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The Classical Networks

In this chapter, we discuss two families of queueing networks whose Markov
processes are positive recurrent when ρ < e, and whose stationary distribu-
tions have explicit product-like formulas. The first family includes networks
with the FIFO discipline, and the second family includes networks with the
PS and LIFO disciplines, as well as infinite server (IS) networks. We intro-
duced the first three networks in Section 1.2; we will define infinite server
networks shortly. These four networks are sometimes known as the “classical
networks”. Together with their generalizations, they have had a major influ-
ence on the development of queueing theory because of the explicit nature
of their stationary distributions. For this reason, we present the basic results
for the accompanying theory here, although only the FIFO discipline is HL.
These results are primarily from [BaCMP75], and papers by F. P. Kelly (such
as [Ke75] and [Ke76]) that led to the book [Ke79].

In Section 2.1, we state the main results in the context of the above four
networks. We first characterize the stationary distributions for networks con-
sisting of a single station, whose jobs exit from the network when service is
completed, without being routed to another class. We will refer to such a sta-
tion as a node. We then characterize the stationary distribution for networks
with multiple stations and general routing. Since all states will communicate,
the Markov processes for the networks will be positive recurrent, and hence
the networks will be stable.

In the remainder of the chapter, we present the background for these results
and the accompanying theory. In Section 2.2, we give certain basic properties
of stationary and reversible Markov processes on countable state spaces that
we will use later. Sections 2.3 and 2.4 apply this material to obtain generaliza-
tions of the node-level results in Section 2.1 to the two families of interest to
us. The first family, homogeneous nodes, includes FIFO nodes under certain
restrictions, and the second family, symmetric nodes, includes PS, LIFO, and
IS nodes.

The concept of quasi-reversibility is introduced in Section 2.5. Using quasi-
reversibility, the stationary distributions of certain queueing networks can be
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18 2 The Classical Networks

written as the product of the stationary distributions of nodes that correspond
to the stations “in isolation”. These queueing networks include the FIFO, PS,
LIFO, and IS networks, and so generalize the network-level results in Section
2.1. Except for Theorem 2.9, all of the material in this chapter is for queueing
networks with a countable state space.

The main source of the material in this chapter is [Ke79]. Section 2.2 is
essentially an abridged version of the material in Chapter 1 of [Ke79]. Most
of the material in Sections 2.3-2.5 is from Sections 3.1-3.3 of [Ke79], with
[Wa88], [ChY01], [As03], and lecture notes by J.M. Harrison having also been
consulted. The order of presentation here, starting with nodes in Sections 2.3
and 2.4 and ending with quasi-stationarity in Section 2.5, is different.

2.1 Main Results

In this section, we will give explicit formulas for the stationary distributions
of FIFO, PS, LIFO, and infinite server networks. Theorems 2.1 and 2.2 state
these results for individual nodes, and Theorem 2.3 does so for networks. In
Sections 2.3-2.5, we will prove generalizations of these results.

The range of disciplines that we consider here is of limited scope. On
the other hand, the routing that is allowed for the network-level results will
be completely general. As in Chapter 1, routing will be given by a mean
transition matrix P = {Pk,�, k, � = 1, . . . ,K} for which the network is open.1

For all queueing networks considered in this section, the interarrival times
are assumed to be exponentially distributed. When the service times are also
exponentially distributed, the evolution of these queueing networks can be
expressed in terms of a countable state Markov process. By enriching the state
space, more general service times can also be considered in the countable state
space setting. This will be useful for the PS, LIFO, and IS networks.

In Section 1.1, we introduced the M/M/1 queue with external arrival rate
α = 1. By employing the reversibility of its Markov process when m < 1, we
saw that its stationary distribution is given by the geometric distribution in
(1.1). Allowing α to be arbitrary with αm < 1, this generalizes to

π(n) = (1 − αm)(αm)n for n = 0, 1, 2, . . . . (2.1)

For a surprisingly large group of queueing networks, generalizations of (2.1)
hold, with the stationary distribution being given by products of terms similar
to those on the right side of (2.1).
1 In the literature (such as in [Ke79]), deterministic routing is frequently employed.

For these lectures, we prefer to use random routing, which was used in [BaCMP75]
and has been promulgated in its current form by J. M. Harrison. By employing
sufficiently many routes, one can show the two approaches are equivalent. We
find the approach with random routing to be notationally more flexible. The
formulation is also more amenable to problems involving dynamic scheduling,
which we do not cover here.
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We first consider queueing networks consisting of just a single node. That
is, jobs at the unique station leave the network immediately upon completion
of service, without being routed to other classes. Classes are labelled k =
1, . . . ,K. The nodes of interest to us in this chapter fall into two basic families,
depending on the discipline.

The first family, homogeneous nodes, will be defined in Section 2.3. FIFO
nodes, which are the canonical example for this family, will be considered here.
For homogeneous nodes, including FIFO nodes, we need to assume that the
mean service times mk at all classes k are equal. In order to avoid confusion
with the vector m, we label such a service time by ms (with “s” standing
for “station”). We will refer to such a node as a FIFO node of Kelly type. In
addition to assuming the interarrival times are exponentially distributed, we
assume the same is true for the service times.

The state x of the node at any time will be specified by an n-tuple of the
form

(x(1), . . . , x(n)), (2.2a)

where n is the number of jobs in the node and

x(i) ∈ {1, . . . , K} for i = 1, . . . , n (2.2b)

gives the class of the job in the ith position in the node. We interpret i =
1, . . . , n as giving the order of arrival of the jobs currently in the node; because
of the FIFO discipline, all service is directed to the job at i = 1. The state
space S0 will be the union of these states. The stochastic process X(t), t ≥ 0,
thus defined will be Markov with a countable state space. For consistency with
other chapters, we interpret vectors as column vectors, although this is not
needed in the present chapter (since matrix multiplication is not employed).

All states communicate with the empty state. So, if X(·) has a stationary
distribution, it will be unique. Since there is only a single station, a stationary
distribution will exist when the node is subcritical. Theorem 2.1 below gives an
explicit formula for the distribution. As in Chapter 1, αk denotes the external
arrival rates at the different classes k; ρ denotes the traffic intensity and is in
the present setting given by the scalar

ρ = ms
∑

k

αk. (2.3)

As elsewhere in this chapter, when we say that a node (or queueing network)
has a stationary distribution, we mean that its Markov process, on the chosen
state space, has this distribution. (For us, “distribution” is synonymous with
the somewhat longer “probability measure”.)

Theorem 2.1. Each subcritical FIFO node of Kelly type has a stationary
distribution π, which is given by

π(x) = (1 − ρ)
n∏

i=1

msαx(i), (2.4)
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for x = (x(1), . . . , x(n)) ∈ S0.

The stationary distribution π in Theorem 2.1 can be described as follows.
The probability of there being a total of n jobs in the node is (1−ρ)ρn. Given
a total of n jobs, the probability of there being n1, . . . , nK jobs at the classes
1, . . . ,K, with n = n1 + . . . + nK and no attention being paid to their order,
is

ρ−n

(
n

n1, . . . , nK

) K∏

k=1

(msαk)nk . (2.5)

Moreover, given that there are n1, . . . , nK jobs at the classes 1, . . . , K, any or-
dering of the different classes of jobs is equally likely. Note that since all states
have positive probability of occurring, the process X(·) is positive recurrent.
Consequently, the node is stable.

The other family of nodes that will be discussed in this chapter, symmetric
nodes, will be defined in Section 2.4. Standard members of this family are PS,
LIFO, and IS nodes. The PS and LIFO disciplines were specified in Chapter 1.
In an infinite server (IS) node, each job is assumed to start receiving service as
soon as it enters the node, which it receives at rate 1. One can therefore think
of there being an infinite number of unoccupied servers available to provide
service, one of which is selected whenever a job enters the node. All other
disciplines studied in these lectures will have only a single server at a given
station. We note that although the PS discipline is not HL, it is related to the
HLPPS discipline given at the end of Section 5.3.

We consider the stationary distributions of PS, LIFO and IS nodes. As
with FIFO nodes, we need to assume that the interarrival times of jobs are
exponentially distributed. If we assume that the service times are also expo-
nentially distributed, then the process X(·) defined on S0 will be Markov. As
before, we interpret the coordinates i = 1, . . . , n in (2.2) as giving the order of
jobs currently in the node. For LIFO nodes, this is also the order of arrival of
jobs there. For reasons relating to the definition of symmetric nodes in Section
2.4, we will instead assume, for PS and IS nodes, that arriving jobs are, with
equal probability 1/n, placed at one of the n positions of the node, where n
is the number of jobs present after the arrival of the job. Since in both cases,
jobs are served at the same rate irrespective of their position in the node, the
processes X(·) defined in this manner are equivalent to the processes defined
by jobs always arriving at the rear of the node.

The analog of Theorem 2.1 holds for PS, LIFO, and IS nodes when the
service times are exponentially distributed. We no longer need to assume that
the service times have the same means, so in the present setting, the traffic
intensity ρ is given by

ρ =
∑

k

mkαk. (2.6)

For subcritical PS and LIFO nodes, the stationary distribution π is given by
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π(x) = (1 − ρ)
n∏

i=1

mx(i)αx(i), (2.7)

for x = (x(1), . . . , x(n)) ∈ S0. For any IS node, the stationary distribution π
is given by

π(x) =
e−ρ

n!

n∏

i=1

mx(i)αx(i). (2.8)

The stability of the infinite server node for all values of ρ is not surprising,
since the total rate of service at the node is proportional to the number of
jobs presently there.

For PS, LIFO, and IS nodes, an analogous result still holds when exponen-
tial service times are replaced by service times with more general distributions.
One employs the “method of stages”, which is defined in Section 2.4. One en-
riches the state space S0 to allow for different stages of service for each job,
with a job advancing to its next stage of service after service at the previous
stage has been completed. After service at the last stage has been completed,
the job leaves the node. Since the service times at each stage are assumed to
be exponentially distributed, the corresponding process X(·) for the node, on
this enriched state space Se, will still be Markov. On the other hand, the total
service time required by a given job will be the sum of the exponential service
times at its different stages, which we take to be i.i.d. Such service times are
said to have Erlang distributions.

Using the method of stages, one can extend the formulas (2.7) and (2.8),
for the stationary distributions of PS, LIFO, and IS nodes, to nodes that have
service distributions which are countable mixtures of Erlang distributions.
This result is stated in Theorem 2.2. The state space here for the Markov
process X(·) of the node is Se, which is defined in Section 2.4. The analog of
this extension for FIFO nodes is not valid.

