
Preface

This volume contains the courses delivered at the CIME meeting
“Pseudo-differential Operators, Quantization and Signals” held in Cetraro,
Italy, from June 19, 2006 to June 24, 2006 and includes the courses by
H.-G. Feichtinger presenting new results for Gabor multipliers on modula-
tion and Wiener amalgam spaces, by B. Helffer analyzing non-self-adjoint
operators using microlocal techniques, by M. Lamoureux addressing ap-
plications of pseudo-differential operators in geophysics, and by N. Lerner
applying the techniques of Wick quantization to problems on subellipticity
and lower bounds. The lectures by J. Toft on Schatten–von Neumann classes
of Weyl pseudo-differential operators are also included.

This introduction is written for non-specialists. We first recall the basic
notions and give an account of some developments of pseudo-differential
operators. Our starting point is the class of pseudo-differential operators
studied in the 1965 seminal paper of Kohn and Nirenberg published in
“Communications on Pure and Applied Mathematics.” Then we give a
brief overview of several pre-eminent ancestors and successors in the study
of pseudo-differential operators before and after the Kohn–Nirenberg mile-
stone. The connections with quantization envisaged by Hermann Weyl in
his classic “Group Theory and Quantum Mechanics,” first observed by
Grossmann, Loupias and Stein in the 1968 paper “Annales de l’Institute
Fourier (Grenoble),” will then be described in the context of Wigner trans-
forms. These connections give new insights into the role of pseudo-differential
operators in the analysis of signals and images in the perspectives of Gabor
transforms and wavelet transforms. From these come the Stockwell transform
that has numerous applications in geophysics and medical imaging. The re-
cently developed mathematical underpinnings of the Stockwell transform will
be highlighted.

1. Pseudo-differential Operators
The starting point is the class of classical pseudo-differential operators in-
troduced by Kohn and Nirenberg [19] and modified almost immediately by
Hörmander [16] about 40 years ago. To wit, let m ∈ R. Then we let Sm
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simply Sm be the set of all C∞ functions σ on R
n × R

n such that for all
multi-indices α and β, there exists a positive constant Cα,β for which

|(Dα
x Dβ

ξ σ)(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|

for all x and ξ in R
n. A function σ in Sm is called a symbol of order m.

Let σ ∈ Sm. Then we define the pseudo-differential operator Tσ on the
Schwartz space S(Rn) by

(Tσϕ)(x) = (2π)−n/2

∫
Rn

eix·ξσ(x, ξ)ϕ̂(ξ) dξ

for all ϕ in S(Rn) and all x in R
n, where

ϕ̂(ξ) = (2π)−n/2

∫
Rn

e−ix·ξϕ(x) dx

for all ξ in R
n. It is easy to prove that Tσ maps S(Rn) into S(Rn) con-

tinuously. The most fundamental properties of pseudo-differential operators
which are useful in the study of partial differential equations are listed as
Theorems 1.1–1.3.

Theorem 1.1. Let σ ∈ S0. Then Tσ, initially defined on S(Rn), can be
uniquely extended to a bounded linear operator from L2(Rn) into L2(Rn).

Theorem 1.2. If σ ∈ Sm, then T ∗
σ = Tτ , where τ ∈ Sm and

τ ∼
∑

µ

(−i)|µ|

µ!
∂µ

x∂µ
ξ σ.

Here, T ∗
σ is the formal adjoint of Tσ.

To recall, the formal adjoint T ∗
σ of Tσ is defined by

(Tσϕ,ψ)L2(Rn) = (ϕ, T ∗
σψ)L2(Rn)

for all ϕ and ψ in L2(Rn), where ( , )L2(Rn) is the inner product in L2(Rn).

The asymptotic expansion τ ∼
∑

µ
(−i)|µ|

µ! ∂µ
x∂µ

ξ σ means that

τ −
∑

|µ|<N

(−i)|µ|

µ!
∂µ

x∂µ
ξ σ ∈ Sm−N

for all positive integers N .

Theorem 1.3. If σ ∈ Sm1 and τ ∈ Sm2 , then TσTτ = Tλ, where λ ∈ Sm1+m2

and

λ ∼
∑

µ

(−i)|µ|

µ!
(∂µ

ξ σ)(∂µ
x τ).
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The asymptotic expansion

λ ∼
∑

µ

(−i)|µ|

µ!
(∂µ

ξ σ)(∂µ
x τ)

means that

λ −
∑

|µ|<N

(−i)|µ|

µ!
(∂µ

ξ σ)(∂µ
x τ) ∈ Sm1+m2−N

for all positive integers N .
All these results are very well known and can be found in the books [17]
by Hörmander [20] by Kumano-go, [23] by Rodino, [29] by Wong and
many others. We can see variants of these results in other settings in this
presentation.

2. Ancestors and Successors
Earliest sources of pseudo-differential operators can be traced to problems
for n-dimensional singular integral equations. The first contributions to the
theory of multi-dimensional singular integrals appear to be those of Tricomi
[27] in 1928. To recall, let (r, θ) be the polar coordinates of a generic point
y = (y1, y2) in R

2 and define for suitable functions ϕ on R
2,

(Pϕ)(x) = lim
ε→0

∫
r>ε

h(θ)
r2

ϕ(x − y) dy, x ∈ R
2.

In general, the integral
∫

R2
h(θ)
r2 ϕ(x − y) dy is not absolutely convergent, but

under the so-called Tricomi condition stipulating that
∫ 2π

0

h(θ) dθ = 0

and appropriate assumptions on h and ϕ, the limit exists and (Pϕ)(x) is
well defined for almost all x in R

2. If we assume for simplicity that h is C∞

on the unit circle S1 with center at the origin, then P is a bounded linear
operator from L2(R2) into L2(R2). Despite unsuccessful attempts by Tricomi
in solving the equation

Pϕ = ψ

by finding another singular integral operator P−1 for which

P−1P = I

and
PP−1 = I,
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where I is the identity operator, we all know nowadays that this can be done
using the Fourier transform. Indeed, P can be regarded as the convolution
operator given by

Pϕ = K ∗ ϕ,

where the singular kernel K given by

K(y) =
h(θ)
r2

, y = (r, θ) ∈ R
2,

has to be suitably seen as a tempered distribution on R
2. Applying the Fourier

transform, we get
(Pϕ)∧(ξ) = σ(ξ)ϕ̂(ξ), ξ ∈ R

2,

where
σ(ξ) = 2πK̂(ξ), ξ ∈ R

2.

In view of the Tricomi condition on h ∈ C∞(S1), σ turns out to be C∞ and
homogeneous of degree 0 on R

2 \ {0}. Hence, apart from the singularity at
the origin, σ is a symbol in S0 depending on ξ only, and with the notation
of the preceding section,

P = Tσ.

Furthermore, if σ is elliptic in the sense that there exists a positive constant
C such that

|σ(ξ)| ≥ C, ξ ∈ R
2,

then σ−1 ∈ S0 and we can define P−1 to be Tσ−1 . Such applications of the
Fourier transform were not known to Tricomi and it took almost 30 years
for mathematicians to come to these simple conclusions. Milestones of the
developments in this direction are the works of Giraud [13] in 1934, Calderón
and Zygmund [4] in 1952 and Mihlin [21] in 1965. Additional references can
be found in the introduction of [21] and the survey paper [24] of Seeley. In
fact, the analysis has been extended to the case when h also depends on x,
i.e., the kernel K is a function of x and y given by

K(x, y) =
h(x, θ)

r2
,

where y = (r, θ). In the final formulation of these results in the setting of R
n,

the symbol σ ∈ S0 is the Fourier transform with respect to y of the kernel
K(x, y) in terms of the singular integral given by

σ(x, ξ) = lim
ε→0

∫
|y|>ε

e−iy·ξK(x, y) dy, x, ξ ∈ R
n.

If σ is elliptic in the sense that there exists a positive constant C such that

|σ(x, ξ)| ≥ C, x, ξ ∈ R
n,
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then we still have
σ−1 ∈ S0.

However, it is important to note that Tσ−1 is no longer the inverse of P in
this case. But, as in Theorem 1.3, we obtain

Tσ−1P = I + K1

and
PTσ−1 = I + K2,

where K1 and K2 are pseudo-differential operators of order −1. When we
transfer the definition of P to a compact manifold M , the operators K1 and
K2 are compact and P is then a Fredholm operator on L2(M). It is remark-
able to note that this very rudimentary symbolic calculus with remainders
of order −1 plays an important role in the proof of the Atiyah–Singer index
formula in [1].

In addition to the obvious extension to an arbitrary order m ∈ R, the most
novel ideas of the Kohn–Nirenberg paper [19] in the context of the theory
of singular integral operators are the precise asymptotic formulas articulated
in Theorems 1.2 and 1.3. Almost immediately after the appearance of the
work of Kohn and Nirenberg is the far-reaching calculus of Hörmander [16]
concerning symbols σ of type (ρ, δ), 0 ≤ δ < ρ ≤ 1. Let us recall that a
function σ in C∞(Rn ×R

n) is a symbol of order m ∈ R and type (ρ, δ) if for
all multi-indices α and β, there exists a positive constant Cα,β such that

|(Dα
x Dβ

ξ σ)(x, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|β|+δ|α|

for all x and ξ in R
n. Since then, other generalizations and variants of pseudo-

differential operators have appeared. Among many interesting classes is the
very general class of pseudo-differential operators developed by Beals [2] in
1975 in which the Hörmander estimates are replaced by

|(Dα
x Dβ

ξ σ)(x, ξ)| ≤ Cα,βλ(x, ξ)Ψ(x, ξ)−|β|Φ(x, ξ)|α|

for all x and ξ in R
n, where

Ψ(x, ξ) = (Ψ1(x, ξ), Ψ2(x, ξ), . . . , Ψn(x, ξ))

and
Φ(x, ξ) = (Φ1(x, ξ), Φ2(x, ξ), . . . , Φn(x, ξ))

are n-tuples of suitable weight functions, and λ(x, ξ) is now the “order” of the
corresponding pseudo-differential operator. Recasting the calculus of Beals,
another achievement is due to Hörmander [16] using the Weyl expression for
pseudo-differential operators. We refer the readers to [16] for a wide range
of applications to linear partial differential equations. Weyl quantization is
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described in the next section, and for the sake of simplicity, we begin with
a motivation based on symbols in Sm, i.e., Hörmander symbols with ρ = 1
and δ = 0.

3. Weyl Transforms
Let σ ∈ Sm. Then we can associate to it the pseudo-differential operator Tσ,
but Tσ is not the only operator that can be assigned to σ. To see what else
can be done, let us note that for all ϕ in S(Rn) and all x in R

n,

(Tσϕ)(x) = (2π)−n/2

∫
Rn

eix·ξσ(x, ξ)ϕ̂(ξ) dξ

= (2π)−n

∫
Rn

∫
Rn

ei(x−y)·ξσ(x, ξ)ϕ(y) dy dξ,

where the last integral is to be understood as an oscillatory integral in which
the integral with respect to y has to be performed first. With this formula in
hand, it requires a huge amount of ingenuity (certainly not logic) to see that
we can associate to σ another useful linear operator Wσ on S defined by the
same formula with σ(x, ξ) replaced by σ

(
x+y

2 , ξ
)
. The linear operator Wσ

can be traced back to the work [28] by Hermann Weyl and hence we call Wσ

the Weyl transform associated to the symbol σ. In fact, we have the following
connection between Weyl transforms and pseudo-differential operators.

Theorem 3.1. Let σ ∈ Sm. Then there exists a symbol τ in Sm such that

Tσ = Wτ

and there exists a symbol κ in Sm such that

Wσ = Tκ.

Thus, there is a one-to-one correspondence between pseudo-differential op-
erators and Weyl transforms. We have the following result, which can be
thought of as the fundamental Theorem of pseudo-differential operators.

Theorem 3.2. Let σ ∈ Sm, m ∈ R. Then for all ϕ and ψ in S(Rn),

(Wσϕ,ψ)L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn

σ(x, ξ)W (ϕ,ψ)(x, ξ) dx dξ,

where W (ϕ,ψ) is the Wigner transform of ϕ and ψ defined by

W (ϕ,ψ)(x, ξ) = (2π)−n/2

∫
Rn

e−iξ·pϕ
(
x +

p

2

)
ψ

(
x − p

2

)
dp

for all x and ξ in R
n.
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The Wigner transform is a very well-behaved bilinear form on L2(Rn) ×
L2(Rn) and it satisfies the so-called Moyal identity or the Plancherel formula
to the effect that

‖W (ϕ,ψ)‖L2(R2n) = ‖ϕ‖L2(Rn)‖ψ‖L2(Rn)

for all ϕ and ψ in L2(Rn).
A tour de force from Theorems 3.1 and 3.2 shows that we can now define
pseudo-differential operators with nonsmooth symbols not in the Hörmander
class Sm. To be specific, we look at symbols in L2(Rn × R

n) only.
Let σ ∈ L2(Rn ×R

n). Then we define the Weyl transform Wσ on L2(Rn) by

(Wσf, g)L2(Rn) = (2π)−n/2

∫
Rn

∫
Rn

σ(x, ξ)W (f, g)(x, ξ) dx dξ

for all f and g in L2(Rn). Then we have the following analogs of Theo-
rems 1.1–1.3.

