
Preface

This book is dedicated to the use of the finite elements method for the approximation
of equations having partial derivatives. It resumes part of the curriculum leading to
the certificate in “Numerical Methods for Mechanics” taught by the author since the
past twelve years as part of the graduate studies in Mechanics at the University of
Pierre and Marie Curie (Paris VI).

Numerical Analysis has undergone a spectacular development during these past
forty years. It is most probably related to the boom in Information Technology which
has literally invaded the planet and provided, de facto, calculation capacities un-
dreamt of up to now.

This mathematical knowledge field – Numerical Analysis – may be characterised
as the “mathematic of mathematics” in the same line of thought as that of a “police
of polices”.

Indeed, as soon as a mathematical technology cannot be applied within the in-
dustrial applications due to operational inadequacy, numerical analysis takes over
and finds the solution by identifying the best adapted approximation process.

From there on, all other mathematical branches may be used to “force a pas-
sage” and to estimate a solution by often combining shrewdness and lucidity within
a stringent mathematical framework.

Numerical analysis is best and most often applied to the approximation of equa-
tions having partial derivatives as a major support to the modelling of real systems.

Whether it be applications in physics or in mechanics, in economy, marketing or
in the field of finance, the phenomenological translation of the system under study
often leads to the resolution of equations having partial derivatives.

This justifies the invention of numerous methods to solve such equations. The fi-
nite elements method, the finite volumes method, the singularity or integral method,
the spectral methods and the variational finite differences method are some of the
most popular methods.

However, the finite elements are those that definitely and drastically changed the
world of numerical approximation of equations having partial derivatives. Having an
exceptional flexibility, the finite elements undoubtedly constitute the approximation
method that is mostly used in solving mathematical models in engineering sciences.
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viii Preface

Considering the mathematical technicality required to apply finite elements,
many authors specialised in numerical analysis, including Pierre Arnaud Raviart
(8), presented the subject at higher level university teaching reserved to students
who possess the mathematical prerequisites, particularly in function analysis, es-
sential for the theoretical initiation to the finite elements method.

Other student populations who have followed a curriculum not specialised in
mathematics – specially graduate and postgraduate students in Physics or in Me-
chanics and the Graduate Engineering Schools who are users of the mathematical
tool at different degrees – may get recourse to Daniel Euvrard’s (5) book which was
written in the 90’s and that offers a version of a course adapted to students who are
unfamiliar with the tools for functional analysis.

The superiority of those two manuals reflects the quality of the teachings of Nu-
merical Analysis by Pierre Arnaud Raviart and subsequently by Daniel Euvrard at
the Training and Research Unit in Mechanics of the Pierre and Marie Curie Univer-
sity.

As far as this piece of work is concerned, its necessity and its core content have
been greatly influenced by the strong interaction between components of the au-
thor’s teaching activities in mechanics, at graduate level, consisting of Numerical
Methods applied to Mechanics and to the mechanics of deformable solids at the
Pierre and Marie Curie University.

Indeed, the author was motivated by the will to pursue the initiative set by the
two authors mentioned above by contributing to a new balance between a selective
specialist reading and one dedicated to “operational aspects while skimming over
the mathematical aspects”, as stated by Daniel Euvrard ([5], p.198).

The author’s training and awareness on all topics dealing with numerical analysis
was greatly influenced by Professor Gérard Tronel, a specially active and passionate
member of the team teaching numerical analysis at the Jacques Louis Lions labora-
tory of the Pierre and Marie Curie University (Paris VI).

The author benefited from Professor Tronel’s significant educational methods
and experience as a student and, later, as a colleague and friend, in bringing about
the new balance offered in this book.

The author’s warm thanks are conveyed to him for his contribution.
Graduate students in Mechanics of the Pierre and Marie Curie University are

the ones who have followed this novel presentation within the framework of uni-
dimensional applications of the resistance of materials.

The present work takes up these examples again and extends them to other ap-
plications.

Having identified targeted tools for functional analysis, as exposed without any
demonstration, the problems dealing with the existence, uniqueness and regularity
of weak solutions and their equivalence with strong solutions have been examined
through the display and use of the result of this identification.

Following this perspective, the present work is composed of a Summary of
Courses on finite elements in addition to Daniel Euvrard’s [5] work, and of var-
ious solutions demonstrating these techniques of functional analysis while, at the
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same time, tackling the construction of nodal equations characteristic of numerical
implementation of the finite elements method.

Moreover, a special emphasis has been laid on the presentation of the applica-
tion of assembly techniques illustrated in the problems related to the Resistance of
Materials.

The author seizes this opportunity to pay tribute to the memory of Claude Kam-
moun who initiated him to these techniques within the framework of Resistance of
Materials.

Finally, this work would never have been published without Benoît Goyeau and
Cédric Croizet’s proofreading of the different examination subjects at graduate level
Mechanics that constitute a major part of this book. The author conveys his sincere
thanks to both of them also to Dr. Arnaud Chauvière for his efficient advices in
Latex Programmation.

30th September 2008 Prof. J. Chaskalovic
Associate Professor

Ariel University Center of Samaria
and University Pierre and Marie Curie (Paris VI)



Chapter 3

Variational Formulations

The purpose of this chapter is to develop and analyse the variational formulations for
a one-dimensional case, on the one hand and to apply the P1 elements of Lagrange,
on the other hand.

In fact, in accordance with the degree of complexity of the problems tackled, it
will be suggested to apply the following program of analysis, which is common to all
partial differential equations, whose approximation is sought by the finite elements
method:

• Step A: This first step aims at obtaining a variational formulation (VP) (or weak
formulation) for a given continuous problem (CP) (or strong formulation).

• Step B: The existence and uniqueness of weak solutions of the problem (VP) are
studied, (essentially the application of the Lax-Milgram theorem).

• Step C: This step is devoted to the analysis of the regularity of the weak solutions
of the variational problem (VP).

• Step D: This part deals with the equivalence of strong and weak formulations. It
is particularly shown that a weak solution of the variational problem (VP), which
moreover shows the regularity property as obtained in Step C, is a strong solution
of the continuous problem (CP).

• Step E: This step is devoted to the writing of the nodal equation system that
provides an approximation of the weak solution of the variational problem (VP).

Furthermore, nodal equations obtained will be compared to those obtained with the
finite differences scheme that are associated with the continuous problem (CP).

Hence, two distinct parts may be studied separately. A first theoretical part will be
devoted to the analysis of the existence, uniqueness and regularity of the solutions to
variational formulations as well as to the notion of equivalence between continuous
and variational problems (Steps A, B, C and D).

J. Chaskalovic, Finite Element Methods for Engineering Sciences 63
© Springer 2008



64 3 Variational Formulations

The second part, which is totally different, will be devoted to obtaining an ap-
proximation of the different nodal equations, mainly using the Lagrange finite ele-
ment P1 and to the analysis of some schemes having finite differences.

Therefore, the reader may, at leisure, deal with the whole aspect of the problem
(both theoretical and numerical) or study either of these parts.

However, in the case where only the numerical part needs to be studied, it would
be suitable to refer to the theoretical part, or at least the first question, so as to elab-
orate and determine the proper variational formulation for the numerical application
of finite elements.

3.1 Dirichlet’s Problem

3.1.1 Statement

The aim of this problem is to propose a mathematical and numerical study of
the solution to a linear differential equation subjected to Dirichlet boundary
conditions.

Find u ∈ H2(0,1) being the solution to:

(CP)

{
−u′′(x)+u(x) = f (x), 0≤ x≤ 1 ,

u(0) = u(1) = 0 ,
(3.1)

in which f is a given function belonging to L2(0,1).

Besides, it is pointed out that Sobolev’s space H2(0,1) is defined as:

H2(0,1) =
{

v :]0,1[→ R,
dkv
dxk ∈ L2(0,1), ∀k = 0,1,2

}
. (3.2)

� Variational Formulation – Theoretical Part

1) Let v be a test function, defined from [0,1] to R, belonging to a functional
space V whose characteristics will be determined a posteriori.

Show that the continuous problem (CP) may be expressed in a variational
formulation (VP) in the form:

a(u,v) = L(v), ∀v ∈V .

The bilinear form a(., .), the linear form L(.) as well as the functional space V
need to be specified.
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2) Establish the existence and uniqueness of the weak solution of the varia-
tional problem (VP) in H1

0 (0,1), in which H1
0 (0,1) is defined as:

H1
0 (0,1) =

{
v :]0,1[→ R , v and v′ ∈ L2(0,1), v(0) = v(1) = 0

}
. (3.3)

3) Show that any weak solution of the variational problem (VP) also belongs
to H2(0,1).

4) To infer the equivalence between the strong formulation (CP) set in
H2(0,1) and the weak formulation (VP) considered in:

H1
0 (0,1)∩H2(0,1) .

� Numerical Part – Lagrange Finite P1 Elements

5) The approximation of the variational problem (VP) is worked out using
the Lagrange finite elements P1.

This is performed by introducing a regular mesh of [0,1] interval, of con-
stant step h, such as: {

x0 = 0, xN+1 = 1 ,

xi+1 = xi +h , i = 0 to N .
(3.4)

The approximation space Ṽ can now be defined as:

Ṽ =
{

ṽ/ṽ ∈C0([0,1]), ṽ|[xi,xi+1] ∈ P1, ṽ(0) = ṽ(1) = 0
}

, (3.5)

in which P1 ≡ P1([xi,xi+1]) refers to the polynomial space which is defined
over [xi,xi+1], having a degree less or equal to one.

– What is the dimension of Ṽ?

6) Let ϕi,(i = 1 to dimṼ ), be the canonical basis of Ṽ establishing
ϕi(x j) = δi j, in which δi j refers to the Krönecker symbol.

After having written the approximate variational formulation (ṼP), of so-
lution ũ, which is associated to the variational problem (VP), show that by
choosing:

ṽ(x) = ϕi(x), (i = 1 to dimṼ ) and ũ(x) = ∑
j=1,dimṼ

ũ jϕ j , (3.6)

the following system (ṼP) is obtained:

(P̃V) ∑
j=1,dimṼ

Ai jũ j = bi, ∀i ∈ {1, . . . ,dimṼ} , (3.7)
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where it has been observed that:

Ai j =
∫ 1

0
(ϕ ′i ϕ

′
j + ϕiϕ j)dx, bi =

∫ 1

0
f ϕidx . (3.8)

� Function ϕi Characteristic of a Node Strictly Interior at [0,1]

7) Given the regularity of the mesh, the generic nodal equation of the (ṼP)
system associated to any basis function ϕi, which is characteristic of a node
strictly interior at [0,1], is expressed as:

(ṼPInt)Ai,i−1ũi−1 +Ai,iũi +Ai,i+1ũi+1 = bi, (∀i = 1 to Kh) , (3.9)

where it has been assumed that:

Kh = dimṼ .

– Using the trapezium formula, calculate the 4 coefficients of (Ai j, bi).

8) Group the results together by writing down the corresponding nodal equa-
tion.

9) Show that the centrered finite differences scheme associated with the dif-
ferential equation of the continuous problem (CP) is obtained again. What is
its degree of precision?

It is pointed out that the trapezium quadrature formula is written as:

∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .
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3.1.2 Solution

� Variational Formulation – Theoretical Part

A.1) Let v be a test function, defined on [0,1] having real values and “sufficiently
regular”. Each time a variational formulation is needed, the regularity of the func-
tions v will be specified a posteriori, so that the formulation is significant enough to
be understood.

The differential equation of the continuous problem (CP) is then multiplied by v
and is integrated along the interval [0,1].

−
∫ 1

0
u′′vdx+

∫ 1

0
uvdx =

∫ 1

0
f vdx, ∀v ∈V . (3.10)

An integration by parts moreover leads to:
∫ 1

0
u′v′ dx+u′(0)v(0)−u′(1)v(1)+

∫ 1

0
uvdx =

∫ 1

0
f vdx, ∀v ∈V . (3.11)

It is now observed that the homogeneous boundary conditions for u, (u(0) = u(1) =
0) do not appear in the integral formulation (3.11).

In order to retain the whole information of the continuous problem (CP) in the
future variational formulation (VP), it would therefore be suitable to impose that
test functions v fulfil the boundary conditions:

v(0) = v(1) = 0 . (3.12)

Such a method indeed ensures that the solution u, as one of the functions v of the
searched variational space V , will have all the properties required at the boundary
conditions on [0,1].