Theorem 2.2. Each subcritical PS node and LIFO node, whose service time
distributions are mixtures of Erlang distributions, has a stationary distribution
π. The probability of there being n jobs in the node with classes x(1), . . . , x(n)
is given by (2.7). The same is true for any IS node with these service time
distributions, but with (2.8) replacing (2.7).

Mixtures of Erlang distributions are dense in the set of distribution func-
tions, so it is suggestive that a result analogous to Theorem 2.2 should hold
for service times with arbitrary distributions. This is in fact the case, although
one needs to be more careful here, since one needs to replace Se with an un-
countable state space which specifies the residual service times of jobs at the
node. More detail on this setting is given at the end of Section 2.4. Because
of the technical difficulties for uncountable state spaces, (2.7) and (2.8) are
typically stated for mixtures of Erlang distributions or other related distribu-
tions on countable state spaces. Moreover, quasi-reversibility, which we discuss
shortly, employs a countable state space setting.
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So far in this section, we have restricted our attention to nodes. As men-
tioned at the beginning of the section, the results in Theorems 2.1 and 2.2
extend to analogous results for queueing networks, which are given in Theo-
rem 2.3, below. FIFO, PS, LIFO, and IS queueing networks are the analogs
of the respective nodes, with jobs at individual stations being subjected to
the same service rules as before, and, upon completion of service at a class k,
a job returning to class � with probability Pk,�, which is given by the mean
transition matrix P . In addition to applying to these queueing networks, The-
orem 2.3 also applies to networks that are mixtures of such stations, with one
of the above four rules holding for any particular station. We also note that
the formula in Theorem 2.3 holds for Jackson networks, as a special case of
FIFO networks. The product formula for Jackson networks in [Ja63] predates
those for the other networks.

In Theorem 2.3, we assume that the service times are exponentially dis-
tributed when the station is FIFO, and are mixtures of Erlang distributions
in the other three cases. The distribution function π is defined on the state
space

S = S1 × . . . × SJ ,

where Sj = S0 if j is FIFO and Sj = Se for the other cases, and πj is defined
on Sj . (The choice of K in each factor depends on Sj .)

Theorem 2.3. Suppose that each station j of a queueing network is either
FIFO of Kelly type, PS, LIFO, or IS. Suppose that in the first three cases, the
station is subcritical. Then, the queueing network has a stationary distribution
π that is given by

π(x) =
J∏

j=1

πj(xj), (2.9)

for x = (x1, . . . , xJ ). Here, each πj is either of the form (2.4), (2.7), or (2.8),
depending on whether the station j is FIFO of Kelly type, PS or LIFO, or IS,
and αk in the formulas is replaced by λk.

Theorem 2.3 will be a consequence of Theorems 2.1 and 2.2, and of the
quasi-reversibility of the nodes there. Quasi-reversibility will be introduced in
Section 2.5. Using quasi-reversibility, it will be shown, in Theorem 2.11, that
the stationary distributions of certain queueing networks can be written as
the product of the stationary distributions of nodes that correspond to the
individual stations “in isolation”. This will mean that when service of a job at
a class is completed, the job will leave the network rather than returning to
another class (either at the same or a different station). The external arrival
rates αk at classes are replaced by the total arrival rates λk of the network
in order to compensate for the loss of jobs that would return to them. Quasi-
reversibility can be applied to queueing networks whose stations are FIFO,
PS, LIFO, or IS. By employing Theorem 2.11, one obtains Theorem 2.3 as a
special case of Theorem 2.12.



2.2 Stationarity and Reversibility 23

2.2 Stationarity and Reversibility

In this section, we will summarize certain basic results for countable state,
continuous time Markov processes. We define stationarity and reversibility,
and provide alternative characterizations. Proposition 2.6, in particular, will
be used in the remainder of the chapter.

The Markov processes X(t), t ≥ 0, we consider here will be assumed to
be defined on a countable state space S. The space S will be assumed to
be irreducible, that is, all states communicate. None of the states will be
instantaneous; we will assume there are only a finite number of transitions
after a finite time, and hence no explosions. Sample paths will therefore be
right continuous with left limits. The transition rate between states x and y
will be denoted by q(x, y); the rate at which a transition occurs at x is therefore
q(x) def=

∑
y∈S q(x, y). The embedded jump chain has mean transition matrix

{p(x, y), x, y ∈ S}, where p(x, y) def= q(x, y)/q(x) is the probability X(·) next
visits y from the state x. The time X(·) remains at a state x before a transition
occurs is exponentially distributed with mean 1/q(x).

A stochastic process X(t), t ≥ 0, is said to be stationary if (X(t1), . . . ,
X(tn)) has the same distribution as (X(t1 + u), . . . , X(tn + u)), for each
nonnegative t1, . . . , tn and u. Such a process can always be extended to
−∞ < t < ∞ so that it is stationary as before, but with t1, . . . , tn and u
now being allowed to assume any real values. When X(·) is a Markov process,
it suffices to consider just n = 1 in order to verify stationarity.

A stationary distribution π = {π(x), x ∈ S} for a Markov process X(·)
satisfies the balance equations

π(x)
∑

y∈S

q(x, y) =
∑

y∈S

π(y)q(y, x) for x ∈ S, (2.10)

which say that the rates at which mass leaves and enters a state x are the
same. We are assuming here that

∑
x∈S π(x) = 1. Since all states are assumed

to communicate, π will be unique. If π exists, then it is the limit of the dis-
tributions of the Markov process starting from any initial state. If a measure
π satisfying (2.10) with

∑
x∈S π(x) < ∞ exists, then it can be normalized so

that
∑

x∈S π(x) = 1. If
∑

x∈S π(x) = ∞, then there is no stationary distrib-
ution, and for all x, y ∈ S,

P (X(t) = � | X(0) = x) → 0 as t → ∞.

(See, e.g., [Re92] for such basic theory.)
A stochastic process X(t), −∞ < t < ∞, is said to be reversible if

(X(t1), . . . , X(tn)) has the same distribution as (X(u − t1), . . . , X(u − tn)),
for each t1, . . . , tn and u. This condition says that the process is stochasti-
cally indistinguishable, whether it is run forward or backwards in time. It is
easy to see that if X(·) is reversible, then it must be stationary. When X(·)
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is Markov, it suffices to consider n = 2 in order to verify reversibility. The
Markov property can be formulated as saying that the past and future states
of the process X(·) are independent given the present. It follows that the re-
versed process X̂(t) def= X(−t) is Markov exactly when X(·) is. If X(·) has
stationary measure π, then π is also stationary for X̂(·) and the transition
rates of X̂(·) are given by

q̂(x, y) =
π(y)
π(x)

q(y, z) for x, y ∈ S. (2.11)

A stationary Markov process X(·) with distribution π is reversible exactly
when it satisfies the detailed balance equations

π(x)q(x, y) = π(y)q(y, x) for x, y ∈ S. (2.12)

This condition says that the rate at which mass moves from x to y is the same
rate at which it moves in the reverse direction. This condition need not, of
course, be satisfied for arbitrary stationary distributions. When (2.12) holds,
it often enables one to express the stationary distribution in closed form, as,
for example, for the M/M/1 queue in Section 1.1. It will always hold for the
stationary distribution of any birth and death process, and, more generally,
for the stationary distribution of any Markov process on a tree. By summing
over �, one obtains the balance equations in (2.10) from (2.12).

An alternative characterization of reversibility is given by Proposition 2.4.
We will not employ the proposition elsewhere, but state it because it provides
useful intuition for the concept.

Proposition 2.4. A stationary Markov process is reversible if and only if its
transition rates satisfy

q(x1, x2)q(x2, x3) · · · q(xn−1, xn)q(xn, x1) (2.13)
= q(x1, xn)q(xn, xn−1) · · · q(x3, x2)q(x2, x1),

for any x1, x2, . . . , xn.

The equality (2.13) says that the joint transition rates of the Markov
process are the same along a path if it starts and ends at the same point,
irrespective of its direction along the path.

Proof of Proposition 2.4. The “only if” direction follows immediately by plug-
ging (2.12) into (2.13).

For the “if” direction, fix x0, and define

π(x) =
n∏

i=1

[q(xi−1, xi)/q(xi, xi−1)], (2.14)

where xn = x and x0, x1, . . . , xn is any path from x0 to x, with q(xi, xi−1) > 0.
One can check using (2.13) that the right side of (2.14) does not depend on the
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particular path that is chosen, and so π(x) is well defined. To see this, let P1

and P2 be any two paths from x0 to x, and P̂1 and P̂2 be the corresponding
paths in the reverse directions. Then, the two paths from x0 to itself formed
by linking P1 to P̂2, respectively P2 to P̂1, satisfy (2.13), from whence the
uniqueness in (2.14) will follow.

Assume that for given y, q(y, x) > 0. Multiplication of both sides of (2.14)
by q(x, y) implies that

π(x)q(x, y) = q(y, x)

(
n∏

i=1

q(xi−1, xi)/q(xi, xi−1

)
(q(x, y)/q(y, x))

= q(y, x)π(y).

This gives (2.12), since the case q(x, y) = q(y, x) = 0 is trivial. Since the
process is assumed to be stationary,

∑
x π(x) < ∞, and so π can be scaled so

that
∑

x π(x) = 1.

The following result says that under certain modifications of the transition
rates q(x, y), a reversible Markov process will still be reversible. It will not be
needed for later work, but has interesting applications.

Proposition 2.5. Suppose that the transition rates of a reversible Markov
process X(·), with state space S and stationary distribution π, are altered by
changing q(x, y) to q′(x, y) = bq(x, y) when x ∈ A and y �∈ A, for some A ⊆
S. Then, the resulting Markov process X ′(·) is reversible and has stationary
distribution

π′(x) =

{
cπ(x) for x ∈ A,

cbπ(x) for x �∈ A,
(2.15)

where c is chosen so that
∑

x π′(x) = 1. In particular, when the state space
is restricted to A by setting b = 0, then the stationary distribution of X ′(·) is
given by

π′(x) = π(x)
/ ∑

y∈A

π(y) for x ∈ A. (2.16)

Proof. It is easy to check that q′ and π′ satisfy the detailed balance equations
in (2.12).

The following illustration of Proposition 2.5 is given in [Ke79].

Example 1. Two queues with a joint waiting room. Suppose that two inde-
pendent M/M/1 queues are given, with external arrival rates αi and mean
service times mi, and αimi < 1. Let Xi(t) be the number of customers (or
jobs) in each queue at time t. The Markov processes are each reversible with
stationary distributions as in (2.1). It is easy to check that the joint Markov
process X(t) = (X1(t),X2(t)), −∞ < t < ∞, is reversible, with stationary
distribution
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π(n1, n2) = (1 − α1m2)(1 − α2m2)(α1m1)n1(α2m2)n2 for ni ∈ Z+,0.

