
Preface

Back in 1954, a paper [2] by Bondi and Gold was to pick up on a much older ques-
tion and raise a new one that would trigger another long debate. The old question
had been around since the beginning of the twentieth century, when Born first raised
it [1] and others followed suit. This was the question of whether a uniformly accel-
erated charge (in flat spacetime) would radiate electromagnetic energy. The new
question arose from the claim by Bondi and Gold that (in the context of general
relativity now) a static charge in a static gravitational field cannot radiate energy.
If this were the case, then a particular version of the equivalence principle would
thereby be contradicted.

This book reviews the problem discovered by Bondi and Gold and discusses the
ensuing debate as carried on by Fulton and Rohrlich [3], DeWitt and Brehme [4],
Mould [5], Boulware [6], and Parrott [7]. Various solutions have been proposed by
the above (and others who are not discussed here). One of the aims here will be to
put forward a rather different solution to Bondi and Gold’s radiation problem. So
even though the papers cited are discussed to a large extent in chronological order,
the reason for writing this is not just to produce an historical reference. And even
though the version of general relativity applied here is entirely consensual, every
one of these papers is criticised on at least one important count, so I suspect that the
result as a whole should not be described as consensual.

Chronologically speaking, I began to read the above papers somewhere in the
middle and moved randomly through them, ending with the first! But, of course,
Bondi and Gold’s paper is not the first in this debate. Here we have one of those
situations where we expect the latest papers to reveal the state of the art, so that all
previous ones are redundant, but in fact we find that there was something important
in the paper just before the one we are reading, that requires more attention, and we
end up delving further and further into the history of the problem. This was why I
eventually got hold of Bondi and Gold’s 1954 paper, and I am glad I did so. I think
it is here that we find out why the equivalence principle came into the problem.

This is the kind of debate that one gets drawn into almost against one’s better
judgement. As I understood the notion of equivalence principle, it was one of the
lynchpins of general relativity, and my whole understanding of this theory would
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have been in trouble without it. This is why I thought I had better have a look.
Several years and hundreds of pages of calculations later, it seems to me that I have
a clearer view of some of the pitfalls awaiting those who try to understand general
relativity more deeply than the account in a standard introductory textbook.

Here is a well-known principle of learning: if you want to really understand
something, you have to get involved with it, asking difficult questions and trying
to answer them. So another aim here, in fact the main aim, is to look closely at what
general relativity is telling us with regard to some difficult questions, and to empha-
sise those pitfalls. It is true that the specific question of electromagnetic radiation
from charged particles dealt with in this book is very narrow, but it provides a stage
on which one can exercise the art and become stronger.

So my idea was to take my own voluminous notes on this issue and extract a story
with the chronology of the above sequence of papers, illustrating along the way this
or that theoretical problem and forging my own conclusions about the notion of
equivalence principle, the question of whether uniformly accelerating charges do or
do not radiate electromagnetic energy, and the validity or otherwise of the Lorentz–
Dirac equation. The logical structure of the result is not simpler for having taken
this storyline as backbone, rather than a textbook approach where logic, or rather
economy of logic, comes first. However, there is a detailed table of contents and an
index, and there are many cross-references. And the reader interested in a non-linear
theory is assumed to be thoroughly capable of reading a non-linear book.

But who is the reader? It is certainly someone who has read several of those
standard textbooks, and on reading the second was a little disappointed to find that
it recounted in the same way more or less the same problems, and with the same
solutions as the first. It is also someone who is never happy with scientific theories
and has a lot of determination. In brief, a scientist, I suppose. The calculations here
are not always entirely self-contained, as happens when one leaves the world of
textbooks and ventures into the journal literature. Even the notation is not always
the same, as happens when one moves from one publication to the next. In any case,
the mathematics is not the most important thing, it is only equally important, and the
text is definitely intended to be user-friendly. This explains the frequent recycling
and development of ideas. There is a deliberate redundancy in the text which means
that you may find yourself reading almost the same thing several times, something
I always find comforting in a book.

So who is the reader? An undergraduate who likes a challenge, or a graduate
who finds general relativity more difficult than the textbooks suggest with their glib
solutions to Einstein’s equations. Anybody who wants to know more about the way
electromagnetism can be done in a curved spacetime, or the way the notion of equiv-
alence principle can subtly change from one author to another. And here is another
problem when one turns to the literature. Often abbreviated to get it into limited
journal space, there is not always enough room to state all one’s principles care-
fully. The potential reader is invited to get hold of the papers cited above and scan
them for statements of the equivalence principle, bearing in mind the question: is
that useable in practice? In the present book, it is hoped that things have been stated
clearly. For example, the easy reference in the first paragraph of this preface to a
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static charge in a static spacetime is spelt out and given due attention. The potential
reader is therefore someone who baulks at theory-laden statements when they are
not treated with care, and someone who does not mind a slightly bulkier paraphrase
that reminds us of the full content of a claim when that is useful. Some parts of the
book look rather pedantic as a result, and I apologise for this in advance, although I
suspect that it will not be disagreeable to the veterans of this debate.

Naturally, it is hoped that anyone who reads this book will come out stronger. It
is hoped that they will find the weak points and improve things or even reject some-
thing where necessary. My intention is certainly not to consolidate some widely
accepted theory or other, only to put it to the test, to see whether it can hold its
ground on these particular issues. There are many other conflicts between general
relativity and the rest of theoretical physics which should make us continue to be
very tough on all our theories, as befits scientific endeavour.

Chapter 1 is a brief introduction to the question raised by Bondi and Gold, which
sets the scene as it were. Chapter 2 then goes straight to the heart of the matter,
because it discusses semi-Euclidean coordinate systems, sometimes advocated for
accelerating observers in Minkowski spacetime, and their interpretation after tak-
ing the step to general relativity as describing static and homogeneous gravitational
fields. This chapter launches the discussion about the notion of equivalence princi-
ple, a notion which turns out to look upon the world in many disparate ways. It is
one of the key chapters. Chapter 3 then recalls how one might treat gravity as a force
in the framework of special relativity, drawing attention to an amusing fact, viz., it
is easy to get uniform acceleration in this scenario.

Chapter 4 introduces what has become known as the strong equivalence prin-
ciple, which allows one to do electromagnetism in curved spacetimes, and indeed
to transpose other bits of non-gravitational physics to this context. But in fact this
principle does far more than that. It is a sine qua non for relating coordinates on
curved spacetimes to length and time measurements one might make in the real
world. From the historical angle, this chapter returns to Bondi and Gold’s paper and
spells out their problem.

Chapter 5 looks at the way Fulton and Rohrlich took up the debate, discussing
the problem of electromagnetic radiation from an eternally uniformly accelerating
charged particle in some detail. Chapter 6 then takes a first glance at Parrott’s excel-
lent review of this question, which is much more recent, so that the chronology of
the story is broken (a kind of flash-forward). Chapters 7 and 8 return to the main
time line and get to grips with the the problem of defining radiation in the context of
Fulton and Rohrlich’s paper. They also reveal some of the subtleties of the fields due
to an eternally uniformly accelerating charged particle. Chapter 9 analyses Fulton
and Rohrlich’s view on the threat to the equivalence principle. This illustrates just
how difficult it can be to interpret an author when the main claims have not been
unambiguously stated. One possible interpretation of Fulton and Rohrlich’s view
is that they confuse some features of special and general relativity, and Chap. 10
aims to spell out the differences between the two theories with regard to radiation
predictions.
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Chapter 11 comes back to the Lorentz–Dirac equation, discussing the seminal
Dirac paper rather briefly and exposing the much more recent account by Parrott,
which is taken as definitive here. A brief mention is made of self-force calcula-
tions for spatially extended charge sources and their relevance to the Lorentz–Dirac
equation. This is one of the key chapters for anyone wishing to find out about this
much-discussed equation of motion. Chapter 12 moves on to DeWitt and Brehme’s
famous extension of the Lorentz–Dirac equation to curved spacetimes, a notoriously
difficult paper which is essential reading for anyone who needs to sharpen their teeth
on relativity theory. I mention some of the problems with this calculation and also
with the later paper by Hobbs, which attempts to transpose the method to a more
modern notation. It then reviews what DeWitt and Brehme have to say concern-
ing the equivalence principle and the possibility of radiation from static charges
in static spacetimes. Chapter 13 focuses more closely on the latter question, in a
highly critical way, and is perhaps the key chapter for understanding the solution to
the radiation problem that I am advocating here.

Chapter 14 discusses an entirely theoretical radiation detector proposed by
Mould in 1964. The discussion here mainly concerns how the theoretical predic-
tions for what this detector will detect affect or do not affect conclusions about the
equivalence principle. But there is some analysis of the theory itself since it does
illustrate the difficulties involved in interpreting results expressed relative to general
coordinate systems, and it raises the question of how one should define radiation.

Chapter 15 is a detailed criticism of the paper by Boulware that is now often taken
as definitive on these issues (although not by Parrott). Indeed one might describe
it as the definitive mathematical analysis of the electromagnetic fields due to an
eternally uniformly accelerating charged particle. However, there is a great deal of
criticism here of the way the mathematics is interpreted, and especially the con-
clusions regarding equivalence principles. Parrott’s arguments against Boulware are
exposed in some detail in Chap. 16. The aim once again is to highlight the dan-
gers of naive interpretation of tensor quantities when coordinates are not (locally)
inertial. Parrott’s neat analysis of the charged rocket, so useful for revealing the
strangeness of the Lorentz–Dirac equation that it seems essential reading at some
point, is recounted in detail in Chap. 17.

Chapter 18 beginning on p. 307 is effectively an abstract and could be read right
at the beginning. It is long for a summary. I felt it was useful to recycle and repeat
some of the main themes, given the logical complexity of the layout.
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Chapter 2
From Minkowski Spacetime
to General Relativity

The aim here is to see how one can infer something about a statically supported
charge in a gravitational field from the description, entirely within the special theory
of relativity, of a uniformly accelerating charge in a spacetime with no gravitational
fields. This will be an opportunity to introduce some of the mathematical machinery
required to carry out calculations in this area. Section 2.1 describes coordinate sys-
tems that might be adopted by accelerating observers in flat spacetimes. Section 2.2
then proves that only when the observer has an eternally uniformly accelerating
motion will the metric components in these coordinate systems have a static form.
But the key part of the chapter is Sect. 2.3, which discusses different versions of the
weak equivalence principle.

Section 2.4 is a detailed review of the weak field approximation usually used to
make a connection between general relativity and Newtonian theory as an approxi-
mation to it. The aim here is to examine how one might interpret the GR view of a
static and homogeneous gravitational field. Finally, Sect. 2.5 gives a critical review
of the geodesic principle, which says that a particle left to its own devices in a curved
spacetime, i.e., not subject to any external fields, will follow a geodesic. We discuss
the demonstration of the latter ‘principle’ as a theorem of general relativity, and its
limitations when the particle in question is not a point particle.

2.1 Semi-Euclidean Coordinate Systems

We begin therefore in Minkowski spacetime. We introduce a little extra general-
ity by considering an accelerating observer AO with arbitrary acceleration along a
straight line, specialising to the case of uniform acceleration later. This will allow
us to bring out some of the particularities of the special case.

It is well known [11, p. 133] that an observer like AO can find well-adapted coor-
dinates yµ with the following properties (where the Latin index runs over {1,2,3}):

• First of all, any curve with all three yi constant is timelike and any curve with y0

constant is spacelike.

5



6 2 From Minkowski Spacetime to General Relativity

τ1

τ2

τ3

y1
y2

y1

y2

y1

y2

t

HOS(τ1)

HOS(τ2)

HOS(τ3)

Fig. 2.1 Constructing a semi-Euclidean (SE) frame for an accelerating observer. View from an
inertial frame with time coordinate t . The curve is the observer worldline given by (2.1). Three
hyperplanes of simultaneity (HOS) are shown at three successive proper times τ1, τ2, and τ3 of
the observer. These hyperplanes of simultaneity are borrowed from the instantaneously comoving
inertial observer, as are the coordinates y1, y2, and y3 used to coordinatise them. Only two of the
latter coordinates can be shown in the spacetime diagram

• At any point along the worldline of AO, the zero coordinate y0 equals the proper
time along that worldline.

