
Preface

An increasing number of problems and methods involve in�nite-dimensional
aspects. This is due to the progress of technologies which allow us to store
more and more information while modern instruments are able to collect
data much more e�ectively due to their increasingly sophisticated design.
This evolution directly concerns the statisticians who have to propose new
methodologies while taking into account such high-dimensional data (e.g. con-
tinuous processes, functional data, etc.). The numerous applications (micro-
arrays, paleo-ecological data, radar waveforms, spectrometric curves, speech
recognition, continuous time series, 3-D images, etc.) in various �elds (biol-
ogy, econometrics, environmetrics, the food industry, medical sciences, paper
industry, speech recognition, etc.) make researching this statistical topic very
worthwhile. New challenges emerge both from theoretical and practical point
of views. This First International Workshop on Functional and Operator-
ial Statistics (IWFOS) aims to emphasize this fascinating �eld of research
and this volume gathers the contributions presented in this conference. It is
worth noting that this volume mixes applied works (with original datasets
and/or computational issues) as well as fundamental theoretical ones (with
deep mathematical developments). Therefore, this book should cover a large
audience, like academic researchers (theoreticians and/or practitioners), grad-
uate/PhD students and should appeal to anyone working in statistics with
industrial companies, research institutes or software developers.

This Workshop covers a wide scope of statistical aspects. Numerous works
deal with classi�cation (see for instance chapters 6, 7, 17, 21 or 41), functional
PCA-based methods (see for instance chapters 2, 16, 30 or 37 ), mathemat-
ical toolbox (see for instance chapters 11, 13, 24 or 29), regression (see for
instance chapters 3, 4, 5, 8, 10, 18, 19, 23, 26, 27, 33 or 34), spatial statistics
(see for instance chapters 9, 22, 35, 36 or 42), time series (12, 28, 39, 40 or
44). Other topics are also present as subsampling (see chapter 38) as well as
transversal/explorative methodologies (see for instance chapters 14, 20, 31 or
43). In addition, interesting works focus on original/motivating applications
(see for instance chapters 15, 25 or 32). This splitting into topics (classi�ca-
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tion, functional PCA-based methods, ...) is introduced just for giving an idea
on the contents but most of the time, one can assign a same work to several
subjects. It is worth noting that numerous contributions deal with statistical
methodologies for functional data which is certainly the main common de-
nominator of IWFOS (see chapters 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17,
18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 43, 44).

The scienti�c success of this event is obviously linked with the wide variety
of participants coming from about 20 countries covering all the continents.
One would like to thank them gratefully and specially the invited speakers
and all the contributors for the high quality of their submitted works.

Of course the hard core is the STAPH members (see chapter 1), which
managed and coordinated this Workshop both from a scienti�c and orga-
nizational point of view. But this international conference would not exist
without the help of many people. In particular, K. Benhenni (France), B.
Cadre (France), H. Cardot (France), A. Cuevas (Spain), A. Dahmani (Alge-
ria), A. Goia (Italia), W. Gonzalez-Manteiga (Spain), W. Härdle (Germany),
A. Kneip (Germany), Ali Laksaci (Algeria), A. Mas (France), E. Ould-saïd
(France), M. Rachdi (France), E. Salinelli (Italia) and I. Van Keilegom (Bel-
gium) have greatly contributed to the high quality of IWFOS'2008 and are
gratefully thanked.

The �nal thanks go to Marie-Laure Ausset which took charge of sec-
retary tasks as well as the institutions which have supported this Work-
shop via grants or administrative supports (CNRS, Conseil Général de la
Haute-Garonne, Conseil Régional Midi-Pyrénées, Laboratoire de Statistique
et Probabilités, Institut de Mathématiques de Toulouse, Université Paul
Sabatier, Laboratoire Gremars-Equippe of university Charles De Gaulle,
Équipe de Probabilités-Statistique of University Montpellier 2, laboratoire
LMPA (Littoral) and University del Piemonte Orientale (Italy)).