Suppose now that the queues are required to share a common waiting room
of size N , so that a customer who arrives to find N customers already there
leaves without being served. This corresponds to restricting X(·) to the set
A of states with n1 + n2 ≤ N . By Proposition 2.5, the corresponding process
X ′(·) is reversible, and has stationary measure

π′(n1, n2) = π(0, 0)(α1m1)n1(α2m2)n2 for (n1, n2) ∈ A.

It is often tedious to check the balance equations (2.10) in order to de-
termine that a Markov process X(·) is stationary. Proposition 2.6 gives the
following alternative formulation. We abbreviate by setting

q(x) =
∑

y∈S

q(x, y), q̂(x) =
∑

y∈S

q̂(x, y), (2.17)

where q(x, y) are the transition rates for X(·) and q̂(x, y) ≥ 0 are for the
moment arbitrary. When X(·) has stationary distribution π and q̂(x, y) is
given by (2.11), it is easy to check that

q(x) = q̂(x) for all x. (2.18)

The proposition gives a converse to this. As elsewhere in this section, we are
assuming that S is irreducible.

Proposition 2.6. Let X(t), −∞ < t < ∞, be a Markov process with transi-
tion rates {q(x, y), x, y∈S}. Suppose that for given quantities {q̂(x, y), x, y∈
S} and {π(x), x∈S}, with q̂(x, y) ≥ 0, π(x) > 0, and

∑
x π(x) = 1, that q,

q̂, and π satisfy (2.11) and (2.18). Then, π is the stationary distribution of
X(·) and q̂ gives the transition rates of the reversed process.

Proof. It follows, by applying (2.11) and then (2.18), that
∑

x∈S

π(x)q(x, y) = π(y)
∑

x∈S

q̂(y, x) = π(y)q̂(y) = π(y)q(y).

So, π is stationary for X(·). The transition rates of the reversed process are
therefore given by (2.11).

Proposition 2.6 simplifies the computations needed for the demonstration
of stationarity by replacing the balance equations, that involve a large sum
and the stationary distribution π, by two simpler equations, (2.18), which
involves just a large sum, and (2.11), which involves just π. On the other
hand, the application of Proposition 2.6 typically involves guessing q̂ and π.
In situations where certain choices suggest themselves, the proposition can be
quite useful. It will be used repeatedly in the remainder of the chapter.
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2.3 Homogeneous Nodes of Kelly Type

FIFO nodes of Kelly type belong to a larger family of nodes whose station-
ary distributions have similar properties. We will refer to such a node as a
homogeneous node of Kelly type. Such nodes are defined as follows.

Consider a node with K classes. The state x ∈ S0 of the node at any time
is specified by an n-tuple as in (2.2), when there are n jobs present at the
node. The ordering of the jobs is assumed to remain fixed between arrivals and
service completions of jobs. When the job in position i completes its service,
the position of the job is filled with the jobs in positions i+1, . . . , n moving up
to positions i, . . . , n− 1, while retaining their previous order. Similarly, when
a job arrives at the node, it is assigned some position i, with jobs previously
at positions i, . . . , n being moved back to positions i + 1, . . . , n + 1. Each job
requires a given random amount of service; when this is attained, the job
leaves the node. As throughout this chapter, interarrival times are required
to be exponentially distributed. As elsewhere in these lectures, all interarrival
and service times are assumed to be independent.

We will say that such a node is a homogeneous node if it also satisfies the
following properties:

(a) The amount of service required by each job is exponentially distributed
with mean mk, where k is the class of the job.

(b) The total rate of service supplied at the node is φ(n), where n is the
number of jobs currently there.

(c) The proportion of service that is directed at the job in position i is δ(i, n).
Note that this proportion does not depend on the class of the job.

(d) When a job arrives at the node, it moves into position i, i = 1, . . . , n, with
probability β(i, n), where n is the number of jobs in the node including
this job. Note that this probability does not depend on the class of the
job.

When the mean mk does not depend on the class k, we will say that such
a node is a homogeneous node of Kelly type. We will analyze these nodes in
this section. We use ms when the mean service times of a node are constant,
as we did in Section 2.1.

The rate at which service is directed to a job in position i is δ(i, n)φ(n).
So, the rate at which service at the job is completed is δ(i, n)φ(n)/ms. We
will assume that φ(n) > 0, except when n = 0. The rate at which a job arrives
at a class k and position i from outside the node is αkβ(i, n). We use here
the mneumonics β and δ to suggest births and deaths at a node. Of course,∑n

i=1 β(i, n) =
∑n

i=1 δ(i, n) = 1.
We have emphasized in the above definition that the external arrival rates

and service rates β and δ do not depend on the class of the job. This is crucial
for Theorem 2.7, the main result in this section. This restriction will also be
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needed in Section 2.4 for symmetric nodes, as will be our assumption that
the interarrival times are exponentially distributed. On the other hand, the
assumptions that the service times be exponential and that their means mk

be constant, which are needed in this section, are not needed for symmetric
nodes. We note that by scaling time by 1/ms, one can set ms = 1, although
we prefer the more general setup for comparison with symmetric nodes and
for application in Section 2.5.

In Section 2.5, we will be interested in homogeneous queueing networks of
Kelly type. Homogeneous queueing networks are defined analogously to homo-
geneous nodes. Jobs enter the network independently at the different stations
according to exponentially distributed random variables, and are assigned
positions at these stations as in (d). Jobs at different stations are served inde-
pendently, as in (a)-(c), with departing jobs from class k being routed to class
� with probability Pk,� and leaving the network with probability 1 − Σ�Pk,�.
Jobs arriving at a class � from within the network are assigned positions as in
(d), according to the same rule as was applied for external arrivals. The ex-
ternal arrival rates and the quantities in (a)-(d) are allowed to depend on the
station. When the mean service times mk are assumed to depend only on the
station j = s(k), we may write ms

j ; we refer to such networks as homogeneous
queueing networks of Kelly type.

The most important examples of homogeneous nodes are FIFO nodes.
Here, one sets φ(n) ≡ 1,

β(i, n) =

{
1 for i = n,

0 otherwise,

and

δ(i, n) =

{
1 for i = 1,

0 otherwise,

for n ∈ Z+. That is, arriving jobs are always placed at the end of the queue
and only the job at the front of the queue is served. Another example is given
in [Ke79], where arriving jobs are again placed at the end of the queue, but
where L servers are available to serve the first L jobs, for given L. In this
setting, φ(n) = L ∧ n, β is defined as above, and

δ(i, n) =

⎧
⎪⎨

⎪⎩

1/n for i ≤ n ≤ L,

1/L for i ≤ L < n,

0 for i > L.

The main result in this section is Theorem 2.7, which is a generalization
of Theorem 2.1. Since the total service rate φ that is provided at the node
can vary, the condition

B
def=

∞∑

n=0

(
ρn

/ n∏

i=1

φ(i)

)
< ∞ (2.19)
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replaces the assumption in Theorem 2.1 that the node is subcritical. Here,
ρ = ms

∑K
k=1 αk is the traffic intensity.

Theorem 2.7. Suppose that a homogeneous node of Kelly type satisfies B <
∞ in (2.19). Then, it has a stationary distribution π that is given by

π(x) = B−1
n∏

i=1

(msαx(i)/φ(i)), (2.20)

for x = (x(1), . . . , x(n)) ∈ S0.

As was the case in Theorem 2.1, the structure of the stationary distribution
π in Theorem 2.7 exhibits independence at multiple levels. The probability of
there being a total of n jobs at the node is ρn/B

∏n
i=1 φ(i). Given a total of

n jobs at the node, the probability of there being n1, . . . , nk jobs of classes
1, . . . ,K, respectively, is given by the multinomial distribution in (2.5). More-
over, the ordering of the different classes of jobs is equally likely. As was the
case in Theorem 2.1, all states communicate with the empty state, and the
Markov process X(·) for the node is positive recurrent.

Demonstration of Theorem 2.7

The proof of Theorem 2.7 that we will give is based on Proposition 2.6.
In order to employ the proposition, we need to choose quantities q̂ and π so
that (2.11) and (2.18) are satisfied for them and the transition rates q of the
Markov process X(·) for the node. It will then follow from Proposition 2.6
that π is the stationary distribution for the node and q̂ gives the transition
rates for the reversed process X̂(·). A similar argument will be used again for
symmetric nodes in Section 2.4 and for networks consisting of quasi-reversible
nodes in Section 2.5. We will summarize a more probabilistic argument for
Theorem 2.7 at the end of the section.

In order to demonstrate Theorem 2.7, we write q and our choices for q̂
and π explicitly in terms of α, β, δ, and φ. To be able to reuse this argument
in Section 2.4 for symmetric nodes, we write mk for the mean service times,
which in the present case reduces to the constant ms.

The nonzero transition rates q(x, y) take on two forms, depending on
whether the state is obtained from x by the arrival or exit of a job. In the
former case, we write y = ak,i(x) if a class k job arrives at position i; in the
latter case, it follows that x = ak,i(y), if i is the position of the exiting class
k job. One then has

q(x, y) =

{
αkβ(i, ny) for y = ak,i(x),
m−1

k δ(i, nx)φ(nx) for x = ak,i(y),
(2.21)

where nx and ny are the number of jobs at the node for states x and y.
Finding the transition rates q̂(x, y) of the reversed process involves some

guessing, motivated by our idea of what X̂(·) should look like. It is reasonable
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to guess that X̂(·) is also the Markov process for a homogeneous node. The
external arrival rates αk and α̂k will then be the same for both processes,
since arrivals for X̂(·) correspond to exits for X(·), and under the stationary
distribution π, the two rates must be the same. The mean service times mk

and m̂k will also be the same. It is reasonable to guess that φ̂(n) = φ(n);
this would be the case if X(·) were reversible, as it is for the M/M/1 queue.
Running X(·) backwards in time mentally, it is also tempting to set

β̂(i, n) = δ(i, n), δ̂(i, n) = β(i, n) for n ∈ Z+, i ≤ n.