• At each point of the worldline of AO, curves with constant y0 which intersect it
are orthogonal to it where they intersect it.

• The metric has the Minkowski form along the worldline of AO.
• The coordinates yi are Cartesian on every hypersurface of constant y0.
• The equation for the worldline of AO has the form yi = 0 for i = 1,2,3.

Such coordinates could be called semi-Euclidean.
Let us suppose that the worldline of the accelerating observer is given in inertial

coordinates in the inertial frame I by

t = σ , x = x(σ) ,
dx
dσ

= v(σ) , (2.1)

d2x
dσ2 = a(σ) , y(σ) = 0 = z(σ) , (2.2)

using the time t in I to parametrise. The proper time τ(σ) of AO is given by
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dτ
dσ

= (1− v2/c2)1/2 . (2.3)

The coordinates yµ are constructed on an open neighbourhood of the AO worldline
as follows (see Fig. 2.1). For an event (t,x,y,z) not too far from the worldline, there
is a unique value of τ and hence also the parameter σ such that the point lies in the
hyperplane of simultaneity (HOS) of AO when its proper time is τ . This hyperplane
of simultaneity is given by

t −σ(τ) =
v
(
σ(τ)

)
c2

[
x− x

(
σ(τ)

)]
, (2.4)

which solves, for any x and t, to give σ(τ)(x, t).
The semi-Euclidean coordinates attributed to the event (t,x,y,z) are, for the time

coordinate y0, (c times) the proper time τ found from (2.4) and, for the spatial coor-
dinates, the spatial coordinates of this event in an instantaneously comoving inertial
frame at proper time τ of AO. In fact, every other event in this instantaneously
comoving inertial frame is attributed the same time coordinate y0 = cτ and the
appropriate spatial coordinates borrowed from this frame. Of course, the HOS of
AO at time τ is also the one borrowed from the instantaneously comoving inertial
frame.

There is just one detail to get out of the way: there are many different instanta-
neously comoving inertial frames for a given τ , and there are even many different
ways to choose these frames as a smooth function of τ as one moves along the AO
worldline, rotating back and forth around various axes in the original inertial frame
I as τ progresses. We choose a sequence with no rotation about any space axis in
the local rest frame. It can always be done by solving the Fermi–Walker transport
equations. The semi-Euclidean coordinates are then given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 = cτ ,

y1 =
[x− x(σ)]− v(σ)(t−σ)√

1− v2/c2
,

y2 = y ,

y3 = z ,

(2.5)

where σ = σ(t,x) is found from (2.4). The inverse transformation, from semi-
Euclidean coordinates to inertial coordinates, is given by
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = σ(y0)+
v(y0)

c2 y1
[

1−
v(y0)2

c2

]−1/2

,

x = x(y0)+ y1
[

1−
v(y0)2

c2

]−1/2

,

y = y2 ,

z = y3 ,

(2.6)

where the function σ(y0) is just the expression relating inertial time to proper time
for the accelerating observer, and the functions x(y0) and v(y0) should really be
written x

(
σ(y0)

)
and v

(
σ(y0)

)
, respectively.

The above relations are not very enlightening. They are only displayed to show
that the idea of such coordinates can be made perfectly concrete. One calculates the
metric components in this frame, viz.,

g00 = 1/g00 =

[
1 +

a(σ)[x− x(σ)]/c2

1− v(σ)2/c2

]2

, (2.7)

where σ = σ(t,x) as found from (2.4), and

gi0 = 0 = g0i , gi j = −δi j , i, j ∈ {1,2,3} , (2.8)

and checks the list of requirements for the coordinates to be suitably adapted to the
accelerating observer.

Although perfectly concrete, the coordinates are not perfectly explicit: the com-
ponent g00 of the semi-Euclidean metric has been expressed in terms of the original
inertial coordinates! To obtain explicit formulas, one needs to consider a specific
motion x(σ) of AO, the classic example being uniform acceleration:

x(σ) =
c2

g

[(
1 +

g2σ2

c2

)1/2

−1

]
, t = σ , (2.9)

where g is some constant with units of acceleration. This does not look like a
constant acceleration in the inertial frame:

dx
dσ

=
gσ

(1 +g2σ2/c2)1/2
,

d2x
dσ2 =

g

(1 +g2σ2/c2)3/2
. (2.10)

However, the 4-acceleration defined in the inertial frame I by

aµ =
d2xµ

dτ2 , (2.11)

where τ is the proper time, has constant magnitude. It turns out that
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a2 := aµaµ = −g2 ,

with a suitable convention for the signature of the metric.
In this case, the transformation from inertial to semi-Euclidean coordinates is

y0 =
c2

g
tanh−1 ct

x+ c2/g
, (2.12)

y1 =

[(
x+

c2

g

)2

− c2t2

]1/2

−
c2

g
, y2 = y , y3 = z , (2.13)

and the inverse transformation is

t =
c
g

sinh
gy0

c2 +
y1

c
sinh

gy0

c2 , (2.14)

x =
c2

g

(
cosh

gy0

c2 −1

)
+ y1 cosh

gy0

c2 , y = y2 , z = y3 . (2.15)

One finds the metric components to be

g00 =

(
1 +

gy1

c2

)2

, g0i = 0 = gi0 , gi j = −δi j , (2.16)

for i, j ∈ {1,2,3}, in the semi-Euclidean frame. Interestingly, this metric is static,
i.e., g00 is independent of y0. It is the only semi-Euclidean metric that is, and this is
one of the theoretical particularities of uniform acceleration.

Before proving this, it is worth pausing to wonder why AO should adopt semi-
Euclidean coordinates. It must be comforting to attribute one’s own proper time
to events that appear simultaneous. But what events are simultaneous with AO?
In the above construction, AO borrows the hyperplane of simultaneity of an iner-
tially moving observer, who does not have the same motion at all. AO also borrows
the lengths of this inertially moving observer. It is not obvious that an accelerating
observer would set up such coordinates, or indeed that they have any significance
whatever! A well-informed observer, who knew the theory of relativity, might well
prefer to use the globally Minkowskian frame that happens to be available here,
even though it is not adapted to her motion.
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2.2 The SE Metric for Uniform Acceleration
Is the Only Static SE Metric

We shall now show that a semi-Euclidean frame is static iff the acceleration of the
observer is uniform in the sense of having constant pseudolength. We already have
this in one direction: we have shown that the semi-Euclidean frame is static if the
4-acceleration is uniform. We now examine the metric for a general acceleration
in one dimension and show that the condition for it to be static implies that the
acceleration is uniform.

For this exercise, we shall need the partial derivatives

c
∂x
∂y0 =

v(σ)

(1− v2/c2)1/2
+

y1a(σ)v(σ)/c2

(1− v2/c2)2 , (2.17)

∂x
∂y1 =

[
1−

v(σ)2

c2

]−1/2

, (2.18)

c
∂ t

∂y0 =
1

(1− v2/c2)1/2
+

a(σ)y1

c2(1− v2/c2)2 , (2.19)

and

∂ t
∂y1 =

v(σ)

c2

[
1−

v(σ)2

c2

]−1/2

, (2.20)

where σ = σ(y0), giving expressions entirely in terms of semi-Euclidean coordi-
nates. These are obtained by differentiating (2.6) and using

dσ(y0)

dy0 =
1

c(1− v2/c2)1/2
. (2.21)

Recall from (2.7) that the metric components are

g00 = 1/g00 =

[
1 +

a(σ)[x− x(σ)]/c2

1− v2/c2

]2

, (2.22)

g01 = g10 = 0 , g11 = −1 , (2.23)

with the rest also diagonal, and in the Minkowski way. So the semi-Euclidean metric
is static iff

∂
∂y0

{
a(σ)[x− x(σ)]/c2

1− v2/c2

}
= 0 . (2.24)
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Note that x is one of the inertial coordinates, while σ refers to σ(τ)(x,t), the solution
of

t −σ(τ) =
v
(
σ(τ)

)
c2

[
x− x

(
σ(τ)

)]
, (2.25)

giving the HOS through the field point (x,t). Note, for example, that x
(
σ(τ)

)
is not

just x.
The aim now is to reexpress (2.24) as a condition on the trajectory x(σ) of the

observer, and show that the corresponding worldline is uniformly accelerated. To
begin with,

∂
∂y0

{
a(σ)[x− x(σ)]

c2 − v2

}
=

d
dσ

{
a(σ)[x− x(σ)]

c2 − v2

}
∂σ
∂y0 +

a(σ)

c2 − v2

∂x
∂y0 . (2.26)

Now we have both ∂x/∂y0 and ∂ t/∂y0 from (2.17) and (2.19). Note that, by (2.6),

y1 = [x− x(σ)](1− v2/c2)1/2 , (2.27)

whence

∂x
∂y0 =

v(σ)

(c2 − v2)1/2
+

a(σ)v(σ)

c3(1− v2/c2)2 [x− x(σ)](1− v2/c2)1/2

=
v(σ)

(c2 − v2)1/2

{
1 +

a(σ)[x− x(σ)]

c2 − v2

}
. (2.28)

Furthermore, from the fact that σ(x,t) = σ(y0) and (2.21), we know that, when
we put x(y0,y1) and t(y0,y1) into σ(x,t), we get σ(y0), the function giving the
Minkowski time corresponding to the proper time y0. The latter has no dependence
on y1, and (2.21) gives

dσ(y0)

dy0 =
1

(c2 − v2)1/2
. (2.29)

We can now proceed from (2.26), noting that

d
dσ

{
a(σ)[x− x(σ)]

c2 − v2

}
=

a′(σ)[x− x(σ)]

c2 − v2 −
a(σ)v(σ)

c2 − v2 +
2a2v[x− x(σ)]

(c2 − v2)2 ,

(2.30)

whence (2.24) is equivalent to{
a′(σ)[x− x(σ)]

c2 − v2 −
a(σ)v(σ)

c2 − v2 +
2a2v[x− x(σ)]

(c2 − v2)2

}
1

(c2 − v2)1/2

+
a(σ)

c2 − v2

{
1 +

a(σ)[x− x(σ)]

c2 − v2

}
v(σ)

(c2 − v2)1/2
= 0 .
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There is now some cancellation. We find that[
a′(σ)+

3a(σ)2v(σ)

c2 − v2

]
[x− x(σ)] = 0 , (2.31)

and since we are not allowing x = x(σ) as an interesting solution, we conclude that

metric static ⇐⇒ a′(σ)+
3a(σ)2v(σ)

c2 − v2 = 0 . (2.32)

The next step is to look at the solutions to this equation.
As an aside, it is interesting to rederive (2.29) by this approach. We begin with

the relation (2.25) that defines σ(τ)(x,t), thinking of it when x and t are written in
their turn as functions of y0 and y1. Differentiating both sides with respect to y0, we
obtain

∂ t
∂y0 −

∂σ
∂y0 =

a
c2

∂σ
∂y0

[
x− x

(
σ(τ)

)]
+

v
(
σ(τ)

)
c2

[
∂x
∂y0 − v

(
σ(τ)

) ∂σ
∂y0

]
. (2.33)

We solve this for ∂σ/∂y0, obtaining

∂σ
∂y0 =

∂ t
∂y0 −

v(σ)

c2

∂x
∂y0

1−
v2

c2 +
a[x− x(σ)]

c2

. (2.34)

Likewise, by the same algebra,

∂σ
∂y1 =

∂ t
∂y1 −

v(σ)

c2

∂x
∂y1

1−
v2

c2 +
a[x− x(σ)]

c2

. (2.35)

Substituting (2.17) and (2.19) into (2.34) and doing a little algebra, we do indeed
find the result (2.29) above, written here with the partial derivative, viz.,

∂σ(y0)

∂y0 =
1

(c2 − v2)1/2
. (2.36)

But even more convincingly, if we substitute (2.18) and (2.20) of p. 10, viz.,

∂x
∂y1 =

[
1−

v(σ)2

c2

]−1/2

, (2.37)

and
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∂ t
∂y1 =

v(σ)

c2

[
1−

v(σ)2

c2

]−1/2

, (2.38)

into (2.35), we obtain zero! This is just because

∂ t
∂y1 =

v(σ)

c2

∂x
∂y1 .