Theorem 3.3. Let σ ∈ L2(Rn × R
n). Then Wσ : L2(Rn) → L2(Rn) is a

Hilbert–Schmidt operator.

Theorem 3.4. Let σ ∈ L2(Rn×R
n). Then the adjoint W ∗

σ of Wσ is given by

W ∗
σ = Wσ.

Theorem 3.5. Let σ and τ be symbols in L2(Rn × R
n). Then

WσWτ = Wλ,

where λ ∈ L2(Rn × R
n) and is given by

λ̂ = (2π)−n(σ̂ ∗1/4 τ̂).

Theorem 3.5, which is attributed to Grossmann, Loupias and Stein [15], tells
us that the product of two Weyl transforms with symbols in L2(Rn × R

n)
is again a Weyl transform with symbol in L2(Rn × R

n) and is given by a
twisted convolution. Let us recall that the twisted convolution f ∗1/4 g of two
measurable functions f and g on C

n(= R
n × R

n) is defined by

(f ∗1/4 g)(z) =
∫

Cn

f(z − w)g(w)ei[z,w]/4dw

for all z in C
n, where [z, w] is the symplectic form of z and w given by

[z, w] = 2 Im(z · w).
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See the books [3] by Boggiatto, Buzano and Rodino, [12] by Folland, [25] by
Stein and [30] by Wong for details and related topics.

4. Gabor Transforms
If we make a change of variables in the definition of the Wigner transform,
then we get for all f and g in L2(Rn), and all x and ξ in R

n,

W (f, g)(x, ξ) = 2ne2ix·ξ(Gg̃f)(2x, 2ξ),

where
g̃(x) = g(−x)

for all x in R
n and Gg̃f is the well-known Gabor transform or the short-time

Fourier transform of f with window g̃ given by

(Gg̃f)(x, ξ) = (2π)−n/2

∫
Rn

e−it·ξf(t)g̃(t − x) dt

for all x and ξ in R
n. In image analysis, we can think of (Gg̃f)(x, ξ) as the

spectral content of the image f with frequency ξ at the point x.
Let us now fix a window ϕ in L1(Rn) ∩ L2(Rn) with

∫
Rn ϕ(x) dx = 1. Then

the Gabor transform Gϕf of f is given by

(Gϕf)(x, ξ) = (2π)−n/2(f,MξT−xϕ)L2(Rn)

for all x and ξ in R
n, where Mξ and T−x are the modulation operator and

the translation operator given by

(Mξh)(t) = eit·ξh(t)

and
(T−xh)(t) = h(t − x)

for all measurable functions h on R
n and all t in R

n. Now, for all x and ξ in
R

n, we define the function ϕx,ξ on R
n by

ϕx,ξ = MξT−xϕ.

We call the functions ϕx,ξ, x, ξ ∈ R
n, the Gabor wavelets generated from the

Gabor mother wavelet ϕ by translations and modulations.
The usefulness of the Gabor wavelets in signal and image analysis is en-
hanced by the following resolution of the identity formula, which allows the
reconstruction of a signal or an image from its Gabor spectrum.

Theorem 4.1. For all f in L2(Rn),

f = (2π)−n

∫
Rn

∫
Rn

(f, ϕx,ξ)L2(Rn)ϕx,ξdx dξ.
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Let σ ∈ L2(Rn ×R
n). Then we define the Gabor multiplier Gσ,ϕ : L2(Rn) →

L2(Rn) by

(Gσ,ϕf, g)L2(Rn) =
∫

Rn

∫
Rn

σ(x, ξ)(Gϕf)(x, ξ)(Gϕg)(x, ξ) dx dξ

for all f and g in L2(Rn). Using the Gabor wavelets, we see that Gσ,ϕf is
equal to

(2π)−n

∫
Rn

∫
Rn

σ(x, ξ)(f, ϕx,ξ)L2(Rn)ϕx,ξ dx dξ

for all f in L2(Rn).
Gabor multipliers are also known as localization operators, Daubechies oper-
ators, anti-Wick quantization and Wick quantization. The following results
are the analogs of Theorems 1.1–1.3 for Gabor multipliers.

Theorem 4.2. Let σ ∈ L2(Rn × R
n). Then the Gabor multiplier Gσ,ϕ :

L2(Rn) → L2(Rn) is a Hilbert–Schmidt operator.

Theorem 4.3. Let σ ∈ L2(Rn × R
n). Then the adjoint G∗

σ,ϕ of Gσ,ϕ is
given by

G∗
σ,ϕ = Gσ,ϕ.

Theorem 4.4. Let σ and τ be functions in L2(Rn × R
n). Then

Gσ,ϕGτ,ϕ = Gλ,ϕ,

where
λ̂ = (2π)−n(σ̂ ∗1/2 τ̂).

In Theorem 4.4, we have a new twisted convolution. To wit, the new twisted
convolution f ∗1/2 g of two measurable functions f and g on C

n, is defined
by

(f ∗1/2 g)(z) =
∫

Cn

f(z − w) g(w)e(z·w−|w|2)/2dw

for all z in C
n provided that the integral exists. Theorem 4.4 can be found

in the 2000 paper [10] by Du and Wong.
The interesting feature with Theorem 4.4 is that the new twisted convolution
f ∗1/2 g of two functions f and g in L2(Rn×R

n) need not be in L2(Rn×R
n).

This phenomenon is the motivation for many interesting research papers on
the product of Gabor multipliers. It suffices to mention the works [5] by
Coburn, [7] by Cordero and Gröchenig and [8] by Cordero and Rodino.
What is a Gabor multiplier? Is it something already well known to us? The
answer is yes.
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Theorem 4.5. Let σ ∈ L2(Rn × R
n). Then

Gσ,ϕ = Wσ∗V (ϕ,ϕ),

where
V (ϕ,ϕ)∧ = W (ϕ,ϕ).

References for the materials in this section are the books [9] by Daubechies,
[14] by Gröchenig, [31] by Wong and many others.

5. Wavelet Transforms
Let ϕ ∈ L2(R) be such that ‖ϕ‖2 = 1 and

∫ ∞

−∞

|ϕ̂(ξ)|2
|ξ| dξ < ∞.

Then we call ϕ a mother wavelet and ϕ is said to satisfy the admissibility
condition.
Let ϕ be a mother wavelet. Then for all b in R and a in R\{0}, we can define
the wavelet ϕb,a by

ϕb,a(x) =
1√
|a|

ϕ

(
x − b

a

)
, x ∈ R.

We call ϕb,a the affine wavelet generated from the mother wavelet ϕ by trans-
lation and dilation. To put things in perspective, let b ∈ R and let a ∈ R\{0}.
Then we let Tb be the translation operator as before and Da be the dilation
operator defined by

(Daf)(x) =
√

|a|f(ax)

for all x in R and all measurable functions f on R. So, the wavelet ϕb,a can
be expressed as

ϕb,a = T−bD1/aϕ.

Let ϕ be a mother wavelet. Then the wavelet transform Ωϕf of a function f
in L2(R) is defined to be the function on R × R\{0} by

(Ωϕf)(b, a) = (f, ϕb,a)L2(R)

for all b in R and a in R\{0}. At the heart of the analysis of the wavelet
transform is the following resolution of the identity formula.

Theorem 5.1. Let ϕ be a mother wavelet. Then for all functions f and g in
L2(R),

(f, g)L2(R) =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
(Ωϕf)(b, a)(Ωϕg)(b, a)

db da

a2
,
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where

cϕ = 2π

∫ ∞

−∞

|ϕ̂(ξ)|2
|ξ| dξ.

The resolution of the identity formula leads to the reconstruction formula
which says that

f =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
(f, ϕb,a)L2(R)ϕb,a

db da

a2

for all f in L2(R). In other words, we have a reconstruction formula for the
signal f from a knowledge of its time-scale spectrum.
Let ϕ be a mother wavelet and let σ ∈ L2(R×R). Then we define the wavelet
multiplier Ωσ,ϕ : L2(R) → L2(R) by

Ωσ,ϕf =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
σ(b, a)(f, ϕb,a)L2(R)ϕb,a

db da

a2

for all f in L2(R).
As in the case of the Gabor multipliers, we have the following results.

Theorem 5.2. The wavelet multiplier

Ωσ,ϕ : L2(R) → L2(R)

is a Hilbert–Schmidt operator.

Theorem 5.3. The adjoint Ω∗
σ,ϕ of the wavelet multiplier Ωσ,ϕ is given by

Ω∗
σ,ϕ = Ωσ,ϕ.

What is the product of two wavelet multipliers? The answer is not so simple
and seems to depend on the availability of a useful formula for a wavelet
multiplier. Some technical information in this direction can be found in the
paper [32] by Wong. If

σ(b, a) = α(a)β(b)

for all b in R and all a in R\{0}, then Ωσ,ϕ is a paracommutator in the sense
of Janson and Peetre [18], and Peng and Wong [22]. If σ is a function of a
only, then Ωσ,ϕ is a paraproduct in the sense of Coifman and Meyer [6]. If σ
is a function of b only, then Ωσ,ϕ is a Fourier multiplier.

6. Stockwell Transforms
Let us recall that for a signal f in L2(R), the Gabor transform (Gϕf)(x, ξ)
with respect to the window ϕ gives the time–frequency content of f at time
x and frequency ξ by using the window ϕ at time x. The drawback here is
that a window of fixed width is used for all time x. It is more accurate if
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we can have an adaptive window that gives a wide window for low frequency
and a narrow window for high frequency. That this can be done comes from
our experiences with the wavelet transform. Indeed, we see that the window
ϕb,a is narrow if the scale a is small and the window is wide when the scale
is big.
Now, the Stockwell transform Sϕf with window ϕ of a signal f is defined by

(Sϕf)(x, ξ) = (2π)−1/2|ξ|
∫ ∞

−∞
e−itξf(t)ϕ(ξ(t − x)) dt

for all x and ξ in R. Formally, we note that for all f in L2(R), all x in R and
all ξ in R\{0},

(Sϕf)(x, ξ) = (f, ϕx,ξ)L2(R),

where
ϕx,ξ = (2π)−1/2MξT−xD̃ξϕ.

Here, the dilation operator D̃ξ is defined by

(D̃ξf)(t) = |ξ|f(ξt)

for all t in R and all measurable functions f on R. Besides the modulation,
a notable feature in the Stockwell transform is the normalizing factor in
the dilation operator, which is | · | and not | · |1/2 as in the case of the
wavelet transforms. These features distinguish the Stockwell transform from
the wavelet transforms.
The Stockwell transform has recently been successfully used in seismic waves
[26] by Stockwell, Mansinha and Lowe and in medical imaging [34] by Zhu
and others. An attempt in understanding the mathematical underpinnings
of the Stockwell transform is underway by Wong and Zhu. See [33] in this
direction and we describe some of the results therein.

Theorem 6.1. Let ϕ be a window with
∫ ∞

−∞
ϕ(x)dx = 1.

Then for all f in L1(R) ∩ L2(R),
∫ ∞

−∞
(Sϕf)(x, ξ) dx = f̂(ξ)

for all ξ in R.
See Fig. 1 for an illustration of Theorem 6.1. In view of Theorem 6.1, we have
a reconstruction formula for a signal f in terms of its Stockwell spectrum,
which says that

f = F−1ASϕf,



Preface xvii

−1

0

1

2

A
m

pl
itu

de

(a) A Signal

031

(b
) 

A
m

pl
itu

de
 o

f i
ts

 F
ou

rie
r 

S
pe

ct
ru

m

(c) Amplitude of its Stockwell Spectrum

Time (s)

F
re

qu
en

cy
 (

H
z)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Fig. 1 Time–frequency representation of the Stockwell transform: (a) a signal consisting
of multiple frequency components (b) the amplitude of the corresponding Fourier spec-
trum, i.e., |(Ff)(k)| (c) the contour plotting the amplitude of the corresponding Stockwell
transform, i.e., |(Sf)(τ, k)|

where F−1 is the inverse Fourier transform and A is the time average operator
given by

(AF )(ξ) =
∫ ∞

−∞
F (x, ξ) dx

for all ξ in R and all measurable functions F on R × R.
For the second result, we let M be the set of all measurable functions F on
R × R such that ∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
F (x, ξ) dx

∣∣∣∣
2

dξ < ∞.

Then M is an indefinite Hilbert space in which the indefinite inner product
( , )M is given by

(F,G)M = (AF,AG)L2(R)

for all F and G in M .
Then we have a characterization of the Stockwell spectra given by the fol-
lowing theorem.

Theorem 6.2. {Sϕf : f ∈ L2(R)} = M/Z, where

Z = {F : R × R → C : AF = 0}.
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Can we reconstruct a signal from its Stockwell spectrum? The answer is
yes provided that we choose the right window. To do this, we say that a
function ϕ in L2(R) satisfies the admissibility condition if and only if

∫ ∞

−∞

|ϕ̂(ξ − 1)|2
|ξ| dξ < ∞.