For instance, if the original node is FIFO, then jobs arrive at i = n and exit
at i = 1; if the node is run backwards in time, jobs arrive at i = 1 and exit at
i = n. Substitution of these choices for α, β, δ, φ, and m in (2.21) yields

q̂(x, y) =

{
αkδ(i, ny) for y = ak,i(x),
m−1

k β(i, nx)φ(nx) for x = ak,i(y).
(2.22)

We still need to choose our candidate for the stationary distribution π of
both X(·) and X̂(·). The equality (2.11), that is needed for Proposition 2.6,
is equivalent to

π(x)q(x, y) = π(y)q̂(y, x) (2.23)

holding whenever y = ak,i(x) or x = ak,i(y). When y = ak,i(x) and q(x, y) > 0,
substitution of (2.21) and (2.22) into (2.23) implies that

π(y)/π(x) = mkαk/φ(ny). (2.24)

The case x = ak,i(y) yields the same equality, but with the roles of x and y
reversed. Reasoning backwards, it is not difficult to see that (2.23) also follows
from (2.24).

Set x = (x(1), . . . , x(n)), for n ∈ Z+,0. One can repeatedly apply (2.24) by
removing jobs from x one at a time, starting from the last, until the empty
state is reached. We therefore choose π so that

π(x) = B−1
n∏

i=1

(mx(i)αx(i)/φ(i)), (2.25)

where the normalizing constant B = 1/π(∅). Under (2.25), (2.24) must hold.
We have therefore verified (2.11) for this choice of π. In particular, this holds
for mk ≡ ms, as in Theorem 2.7.

In order to employ Proposition 2.6, we also need to verify (2.18). One can
check that ∑

y

q(x, y) =
∑

k

αk + φ(nx)
∑

i

m−1
x(i)δ(i, nx). (2.26)

The first sum on the right side of (2.26) follows by summing the top line of
(2.21) over all i and k. The relationship x = ak,i(y) implies that x(i) = k, and
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so the last sum in (2.26) follows by summing the last line of (2.21) over all i.
Using the same reasoning, one obtains the formula

∑

y

q̂(x, y) =
∑

k

αk + φ(nx)
∑

i

m−1
x(i)β(i, nx) (2.27)

from (2.22). As before, the first sum on the right side is obtained from arriving
jobs and the last sum is obtained from exiting jobs.

We see from (2.26) and (2.27) that a sufficient condition for (2.18) is that

∑

i

m−1
x(i)δ(i, nx) =

∑

i

m−1
x(i)β(i, nx). (2.28)

In Theorem 2.7, mk ≡ ms, which factors outside of the sum on both sides of
(2.28). Since the resulting sums both equal 1, (2.28), and hence (2.18), holds
in this setting. Note that this is the only point in the argument at which we
need mk to be constant.

We have shown that both (2.11) and (2.18) are satisfied for q and q′ given
by (2.21) and (2.22), and π given by (2.25), under the assumptions in Theorem
2.7. It therefore follows from Proposition 2.6 that π is the stationary distribu-
tion for the Markov process with transition rates q. This implies Theorem 2.7.

Some observations

One can generalize the above proof of Theorem 2.7 so that it applies to ho-
mogeneous queueing networks of Kelly type, rather than to just homogeneous
nodes of Kelly type as in the theorem. Then, the stationary distribution π can
be written as the product of stationary distributions πj of nodes correspond-
ing to the individual stations, when they operate “in isolation”. This is done
in Section 3.1 of [Ke79]. We prefer to postpone the treatment of homogeneous
networks until Section 2.5, where they are considered within the context of
quasi-reversibility.

One can give a more probabilistic proof of Theorem 2.7 that is based on
the following intuitive argument. The rates β(i, n), δ(i, n) and φ(n) governing
the arrival and service rates of jobs, as well as the mean service time ms, do
not distinguish between classes of jobs. Jobs are therefore served as they would
be for an M/M/1 queue modified to have the total rate of service φ(n), when
there are n jobs, and having the arrival rate

∑
k αk. By randomly choosing the

class of each job, with probability αk/
∑

k αk for each k, at either time 0 or at
some later time t, the distributions at time t of the two resulting processes will
be the same. If the stationary distribution for the modified M/M/1 queue is
chosen as its initial distribution, the resulting distribution π′ for the K classes
will therefore also be stationary.

One can show, by using reversibility, that the probability of there be-
ing n jobs for the stationary distribution of the modified M/M/1 queue is
ρn/B

∏n
i=1 φ(i), where B is as in (2.19). Because of the random way in which



32 2 The Classical Networks

the classes of jobs are chosen above for π′, the remaining properties in the
alternative characterization of π in (2.20), that are given after the statement
of Theorem 2.7, also hold. Therefore, π′ = π, as desired.

We also note the following consequence of the proof of Theorem 2.7, that
is a special case of phenomena that will be discussed in Section 2.5. (It also
follows from the alternative argument that was sketched above.) The transi-
tion rates q̂ of the reversed Markov process X̂(·) in (2.22) are the rates for a
homogeneous node of Kelly type. For this reversed node, arrivals are therefore
given by K independent Poisson processes for the different classes, that are
independent of the initial state. These arrivals correspond to exiting jobs for
the original homogeneous node. It follows that the K different exit processes
for the classes are also independent Poisson processes that are independent of
any future state of the node.

2.4 Symmetric Nodes

PS, LIFO, and IS nodes all belong to the family of symmetric nodes. They
are defined similarly to the homogeneous nodes of Kelly type in the previous
section, with a few major differences. The basic framework is the same, with
state space S0 given by (2.2) and existing jobs being reordered as before upon
the arrival and departure of jobs at the node. Moreover, the interarrival times
are exponentially distributed.

In order for such a node to be a symmetric node, we require that it also
satisfy the following properties:

(a) The amount of service required by each job is exponentially distributed
with mean mk. We will soon allow more general distributions, but this will
require us to extend the state space.

(b) The total rate of service supplied at the node is φ(n), where n is the
number of jobs currently there.

(c) The proportion of service that is directed at the job in position i is β(i, n).
Note that the proportion does not depend on the class of the job.

(d) When a job arrives at the node, it moves into position i, i = 1, . . . , n, with
probability β(i, n), where n is the number of jobs in the node including
this job. This function is the same as that given in (c).

In Section 2.5, we will also be interested in symmetric queueing networks.
These networks are defined analogously, with properties (a)-(d) being assumed
to hold at each station, and departing jobs from a class k being routed to a
class � with probability Pk,�. More detail is given in Section 2.3 for homoge-
neous networks, where the procedure is the same.

The properties (a)-(d) given here are more restrictive than the properties
(a)-(d) in the previous section in that we now assume, in the notation of



2.4 Symmetric Nodes 33

Section 2.3, that δ = β, in parts (c) and (d). These properties are more
general in that the service time means mk need no longer be equal at different
classes. After comparing the stationary distributions of these nodes with those
of Section 2.3, we proceed to generalize the exponential distributions of the
service times in (a) in two steps, first to mixtures of Erlang distributions, and
then to arbitrary distributions.

The PS, LIFO, and IS nodes are standard examples of symmetric nodes.
For the PS discipline, one sets

β(i, n) = 1/n for i ≤ n,

for n ∈ Z+, and for LIFO, one sets

β(i, n) =

{
1 for i = n,

0 otherwise.

In both cases, φ(n) ≡ 1. For IS nodes, φ(n) = n and

β(i, n) = 1/n for i ≤ n.

The analog of Theorem 2.7 holds for symmetric nodes when B < ∞, for
B in (2.19), with the formula for the stationary distribution π,

π(x) = B−1
n∏

i=1

(mx(i)αx(i)/φ(i)), (2.29)

for x = (x(1), . . . , x(n)), replacing (2.20). One can check that the same ar-
gument as before is valid. One applies Proposition 2.6, for which one needs
to verify (2.11) and (2.18). As before, the formulas for q and q̂ are given by
(2.21) and (2.22), but with δ = β. The formula for π is given by (2.25).

The argument we gave for (2.11) involved no restrictions on mk, and there-
fore holds in the present context as well. The argument we gave for (2.18)
consisted of equating (2.26) and (2.27), and therefore verifying (2.28). Pre-
viously, (2.28) held since m−1

k was constant, and so could be factored out of
both sums. It is now satisfied since δ = β, and so the summands are identical.
One can therefore apply Proposition 2.6, from which the analog of Theorem
2.7 for symmetric nodes follows, with (2.29) replacing (2.20).

The method of stages

As mentioned earlier, the assumption that the service times be expo-
nentially distributed is not necessary for symmetric nodes. By applying the
method of stages, one can generalize the service time distributions to mixtures
of Erlang distributions. (These are gamma distributions that are convolutions
of identically distributed exponential distributions.) We will show that the
analog of the formula (2.29) for the stationary distribution continues to hold
in this more general setting.



34 2 The Classical Networks

In order for the stochastic process corresponding to the node to remain
Markov for more general service times, we need to enrich the state space
S0. For this, we replace each coordinate x(i) in (2.2) by the triple x(i) =
(x(i), s(i), v(i)), where

x(i) ∈ {1, . . . , K}, s(i) ∈ Z+, v(i) ∈ {1, . . . , s(i)}. (2.30)

Such a triple gives the refined class of a job, with x(i) denoting its class as
before. The third coordinate v(i) gives the current stage of a job, with s(i)
denoting the total number of stages the job visits before leaving the node. The
state space Se will consist of such n-tuples x = (x(1), . . . ,x(n)), n ∈ Z+,0,
under a mild restriction to ensure all states are accessible.

The basic dynamics of the node are the same as before, which satisfies the
properties for symmetric nodes given at the beginning of the section, including
properties (b)-(d); we are generalizing here the assumption in (a). Instead of
entering the node at a class k with rate αk, jobs enter at a refined class (k, s, s)
with rate αkpk(s), where

∑
s pk(s) = 1. Once at a refined class (k, s, v), such

a job moves to (k, s, v − 1) after completing its service requirement, which is
exponentially distributed with mean mk(s). After a job completes its service
at the stage v = 1, it leaves the node. The current stage v of a job can therefore
be thought of as the residual number of stages remaining before the job leaves
the node. We note that the proportion of service that is directed at a job in
position i is β(i, n), which does not depend on its class or refined class.

The distribution of the service time that is required for the job between
entering and leaving class k is a mixture of Erlang distributions, and has mean

mk
def=

∑

s

spk(s)mk(s). (2.31)

The state space Se mentioned earlier is defined to consist of n-tuples whose
components (k, s, v) satisfy pk(s) > 0, in order to exclude inaccessible states.
Under this restriction, all states will communicate. The state space is of course
countable. When pk(1) = 1 at all k, the service times are all exponentially
distributed and the model reduces to the one considered at the beginning of
the section. As with homogeneous and symmetric nodes with exponentially
distributed service times, the networks corresponding to symmetric nodes with
stages can be defined in the natural way.

We wish to show that the nodes just defined have stationary distributions
π that generalize (2.29). This result is stated in Theorem 2.8.