Solving the Equation for a Static Metric

We now return to (2.32) and consider solutions. It is instructive to begin by checking
that the uniform acceleration does solve the equation, since the calculation is not
quite as simple as we might expect. We have the formulas for such an acceleration
on p. 8, viz.,

v(σ) =
gσ

(1 +g2σ2/c2)1/2
, a(σ) =

g

(1 +g2σ2/c2)3/2
, (2.39)

whence also

a′(σ) = −
3g3σ/c2

(1 +g2σ2/c2)5/2
. (2.40)

Then

3a(σ)2v(σ)

c2 − v2 =
3g2

(1 +g2σ2/c2)3

gσ
(1 +g2σ2/c2)1/2

1 +g2σ2/c2

c2

=
3g3σ/c2

(1 +g2σ2/c2)5/2
.

Equation (2.32) is therefore satisfied, which we knew it should be, and that is
encouraging.

But are there other solutions? The last calculation can guide us intuitively. We
observe that

d
dσ

{
a(σ)

[1− v(σ)2/c2]3/2

}
=

1

[1− v(σ)2/c2]3/2

[
a′(σ)+

3a(σ)2v(σ)

c2 − v2

]
,

so that

metric static ⇐⇒
d

dσ

{
a(σ)

[1− v(σ)2/c2]3/2

}
= 0 . (2.41)

Put another way,
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metric static ⇐⇒
a(σ)

[1− v(σ)2/c2]3/2
= κ , (2.42)

for some constant κ . Once again, we can check that this is satisfied by the uniform
acceleration. We note that

1−
v(σ)2

c2 = 1−
g2σ2/c2

1 +g2σ2/c2 =
1

1 +g2σ2/c2 ,

so that the above uniform acceleration satisfies the condition iff κ = g.
We can completely solve the above differential equation, which is rather surpris-

ing in itself. We have

dv

[1− v(σ)2/c2]3/2
= κdσ .

The left-hand side is integrated by first substituting v = csinθ , so that

dv = ccosθ dθ ,

and ∫
dv

[1− v(σ)2/c2]3/2
= c

∫
dθ

cos2 θ

= c
∫

(1 + tan2 θ )dθ

= c tanθ .

Of course,

tanθ =
sinθ
cosθ

=
v/c

(1− v2/c2)1/2
,

and the final, most general solution is

κσ + κ ′ =
v

(1− v2/c2)1/2
, (2.43)

where κ and κ ′ are constants. We can rearrange this to obtain v(σ). After a little
manipulation,

v(σ) =
κσ + κ ′[

1 +(κσ + κ ′)2/c2
]1/2

. (2.44)

This is to be compared with the uniform acceleration

v(σ) =
gσ

(1 +g2σ2/c2)1/2
,
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which is the solution when κ = g and κ ′ = 0. Since κ ′ in (2.44) is just a readjustment
of the zero of the variable σ , we see that all solutions of the static metric equation
are in fact uniform accelerations, which is what had to be proved.

2.3 The Step to General Relativity

So what does all this tell us about gravitational fields? Suppose we are doing general
relativity and we are given a spacetime with coordinates {yµ} and interval

ds2 =

(
1 +

gy1

c2

)2

(dy0)2 − (dy1)2 − (dy2)2 − (dy3)2 , (2.45)

where g is a constant. We might begin by calculating the connection coefficients.
They turn out to be fairly simple functions of the coordinates. In fact using the usual
formula

Γ µ
στ =

1
2

gµν(
gνσ ,τ +gντ,σ −gστ,ν

)
(2.46)

for the Levi-Civita connection coefficients, where commas denote ordinary coordi-
nate derivatives, we find that all the coefficients are zero except

Γ 1
00 =

g
c2

(
1 +

gy1

c2

)
, Γ 0

01 = Γ 0
10 =

g
c2

(
1 +

gy1

c2

)−1

. (2.47)

We would then calculate the Riemann curvature tensor, finding it to be identically
zero. This would immediately tell us that we were dealing with some non-inertial
coordinatisation of a flat spacetime, in which there were no tidal effects.

One ought to point out a somewhat delicate matter regarding the above interval,
which comes from the metric (2.16): when y1 = −c2/g, the metric is degenerate
because g00 = 0, and g00 is not defined. However, one would soon observe that this
was due to the choice of coordinates, rather like the singularity at the event horizon
in the Schwarzschild metric. Such singularities can be removed by a better choice
of coordinates. In the present case, one would transform by (2.14) and (2.15) and
the metric would reduce to the Minkowski form ηi j of (1.1).

According to the usual rules of general relativity, one would then argue as fol-
lows: the coordinates (t,x,y,z) are those that would be set up in a freely falling
frame, in which the connection coefficients are zero and freely falling bodies not
subjected to any forces follow straight lines. There are two things to note:

• In a general, curved spacetime, one can always find such coordinates locally in
the neighbourhood of any given event. This is an application of what is some-
times called the weak equivalence principle WEP and it is inherent in the mani-
fold formulation of general relativity when one adopts the Levi-Civita connection
(zero torsion). In that case, for any event (point) P in spacetime, there is always a
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choice of coordinates in some neighbourhood of that event for which the connec-
tion coefficients are zero at P and the metric takes the Minkowski form at P. By
continuity, the connection remains close to zero and the metric close to η over
some small enough neighbourhood of P.

• In general relativity, one adopts the idea that free fall is not due to a force, i.e.,
gravity is no longer a force in this view. This is a linguistic adjustment made
to accord with the idea that forces and accelerations are intimately linked. In
general relativity, freely falling bodies follow geodesics (with some provisos,
as explained in Sect. 2.5), and the geodesic equation says precisely that their
four-acceleration is zero.

We have already encountered our first equivalence principle here, and it is so deeply
embedded in the theory that it would be disastrous if the theory itself contradicted
it. Fortunately, this does not happen, at least, not on the basis of the discussion in
[2]. For one thing, the equivalence principle cited in the quotation from Bondi and
Gold on p. 3 refers to electromagnetic radiation fields, whereas the weak equiv-
alence principle WEP mentioned here does not yet have anything to say about
electromagnetism.

Note also that, since the proof concerning the existence of this convenient form
of the metric and connection coefficients only requires one to assume that the con-
nection is the usual Levi-Civita connection entirely determined by the metric, and
this follows if one assumes zero torsion, i.e., that the connection coefficients are
symmetric in their two lower indices, one might say that this equivalence principle
hardly looks like a principle at all: the whole structure of the theory as it is usually
formulated implies the weak principle of equivalence. On the other hand, one might
also say that it is precisely the prerogative of a principle to be inescapable.

So what would the general relativist deduce from the discovery of a global inertial
frame? There would appear to be several possibilities, all of which are equivalent
as far as general relativity is concerned. One might say that one was in a perfectly
flat region of spacetime far from any source of curvature (gravity), and that the
coordinates {yµ} were simply those adopted by a uniformly accelerating observer
clever enough to set up a system so well adapted to her motion. This is what we
were considering before. But one might also say that the coordinates (t,x,y,z) are
those of an observer freely falling in a static and homogeneous gravitational field
(SHGF). The fact that there are no tidal effects, i.e., the curvature is zero, is what
inspires us to say that the field is static and homogeneous.

Presumably, in the second case, if the observer looked around, she would find
some source, i.e., some distribution of energy (e.g., mass energy) to which one could
attribute the presence of this SHGF. It is hard to imagine what it might be and we
shall discuss this below (see Sect. 2.4). However, a practically-minded observer with
knowledge of physics would probably just say that, in reality, the curvature is not
quite zero but that this is a good approximation over some region of spacetime, of
the kind usually made in Earth-based laboratories, given the accuracy with which
measurements can be made.

But the Earth-based observer would presumably have a considerable advantage
over one who was simply presented with the interval (2.45) and could not see the
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source. In the laboratory, one can measure the acceleration relative to the floor, for
example, assuming that it is at rest in some sense (or can be treated as being at rest)
relative to the gravitational source. At some risk of confusion, let us call this the
acceleration due to gravity, but bearing in mind that there is no acceleration due to
gravity in general relativity (there is only acceleration when one is not allowed to
free-fall). Without sight of the gravitational source or other reference point, our rel-
ativist in possession of the above interval could not even determine this acceleration
due to gravity. Looking at the expression in (2.45), one might want to say that it was
equal to g, because the interval does indeed single out this value. But in a certain
sense, the value g is just an artefact of the choice of coordinates.

One should have no doubt about this. Starting with the Minkowski frame, one
could have chosen any uniformly accelerating observer, with value g′ say, and
obtained new coordinates {y′µ} such that the interval takes the form

ds2 =

(
1 +

g′y′1

c2

)2

(dy′0)2 − (dy′1)2 − (dy′2)2 − (dy′3)2 . (2.48)

The fact is, of course, that in this specific context, one cannot say how much of the
acceleration is due to gravity and how much is due to some other effect, e.g., the
kind of accelerating effect we were presumably imagining at the outset when we
considered a uniformly accelerating body in a flat spacetime (with no gravity).

One might appeal to the well known weak field approximation in which the the-
ory begins to look like Newton’s theory. Could this give us some reason to think
that g rather than g′ was the acceleration due to gravity in a given context? We shall
discuss this in some detail in Sect. 2.4, to bring out another rather subtle point, but
let us just see globally what is involved. One writes the metric in the form

gµν = ηµν +hµν ,

where hµν is assumed to be small. A range of other assumptions is usually made
about the metric components and allowed coordinate transformations which main-
tain this range of assumptions, but there is no need to go into too much detail here.
In the case of (2.45), one reads off

h00 ≈ 2gy1/c2 , (2.49)

in a region where gy1/c2 � 1. One then considers the geodesic equation giving the
worldline of a freely falling object relative to these coordinates and concludes that,
if the motion is indeed entirely due to a gravitational potential Φ , then one must
have

h00 = 2Φ/c2 . (2.50)

This would give

Φ ≈ gy1 . (2.51)
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In this Newtonian view, the potential causes a force per unit mass of

(−Φ,1,−Φ,2,−Φ,3) = (−g,0,0) , (2.52)

so that we are indeed explaining the quantity g appearing in the metric by the effects
of gravity, on this interpretation.

There is no surprise here, but of course the metric components (2.48) would give
us a gravitational potential Φ ′ such that

(−Φ ′
,1,−Φ ′

,2,−Φ ′
,3) = (−g′,0,0) , (2.53)

if we could assume that the motion were indeed entirely due to a gravitational poten-
tial Φ ′. And this is precisely what we do not know: how much of g or g′ comes from
a gravitational effect?

This highlights a fundamental point about general relativity which might be
stated as a form of the equivalence principle WEP2: from local observations alone,
one cannot tell whether the fields one observes via the spacetime metric are due to
one’s own motion or a gravitational potential, or both, and in the latter case, in what
proportions. The word ‘local’ is essential here, for two reasons:

• If one could look around, one would presumably see any sources of gravitational
potential operating in the neighbourhood. One could then apply Einstein’s equa-
tions to try to understand the metric and one could perhaps try to measure the
‘acceleration due to gravity’ by measuring a rate of change of proper distance to
the gravitational source for objects in free fall.

• An acceleration of the observer which changes the metric components via an
appropriate choice of the observer’s coordinates cannot introduce curvature, so if
there is curvature, one can attribute it to a gravitational potential. However, one
must be able to survey a large enough region of spacetime to be able to determine
the curvature, if there is any.

Considering the second point, it might seem that data from any neighbourhood of
a given event, no matter how small, would suffice to establish the curvature if there
were any. The reason why a certain size of neighbourhood is required is just that one
is always restricted by measurement accuracy. For any given level of measurement
accuracy, supposing that one has arranged by coordinate choice for the metric to be
Minkowskian and the connection components zero at some given point, there will
be some neighbourhood of the event in which the metric appears to be Minkowskian
and the connection components zero. More about this in a moment.