The following formal variational formulation is thus obtained:

Find u belonging to V being the solution of:
∫ 1

0
(u′v′+uv)dx =

∫ 1

0
f vdx, ∀v such that: v(0) = v(1) = 0 . (3.13)

In fact, this variational formulation is indeed formal, since it is necessary to specify
the regularity of the test functions, which enables the equ. (3.13) to acquire signifi-
cance, especially the convergence of the integrals of the equation.

This consequently leads to the specification of the functional space V within
which the solution u of the integral formulation (3.13) would be found out.

This is performed by making use of the Cauchy-Schwartz Inequality that pro-
duces the following inequality of control:

∣∣∣∣
∫ 1

0
u′v′dx

∣∣∣∣≤
∫ 1

0
|u′v′|dx≤

[∫ 1

0
|u′|2dx

]1/2

·
[∫ 1

0
|v′|2dx

]1/2

, (3.14)
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∣∣∣∣
∫ 1

0
f vdx

∣∣∣∣≤
∫ 1

0
| f v|dx≤

[∫ 1

0
| f |2dx

]1/2

·
[∫ 1

0
|v|2dx

]1/2

. (3.15)

Given that the inequality (3.14) can be rewritten by substituting u′ by u and v′ by v,
so as to process the integral bearing on the product uv by the same method.

Therefore, if the variational space V is determined as being the set of the func-
tions v belonging to L2(0,1) and whose first derivative also belongs to L2(0,1), the
variational equation (3.13) is correctly defined.

To conclude, and by adding the homogenous Dirichlet boundary condi-
tions (3.12), the variational space V , in which the solution u of the variational for-
mulation (VP) will be sought is nothing else but the Sobolev space H1

0 (0,1), which
is defined by (3.3). Finally, the variational formulation (VP) is written as:

(VP)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find u belonging to V being the solution of: a(u,v) = L(v), ∀v ∈V, where:

a(u,v) ≡
∫ 1

0

[
u′(x)v′(x)+u(x)v(x)

]
dx ,

L(v) ≡
∫ 1

0
f (x)v(x)dx ,

V ≡ H1
0 (0,1) . (3.16)

A.2) In order to prove the existence and uniqueness of the solution pertaining to the
variational problem (VP) (3.16), the application of Lax-Milgram theorem 4 requires
the choice of a norm to be defined in the functional space H1

0 (0,1).

Yet, as H1
0 (0,1) ⊂ H1(0,1), it is natural to evaluate the size of the functions of

H1
0 (0,1) using the natural norm of H1(0,1).

In other words, the following formula is proposed:

∀v ∈H1
0 (0,1) : ‖v‖2H1 ≡

∫ 1

0
v2dx+

∫ 1

0
v′2dx≡ ‖v‖2L2 +‖v′‖2L2 . (3.17)

It is then seen that the bilinear form a(., .) is none other than the inner product from
which the H1 norm (3.17) is obtained:

∀v ∈ H1(0,1) : a(v,v)≡ (v,v)H1 = ‖v‖2H1 ,

in which (., .)H1 has been written as the inner product in H1.

Under these conditions, the Sobolev spaces H1(0,1) and H1
0 (0,1), (as a sub-

space of H1(0,1), also is a Hilbert space for the norm (3.17)), (the works of
P. A. Raviart [7] or H. Brézis [1] may be referred to for clarifications).

Moreover, the continuity constant for the bilinear form a(., .) can be then easily
be obtained since it only necessary to use the Cauchy-Schwartz Inequality to find
the inner product (., .)H1 :

|a(u,v)| ≡ |(u,v)H1 | ≤ (u,u)1/2
H1 · (v,v)1/2

H1 = ‖u‖H1 · ‖v‖H1 . (3.18)
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In other words, the continuity constant for the form a(., .) is equal to one.

The continuity for the linear form L is furthermore obtained by interpreting the
inequality check (3.15) with the use of the H1 norm:

| L(v) |2≤
[∫ 1

0
| f (x)v(x)|dx

]2
≤ ‖ f‖2L2‖v‖2L2 ≤ ‖ f‖2L2‖v‖2H1 . (3.19)

Hence, the continuity constant that arises for the linear form L is equal to the
L2-norm of the second member f .

Finally, the property of the V -ellipticity for the bilinear form a(., .) is immediate
if it is observed that:

a(v,v) = ‖v′‖2L2 +‖v‖2L2 = ‖v‖2H1 ≥ ‖v‖2H1 , (3.20)

which means that the ellipticity constant is also equal to one.

The Lax-Milgram theorem then implies that there is strictly only one function
belonging to H1

0 (0,1), which is the solution of the variational problem (VP).

� Remark

The application of the Lax-Milgram could have been perfectly performed by
choosing a different norm. Specifically, for this variational problem (VP) estab-
lished in H1

0 (0,1), a more precise norm exists to describe the elements of this
Sobolev space.

Indeed, if the norm is changed by establishing:

∀v ∈ H1
0 (0,1) : ‖v‖H1

0
≡
[∫ 1

0
v′(x)2dx

]1/2

. (3.21)

It is then easily shown that (3.21) is a norm for H1
0 (0,1).

In particular, the first property of the norms is fulfilled, given that any function v
belonging to H1

0 (0,1) is zero on the border of its definition interval.

Hence, if v is a function of H1
0 (0,1) such that ‖v‖H1

0
= 0, v′ is therefore zero

on [0,1]. Consequently, v is a constant on the entire interval [0,1] that can be mea-
sured, especially when x = 0. This then implies that v is identically zero on [0,1].

It will be noted that the other properties of the norm H1
0 (0,1) may be immediately

established.

A.3) To achieve results of complementary regularity for weak solutions to a vari-
ational problem (VP) is often difficult and therefore requires the availability of
a fairly sophisticated mathematical tool.
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For the present work, the study is limited to simple one-dimensional case for
which the mathematical tools that will be used are referred to in Chap. 1, para-
graph 1.1, sect. 1.1.4.

Thus, let u be an element of H1
0 (0,1), solution to the variational problem (VP)

and the following is obtained:
∫ 1

0
u′v′dx =

∫ 1

0
( f −u)vdx, ∀v ∈ H1

0 (0,1) . (3.22)

The function space C1
0(]0,1[) is then introduced and defined by:

C1
0(]0,1[)≡ {v : [0,1]→ R, v ∈C1(]0,1[), Supp v⊂]0,1[

}
, (3.23)

where Supp v denotes the support of function v.

Therefore function v from C1
0(]0,1[) can be chosen in the equality (3.22), since

this equality is in fact, a series of variational equations valid for all functions v
belonging to H1

0 (0,1) and containing C1
0(]0,1[).

Moreover, if function g is introduced and defined by g = f −u, the result is:

g ∈ L2(0,1)⊂ L1(0,1)⊂ L1
loc(0,1) , (3.24)

where space L1
loc(0,1) is defined by:

Let any K be a closed subset strictly included in [0,1], then:

Given v ∈ L1
loc(0,1) then v ∈ L1(K) . (3.25)

Thus, the variational equations family (3.22) can be expressed in C1
0(]0,1[), (accord-

ing to lemma 1), in the form of:
∫ 1

0
u′v′dx =

∫ 1

0
gvdx =−

∫ 1

0
Gv′dx, ∀v ∈C1

0(]0,1[) , (3.26)

where G is a primitive of g.

It is then expressed (3.26) in the form:
∫ 1

0
(u′+G)v′dx = 0, ∀v ∈C1

0(]0,1[) . (3.27)

Having finally obtained u′+G ∈ L2(0,1), since u belongs to H1(0,1), on one part,
and G belongs to C0(]0,1[)∩H1(0,1) on the other, the result obtained, according to
the same lemma 2, is u′+G which belongs to L1

loc(0,1).

It is then possible to apply the lemma 1 to the variational equation (3.27), which
leads to:

u′+G = Cte . (3.28)

Thus, it is seen that u′ is a function of H1(0,1), as the difference of a constant and
of the G function.
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It is finally inferred that u belongs to H2(0,1).

A.4) It is now important to establish the equivalence between the solution of the
continuous problem (CP) and that of the variational problem (VP).

Clearly, if u is a solution to the continuous problem (CP) looked for in H2(0,1)
then u is a weak solution to the variational problem (VP).

For this to happen, it is necessary that the construction process of the variational
formulation (VP) be re-examined and be stated to be licit, (specially using the in-
tegration formula by parts, cf. Chapter 1, theorem 4), being given that u belongs
to H2(0,1) and v to H1

0 (0,1).

The reciprocal is then established. Let u be the solution belonging to
H1

0 (0,1)∩ H2(0,1) of the variational problem (VP).

The integration formula is used by parts in the reverse order to the one used to
obtain the variational formulation.

This results in:
∫ 1

0
(−u′′+u− f )vdx = 0, ∀v ∈H1

0 (0,1) . (3.29)

The particular functions v belonging to D(0,1), which are the functions v belong-
ing to C∞(]0,1[) whose support is strictly included in interval ]0,1[, are then chosen
from the variational equations (3.29). This choice is legitimate since
D(0,1)⊂ H1

0 (0,1).

The density theorem 2 is then used as follows, rewriting equ. (3.29) in space D(0,1):

∫ 1

0
(−u′′+u− f )vdx = 0, ∀v ∈D(0,1) . (3.30)

It would be better to have the last equality family (3.30) for any v function belonging
to L2(0,1) in order to choose v = −u′′+ u− f , as special function of L2(0,1) to
conclude.

Therefore let ϕ be any function belonging to L2(0,1) and according to the density
theorem 2, D(0,1) is dense in L2(0,1). Then, there exists a sequence of functions ϕn

belonging to D(0,1) and that converge towards ϕ , according to the L2 norm:

lim
n→∞

[∫ 1

0
|ϕn−ϕ |2 dx

]
= 0 . (3.31)

However, for any function of the sequence ϕn belonging to D(0,1), the equal-
ity (3.30) occurs by choosing v = ϕn:

∫ 1

0
(−u′′+u− f )ϕn dx = 0, ∀n ∈ N . (3.32)
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10 +Ni xxx

Fig. 3.1 Profile of a Piecewise Affine Function

It is then possible to obtain the same property for the functions ϕ of L2(0,1) by the
following method:∣∣∣∣
∫ 1

0
ψ ·ϕ
∣∣∣∣=
∣∣∣∣
∫ 1

0
ψ · (ϕ−ϕn)

∣∣∣∣≤
[∫

Ω
|ψ |2
]1/2

·
[∫ 1

0
|ϕn−ϕ |2

]1/2

, (3.33)

where it was stated: ψ =−u′′+u− f .

n is made to tend towards +∞ in inequality (3.33), which demonstrates that:∫ 1

0
ψ ·ϕ dx = 0, ∀ϕ ∈ L2(0,1) . (3.34)

The demonstration now ends by choosing function as one of all functions of L2(0,1)
which is equal to: ϕ∗ =−u′′+u− f .

It is then deduced that:

−u′′+u+ f = 0 in L2(0,1) . (3.35)

Moreover, if the second member f belongs to L2(0,1)∩C0(]0,1[), then the differ-
ential equation is satisfied for any x belonging to ]0,1[ and the solution u is the
classical solution to the continuous problem (CP) belonging to C2(]0,1[).

� Numerical part – Lagrange Finite Elements P1

A.5) The dimension of the approximation space Ṽ can be determined in various
ways. The simplest and smartest way is to state that the functions ṽ of Ṽ are basically
pecked lines affined by full mesh [xi,xi+1] and cancelling each one when x = 0 and
when x = 1, (see Fig. 3.1).

Hence, having (N + 2) points of discretisation for the entire mesh of inter-
val [0,1], two Ṽ functions stand out because of their difference in values that may
be seen at N interior points (x1,. . . , xN).

Any function ṽ of Ṽ also needs to satisfy, ṽ0 = ṽN+1 = 0.

In other words, a function ṽ belonging to Ṽ is entirely determined by the N-tuple
(ṽ1, . . . , ṽN).

This implies that the space is isomorphic to RN . In conclusion, it can be deduced
that the dimension of Ṽ is equal to N.
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Fig. 3.2 Basis Functions ϕi−1, ϕi and ϕi+1

A.6) The approximated variational formulation is obtained by substituting the
approximation functions (ũ, ṽ) to the (u,v) functions in the variational formula-
tion (VP).