Theorem 2.8. Suppose that the service times of a symmetric node are mix-
tures of Erlang distributions, and that the node satisfies B < ∞ in (2.19).
Then, the node has a stationary distribution π that is given by

π(x) = B−1
n∏

i=1

(px(i)(s(i))mx(i)(s(i))αx(i)/φ(i)), (2.32)

where x = (x(1), . . . ,x(n)) ∈ Se and x(i) = (x(i), s(i), v(i)), for i = 1, . . . , n.
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As was the case in Theorem 2.7 and in (2.29), the structure of the station-
ary distribution π is Theorem 2.8 exhibits independence at multiple levels.
The probability of there being a total of n jobs at the node is ρn/B

∏n
i=1 φ(i).

Given a total of n jobs at the node, the probability of there being n1, . . . , nk

jobs at the classes 1, . . . ,K is given by the multinomial

ρ−n

(
n

n1, . . . , nK

) K∏

k=1

(mkαk)nk . (2.33)

The ordering of these classes is equally likely. Note that none of these quanti-
ties depends on the particular service time distributions, except for the means
mk.

The stationary distribution also has the following refined structure. Given
the class of the job at each position i, the probability of the job at a given
position, whose class is k, having refined class (k, x, v) is

pk(s)mk(s)/mk,

and these events are independent at different i. Summing over all stages
strictly greater than v and over all s, while keeping everything else fixed,
this implies that the conditional probability of the job at position i being in
a strictly earlier stage than v is

m−1
k

∑

s

(s − v)pk(s)mk(s). (2.34)

Note that (2.34) depends on the actual service time distributions, and not
just on their means.

Demonstration of Theorem 2.8

In order to demonstrate Theorem 2.8, we employ Proposition 2.6. To do
so, we need to verify (2.11) and (2.18) for the transition rates q of the Markov
process on Se corresponding to the node, with an appropriate choice of the
quantities q̂ and π.

In order to specify q and q̂, we modify the function ak,i(·) we used for
exponential service times on the state space S0. Here, ak,s,i(x) will denote
the state y obtained from state x by the arrival of a job at position i, with
refined class (k, s, s). Since jobs exit from the node at refined classes of the
form (k, s, 1) (rather than at (k, s, s)), we need additional notation. With an
eye on defining q̂, we denote by âk,s,i(x) the state y that is obtained from x
by inserting a job with refined class (k, s, 1) at i; the positions of jobs already
at the node are shifted in the usual way. We also denote by si(x) the state
y obtained from a state x satisfying 2 ≤ v(i) ≤ s(i), when the stage at i
advances to v(i) − 1. (si(x) is not defined for other x.)

Using this notation, one can check that q is given by
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q(x, y) =

⎧
⎪⎨

⎪⎩

αkpk(s)β(i, ny) for y = ak,s,i(x),
(mk(s))−1β(i, nx)φ(nx) for x = âk,s,i(y),
(mk(s))−1β(i, nx)φ(nx) for y = si(x),

(2.35)

with q(x, y) = 0 otherwise. Employing the same motivation as in Section 2.3,
we choose q̂ so that

q̂(x, y) =

⎧
⎪⎨

⎪⎩

αkpk(s)β(i, ny) for y = âk,s,i(x),
(mk(s))−1β(i, nx)φ(nx) for x = ak,s,i(y),
(mk(s))−1β(i, ny)φ(ny) for x = si(y),

(2.36)

with q̂(x, y) = 0 otherwise. The transition function q̂ is the same as q, except
that jobs arrive at the stage v = 1, exit at v = s(i), with changes in stage
occurring from v − 1 to v, for 2 ≤ v ≤ s(i). We choose π as in (2.32).

The assumptions for Proposition 2.6 can be verified as they were in Section
2.3 for the space S0, with only a small change in argument. The argument for
(2.11) is the same when either y = ak,s,i(x) or x = âk,s,i(y). For y = ak,s,i(x),
the equality (2.24) is replaced by its analog

π(y)/π(x) = mk(s)pk(s)αk/φ(ny).

When y ∈ si(x), one has

π(y)/π(x) = q(x, y)/q̂(y, x) = 1, (2.37)

in which case (2.11) is obvious. So, (2.11) holds in all cases. (Note that for the
homogeneous nodes in Section 2.3 with distinct β and δ, the analog of (2.37)
does not hold, and so the method of stages employed here for generalizing the
exponential distributions will not work.)

The formula (2.18) holds for the same reasons as before, except that one
now has

∑

y

q(x, y) =
∑

y

q̂(x, y) =
∑

k

αk + φ(nx)
∑

i

(mx(i)(s(i)))−1β(i, nx),

with mx(i)(s(i)) replacing mx(i). So, the assumptions for Proposition 2.6 hold.
Application of the proposition therefore implies Theorem 2.8.

One can generalize the above argument so that it applies to symmetric
queueing networks. Then, the stationary distribution π can be written as the
product of stationary distributions πj of nodes corresponding to the individual
stations. As in the previous section, we choose to postpone the treatment of
symmetric networks until Section 2.5, where they are considered within the
context of quasi-reversibility.
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Extensions to general distributions

We have employed the method of stages to generalize the formula (2.29),
for the stationary distribution of symmetric nodes with exponentially distrib-
uted service times, to the formula (2.32), which holds for service times that
are mixtures of Erlang distributions. The method of stages can also be em-
ployed to construct service times with other distributions. This approach is
employed, for example, in Section 3.6 of [Wa88] and in Section 3.4 of [As03],
where the more general phase-type distributions are constructed. [As03] also
gives further background on the problem.

Let H =
⋃∞

N=1 HN , where HN denotes the family of mixtures of Erlang
distributions, but with the restriction that mk(s) = 1/N for all k and s. It is
not difficult to show that H is dense in the set of distribution functions, with
respect to the weak topology; this result is given in Exercise 3.3.3 in [Ke79].
The basic idea is that the sum of Ns i.i.d. copies of an exponential distribu-
tion, with mean 1/N , has mean s and variance s/N , and so, for large N , is
concentrated around s. For large enough N , one can therefore approximate a
given service time distribution function Fk as closely as desired, by setting

pN
k (s) = FN

k (s/N) − FN
k ((s − 1)/N), for s ∈ Z+, (2.38)

equal to the probability that a job chooses a refined class with s stages,
when it enters class k. Here, FN

k is the distribution function satisfying
FN

k (s′) = Fk(s′), for Ns′ ∈ Z+, and which is constant off this lattice. For
the same reason, the phase-type distributions that were mentioned in the
previous paragraph are also dense.

Since the family H of mixtures of Erlang distributions is dense, it is tempt-
ing to infer that a stationary distribution will always exist for a symmetric
node with any choice of service time distributions Fk satisfying (2.19), with
mk replacing ms in the definition of ρ, and that this distribution has the same
product structure as given below the statement of Theorem 2.8. Such a result
holds, although the state space needs to be extended so that the last com-
ponent v of the refined class (k, s, v) of a job can now take on any value in
(0, s]; this corresponds to the residual service time of that job. The resulting
state space S∞ for the Markov process is uncountable; this causes technical
problems which we discuss at the end of the section. Since the space is un-
countable, it is most natural to formulate the result in a manner similar to
that given below Theorem 2.8.

Theorem 2.9. Suppose that a symmetric node satisfies B < ∞ in (2.19).
Then, it has a stationary distribution π on S∞ with

π(x(i) = k(i), i = 1, . . . , n) = B−1
n∏

i=1

(mk(i)αk(i)/φ(i)). (2.39)

Conditioned on any such set, the residual service times of the different jobs
are independent, with the probability that a job of a class k has residual service
time at most r being
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F ∗
k (r) =

1
mk

∫ r

0

(1 − Fk(s))ds. (2.40)

One can motivate (2.39) by applying Theorem 2.8 to a sequence of nodes
indexed by N , with pN

k for each class k being given by (2.38). Since FN
k ⇒ Fk

and mN
k → mk as N → ∞, one should expect (2.39) to follow from (2.32). In

order to motivate (2.40), one can reason as follows. Applying Theorem 2.8,
one can check that, under the stationary distribution πN and conditioned on
the job at a given position being k, the probability that the stage there is
strictly greater than v is

∑

s>v

(s − v)pN
k (s)

/ ∑

s

spN
k (s).

One can also check that
∑

s>v(s−v)pN
k (s) =

∑
s>v F̄N

k (s/N), where F̄N
k (s) =

1 − FN
k (s). So, the above quantity equals

1
N

∑

s>v

F̄N
k (s/N)

/
1
N

∑

s

F̄N
k (s/N).

By setting v = Nr, r ≥ 0, and applying the Monotone Convergence Theorem
to the numerator and denominator separately, one obtains the limit

1
mk

∫ ∞

r

F̄k(s)ds. (2.41)

On the other hand, the same reasoning as above (2.38) implies that, for
large N , the stage v scaled by N typically approximates the residual service
time. So, (2.41) will also give the limiting distribution of the residual service
times as N → ∞. Taking the complementary event, one obtains (2.40) from
(2.41).

The same reasoning as above implies (2.40) is also the probability that the
amount of service that has been received by a job is at least r. We point out
that F ∗

k , as in (2.40), is the distribution of the residual time for the stationary
distribution of a renewal process, with lifetime distribution Fk.

The above reasoning, although suggestive, is not rigorous. In particular,
implicit in the explanations for both (2.39) and (2.40) is the assumption
that the stationary distribution π and the residual service time distributions
F ∗

1 , . . . , F ∗
K are continuous in F1, . . . , FK . A rigorous justification for Theorem

2.9 is given in [Ba76]. There, the Markov processes XN (·) corresponding to
the above sequences of nodes are constructed on a common uncountable state
space S, where the residual times of the jobs are included in the state. The
Markov process that corresponds to the node in Theorem 2.9 is expressed as
a weak limit of the processes XN (·); this provides a rigorous justification for
the convergence of πN and FN

1 , . . . , FN
K that is needed for the theorem. [Ba76]

in fact demonstrates the analog of Theorem 2.9 in the more general context
of symmetric queueing networks.
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The above uncountable state space setting requires a more abstract frame-
work than one typically wishes for a basic theory of symmetric networks. The
countable state space setting is typically employed in the context of either
mixtures of Erlang distributions, the more general phase-type distributions,
or some other dense family of distributions. (See, for example, Section 3.4
of [As03], for more detail.) Quasi-reversibility, which we discuss in the next
section, also employs a countable state space setting.

2.5 Quasi-Reversibility

In Sections 2.3 and 2.4, we showed that the stationary distributions of ho-
mogeneous nodes of Kelly type and symmetric nodes are of product form.
Employing quasi-reversibility, it will follow that the stationary distributions
of the corresponding queueing networks are also of product form, with the
states at the individual stations being independent and the distributions there
being given by Theorems 2.7 and 2.8.