Referring to the first of the above points, if one has the distribution of energy and
momentum relative to some coordinate system in the spacetime, one then knows the
metric, connection, and curvature relative to those coordinates by solving Einstein’s
equations (at least insofar as they and the relevant boundary conditions are determi-
nate). On this basis one would then like to say which aspects of a motion were due
to gravity and which were an artefact of the coordinates. For example, within the
context of the weak field approximation, one can consider the effects of a massive
point particle, with energy–momentum distribution
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T 00 = Mδ (x) , (2.54)

where M is its mass and δ is a point-support distribution on the spacelike hypersur-
face with coordinates x, whence Einstein’s equations reduce to something like

h00 = −
2MG
|x|

,

and one deduces the form of Φ , viz.,

Φ = −
GM
|x|

.

This is discussed more carefully in Sect. 2.4. The present scenario would appear
to escape somewhat from the kind of constraint imposed by Einstein’s equations.
For one thing, it is not obvious that any energy–momentum distribution would lead
via Einstein’s equations to the static, homogeneous gravitational field proposed to
explain the intervals (2.45) or (2.48).

Of course, as mentioned above, one can easily imagine an approximate context,
and this context is precisely the one in which the neighbourhood over which one
can carry out measurements of the gravitational potential as embodied by the metric
is too small to allow one to detect the curvature. This is what allows the above
version WEP2 of the weak equivalence principle: if one is restricted to a small
enough neighbourhood, where ‘small enough’ is dictated by one’s measurement
accuracy, then one is forced into the situation of a spacetime that could be attributed
the intervals (2.45) or (2.48).

This follows from the weak equivalence principle WEP first mentioned on p. 15.
At a given event in spacetime, one arranges for the metric to have Minkowski form
and the Levi-Civita connection components to be zero. But the latter are simply
related to the coordinate derivatives of the metric components and the fact that they
are zero at the given event means that the coordinate derivatives of the metric com-
ponents are also zero there. This in turn means that the metric components relative
to these coordinates will change very slowly from the Minkowski form in any small
neighbourhood of the event. However, it should be noted that the coordinate deriva-
tives of the connection components, which depend on the curvature components,
are not generally zero, so the connection components may be changing rapidly from
zero over any neighbourhood of the event.

Since the above statement of WEP2 refers to an acceleration of the observer
which changes the metric components via an appropriate choice of the observer’s
coordinates, one ought to say more about what might be an appropriate choice of
the observer’s coordinates. We already encountered this question at the beginning
of this chapter for an observer accelerating in a flat spacetime. With coordinates
satisfying the conditions listed on p. 5, the equation for a geodesic that happens to
intersect the observer worldline at some event, i.e., describing a free-falling object
encountered by the observer, takes the form [11, p. 135].
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d2yi

dy02 + ai + 2Ω i
j
dy j

dy0 − a j dy j

dy0

dyi

dy0 = 0 ,

inertial Coriolis relativistic
force force correction

(2.55)

with suitable interpretation of the terms, where ai and Ω i
j are determined by the

connection coefficients according to

ai := Γ i
00 , Γ 0

0i = Γ 0
i0 = ai (i = 1,2,3) , (2.56)

Ω i
j := Γ i

j0 = Γ i
0 j = −Γ j

0i (i, j = 1,2,3) . (2.57)

Furthermore, one can arrange for the antisymmetric rotation matrix Ω i
j to be zero,

viz., Ω i
j = 0, for i, j = 1,2,3, by suitable choice of coordinates (basically, using

Fermi–Walker transport). It is important to note that (2.55) holds exactly only on
the observer worldline, although it will hold approximately nearby.

One can do something very similar even in a curved spacetime [11, p. 181]. An
observer with quite arbitrary motion can find well-adapted coordinates yµ with the
following properties (where the Latin index runs over {1,2,3}):

• First of all, any curve with all three yi constant is timelike and any curve with y0

constant is spacelike.
• At any point along the observer worldline, the zero coordinate y0 equals the

proper time along that worldline.
• At each point of the observer worldline, curves with constant y0 which intersect

it are orthogonal to it where they intersect it.
• The metric has the Minkowski form along the observer worldline.
• Any purely spatial geodesic through the observer worldline on a hypersurface

y0 = constant satisfies

d2yi

ds2 = 0 , (2.58)

where s is an affine parameter for the geodesic.
• The equation for the observer worldline has the form yi = 0 for i = 1,2,3.

Such coordinates are said to be normal. Note the difference with the flat space-
time case: the coordinates yi are not necessarily Cartesian on every hypersurface
of constant y0 as they were on p. 5, but we have d2yi/ds2 = 0 for any purely
spatial geodesic through the observer worldline on a hypersurface y0 = constant.
Put another way, in a semi-Euclidean frame (for flat spacetime), the fifth condition
(2.58) is true for any purely spatial geodesic, not just for spatial geodesics through
the observer worldline.

Carrying out the above construction, one obtains precisely the same relations
(2.55)–(2.57) for the worldline of any freely falling object where it encounters the
observer worldline.
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In the last two examples, the observer chose coordinates in such a way that she
always remained at the origin of the spatial hypersurfaces given by keeping her
time coordinate constant. In this situation, even though the connection components
associated with the rotation matrix Ω i

j can be made equal to zero, those related to
ai cannot. So with this appropriate choice of coordinates, said to be adapted to the
observer’s worldline, one cannot make the connection components equal to zero on
the observer worldline, unless the latter happens to be a geodesic, i.e., unless the
observer happens to be in free fall.

Of course, as mentioned before, the observer can chose any coordinates she likes
in general relativity. In a flat spacetime, the best choice may well be some set of
globally inertial coordinates, and in a curved spacetime, some set of locally inertial
coordinates, even though the observer then has motion relative to those coordinates.
But there is a reason for looking at the worldline of a freely falling object relative to
the kind of coordinates an observer might consider to be adapted to her own world-
line, and this is that it brings out the idea that an object can appear to be accelerating
even when it is not, in particular, when it is the observer that is accelerating rather
than the observed object. Note how the components ai of the observer 4-acceleration
become interpreted as the components of the inertial acceleration of the test particle
relative to such coordinates.

This leads to the idea that one cannot then say how much of the motion of an
object relative to one’s coordinates can be attributed to gravitational effects and how
much to one’s choice of coordinates. Let us refer to this as WEP3, another con-
tender for the post of equivalence principle. One is familiar with this idea from the
Newtonian theory of gravity in the pre-relativistic context: because inertial mass and
passive gravitational mass are equal (an experimental result, always open to further
testing as techniques improve), an observer cannot tell whether the acceleration of
a test particle relative to her Euclidean coordinate system is due to some gravita-
tional field or due to her own acceleration and the consequent acceleration of her
comoving Euclidean coordinate system. (The acceleration of that Euclidean system
must not be rotational here.) In pre-relativistic theory, one has no difficulty setting
up Euclidean coordinate systems in spatial hypersurfaces and time is the same for
everyone. What becomes of WEP3 in GR?

The Newtonian idea of a test particle moving only due to gravitational forces (a
motion called free fall) is replaced in GR by the principle that such a test particle
will follow a timelike geodesic with the proper time of the particle as affine param-
eter. In fact this ‘principle’ can be deduced from Einstein’s equations, a point which
deserves its own short section at the end of this chapter. This so-called geodesic
principle immediately builds in the idea that the purely gravitational motions of any
two objects are going to be the same if they start at the same spacetime event and
with the same 4-velocity, regardless of their inertial masses, or indeed any detail
of their internal physical makeup. Their motions depend only on the geometrical
structure of the spacetime as given by the metric (which itself determines the con-
nection and curvature), and of course initial conditions. We shall see in Sect. 2.5 that
this is only an approximation, a point to be confirmed in Chap. 12. Anyway, such
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motion is described as inertial, or non-accelerational, and herein lies a difficulty for
the pre-relativistic equivalence principle mentioned in the last paragraph.

The problem is this. The pre-relativistic equivalence principle can compare a test
particle that is freely falling under the effect of a gravitational force (and gravity
is a force in this theory) with one that has the special property of moving inertially
(and appears to accelerate because the observer is accelerating relative to the special
inertial frames that exist in this theory). In this theory one does of course have a dif-
ficulty in saying why some frames should be inertial while others are not, but this is
another matter. The point is that, apart from the freely falling locally inertial frames
of GR, there are no other, distinct inertial frames. Put another way, if one were to
say in GR that one could not distinguish the motion of a test particle subject only
to gravitational effects from one with ‘inertial acceleration’, one would be com-
mitting tautology: the test particle with ‘inertial acceleration’ would presumably be
one subject only to gravitational effects, i.e., with no acceleration, but appearing to
accelerate as in equations like (2.55). One would be talking about the very same test
particle on each side of the comparison.

So is there nothing left of WEP3 in general relativity? Could an accelerat-
ing observer (on a non-geodesic worldline) not at least mistake the motion of a
freely falling test object as an acceleration by setting up the coordinates described
above and obtaining an equation of motion like (2.55) for the worldline of the test
object relative to her coordinates? If such were the case, one could then say that
acceleration of the observer and ‘gravitational acceleration’ of a test particle were
indistinguishable. This certainly looks to be the case. On the other hand, we have to
ask whether the observer would not realise in some direct way that she was accel-
erating. For example, if she knew the metric, connection and curvature components
relative to her adapted coordinates, and it suffices to know only the metric compo-
nents over some neighbourhood in order to achieve this, would she not realise that
she was accelerating?

Of course, she would. Although the metric components are zero actually on the
observer worldline, they are not zero in any neighbourhood of the worldline, even
if it happens to be a geodesic. Worse, the connection components, and hence the
coordinate derivatives of the metric components, are not even zero on the worldline,
unless it is a geodesic. So in the case of an accelerating observer, the metric will not
generally have the Minkowski form in these coordinates as soon as one leaves the
observer worldline. If the observer can measure the metric accurately enough, she
will know that she is accelerating and the apparent acceleration of the freely falling
object can be attributed to coordinate choice.

The point about the above tautology is that, in the pre-relativistic case one was
comparing two different test particles, one undergoing gravitational acceleration and
the other in inertial motion (subject to no forces), whereas in the GR version of
WEP3 one considers just one test particle in free fall, i.e., unaccelerating, and notes
that it may appear to be accelerating relative to suitable coordinates. So this idea
has changed somewhat, but it survives. It becomes something like this: locally, an
observer cannot tell whether a test particle is freely falling or accelerating. The
word ‘locally’ is there to remind us that the observer must not be able to survey a
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sufficiently wide neighbourhood of her worldline to detect the fact that it is really
herself who accelerates, if that be the case.

We need to consider one more claim, which is in fact made by Bondi and Gold
[2]: that it is impossible to distinguish between the action on a particle of matter
of a constant acceleration or of static support in a gravitational field. This looks
very like WEP2, except that it mentions a test particle. WEP2 says that, in a flat
spacetime, an observer cannot decide whether there is a non-tidal gravitational field
or not. So if the observer is moving with the test particle, she will not be able to say
whether the particle is supported, with her, in a gravitational field, or whether the
particle is undergoing a uniform acceleration, with her, depending on whether there
is a gravitational field or not, respectively. Of course, one could say more simply
that, in the GR understanding of Minkowski spacetime, static support in an SHGF
interpretation of the spacetime is in fact just a uniform acceleration. If this can be
viewed as a version of the weak equivalence principle, let us label it WEP4.

The measurements here refer to determination of the metric. If the test particles
one is observing are charged, one expects to find EM fields and we have not yet
addressed the question as to whether these fields could tell us more. This is in part
the subject of the present book. It should be noted that the above versions WEP2 and
WEP3 of the weak equivalence principle are not as fundamental as WEP on p. 15.
When we come to examine EM fields, there is no reason a priori to suppose that the
statements WEP2 or WEP3 should extend to cover such effects.

In fact one should ask what really is the utility of these ideas. Once GR has been
constructed with WEP as an immediate consequence of the theory, and deployed
physically with the help of the strong equivalence principle SEP (discussed further
in Chap. 4), what need has one for any other consequences they may have? This
will become a more pressing point in Chap. 12 which discusses the worldlines that
charged particles are expected to have when falling ‘freely’ in curved spacetimes.