Moreover, the approximation expressions given by (3.6) are used and the follow-
ing is obtained:

Find the numerical sequence (ũ j),( j = 1 to N), solution to:

∑
j=1,N

[∫ 1

0

(
ϕ ′i ϕ ′j + ϕiϕ j

)
dx

]
ũ j =
∫ 1

0
f ϕi dx, ∀i = 1 to N . (3.36)

The expressions of Ai j, and b j corresponding to the formulas (3.8) are then obtained
by identification.

� Function ϕi Characteristic of a Node Strictly Interior at [0,1]

A.7) The basis functions ϕi, characteristic of nodes strictly interior to integration
interval [0,1], are now considered.

The generic equation of system (3.36) has, a priori, non zero terms, except those
corresponding to ϕ j functions whose support intercepts those of the ϕi function
considered (see Fig. 3.2).

Thus, the basis functions concerned are: ϕi−1, ϕi and ϕi+1.

This explains why the equation (ṼPint), only has terms Ai,i−1, Ai,i and Ai,i+1 and is
expressed according to (3.9).

� Approximate Calculation of Coefficients Aij, j = i−1, i, i+1 .

a) Approximation of coefficient Aii.

Aii =
∫ 1

0

(
ϕ ′2i + ϕ2

i

)
dx =

∫
Supp ϕi

(
ϕ ′2i + ϕ2

i

)
dx ,

=
∫ xi

xi−1

(
ϕ ′2i + ϕ2

i

)
dx +

∫ xi+1

xi

(
ϕ ′2i + ϕ2

i

)
dx ,

�
(

1
h2 ×h

)
+

h
2

(0+1) +
(

1
h2 ×h

)
+

h
2

(1+0) ,

Aii � 2
h

+h .

(3.37)
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This was achieved by considering the fact that the basis functions ϕi of are piece-
wise affines. Thereafter, the derivatives ϕ ′i are constant on each mesh having the
form [xi,xi+1].

The integrals bearing on those derivatives can then be calculated either exactly
or by using the trapezium quadrature formula being exact for constants func-
tions.

b) Approximation of coefficient Ai,i−1.

Ai,i−1 =
∫ 1

0

(
ϕ ′i ϕ

′
i−1 + ϕiϕi−1

)
dx ,

=
∫

Supp ϕi−1∩Supp ϕi

(
ϕ ′i ϕ ′i−1 + ϕiϕi−1

)
dx ,

�
(
− 1

h2 ×h

)
+

h
2

[(0×1)+ (1×0)] ,

Ai,i−1 � −1
h

.

(3.38)

c) Approximation of coefficient Ai,i+1.

Calculation of the coefficient Ai,i+1 is easily obtained as long as the following
symmetrical properties are observed:

– Matrix A of coefficient Ai j is symmetrical: Ai, j = Aj,i.

– The mesh over interval [0,L] is translation invariant as a consequence of its
uniform step of constant discretisation h.

It then becomes:

Symmetry Invariant
↓ ↓

Ai,i−1 = Ai−1,i = Ai,i+1 � −1
h

.

� Estimation of the Second Member bi

The second member bi is calculated by considering that every basis function ϕi,
characteristic of a strictly interior node has a support consisting of the union of
the [xi−1,xi] and [xi,xi+1] intervals, (see Fig. 3.2).

It then becomes:

bi =
∫ 1

0
f ϕi dx =

∫ xi

xi−1

f ϕi dx+
∫ xi+1

xi

f ϕi dx ,

� h
2

[0+ fi]+
h
2

[ fi +0] ,

bi � h fi .

(3.40)
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A.8) The previous results (3.37)–(3.40) are then grouped to obtain the corresponding
nodal equation:

− ũi−1−2ũi + ũi+1

h2 + ũi = fi, (i = 1 to N) . (3.41)

A.9) Discretization by finite differences of second order differential equation of the
continuous problem (CP) is classical.

The method uses the Taylor’s formula after choosing to express the differential
equation at the discretisation point xi:

−u′′ (xi)+u(xi) = f (xi) ,(i = 1 to N) . (3.42)

Taylor’s formula enables the substitution of the second derivative u′′ at point xi by
algebraic combination, using different values of the unknown u in different proximal
points of the mesh.

To obtain an order which is consistent with the finite elements method, the pro-
gressive form and the regressive form of the Taylor’s formula are used:

u(xi+1) = u(xi)+hu′(xi)+
h2

2
u′′(xi)+

h3

6
u′′′(xi)+O(h4) , (3.43)

u(xi−1) = u(xi)−hu′(xi)+
h2

2
u′′(xi)− h3

6
u′′′(xi)+O(h4) . (3.44)

The addition of equs. (3.43) and (3.44) is then performed.

It then becomes:

u′′(xi) =
u(xi+1)−2u(xi)+u(xi−1)

h2 +O(h2) . (3.45)

The expression of the second derivative of u (3.45) is substituted at point xi in the
differential equation (3.20) to obtain:

−u(xi+1)−2u(xi)+u(xi−1)
h2 +u(xi) = f (xi)+O

(
h2) , (i = 1 to N) . (3.46)

The traces ui of u, (ui ≡ u(xi)) are replaced at nodes xi, by the approximations
ũi,(ũi ≈ ui), in order to preserve the equality between both members of (3.46) when
suppressing the infinitely small O(h2).

This substitution leads to an exact correspondence between the scheme with finite
differences and the nodal equation (3.41).

It is obvious that the scheme with finite differences (3.41) is of the second order,
considering the approximation process that was explained earlier.

As a matter of fact, if the u(xi) values were substituted by the ũi values, the result
would be the differential equation (3.42) as closely as possible by O(h2).

This is the reason why the scheme having finite differences (3.41) is the second
order.
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3.2 The Neumann Problem

3.2.1 Statement

The aim of this problem is to propose a mathematical and numerical study of
the solution to a linear differential problem, subjected to Neumann boundary
conditions.

Thus, let u be a function of the real variable defined on [0,1] and has
values in R. The interest is on the solution to the continuous problem (CP)
defined by:

Find u ∈ H2(0,1) as solution to:

(CP)

{
−u′′(x)+u(x) = f (x), 0≤ x≤ 1 ,

u′(0) = u′(1) = 0 ,
(3.47)

where f is a given function belonging to L2(0,1).

� Variational Formulation – Theoretical Part

1) Let v be a test function defined on [0,1] having real values and belonging
to a variational space V .

Show that the continuous problem (CP) can be written in a variational
formulation (VP) like the following:

a(u,v) = L(v), ∀v ∈V .

The bilinear form a(., .), the linear form L(.) and the functional space V will
be specified.

2) Establish the existence and uniqueness of the weak solution of the varia-
tional problem (VP) in H1(0,1).

3) Show that any weak solution to the variational problem (VP) also belongs
to H2(0,1).

4) Deduce from it the equivalence between the strong formulation of the
problem (CP) set in H2(0,1) and the weak formulation of the variational
problem (VP) considered in H1(0,1)∩H2(0,1).

� Numerical Part – Lagrange Finite Elements P1

5) The approximation of the variational problem (VP) is performed by using
Lagrange finite elements P1.
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To make that happen, we introduce a regular mesh of the interval [0,1]
with a constant step h, so that:

{
x0 = 0, xN+1 = 1 ,
xi+1 = xi +h , i = 0 to N .

(3.48)

The approximation space Ṽ is now defined using:

Ṽ =
{

ṽ : [0,1]→ R, ṽ ∈C0([0,1]), ṽ|[xi,xi+1] ∈ P1
}

, (3.49)

where P1 ≡ P1([xi,xi+1]) refers to the space of polynomials defined over
[xi,xi+1] having a degree less than or equal to one.

– What is the dimension of Ṽ?

6) Let ϕi,(i = 1 to dimṼ ), be the canonical basis of Ṽ verifying ϕi(x j) = δi j,
where δi j refers to the Kronecker symbol.

After having written the approximate variational formulation (ṼP), hav-
ing a solution and associated with the variational problem (VP), show that
by selecting:

ṽ(x) = ϕi(x), (i = 1 to dimṼ ) and ũ(x) = ∑
j=1,dimṼ

ũ jϕ j , (3.50)

the following (ṼP) system is obtained:

(ṼP) ∑
j=1,dimṼ

Ai jũ j = bi, ∀i ∈ {1, . . . ,dimṼ} , (3.51)

where the following was noted:

Ai j =
∫ 1

0
(ϕ ′i ϕ

′
j + ϕiϕ j)dx, bi =

∫ 1

0
f ϕidx . (3.52)

� Function ϕi Characteristic of Node Strictly Interior at [0,1]

7) Given the mesh regularity, the generic nodal equation of the (ṼP) system
associated with any basis function ϕi,(i = 1 to dimṼ − 2), characteristic of
a node interior at [0,1] is written as:

(ṼPInt) Ai,i−1ũi−1 +Ai,iũi +Ai,i+1ũi+1 = bi, (∀i = 1 to dimṼ −2) .
(3.53)

– Using the trapezium formula, calculate the 4 coefficients (Ai j, bi).

8) Group the results together by writing the corresponding nodal equation.
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9) Show that the centred finite differences scheme associated with the differ-
ential equation of the continuous problem (CP) is obtained again. What is its
order of precision?

Remember that the trapezium quadrature is written as:

∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .

� Function ϕ0 Characteristic of the Node x0 = 0

10) When considering the basis function ϕ0 characteristic of the node x0 = 0,
show that the corresponding nodal equation of the (ṼP) system is written as:

(ṼP0) A0,0ũ0 +A0,1ũ1 = b0 . (3.54)

– Using the trapezium formula, calculate the 3 coefficients A0,0, A0,1

and b0.

11) Write the corresponding nodal equation.

12) Show that the finite differences scheme associated with the Neumann
condition in x = 0 is obtained again. What is its order of precision?

� Function ϕN+1 Characteristic of the Node xN+1 = 1

13) Now, consider the basis function ϕN+1 characteristic of the node
xN+1 = 1.

Show that the nodal equation associated with the (ṼP) system is written
as:

(ṼPN+1) AN+1,NũN +AN+1,N+1ũN+1 = bN+1 . (3.55)

– Using the trapezium formula, calculate the 3 coefficients AN+1,N+1,
AN+1,N and bN+1.

14) Write the corresponding nodal equation.

15) Show that the finite differences scheme associated with the Neumann
condition in x = 1 is obtained again. What is its order of precision?
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3.2.2 Solution

� Variational Formulation – Theoretical Part

A.1) Let v be a test function defined on [0,1] having real values and “sufficiently
regular”.

As already mentioned in the presentation of the Dirichlet problem (see para-
graph [3.1]), the regularity of functions v will be specified a posteriori in order to
give sense to the variational formulation, when the latter is established.

The differential equation of the continuous problem (CP) is multiplied by v then
integrated over the interval [0,1].

−
∫ 1

0
u′′vdx+

∫ 1

0
uvdx =

∫ 1

0
f vdx, ∀v ∈V . (3.56)

An integration by parts then gives the following:

∫ 1

0
u′v′dx+u′(0)v(0)−u′(1)v(1)+

∫ 1

0
uvdx =

∫ 1

0
f vdx, ∀v ∈V . (3.57)

Here, the homogenous Neumann boundary conditions defined in the continuous
problem (CP), (u′(0) = u′(1) = 0), appear in the integral formulation (3.57).

As a result and by considering the above two boundary conditions, the following
formulation is obtained:

Find u belonging to V being the solution to:

∫ 1

0
(u′v′+uv)dx =

∫ 1

0
f vdx, ∀v ∈V . (3.58)

At this stage, the formulation (3.58) is only formal since the various integrals ap-
pearing in it have no reason to be convergent.

It is then observed that this variational formulation is strictly analogous to the one
obtained within the framework of the Dirichlet problem – see paragraph [3.1], (3.13)
– except the boundary conditions that should no longer be imposed on the test func-
tions v within the framework of the Neumann problem treated here.

That is the reason why, if the functional analysis presented in paragraph [3.1]
is used, a sufficient condition guaranteeing the convergence of the integrals in the
variational formulation (3.58) consists in defining the variational space V as follows:

V ≡ H1(0,1)≡ {v : [0,1]→ R, v ∈ L2(0,1), v′ ∈ L2(0,1)} . (3.59)
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Finally, the variational problem (VP) is written as:

(VP)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find u belonging to V solution of: a(u,v) = L(v), ∀v ∈V, where:

a(u,v) ≡
∫ 1

0

[
u′(x)v′(x)+u(x)v(x)

]
dx ,

L(v) ≡
∫ 1

0
f (x)v(x)dx ,

V ≡ H1(0,1) .