Quasi-reversibility has two important consequences. When a queueing net-
work can be decomposed in terms of nodes that are quasi-reversible, the sta-
tionary distribution of the network can be written as the product of the sta-
tionary distributions of these individual nodes. It will also follow from the
“duality” present in quasi-reversibility that the exit processes of such net-
works are independent Poisson processes, a property that is inherited from
the processes of external arrivals of the network. Quasi-reversibility does not
depend on the routing in a network, but holds only under certain disciplines,
like those mentioned in the first paragraph.

In this section, in order to avoid confusion, we will say that a departing
job from a class that leaves the network exits from the network (as opposed to
being routed to another class). For nodes, such as in the two previous sections,
departures and exits are equivalent.

Before introducing quasi-reversibility, we first motivate the basic ideas with
a finite sequence of M/M/1 queues that are placed in tandem:

→ 1 → 2 → . . . → k → . . . → K → . (2.42)

Jobs are assumed to enter the one-class station, with j = k = 1, according to a
rate-α Poisson process, and are served in the order of their arrival there. Upon
leaving station 1, jobs enter station 2 and are served there, and so on, until
leaving the network after having been served at station K. All jobs are as-
sumed to have exponentially distributed service times which are independent,
with means mk so that αmk < 1.

An M/M/1 queue with external arrival rate α and mean service time m
has stationary distribution given by (2.1), if mα < 1. Under this distribution,
the corresponding Markov process X(t), −∞ < t < ∞, is reversible, and so is
stochastically equivalent to its reversed process X̂(t) = X(−t). In particular,
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the stationary process X1(·) for the number of jobs at station 1 is stochastically
equivalent to its reversed process X̂1(·). Interpreting X̂1(·) in terms of the
arrival and departure of jobs, with the former corresponding to an increase
and the latter a decrease of X̂1(·), jobs arrive according to a rate-α Poisson
process. But, each arrival of a job for X̂1(·), at time t, corresponds to the
departure of a job for X1(·), at time −t. It follows that the departure process
of jobs for X1(·) is a Poisson rate-α process. Moreover, departures preceding
any given time t1 are independent of X(t1). What we are observing here, is
that the specific nature of the Poisson input into station 1 results in an output
of the same form.

Let X2(·) denote the process for the number of jobs at station 2, and
assume that X2(t0) has the stationary distribution (2.1), with m = m2, for a
given t0 and is independent of X1(t) for t ≥ t0. The arrival process of X2(·)
is also the departure process of X1(·), which is a rate-α Poisson process, by
the previous paragraph. It follows that X2(·) is also the stationary process
of an M/M/1 queue. Its arrivals, up to a given time t1, with t1 ≥ t0, are
independent of X1(t1) by the previous paragraph. Consequently, X1(t1) and
X2(t1) are independent, each with the distribution in (2.1), with m1 and m2

replacing the mean m. Since t1 was arbitrary, the joint process (X1(·),X2(·))
is Markov and stationary, for all t ≥ t0. Since t0 was arbitrary, (X1(·),X2(·))
in fact defines a stationary Markov process over all t.

Continuing in this manner, one obtains a stationary Markov process
X(t) = (X1(t), . . . , XK(t)), −∞ < t < ∞, whose joint distribution at any
time is a product of distributions of the form in (2.1). One therefore obtains
the following result.

Theorem 2.10. Assume that the interarrival time and the service times of
the sequence of stations depicted in (2.42) are exponentially distributed, with
αmk < 1 for each k = 1, . . . ,K. Then, the network has a stationary distribu-
tion π, which is given by

π(n1, . . . , nK) =
K∏

k=1

(1 − αmk)(αmk)nk , (2.43)

for nk ∈ Z+,0.

We note that although the components of the stationary distribution given
by (2.43) are independent, this is not at all the case for the components
Xk(·) of the corresponding stationary Markov process X(·). In particular, a
departure at station k coincides with an arrival at station k + 1.

Results leading up to Theorem 2.10 and the above proof are given in [Ja54],
[Bu56], and [Re57]. More detail on the background of the problem is given on
page 212 of [Ke79].

The same formula as in (2.43) holds when the routing in (2.42) is re-
placed by general routing, if the total arrival rates λk are substituted for
α. More precisely, suppose that a subcritical Jackson network (i.e., a single
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class network with exponentially distributed interarrival and service times)
has external arrival rates α = {αk, k = 1, . . . ,K} and mean routing matrix
P = {Pk,�, k, � = 1, . . . ,K}. Then, it has the stationary distribution π, with

π(n1, . . . , nK) =
K∏

k=1

(1 − λkmk)(λkmk)nk , (2.44)

for nk ∈ Z+,0. This result is no longer as easy to see as is (2.43); it was
shown in the important work [Ja63]. The result will follow as a special case
of Theorems 2.3 and 2.12.

Basics of quasi-reversibility

The “input equals output” behavior of the network in (2.42) was central
to our ability to write the stationary distribution of the network as a product
of the stationary distributions at its individual stations. Quasi-reversibility
generalizes this concept, and leads to similar results for more general families
of networks. Quasi-reversibility was first identified in [Mu72] and has been
extensively employed in work by F.P. Kelly. The property can be defined in
different equivalent ways; we use the following analytic formulation.

We consider a node for which arrivals at its classes k = 1, . . . ,K are given
by independent Poisson processes, with intensities α = {αk, k = 1, . . . , K},
that do not depend on the state of the node at earlier times, and for which
the exits occur only one at a time and do not coincide with an arrival. The
evolution of the node is assumed to be given by a Markov process X(·) with
stationary distribution π defined on a countable state space S. Assume that
all states communicate. Also, let q denote the transition function of X(·) and
q̂ the transition function of the reversed process X̂(·) satisfying (2.11).

Under the above assumptions, any change in the state of the node due
to a transition from x to y must be due to an increase by 1 in the number
of jobs at some class k, for which we write y ∈ Ak(x); a decrease by 1 at
some k, for which we write y ∈ Ek(x); or a transition that involves neither
an increase nor a decrease, for which we write y ∈ I(x), and which we refer
to as an internal transition. Note that y ∈ I(x) and x ∈ I(y) are equivalent.
An example of an internal transition is the “advance in stage” y = si(x) in
Section 2.4, although in the current setting far more general changes of state
are allowed, including the simultaneous swapping of positions by many jobs.
General changes of state are also allowed with the arrival or exit of a job.

We will say the node is quasi-reversible if for each class k and state x,
∑

y∈Ak(x)

q̂(x, y) = βk (2.45)

for some βk ≥ 0. The equality (2.45) says that the rate of arrivals at each
class k for the reversed process X̂(·) does not depend on the state x. It is
equivalent to the apparently stronger
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∑

y∈Ak(x)

q̂(x, y) =
∑

y∈Ak(x)

q(x, y) = αk (2.46)

for each k and x, which states that βk = αk. (Note that the last equality
follows automatically from the definition of αk.)

To see (2.46), we note that by (2.45), the arrival times of X̂(·) form inde-
pendent rate-βk Poisson processes at the K classes. The same reasoning that
was applied to the sequence of M/M/1 queues in (2.42) implies that the exit
times of X(·) also form independent rate-βk Poisson processes. By assump-
tion, only one exit occurs at each such time. Moreover, under the stationary
distribution π, the rates at which jobs enter and leave a class are the same.
Since the former is αk, this implies βk = αk, as needed for (2.46).

In the preceding argument, we have shown that the exit processes for X(·)
form independent rate-αk Poisson processes. Comparison with X̂(·) also shows
that exits for X(·) preceding any given time t1 are independent of X(t1). These
are important properties of quasi-reversible nodes. We have already employed
them in the proof of Theorem 2.10.

The term quasi-reversible can also be applied to a queueing network rather
than just to a node, with equation (2.45) again being employed as the defining
property. (One should interpret Ak(x) in terms of external arrivals at k.) In
this setting, the stronger (2.46) need not hold, since departures from a class,
that are not exits, may occur because of a job moving to another class within
the network, and the reasoning in the paragraph below (2.46) is not valid.
Nevertheless, external arrivals for the reversed process X̂(·) correspond to
jobs exiting the network for X(·). The same reasoning that was employed
for quasi-reversible nodes therefore implies that the exiting processes at the
classes k are independent rate-βk Poisson processes.

Although we will not use this here, we also note that the partial balance
equations

π(x)
∑

y∈Ak(x)

q(x, y) =
∑

y∈Ak(x)

π(y)q(y, x), (2.47)

for each k and x, are equivalent to (2.46), and hence to the quasi-reversibility
of a node. This follows immediately from the definition of q̂ in (2.11) and the
assumption π(x) �= 0 for all x. These equations are weaker than the detailed
balance equations, which correspond to reversibility, but include information
not in the balance equations. The partial balance equations are often used as
an alternative to quasi-reversibility.

Construction of networks from quasi-reversible nodes and applications

The main result on quasi-reversibility is Theorem 2.11, which states that
when a queueing network satisfies certain conditions involving quasi-reversible
nodes, its stationary distribution can be written as the product of the sta-
tionary distributions of these nodes. These nodes typically correspond to the
stations of the network in a natural way. Such a queueing network is itself
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quasi-reversible. Examples of these queueing networks are the sequence of
M/M/1 queues in (2.42), Jackson networks, the homogeneous networks of
Kelly type that were defined in Section 2.3, and the symmetric networks that
were defined in Section 2.4.

We will consider queueing networks in the following framework. The net-
work will consist of J stations and K classes on a countable state space S of
the form

S = S1 × . . . × SJ ,

where Sj is the state space corresponding to the jth station. We will typically
write x = (x1, . . . , xJ ) for x ∈ S, where xj ∈ Sj . For concreteness, we will
assume that for each j, Sj is one of the two spaces S0 and Se that were
employed in the last two sections, although the theory holds more generally.
As usual, the queueing network is assumed to have transition matrix P =
{Pk,�, k, � = 1, . . . ,K} and external arrival rates α = {αk, k = 1, . . . , K}.
Recall that λ = Qα denotes the total arrival rate, and satisfies the traffic
equations given in (1.6).

We will employ notation similar to what was used earlier in the section,
with Ak(x), Ek(x), Ij(x), and Rk,�(x) denoting the states y obtained from x
by the different types of transitions. As before, Ak(x), Ek(x), and Ij(x) will
denote the states obtained by an arrival into the network at k, an exit from the
network at k, and an internal state change at j. For y ∈ Ak(x) or y ∈ Ek(x),
we will require that yj = xj for j �= s(k), and that the number of jobs at k
increase or decrease by 1, and elsewhere remain the same. For y ∈ Ij(x), we
will require that yj = xj for j �= s(k), and that the number of jobs at each
class remain the same. We let Rk,�(x) denote the set of y obtained from x by a
job returning to class � after being served at class k. We require that yj = xj

for j �= s(k) and j �= s(�), and that the number of jobs at k decrease by 1, at
� increase by 1, and elsewhere remain the same.