For a function in L2(R) satisfying the admissibility condition, we define the
constant cϕ by

cϕ =
∫ ∞

−∞

|ϕ̂(ξ − 1)|2
|ξ| dξ.

Theorem 6.3. Let ϕ be a function in L2(R) with ‖ϕ‖2 = 1 satisfying the
admissibility condition. Then for all f in L2(R),

f =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
(f, ϕx,ξ)L2(R)ϕ

x,ξ dx dξ

|ξ| .

Remark: It is important to note that an admissible wavelet ϕ for the Stock-
well transform has to satisfy the condition

ϕ̂(−1) = 0.

So, the Gaussian window that has been used exclusively for the Stockwell
transform in the literature is not admissible.
This formula and its discretization can be found in the paper [11] by Du,
Wong and Zhu.

L. Rodino,
M.W. Wong
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15. A. Grossmann, G. Loupias and E. M. Stein, An algebra of pseudodifferential operators

and quantum mechanics in phase space, Ann. Inst. Fourier (Grenoble) 18 (1968),
343–368.
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Four Lectures in Semiclassical Analysis
for Non Self-Adjoint Problems
with Applications to Hydrodynamic
Instability

B. Helffer

Abstract Our aim is to show how semi-classical analysis can be useful in
questions of stability appearing in hydrodynamics. We will emphasize on the
motivating examples and see how these problems can be solved or by har-
monic approximation techniques used in the semi-classical analysis of the
Schrödinger operator or by recently obtained semi-classical versions of esti-
mates for operators of principal type (mainly subelliptic estimates). These
notes correspond to an extended version of the course given at the school
in Cetraro. We have in particularly kept the structure of these lectures with
an alternance between the motivating examples and the presentation of the
theory. Many of the results which are presented have been obtained in col-
laboration with Olivier Lafitte.

1 General Introduction

In Hydrodynamics an important question is to analyze the stability or the
instability of the solutions. This question appears at least at the first stage
(analysis of the linearized problem) to be a question of spectral analysis. This
question appears to depend strongly on the various physical parameters. In
some asymptotics regime, this question can be analyzed by techniques coming
from semi-classical analysis: this means that there is a small parameter h
which plays in the analysis the role of the Planck constant in an analogous
way to the Quantum Mechanics.

We will emphasize on the motivating examples and see how these prob-
lems can be solved or by harmonic approximation techniques used in the
semi-classical analysis of the Schrödinger operator or by recently obtained
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semi-classical versions of estimates for operators of principal type (mainly
subelliptic estimates). In this way, we hope to show that these recent results
are much more than academic transpositions of former theorems developed
more than thirty years ago when analyzing the main properties of Partial
Differential Equations: local solvability, hypoellipticity, propagation of singu-
larities. . . (see Egorov [Eg], Trèves [Trev], the treatise by Hörmander [Ho3]
and references therein).

Actually, we will not need at the moment the most sophisticated theorems
of this theory (see the lectures by N. Lerner [Le]) but the most generic. We
will give explicit proofs for the simple examples we have. They are based
mainly on two tools: the semiclassical elliptic theory for h-pseudodifferential
operators and the construction of WKB solutions.

We consider four different models coming from different modelizations
appearing in hydrodynamics. The first one is the Rayleigh–Taylor model.
Although the subject has a long story starting with [St] (see also [Cha]),
the semi-classical analysis appears in [La1, La2, HelLaf1]. The problem we
meet in this case is self-adjoint and related to the analysis of the bottom
of the spectrum for a Schrödinger operator. The three other examples are
not selfadjoint. We will see that we meet problems related to the notion
of pseudospectrum. The second one extends the previous one by introducing
some velocity at the surface between the two fluids. This is an extension of the
Kelvin–Helmholtz classical model which is analyzed in [CCLa]. The third one,
the Rayleigh with convection model was studied in [CCLaRa] and is a natural
generalization with a convective velocity of the classical Rayleigh problem
for a transition region. The fourth one is called the Kull–Anisimov ablation
front model. It has been analyzed by many physicists and more recently in
the PhD theses of L. Masse [Mas] and V. Goncharov [Go].

Finally as other relevant references, we quote [Ag], [BeSh], [Bo],
[BudkoL], [ChLa], [Col], [Da1], [Da3], [GH], [He1], [HeRo1], [HeRo2], [HelSj2],
[KeSu], [Kull], [Si2], [Tay].

Organization of the Course

This course is divided in four (unequal) lectures.

Lecture 1 is devoted to the analysis of the Rayleigh–Taylor model. We show
how the initial problem of analyzing the possible instability of the model leads
to a spectral problem for a compact selfadjoint operator which appears to be
an h-pseudodifferential operator.

When needed, we will recall various basic things on the h-pseudodifferential
operators.

We are let to the analysis of the largest eigenvalue of a compact operator.
We show that either harmonic analysis or WKB solutions permit to have a
good asymptotic of this eigenvalue.

Lecture 2 is devoted to the presentation of some mathematical tools
adapted to the analysis of non-selfadjoint problems. We first start by
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presenting a new example (Kelvin–Helmholtz) as a motivation. We then
give the main definitions related to the pseudo-spectrum. Here we will em-
phasize on the “elliptic” h-pseudodifferential theory and on what can be
done by WKB constructions. We then apply the techniques for analyzing
our Kelvin–Helmholtz model.

Lecture 3 is devoted to the presentation of the results on subellipticity in
the semi-classical context. We will see how the question of the subellipticity
of h-pseudodifferential operators can appear naturally. In comparison with
what was done in the course of N. Lerner [Le], this will illustrate the most
simple examples which were presented!

Lecture 4 explains the origin of two other models. We will show that they
lead to similar questions for some suitable regimes of parameters. Again, we
arrive to the analysis of a system, which can be reduced to a high order non
symmetric differential operator. We then sketch the mathematical treatment
of these two models. This gives us also a good opportunity for presenting other
results in subellipticity mainly obtained by Dencker–Sjöstrand–Zworski.

2 Lecture 1: The Rayleigh–Taylor Model

2.1 The Rayleigh–Taylor Model: Physical Origin

The starting point for this model is the analysis of the following differential
system in R

4 = R
3
x × Rt. With x = (x1, x2, x3) this system reads:

∂t� + div (�u) = 0
∂t(�u) + ∇ · (�u ⊗ u) + ∇p = �g .

(1)

The unknowns are u = (u1, u2, u3), the density � and the pressure p. We as-
sume that g = (0, 0, 1)g. The second line in (1) corresponds to three equations
and reads more explicitly:

∂t(�u1) + div (� u1 u) + ∂1p = 0 ;
∂t(�u2) + div (� u2 u) + ∂2p = 0 ;
∂t(�u3) + div (� u3 u) + ∂3p = �g .

(2)

Here we have used the short notations:

∂t =
∂

∂t
, ∂i =

∂

∂xi
for i = 1, 2, 3 .

The reader can look in the first pages of the book by P.L. Lions [Li] for the
way to get these equations from the principles of conservation of mass (for
the first line of (1)) and of momentum (for the second line of (1)).
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This system models the so-called Rayleigh–Taylor instability, which occurs
when a heavy fluid is above a light fluid in a gravity field directed from the
heavy to the light fluid. We refer to Chap. X in Chandrasekhar’s book [Cha]
for a presentation of the theory. Here we intend to study the linear growth
rate of this instability in a situation where there is a mixing region. This
linear growth rate will corresponds to γ in (16) below.

We would like to analyze the linearized problem around a stationary solu-
tion (i.e. t-independent):

� = ρ0 , u = u0 = 0 , p = p0 , (3)

where ρ0 is assumed to depend only on x3 and p0 and ρ0 are related, as
imposed by the second line in (1), by:

∇p0 = ρ0g . (4)

We assume that the perturbation (û, p̂, ρ̂) is incompressible that is satisfying:

div û = 0 . (5)

The linearized system takes the form:

∂tρ̂ + (ρ0)′û3 = 0 ; (6)

ρ0∂tû1 + ∂1p̂ = 0 ; (7)

ρ0∂tû2 + ∂2p̂ = 0 ; (8)

ρ0∂tû3 + ∂3p̂ = gρ̂ . (9)

In order to analyze (at least formally this system) we extract from the system
an equation involving only û3 (by eliminating the other unknowns). This is
done along the following lines.
We first differentiate with respect to t (9). This leads to:

ρ0∂2
t û3 + ∂t∂3p̂ = g

∂ρ̂

∂t
. (10)

We now use (6) in order to eliminate ∂ρ̂
∂t and get:

ρ0∂2
t û3 + ∂t∂3p̂ + g(ρ0)′(x3)û3 = 0 . (11)

We now differentiate (7) and (8) respectively with respect to x1 and x2. This
gives:

ρ0∂t∂1û1 + ∂2
1 p̂ = 0 , (12)

and
ρ0∂t∂2û2 + ∂2

2 p̂ = 0 . (13)
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Differentiating (5) with respect to t and using (12) and (13), we get:

∆12 p̂ = ρ0∂t∂3û3 , (14)

where ∆12 is the Laplacian with respect to the two first variables (x1, x2):

∆12 = ∂2
1 + ∂2

2 .

It remains to eliminate p̂ between (11) and (14):

∆12

(
ρ0∂2

t û3 + (ρ0)′gû3

)
+ ∂3ρ

0∂3∂
2
t û3 = 0 . (15)

We now look for a solution û3 in the form:

R
3 × R � (x, t) �→ û3(x1, x2, x3, t) = v(x3) exp(γt + ik1x1 + ik2x2) , (16)

where:

• v is an unknown real function in L2(R).
• γ is a real parameter.
• (k1, k2) is in R

2 and corresponds to the momentum variables dual to
(x1, x2).

This is what is called in the physical literature the analysis in normal modes.
The reader can for example look in the introductory chapter of [Cha] for a
more heuristic explanation. This leads to an ordinary differential equation
(in the x3-variable) for v:

−(k2
1 + k2

2)(ρ
0γ2v + (ρ0)′gv) + γ2 d

dx3
ρ0 d

dx3
v = 0 . (17)

Replacing x3 by x (x ∈ R) and dividing by γ2k2 with

k2 = k2
1 + k2

2 ,

we get: [
− 1

k2

d

dx
ρ0 d

dx
+ ρ0 + (ρ0)′

g

γ2

]
v = 0 . (18)

So we are interested in analyzing for which value of (γ, k) (with γ > 0)
there exists a non trivial v satisfying (17).

The choice of γ > 0 corresponds to our interest for instability. Actually, we
could have started by looking at possibly complex γ’s but one immediately
get as a necessary condition that γ2 should be real and the pure imaginary
γ’s are not interesting for the problem.
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2.2 Rayleigh–Taylor Mathematically

In the case of the Rayleigh–Taylor model, as we have seen in (18), the main
point is to analyze as a function of δ ∈ R the kernel in L2(R) of:

P (h, δ) := −h2 d

dx
�(x)

d

dx
+ �(x) + δ�′(x) . (19)

Here h > 0 and �(x) ∈ C∞(R) satisfies:

limx→−∞ �(x) = ρ− > 0 ,
limx→+∞ �(x) = ρ+ > 0 ,

(20)

�(x) > 0 , ∀x ∈ R , (21)

ρ− �= ρ+ , (22)

lim
|x|→+∞

�′(x) = 0 . (23)

We look at h → 0 (see1 [HelLaf1] for the case h → +∞). The problem
comes from the analysis of the Euler equations in a gravity field. The physical
parameters are the intensity g of the gravity, a wave number k > 0 and a
parameter γ which measures the large time behavior of the solution. The
mathematical problem is to determine a pair (u, γ) such that

P

(
1
k

,
g

γ2

)
u = 0 with u non trivial

This means that the link between the physical parameters (g, k, γ) and the
mathematical parameters is:

δ =
g

γ2
, h =

1
k

. (24)

The physical situation leads to analyze the case δg > 0. This implies
γ2 > 0, and we choose γ > 0.

Note that the instability is only analyzed when

ρ+ �= ρ− .

This implies that �′(x) is not identically 0.
The most physical case corresponds to:

ρ− > ρ+ , g > 0 ,

so δ is positive and �′ is negative somewhere.

1 In this case the limiting model corresponds to ρ = ρ− for x < 0 and ρ = ρ+ for x > 0.
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Generally � is assumed monotone but the semi-classical techniques are not
limited to this case.

2.3 Elementary Spectral Theory

First we observe that there is no problem for defining the selfadjoint extension
of P (h, δ) in L2(R) (which is unique starting from C∞

0 (R)) and it is immediate
that P (h, 0) is injective. More precisely, the bottom of its spectrum is strictly
positive.

Definition 2.1. We call generalized spectrum of the family P (h, δ) the set
of the δ’s in R such that P (h, δ) is non injective.

The standard analysis of the solution at ∞ for ordinary differential equa-
tions shows that, for all δ, the dimension of ker P (h, δ) is zero or one.

The next result is relatively well known (connected to the Birman–
Schwinger principle [Si1]).