(3.60)

A.2) The existence and uniqueness of the variational problem (VP) (3.60) are
demonstrated by applying the Lax-Milgram theorem (lemma 4).

To make that happen, choosing one norm to be defined on the functional space
H1(0,1) represents one of the key points in the application of the Lax-Milgram
Theorem.

Then the choice is to measure the dimension of functions v belonging to H1(0,1)
by the natural norm defined by:

∀v ∈ H1(0,1) : ‖v‖2H1 ≡
∫ 1

0
v(x)2dx+

∫ 1

0
v′(x)2dx≡ ‖v‖2L2 +‖v′‖2L2 . (3.61)

The norm being selected, the process that consists in verifying the various hypothe-
ses of the Lax-Milgram theorem is strictly similar to the one presented for the
Dirichlet problem, (see paragraph [3.1]).

The following is a point-by-point summary of this verification:

– The space H1(0,1) is a Hilbert space for the norm (3.61); the inner product re-
sulting from this norm coincides exactly with the bilinear norm a(., .) defined
by (3.60).

– The bilinear form a(., .) is continuous on H1(0,1)×H1(0,1); the continuity con-
stant being equal to one.

– The linear form L(.) defined by (3.60) is continuous on H1(0,1); the continuity
constant being equal to the L2-norm of the second member f .

– The form a(., .) is H1-elliptic and the ellipticity constant is equal to one.

The application of the Lax-Milgram theorem thus implies the existence of one
and only one function u belonging to H1(0,1), the solution to the variational prob-
lem (VP) defined by (3.60).

A.3) Once again, the Dirichlet problem [3.1] will be used to treat this question.

In fact, as mentioned above, achieving complementary regularity results for weak
solutions to the variational problem (VP) may require sufficiently sophisticated
mathematical tools.
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That is the reason why the present study, being limited to a one-dimensional case,
refers to mathematical results mentioned in Chap. 1, paragraph 1.1, sect. 1.1.4.

So, let u be an element of H1(0,1), solution to the variational problem (VP), and
the following is obtained:

∫ 1

0
u′v′dx =

∫ 1

0
( f −u)vdx, ∀v ∈ H1(0,1) . (3.62)

Among the functions v belonging to H1(0,1), only those belonging to C1
0(]0,1[),

(C1
0(]0,1[)⊂ H1(0,1)), are then selected.

Moreover, by introducing the function g defined by g = f − u, the following is
obtained:

g ∈ L2(0,1)⊂ L1(0,1)⊂ L1
loc(0,1) , (3.63)

where the space L1
loc(0,1) is defined by:

Let any K be a closed subset strictly included in [0,1], then:

Given v ∈ L1
loc (0,1) then v ∈ L1 (K) . (3.64)

Thus the family of variational equations (3.62) can be written within C1
0(]0,1[) in

the following form:

∫ 1

0
u′v′dx =

∫ 1

0
gvdx =−

∫ 1

0
Gv′dx, ∀v ∈C1

0(]0,1[) , (3.65)

where G is a primitive of g. (To make that happen, the lemma 2 would be used).

(3.65) is then written in the following form:

∫ 1

0
(u′+G)v′dx = 0, ∀v ∈C1

0(]0,1[) . (3.66)

Having finally obtained u′+G ∈ L2(0,1), (since, on one hand u belongs to H1(0,1)
and on the other hand G belongs to C0(]0,1[) ∩ H1(0,1)), still according to
lemma 2, u′+G belonging to L1

loc(0,1) is obtained in the same manner.

Then, lemma 1 may be applied to the variational equation (3.66), leading to:

u′+G = Cte . (3.67)

Thus, it happens that u′ is a function belonging to H1(0,1) as the difference of
a constant and of the function G.

Finally, it is inferred that u belongs to H2(0,1).
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A.4) This last question of the theoretical part is dedicated to the equivalence between
the solution to the continuous problem (CP) and the solution to the variational prob-
lem (VP).

The direct way is simple since if u is a solution to the continuous problem (CP)
searched for in H2(0,1), then u is a weak solution to the variational problem (VP).

To do so, it is only necessary to revert back to the process that enabled the estab-
lishment of the variational formulation (VP) and to note that the latter makes sense,
(in particular by using the integration-by-parts formula, see Chap. 1, theorem 4),
given that u belongs to H2(0,1) and v to H1(0,1).

The reciprocal is now calculated. In the variational problem (VP), let u be a so-
lution belonging to H2(0,1) – any solution u to the variational problem henceforth
belongs to H2(0,1) according to the previous question.

The integration-by-parts formula is then used in the inverse direction to the one
that enabled the variational formulation to be obtained and this gives:

∫ 1

0
(−u′′+u− f )vdx = 0, ∀v ∈ H1(0,1) . (3.68)

It is then noticed that the formulation (3.68) is identical to the one considered in
the Dirichlet problem [3.1] except the functional framework (H1

0 in the Dirichlet
problem and H1which is here considered in the Neumann problem).

It is then only necessary to observe the functional inclusion H1
0 ⊂ H1 even if it

is trivial, in order to strictly apply the whole methodology that has been presented.
(see Dirichlet problem [3.1], question No. 4).

The essential points treated in the rest of the demonstration is thus pointed out:

– In the equality (3.68), functions v belonging to D(0.1) are selected since
D(0,1)⊂ H1(0,1).

– The density theorem 2 is used: D(0,1) is dense in L2(0,1).

– Then, it is shown that the equality (3.68) no longer takes place in H1(0,1) but in
a bigger space i. e. in L2(0,1).

– It is then possible to choose from all the v functions belonging to L2(0,1) and
involved in the equation (3.68), the one that exactly equals: v∗ =−u′′+u− f .

If in addition, the second member f belongs to L2(0,1)∩C0(]0,1[) then the dif-
ferential equation is satisfied for any x ∈]0,1[ and the solution u is the classical
solution to the continuous problem (CP) belonging to C2(]0,1[).

� Numerical Part – Lagrange Finite Elements P1

A.5) To calculate the dimension of space Ṽ , the following remark is necessary:

The definition (3.49) of the approximation space is almost similar to the one
considered in the Dirichlet problem (see problem of [3.1], question No.5, (3.5)).
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Fig. 3.3 Profile of a Piecewise Affine Function

Thus, using the demonstration performed within the framework of the Dirichlet
problem, it is only necessary to note that in space Ṽ defined by (3.49), two liberty
degrees, due to the two values of any function ṽ of Ṽ in x = 0 and in x = 1, add two
units to the dimension found in the Dirichlet problem.

In other words, finding any function ṽ of Ṽ means finding its trace
(ṽ0, ṽ1, . . . , ṽN , ṽN+1) in (N + 2) discretisation points of the mesh in the inter-
val [0,1], i. e. (x0,x1, . . . ,xN ,xN+1) which on their own fix the definition of ṽ
(see Fig. 3.3).

As a result, space Ṽ is isomorphic to RN+2 and the dimension of Ṽ is equal
to N +2.

A.6) As usual, the approximate variational formulation (ṼP) is obtained by substi-
tuting the approximate functions (ũ, ṽ) for functions (u,v) in the variational formu-
lation (VP).

Moreover, the expressions supplied by the formula (3.50) are used.

Thus, the approximate variational formulation (ṼP) is written as:

(VP)

⎡
⎢⎣

Find the numerical sequence (ũ j) , ( j = 0 to N +1) , solution to:
N+1

∑
j=0

[∫ 1

0

(
ϕ ′i ϕ ′j + ϕiϕ j

)]
ũ j =
∫ 1

0
f ϕi(x), ∀i = 0 to N +1 .

(3.69)

The expressions of Ai j, and b j corresponding to the formulas (3.52) are then ob-
tained by identification.

� Function ϕi characteristic of a node strictly interior at [0,1]

A.7) When observing variational formulation (ṼP) defined by (3.69), it appears
that, in the linear system consecutive equations (N +2), the “interior” N equations
corresponding to the values of j ranging from 1 to N, are totally identical to those
found in the Dirichlet problem, (see paragraph 3.1, question 7).
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As mentioned previously in the theoretical part, only the functional frame differs
between the two formulation in order to consider the change in boundary conditions.

It is then expected to find the same approximation described by the nodal equa-
tions associated to the basis functions ϕi, characteristic of nodes strictly interior
to [0,1] mesh interval.

In other words, the nodal equation (3.53) coefficients have the following value:

Aii ≡ 2
h

+h, Ai,i−1 = Ai,i+1 ≡−1
h
, bi ≡ h fi . (3.70)

This is the result of the variational formulation identical formalism between the
Dirichlet and the Neumann problem, for basis functions ϕi characteristic of nodes
strictly interior at interval [0,1].

A.8) The nodal equation of the approximate variational problem (ṼP) corresponding
to the basis function ϕi, which is characteristic of a strictly interior node xi and
written as:

− ũi−1−2ũi + ũi+1

h2 + ũi = fi, (i = 1 to N) . (3.71)

A.9) For the same reasons previously mentioned in the last questions, the analogy
made with the Dirichlet problem ensures that the results, concerning the finite dif-
ferences scheme obtained similarly in the present case, are at one’s disposal.

Therefore, the finite differences scheme, with application of a second order dis-
cretisation to the differential equation of the continuous problem (CP), precisely
corresponds to the nodal equation (3.71).

� Function ϕ0 Characteristic of the Node x0 = 0

A 10) The generic equation (3.69) of the approximate variational problem (ṼP),
corresponding to the basis function ϕ0, characteristic of the node x0, is written as:

(ṼP0) A00ũ0 +A01ũ1 = b0 . (3.72)

This results from the fact that when considering the approximate variational prob-
lem (ṼP) (3.69) in the case of the basis function ϕ0, the summation upon the other
basis functions ϕ j only leads to zero contribution.

This is again the consequence of the position relative to the support of each of
the basis functions ϕ j as regards to the one of the basis function ϕ0, (see Fig. 3.4).

� Approximate Calculation of the Coefficients A00 and A01

a) Approximation of the coefficient A00.

The calculation of the coefficient is performed in a way analogous to that pre-
sented for the calculation of the coefficient Aii in the answer to the question 7.
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However, there is a difference since the basis function ϕ0 comprises a sup-
port, which is solely constituted of the mesh [x0,x1] while the basis functions
ϕi, (i = 1,N), have a support which is made up of two meshes, [xi−1,xi] and
[xi,xi+1].

The working out of the coefficient A00 is therefore performed as follows:

A00 =
∫ 1

0

(
ϕ ′20 + ϕ2

0

)
dx =
∫

Supp ϕ0

(
ϕ ′20 + ϕ2

0

)
dx

=
∫ x1

x0

(
ϕ ′20 + ϕ2

0

)
dx ,

�
(

1
h2 ×h

)
+

h
2

(0+1). (3.73)

Thus finally:

A00 � 1
h

+
h
2

. (3.74)

b) Approximation of the coefficient A01.

A01 =
∫ 1

0

(
ϕ ′0ϕ ′1 + ϕ0ϕ1

)
dx =
∫

Supp ϕ0∩ Suppϕ1

(
ϕ ′0ϕ ′1 + ϕ0ϕ1

)
dx ,

�− 1
h2 ×h+

h
2

[(0×1)+ (1×0)]. (3.75)

Results consequently in:

A01 �−1
h

. (3.76)

It will be noted that the approximation of the coefficient A01 represents a partic-
ular case of the generic calculation presented above (see paragraph 3.1, (3.38),
in so far as the discretisation step h is constant.

Therefore, the integration of the basis function ϕ0 against the basis function ϕ1

along the interval [x0,x1] is completely equivalent to the integration of ϕi

against ϕi+1 along the interval [xi,xi+1].
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To prove this, it should be possible to carry out the substitution of the adequate
variable by associating the interval [xi,xi+1] with the interval [x0,x1] and to ob-
serve the equality between the coefficients Ai,i+1 and A01.

� Evaluation of the Second Member b0

The evaluation of the second member b0 is performed according to the scheme sim-
ilar to the one presented for the second member bi (see paragraph 3.1, (3.40)).

Therefore, the following is obtained:

b0 =
∫ 1

0
f ϕ0 dx =

∫ x1

x0

f ϕ0 dx� h
2

[0+ f0]� h
2

f0 . (3.77)

A.11) The results (3.73)–(3.77) are consequently gathered to obtain the correspond-
ing nodal equation associated with the function of ϕ0, characteristic of the node x0.