But to return to the main issue of the present chapter, as a flat spacetime, the
spacetime with interval (2.45) or (2.48) escapes totally from the constraints imposed
by Einstein’s equations: the gravitational effects one might attribute to this sce-
nario are non-tidal, i.e., the curvature is in fact zero. Put another way, although
there might be some energy–momentum distribution that would lead via Einstein’s
equations to the SHGF proposed to explain the intervals, the completely empty
energy–momentum distribution will also lead to this solution.

So the main point to bear in mind as we proceed is this: in the spacetime
described by (2.45) or (2.48), without seeing any sources for gravitational effects,
an observer cannot say whether she is uniformly accelerating in a flat spacetime
(and using semi-Euclidean coordinates) or sitting still relative to coordinates that
describe a spacetime containing a static, homogeneous gravitational field, or even a
mixture of both. Note that sitting still in coordinates that describe such a spacetime
is indeed an accelerating motion according to general relativity because one does not
have geodesic motion. One might say that an observer cannot distinguish whether
she has a uniform acceleration in a flat spacetime or a stationary state in a static,
homogeneous gravitational field. The proviso is of course that one cannot see other
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things in the neighbourhood, such as sources of gravitation, or possibly other things,
to be discussed in this book, viz., electromagnetic fields.

Furthermore, in the context of the spacetime described by (2.45) or (2.48), the
weak principle of equivalence WEP as stated on p. 15 plays a key role. This principle
is a fundamental building block in the general theory of relativity (without torsion).
To recapitulate, it states that, given any spacetime event, one can always find coordi-
nates in some neighbourhood of that event for which the metric has approximately
the Minkowski form and the connection coefficients are approximately zero. But
in the spacetime discussed here, everything works out exactly, i.e., there are coor-
dinates for which the metric is everywhere exactly the Minkowski metric and the
connection coefficients are everywhere exactly zero. This means that there are not
even any higher order effects to help one make the kind of distinction described
above.

And it will be worth remembering for future discussion that the gravitational
field described by (2.45) or (2.48), if there is one, is necessarily static and homoge-
neous, for there are no tidal effects. One would like to say that this precludes any
spatiotemporal variation in the field. However, it turns out that this conclusion is not
so obvious as one would think, and this will lead to more subtleties in Sect. 15.7.

2.4 Weak Field Approximation

In the last section, we mentioned the weak field approximation, because it provides
a point of contact between theory and observation that might help one to analyse
the motions of test particles. The reason this gets a further section here is that there
is a point to be noted about the way coordinates, and objects expressed relative to
coordinates, are often somewhat naively interpreted. There are two parts to this:

• The first is rather standard, obtaining the approximate relation (2.50) between the
metric and a Newtonian gravitational potential.

• The second concerns the relation between gravitational source and metric via
Einstein’s equation in this approximate context.

The following is adapted from DeWitt’s Stanford lectures [24].
We consider a situation in which coordinates, called quasi-canonical coordinates,

can be found, defined by the property that

gµν = ηµν +hµν , where |hµν | � ε � 1 , ∀µ ,ν . (2.59)

Such a coordinate system is not unique. It remains quasi-canonical under rota-
tions and low-velocity Lorentz boosts. (Note that the ηµν term in the metric
would be fixed even by high-velocity boosts, but the hµν might be made large by
such a transformation.) It also remains quasi-canonical under general coordinate
transformations x̄µ = xµ + ξ µ restricted only by the requirement
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|ξ µ
,ν | � ε and |hµν,σ ξ σ | � ε2 , ∀µ ,ν . (2.60)

One then finds a new h̄µν defined by h̄µν := ḡµν −ηµν , whence

ηµν + h̄µν = ḡµν =
dxσ

dx̄µ
dxτ

dx̄ν gστ

= (δ σ
µ − ξ σ

,µ)(δ τ
ν − ξ τ

,ν)(ηστ +hστ)

= ηµν +hµν − ξν,µ − ξµ,ν +O(ε2) , (2.61)

using the conditions in (2.60). So hµν undergoes the transformation

h̄µν = hµν − ξµ,ν − ξν,µ , ξµ := ηµνξ ν , (2.62)

for such a change of coordinates. Note that in these approximations, one can always
use the Minkowski metric to raise and lower indices.

The choice of quasi-canonical coordinate system can be restricted by imposing a
supplementary condition

lµν
,ν = 0 , (2.63)

where

lµν := hµν −
1
2

ηµν h , h := hσ
σ , (2.64)

hµν = lµν −
1
2

ηµν l , l := lσ
σ = −h . (2.65)

Now lµν transforms by

l̄µν = h̄µν −
1
2

ηµν h̄

= lµν − ξµ,ν − ξν,µ + ηµνξ σ
,σ . (2.66)

It follows that

l̄µν
,ν = lµν

,ν − ξ µ
,
ν

ν − ξ ν
,
µ

ν + ξ σ
,σ

µ

= lµν
,ν − ξ µ

,
ν

ν .

So l̄µν can be made to satisfy the supplementary condition (2.63) by choosing ξ µ

as a solution of the wave equation with a source:

�
2ξ µ := ξ µ

,
ν

ν = lµν
,ν . (2.67)

The supplementary condition (2.63) does not fix the coordinate system completely,
because it is still possible to carry out rotations, low-velocity Lorentz boosts, and
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coordinate transformations satisfying the homogeneous wave equation

�
2ξ µ = 0 . (2.68)

For gravitational sources with low velocities and when there is no gravitational
radiation around, one can impose another condition on the above quasi-canonical
coordinate systems. Indeed, one expects there to exist quasi-stationary coordinates.
These are quasi-canonical coordinate systems, fixed in some intuitive sense with
respect to the gravitational sources, in which all time derivatives hµν,0 may be
neglected compared with the spatial derivatives hµν,i (i = 1,2,3). Note the inter-
pretation of the zero coordinate as time and the other three coordinates as space, on
the basis of the almost Minkowskian form of the metric. If such coordinates exist,
the gravitational field itself is said to be quasi-stationary.

Any two quasi-stationary coordinate systems can be related by a rotation or a
general transformation x̄µ = xµ +ξ µ in which the ξ µ satisfy the previous conditions
and in addition have negligible time derivatives. Under the latter, the components of
hµν and lµν transform according to

h̄00 = h00 , h̄0i = h0i − ξ0,i , h̄i j = hi j − ξi, j − ξ j,i , (2.69)

l̄00 = l00 − ξi,i , l̄0i = l0i − ξ0,i , l̄i j = li j − ξi, j − ξ j,i + δi jξk,k . (2.70)

The supplementary condition (2.63) is then imposed on l̄µν by choosing ξ µ to
satisfy

∇2ξ µ := ξ µ
,ii = lµi

,i . (2.71)

Now h00 is the same for all these quasi-stationary coordinate systems, since it is
not affected by the general coordinate transformations x̄µ = xµ + ξ µ and it is not
affected by rotations. It is this uniqueness that allows one to make contact between
the formalism of general relativity and observation, or at least, between Einstein’s
theory of gravity and Newton’s.

The idea is to consider a freely falling particle, assumed to be moving slowly
compared with light. It has worldline zµ(t), where t = x0, and this is assumed to
satisfy the geodesic equation (but see Sect. 2.5 for more on that). The slow motion
implies that ∣∣∣∣dzi

dt

∣∣∣∣ �
∣∣∣∣dz0

dt

∣∣∣∣ = 1 . (2.72)

The geodesic equation [see (2.95) on p. 36] becomes

d2zµ

dt2 +Γ µ
νσ

dzν

dt
dzσ

dt
= h(t)

dzµ

dt
, (2.73)

where
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h(t) = −
d2t/dτ2

(dt/dτ)2 =
d2τ/dt2

dτ/dt
,

using t as parameter rather than the proper time τ of the test particle. Note that t
is not an affine parameter and this explains the term in h. The spatial part of this
equation is

d2zi

dt2 +Γ i
00 + 2Γ i

0 j
dzi

dt
+Γ i

jk
dz j

dt
dzk

dt
= h(t)

dzi

dt
,

in which we neglect the last term on the left. We have

hµν = ηµσ ηνρhσρ ,

where ηµσ = ηµσ . Then note that, from

Γ µ
νσ =

1
2

gµρ (∂ν gσρ + ∂σ gνρ − ∂ρgνσ ) ,

our approximation gives

Γ µ
νσ ≈

1
2
(ηµρ −hµρ)(∂ν hσρ + ∂σ hνρ − ∂ρhνσ ) .

When we insert this into the above formula, we will be able to use

Γ µ
νσ ≈

1
2

ηµρ(∂ν hσρ + ∂σ hνρ − ∂ρhνσ ) .

Note that we have used the approximation

gµρ ≈ ηµρ −hµρ ,

which follows from

(ηµρ −hµρ)(ηρν +hρν) ≈ δ µ
ν .

Now

Γ i
00 ≈

1
2

η iρ (∂0h0ρ + ∂0h0ρ − ∂ρh00) ≈−
1
2

η i j ∂ jh00 ,

so we can conclude that

Γ i
00 ≈

1
2

δ i j ∂ jh00 .

We have neglected ∂0hµν in comparison to ∂ihµν , i = 1, 2, 3. Also,

Γ i
0 j ≈

1
2

η iρ(∂0h jρ + ∂ jh0ρ − ∂ρh0 j) ≈−
1
2

δ ik(∂ jh0k − ∂kh0 j) ,



28 2 From Minkowski Spacetime to General Relativity

once again neglecting ∂0hµν .
We must now approximate the right-hand side of the geodesic equation (2.73).

Since (
dτ
dt

)2

= gµν
dzµ

dt
dzν

dt
,

we have

dτ
dt

≈ (1 +h00)
1/2 ≈ 1 +

1
2

h00 .

Consequently,

d2τ
dt2 ≈

1
2

h00,0 .

We now have a formula for the function h(t):

h(t) ≈
1
2

h00,0

(
1−

1
2

h00

)
≈

1
2

h00,0 .

We can therefore neglect the term on the right-hand side of the geodesic equation
(2.73).

Finally, the geodesic equation becomes approximately

m
d2zi

dt2 ≈−mδ i j∂ j

(
1
2

h00

)
+mδ ik(∂ jh0k − ∂kh0 j)

dz j

dt
,

where m is the mass of the test particle. The second term on the right-hand side is
velocity dependent and can be neglected on the grounds of the slow motion hypothe-
sis (2.72) or attributed to a rotational effect and removed by declaring a non-rotating,
quasi-canonical coordinate system to be one in which

∂ jh0k − ∂kh0 j = 0 .

In this case,

m
d2zi

dt2 ≈−mδ i j∂ j

(
1
2

h00

)
.

We can now make the identification [see (2.50) on p. 17]

h00 = 2Φ , (2.74)

so that

d2zi

dt2 = −
1
2

h00,i = −Φ,i , (2.75)
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where we make the interpretation that Φ is what would be called the Newtonian
gravitational potential.

But who would call this a Newtonian potential? If one could find an observer
who would set up these coordinates in her neighbourhood, and if this observer were
to pretend that they were Minkowskian coordinates in a flat spacetime under the
jurisdiction of special relativity, in which gravity really is a force field modelled
by a potential, then observation of freely falling particles would lead this observer
(under these illusions!) to attribute a Newtonian gravitational potential to this region
of spacetime. This is much more sophisticated than the Newtonian idea that acceler-
ating observers can pretend that they are not accelerating and attribute free particle
motions to some gravitational potential. What makes the Newtonian version so
simple is just the fact that time and distance are the same in the accelerating frame.

Note that, in the Newtonian spacetime, the accelerating observer who pretends
she is not accelerating and attributes free particle motions to a gravitational field
will be at pains to understand what sourced that field. We shall come in a moment
to the question of the source. But let us just return to the observation on p. 18 that
the metric components (2.48) on p. 17 would give us a quite different Newtonian
gravitational potential. Of course, to get the metric components into the form (2.48),
we have changed coordinates, and what has happened is that the quantity h00 in the
above theory has not remained unchanged. This in turn is telling us that we have
made a disallowed coordinate transformation for the above theory. This is not one
of the coordinate changes that kept the coordinates in the quasi-stationary and quasi-
canonical form. And yet the semi-Euclidean coordinates giving the intervals (2.45)
or (2.48) are stationary, and they are quasi-canonical in DeWitt’s sense, provided we
restrict to coordinate values satisfying∣∣∣∣gy1

c2

∣∣∣∣ � 1 or

∣∣∣∣g′y′1

c2

∣∣∣∣ � 1 , respectively .