Proposition 2.1. Under the previous assumptions and assuming in addition
that �′ is not identically 0, then the generalized spectrum P (h, δ) is the union
of two sequences (possibly empty or finite) δ+

n et δ−n s.t.:

0 < δ+
n < δ+

n+1 ,

limn→+∞ δ+
n = +∞ ,

(25)

0 < −δ−n < −δ−n+1 ,

limn→+∞ δ−n = −∞ .
(26)

Proof. If we observe that:

ker P (h, δ) �= {0} iff ker(K(h) − 1
δ
) �= {0} , (27)

where
K(h) = −P (h, 0)−

1
2 �′(x)P (h, 0)−

1
2 . (28)

the proof is immediately reduced to the standard result for K(h), which is a
compact selfadjoint operator.

For the compactness of K(h), we can for example observe that the operator
P (h, 0)−

1
2 belongs to L(L2(R);H1(R)) and that, under Assumption (23), the

operator of multiplication by ρ′ is compact from H1(R) in L2(R).
Note that when �′ < 0, which is the simplest natural physical case, the

operator K(h) is positive.

Let us also mention an a priori “universal” estimate of [CCLaRa]. If u is,
for some δ �= 0, in the kernel of P (h, δ), we get by taking the scalar product
in L2 by u:



42 B. Helffer

∫ +∞
−∞ �(h2u′(x)2 + u(x)2) dx = −δ

∫ +∞
−∞ �′(x)u(x)2 dx

= 2δ
∫ +∞
−∞ �u(x)u′(x) dx .

(29)

Using Cauchy–Schwarz, we get:
∫ +∞

−∞
�(x)(1 − |δ|

h
)(u′(x)2 + u(x)2) dx ≤ 0 . (30)

This implies
ker P (h, δ) = {0} , ∀δ ∈] − h, h[ . (31)

Universal upper bound
We could have started from the operator:

−h2�−
1
2

d

dx
�

d

dx
�−

1
2 + 1 + δ

�′(x)
�(x)

,

which shows more clearly the role of the function �′/�.
One way is to change of functions introducing

u = �(x)−
1
2 v .

This shows also that if:

1 + δ
�′(x)
�(x)

> 0 , ∀x ∈ R , (32)

then δ is not in the generalized spectrum.

Remark 2.1. The theory can be extended to the cases ρ+ = 0 or ρ− = 0,
under Condition (34).

2.4 A Crash Course on h-Pseudodifferential Operators

At least if the profile � is regular, the h-pseudodifferential calculus gives an
easy way for getting the extremal eigenvalues of K(h) in the semi-classical
limit. Let us briefly describe this tool.

A family (h ∈]0, h0]) of h-pseudodifferential operators

Ah = Oph(a) ,

associated to a symbol (x, ξ) �→ a(x, ξ;h) is defined for u ∈ S(Rm) by:

(Oph(a)u)(x) =

(2πh)−m
∫

Rm×Rm exp( i
h (x − y) · ξ) a(x+y

2 , ξ;h)u(y) dydξ .
(33)
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The function a is called the Weyl symbol (or h-Weyl symbol if we want
to recall the dependence on h) of Ah. We refer to the book of D. Robert
[Rob] for a course on this theory which is specifically semi-classical (and to
the course of N. Lerner [Le] in this volume2) and the assumptions which can
be done on the symbols.

Here it is enough to consider as symbols C∞ (with respect to the variables
(x, ξ) ∈ R

n × R
n) functions a s.t., for some given p, p′, q and h0 > 0, there

exists, for all α and β in N
m, constants Cα,β s.t., for all h ∈]0, h0],

|Dα
x Dβ

ξ a(x, ξ;h)| ≤ Cα,β hq 〈x〉p−|α|〈ξ〉p′−|β| .

When the symbol satisfies this condition, we write simply a ∈ S(q,p,p′), and
the corresponding operator Op h(a) is said to belong to Op hS(q,p,p′).

This class is an algebra by composition and the composition is just a
multiplication for the principal symbols. Typically, if a ∈ S(q,p,p′) and b ∈
S(q1,p1,p′

1), then there exists c in S(q+q1,p+p1,p′+p′
1) s.t.:

Op h(a) ◦ Op h(b) = Op h(c) ,

and
c − ab ∈ S(q+q1+1,p+p1−1,p′+p′

1−1,) .

This leads to the natural definition of “principal symbol”. In the current
situation, the symbol a ∈ Sq,p,p′

has more properties. It admits the formal
expansion:

a(x, ξ;h) ∼ hq
∑
j≥0

hjaj(x, ξ) ,

with:
aj(x, ξ) ∈ S0,−j,−j ,

and one has, for any N > 0, a good control of the remainders

rN (x, ξ, h) := a(x, ξ;h) − hq
∑

0≤j≤N

hjaj(x, ξ) ,

in S(q−N,−N,−N).
The symbol a0(x, ξ) is called the principal symbol. The symbol a1(x, ξ) is
called the subprincipal symbol. We note that the principal symbol is inde-
pendent of the quantization (this is not the case for the subprincipal symbol).

We have natural continuity theorems (based on the Calderon–Vaillancourt
Theorem) in Hs(Rm), where moreover the constants are controlled with re-
spect to h.

In addition compact operators on L2(Rn) can be recognized as the oper-
ators whose symbol in S(0,0,0) tends to 0 as |x| + |ξ| → +∞.

2 N. Lerner has a slightly different convention for the quantization. But taking h = 1
2π

in
(33) leads to this convention.
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Typically, an operator in Op hS(q,p,p′) with p < 0 and p′ < 0 is compact.
The role of q is to give the size of the norm of the operator with respect to h.

Finally, let us briefly discuss invertibility. As the principal symbol of an
operator (sat in Op h(S0,0,0)), is invertible (=elliptic), one can inverse the
operator for h small enough. This is indeed very simple. If Bh is the operator
of h-Weyl symbol 1

a0
, then the calculus gives that:

Bh Ah = I + hRh

with Rh ∈ Op h(S(0,−1,−1)).
Then the uniform control in L(L2) of Rh gives the invertibility of (I+hRh) in
L(L2) and hence the invertibility of Ah. For the invertibility, modulo O(h∞),
one can also inverse (I + hRh) by using the Neumann series:

(I + hRh)−1 ∼
∑
j≥0

(−1)jhj(Rh)j .

2.5 Application for Rayleigh–Taylor: Semi-Classical
Analysis for K(h)

Under strong assumptions on �, one can use the previous h- pseudodifferential
calculus. We assume:

|Dα
x �(x)| ≤ Cα�(x)〈x〉−|α| . (34)

This assumption permits to see that:

K(h) = −(−h2 d

dx
�

d

dx
+ �)−

1
2 �′(x)(−h2 d

dx
�

d

dx
+ �)−

1
2 (35)

is an h-pseudodifferential operator. More precisely it belongs to Op hS(0,0,0).
The operator K(h) appears indeed as the composition of three h-pseudo-
differential operators (−h2 d

dxρ d
dx+ρ)−

1
2 , −ρ′(x) and again (−h2 d

dxρ d
dx+ρ)−

1
2 .

So the h-pseudodifferential calculus gives that it is an h-pseudodifferential
operator.
The principal symbol of K(h) is

(x, ξ) �→ p(x, ξ) = −(ξ2 + 1)−1 �′(x)
�(x)

. (36)

For the analysis of the extremal eigenvalues, we have first to determine
the extrema of this symbol. If these extrema are non degenerate then we
can apply the harmonic approximation as in [HelSj1]. The tunneling ef-
fect together with the decay of the eigenfunctions can also be analyzed
(see [BrHe], [HePa]). There is indeed a natural extension of Agmon Estimates
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for h-pseudodifferential operators whose symbol admit an holomorphic exten-
sion in suitable bands |Im ξ| ≤ R in the ξ variable.
This leads to the following computations. We get

∂p
∂ξ (x, ξ) = 2ξ �′(x)

�(x) (ξ2 + 1)−2 ,
∂p
∂x (x, ξ) = −(�′′(x)�(x) − �′(x)2)(�(x))−2(ξ2 + 1)−1 .

The condition �′(x) = 0 should be excluded because it does not correspond
to an extremum of p(x, ξ). So we get:

ξ = 0 ; �′′(x)�(x) − �′(x)2 = 0 .

This corresponds to the condition that x0 is a critical point of the map
x �→ −�′(x)/�(x).
It remains to verify that the extrema are non degenerate. We obtain at a
critical point (x0, 0):

∂2p
∂ξ2 (x0, 0) = +2�′(x0)/�(x0)
∂2p

∂ξ ∂x (x0, 0) = 0
∂2p
∂x2 (x0, 0) = −�′′′(x0)�(x0)−�′(x0)�

′′(x0)
�(x0)2

It is then easy to determine if (x0, 0) corresponds to:

• A minimum of p,
if �′(x0)/�(x0) > 0
and �′′′(x0)�(x0) − �′(x0)�′′(x0)) < 0.

• A maximum of p,
if �′(x0)/�(x0) < 0
and �′′′(x0)�(x0) − �′(x0)�′′(x0) > 0.

When ρ′ < 0 and ρ > 0, then the maxima of the symbol correspond to
ξ = 0 and to the x’s such that −ρ′

ρ is maximal.
We recall that the simplest physical situation corresponds to �′(x) < 0. In

this case we have only maxima, which actually are the points of interest if
looking for largest eigenvalue.

2.6 Harmonic Approximation

If we are interested in the largest eigenvalue of K(h) a very general theory
has been developed (of course for Schrödinger, but also for more general
h-pseudodifferential operators).

We just sketch what corresponds to the first approximation. We have just
to consider the following harmonic operator associated to a point (x0, 0)
corresponding to a maximum of p, and to consider the spectrum of



46 B. Helffer

p(x0, 0) + h

(
1
2

∂2p

∂ξ2
(x0, 0)D2

y +
1
2

∂2p

∂x2
(x0, 0)y2

)
+ hp1(x0, 0) ,

where p1 is the subprincipal Weyl symbol of K(h), which actually is 0.
This operator is consequently

−�′(x0)
�(x0

(1 − hD2
y) − h

�′′′(x0)�(x0) − �′(x0)�′′(x0)
2�(x0)2

y2

The largest eigenvalue of this operator (which is semi-bounded from
above!) is explicitly known and gives the existence of an eigenvalue for K(h)
(with some error O(h

3
2 )).

If there are more than one critical maximum point for p, the largest eigen-
value of K(h) is well approximated by the largest (over the maxima of p) of
the largest eigenvalue of the approximating harmonic oscillators.

2.7 Instability of Rayleigh–Taylor: An Elementary
Approach via WKB Constructions

We present here what simple constructions of WKB solutions can give for
the model of Rayleigh–Taylor. A very detailed analysis have been given in
[HelLaf1] extending previous works by Cherfils, Lafitte, Raviart [CCLaRa].
Here we present a simpler analysis but this will only give conditions under
which one can construct approximate solutions in the kernel of P (h, δ).

In the semi-classical situation, we look for a solution in the form

u(x, h) = a(x, h) exp−ϕ(x)
h

(37)

near some point x0 (to be determined!) with

a(x, h) ∼
∑
j≥0

hjaj(x) , (38)

δ(h) ∼
∑

j

hjδj (39)

such that

exp
ϕ

h
· P (h, δ(h)) · u(h) ∼ 0 . (40)

Here “∼0” means that the right-hand side should be O(h∞).
Concretely, we expand exp ϕ

h ·P (h, δ(h)) · u(h) in powers of h and express
the cancellation of each coefficient of hj .
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We get as first eikonal equation

−�(x)ϕ′(x)2 + �(x) + δ0�
′(x) = 0 . (41)

In order to have an (exponentially) localized (as h → 0) in a neighborhood
of x0, it is natural to impose the condition that ϕ admits a minimum at x0.
So the first condition is:

ϕ′(x0) = 0 . (42)

This leads as a first necessary condition to

�(x0) + δ0�
′(x0) = 0 . (43)

A second necessary condition is obtained by differentiating the eikonal
equation:

−�′(x)ϕ′(x)2 − 2�(x)ϕ′(x)ϕ′′(x) + �′(x) + δ0�
′′(x) = 0 .

This gives at x0:
�′(x0) + δ0�

′′(x0) = 0 . (44)

We are asking for a non-degenerate minimum of ϕ at x0.
Differentiating two times the eikonal equation, we obtain:

−2�(x0)(ϕ′′(x0))2 + �′′(x0) + δ0�
′′′(x0) = 0 (45)

which implies
�′′(x0) + δ0�

′′′(x0) > 0 . (46)

We recover the condition obtained in the previous analysis.
Till now, we just looked for a phase. The next step is to determine the am-

plitude. The coefficient δ1 will be determined by looking at the first transport
equation:

2�(x)ϕ′(x)a′
0(x) + �′(x)ϕ′(x)a0(x)

+�(x)ϕ′′(x)a0(x) + δ1�
′(x)a0(x) = 0 .