(
1
h

+
h
2

)
ũ0− 1

h
ũ1 =

h
2

f0 . (3.78)

A.12) To determine the finite differences scheme which discretises the Neumann
condition when x0 = 0,(u′(x0) = 0), it can be observed that, if it were neces-
sary to maintain the second order of discretisation obtained for the finite differ-
ences scheme (3.72), associated with differential equation of the continuous prob-
lem (CP), inside the interval [0,1], the Taylor’s expansion that will be studied must
be written till the third order.

Therefore, the following Progressive Taylor’s Expansion will be written as fol-
lows:

u(x1) = u(x0)+hu′(x0)+
h2

2
u′′(x0)+O(h3) . (3.79)

It is then possible to replace the value of the first derivative which is zero when
x0 = 0 (since it concerns the Neumann condition), still, as usual, in the case of the
application of such a method, there appears the second derivative of u at the point x0.

Therefore, the differential equation of the continuous problem (CP) can be as-
sumedly written till the border of the interval, namely, here, when x0 = 0:

−u′′(x0)+u(x0) = f (x0) . (3.80)

The equ. (3.80) can express the second derivative u′′ at the point x0 and inserted in
the Taylor’s expansion (3.79).

There consequently results:

u(x1) = u(x0)+hu′(x0)+
h2

2
[u(x0)− f (x0)]+O(h3) . (3.81)

The approximations can then be worked out, while omitting the rest O(h3) in the
equ. (3.81).
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Following the process of discretisation when x0 = 0, the equation is then written
as:

ũ1 = ũ0 +
h2

2
[ũ0− f0] . (3.82)

The nodal equation (3.78), corresponding to the basis function ϕ0, characteristic of
the node x0 of the discretisation is found.

� Function ϕN+1 characteristic of the node xN+1 = 1

A.13) Considerations analogous to those presented above, for the working out of the
nodal equation when x0 = 0, are also relevant for the nodal equation when xN+1 = 1.

As such, it is only necessary to see to it that the situation of the basis functions ϕN

and ϕN+1 is symmetrical to the situation of the basis functions ϕ0 and ϕ1, (see
Fig. 3.5).

That is why the equation of the approximate variational formulation (ṼP) corre-
sponding to the basis function ϕN+1 is written as:

(ṼPN+1) AN+1,NũN +AN+1,N+1ũN+1 = bN+1 . (3.83)

Likewise, provided that a great care is taken to replace the integration interval [x0,x1]
by the one which corresponds to the support of the function ϕN+1 i. e. [xN ,xN+1], the
following results for the evaluation of coefficients AN+1,N , AN+1,N+1 and bN+1 are
obtained.

� Approximate Calculation of Coefficients AN+1,N and AN+1,N+1

a) Approximation of coefficient AN+1,N+1.

AN+1,N+1 =
∫ 1

0

(
ϕ ′2N+1 + ϕ2

N+1

)
dx =
∫

Supp ϕN+1

(
ϕ ′2N+1 + ϕ2

N+1

)
dx ,

=
∫ xN+1

xN

(
ϕ ′2N+1 + ϕ2

N+1

)
dx ,

�
(

1
h2 ×h

)
+

h
2

(0+1) ,

� 1
h

+
h
2

. (3.84)
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Fig. 3.5 Basis Functions ϕN and ϕN+1
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b) Approximation of coefficient AN+1,N .

AN+1,N =
∫ 1

0

(
ϕ ′Nϕ ′N+1 + ϕNϕN+1

)
dx ,

=
∫

Supp ϕN ∩ Supp ϕN+1

(
ϕ ′Nϕ ′N+1 + ϕNϕN+1

)
dx ,

�
(
− 1

h2 ×h

)
+

h
2

[(0×1)+ (1×0)]�−1
h

. (3.85)

� Estimation of the Second Member bN+1

The approximation of the second member bN+1 is obtained by using the trapezium
quadrature formula:

bN+1 =
∫ 1

0
f ϕN+1dx ,

=
∫ xN+1

xN

f ϕN+1dx� h
2

[0+ fN+1]� h
2

fN+1 . (3.86)

A.14) The nodal equation associated with the basis function ϕN+1 is written by
grouping the results of (3.84)–(3.86).

This equation is perfectly symmetrical compared to the one associated with the
basis function ϕ0:

−1
h

ũN +
(

1
h

+
h
2

)
ũN+1 =

h
2

fN+1 . (3.87)

A.15) Given the symmetry mentioned in the previous question, finding the nodal
equation (3.87) by using finite differences is conceivable.

In fact, at abscissa xN+1 = 1, if a progressive expansion was considered when
x0 = 0, this time a regressive Taylor’s expansion must be considered in the following
way:

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
u′′(xN+1)+O(h3) . (3.88)

Then, the second derivative when xN+1 is replaced by writing the differential equa-
tion of the continuous problem (CP) at the point xN+1:

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
[u(xN+1)− f (xN+1)]+O(h3) . (3.89)

Now, by exploiting the information concerning the homogenous Neumann condition
when xN+1, the pendant of the discrete equation (3.82) is obtained provided that the
values u(xi) are replaced by the respective approximations ũi:

ũN = ũN+1 +
h2

2
[ũN+1− fN+1] . (3.90)
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3.3 The Fourier-Dirichlet Problem

3.3.1 Statement

The aim of this problem is to propose a mathematical and numerical study
of the solution to a second order linear differential problem subjected to
Fourier-Dirichlet mixed boundary conditions.

Let u be a function of a real variable, defined from values [0,1] in R.

The considered continuous problem (CP) is defined by:

To find u ∈H2(0,1) which is the solution to:

(CP)

{
−u′′(x)+u(x) = f (x), 0≤ x≤ 1 ,

u(0) = 0, u′(1)+ ku(1) = 1 ,
(3.91)

where f is a given function belonging to L2(0,1) and k a given positive or
zero real parameter.

� Variational Formulation – Theoretical Part

1) Let v be a test function, defined by [0,1], and having real values, belonging
to the variational space V . Show that the continuous problem (CP) can be
expressed as a variational formulation (VP) in the form:

a(u,v) = L(v), ∀v ∈V .

The bilinear form a(., .), the linear form L(.) and the functional space V need
to be specified.

2) Establish the existence and uniqueness of a weak solution of the varia-
tional problem (VP) in H1∗ (0,1) defined by:

H1
∗ (0,1) =

{
v : ]0,1[→ R,v and v′ ∈ L2(0,1), v(0) = 0

}
. (3.92)

3) Show that any weak solution to H1∗ (0,1) the variational problem (VP) also
belongs to H2(0,1).

4) Infer from therein, the equivalence between the strong formulation pre-
sented in H2(0,1) and the weak formulation considered in H1∗ (0,1)∩H2(0,1).

� Lagrange Finite Element P1 – Numerical Part

5) Approximation of the variational problem (VP) is performed using La-
grange finite elements P1.
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To achieve this, a regular mesh of interval [0,1] of constant step h is in-
troduced, such as: {

x0 = 0, xN+1 = 1 ,

xi+1 = xi +h, i = 0 to N .
(3.93)

The approximation space Ṽ is now defined using:

Ṽ =
{

ṽ : [0,1]→ R, ṽ ∈C0([0,1]), ṽ|[xi,xi+1] ∈ P1([xi,xi+1]), ṽ(0) = 0
}

,

(3.94)

where P1([xi,xi+1]) denotes the polynomial space defined over [xi,xi+1], of
degree less than or equal to one.

– What is the dimension of Ṽ?

6) Let ϕi,(i = 1 to dimṼ ), be the canonical basis Ṽ of establishing
ϕi(x j) = δi j.

After having written the approximate variational formulation (ṼP), of so-
lution (ṼP), which is associated to the variational problem (VP), show that
by choosing:

ṽ(x) = ϕi(x), (i = 1 to dimṼ ) and ũ(x) = ∑
j=1, dim Ṽ

ũ jϕ j , (3.95)

the following (ṼP) system is obtained:

(ṼP) ∑
j=1, dim Ṽ

Ai jũ j = bi, ∀i ∈ {1, . . . , dim Ṽ} , (3.96)

where the following was noted:

Ai j =
∫ 1

0
(ϕ ′i ϕ

′
j + ϕiϕ j)dx+ kϕi(1)ϕ j(1), bi =

∫ 1

0
f ϕidx+ ϕi(1) .

(3.97)

� Function ϕi Characteristic of a Node Strictly Interior at [0,1]

7) Given the regularity of the mesh, the generic nodal equation of the (ṼP)
system associated to any function with basis ϕi, which is characteristic of
a node strictly interior at [0,1], is expressed as:

(ṼPInt) Ai,i−1ũi−1 +Ai,iũi +Ai,i+1ũi+1 = bi,

(∀i = 1, dim Ṽ −1) . (3.98)

– Using the trapezium rule, calculate the 4 coefficients (Ai j,bi).
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8) Group the results together by writing down the corresponding nodal equa-
tion.

9) Show that the centred finite differences scheme associated with the differ-
ential equation of the continuous problem (CP) is obtained again. What is its
order of precision? It is pointed out that the trapezium quadrature formula is
written as:

∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .

� Function ϕN+1 Characteristic of the Node xN+1 = 1

10) Now, consider the basis function ϕN+1 characteristic of the node
xN+1 = 1.

Show that the nodal equation associated with the (ṼP) system is written
as:

(ṼPN+1) AN+1,NũN +AN+1,N+1ũN+1 = bN+1 . (3.99)

– Using the trapezium formula, calculate the 3 coefficients AN+1,N ,
AN+1,N+1 and bN+1.

11) Write the corresponding nodal equation.

12) Show that the finite differences scheme associated to the Fourier bound-
ary conditions when x = 1 is obtained again. What is its order of precision?
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3.3.2 Solution

� Variational Formulation – Theoretical Part

A.1) Let v be a test function defined by [0,1] having real values and “sufficiently
regular”.

As already mentioned in the presentation of the Dirichlet problem (see para-
graph [3.1]), the regularity of functions v will be specified a posteriori in order to
give sense to the variational formulation, when the latter is established.

The differential equation of the continuous problem (CP) is multiplied by v then
integrated over the interval [0,1].

−
∫ 1

0
u′′(x)v(x)dx+

∫ 1

0
u(x)v(x)dx =

∫ 1

0
f (x)v(x)dx, ∀v ∈V . (3.100)

The integration by parts then results in:
∫ 1

0
u′(x)v′(x)dx + u′(0)v(0)−u′(1)v(1)+

∫ 1

0
u(x)v(x)dx,

=
∫ 1

0
f (x)v(x)dx, ∀v ∈V . (3.101)

Here the Fourier boundary conditions, defined in the continuous problem (CP),
(u′(1)+ ku(1) = 1), appears in the integral formulation (3.101). In fact, this may
be confirmed by re-writing the Fourier condition in the form:

u′(1) = 1− ku(1) , (3.102)

in order to replace the first derivative of solution u, at the abscissa x = 1 in equa-
tion (3.101).

Moreover, as previously observed for this type of second order differential equa-
tion, the homogenous Dirichlet condition when x = 0 cannot be directly taken into
account in formulation (3.101).

This explains why this homogenous Dirichlet condition is imposed on test func-
tions v whose solution u constitutes a specific case.

This method guarantees that the full memory of the information contained in the
continuous problem (CP) is maintained in the future variational formulation.

These two boundary conditions, (the first one bearing on u via its relationship
with (3.102) and the second one concerning the zero v test functions when x = 0)
lead to the following variational formulation (VP):

Find u belonging to V , solution to:
∫ 1

0
(u′v′+uv)dx+ ku(1)v(1) =

∫ 1

0
f vdx+ v(1), ∀v ∈V. (3.103)
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At this stage of the study, the V space is composed of v functions subjugated to the
homogenous Dirichlet condition when x = 0 : v(0) = 0.

Meanwhile, formulation (3.103) is only formal since the different integrals do
not need to be convergent.

Actually, this variational formulation is structurally analogous to the one ob-
tained within the framework of the Dirichlet problem – see (3.13), paragraph [3.1] –
except for the boundary conditions that need to be modified to suit the test functions
v within the framework of the Fourier-Dirichlet problem being examined here.