So DeWitt’s allowed sets of coordinate transformations would appear to divide
coordinate systems into disjoint classes, each of which can be considered as quasi-
stationary and quasi-canonical. Note in passing that the above restriction on the
coordinate values keeps us well away from the singularity in these metrics, which
occurs when y1 = −c2/g.

But the key point to note here is that, in order to see a gravitational potential
from an initial context, viz., general relativity, in which gravity is not modelled that
way, we have to pretend that slightly non-inertial coordinates are in fact inertial, in
the sense that they are things we can understand in that way, as though we were
doing Newtonian gravitation. This point will be picked up in Sect. 15.7 when we
consider Boulware’s claim that there is an extremely strong gravitational field near
the horizon of any uniformly accelerating semi-Euclidean observer.

Now if one knew the source of gravity, e.g., a star, one would expect this to help
in establishing what part of a particle motion could be attributed to gravity and what
part could be explained as an artefact of the coordinates. It would at least establish
that there is some gravity. So let us return to the case of a massive point source
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described by (2.54) on p. 19, viz.,

T 00 = Mδ (x) , (2.76)

and see rather briefly how DeWitt’s theory in [24] makes this second link between
GR and observation. DeWitt’s aim was to establish the value of the constant κ in
Einstein’s equations

Gµν := Rµν −
1
2

Rgµν =
1

2κ
g−1/2T µν , (2.77)

where Gµν is the Einstein tensor, Rµν the Ricci tensor, g the modulus of the determi-
nant of the covariant metric components gµν , and T µν the energy–momentum tensor
for the matter and energy distribution in the spacetime. Our aim will of course be to
see whether this analysis throws any light on the SHGF.

In the quasi-canonical coordinate systems described above, it is first shown that
the curvature tensor takes the approximate form

Rµνστ = −
1
2
(hµσ ,ντ +hντ,µσ −hµτ,νσ −hνσ ,µτ) , (2.78)

also called the linearised Riemann tensor, which turns out to be invariant under
the approximate coordinate transformation law (2.62) on p. 25. This invariance is
basically due to the fact that, unlike the metric tensor, the Riemann tensor is already
first order in small quantities. DeWitt remarks that the physical significance of this
invariance is that the presence or absence of a real gravitational field is characterised
by the presence or absence of a nonzero Riemann tensor. Since this tensor represents
the gravitational field, the weak field approximation is going to provide an invariant
characterisation of the field, that is, an expression for the field that is independent of
which quasi-canonical coordinate system we are using.

The problem for the SHGF is of course that the Riemann tensor is zero, so it
would not count as a real gravitational field in DeWitt’s remark. And as we just
noted when examining the worldlines of free particles, different SE observers can
attribute any Newtonian potential they like to the spacetime neighbourhood, pre-
cisely because changing from one uniformly accelerating SE coordinate system
to another does not keep one inside the same class of quasi-canonical coordinate
systems.

The linearised Ricci tensor and curvature scalar are

Rµν = ηστRµσντ = −
1
2

ηστ(hµν,στ +hστ,µν −hσν,µτ −hµτ,σν
)

, (2.79)

R = ηµνRµν = −h,µ
µ +hµν

,µν . (2.80)

The linearised Einstein equations are then

1
2κ

T µν = −
1
2

(
lµν

,σ
σ − lµσ

,
ν

σ − lνσ
,
µ

σ + ηµν lστ
,στ

)
. (2.81)
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This is where the supplementary condition (2.63), viz., lµν
,ν = 0, comes into its

own. When coordinates are chosen so that this condition is satisfied, which is
described as choosing the de Donder gauge, the linearised Einstein equations take
the simple form

�
2lµν := lµν

,σ
σ = −

1
κ

T µν . (2.82)

We can now tackle the point mass source at the origin of some coordinate system
of the kind singled out above, for which we propose T 00 = Mδ (x), with all other
components of the energy–momentum tensor being zero.

Of course there is problem of circularity here, because we do not know a pri-
ori whether the spacetime around such an object will allow us to find a stationary,
quasi-canonical system. Since the point mass is at least stationary relative to the
spatial coordinates x, one might well expect a stationary system, but it is only with
hindsight that we could justify this process. So we simply push ahead by requir-
ing the supplementary condition lµν

,ν = 0 and observing that lµν can then have
only one nonzero component, viz., l00, because (2.82) implies �

2lµν = 0 when-
ever (µ ,ν) �= (0,0). [Note that the supplementary condition can still be imposed
in a quasi-stationary coordinate system, as evidenced by (2.71) on p. 26.] Equation
(2.82) also gives

∇2l00 =
1
κ

T 00 =
1
κ

Mδ (x) . (2.83)

The solution satisfying

lim
|x|→∞

l00 = 0 , (2.84)

and only taken seriously within the context of the weak field approximation when
|x| 
 GM, is

l00(x) = −
M

4πκ
1
|x|

=
1

4πκG
Φ , (2.85)

where we have introduced the usual definition for the Newtonian potential of a point
particle:

Φ(x) = −
GM
|x|

. (2.86)

The last manoeuvre is a sleight of hand! Although Φ may be the same function of
x as the Newtonian potential, x itself is not a Cartesian coordinate for spacetime,
except in an approximate sense. We now retrieve hµν from

l = l00 = l00 , h00 = l00 −
1
2

l =
1
2

l00 =
1

8πκG
Φ ,
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hi j = li j +
1
2

δi jl =
1
2

δi j l00 = δi j
1

8πκG
Φ , h0i = l0i = 0 .

As noted in (2.69) on p. 26, if we transform to another quasi-stationary coordinate
system in the same class, hi j and h0i will take other values, but h00 will remain
unchanged to this level of approximation. Note, however, that it is the boundary
condition (2.84) which rules out the addition of some affine function of the space
coordinates to the proposed solution for l00, and such an affine function, e.g., gz, is
precisely the kind of linear potential that leads to a static, homogeneous component
to the gravitational field. If one switched to some other class of quasi-stationary and
quasi-canonical coordinate system, one would then have to change the boundary
condition (2.84) in order to obtain an approximation to Newtonian gravity.

In his presentation [24], DeWitt uses this theory to deduce the value of κ in Ein-
stein’s equations (2.77). For general relativity to agree with Newtonian theory about
the motion of bodies under the action of gravity in this weak field approximation,
we noted that h00 = 2Φ [see (2.74) on p. 28]. It follows that

κ =
1

16πG
, (2.87)

whence the full Einstein equations take the form

Gµν := Rµν −
1
2

Rgµν = 8πGg−1/2T µν . (2.88)

Now we were looking at all this in the hope that it might throw light on the SHGF.
What could source a static, homogeneous gravitational field in the Newtonian the-
ory? The answer is of course an infinite plane of matter of infinitesimal thickness
and unchanging, uniform surface density σ . Let us take this as the plane z = 0. The
Newtonian gravitational potential at a height z above the plane is the sum of all the
potentials due to surface elements on the plane. Since sets of points on the plane
that are equidistant from the field point constitute rings, one carries out a simple
integration over the whole plane by dividing it into thin rings centered on the point
directly below the field point. The result is

Φ(z) = 2πGσz (z > 0) . (2.89)

The force field per unit mass in this Newtonian gravitational (NG) theory is then

(−Φ,1,−Φ,2,−Φ,3) = (0,0,−2πGσ) ,

which is constant in space and time, and pointing downward for a field point above
the plane. When z < 0, the sign of Φ is reversed, so that we have a spatiotemporally
constant gravitational force field pulling up toward the plane z = 0. But note that
for a given point z > 0, this same matter plane could be anywhere below it and the
gravitational effect would be the same. Presumably it could even be moving back
and forth up the z axis and the observer at some z that always remained above it
would not notice, according to NG.
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Let us thus consider the possibility

T 00 = σδ (z) , (2.90)

in the weak field approximation of general relativity, where σ is the constant mass
per unit area of a plane through the spatial origin of some coordinate system, taking
T µν = 0 whenever (µ ,ν) �= (0,0). If we can arrange with hindsight for the coor-
dinates to be quasi-stationary and quasi-canonical, and satisfy the supplementary
condition as in the analysis for a point particle source, then Einstein’s equations
take the simple form

∇2l00 =
1
κ

T 00 =
1
κ

σδ (z) . (2.91)

Of course, assuming that l00 is a function of z alone, this becomes

d2l00

dz2 =
σ
κ

δ (z) , (2.92)

which is easy to solve because

δ (z) =
d2

dz2

(
|z|
2

)
.

We find

l00 = c1 + c2z+
σ
2κ

|z| ,

where c1 and c2 are constants. Since we expect reflection symmetry in the spatial
plane z = 0, this implies c1 = 0 = c2, and the proposed solution is

l00 =
σ
2κ

|z| .

This time there is no solution with

lim
|x|→∞

l00 = 0 ,

but in fact we are expecting our approximations to be valid close to z = 0. We
observe with hindsight that this solution does satisfy the supplementary condition
lµν

,ν = 0. Once again, l = l00 = l00, and inserting the value of κ ,

h00 = l00 −
1
2

l =
1
2

l00 = 4πGσ |z| .

Since h00 = 2Φ is supposed to give the corresponding Newtonian potential, we then
find
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Φ = 2πGσ |z| , (2.93)

the same as in the purely Newtonian theory (NG) [see (2.89)].
This looks very nice, but there are two reasons why we have not really achieved

our uniformly accelerating SE metric:

• The value of g00 := η00 +h00 differs from the SE metric when z < 0, and this is
obviously an essential part of the solution!

• The components hi j of the above solution are not zero, as they would be for the
SE metric.

Still, in general relativity, if we had an infinite plane of constant mass density σ ,
we might expect something like the uniformly accelerating SE metric, which is a
flat space solution, on either side of the plane, just because in NG we find that this
gives a solution with no tidal effects (implying zero curvature in GR). But if this SE
metric does satisfy the Einstein equations for such a plane, where is it, and what is
it doing? In the uniformly accelerating SE coordinates, it is amusing to imagine that
the plane y1 = 0 would do the trick, proposing

T 00 = σδ (z) , T µν = 0 ∀ (µ ,ν) �= (0,0) .

In fact, rather than trying to solve the full Einstein equations for this idealistic
energy–momentum distribution, one can calculate the Einstein tensor for the metric

g00 =

(
1 +

g|z|
c2

)2

, g0i = 0 = gi0 , gi j = −δi j , i, j ∈ {1,2,3} .

(2.94)

It is interesting to note that this gives the following results. The connection coeffi-
cients are all zero except for

Γ 3
00 =

g
c2

(
1 +

g|z|
c2

)
θ (z) , Γ 0

30 =
g
c2

(
1 +

g|z|
c2

)−1

θ (z) = Γ 0
03 ,

where

θ (z) :=

{
−1 for z < 0 ,

+1 for z > 0 ,

and the components of the Ricci tensor are all zero except for

R00 =
g
c2 δ (z) , R33 = −

g
c2 δ (z) .

The curvature scalar is then

R =
2g
c2 δ (z) ,
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and the Einstein tensor is

G00 = 0 = G33 , G11 =
g
c2 δ (z) = G22 , Gµν = 0 ∀ µ �= ν .

Raising the indices, one finds that the energy–momentum distribution required to
give this metric is specified by

T 00 = 0 = T 33 , T 11 =
g

8πGc2 δ (z) = T 22 , T µν = 0 ∀ µ �= ν .

The interpretation of this result is left to the reader. What is clear is that Einstein’s
equations were never intended to fulfill our Newtonian dreams.