Toulouse, France Sophie Dabo-Niang
May 2008 Frédéric Ferraty



Chapter 2
Solving Multicollinearity in Functional
Multinomial Logit Models for Nominal
and Ordinal Responses

Ana Aguilera and Manuel Escabias

Abstract Di�erent functional logit models to estimate a multicategory re-
sponse variable from a functional predictor will be formulated in terms of
di�erent types of logit transformations as base-line category logits for nom-
inal responses or cumulative, adjacent-categories or continuation-ratio logits
for ordinal responses. Estimation procedures of functional logistic regression
based on functional PCA of sample curves will be generalized to the case of a
multicategory response. The true functional form of sample curves will be re-
constructed in terms of basis expansions whose coe�cients will be estimated
from irregularly distributed discrete time observations.

2.1 Introduction

The functional logistic regression model is the most used method to explain a
binary variable in terms of a functional predictor as can be seen in many appli-
cations in di�erent �elds. Ratcli�e et al. (2002) used this model for predicting
if human foetal heart rate responses to repeated vibroacoustic stimulation.
The relation between the risk of drought and time evolution of temperatures
has been modeled in Escabias et al. (2005). With respect to the problem of
estimation of this model, Escabias et al. (2004) proposed di�erent functional
principal component approaches for solving multicollinearity by providing an
accurate parameter function estimation. An alternative estimation procedure
based on PLS logit regression has been recently considered (Aguilera et al.,
2007).
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In the general context of generalized functional linear models, James (2002)
assumes that each predictor can be modeled as a smooth curve from a given
functional family. Then, the functional model can be equivalently seen as a
generalized linear model whose design matrix is given by the unobserved basis
coe�cients for the predictor and the EM algorithm is used for estimating the
model from longitudinal observations at di�erent times for each individual.
On the other hand, Müller and StadtMüller (2005) considered an orthonor-
mal representation of sample curves and used as predictor variables of the
functional model a �nite number of coe�cients of such orthonormal expan-
sion. Asymptotic tests and simultaneous con�dence bands for the parameter
function have been obtained by using this dimension reduction approach. An
estimation procedure based on B-splines expansion maximizing the penalized
log-likelihood has been studied in Marx and Eilers (1999) for a functional bi-
nomial response model and in Cardot and Sarda (2005) for the general case
of functional generalized linear models.

The natural generalization of the functional logit model is the functional
multinomial regression model where the response variable has a �nite set of
categories and the predictor is a functional variable. An initial work on this
issue has been developed by Cardot et al. (2003) where a functional baseline-
category logit model has been considered for predicting land use with the
temporal evolution of coarse resolution remote sensing data. In this paper
we propose a di�erent approach comparing di�erent methods of estimation
based on the approximation of the functional predictor and the parameter
functions in a �nite space generated by a basis of functions what turns the
functional model into a multiple one. Model estimation will be improved by
developing several functional principal component approaches and selecting
the predictor principal components according to their ability to provide the
best possible estimation of the parameter functions.

2.2 Functional multinomial response model

Let us consider a functional predictor {X (t) : t ∈ T} , whose sample curves
belong to the space L2(T ) of square integrable functions on T, and a cate-
gorical response random variable Y with S categories.

Given a sample of observations of the functional predictor {xi(t) : t ∈
T, i = 1, . . . , n}, the sample of observations of the response associated to
them is a set of n vectors (yi1, . . . , yiS)′ of dimension S de�ned by

yis =
{
1 if category s is observed for X(t) = xi(t)
0 other case
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so that each observation is generated by a multinomial distribution
M(1;πi1, . . . , πiS) with πis = P [Y = s|X(t) = xi(t)] and

∑S
s=1 πis = 1 ∀i =

1, . . . , n.
Let us observe that yiS is redundant. Then, if we denote by yi =

(yi1, . . . , yi,S−1)′ the vector response for subject i, with mean vector µi =
E[Yi] = (πi1, . . . , πi,S−1)′, the multinomial response model is a particular
case of generalized linear model yis = πis + εis with

gs(µi) = αs +
∫

T

βs(t)xi(t)dt, s = 1, . . . , S − 1, (2.1)

where the link function components gs can be de�ned in di�erent ways, εis
are independent and centered errors and αs and βs(t) a set of parameters
to be estimated. In this paper we are going to generalize the functional logit
model for a binary response to the case of a multinomial response. Because of
this we will consider as link functions di�erent types of logit transformations
lis = gs(µi) (see Agresti (2002) for a detailed explanation).