Thus, referring to the functional analysis previously shown in paragraph [3.1],
a sufficient condition securing the convergence of integrals of the variational formu-
lation (3.103) is to consider the following functional framework:

V ≡ H1(0,1)≡ {v : [0,1]→ R,v ∈ L2(0,1),v′ ∈ L2(0,1)}. (3.104)

The homogenous Dirichlet condition at abscissa x = 0 is added to the above func-
tional space to finally lead to the following variational formulation:

(VP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u belonging to V solution of: a(u,v) = L(v), ∀v ∈V, where:

a(u,v) ≡
∫ 1

0
(u′v′+uv)dx+ ku(1)v(1) ,

L(v) ≡
∫ 1

0
f vdx+ v(1) ,

V ≡ H1∗ (0,1) ,

(3.105)

where space H1∗ (0,1) is defined by (3.92).

A.2) The existence and uniqueness of the solution to the variational problem (VP)
defined by (3.105), is obtained by applying the Lax-Milgram theorem 4.

This is achieved by again choosing the H1(0,1) norm (see paragraph 3.1, (3.61)
and (3.106) defined hereafter), by trading off measurement of the “size” of as any
function of H1(0,1),(H1∗ (0,1)⊂ H1(0,1)).

The H1(0,1) natural norm, previously defined, is as follows:

∀v ∈ H1(0,1) : ‖v‖2H1 ≡
∫ 1

0
v(x)2dx+

∫ 1

0
v′(x)2dx≡ ‖v‖2L2 +‖v′‖2L2 . (3.106)

Once the norm is chosen, the different points described below need to be validated
in order to apply the Lax-Milgram theorem:

a) H1∗ (0,1) space is a Hilbert space for norm (3.106).

This is achieved by showing, for example, that H1∗ (0,1) is a closed vector sub-
space of H1(0,1) for norm (3.106), (see H. Brézis, [1]).
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b) The bilinear form a(., .) is continuous on H1∗ (0,1)×H1∗ (0,1) for norm (3.106).

In fact, let be (u,v) ∈ H1∗ (0,1)×H1∗ (0,1):

|a(u,v)| ≤|(u,v)H1 |+ k|u(1)v(1)|
≤(u,u)1/2

H1 · (v,v)1/2
H1 + k|u(1)v(1)|

≤‖u‖H1 .‖v‖H1 + k|u(1)v(1)| , (3.107)

where (., .)H1 denotes the inner product of H1 from which norm (3.106) arises.

Moreover, for any function v belonging to H1(0,1), the result is:

∀x ∈ [0,1] : v(x) = v(0)+
∫ x

0
v′(t)dt . (3.108)

Thus, for the specific case of v functions belonging to H1∗ (0,1), v(0) = 0.

It then becomes:

∀x ∈ [0,1] : v(x) =
∫ x

0
v′(t)dt . (3.109)

Equation (3.109) is then expressed as x = 1 and the Cauchy-Schwartz inequality is
used to obtain the following control inequality:

|v(1)| ≤
[∫ 1

0
v′2(t)dt

]1/2

≡ ‖v′‖L2 . (3.110)

Inequality (3.107) is then used to obtain:

|a(u,v)| ≤ ‖u‖H1 · ‖v‖H1 + k‖u′‖L2‖v′‖L2 ≤ (1+ k)‖u‖H1 · ‖v‖H1 . (3.111)

The bilinear form a(., .) is thus continuous for the H1-norm defined by (3.106). The
continuity constant is actually equal to (1+ k).

c) The linear form L(.) defined by (3.105) is continuous on H1∗ (0,1) for norm
(3.106).

The same scheme of analysis previously presented for the bilinear form a(., .) is
applied.

| L(v) |≤
∫ 1

0
| f v|dx+ |v(1)| ≤ ‖ f‖L2‖v‖L2 + |v(1)| . (3.112)

The inequality control (3.110), which is valid for any v function belonging to
H1∗ (0,1), is used again to obtain:

| L(v) |≤ ‖ f‖L2‖v‖L2 +‖v′‖L2 ≤ (1+‖ f‖L2)‖v‖H1 . (3.113)
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The linear form L(.) is therefore continuous on space H1∗ (0,1) with the norm (3.106)
and the continuity constant is equal to (1+‖ f‖L2).

d) The a(., .) form is H1-elliptic and the ellipticity constant is equal to one.

In fact, the ellipticity inequality is immediate if it is reckoned that:

a(v,v) = ‖v′‖2L2 +‖v‖2L2 + kv(1)2 = ‖v‖2H1 + kv(1)2 ≥ ‖v‖2H1 . (3.114)

The fact that parameter k is a real positive number has been used.

The application of the Lax-Milgram theorem (see theorem 10) thus implies that
there exists one and only one function belonging to H1∗ (0,1) being the solution to
the variational problem (VP) defined by (3.105).

A.3) The method presented for the Dirichlet problem [3.1] is used to prove that any
weak solution belonging to H1∗ (0,1) is also a function of H2(0,1).

Thus, let u be an element of H1∗ (0,1), solution to the variational problem (VP)
and the following is obtained:

∫ 1

0
u′v′dx =

∫ 1

0
( f −u)vdx+[1− ku(1)]v(1), ∀v ∈ H1

∗ (0,1) . (3.115)

Among the functions v belonging to H1∗ (0,1), those belonging to C1
0(]0,1[),

(C1
0(]0,1[)⊂ H1∗ (0,1)), are then selected.

This choice implies that the retained functions v are null when x = 0 and when
x = 1.

Moreover, the function g defined by g = f −u is introduced and the following is
obtained:

g ∈ L2(0,1)⊂ L1(0,1)⊂ L1
loc(0,1) , (3.116)

where space L1
loc(0,1) is defined by:

Let any K be a closed subset strictly included in ]0,1[, then:

Given v ∈ L1
loc(0,1) then v ∈ L1(K) . (3.117)

Thus, the family of variational equations (3.115) can be written within C1
0(]0,1[) in

the form:
∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
g(x)v(x)dx =−

∫ 1

0
G(x)v′(x)dx, ∀v ∈C1

0(]0,1[) ,

(3.118)

where G is a primitive of g (Lemma 2 is used to achieve this).
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(3.118) is then written in the form:

∫ 1

0

[
u′(x)+G(x)

]
v′(x)dx = 0, ∀v ∈C1

0(0,1) . (3.119)

In this form, the family of variational equations (3.119) strictly corresponds to
the family of equations demonstrated in the Dirichlet problem (see Dirichlet prob-
lem [3.1], (3.27)).

The rest of the analysis is inferred from it and the same arguments are used
to state that any solution u to the variational problem belonging to H1∗ (0,1) also
belongs to the Sobolev space H2(0,1).

A.4) This last question of the theoretical part is dedicated to the equivalence between
the solution to the continuous problem (CP) and the solution to the variational prob-
lem (VP).

The direct sense is simple as it is the result of the construction of a solution to the
variational formulation (VP) using a given solution to the continuous problem (CP).

Then, it will be observed that this construction process is licit provided that the
solution u to the continuous problem (CP) belongs to H2(0,1) and the test func-
tions v that intervene in the variational formulation (VP) belong to H1∗ (0,1).

It will notably be noticed that if u is a solution to the continuous problem (CP)
satisfying the homogenous Dirichlet boundary conditions when x = 0, then this
time u when considered as a solution to the variational problem (VP) belongs de
facto to H1∗ (0,1).

The reciprocal is now considered. Let u belong to H2(0,1)∩H1∗ (0,1) a solution
to the variational problem (VP). According to the previous question, it is known that
any solution u of the variational problem (VP) belonging to H1∗ (0,1) also belongs
to H2(0,1).

The integration-by-parts formula used in the reverse order to the one that yielded
the variational formulation (VP) leads to the following:

∫ 1

0
(−u′′+u− f )v dx+

[
u′(1)+ ku(1)−1

]
v(1) = 0, ∀v ∈ H1

∗ (0,1) . (3.120)

Then, consider the particular case of functions v in the equation (3.120) belonging
to H1

0 (0,1). This means that the functions v that are null when x = 0 and when x = 1.

In that case, the equation (3.120) is written as:

∫ 1

0
(−u′′+u− f )v dx = 0, ∀v ∈ H1

0 (0,1) . (3.121)

Here it is observed that, the formulation (3.121) is similar to the one considered in
the Dirichlet problem [3.1].
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That is why the rest of the reasoning is also similar. The essential points for the
continuation of the demonstration are:

– In the equality (3.121), functions v belonging to D(0,1) are selected since
D(0,1)⊂ H1(0,1).

– The density theorem 2 is used: D(0,1) is dense in L2(0,1).

– Then, it is shown that the equality (3.121) no longer takes place in H1(0,1) but
in a bigger space i. e. in L2(0,1).

– It is then possible to choose from all the v functions belonging to L2(0,1) the one
that exactly equals: v∗ =−u′′+u− f .

Moreover, if the second member f belongs to L2(0,1)∩ C0(]0,1[), the differen-
tial equation is satisfied for any x belonging to ]0,1[ and the solution u is the classical
solution of the continuous problem (CP) belonging to C2(]0,1[).

Once it is proved that the differential equation of the problem (CP) is satisfied
by the solution to the variational problem (VP), the family of equations (3.120) is
reduced and is written as:

[
u′(1)+ ku(1)−1

]
v(1) = 0, ∀v ∈ H1

∗ (0,1) . (3.122)

A last selection in equation (3.122) consists in considering the particular case of
function v* defined by: v∗∗(x) = x,∀x ∈ [0,1].

Of course, it will be easily verified that v∗∗ belongs to H1∗ (0,1). In that case,
equation (3.122) implies that u satisfies the Fourier boundary conditions:

u′(1)+ ku(1) = 1 . (3.123)

This ends the demonstration of the reciprocal and any solution of the variational
problem (VP) belonging to H2(0,1)∩ H1∗ (0,1) is a solution to the continuous prob-
lem (CP).

� Lagrange Finite Elements P1 – Numerical Part

A.5) To calculate the dimension of space Ṽ , the following observation is necessary:

Once again, definition (3.94) of the approximation space Ṽ is very close to the
one considered in the Dirichlet problem (see problem of [3.1], question 5, (3.5)).

Thus, by considering the demonstration presented above, it is only necessary to
observe that space Ṽ defined by (3.94) produces an additional degree of freedom
attributable to the value of function ṽ of Ṽ when x = 1.
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As a result, the dimension of Ṽ defined by (3.5) found in the Dirichlet problem
should be increased by one unit.

In other words, for any function ṽ of Ṽ , knowledge of its trace (ṽ1, . . . , ṽN+1) at
(N + 1) discretisation points of the mesh at the [0,1] interval, namely in (x1, . . . ,
xN+1), that fixes the definition of ṽ in a unique manner.

That is why space Ṽ is isomorphic to RN+1 and the dimension of Ṽ is equal
to N +1.

A.6) In order to obtain the approximate variational formulation (ṼP), the approxi-
mation functions (ũ, ṽ) are substituted in the (u,v) functions of the variational for-
mulation (VP). Moreover, the expressions given by (3.95) are used.

The approximate variational formulation (ṼP) is thus written as:

Find the numerical sequence (ũ j),( j = 1 to N +1), solution to:

N+1

∑
j=1

[∫ 1

0

(
ϕ ′i ϕ

′
j + ϕiϕ j

)
dx+ kϕi(1)ϕ j(1)

]
ũ j =
∫ 1

0
f ϕi(x)dx+ ϕi(1) ,

(∀i = 1 to N +1) . (3.124)

The expressions of Ai j, and b j corresponding to the formulas (3.97) are then ob-
tained by identification.

� Characteristic Function ϕj of a Node Strictly Interior at [0,1]

A.7) The characteristic basis functions ϕi of the nodes of the mesh that are strictly
interior at the [0,1] integration interval is now considered.

The generic equation of system (3.124) is strictly similar to the one obtained in
the Dirichlet problem, (see Problem [3.1], (3.36)).

In fact, to be sure of that, it is only necessary to note that for any characteristic
basis function ϕi of a node strictly interior at the [0,1] interval, the following is
obtained: ϕi(1) = 0, (see Fig. 3.6).
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Fig. 3.6 Basis Functions ϕi−1, ϕi and ϕi+1
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In that case, the nodal equ. (3.124) is then written as:

N+1

∑
j=1

[∫ 1

0

(
ϕ ′jϕ

′
i + ϕ jϕi

)
dx

]
ũ j =
∫ 1

0
f ϕi(x)dx,

(∀i = 1,N +1) , (3.125)

which corresponds exactly to the nodal equation (3.36) of the Dirichlet problem.