The queueing networks we will consider will be assumed to satisfy prop-
erties (2.48)-(2.52), which are given in terms of prechosen quasi-reversible
nodes. Before listing these properties, we provide some motivation, recalling
the sequence of 1-class stations given in (2.42), with the stationary distribu-
tion in (2.43). When a given station j, with j = k, is viewed “in isolation”, it
evolves as an M/M/1 queue with mean service time mk and external arrival
rate α, and has as its stationary distribution the stationary distribution of the
corresponding M/M/1 queue. The stationary distribution of the sequence of
stations is given by the product of the stationary distributions of the individ-
ual queues. Because of the specific structure of the network, Poisson arrivals
into a given station result in Poisson departures, which then serve as Poisson
arrivals for the next station. This property allowed us to view the stations “in
isolation”.

We will show that queueing networks satisfying properties (2.48)-(2.52)
will have stationary distributions that are the product of the stationary dis-
tributions of the quasi-reversible nodes given there. Each such node can be
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interpreted as the corresponding station evolving “in isolation”. Here, “in iso-
lation” will also mean that routing between classes at the same station is not
permitted. The network in the previous paragraph, consisting of a sequence
of 1-class stations, will be a special case of this more general setup.

Because of the more abstract setting now being considered, we will not
explicitly follow the evolution of individual jobs; instead, we will think of the
quasi-reversible nodes as “black boxes”, which have a given output for a given
input, with a corresponding stationary distribution. Rather than employ the
Poisson-in, Poisson-out property directly, we will use the definition of quasi-
reversibility in (2.45). The external arrival rates αj

k for the classes at a given
node j will be given by the total arrival rate λk for the corresponding class in
the network. This will be consistent with jobs always leaving the node after
being served, without being routed to another class.

The nodes we employ are assumed to have state spaces Sj , j = 1, . . . , J ,
which are the components of the state space S for the network. Therefore,
for x = (x1, . . . , xJ ) ∈ S with xj ∈ Sj , j = 1, . . . , J , one can also interpret
xj as the state of the corresponding node. Jobs at a given node will have
classes k ∈ C(j), which are in one-to-one correspondence with the classes of
the correspondingly labelled station in the network. For xj ∈ Sj and k ∈
C(j), we employ notation introduced earlier in the section for quasi-reversible
nodes, with Aj

k(xj), Ej
k(xj), and Ij(xj) denoting those states yj obtained

from xj by an arrival or exit at class k, or by an internal state change. We
let qj , j = 1, . . . , J , denote the transition rates for the Markov processes
Xj(·) of the nodes. The nodes are assumed to be quasi-reversible, with (2.45)
being satisfied by q̂j , the transition rates of the reversed processes X̂j(·).
As mentioned earlier, the external arrival rates of the nodes are given by
αj

k = λk. As earlier in the section, we will assume that all states of a given
node communicate.

We will assume that the transition rates q(x, y) for the queueing network
can be written in terms of the rates qj(xj , yj) for the nodes as follows. For
y ∈ Ak(x), we assume that

q(x, y) = (αk/λk)qj(xj , yj). (2.48)

Setting pj
k(xj , yj) = qj(xj , yj)/λk, this can be written as

q(x, y) = αkpj
k(xj , yj), (2.48′)

where
∑

yj∈Aj
k(xj) pj

k(xj , yj) = 1 holds. (Here and later on, when j and k

appear together, we implicitly assume that k ∈ C(j).) For y ∈ Ek(x), we
assume that

q(x, y) = qj(xj , yj)Pk,0, (2.49)

where Pk,0
def= 1 −

∑
� Pk,�. For y ∈ Rk,�(x), we require the existence of an

“intermediate” state z between x and y, with z ∈ Ek(x) and y ∈ A�(z), and
such that
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q(x, y) = qj(xj , zj)qh(zh, yh)(Pk,�/λ�), (2.50)

where h = s(�). One can also write this as

q(x, y) = qj(xj , zj)Pk,� ph
� (zh, yh). (2.50′)

For y ∈ Ij(x), we assume that

q(x, y) = qj(xj , yj), (2.51)

and finally, on the complement of the above sets, we assume that

q(x, y) = 0. (2.52)

The equations (2.48)–(2.52) have the following interpretation in terms of
the transition rates of the queueing network. The J different stations operate
independently of one another, except for the movement of jobs between them.
So, the transition rates in (2.48′), (2.49), and (2.51) depend on xj and yj

instead of on the entire states x and y. In (2.50′), after a class k job is served,
it moves to class � with probability Pk,�, with the probability of the new state
y depending on just zh and yh. When h �= j, z is automatically given by
zj = yj , zh = xh, and zj′

= xj′
= yj′

for other values j′. The transition rates
qj in each display are those of node j, which does not permit returns. This
node can be thought of as the one obtained from the corresponding station by
replacing transitions to and from each class k by external arrivals and exits
at the same rates.

We now employ the above terminology to state Theorem 2.11. When its
hypotheses are satisfied, the theorem enables us to write the stationary dis-
tribution of a queueing network as the product of the stationary distributions
of the corresponding nodes.

Theorem 2.11. Suppose that the transition rates q(x, y) of a queueing net-
work satisfy (2.48)-(2.52), where the nodes with the transition rates qj(xj , yj)
are quasi-reversible with stationary distributions πj. Then, the queueing net-
work has stationary distribution π given by

π(x) =
J∏

j=1

πj(xj), (2.53)

where x = (x1, . . . , xJ). Moreover, the queueing network is itself quasi-
reversible.

The proof of Theorem 2.11 will be given in the next subsection. We first
note the following consequences of Theorem 2.11 and quasi-reversibility.

As an elementary illustration of Theorem 2.11, we return to the “sequence
of M/M/1 queues” in (2.42). Equations (2.48)-(2.52) all hold in this setting, if
qj are the transition rates for the M/M/1 queues with αj = α and mj = mj .
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All of these equations are easy to see and are nondegenerate in only a few cases.
In (2.48), q(x, y) �= 0 only for k = j = 1 and, in (2.49), q(x, y) �= 0 only for k =
K = J . In (2.50′), with 1 ≤ k < K, one has Pk,k+1 = pk+1

k+1(z
k+1, yk+1) = 1 if

z is chosen by removing a class k job from x; (2.51) is vacuous in this setting.
Moreover, since the M/M/1 queues are reversible, they are quasi-reversible.
These queues are assumed to be subcritical and have stationary distributions
given by (2.1). Theorem 2.10 therefore follows as a special case of Theorem
2.11.

Equations (2.48)-(2.52) also hold for the more general Jackson networks
(which are, in turn, special cases of FIFO networks of Kelly type). Again,
qj are the transition rates for M/M/1 queues, this time with αj = λj and
mj = mj . The equations are similar to those for the previous example, except
that the mean transition matrix P is general, and so (2.48)-(2.50′) may be
nonzero for arbitrary k. The formula for the stationary distribution in (2.44)
is consequently an easy application of Theorem 2.11.

We now generalize Theorem 2.3 of Section 2.1. For homogeneous networks
of Kelly type and symmetric networks, equations (2.48)-(2.52) all hold if the
corresponding nodes are chosen in the natural way. Namely, each such node,
for j = 1, . . . , J , is obtained from the corresponding station by replacing tran-
sitions involving routing from one class to another by exits from the network,
and by increasing the rate of external arrivals at each class k from αk to λk

to compensate for this. Then, (2.48) and (2.49) are immediate. In (2.50′), the
state z is chosen by removing the served job at k from x. The equality (2.50′)
then follows since a transition from x to y, with y ∈ Rk,�(x), consists of a
service completion at k, followed by the routing of the corresponding job to
class l of a station h, with the job then being assigned a position i according
to the rule ph

� . When Sj = S0, the transition q(x, y) in (2.51) does not occur;
when, for a symmetric node, Sj = Se, the transition corresponds to the ad-
vance of a stage. In either case, (2.51) is clear. Moreover, on account of (2.22)
and (2.36) in Sections 2.3 and 2.4,

∑

yj∈Aj
k(xj)

q̂j(xj , yj) = αk for all xj ∈ Sj , (2.54)

and so each such node is quasi-reversible. Note that this characterization
continues to hold for networks that are of mixed type, with some stations
being homogeneous of Kelly type and others being symmetric.

Recall that in Theorems 2.7 and 2.8, we saw that such nodes themselves
have stationary distributions that are of product form, as given in (2.20) and
(2.32). Theorem 2.7 was stated, for homogeneous nodes, in the context of ser-
vice times that are exponentially distributed, and Theorem 2.8 was stated, for
symmetric nodes, in the context of mixtures of Erlang distributions. Combin-
ing these results with Theorem 2.11, we therefore obtain Theorem 2.12. As in
Theorems 2.7 and 2.8, when the node is homogeneous, xj ∈ S0 is assumed,
whereas when the node is symmetric, xj ∈ Se. In either case, we employ the
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condition

Bj
def=

∞∑

n=0

(
ρn

j

/ n∏

i=1

φ(i)

)
< ∞, (2.55)

with ρj =
∑

k∈C(j) mkλk.

Theorem 2.12. Suppose that each station j of a queueing network is either
homogeneous of Kelly type or is symmetric, and satisfies (2.55). Then, the
queueing network has a stationary distribution π that is given by

π(x) =
J∏

j=1

πj(xj), (2.56)

where each πj is either of the form (2.20) or (2.32), depending on whether
the station j is homogeneous of Kelly type or is symmetric, and αk in these
formulas is replaced by λk.

Theorem 2.11 shows that the stationary distribution of a queueing net-
work that is composed of stations corresponding to quasi-reversible nodes
has the product structure given in (2.53). Nevertheless, the processes that
are associated with the stations are not independent. One can see this easily
for the example at the beginning of the section consisting of a sequence of
M/M/1 queues: a departure from one queue coincides with an arrival to the
next. Similarly, the combined arrival processes at different classes (i.e., arrivals
from other classes as well as external arrivals) are typically not independent,
nor are the departure processes.

These processes are not to be confused with the processes of external
arrivals or the processes of jobs exiting from the network, which are in either
case independent. We note, though, that under the stationary distribution
for a queueing network composed of quasi-reversible nodes, the conditional
distribution at a station found by an arriving job is the same as the stationary
distribution there. This is clearly the case for external arrivals, but is also true
for arrivals in general. This is shown on page 70 of [Ke79] by considering the
reversed Markov process for the network.