(47)

If we impose the condition3

a0(x0) = 1 ,

a necessary (and actually sufficient) condition for solving is:

�(x0)ϕ′′(x0) + δ1�
′(x0) = 0 . (48)

We then obtain a0 by simple integration:

a′
0(x)/a0(x) = (�′(x)ϕ′(x) + �ϕ′′(x) + δ1�

′(x)) / (2�(x)ϕ′(x)) .

3 This condition corresponds to the idea that we look for the ground state, hence non
vanishing.
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The condition (48) permits indeed to extend the right-hand side as a C∞

function and we get explicitly:

a0(x) = exp
∫ x

x0

(�′(τ)ϕ′(τ) + �ϕ′′(τ) + δ1�
′(τ)) / (2�(τ)ϕ′(τ)) dτ . (49)

It is then not difficult to iterate at any order the construction: At each step
the cancellation of the coefficient of hj in the expansion of exp ϕ

h ·P (h, δ(h)) ·
u(h) permits to determine δj and to find aj−1(x), with, for j ≥ 2, the initial
condition

aj−1(x0) = 0 .

We have now constructed a formal solution. Let us recall now how one can
associate to this formal expansion an explicit realization. The first idea is to
consider a finite sum. We let δN (h) =

∑N
j=0 δjh

j and introduce aN (x, h) =∑N
j=0 hjaj(x) which is well defined in the neighborhood of x0.
We then introduce a cut-off χ which localizes in a neighborhood of x0. We

then let
uN

χ (x, h) = χ(x)aN (x, h) exp−(ϕ(x)/h) .

Computing P (h, δN (h))uN
χ (x, h), we find:

P (h, δN (h))uN
χ (x, h)

= (χhNrN (x, h) + χ̃(x)b0(x, h)) exp−ϕ(x)
h ,

(50)

where χ̃ is C∞, with a support disjoint of x0. Here it is important to observe
that exp−ϕ(x)

h is exponentially small on the support of χ̃ (here we have used
that ϕ has a local minimum at x0).

What can we deduce from this construction? Under the previous as-
sumptions, P (h, δ) is selfadjoint and we can deduce that, in an interval
]−ChN ,+ChN [, the spectrum of P (h, δN (h)) is not empty for h small enough.
Assumption (20) permits also to say that near 0 the spectrum is discrete.

This is not the complete answer to our question. But this strongly suggests
the existence, close to δN (h)) (modulo O(hN )) of an effective δ(h) such that
P (h, δ(h) has a non zero kernel. Note that the answer to this last question is
easier when � is strictly monotone. Note that the question is more delicate
as for example ρ− = 0. The essential spectrum of P (h, δ) contains indeed 0.
The previous analysis (see [HelLaf1]) based on the h-pseudodifferential cal-
culus avoids this difficulty (finally artificial) if �′

� → 0 at ∞ and if � is regular.

Three remarks for ending this first lecture:

• One can take N = +∞ by using a summation procedure à la Borel.
The Borel Lemma says that for a given sequence of reals αn (n ∈ N)) one
can always find a C∞ function h �→ f(h) admitting

∑
n αnhn as Taylor

expansion at 0.
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Here we need a version with parameters, but we can define some realiza-
tions of

∑∞
j=0 δjh

j and
∑∞

j=0 hjaj(x), permitting to replace the remainder
O(hN ) by O(h∞).

• With more work, one can also hope a result in the analytic category by
using the notion of analytic symbol introduced by J. Sjöstrand.
We should assume in this case that the function x �→ �(x) is analytic.
We warn the reader that this does not mean that the above formal sums
become convergent. This simply means that one can prove that, in a
fixed complex neighborhood of x0, |aj(x)| is bounded by Cj+1j! and
that we have similar estimates for the sequence (δj)j∈N (cf. the works
by J. Sjöstrand [Sj1], Helffer–Sjöstrand [HelSj1], Klein–Schwarz [KlSc90]).
This simply means that, by a “finite” tricky summation (N(h) = C0

h de-
pending on h), one gets the existence of ε0 > 0, such that:

P (h, δN(h)(h))uN
χ (x, h) = O(exp−ε0

h
) exp−ϕ(x)

h
. (51)

• Here we have used the self-adjointness property for getting information on
the spectrum. We will now see in the next lecture that for more complicate
models the selfadjoint character of the problem disappears.

3 Lecture 2: Towards Non Self-Adjoint Models

3.1 Instability for Kelvin–Helmholtz I: Physical Origin

As a motivation, we will start with a generalization of the Kelvin–Helmholtz
model. We refer to Chap. XI in Chandrasekhar’s book [Cha] for a complete
exposition of the origin of the model. This is a generalization [CCLa] of the
classical Kelvin–Helmholtz instability which appears when two fluids move
with different parallel velocities on each side of an interface.

When linearizing along the stationary solution (�0,u0, p0) for a given den-
sity �0 and a given (this time not zero) velocity u0 (see (3)), where u0 is the
first component of u0, and following what we have done for Rayleigh–Taylor,
we get the following one-dimensional question.
Can we analyze in function of the parameters (k1, k2, g, γ, k) with k2 =
k2
1 + k2

2, if the operator

PKH(γ, k1, k2, g) :=

− d
dx�0

d
dx (γ + ik1u0(x))2 + k2�0(x)(γ + ik1u0(x))2

−ik1(γ + ik1u0(x)) d
dx�0u

′
0(x) + gk2�′0((x)

is approximately injective (say for large values of k).
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Like in Rayleigh–Taylor which corresponds to k1 =0 (or actually to u0 =0),
our semi-classical parameter will be h = 1

k . The parameter γ = Γ0 + iΓ1 is
not necessarily real but we are interested in approximate null solutions for
which Γ0 is as large as possible (or complementarily) to show that Γ0 should
necessarily remain bounded in the regime k large.

So we divide by k2 in the equation above and meet the following semi-
classical operator:

Pk(x, hDx) := −h d
dx�0h

d
dx (γ + ik1u0(x))2

+�0(x)(γ + ik1u0(x))2

−ihk1(γ + ik1u0(x))h d
dx�0u

′
0(x)

+g�′0(x) .

So in this regime k1 is fixed such that |k1| ≤ k = 1
h . This last inequality will

not be a restriction in the semi-classical regime.
Semi-classically, the principal symbol is given by

p0(x, ξ) := �0(1 + ξ2)(γ + ik1u0(x))2 + g�′0(x) . (52)

This symbol is not real, hence the associated operator is clearly not sym-
metric and cannot be extended as a selfadjoint operator. Our aim is to
describe a rather systematic strategy for constructing approximate null solu-
tions or to decide that we can not construct such solutions. This question is
naturally related to the notion of pseudo-spectra for families (depending in
particular on h but also on other parameters) and adapted to the analysis
of h-pseudodifferential operators. This is what we will explain now before to
treat the various physical examples including this one.

3.2 Around the ε-Pseudo-Spectrum

Definition 3.1. If A is a closed operator with dense domain D(A) in an
Hilbert space H, the ε-pseudospectrum σε(A) of A is defined by

σε(A) := {z ∈ C | ||(zI − A)−1|| ≥ 1
ε
}.

We take the convention that ||(zI − A)−1|| = +∞ if z ∈ σ(A), where σ(A)
denotes the spectrum of A, so it is clear that we always have:

σ(A) ⊂ σε(A) .

When A is selfadjoint (or more generally normal), σε(A) satisfies, by the
Spectral Theorem

σε(A) = {z ∈ C | d(z, σ(A)) ≤ ε} .
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So this is only in the case of non self-adjoint operators that this new concept
(first appearing in numerical analysis, see Trefethen [Tref]) becomes inter-
esting.
Although formulated in a rather abstract way, the following result by
Roch–Silbermann [RoSi] explains rather well to what corresponds the pseudo-
spectrum

σε(A) =
⋃

{δA∈L(H) s. t. ||δA||L(H)≤ε}

σ(A + δA) .

In other words, z is in the ε-pseudo-spectrum of A if z is in the spectrum of
some perturbation A+δA of A with ||δA|| ≤ ε. This is indeed a natural notion
thinking of the fact that the models we are analyzing are only approximations
of the real problem and of the fact that the numerical analysis of the model
goes through the analysis of explicitly computable approximate problems.

3.3 Around the h-Family-Pseudospectrum

We are mainly interested in the semiclassical version of this concept attached
to a family (indexed by h ∈]0, h0]) of operators Ah. Here we are inspired
by various presentations of the subject including [Sj2], [DeSjZw] and [Pra3],
without to necessary follow their terminology.

For a given µ ≥ 0, the h-family-pseudospectrum of index µ of a family Ah

(indexed by h ∈]0, h0]) (of closed operators with a dense domain D(Ah) in a
fixed Hilbert Space H) is defined by

Ψµ((Ah))
:= {z ∈ C | ∀C > 0,∀h0 > 0 s.t.∃h ∈]0, h0],

||(Ah − z)−1|| ≥ C h−µ} .
(53)

We can then define
Ψ∞((Ah)) =

⋂
µ≥0

Ψµ((Ah)) . (54)

May be it is easier to understand the quantifiers by observing that the
h-family pseudoresolvent set corresponds to the z such that ∃C > 0 and
h0 > 0 such that ∀h ∈]0, h0]

||(Ah − z)−1|| ≤ C h−µ .

If one thinks of applications to Physics, these concepts are more stable by
perturbation than the corresponding notion of spectrum and they are for this
reason particularly relevant in the non self-adjoint case. Practically, one will
exhibit the existence of this h-family-pseudo-spectrum by constructing qua-
simodes or approximate solutions. This leads to another natural definition.
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For a given µ ≥ 0, the h-family-quasispectrum of index µ of the family Ah

is defined by

ψµ((Ah))
:= {z ∈ C | ∀C > 0,∀h0 > 0 s.t.∃h ∈]0, h0],

∃uh ∈ D(Ah) \ {0} s.t.
||(Ah − z)uh|| ≤ C hµ||uh||} .

(55)

We can then define
ψ∞((Ah)) =

⋂
µ≥0

ψµ((Ah)) . (56)

The main point is then that

ψµ((Ah)) ⊂ Ψµ((Ah)) .

Note that the converse is not true (see the discussion in [Pra3]) in general.
We will be particularly interested in using these tools when Ah is actually

an h-pseudodifferential operator.
The elliptic theory (with suitable conditions at ∞) for h-pseudodifferential

operators says for example that
Proposition 3.1 (see the book of D. Robert).
If z �∈ Σ(p), where

Σ(p) := {λ ∈ C , | ∃(xn, ξn) s.t. λ = lim
n→+∞

p(xn, ξn)} , (57)

then z �∈ Ψµ( Op h(p)).
This will actually also be true for any Ah = Op h(ph), for which the principal
symbol of Ah is p.

The proof is very easy once an h-pseudodifferential calculus has been con-
structed. It is enough to use Op h((p−z)−1) as first approximate inverse and
then to use a Neumann series. The reader can look at the end of Sect. 2.4 for
more details.

So the first natural thing to do when analyzing the h-pseudospectrum of
the family is to analyze the numerical range Σ(p) of its principal symbol.

3.4 The Davies Example by Hand

We present a variant of the proof of the generalization, by Pravda-
Starov [Pra1], of the Davies result on the h-family pseudo-spectrum for
the Schrödinger operator

Ah := −h2 d2

dx2
+ V (x) .

This proof is inspired by similar proofs in [HelLaf2,Mar].
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Remark 3.1. Davies treats a particular case by hand. Then Zworski observes
that it can be interpreted as a semi-classical version of a result for operators
of principal type (Hörmander [Ho1], [Ho2], Duistermaat–Sjöstrand [DuSj]).
This was pushed further by Dencker–Sjöstrand–Zworski [DeSjZw], N. Lerner
(together with collaborators) (see in [Le] and references therein), Pravda-
Starov [Pra1].

One should of course compare with the selfadjoint result at the bottom of
the well but here what is crucial is the non-selfadjointness!!

Theorem 3.1 (Davies–Pravda). Let us assume that there exist x0 and z
such that

z − V (x0) ∈ R
+ , (58)

and such that, for an even k ≥ 0,

ImV (j)(x0) = 0 ,∀j ≤ k , (59)

and
ImV (k+1)(x0) �= 0 . (60)

Then z ∈ ψ∞((Ah)).

Some Elementary Proof by a WKB Construction
The crucial point is that there exists ξ0 > 0 such that

ξ2
0 + V (x0) = z .