So let us make a brief conclusion. What concerned us in the last section was how
an observer at fixed SE spatial coordinate might try to understand the uniformly
accelerating SE metric, or at least the way freely falling particles move around rel-
ative to her coordinate systems. We have seen that, on a local basis, any Newtonian
gravitational potential whatever could be viewed as responsible for such motions.
Furthermore, in a Newtonian world, where such effects could be generated by an
infinite matter plane, one could measure accelerations of test particles relative to
this source and distinguish them from accelerations of the observer, whereas in
the world of general relativity one cannot make this kind of distinction so easily,
because one cannot identify even an idealistic source so easily. On the other hand,
one expects the SE metric to be a good approximation in certain spacetime regions,
e.g., in a laboratory situated a long way from a star. In the latter case, which comes
under the jurisdiction of the Schwarzschild solution to Einstein’s equations, one
can to a certain extent and with a certain proviso use the proper distance from the
source to distinguish coordinate accelerations (of a test particle) due to the source
and those due to choice of coordinates. The inevitable level of approximation is what
determines the extent to which this will succeed, while the fact that proper distance
depends on a subjective choice of spacelike hypersurface stands as a proviso.

In the highly idealistic, uniformly accelerating semi-Euclidean spacetime, one
has to accept that one does not know where the gravitational source is located so that
one cannot use it to make deductions about the motion of free particles. In that case,
even though the curvature is zero, whence there are no tidal effects in this spacetime,
one has to accept that different SE observers can choose to explain free particle
motions by quite different Newtonian potentials in the weak field approximation.
And we shall see in Chap. 15 that some authors interpret this gravitational field
as having different strengths at different locations in spacetime. But it should be
remembered that such an observer is not using locally inertial coordinates. In order
to see a gravitational potential from an initial context, viz., general relativity, in
which gravity is not modelled that way, we have to pretend that slightly non-inertial
coordinates are in fact inertial, in the sense that they are things we can understand
in that way, as though we were doing Newtonian gravitation.

To put it another way, in the weak field approximation to free fall, one can only
get a Newtonian potential if the connection coefficients are not all zero at the event
in question, whence the coordinate system is not locally inertial. Furthermore, this
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potential does not make a distinction between what one might call artefacts of the
choice of coordinates, which might possibly be ascribed to the motion of an observer
sitting at the spatial origin of that coordinate system, and gravitational effects that
are due to the energy–momentum distribution. Even in the context of the weak field
analysis for a point particle source described above, Einstein’s equations allow the
addition of any affine function of a space coordinate to the proposed Newtonian
potential, and this affine function is only ruled out by boundary conditions imposed
by the requirement that things look roughly as they would according to NG. And
finally, that Newtonian potential may be the usual function of the space coordinates
for such a source, but those coordinates have to be assimilated with the Cartesian
coordinates of Newtonian physics to make this interpretation.

2.5 Geodesic Principle

This section can be considered as a slightly off-beat review of some basic relativity
theory. We return to the interesting question of the geodesic principle brought up in
Sect. 2.3. This states that, when point particles are not acted upon by forces (apart
from gravitational effects), their trajectories take the form

d2xi

ds2 +Γ i
jk

dx j

ds
dxk

ds
= 0 , (2.95)

where xi(s) gives the worldline as a function of the proper time s of the particle and
Γ i

jk are the connection coefficients in the given coordinate system. In the literature,
this is often derived from an action principle. One writes the worldline as a function
xi(λ ) of some arbitrary parameter λ , whence the appropriate action for the worldline
between two points P1 = x(λ1) and P2 = x(λ2) of spacetime is

s(P1,P2) :=
∫ λ2

λ1

(
gi j

dxi

dλ
dx j

dλ

)1/2

dλ =

∫ λ2

λ1

Ldλ =

∫ λ2

λ1

ds , (2.96)

with Lagrangian

L :=

(
gi j

dxi

dλ
dx j

dλ

)1/2

. (2.97)

The Euler–Lagrange equations extremising the action under variation of the world-
line are

d
dλ

(
∂L
∂ ẋi

)
−

∂L
∂xi = 0 , (2.98)

with ẋi := dxi/dλ , and these lead to the above geodesic equation (2.95).
The action for some particles labelled by a is
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A = −∑
a

cma

∫
dsa , (2.99)

where ma is the mass of particle a and sa is its proper time. This is the action because
variation of the worldline of particle a gives its equation of motion as

d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa
= 0 . (2.100)

Likewise, if some of the particles are charged with charge ea for particle a, and there
are some EM fields Fik, one declares the action to be

A = −∑
a

cma

∫
dsa −

1
16πc

∫
FikF

ik(−g)1/2d4x−∑
a

ea

c

∫
Aidai , (2.101)

where Ai is a 4-vector potential from which Fi j derives, simply because variation of
the worldline of particle a gives its equation of motion as

d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa
=

ea

ma
Fi

j
da j

dsa
, (2.102)

the minimal generalisation of the Lorentz force law to a curved manifold, while
variation of Ai gives the EM field equations as the minimal extension of Maxwell’s
equations to the curved spacetime. Of course, these actions are designed to give
appropriate field equations, and we are just decreeing here that the appropriate field
equation for the particle labelled by a is a geodesic equation, or an equation like
(2.102).

So what is the physical motivation? The appropriate physical argument support-
ing (2.95) is an application of the strong principle of equivalence, and it is here
that we discover exactly how we are to link what happens in the curved manifold
with measurements in our own world. We start from an action, but at some point we
must say what the point of contact would be with physical reality. Let us suppose
we impose a strong principle of equivalence, that is, we say roughly speaking that
any physical interaction other than gravitation behaves in a locally inertial frame as
though gravity were absent (but see Chap. 4 for more details). Relative to such a
frame, any particle that is not subject to (non-gravitational) forces will then move in
a straight line with uniform velocity, i.e., it will follow the trajectory described by

dvi

ds
= 0 , (2.103)

where vi is its 4-velocity. This is expressed covariantly through (2.95). If there are
non-gravitational forces, we start with F = ma in the locally inertial frame and we
find (2.95) with a force term on the right-hand side. It is quite clear that we still
have a version of Newton’s second law F = ma, so we have certainly not explained
inertia and inertial effects by this ploy, but merely extended this equation of motion
to the new theory.
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Let us look more closely at the claim that (2.103) is expressed covariantly
through (2.95). A cheap way is to set the connection coefficients equal to zero in
(2.95). This is basically the observation that the two equations are the same relative
to Cartesian coordinates in a flat spacetime. This misses out some of the machinery
of the connection construction that lies at the heart of non-Euclidean geometry, and
this is not the place to expose all that. However, the following is an amusing way to
look a little more deeply into this affair.

Let us set the scene by assigning a connection to the manifold in the following
way: for each point and coordinate neighbourhood of that point, we have a function
whose value at any point in the neighbourhood is a set of N3 numbers Γ a

bc, where
N is the dimension of the manifold. Given another neighbourhood, the quantities
transform by the rule

Γ a′
b′c′ = Γ d

e f X
a′
d Xe

b′X
f

c′ +Xa′
d Xd

c′b′ ,

where we have used the notation

Xa′
d :=

∂xa′

∂xd , Xd
c′b′ :=

∂ 2xd

∂xc′xb′
.

One can show with a little algebra that this transformation is transitive.
Now suppose U is a coordinate neighbourhood of M and λ a(u) is defined along

a curve γ , given by xa(u). Then

λ̇ a =
dλ a

du

is not a vector, in general. We define the absolute derivative of λ a to be

Dλ a

du
=

dλ a

du
+Γ a

bcλ
b dxc

du
,

for any N3 numbers Γ a
bc associated with each point and coordinate neighbourhood.

If this is a vector field for all vector fields λ a along γ , then it can be shown that Γ a
bc

must transform as stated above, using the quotient theorem for tensors. Conversely,
if

Dλ a

du
=

dλ a

du
+Γ a

bcλ
b dxc

du
,

and Γ a
bc transforms as above, then Dλ a/du is a vector.

We can now extend the Euclidean idea of parallelism. Suppose P has coordinates
xa and some neighbouring point Q has coordinates xa + δxa. We seek some kind of
bijection from TP(M) to TQ(M), so that we can call corresponding vectors parallel.
We demand that the correspondence be linear and reduce to the identity when Q
approaches P. (The point about linearity is that, if v is parallel to w, then λv ought
to be parallel to λw, for any λ ∈ R, and so on.)
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Let λ a + δ∗λ a be the vector at Q which is parallel to λ a at P. Then there exists
Ya

b , dependent on P and Q, but not on λ a, such that

λ a + δ∗λ a = Y a
b λ b .

To first order in δxa, we would like to obtain

Y a
b = δa

b −Γ a
bcδxc ,

noting that Γ a
bc depends only on P, and δxc depends on both P and Q. This will be

possible provided that

δ∗λ a = −Γ a
bcλ

bδxc . (2.104)

We see that

Dλ a

du
= lim

δu→0

δλ a − δ∗λ a

δu
,

where δλ a = λ a(u+ δu)−λ a(u). Note that δλ a − δ∗λ a is a vector at Q.
For a flat space, parallelism is well-understood, and it is from this context that

we wish to generalise. In Cartesian coordinates xa, the connection components are
zero, but in general coordinates xa′ , they are given by

Γ a′
b′c′ =

∂xa′

∂xd

∂ 2xd

∂xb′∂xc′
,

according to the transformation equation stipulated above.
Assuming this to be the general definition of connection coefficients in a flat

space, relative to some arbitrary curvilinear coordinate system {xa′} expressed as
functions of a Cartesian coordinate system {xa} (kept fixed throughout), it is instruc-
tive to derive the general transformation law for the connection in this flat space
context. That is, we consider some other curvilinear coordinate system xa′′ , in which
the connection has coefficients

Γ e′′
f ′′g′′ =

∂xe′′

∂xd

∂ 2xd

∂x f ′′∂xg′′
,

and then check that

Γ e′′
f ′′g′′ = Γ a′

b′c′
∂xe′′

∂xa′
∂xb′

∂x f ′′
∂xc′

∂xg′′
+

∂xe′′

∂xh′
∂ 2xh′

∂x f ′′∂xg′′
.

This motivates the definition and transformation of connection coefficients in a gen-
eral curved space, where the connection cannot be made zero on any neighbourhood.

Still working within our flat space, we can now see how these non-zero con-
nection coefficients implement parallelism in general (non-Cartesian) coordinates.
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In the Cartesian coordinates xa, a vector va at x0 is parallel to the vector with the
same components va at x0 + δx. Let us see what this looks like in the non-Cartesian
primed coordinate system. Let us write the primed components of each of these two
vectors. Firstly, at x0,

vb′ =
∂xb′

∂xa

∣∣∣∣∣
x0

va ,

and secondly, at x0 + δx,

vb′ + δ∗vb′ =
∂xb′

∂xa

∣∣∣∣∣
x0+δx

va .

We can evaluate the last term to first order in δx, to obtain

vb′ + δ∗vb′ =

⎧⎨
⎩ ∂xb′

∂xa

∣∣∣∣∣
x0

+
∂

∂xc

∂xb′

∂xa

∣∣∣∣∣
x0

δxc

⎫⎬
⎭ va .

Comparing with (2.104), we are expecting to find

− Γ b′
d′e′

∣∣∣
x0

vd′δxe′ =
∂ 2xb′

∂xc∂xa

∣∣∣∣∣
x0

δxc va .

Inserting

va =
∂xa

∂xd′
vd′ and δxc′ =

∂xc

∂xe′
δxe′ ,

we are hoping to find that

− Γ b′
d′e′

∣∣∣
x0

=
∂ 2xb′

∂xc∂xa

∣∣∣∣∣
x0

∂xc

∂xe′
∂xa

∂xd′
.

The manipulation here is straightforward, first writing the right-hand side as

∂
∂xe′

{
∂xb′

∂xa

}
∂xa

∂xd′
,

and then as

∂
∂xe′

{
∂xb′

∂xa

∂xa

∂xd′

}
−

∂xb′

∂xa

∂ 2xa

∂xe′∂xd′
.