2.2.1 Nominal responses

Baseline-category logits for nominal response pair each response with a base-
line category

lis = log [πis/πiS ] .

Then, the equation that expresses baseline-category logit models directly in
terms of response probabilities is (αS = 0, βS(t) = 0)

πis =
exp

{
αs +

∫
T
xi (t)βs (t) dt

}
∑S
s=1 exp

{
αs +

∫
T
xi (t)βs (t) dt

} , s = 1, . . . , S, i = 1, . . . , n. (2.2)

2.2.2 Ordinal responses

When the response variable is ordinal the logit transformations lis re�ect
ordinal characteristics such as monotone trend. Next, several types of ordinal
logits will be studied.

Cumulative logits
Cumulative logits use category ordering by forming logits of cumulative

probabilities. The most popular logit model for ordinal responses is the pro-
portional odds model
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lis = log
P [Y ≤ s|xi(t)]

1− P [Y ≤ s|xi(t)] =

∑s
j=1 πij∑S
j=s+1 πij

= αs +
∫

T

β(t)xi(t)dt,

s = 1, . . . , S − 1, that has the same e�ects β(t) = βs(t) ∀s = 1, . . . , S − 1
for each cumulative logit. Then, each response probability is obtained as
πis = Fis − Fi,s−1 with

Fis = P [Y ≤ s|xi(t)] =
exp

(
αs +

∫
T
β(t)xi(t)dt

)

1 + exp
(
αs +

∫
T
β(t)xi(t)dt

) .

Adjacent-categories logits
Logits for ordinal responses do not need use cumulative probabilities. Al-

ternative logits for ordinal responses are the adjacent-categories logits and
the continuation-ratio logits.

Adjacent-categories logits are de�ned as lis = log [πis/πi,s+1] ,
s = 1, . . . , S − 1. Taking into account the relation between baseline-category
logits and adjacent-categories, the adjacent-categories logit model with com-
mon e�ect β(t) (equal odds model)

log
[
πis
πi,s+1

]
= αs +

∫

T

β(t)xi(t)dt,

can be expressed in terms of the response probabilities as

πis =
exp

[∑S−1
j=s αj +

∫
T

(S − s)β(t)xi(t)dt
]

1 +
∑S−1
s=1 exp

[∑S−1
j=s αj +

∫
T

(S − s)β(t)xi(t)dt
] .

Continuation-ratio logits
Continuation-ratio logits are

lis = log [P (Y = s)/P (Y > s)] = log
[
πis/

∑S
j=s+1 πij

]
. Denoting by pis =

πis
πis+···+πiS the probability of response s, given response s or higher, the
continuation-ratio logit models can be seen as ordinary binary logit mod-
els

lis = log
πis∑S

j=s+1 πij
= log

pis
1− pis = αs +

∫

T

βs(t)xi(t)dt,

so that these conditional probabilities are modeled as

pis =
πis

πis + · · ·+ πiS
=

exp
(
αs +

∫
T
βs(t)xi(t)dt

)

1 + exp
(
αs +

∫
T
βs(t)xi(t)dt

) .
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2.3 Model estimation

As with any other functional regression model, estimation of the parameters
of a functional multinomial response model is an ill-posed problem due to the
in�nite dimension of the predictor space. See Ramsay and Silverman (2005)
for a discussion on the functional linear model. In addition, the functional
predictor is not observed continuously in time so that sample curves xi(t) are
observed in a set of discrete time points {tik : k = 1, . . . ,mi} that could be
di�erent for each sample individual. The most used solution to this problems
is to reduce dimension by performing a basis expansion of the functional
predictor.

A �rst estimation of the parameter functions of a functional multicategory
logit model can be obtained by considering that both the predictor curves
as parameter functions belong a �nite space generated by a basis of func-
tions xi (t) = a′iΦ (t) , βs (t) = β′sΦ (t) , with Φ (t) = (φ1 (t) , . . . , φp (t))′ a
vector of basic functions that generate the space where x (t) belong to, and
ai = (ai1, . . . , aip)

′ and βs = (βs1, . . . , βsp)
′ the vectors of basis coe�cients

of sample curves and parameter functions, respectively. The sample curves
basis coe�cients will be computed in a �rst step by using di�erent approxima-
tion methods as interpolation (data observed without error) or least squares
smoothing (noisy data).