In other words, there exists (x0, ξ0) such that p(x0, ξ0) = z . Hence, z ∈ Σ(p)
as defined in (57) and we are not at the boundary of Σ(p).
Following the construction described in the first Lecture (see (37)–(40)), we
look for a solution in the form

u(x, h) = a(x, h) exp−ϕ(x)
h

(61)

near x0 with
a(x, h) ∼

∑
j≥0

hjaj(x) , (62)

such that
exp

ϕ

h
(Ah − z0)u(·;h) ∼ 0 . (63)

Let us emphasize that (conversely to what was done in the analysis of the
Rayleigh–Taylor model) we keep z0 fixed and did not look for an expansion
z(h) ∼

∑
j≥0 zjh

j .
Expanding in powers of h and expressing the cancellation of each coefficient
of h�, we first get an eikonal equation. The phase ϕ (appearing in (61)) should
satisfy (we can after a change of notations assume that z = 0:
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−ϕ′(x)2 + V (x) = 0 , (64)

where V satisfies by assumption Re V (x0) < 0, (59) and (60).
The existence of ϕ(x), with ϕ(x0) = 0 and ϕ′(x0) = iξ0 is evident. So the
important point, in order to have an approximate eigenfunction which is
localized at x0, is to verify that Reϕ has actually a local minimum at x0.
Taking the real and imaginary parts in (64), we get

−Re ϕ′(x)2 + Im ϕ′(x)2 + Re V (x) = 0 , (65)

and
−2Re ϕ′(x) · Im ϕ′(x) + Im V (x) = 0 , (66)

in a neighborhood of x0.
In particular, this implies at x0

Re ϕ′(x0) = 0, ξ2
0 = Im ϕ′(x0)2 = −Re V (x0) .

What we now need is to verify that the first non zero derivative of Reϕ at
x0 is even and strictly positive.
We start from

Re ϕ′(x) =
ImV (x)

2 Im ϕ′(x)
.

But it is immediate from the assumptions that

Re ϕ(j)(x0) = 0 , for j ≤ k + 1 ,

and

Re ϕ(k+2)(x0) =
Im V (k+1)(x0)

2Im ϕ′(x0)
.

We can now choose the sign of ξ0 in order to have

Re ϕ(k+2)(x0) > 0 .

Due to the fact that (∂ξp)(x0, ξ0) = ξ0 �= 0, the solution of the transport
equations does not create problems like in the case of Rayleigh–Taylor and
we can construct a solution uh = a(x, h) exp−ϕ(x)

h in the neighborhood of x0.
Let us briefly show how to treat the cancellation of the coefficient of h which
leads to the so-called first transport equation. This equation reads

2ϕ′(x)a′
0(x) + ϕ′′(x)a0(x) = 0 , (67)

with as initial condition
a0(x0) = 1 .

But ϕ′(x0) = iξ0 �= 0, so it is immediate to find in a neighborhood of x0 the
main amplitude a0 by
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a0(x) = exp−1
2

(∫ x

x0

ϕ′′(τ)
ϕ′(τ)

dτ

)
.

The next equation has the same structure as in (67) except that there is a
r.h.s. This equation reads

2ϕ′(x)a′
1(x) + ϕ′′(x)a1(x) = a′′

o(x) , (68)

with as initial condition
a1(x0) = 0 ,

and has again a unique explicit solution. More generally all the successive
equations read

2ϕ′(x)a′
j(x) + ϕ′′(x)aj(x) = a′′

j−1(x) , (69)

with as initial condition
aj(x0) = 0 ,

and can be solve by recursion for j ≥ 2.

Remark 3.2. K. Pravda-Starov constructs a solution in the form exp−ϕ(x,h)
h

with ϕ(x;h) ∼
∑

j hjϕj(x) but this is not really different when working with
a groundstate which is supposed to have no zero.

Remark 3.3. Note that if z �∈ Σ(p), then the elliptic theory says that it is
impossible to construct an approximate solution, so it leaves open only the
points at the boundary of Σ(p).

3.5 Kelvin–Helmholtz II: Mathematical Analysis

We now come back to our motivating model and see if the ideas behind the
treatment of Davies example are efficient.
Note also that our question is a little different and could be reformulated as:
For which values of the parameters is 0 in the h-family pseudospectrum of
the family (with h = 1

k )?
So we have to analyze if 0 belongs to Σ(p0), where p0 was defined in (52).

We just do the local analysis (the analysis of the ellipticity at ∞ should be
interesting to do). According to (52), we have:

Re p0(x, ξ) = �0(x)(ξ2 + 1)(Γ 2
0 − (k1u0(x) + Γ1)2) + g�′0(x) ,

Im p0(x, ξ) = 2�0(x)(ξ2 + 1)Γ0(k1u0(x) + Γ1) .
(70)

Assuming that
Γ0 �= 0 , (71)
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and that
�0(x) > 0 , ∀x ∈ R , (72)

we observe that

Im p0(x, ξ) = 0 iff k1u0(x) + Γ1 = 0 .

When this condition is satisfied, we get

Re p0(x, ξ) = �0(x)(ξ2 + 1)Γ 2
0 + g�′0(x) .

If
�′0 < 0 , on R , (73)

then we see (g > 0), that, if

Γ 2
0 > g max

x
−�′0(x)

�0(x)
,

then the principal symbol is elliptic.
Hence no local approximate null solution can be constructed. 0 does not
belong to the h-family-pseudospectrum of the operator.

We also observe that this condition is the same as for Rayleigh–Taylor (see
for example (32), with in mind (24))!

Conversely, when

Γ 2
0 < g max

x
−�′0(x)

�0(x)
,

one can, for any x0 such that

−g
�′0(x0)
�0(x0)

> Γ 2
0 ,

find some ξ0 �= 0 such that

Γ 2
0 (1 + ξ2

0) = −g
�′0(x0)
�0(x0)

.

We are now looking on the condition under which the operator Ah, which is
not elliptic at (x0, ξ0) which determines the parameter Γ1 by,

Γ1 = −k1u0(x0) ,

is not subelliptic at this point (we will explain later in the next lecture
(Theorem 4.1) what we can do in this case).

The computation of the bracket of Re p0 and Im p0 gives

{Re p0, Im p0}(x0, ξ0) = 4k1ξ0�0(x0)2u′
0(x0)Γ 3

0 . (74)
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So it is immediate by playing with the sign of k1 (or of ξ0) to get the condition
(75) satisfied if u′

0(x0) �= 0.
A detailed analysis of what is going on for γ = Γ0 + iΓ1 with Γ0 close to

Γ̃0 with

Γ̃ 2
0 = g max

x
−�′0(x)

�0(x)

should surely be interesting. The techniques presented at the end of the last
lecture will be helpful.

Here the simplest toy model should be

h2D2
x + ik1x ,

the complex Airy operator, which is for k1 �= 0 a particular case of Davies
example and can be also analyzed close to 0 by Dencker–Sjöstrand–Zworski
result.

Let us explain more in detail how we guess this model. We do not try
to be rigorous. For convenience we assume that �′ is strictly negative so
the associated K(h) (see (28)) appearing in the treatment of the Rayleigh–
Taylor model is positive. At least locally near a maximum of x �→ −�′(x)

�(x) , one
can (this is an interesting exercise in semi-classical analysis) modulo O(h∞)
rewrite our problem of research of approximate null solutions in looking for
which values of γ, the operator

√
K(h) − ik1u1(x) + hp1(x, hDx, h, k1, γ)) − γ

has approximate null solutions.
There is a technique (functional calculus of Helffer–Robert ( [Rob] and

references therein) or direct approach for the square root) for recognizing
f(K(h)) as an h-pseudodifferential operator if f is regular. In our case, one
can use a C∞-positive function coinciding with

√
t on [2ε0,+∞[ and equal

to a strictly positive constant for t ∈] −∞, ε0].
If we forget the dependence on γ in p1, we are facing a very standard

question of h-family-pseudospectrum.
The question becomes simply:

Is γ in the pseudospectrum of
√

K(h) − ik1u1(x) + hp1(x, hDx, h, k1, γ))?

Taking the harmonic approximation of
√

K(h) at a point where the prin-
cipal symbol of

√
K(h) (which is the square root of the principal symbol of

K(h)) and the linear approximation of u1 at x0 leads (up to the constants)
to the toy model.
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3.6 Other Toy Models

Other toy models have been analyzed in detail. Let us mention

h2D2
x + ihDx + x2 ,

whose symbol is p(x, ξ) = ξ2 + iξ + x2 (See [DeSjZw], p. 3).
The spectrum is easy to determine as given by the sequence 1

4 +(2n+1)h
(n ∈ N), the corresponding eigenfunctions being directly related with the
Hermite functions. This permits to diagonalize the operator BUT in a non
orthonormal basis.

The h-family pseudospectrum is given by the numerical range of the prin-
cipal symbol of the operator:

Σ(p) = {z ∈ C | |Im z|2 ≤ Re z} .

More generally the h-family pseudospectrum of the Schrödinger operators
−h2∆+V (x), with V quadratic has been analyzed in great detail in the PhD
thesis of Pravda-Starov [Pra3].

Other models appear in connection with the analysis of the resolvent of the
Fokker–Planck operator (see Risken (for the quadratic case), [Ris], Hérau–
Nier [HerNi], Helffer–Nier [HelNi], Hérau–Sjöstrand–Stolk [HerSjSt]) or for
other models (See Hager [Ha] and works in progress from Hager–Sjöstrand).

4 Lecture 3: On Semi-Classical Subellipticity

4.1 Introduction

The references for this lecture are papers by Davies [Da2], Zworski [Zw],
Dencker–Sjöstrand–Zworski [DeSjZw], Lerner [Le] (and references therein).

We would like to show how the microlocal techniques (suitably adapted
to the semi-classical context) permit to recover or complete the previous
results. We will see in the last lecture how one can also analyze the transition
between the elliptic region and the non elliptic one. We have already seen
that many results of non-existence of approximate null solutions are just the
consequence of “elliptic” semi-classical results. As a second step, we can look
if, at non-elliptic points, some subellipticity condition is satisfied, starting
by 1

2 -semi-classical subellipticity. This would again imply the same type of
results.

Conversely, if the operator is not subelliptic, one can try to construct
directly WKB solutions in the form a(x, h) exp−ϕ(x)

h with ϕ admitting a
minimum at some point x0 or to apply more general theorems in semi-
classical analysis. We start in the next subsection by a typical result of the
last alternative.
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4.2 Non Subellipticity: Generic Result

The main relevant theorem in our context can be stated in the following way
(see [DeSjZw]). One considers an h-pseudodifferential Ah := a(x, hDx) with
principal symbol a0 and one is looking for a simple criterion under which 0
belongs to the h family pseudospectrum of Ah.

Theorem 4.1. Let us assume that at a point (x0, ξ0), we have

a0(x0, ξ0) = 0 , {Re a0, Im a0}(x0, ξ0) < 0 . (75)

Then there exists an L2-normalized solution uh, whose h-wave front is
(x0, ξ0), and such that (x0, ξ0) is not in the h-wave front of Ahuh.

We recall that, for a bounded family of L2 functions vh, we say that a point
(y, η) is not in the h-wave front set,4 if there exists a C∞

0 function χ equal to
1 in the neighborhood of y, such that (Fhχvh)(ξ) := h−n

2 χ̂vh(ξ/h) = O(h∞)
in a neighborhood of η.

Another (equivalent) definition is to use the Fourier–Bros–Iagolnitzer
(which will be familiar to the users of the Gabor transform) as intensively
developed by J. Sjöstrand [DiSj].

We say that (x0, ξ0) is not in the h-Wave front set of a bounded family uh

in L2 if the function

(x, ξ) �→ h− 3n
4

∫
exp

i

h
(x − y) · ξ exp− (x − y)2

2h
uh(y) dy ,

is O(h∞) in some (h-independent) neighborhood of (x0, ξ0).

Applications
Let us see what this theorem say for the two examples we have already met:
the Davies example and the Kelvin–Helmholtz example.
In the first case, we have

Re a0(x, ξ) = ξ2 + Re V (x) − Re z0 , Im a0(x, ξ) = Im V (x) − Im z0 . (76)

The Poisson Bracket at (x0, ξ0) is

{Re a0, Im a0}(x0, ξ0) = 2ξ0Im V ′(x0) , (77)

and we recall that ξ0 �= 0 with ξ2
0 determined. So if ImV ′(x0) �= 0, (which

corresponds to k = 0 in Davies–Pravda theorem), the non-subelliptic theorem
applies for the right choice of the sign x0.

In the second case, we send back the reader to Formula (74).

4 Another terminology used for example in [Rob] is to speak of frequency set.
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4.3 Link with the Standard Non-Hypoellipticity Results
for Operators of Principal Type

In the theory of Partial Differential Equations, Theorem 4.1 corresponds to
a result of non-hypoellipticity. The basic simplest model is Dx + ixDt, which
is known to be non hypoelliptic microlocally at (0, 0) in the direction (0,−1).
Hence it is not hypoelliptic. But one should keep in mind that the link be-
tween the two problems is microlocal. As already explained in the lectures by
N. Lerner [Le] (see also [Trev]), the link between the two theories is through
the partial Fourier transform in the t-variable. For an operator in the form
Dx+ib(x)Dt, we first get the family in τ , Dx+ib(x)τ , that we have to analyze
for |τ | large. With h = 1

|τ | , we get two semi-classical families of operators to
analyze hDx ± ib(x), each one corresponding to a microlocal analysis in the
direction (0, 1) or (0,−1).