The first term here is zero, and we are left with exactly what we defined to be −Γ b′
d′e′ .
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The moral of this story is that, for general coordinates in a flat space we require
non-zero connection coefficients, and we carry over both the transformation equa-
tion and the way they come into vector parallelism when we generalise to manifolds
which do not have Cartesian coordinate systems. All this is supposed to comfort the
reader that the covariant generalisation of

d2xi

ds2 = 0 (2.105)

is the geodesic equation

d2xi

ds2 +Γ i
jk

dx j

ds
dxk

ds
= 0 . (2.106)

This is then taken as the equation of motion of a point particle upon which no forces
are acting, unless one counts gravity as a force. We observe that there is no mention
of any parameters characterising the point particle. In particular there is no mention
of its inertial mass. Of course there is no mention of parameters describing its inner
make-up. After all, it is supposed to be a point particle. One has to wonder what
would happen to a slightly spatially extended particle, i.e., with a world tube that
intersects spatial hypersurfaces in a small region rather than a single mathematical
point. This object might be spinning in some sense, or contain a charge distribution,
for example. We shall return to this point in a moment, but let us begin with the
disappearance of the inertial mass since this is directly relevant to the notion of
equivalence principle.

Indeed, one of the great equivalence principles of physics, in fact an experimental
result that already features in Newtonian physics, is the equivalence of passive grav-
itational mass, the measure of how much a particle is supposed to feel the Newtonian
force of gravity, and the inertial mass, the measure of how much a particle is sup-
posed to resist being accelerated. This meant that, in Newtonian gravitational theory,
an observer could not tell whether the acceleration of a test particle relative to her
Euclidean coordinate system was due to some gravitational field or due to her own
acceleration and the consequent acceleration of her comoving Euclidean coordinate
system. (The acceleration of that Euclidean system must not be rotational here.) In
pre-relativistic theory, one had no difficulty setting up Euclidean coordinate systems
in spatial hypersurfaces and time was the same for everyone.

So where did the inertial mass of the particle go? If we look back to (2.102), viz.,

ma

(
d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa

)
= eaFi

j
da j

dsa
, (2.107)

we find the inertial mass ma multiplying the acceleration term in the equation to
give a force on the right that is determined by an external field Fi j and a coupling
constant ea characterising the particle. This is a typical equation of motion when
there is some non-gravitational force (in this case electromagnetic) acting on the
particle. Now in Newtonian gravitational theory, if the external field happens to be
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a gravitational potential Φ , one gets an equation of motion like this:

ma

(
d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa

)
= mahi jΦ, j , (2.108)

where (hi j) = diag(0,1,1,1) and Γ i
jk is the connection appropriate to Newtonian

spacetime and relative to whatever coordinates we have chosen to describe it. The
coupling factor on the right-hand side is just ma, the same factor as we have on the
left-hand side. The only relevant characteristic of our point particle thus cancels out.

This explains how the inertial mass disappears from the equation, but how do
we get rid of the gravitational potential we have just introduced? Of course, we can
absorb it into the connection, following the much more detailed account of all this
in [11]. We now have a new connection

Γ i
jk := Γ i

jk +hilΦ,lt jtk , (2.109)

where (ti) := (1,0,0,0), so that ti = ∂ t/∂xi. Equation (2.108) becomes

d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa
= 0 , (2.110)

still in this Newtonian context. So the equality of inertial and passive gravitational
mass allows us to treat the trajectories of particles subjected only to gravitational
effects as geodesics of a non-flat connection, because we do expect this new
connection in (2.109) to be non-flat in general.

As Friedman says in [11], the equality of inertial and passive gravitational mass
implies the existence of a connection Γ such that freely falling objects follow
geodesics of Γ . This does not work for other types of interaction, where the ratio
of ma to the coupling factor, e.g., ea for a charged particle, is not the same for all
bodies. The worldlines of charged particles in an EM field cannot be construed as
the geodesics of any single connection, because ma/ea in (2.102) varies from one
particle to another. To quote from Friedman [11, p. 197]:

The principle of equivalence (strict proportionality) of inertial and gravitational mass must
therefore be true if any theory of gravitation like general relativity, in which gravitational
interaction is explained by the dependence of a nonflat connection on the distribution of
matter, is to be possible. But, of course, general relativity is not the only theory of this type.
Classical gravitational theory can also be formulated in this way by taking advantage of the
very same equivalence [of inertial and passive gravitational mass].

Friedman’s book is recommended for anyone who thinks that Newtonian gravita-
tional theory cannot be given a fully covariant and totally geometric treatment. The
essential difference with general relativity is that, in this treatment of Newtonian
gravity, there is a flat connection Γ living alongside the non-flat connection Γ of
(2.109). The deep fact here is that, in general relativity, the non-flat connection is
the only connection of the spacetime. We return to this point when we introduce the
strong equivalence principle in Chap. 4.
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Anyway, we now know what a point particle is supposed to do. But what about
a spatially extended particle? Well, it turns out that the geodesic principle is not a
principle at all, and neither is it likely to be better than an approximation for a real
particle that cannot be treated as a mathematical point. This will be directly relevant
in Chap. 12 when we discuss DeWitt and Brehme’s extension of the Lorentz–Dirac
equation to curved spacetimes [4], so it is worth spelling things out right away.

The point is that the geodesic principle follows from Einstein’s equations in
general relativity. We cannot go into all the details here. They can be found in
the standard textbooks. However, it is worth seeing a proof of sorts. Recall that
Einstein’s equations can be written

Gi j = −κTi j , (2.111)

where

Gi j := Ri j −
1
2

gi jR (2.112)

is the Einstein tensor expressed in terms of the Ricci tensor Ri j and curvature scalar
R, κ is a constant that turns out to be expressible as

κ =
8πG
c4 , (2.113)

and Ti j is the energy–momentum tensor expressing the distribution of mass and
energy in the spacetime.

Now the covariant derivative of the Einstein tensor is zero in many circumstances,
in particular when something called the torsion is zero. But the torsion is indeed
often zero. In fact, it is sourced by the spin currents of matter in such a way that,
in contrast to curvature, it does not propagate in spacetime, so it could only be
nonzero in regions where there is matter or energy with some rotational property. A
very clear, though somewhat sophisticated account of all this can be found in [20,
Chap. 5]. Anyway, in a region where there is no spinning matter, Einstein’s equation
(2.111) implies that the covariant derivative of the energy–momentum tensor is zero.
This is what we shall use to derive the geodesic ‘principle’.

To do this, we shall consider an almost-pointlike particle. So when almost-point
particles are not acted upon by forces (apart from gravitational effects), we would
like to show that their trajectories take the form

d2xm

ds2 +Γ m
k j

dxk

ds
dx j

ds
= 0 . (2.114)

We consider a small blob of dustlike (i.e., zero pressure) matter with density ρ and
velocity field

vi =
dxi

ds
. (2.115)
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This equation expresses the fact that we view each component dust particle as having
its own path xi(s). The energy–momentum tensor for this matter is then

T ik = ρ
dxi

ds
dxk

ds
(2.116)

and we are saying that Einstein’s field equation (2.111) implies that

T ik
;k = 0 . (2.117)

We analyse (2.117) by inserting (2.116) and the result is the geodesic equation
(2.95). For completeness, here is the argument. We have

ρ,k
dxi

ds
dxk

ds
+ ρ

(
∂

∂xk

dxi

ds
+Γ i

km
dxm

ds

)
dxk

ds
+ ρ

dxi

ds

(
∂

∂xk

dxk

ds
+Γ k

km
dxm

ds

)
= 0 .

(2.118)

If we did not have the idea of a velocity field vi, it would be difficult to interpret
partial derivatives of dxi/ds with respect to the coordinates. But as things are, we
can say

dxk

ds
∂

∂xk

dxi

ds
=

dxk

ds
∂vi

∂xk =
dvi

ds
=

d2xi

ds2 . (2.119)

The terms in the second bracket of (2.118) are

∂vk

∂xk +Γ k
kmvm = divv , (2.120)

and the whole thing can now be expressed by

div(ρv)
dxi

ds
+ ρ

(
d2xi

ds2 +Γ i
km

dxk

ds
dxm

ds

)
= 0 . (2.121)

By mass conservation,

div(ρv) = 0 , (2.122)

and the result follows.
This proof purports to show that each constitutive particle of the blob follows a

geodesic. But then we did not allow these particles to jostle one another. For exam-
ple, we have zero pressure, as attested by the form of the energy–momentum tensor
in (2.116). And we did not allow the particles to generate any torsion by revolving
about the center of energy of the blob. And neither did we endow them with electric
charge. It is in this sense that the geodesic ‘principle’ is in fact just an approximation,
unless the test particle is not a blob, but a mathematical point.
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Some argue that inertia is explained in general relativity, precisely because of
the above proof (or better variants of it). This point of view is expressed in the
philosophical study by Brown [21, p. 141]:

GR is the first in the long line of dynamical theories, based on that profound Aristotelian
distinction between natural and forced motions of bodies, that explains inertial motion.

This is not the view taken here, for reasons to be explained shortly. However, other
issues discussed in Brown’s book, in particular what he refers to as the dynamical
approach to spacetime structure, should mark a turning point in our understanding
of relativity theories that is exactly in line with the approach advocated in the present
book. Another quote concerning the explanation of inertial motion is [21, Sect. 9.3]:

Inertia, in GR, is just as much a consequence of the field equations as gravitational waves.
For the first time since Aristotle introduced the fundamental distinction between natural and
forced motions, inertial motion is part of the dynamics. It is no longer a miracle.

Here is an argument against that view. Recall the discussion just after (2.102) on
p. 37. It was pointed out that actions like (2.99) and (2.101) are designed to give
appropriate field equations, and that the appropriate field equation for the particle
labelled by a is a geodesic equation, or an equation like (2.102). Now in GR, one
adds a gravitational part to the action, viz.,

Agrav :=
c3

16πG

∫
R(−g)1/2d4x . (2.123)

Some textbooks motivate this as follows. When the metric is varied in Agrav, a con-
stant multiple of the Einstein tensor pops out. The point about this is the observation
that, when the metric is varied in an action like (2.101), the energy–momentum ten-
sor Ti j pops out. One gets a sum of contributions to this tensor from the matter as
encapsulated in the action term

−∑
a

cma

∫
dsa ,

and from the EM fields as encapsulated in the action term

−
1

16πc

∫
FikF

ik(−g)1/2d4x .

Setting the variation of the full action with respect to the metric equal to zero, one
then obtains the Einstein equations, with the Einstein tensor on one side and the
total energy–momentum on the other side.

Now the covariant derivative of the Einstein tensor is zero (assuming zero tor-
sion) and this could in principle be worrying, because the Einstein equation then
implies that the covariant derivative of the total energy–momentum is zero. How-
ever, there is a general result that the energy–momentum tensor derived from an
action of the form
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L(−g)1/2d4x (2.124)

by varying the metric always has zero covariant derivative when L is a scalar, and
more sophisticated versions, e.g., invariance of the matter action under the group
of diffeomorphisms is sufficient to guarantee zero covariant derivative of the corre-
sponding energy–momentum tensor on shell if the torsion is zero [20, Sect. 6.5]. (As
mentioned above, if the torsion is not zero, the covariant derivative of the Einstein
tensor is not zero either. This case is not considered here.) Of course, the action
A in (2.99) does not have the form (2.124) but one expects some general theo-
rem to ensure that the resulting energy–momentum tensor will have zero covariant
derivative on shell, i.e., when the field equations, that is, the geodesic equations, are
satisfied.

So it looks as though the geodesic equations, and their variants with a force on
one side, are built in by construction of the action. It is no surprise therefore that they
should pop out again when we set the covariant derivative of the energy–momentum
tensor equal to zero. Perhaps one should be more suspicious of arguments from
actions. They are neat, and bring a level of unity in the sense that one can derive
several dynamical equations from the same action by varying different items. On
the other hand, we are only getting out what we put in somewhere else.

One way to make progress with explaining inertia might be to pay more attention
to the fact that test particles are not likely to be well modelled by mathematical
points. We have already mentioned the spinning particle and the effect of curvature
on its motion. A possibly different effect (although possibly similar?) occurs when
the particle is a source of some classical force field, typically electromagnetic. The
spatially extended particle then exerts forces on itself and in simple cases it can be
shown that these forces oppose acceleration in flat spacetime and explain why a
force is needed to keep the particle off a geodesic in curved spacetime. If all inertia
were due to these self-forces, the geodesic equation, or relevant extension of F = ma
would then be replaced by an equation of the form ∑F = 0, where the F summed
over include self-forces.