That is why the results demonstrated in the Dirichlet problem are directly reused
in order to exploit them directly in the Fourier-Dirichlet problem.

� Approximate Calculation of Coefficients Aij, j = i−1, i, i+1

a) Approximation of coefficient Aii.

Aii � 2
h

+h . (3.126)

b) Approximation of coefficient Ai,i−1.

Ai,i−1 = Ai,i+1 �−1
h

. (3.127)

� Estimation of the Second Member bi

bi � h fi . (3.128)

A.8) The nodal equation associated with any characteristic function ϕi of a strictly
interior node is obtained by grouping results (3.126)–(3.128):

− ũi−1−2ũi + ũi+1

h2 + ũi = fi, i = 1 to N . (3.129)

A.9) Discretisation of the second order differential equation of the continuous prob-
lem (CP) by finite differences is strictly similar to the one presented in the Dirichlet
problem.

This discretisation is written as:

−u(xi−1)−2u(xi)+u(xi+1)
h2 +u(xi) = f (xi)+O

(
h2) ,(i = 1 to N) . (3.130)

Then, the traces ui ≡ u(xi) of function u, having nodes xi are replaced by the
respective approximations (ũi ≈ ui) in order to keep equality between the two mem-
bers of (3.130) during the elimination of the infinitesimal O(h2).

The result of this substitution is that the finite differences scheme obtained cor-
responds exactly to the nodal equation (3.129) associated with any characteristic
function ϕi of a node xi strictly interior at the [0,1] interval.

Moreover, the finite differences scheme (3.129) is of the second order, given that
the approximation consists in neglecting the term in O(h2) in the equation (3.130).
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� Characteristic Basis Function ϕN+1 of the Node xN+1 = 1

A.10) The nodal equation associated with the characteristic basis function ϕN+1 of
the node xN+1 = 1 is written as:

(ṼPN+1) AN+1,NũN +AN+1,N+1ũN+1 = bN+1 . (3.131)

The coefficients AN+1,N , AN+1,N+1 and the second member bN+1 whose estimations
are obtained below intervene in this equation (3.131).

� Approximate Calculation of Coefficients AN+1,N and AN+1,N+1

a) Approximation of coefficient AN+1,N+1.

AN+1,N+1 =
∫ 1

0

(
ϕ ′2N+1 + ϕ2

N+1

)
dx+ kϕ2

N+1(1) ,

=
∫ xN+1

xN

(
ϕ ′2N+1 + ϕ2

N+1

)
dx+ k ,

�
(

1
h2 ×h

)
+

h
2

(0+1)+ k ,

� 1
h

+
h
2

+ k . (3.132)

It will be noticed that the characteristic property of the basis function ϕN+1 has
been used at abscissa xN+1: ϕN+1(xN+1) = 1.

b) Approximation of coefficient AN+1,N .

AN+1,N =
∫ 1

0

(
ϕ ′Nϕ ′N+1 + ϕNϕN+1

)
dx+ kϕN(1)ϕN+1(1) ,

=
∫

Supp ϕN ∩ Supp ϕN+1

(
ϕ ′Nϕ ′N+1 + ϕNϕN+1

)
dx ,

�− 1
h2 ×h+

h
2

[(0×1)+ (1×0)]�−1
h

. (3.133)

Likewise, it will be noticed that the property of the basis function ϕN has been
used: ϕN(xN+1) = 0 .

� Estimation of the Second Member bN+1

Starting from:

bN+1 =
∫ 1

0
f ϕN+1dx+ ϕN+1(1) =

∫ xN+1

xN

f ϕN+1dx+1 ,

�h
2

[0+ fN+1]+1� h
2

fN+1 +1 . (3.134)
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A.11) The nodal equation associated with the basis function ϕN+1 is written by
grouping the results of (3.132)–(3.134).

This equation is written as:

−1
h

ũN +
[

1
h

+
h
2

+ k

]
ũN+1 =

h
2

fN+1 +1 . (3.135)

A.12) The Fourier boundary conditions at abscissa xN+1 = 1 are now discretised
using finite differences.

To achieve this, a regressive Taylor’s expansion is considered at abscissa xN+1

expressing the solution u of the continuous problem (CP) at abscissa xN according
to the values of u and of its derivatives at abscissa xN+1.

This expansion is written as:

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
u′′(xN+1)+O(h3) . (3.136)

Then, supposing that the differential equation of the continuous problem (CP) can
be written at the border of the integration domain ]0,1[ i. e. here at abscissa xN+1,
the second derivative of the solution u at abscissa xN+1 appearing in the equ. (3.136)
is replaced as below:

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
[u(xN+1)− f (xN+1)]+O(h3) . (3.137)

Moreover, the first derivative of the solution u at abscissa xN+1, is expressed by
using the Fourier boundary conditions:

u′(xN+1) = 1− ku(xN+1) . (3.138)

Then equ. (3.137) takes the following form:

u(xN) = u(xN+1)−h [1− ku(xN+1)]+
h2

2
[u(xN+1)− f (xN+1)]+O(h3) . (3.139)

Then, some algebraic manipulations are operated to write equation (3.139) in the
following form:

−1
h

u(xN)+
[

1
h

+
h
2

+ k

]
u(xN+1) =

h
2

fN+1 +1+O(h2) . (3.140)

The nodal equ. (3.135) associated with the basis function ϕN+1 is then obtained,
provided that the values u(xi) of the solution u to the continuous problem (CP) are
replaced by the respective approximations ũi in equ. (3.140):

−1
h

ũN +
[

1
h

+
h
2

+ k

]
ũN+1 =

h
2

fN+1 +1 . (3.141)



102 3 Variational Formulations

3.4 Periodic Problem

3.4.1 Statement

This objective of the problem is to initiate the finite element method in a sec-
ond order differential problem showing periodic boundary conditions.

Actually, interest is axed on the solutions to the following continuous
problem:

Find u ∈ H2(0,1) which is the solution to:

(CP)

{
−u′′(x)+u(x) = f (x),0 ≤ x≤ 1 ,

u(0) = u(1),u′(0) = u′(1) ,
(3.142)

where f is a given function belonging to L2(0,1).

� Variational Formulation – Theoretical Part

1) Let v be a test function, defined from [0,1] to R, belonging to variational
space V .

Show that the continuous problem (CP) can be expressed as a variational
formulation (VP) under the form of:

a(u,v) = L(v), ∀v ∈V .

The bilinear form a(., .), the linear form L(.) and the functional space V need
to be determined.

2) Establish the existence and uniqueness of a weak solution of the varia-
tional problem (VP) in H1

per(0,1) defined by:

H1
per(0,1) =

{
v : ]0,1[→ R, v ∈ L2(0,1), v′ ∈ L2(0,1), v(0) = v(1)

}
.

3) Show that any weak solution to the variational problem (VP) belongs also
to H2(0,1).

4) Deduce the equivalence between the strong formulation presented in
H2(0,1) and the weak formulation (VP) considered in H1

per(0,1)∩H2(0,1).

� Lagrange finite element P1 – Numerical Part

5) The approximation to the variational problem (VP) is done by Lagrange
finite elements P1. To do so, a regular mesh is introduced at interval [0,1]
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of constant step h, such as:{
x0 = 0, xN+1 = 1 ,
xi+1 = xi +h, i = 0 to N .

(3.143)

The approximation space Ṽ is now defined by:

Ṽ =
{

ṽ : [0,1]→ R, ṽ ∈C0([0,1]), ṽ|[xi,xi+1] ∈ P1([xi,xi+1]), ṽ(0) = ṽ(1)
}

,

(3.144)

where P1([xi,xi+1]) denotes the polynomial space defined on [xi,xi+1], of de-
gree less than or equal to one.

– What is the dimension of Ṽ?

6) In order to numerically solve the variational problem (VP) by finite ele-
ments, the periodic boundary conditions bearing upon the values of the v and
u functions, where x = 0 and x = 1, are temporarily “set aside”.

To achieve this, the W̃ approximation space is introduced and defined by:

W̃ =
{

w̃ : [0,1]−→ R, w̃ ∈C0([0,1]), w̃ ∈ P1([xi,xi+1])
}

. (3.145)

– What is the dimension of W̃?

7) Let ϕi(i = 0 to dim W̃−1) be the basis of W̃ testing ϕi(x j) = δi j. After ex-
pressing the approximated variational formulation of solution ũ (temporarily
looked for in W̃ ) associated to the variational problem (VP), show that when
choosing:

w̃(x) = ϕi(x),(i = 0, dim W̃ −1) and ũ(x) = ∑
j=0, dim W̃−1

ũ jϕ j (3.146)

the following (ṼP) system is obtained :

(ṼP) ∑
j=0, dim W̃−1

Ai jũ j = bi, ∀i ∈ {0, . . . , dim W̃ −1} , (3.147)

where it was stated:

Ai j =
∫ 1

0
(ϕ ′i ϕ

′
j + ϕiϕ j)dx, bi =

∫ 1

0
f ϕidx . (3.148)

� Characteristic Function ϕi of a Node Strictly Interior at [0,1]

8) Considering the mesh regularity, the generic nodal equation of the (VP)
system associated to any basis function ϕi, (i = 1 dim W̃ −2), characteristic
of a node interior at [0,1], is expressed as:

(ṼPInt) Ai,i−1ũi−1 +Ai,iũi +Ai,i+1ũi+1 = bi,

(∀i = 1 to dim W̃ −2) . (3.149)

– Using the trapezium rule, calculate the 4 coefficients (Ai j,bi).
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9) Group the results by expressing them in a corresponding nodal equation.

10) Show that the centred finite differences scheme associated to the differ-
ential equation of the continuous problem (CP) is obtained again. What is its
precision order?

For reminder, the trapezium quadrature formula is expressed as:
∫ b

a
ξ (s)ds� (b−a)

2
{ξ (a)+ ξ (b)} .

� Characteristic Function ϕ0 of the Abscissa Node x0 = 0

11) The same process is used for the basis function ϕ0, characteristic of the
initial node x0. The corresponding equation of the (ṼP) system is then ex-
pressed as:

(ṼP0) A00ũ0 +A01ũ1 = b0 . (3.150)

– Using the trapezium rule, calculate the A00,A01 and b0 coefficients.

12) Group the results by expressing them in a corresponding nodal equation.

� Characteristic Function ϕN+1 of the Abscissa Node xN+1

13) The same process is used for the basis function ϕN+1, characteristic of
the final node xN+1. The corresponding equation to the (ṼP) system is then
expressed as:

(ṼPN+1) AN+1,NũN +AN+1,N+1ũN+1 = bN+1 . (3.151)

– Using the trapezium rule, calculate the AN+1,N , AN+1,N+1 and bN+1

coefficients.

14) Group the results by expressing them in a corresponding nodal equation.

15) Considering the periodicity properties of the nodal equations character-
istic of nodes x0 and xN+1, state an algebraic equation, noted (R), between
the unknowns (ũ0, ũ1, ũN) and the data ( f0, fN+1).

16) Process a second-order discretization on the periodic boundary condi-
tions of the continuous problem (CP) using the finite differences method,
and show that the exact previous algebraic equation (R) is obtained.
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3.4.2 Solution

� Variational Formation – Theoretical Part

A.1) Let v be a test function, defined from [0,1] to R, “sufficiently regular” be-
longing to a functional space V . The differential equation of the continuous prob-
lem (CP) is multiplied by v and integrated upon [0,1] interval:

−
∫ 1

0
u′′v dx+

∫ 1

0
uv dx =

∫ 1

0
f v dx, ∀v ∈V . (3.152)

The integration by parts then results in:

∫ 1

0
u′v′dx+u′(0)v(0)−u′(1)v(1)+

∫ 1

0
uv dx =

∫ 1

0
f v dx, ∀v ∈V . (3.153)

It is now demonstrated that the periodic boundary conditions bearing on the u deriva-
tive (u′(0) = u′(1)), can be directly injected in the integral formulation (3.153).

Thus, the result obtained is:

∫ 1

0
(u′v′+uv)dx+u′(0)(v(0)− v(1)) =

∫ 1

0
f v dx, ∀v ∈V . (3.154)

Concerning the periodic boundary conditions bearing upon u, the test function v is
bound to satisfy the same boundary conditions, being:

v(0) = v(1) . (3.155)

Thus, the variational problem (VP) keeps all the information contained in the con-
tinuous problem (CP).

