atoms are white and hydrogen
atoms are black.
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show all symmetry elements that you were able to identify in this molecule, include
both the in-plane and out-of-plane symmetry elements. Treat atoms as spheres, not
as dimensionless points.

8. Determine the point-group symmetry of the octahedron. How many, and which
symmetry elements are present in this point-group symmetry?

9. The following relationships between lattice parameters: a �= b �= c, α �= β �= 90 or
120◦, and γ = 90◦ potentially define a “diclinic” crystal system (two angles �= 90◦).
Is this an eighth crystal system? Explain your answer.

10. The relationships a = b �= c, α = β = 90◦, and γ �= 90◦ point to a monoclinic
crystal system, except that a = b. What is the reduced (standard) Bravais lattice in
this case? Provide equations that reduce this lattice to one of the 14 standard Bravais
types.

11. Imagine that there is an “edge-centered” lattice (for example unit cell edges
along Z contain lattice points at 1/2c). If this were true, the following lattice transla-
tion is present: (0, 0, 1/2). Convert this lattice to one of the standard lattices.

12. Monoclinic crystal system has primitive and base-centered Bravais lattices (see
Table 2.13, above). Using two-dimensional projections depicted in Fig. 2.25, show
how a body-centered lattice and a face-centered monoclinic lattice (their unit cells
are indicated with the dashed lines) can be reduced to a base-centered lattice. Write
the corresponding vectorial relationships between the unit cell vectors of the original
body-centered and face-centered lattices and the transformed base-centered lattices.
What are the relationships between the unit cell volumes of the original body- and
face-centered lattices and the resulting base-centered lattices?
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Notes: y is perpendicular to the paper 
- point at y = 0, ±1, …
- point at y = , …

Fig. 2.25 Body centered (left) and face centered (right) monoclinic lattices projected along the
Y -axis with the corresponding unit cells shown using the dashed lines.