4.4 Elementary Proof for the Non-Subelliptic Model

We give an elementary proof (cf. [Mar]) under the additional assumption that

a0(x, iξ) ∈ R , ∀(x, ξ) ∈ R
2 , (78)

which appears to be satisfied for the two last physical models, which will be
analyzed in the next section, but is not satisfied for the Davies example and
the Kelvin–Helmholtz model.
In this case, we define the real symbol

q0(x, ξ) = a0(x, iξ) , ∀(x, ξ) ∈ R
2 ,

and we look for a point (x0, 0) such that

q0(x0, 0) = 0 ,

and for a non negative real phase ϕ defined in a neighborhood of x0 such
that ϕ(x0) = 0 admitting at x0 a local minimum and solution of

q0(x, ϕ′(x)) = 0 . (79)

Under the condition that ∂ξq0(x0, 0) it is immediate to find ϕ by the
implicit function theorem.

The first natural condition for having a minimum is then to see under
which condition one has

ϕ′′(x0) > 0 .
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Differentiating the eikonal equation (79), we obtain

(∂xq0)(x, ϕ′(x)) + (∂ξq0)(x, ϕ′(x))ϕ′′(x) = 0 ,

hence

ϕ′′(x0) = −∂xq0(x0, 0)
∂ξq0(x0, 0)

.

So we are done if the r.h.s. is strictly positive:

−∂xq0(x0, 0)
∂ξq0(x0, 0)

> 0 . (80)

Let us now control that this condition can be recognized as the condition of
the theorem.
From the relations

∂xq0(x, ξ) = ∂xa0(x, iξ) , ∂ξq0(x, ξ) = i∂ξa0(x, iξ) ,

we get at any point (x, 0):

∂xIm a0(x, 0) = 0 , ∂ξRe a0(x, 0) = 0
∂xRe a0(x, 0 = ∂xq0(x, 0) , ∂ξIm a0(x, 0) = −∂ξq0(x, 0) .

So this gives the relation:

{Re a0, Im a0}(x, 0) = ∂xq0(x0, 0)∂ξq0(x0, 0) ,

and the result becomes clear.
The second step is to construct a quasimode in the form

uh := b(x, h) exp−ϕ(x)
h

,

with
b(x, h) ∼

∑
j≥0

bj(x)hj .

The equation for b0 reads

(∂ξq0)(x, ϕ′(x))b′0(x) +
(

ϕ′′(x)
2

(∂2
ξ q0)(x, ϕ′(x)) + q1(x, ϕ′(x))

)
b0(x) = 0 ,

where q1 is the “subprincipal” symbol. One can always solve this equation
with b0(x0) = 1 (see (67)).

Remark 4.1. When the first Poisson bracket of a0 and a0 is 0 (which is
equivalent to ∂xq0(x, 0) = 0), one can find a criterion involving higher order
brackets. See [Pra3], [Mar] and the standard results on subelliptic operators
obtained in the seventies.
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We are in a particular case of the following more general situation. We look
for solutions of a(x, hDx)uh = O(h∞) which are localized in a neighborhood
of a point (x0, ξ0) such that

a0(x0, ξ0) − z = 0 , (∂ξa0)(x0, ξ0) �= 0 .

In addition, we have

−i(ad a0)k({a0, a0})(x0, ξ0) = 0 ,

for k < k0 and
−i(ad a0)k0({a0, a0})(x0, ξ0) > 0 ,

where ad p is the operator of commutation

(ad p)q = {p, q} .

This time we have to take a complex phase.

4.5 1
2

Semi-Classical Subellipticity

When the principal symbol is not elliptic, the best we can hope is a subelliptic
result. The next theorem corresponds to the first (and the most generic) result
of this type.

Theorem 4.2 ( 1
2 -Subellipticity). If (uh)h∈]0,h0] is an L2 normalized solu-

tion in the domain of Ah such that Ahuh = O(h∞), then if for some (x0, ξ0)
we have

a0(x0, ξ0) = 0 , {Re a0, Im a0}(x0, ξ0) > 0 ,

then (x0, ξ0) does not belong to the h-wave front set of the family uh.

Remark 4.2. In PDE theory this corresponds to the simplest result of mi-
crolocal hypoellipticity. The basic simplest model is Dx + ixDt, which is
known to be hypoelliptic (with loss of 1

2 derivatives microlocally at (0, 0) in
the direction (0, 1)).

We will come back later in the last lecture to high order subellipticity.

Remark 4.3. Note that the elliptic theory simply says that if z �∈ Σ(p), then
z is not in the pseudospectrum of −h2∆ + V . So what remains is simply a
more precise analysis at ∂Σ(p).

About the Proof
We refer to the lectures of N. Lerner [Le]. Let us just sketch the semi-classical
proof. If we write
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Ah = Bh + iCh ,

with Bh and Ch selfadjoint respectively of principal symbol Re a0 and Im a0,
the basic point is that

A∗
hAh = B2

h + C2
h + i[Bh, Ch] ,

and to observe that i
h [Bh, Ch] is positive elliptic at the points where Ah is

not elliptic.
We can use rather weak forms of the Garding inequality. We refer to the lec-
tures of N. Lerner ([Le]) for discussions around this point and the Fefferman–
Phong inequality.

Remarks 4.3

• Here we gave the impression that everything is done globally but let us now
emphasize that one has to do very often the argument microlocally.

• Note that we do not really need this result. In the case of the symbol appear-
ing in Kelvin–Helmholtz model the sign of the Poisson bracket at (x0, ξ0)
is opposite to the sign at (x0,−ξ0).
This will not be the case for the two next models for which we will have
ξ0 = 0 at the non-elliptic points.

5 Lecture 4: Other Non Self-Adjoint Models Coming
from Hydrodynamics

5.1 Introduction

The two next models are deduced from the mass conservation and the mo-
mentum conservation equation of the Euler equation, and differ through the
modelling of the energy equation. For simplicity the systems are written in
R

2
x̃,ỹ × Rt (instead of R

3
x̃,ỹ,z̃ × Rt).

The density of the fluid satisfies, for some strictly positive constant ρa > 0 ,

ρ(x̃, ỹ) → ρa when x̃ → +∞ ,

and the velocity of the fluid satisfies, for some Va > 0,

U := (u, v) → (−Va, 0) when x̃ → +∞ .

ρa is the density of the ablated fluid and Va the modulus of the velocity of
the ablated fluid.

The Rayleigh model with convection assumes that the perturbation of the
velocity is incompressible. This means that there exists a function U0(x̃),
called the convective velocity, such that
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div (U − U0) = 0 .

The system will be denoted by (RC) and writes

(RC)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ + ∂x̃(ρu) + ∂ỹ(ρv) = 0 ,
∂t(ρu) + ∂x̃(ρu2 + p) + ∂ỹ(ρuv) = −ρg ,

∂t(ρv) + ∂x̃(ρuv) + ∂ỹ(ρv2 + p) = 0 ,

div (U − U0) = 0 ,

where the unknowns are the density ρ, the velocity (u, v) and the pressure p .
The ablation front model uses an energy equation with heat conduction.

The enthalpy is defined by
h = CpT , (81)

With T (t, x̃, ỹ) denoting the temperature of the fluid (at a point x̃, ỹ and a
time t) and Cp being a constant characterizing the calorific capacity of the
fluid, the enthalpy satisfies the equation:

ρ(∂t + U · ∇)h − (∂t + U · ∇)p = −divJq (82)

Here Jq is the heat flux given by the Fourier conduction law

Jq = −λ(T )∇T .

In this law, λ(T ) is proportional to a power of the temperature, that is sat-
isfying, for some constants κ > 0 and ν > 0,

λ(T ) = κT ν .

Note that these formulas assume that T > 0 and consequently, with p related
with T as below in (83) to the condition p > 0. The parameter ν is called the
conduction index.
We now write the perfect gas relation

p = ρT (Cp − Cv) , (83)

where Cv is the calorific capacity at constant volume. Cp/Cv is 5/3. Starting
from (82) and then using (81), (83) and the first equation in (RC), we get:

Cp ρT div U + Cv(∂t + U · ∇)ρT + div Jq = 0 . (84)

We shall not analyze this model, in particular because this model has no
stationary solution. So the physicists use other models for which we can just
explain (without being in any way rigorous) how they can be obtained.
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5.2 Quasi-Isobaric Model (Kull and Anisimov)

The starting point consists in replacing the perfect gas relation by the
relation:

ρT = D0 , (85)

where D0 is a constant.
Implementing (85) in (84) gives:

D0Cp divU + divJq = 0 .

This constant is identified through the hypothesis that T → Ta, Ta > 0,
when x̃ goes to +∞ (temperature of the ablated fluid).

Hence
D0 = ρaTa and T =

ρaTa

ρ
.

For a derivation of this model, see [KullA], [Go,Mas,La3]. A similar model
arises also in the Low Mach approximation (see [Li]).
The system of equations writes

(KA)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ + ∂x̃(ρu) + ∂ỹ(ρv) = 0 ,
∂t(ρu) + ∂x̃(ρu2 + p) + ∂ỹ(ρuv) = −ρg ,

∂t(ρv) + ∂x̃(ρuv) + ∂ỹ(ρv2 + p) = 0 ,

div (U − κ
Cpρa

T ν
a (ρa

ρ )ν∇ρa

ρ ) = 0 ,

where the unknowns are the functions (t, x̃, ỹ) �→ (ρ, u, v, p) .
Of course we can recover T by the equation ρT = ρaTa , but in this approxi-
mation, we will no more impose that the perfect gas relation is satisfied when
pursuing the analysis. So the solution of (KA) will not be satisfied with p
constant as we could have thought by combining previous equations.

5.3 Stationary Laminar Solution

Both systems are studied around a stationary laminar (independent of ỹ and
t) solution of the equations.

For the system (RC), we are given an arbitrary convective velocity U0,
and for the system (KA) it is deduced from the energy equation. In both
cases a reference length L0 plays an important role (for defining in which
asymptotic regime we are).

For the system of Rayleigh with convection,

U0(x̃) = (ũ0(x̃), 0) ,
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with
ũ0(x̃) = u0(

x̃

L0
) .

For the ablation front model,

L0 = κ
T ν+1

a

CpρaVa
.

We use the rescaled variable
x :=

x̃

L0
.

The stationary laminar solution is given by

(x̃, ỹ) �→ (ρ̃0(x̃), ũ0(x̃), 0, p̃0(x̃))

with
ρ̃0(x̃) = ρ0( x̃

L0
) , p̃0(x̃) = p0( x̃

L0
) .

Here ρ0, u0, p0 are functions on R

{
ρ0(x)u0(x) = −ρaVa ,
d
dx

(
ρ0(x)u0(x)2 + p0(x)

)
= −ρ0(x)gL0 .

Note that p0 is determined modulo a constant C0 by:

ρ0(x)u0(x)2 + p0(x) = −gL0

∫ x

0

ρ0(t)dt + C0 .

Finally, we introduce the adimensionalized density profile �(x) which is
the function

�(x) =
ρ0(x)
ρa

.

5.4 From the Physical Parameters to the Relevant
Mathematical Parameters

Following [CCLaRa], we can now associate with the physical parameters, g,
L0, Va, k, the parameters

α =
√

gkL0

Va
, β = Va

√
k

g
,

and the relevant constants of this study (the constant σc stands for the
Rayleigh with convection model and the constant σa is characteristic of the
ablation front model)
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h =
1

kL0
=

1
αβ

, σc =
h

1
2

β
, σa =

h2

β2
.

These constants are linked to the reduced wave number

ε = kL0 ,

and the Froude number,

Fr =
V 2

a

gL0
.

They are linked to α and β through

Fr =
β

α
, ε = αβ .

From the growth rate γ̄, we deduce two dimensionless growth rates

γ =
γ̄√
gk

,

and

Γ =
γ̄

kVa
=

γ

β
. (86)

The growth rate γ is the growth rate generally used in the classical
Rayleigh–Taylor analysis, and the growth rate Γ is the one relevant in the
semiclassical regime, that we study here.

As a conclusion, Semi-classical analysis can be applied when the Froude
Number is small enough.

5.5 The Convection Velocity Model

In our rescaled variable x, the linearized system writes (with q4 = r4� − q1):

(LRC)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dq1
dx + αγ(�2r4 − �q1) − αβ�q3 = 0 ,
dq2
dx + αγq1 + αβq3 + α

β (�2r4 − �q1) = 0 ,

dq3
dx − αβ(q2 + 2q1+q4

� ) − αγ�q3 = 0 ,

dr4
dx − αβq3 = 0 .

Here (q1, q2, q3, q4) correspond to infinitesimal variation of the new un-
knowns (ρu, ρu2 + p, ρuv, u).
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This system rewrites, with dh = h d
dx ,

dh

⎛
⎜⎜⎝

q1

q2

q3

r4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

−Γ� 0 −� Γ�2

Γ − �
β2 0 1 �2

β2

− 1
� −1 −Γ� −1

0 0 −1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

q1

q2

q3

r4

⎞
⎟⎟⎠ = 0 .

The main point is now that we can reduce the analysis of the system to the
analysis of one equation.