The result obtained is that u is solution to the following formal variational for-
mulation:

∫ 1

0
(u′v′+uv)dx =

∫ 1

0
f vdx, ∀v such that: v(0) = v(1) . (3.156)

Finally, it is shown that the Cauchy-Schwartz inequality secures, as usual, the con-
vergence of the different integrals composing the variational formulation (3.156),
if v and v′ are functions belonging to L2(0,1). In other words, from then on, take the
test functions v – and from there, solution u – as belonging to H1(0,1).

Considering the periodic boundary conditions (3.155) imposed in addition, the
result is a variational space V defined by:

V ≡ H1
per(0,1) =

{
v : ]0,1[→ R,v and v ∈ L2(0,1), v′ ∈ L2(0,1), v(0) = v(1)

}
.

(3.157)
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Finally, the variational formulation (VP) is expressed as:

(VP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u belonging to V solution to: a(u,v) = L(v), ∀v ∈V, where:

a(u,v) ≡
∫ 1

0

[
u′(x)v′(x)+u(x)v(x)

]
dx ,

L(v) ≡
∫ 1

0
f (x)v(x)dx ,

V ≡ H1
per(0,1) .

(3.158)

A.2) The existence and uniqueness of the variational formulation (VP) solution is
demonstrated by applying the Lax-Milgram theorem (theorem 10), using an analo-
gous method to the one detailed in the Dirichlet problem (see problem [3.1]).

To achieve this, the space H1
per(0,1) is fitted with the H1-norm (3.17) and the aim

is to prove that H1
per(0,1) is a closed of H1(0,1), thus conferring it with the Hilbert

structure for the H1-norm.

The sequence vn is then considered as belonging H1
per(0,1) to converging for

norm H1 towards a v function of H1(0,1).

The closing property of H1
per(0,1) in H1(0,1) consists to establish that the limit v

is also an element of H1(0,1).

It is established that (Cf. H. Brézis, [1]) if v is a function of H1(0,1), v is also
a continuous function (to be exact, a continuous representative in the function class
equal to v exists almost everywhere).

Moreover, since vn converges towards v in H1(0,1), it is inferred that (Cf. H.
Brézis, [1]) a sub-sequence vnk exists, composed of vn in such a way that vnk simply
converges towards v, for nearly any x belonging to [0,1] (actually, it can be estab-
lished that the convergence of vn towards v is uniform).

Since vn and v are “continuous” functions, it is inferred that the simple conver-
gence occurs at any x point of the interval [0,1]. Thus, it is possible to express the
simple convergence when x = 0 and when x = 1:

lim
n→+∞

vnk (0) = v(0) and lim
n→+∞

vnk (1) = v(1) . (3.159)

The only step left is to evaluate the [v(0)− v(1)] difference where the aim is to
establish that it is equal to zero, in order to certify that limit v and sequence vn do
belong to H1

per(0,1):

|v(0)− v(1)|= |v(0)− vnk(0)+ vnk(0)− v(1)| , (3.160)

≤ |v(0)− vnk(0)|+ |vnk(1)− v(1)| . (3.161)

The periodicty property of the sequence vn, (vn(0) = vn(1)), has been used and
applied to the sub-series vnk .
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To conclude, it suffices to perform a run at the boundary of inequality (3.61) to
finally obtain:

v(0) = v(1) , (3.162)

which ends the demonstration and confers a Hilbert structure to H1
per(0,1) together

with the H1-norm defined in (3.17), as a H1(0,1) closed vector sub-space.

The display of Lax-Milgram theorem is then performed for space H1
per(0,1) to-

gether with the H1-norm, with no formal difference with the presentation of the
Dirichlet problem.

Therefore, a unique solution exists to the variational formulation (VP) that be-
longs to H1

per(0,1).

A.3) The regularity result for the variational formulation (VP) solution will be
obtained through the same procedures as the ones previously established for the
Dirichlet problem (see Problem [3.1]).

It only needs to be fitted to the H1
per(0,1) functional frame.

Effectively, let u be a solution to the problem (VP) and the result is:

∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
[ f (x)−u(x)]v(x)dx, ∀v ∈ H1

per(0,1) . (3.163)

It is then possible to choose v in C1
0(]0,1[) which is well included in H1

per(0,1) and
a situation of variational equations family (3.26) is obtained.

The following steps of the demonstration remain unchanged and it is inferred
that the variational problem’s (VP) solution belongs to H1

per(0,1) ∩ H2(0,1).

A.4) Using the same way as for the previous question, the equivalence between
a weak and a strong solution is processed according to the demonstration pro-
posed for the Dirichlet problem, while adapting it to the actual functional frame,
being H1

per(0,1).

Effectively, let v be a variational problem’s (VP) solution, where integration by
parts leads to:

∫ 1

0
(−u′′+u− f )v(x)dx+u′(1)v(1)−u′(0)v(0) = 0, ∀v ∈H1

per(0,1) , (3.164)

or else, since v(0) = v(1),

∫ 1

0
(−u′′+u− f )v(x)dx+[u′(1)−u′(0)]v(0) = 0, ∀v ∈ H1

per(0,1) . (3.165)

Again, it is possible to choose v in D(0,1) (being legitimate since
D(0,1)⊂ H1

per(0,1)). The rest of the demonstration remains unchanged.
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It is next proceeded by density and it is inferred that solution u of variational
formulation (VP) verifies the differential equation of the continuous problem (CP)
as a functional equation in L2(0,1).

Moreover, if the second member f belongs to L2(0,1) ∩ C0(]0,1[) then the dif-
ferential equation is satisfied for any x belonging to ]0,1[ and the solution u is the
classical solution of the continuous problem (CP) belonging to C2(]0,1[).

� Lagrange Finite Element P1 – Numerical Part

A.5) A function ṽ belonging to Ṽ is a continuous function over the interval [0,1]
and is piecewise affine. Therefore, in the absence of periodic boundary conditions,
Ṽ would be isomorphic to RN+2.

Such an explanation will prove convincing if it is observed that a function ṽ of Ṽ
is completely determined provided that its values at (N + 2) points xi of the mesh
are fixed.

Indeed, the difference between two functions of Ṽ inevitably corresponds to
a change in one of the values of theses functions in relation to one of the nodes
of the mesh xi,(i = 0 to N +1).

The periodicity constraint of the functions ṽ of Ṽ consequently leads to the loss
of a degree of freedom.

In other words, the following expression is finally obtained:

dim Ṽ = N +1 . (3.166)

A.6) The previous question provides an immediate answer by showing that, consid-
ering the periodicity constraint, the dimension of W̃ is equal to N +2.

A.7) The approximate variational formulation (ṼP) is obtained by substituting the
functions u and v in the variational formulation (VP) for the respective approximate
functions ũ and ṽ.

The following is then obtained:

∫ 1

0
ũ′w̃′ dx+

∫ 1

0
ũw̃ dx =

∫ 1

0
f w̃ dx, ∀w̃ ∈ W̃ . (3.167)

Or, again, by using particular expressions defined by (3.146):

∑
j=0,N+1

[∫ 1

0
(ϕ ′i ϕ

′
i + ϕiϕi) dx

]
ũ j =
∫ 1

0
f ϕi dx, ∀i = 0 to N +1 . (3.168)

This expression precisely corresponds to what needs to be expounded, provided that
the quantities Ai j and bi, as defined by (3.148), are introduced.
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� Function ϕi Characteristic of a Node Strictly Interior at [0,1]

A.8) The regularity of the mesh enables the constitution of a generic analysis of
the nodal equation, associated with any function ϕi, which is characteristic of the
interior node xi.

Indeed, given the support properties of basis functions ϕi, (i = 1 to N), and for
a fixed value i, only the values of j = i− 1, j = i, j = i + 1 in the sum of equa-
tion (3.168) can provide non-zero contributions, (see Fig. 3.7).

This is why the approximate variational equation (ṼP) is written in the form
(ṼPInt), for all values of i varying from 1 to N.

For the remainder, the same formalism, as considered for of the Dirichlet, Neu-
mann and Fourier-Dirichlet problems, is observed.

Hence, direct use is made of the results obtained while solving these problems
for the calculation of the coefficients of matrix Ai j, as well as from the second mem-
ber bi.

In other words, the following formula is obtained:

Ai,i � 2
h

+h, Ai,i−1 = Ai,i+1 �−1
h
, bi � h fi . (3.169)

A.9) Likewise, the nodal equation corresponding to the above mentioned coeffi-
cients is once more used directly:

− ũi−1−2ũi + ũi+1

h2 + ũi = fi, (i = 1 to N) . (3.170)

A.10) Discretisation by finite differences is also applied as for the Dirichlet problem
to give the following:

−u(xi−1)−2u(xi)+u(xi+1)
h2 +u(xi) = f (xi)+O

(
h2) , (i = 1 to N) . (3.171)

The traces ui of u, at the nodes xi, are then replaced by the approximations ũi,
(ũi ≈ ui), so as to maintain equality between the two members of (3.171) when
suppressing the infinitely small O(h2).

This substitution immediately leads to the nodal equation (3.170).
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Fig. 3.7 Basis Functions ϕi−1, ϕi and ϕi+1
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� Basis Function ϕ0 Characteristic of the Node x0 = 0

A.11) The first equation of the linear system (3.147) is now considered, that is when
it corresponds to i = 0.

Given the support properties of basis functions ϕi, only the functions ϕ0 and ϕ1

can produce non-zero contributions in their integration against the function ϕ0.

This is why the generic equation of system (3.147) is, in this particular case,
written according to formula (3.150), namely:

A00ũ0 +A01ũ1 = b0 . (3.172)

Again, calculations of the coefficients A00, A01 and b0 have been presented in the
Neumann problem (see Problem [3.2]).

The following is then obtained:

A0,0 � 1
h

+
h
2
, A0,1 �−1

h
, b0 � h

2
f0 . (3.173)

A.12) The resulting nodal equation is then written as:[
1
h

+
h
2

]
ũ0− 1

h
ũ1 =

h
2

f0 . (3.174)

� Basis Function ϕN+1 Characteristic of the Node xN+1 = 1

A.13) For analogous reasons to the ones previously described for the nodal equation
associated with the basis function ϕ0, the results obtained in the Neumann problem
(see Problem [3.2]) are used directly.

Thus, the coefficients AN,N+1, AN+1,N+1 and bN+1 are given by:

AN+1,N+1 � 1
h

+
h
2
, AN+1,N �−1

h
, bN+1 � h

2
fN+1 . (3.175)

A.14) The resulting nodal equation is then written as:

−1
h

ũN +
[

1
h

+
h
2

]
ũN+1 =

h
2

fN+1 . (3.176)

A.15) The periodicity properties of the solution u to the continuous problem (CP)
are now imposed into the approximation ũ, namely: ũ0 = ũN+1.

By adding the two nodal equs. (3.174) and (3.176), the algebraic relationship (R)
is obtained: [

2
h

+h

]
ũ0− 1

h
[ũ1 + ũN ] =

h
2

[ f0 + fN+1] . (3.177)



3.4 Periodic Problem 111

A.16) The finite differences method, is applied to the periodic boundary conditions
of the continuous problem (CP) by simultaneously expanding at the third order,
the progressive Taylor formula at point x0 and the regressive Taylor formula at
point xN+1 :

u(x1) = u(x0)+hu′(x0)+
h2

2
u′′(x0)+O(h3) , (3.178)

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
u′′(xN+1)+O(h3) . (3.179)

It is then assumed that the solution u of the continuous problem (CP) is sufficiently
regular so as to correctly write the differential equ. (3.142) at points x0 and xN+1:

u′′(x0) = u(x0)− f (x0) , (3.180)

u′′(xN+1) = u(xN+1)− f (xN+1) . (3.181)

The respective expressions of the second derivative (3.180) and (3.181) at points x0

and xN+1 are then replaced in equs. (3.178) and (3.179):

u(x1) = u(x0)+hu′(x0)+
h2

2
[u(x0)− f (x0)]+O(h3), (3.182)

u(xN) = u(xN+1)−hu′(xN+1)+
h2

2
[u(xN+1)− f (xN+1)]+O(h3) . (3.183)

The approximations ũi are then considered and this enables one to discard the in-
finitely small ones while maintaining equality.

Finally, the periodicity conditions written for the sequence ũi are applied, in order
to obtain the algebraic relationship (R) by identifying (3.182) and (3.183):

h
2

[ f0 + fN+1] =
[

2
h

+h

]
ũ0− 1

h
[ũ1 + ũN] . (3.184)