Then, the functional model turns to a multiple one given by

lis = αs +
∫

T

xi (t)βs (t) dt = αs + a′iΨβs s = 1, . . . , S − 1, i = 1, . . . , n,

with Ψ = (ψuv) being the p× p matrix of inner products
ψuv =

∫
T
φu (t)φv (t) dt.

In matrix form each vector of logit transformations Ls = (l1s, . . . , lns)′ can
be expressed as Ls = αs1 +AΨβs, s = 1, . . . , S − 1.

The estimation of this model will be carried out by maximizing the associ-
ated multinomial log likelihood, under each of the four di�erent multicategory
logits considered in previous section. In the case of baseline-category logits
the log likelihood is concave, and the Newton-Raphson method yields the
ML parameter estimates. For cumulative logits a Fisher scoring algorithm is
used for iterative calculation of ML estimates. The adjacent-categories logit
model is �tted by using the same methods for its equivalent baseline-category
logit model. In the case of continuation-ratio logit models the simultaneous
ML estimation of its parameters can be reduced to separate �tting of model
for each di�erent continuation-ratio logit by using ML estimation for binary
logit models.
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2.4 Principal components approach

The ML estimation of the functional multinomial regression model obtained
by the approach in the previous section is a�ected by high multicollinearity
what makes the variances of estimated parameter function increase in an
arti�cial way. This has been proven for the logit model of binary response
(Aguilera et al., 2005) and for its functional version (Escabias et al., 2004)
through di�erent simulated and real data sets. In this paper this problem
will be solved by using as covariates of the multiple multinomial regression
model a set of functional principal components of the functional predictor.
An alternative way of avoiding excessive local �uctuation in the estimated
parameter function would be to use a roughness penalty approach based on
maximizing a penalized likelihood function (see Marx and Eilers (1999) for
the functional regression model with binary response).

Two di�erent FPCA of the sample curves will be considered after ap-
proximating such curves in a �nite dimension space generated by a basis of
functions. First, we will compute FPCA of the sample paths with respect
to the usual inner product in L2 (T ) that is equivalent to PCA of the data
matrix AΨ1/2 with respect to the usual inner product in Rp. And second, we
will perform PCA of the design matrix AΨ with respect to the usual inner
product in Rp that is equivalent to FPCA of certain transformation of sample
curves xi(t). The results set out in Ocaña et al. (2007) allow to demonstrate
these equivalences between functional and multivariate PCA. Let us observe
that both FPCA match when the basis is orthonormal.

Let Γ be a matrix of functional principal components associated to x(t)
so that Γ = AΨV with V V ′ = I. Then, the multinomial logit model can be
equivalently expressed in terms of all principal components as Ls = αs1 +
AΨβs = αs1 + Γγs, and we can give an ML estimation of the parameters
of the functional model (coordinates of βs (t)) through the estimation of this
one, β̂s = V γ̂s.

Then, we propose to approximate these parameters functions by using a
reduced set of principal components. There are di�erent criteria in litera-
ture to select principal components in regression methods. Escabias et al.
(2004) compared in the functional binary logit model the classical one that
consist of including principal components in the model in the order given by
explained variability with the one of including them in the order given by
a stepwise method based on conditional likelihood ratio test. In this work
we will compare these two methods for di�erent functional nominal and or-
dinal logit models. The optimum number of principal components (model
order) will be determines by using di�erent criteria based on minimization
the leave-one-out prediction error or the leave-one-out misclassi�cation rate
via cross-validation.

The model will be tested by di�erent simulated examples and applications
with real data. It will be shown that the best parameter function estimation is
given by the model that minimizes the mean of the integrated mean squared
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error of the parameter functions estimates. The relation of this minimum with
special trends in other goodness of �t measures will be also investigated. An
adequate model selection method based on the results will be proposed.
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