Proposition 5.1. The C4-valued function (q1, q2, q3, r4) is a solution of the
linearized system (LRC) if and only if q4 := r4�− q1 belongs to the kernel of
the operator (ELRC),

Pc(x, 1
i h

d
dx , h, σc, Γ )

:= dh[(dh − Γ�)(dh( 1
�′ (dh − Γ�))) − 2

�′ (dh − Γ�) + h
� ]

+σ2
c� + dh( 1

�′ (dh − Γ�)) + Γ ( �
�′ (dh − Γ�) − h) .

Here the interesting point is that we have only two effective parameters (h, σc)
which will make the discussion about various asymptotic regimes easier. The
semi-classical regime will correspond to fix σc > 0 and to analyze the question
when h → 0.

The semi-classical principal symbol is

(x, ξ) �→ P0
c (x, ξ) := − 1

�′
(iξ − Γ�)2(ξ2 + 1) + �σ2

c . (87)

Assumption 1
The profile � satisfies:

1. � ∈ C∞(R; ]0, 1[)
2. limx→−∞ �(x) = �− ≥ 0
3. limx→+∞ �(x) = �+ = 1
4. �′ > 0
5. lim|x|→+∞

�′(x)
�(x) = 0

Remark 5.1. The reader should be aware that, in comparison with the two
first models, we have changed the convention in order to be coherent to the
reference [HelLaf2] in which the reader can find additional details.

Assumption 2
The maximum of �′

� is attained at a unique xmax:

0 <
�′

�
(xmax) := (ϑmax

c )2 ,
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and the map x �→ �′(x)
�(x) is strictly increasing over ] − ∞, xmax[ and then

strictly decreasing over ]xmax,+∞[ .

Local Ellipticity Condition
The imaginary part of the symbol is

ImP0
c (x, ξ) =

2ξ

�′(x)
Γ �(x)(ξ2 + 1) .

It is non zero except for
ξ = 0 .

Looking at the real part restricted to ξ = 0, we obtain that

ReP0
c (x, 0) = −Γ 2 �2(x)

�′(x)
+ �(x)σ2

c .

This leads us to the following local ellipticity condition:

Γ

σc
> ϑmax

c .

5.6 The Model for the Ablation Regime

Similarly, the linearization of the system (KA) leads to the following system

(LKA) dhq + M0(�(x))q = 0 ,

where

q =

⎛
⎜⎜⎜⎜⎝

q1

q2

q3

p4

q5

⎞
⎟⎟⎟⎟⎠ .

and the matrix is

M0(�) =

⎛
⎜⎜⎜⎜⎝

0 0 � hΓ�ν+2 0
Γ 0 −1 h

β2 �ν+2 0
2
� 1 −Γ� h�ν 0
1
� 0 0 h�ν −1
0 0 1 −1 0

⎞
⎟⎟⎟⎟⎠ .

Proposition 5.2. The C5-valued function q is a solution of (LKA) if and
only if its fourth component p4 is in the kernel of the operator (ELKA):
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Pa(x, 1
i dh, h, σa, Γ ) :=[
dh(dh − Γ�)dh − (dh − Γ�)

]
×

× �
�′

[
dh(dh + h�ν) − 1 − hΓ�ν+1

]
+h

(
dh (dh − Γ�) (dh(dh + h�ν) − 1)

)
+h(d2

h − 1) + σa �ν+2 .

The principal symbol (in the semi-classical sense) is

P0
a(x, ξ, σa, Γ ) =

�(x)
�′(x)

(iξ − Γ�(x))(ξ2 + 1)2 + σa�(x)ν+2 . (88)

The analysis of the zeroes of the symbol is similar to the other model. We
have:

ReP0
a(x, ξ, σa, Γ ) =

�(x)
�′(x)

(−Γ�(x))(ξ2 + 1)2 + σa�(x)ν+2 ,

and

ImP0
a(x, ξ, σa, Γ ) =

�(x)
�′(x)

ξ(ξ2 + 1)2 .

The zero set of ImP0
a is in {ξ = 0} and:

ReP0
a(x, 0, σa, Γ ) =

�(x)
�′(x)

(−Γ�(x)) + σa�(x)ν+2 ,

which leads to the analysis of the solutions of:

σa�(x)ν�′(x) = Γ

or
σa�(x)2ν+1(1 − �(x)) = Γ .

Hence we have first to analyze the variation of the function:

[0, 1] � t �→ θ(t) := (1 − t)t2ν+1 . (89)

If ν > 0, θ is an application from ]0, 1[ onto ]0, ϑmax
a ], with

ϑmax
a =

(2ν + 1)2ν+1

(2ν + 2)2ν+2
. (90)

0 < ϑmax
a < 1 ,

and the maximum in ]0, 1[ is obtained at

tmax
a =

2ν + 1
2ν + 2

.
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For L ∈]0, ϑmax
a [, two solutions of θ(t) = L, satisfying:

0 < t−(L) < tmax
a < t+(L) .

x �→ �(x) is a bijection of R onto ]0, 1[.

For any L ∈]0, ϑmax
a [, there exist two points x±(L) such that

�(x±(L)) = t±(L) ,

and consequently
θ(�(x±(L))) = L .

We note also that, when ξ = 0,

(∂P0
a/∂ξ)(x, 0) = i

�(x)
�′(x)

�= 0 ,

which shows that P0
a is also of principal type.

Finally when Γ
σa

> ϑmax
a , is satisfied, one gets the local ellipticity of the

symbol P0
a .

5.7 Semi-Classical Regimes for the Ablation Models

Let us emphasize at this stage the analogies between the three last physical
models. As in the case of the Kelvin–Helmholtz model, two different “effec-
tive” parameters have been exhibited corresponding to each situation of the
convective velocity problem (parameter denoted by σc) and in the ablation
front problem (parameter denoted by σa), together with h. Both problems
lead to a h-differential equation on one of the unknowns, and consist in finding
a function u(x, h) such that

Pp(x,
1
i
h

d

dx
, h, σp, Γ )u = 0 ,

where Pp is a fifth or fourth order h-differential operator. The main results
will take the following form:

Under suitable relations on the reference density profile at x̃ → ±∞, then, if

Γ ∈]0, ϑmax
p σp[ ,

then 0 belongs to the h-family-pseudospectrum of

Pp(x,
1
i
h

d

dx
, h, σp, Γ ) .



72 B. Helffer

More precisely there exists xp(Γ, σp) such that there exists a WKB solution of

Ppu = O(h∞)

localized in the neighborhood of the point xp(Γ, σp).

Note that in the three models there is no quantization of Γ . The result is
with this respect quite different from the solution of the problem linked with
pure Rayleigh–Taylor instability.

The assumptions are essentially optimal in this semi-classical regime:
Under the same assumptions on the density profile, and, for Γ > ϑmax

p σp ,
no approximate (in the WKB sense) bounded solution can be constructed, if
h is small enough.

This was a consequence of the ellipticity of the operator for this regime of
operators. Let us now look at what is obtained by application of Theorem 4.1.

5.7.1 Application to the (ELRC) Model

We start from a0 = Q0
c :

a0(x, ξ) = (ξ + iΓ�)2(ξ2 + 1) + ��′σ2
c .

We obtain
Re a0(x, ξ) = (ξ2 − Γ 2�2)(ξ2 + 1) + ��′σ2

c ,

and
Im a0(x, ξ) = 2Γ�ξ(ξ2 + 1) .

Let us compute the Poisson bracket at (xc, 0)

{Re a0, Im a0}(xc, 0)
= −2Γ�(xc)[−2Γ 2�(xc)�′(xc) + σ2

c (��′)′(xc)] ,

which is effectively strictly negative and Theorem 4.1 can be applied.

5.7.2 Application to the (ELKA) Model

The principal symbol is here:

P0
a(x, ξ) =

�(x)
�′(x)

(iξ − Γ�(x))(ξ2 + 1)2 + σa�ν+2 . (91)

Because we are interested in null solutions, it is equivalent to apply the cri-
terion for

a0(x, ξ) = (iξ − Γ�(x))(ξ2 + 1)2 + σa�(x)2ν+2(1 − �(x)) .
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We get
Re a0 = −Γ�(x)(ξ2 + 1)2 + σa�(x)2ν+2(1 − �(x)) ,

and
Im a0 = ξ(ξ2 + 1)2 .

A point in a−1
0 (0) should satisfy ξ = 0, and for the real part:

−Γ�(x0) + σa�(x0)2ν+1(1 − �(x0)) = 0 .

Let us compute the Poisson bracket at (x0, 0):

{Re a0, Im a0}(x0, ξ0) = Γ�′(x0)
−σa(2ν + 2)�′(x0)�2ν+1(x0)
+σa(2ν + 3)�′(x0)�2ν+2(x0) .

Dividing by �′(x0) (which is positive), we get that this bracket is negative if:

Γ
σa

< (2ν + 2)�2ν+1(x0) − (2ν + 3)�2ν+2(x0)
= �2ν+1(x0) ((2ν + 2) − (2ν + 3)�(x0)) .

(92)

Hence Theorem 4.1 can be applied if this last condition is verified.

5.8 Subellipticity II: At the Boundary of Σ(a0)

In the case of our example the neighborhood of the maximal Γ , for which one
can construct quasimodes can be analyzed by analyzing the iterated brackets.
One can then apply the results, which were recalled in [DeSjZw] which are
related to the much older theory of the subelliptic operators (see [Ho3] and
references therein). More recent work have been performed by N. Lerner (See
his lectures in this conference) and by K. Pravda-Starov in his quite recent
PhD [Pra2].

The theorem in [DeSjZw] reads:

Theorem 5.1. We assume that a0 is a C∞ bounded function together with
all its derivatives and that our operator is an h-pseudodifferential operator
with principal symbol (x, ξ) �→ a0(x, ξ). Then if z0 ∈ ∂Σ(a0) is of finite type
for a0 of order k ≥ 1, then k is even and there exists C > 0 such that, for h
small enough,

||(A(h) − z0)−1|| ≤ C h− k
k+1 . (93)

Here Σ(a0) is the closure of the numerical range of a0.

The condition that a0 is of finite type for the value z0 is that a0 is of
principal type (i.e. ∇x,ξa0(x, ξ) �= 0) at any point (x, ξ) such that a0(x, ξ) =
z0 and that at these points there is at least one non zero (possibly iterated)
bracket of Re a0 and Im a0.
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Remarks 5.2

• The authors in [DeSjZw] mention that one can reduce more general cases
to this one by use of the functional calculus. This can be verified more
directly in our case.

• In the case of (ELRC), it is enough to compose on the left by (I−h2∆)−2.
In the second case, the situation is a little more delicate. See [HelLaf2].

Let us show how this theorem can be applied in this case, with k = 2.

Application to (ELRC) Model
Coming back to this model, we first observe that

{Re a0 , Im a0}(x, ξ) = −2Γ�[−2Γ 2��′ + σ2
c (��′)′] + O(ξ2) , (94)

When
Γ = Γc := ϑmax

c σc , (95)

we can verify that

a0(xc, 0) = 0 , {Re a0 , Im a0}(xc, 0) = 0 ,

and that, under the additional assumption that the point xc is a non degen-
erate maximum of �′

� ,

{Im a0, {Re a0, Im a0}}(x0, 0) �= 0 . (96)

This implies that the operator is of type 2.

Application to the (ELKA) Model
We consider, after a small change, as principal symbol the function:

(x, ξ) �→ −Γ�(x) + σa�(x)2ν+2(1 − �(x))(1 + ξ2)−2 + iξ . (97)

Here we choose Γ/σa = ϑmax
a , where ϑmax

a is defined in (90). The Pois-
son bracket {Re a0, Im a0} vanishes at (x0, 0), where x0 is the point such as
�(x0) = 2ν+1

2ν+2 . Now the computation of the first iterated bracket gives

{Im a0 , {Im a0 , Re a0}}(x0, 0)
= (2ν + 1)�′(x0)2�(x0)2ν �= 0 .

(98)

As in the case of the ellipticity zone, one can eliminate the problem at ∞.

Remark 5.2. The Dencker–Sjöstrand–Zworski Theorem shows that there ex-
ists C > 0 and h0 such that, when Γ belongs to ]Γp−Ch

2
3 , Γp] and h ∈]0, h0],

then no approximate solution in the kernel of Pp(x, 1
i dh, h, σp, Γ ) exists.
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classique. Annales de l’IHP (section Physique théorique), Vol. 41, n◦3, p.
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[Ho3] L. Hörmander. The analysis of Pseudo-differential operators. Grundlehren der
mathematischen Wissenschaften 275, Springer, Berlin (1983–1985).

[KeSu] M. Kelbert and I. Suzonov. Pulses and other wave processes in fluids. Kluwer.
Acad. Pub. London Soc.

[KlSc90] M. Klein and E. Schwarz. An elementary approach to formal WKB expansions
in Rn. Rev. Math. Phys. 2 (4), p. 441–456 (1990).

[Kull] H.J. Kull. Incompressible description of Rayleigh–Taylor instabilities in laser-
ablated plasmas. Phys. Fluids B 1, p. 170–182 (1989).

[KullA] H.J. Kull and S.I. Anisimov. Ablative stabilization in the incompressible
Rayleigh–Taylor instability. Phys. Fluids 29 (7), p. 2067–2075 (1986).
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