Demonstration of Theorem 2.11

In order to demonstrate Theorem 2.11, we will employ Proposition 2.6. We
therefore need a candidate q̂ for the transition rates of the reversed process
X̂(·) for the network under its stationary distribution. Letting q̂j denote the
reversed transition rates corresponding to qj , we define q̂ using the following
analogs of (2.48)-(2.52). We set

q̂(x, y) = (α̂k/λk)q̂j(xj , yj) = Pk,0q̂
j(xj , yj) for y ∈ Ak(x), (2.57)

q̂(x, y) = q̂j(xj , yj)P̂k,0 = q̂j(xj , yj)(αk/λk) for y ∈ Ek(x). (2.58)

For y ∈ Rk,�(x), we set
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q̂(x, y) = q̂j(xj , zj)P̂k,�
q̂h(zh, yh)∑

wh∈Ah
� (zh) q̂h(zh, wh)

(2.59)

= q̂j(xj , zj)q̂h(zh, yh)(P�,k/λk).

We also set
q̂(x, y) = q̂j(xj , yj) for x ∈ Ij(y), (2.60)

q̂(x, y) = 0 for other values of y. (2.61)

Here, we are setting

α̂k = λkPk,0, P̂k,� = λ�P�,k/λk, P̂k,0 = αk/λk. (2.62)

The term λkPk,0 is the rate at which jobs exit from the original network at
class k, and so should be the rate they enter the reversed network at k. The
second equality is obtained by reversing the direction of the mean transition
matrix P ; the third equality is obtained by setting P̂k,0 = 1 −

∑
� P̂k,�, and

applying the previous equality together with (1.6). We have implicitly set
λ̂k = λk in (2.57). The second equality in (2.59) needs to be justified; it
follows from (2.62) together with

∑

wh∈Ah
� (zh)

q̂h(zh, wh) = λ�. (2.63)

Since each node is assumed to be quasi-reversible, (2.63) follows from (2.46)
and αh

� = λ�. In the proof of Theorem 2.11, we will also employ
∑

k

α̂k =
∑

k

αk, (2.64)

which follows from the definition of α̂k and (1.6).

Proof of Theorem 2.11. The quasi-reversibility of the queueing network follows
immediately from the first equality in (2.57) and from (2.63), since

∑

y∈Ak(x)

q̂(x, y) = (α̂k/λk)
∑

yj∈Aj
k(xj)

q̂j(xj , yj) = (α̂k/λk)λk = α̂k,

which does not depend on x.
The remainder of the proof is devoted to showing that the distribution π

in (2.53) is stationary. We wish to show that π satisfies

π(x)q(x, y) = π(y)q̂(y, x) for all x, y ∈ S (2.65)

and
q(x) = q̂(x) for all x ∈ S, (2.66)
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where q̂ is defined in (2.57)-(2.61). These are restatements of (2.11) and (2.18),
and together with Proposition 2.6 imply that π is stationary. Since all states
are assumed to communicate, this is the unique such distribution.

Demonstration of (2.65). In order to verify (2.65), one needs to check the
different cases given by the formulas for q in (2.48)-(2.52). Each is straight-
forward, with the most involved case being y ∈ Rk,�. To check (2.65) for
y ∈ Rk,�(x), note that by (2.50) and the second part of (2.59), (2.65) reduces
to

πj(xj)πh(xh)qj(xj , zj)qh(zh, yh) = πj(yj)πh(yh)q̂j(yj , zj)q̂h(zh, xh) (2.67)

after cancelling the common terms πj′
(xj′

), with j′ �= j and j′ �= h, and
Pk,�/λ�. This equality follows immediately from the definition of q̂j and q̂h in
(2.11).

For the cases where y ∈ Ak(x) and y ∈ Ek(x), (2.65) reduces to analogs
of (2.67), which are somewhat simpler since only one node rather than two is
involved. The case y ∈ Ij(x) follows from the definition of q̂j . For pairs x and
y not covered in the preceding four cases, q(x, y) = q̂(y, x) = 0 by (2.52) and
(2.61). So, (2.65) holds in this last case as well.

Demonstration of (2.66). This part requires more work. We will show that

q(x) =
∑

k

αk −
∑

k

λk +
∑

j

qj(xj) (2.68)

and
q̂(x) =

∑

k

α̂k −
∑

k

λk +
∑

j

q̂j(xj). (2.69)

The first sums in the two equalities are equal by (2.64), and the last sums are
equal since (2.18) holds for each node. So, (2.68) and (2.69) together imply
(2.66).

We first show (2.68). We rewrite q(x) as

q(x) = (2.70)⎛

⎝
∑

k

∑

y∈Ak(x)

+
∑

k

∑

y∈Ek(x)

+
∑

k,�

∑

y∈Rk,�(x)

+
∑

j

∑

y∈Ij(x)

⎞

⎠ q(x, y),

and analyze the different parts. By (2.48′), the first double sum on the right
equals ∑

k

αk

∑

yj∈Aj
k(xj)

pj
k(xj , yj) =

∑

k

αk. (2.71)

By (2.49), the second double sum equals
∑

k

∑

yj∈Ej
k(xj)

q(xj , yj)Pk,0. (2.72)
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By (2.50′), the third double sum equals
∑

k

∑

zj∈Ej
k(xj)

qj(xj , zj)
∑

�

Pk,�

∑

yh∈Ah
� (zh)

ph
� (zh, yh) (2.73)

=
∑

k

∑

zj∈Ej
k(xj)

qj(xj , zj)
∑

�

Pk,�.

By (2.51), the last double sum equals
∑

j

∑

yj∈Ij(xj)

qj(xj , yj). (2.74)

Summation of (2.72)-(2.74) gives
⎛

⎝
∑

k

∑

yj∈Ej
k(xj)

+
∑

j

∑

yj∈Ij(xj)

⎞

⎠ qj(xj , yj). (2.75)

Also, note that
∑

k

∑

yj∈Aj
k(xj)

qj(xj , yj) =
∑

k

αj
k =

∑

k

λk. (2.76)

The sum of (2.75) and the left side of (2.76) is just
∑

j qj(xj). On the other
hand, the right side of (2.70) is equal to the sum of the left side of (2.71) and
(2.75). So, q(x) is equal to the sum of

∑
k αk and (2.75), whereas

∑
j qj(xj)

is equal to the sum of
∑

k λk and (2.75). Solving for this last term implies
(2.68).

The argument for (2.69) is similar, and we employ the analog of the de-
composition in (2.70), but for q̂(x) instead of q(x). By the first equality in
(2.57) and (2.63),

∑

k

∑

y∈Ak(x)

q̂(x, y) =
∑

k

(α̂k/λk)
∑

yj∈Aj
k(xj)

q̂j(xj , yj) =
∑

k

α̂k. (2.77)

Also, using the first equalities in (2.58) and (2.59), and (2.60), the same reason-
ing as that leading to (2.75) implies that the sum of the terms corresponding
to the last three double sums in (2.70) is

⎛

⎝
∑

k

∑

yj∈Ej
k(xj)

+
∑

j

∑

yj∈Ij(xj)

⎞

⎠ q̂j(xj , yj). (2.78)

On the other hand, it follows from (2.63) that
∑

k

∑

yj∈Ak(xj)

q̂j(xj , yj) =
∑

k

λk. (2.79)
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The sum of (2.78) and the left side of (2.79) is just
∑

j q̂j(xj). Employing
(2.77), (2.78), and (2.79) as we did (2.71), (2.75), and (2.76), the same rea-
soning as before implies (2.69).

Another proof for Theorem 2.11

Another proof for Theorem 2.11, that is more probabilistic, is given in
[Wa82] and [Wa83] (see also [Wa88]). The basic idea of the proof is to modify
the queueing network by imposing an ε delay, with ε > 0, on all routing
between classes. The corresponding stochastic process will be easier to analyze.
It will not be Markov, but will have a distribution that is of product form and
is invariant over time, and is the same for all values of ε. The limiting process
as ε ↓ 0 will be the Markov process for the original queueing network, and its
stationary distribution will be this distribution.

We now sketch the argument. Consider the J quasi-reversible nodes that
are associated with the queueing network as in (2.48)-(2.52), but which have
external arrival rates αk instead of λk. We form a new network from these
nodes by assuming that when jobs leave a node j from class k, they are routed
back to class � of node h with probability Pk,�, but with a fixed deterministic
delay ε > 0. During this delay, such jobs are assumed to not affect the transi-
tions within the nodes, which now play the role of individual stations within
the network.

One can construct the corresponding stochastic process inductively over
time intervals of length ε, starting with [0, ε]. One argues by first assuming
that (a) the initial states at the J stations are independent of one another and
are given by the stationary distributions of the isolated nodes with external
arrival rates λ� and (b) over the time interval (0, ε], the jobs returning to
classes � constitute independent Poisson processes having rates λkPk,�, which
are independent of the initial states in (a). Jobs from outside the system arrive
at class � at rate α�, and so by (b) and the traffic equations (1.6), the combined
arrivals at � from these two sources of jobs are Poisson processes with rates λ�

and are independent of one another. Because of the ε delay for returning jobs,
jobs departing from nodes over (0, ε] will not return over this period, and so
do not affect arrivals at �.

On account of these arrival processes, the processes at the stations will be
stationary over (0, ε] and independent of one another. Since the corresponding
nodes are quasi-reversible, jobs depart from the classes k according to inde-
pendent rate-λk Poisson processes over this period, which are independent of
the states of the stations at time ε. Because of the deterministic ε delay re-
quired for returns, these jobs return to the classes � as Poisson processes with
rates λkPk,�, over the period (ε, 2ε]. Consequently, the analogs of conditions
(a) and (b) hold over the time interval [ε, 2ε].

Iteration over the time intervals (ε, 2ε], (2ε, 3ε], . . . produces a stochastic
process on [0,∞) whose states at different stations at any fixed time are
independent of one another, and whose distributions are the same as the



52 2 The Classical Networks

stationary distributions of the corresponding isolated nodes. This process can
also be extended to all times t ∈ (−∞,∞).

Letting ε ↓ 0, the sequence of these processes will converge to the Markov
process corresponding to the original queueing network. Since each of these
processes has the same joint distribution at any given time, this distribution
will be stationary for the limiting Markov process. Since this distribution has
the desired product form, this reasoning implies (2.53) of Theorem 2.11. By
considering the exit processes of the sequence of processes, one can also show
that the original queueing network is quasi-reversible.


