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Principles of Mathematical Modeling

We begin this introduction to mathematical modeling and simulation with an
explanation of basic concepts and ideas, which includes definitions of terms such
as system, model, simulation, mathematical model, reflections on the objectives of
mathematical modeling and simulation, on characteristics of ‘‘good’’ mathematical
models, and a classification of mathematical models. You may skip this chapter at
first reading if you are just interested in a hands-on application of specific methods
explained in the later chapters of the book, such as regression or neural network
methods (Chapter 2) or differential equations (DEs) (in Chapters 3 and 4). Any
professional in this field, however, should of course know about the principles
of mathematical modeling and simulation. It was emphasized in the preface that
everybody uses mathematical models – ‘‘even those of us who are not aware of
doing so’’. You will agree that it is a good idea to have an idea of what one is doing. . .

Our starting point is the complexity of the problems treated in science and
engineering. As will be explained in Section 1.1, the difficulty of problems treated
in science and engineering typically originates from the complexity of the systems
under consideration, and models provide an adequate tool to break up this
complexity and make a problem tractable. After giving general definitions of
the terms system, model, and simulation in Section 1.2, we move on toward
mathematical models in Section 1.3, where it is explained that mathematics is
the natural modeling language in science and engineering. Mathematical models
themselves are defined in Section 1.4, followed by a number of example applications
and definitions in Sections 1.5 and 1.6. This includes the important distinction
between phenomenological and mechanistic models,which has been used as the
main organization principle of this book (see Section 1.6.1 and Chapters 2–4). The
chapter ends with a classification of mathematical models and Golomb’s famous
‘‘Don’ts of mathematical modeling’’ in Sections 1.7 and 1.8.

1.1
A Complex World Needs Models

Generally speaking, engineers and scientists try to understand, develop, or optimize
‘‘systems’’. Here, ‘‘system’’ refers to the object of interest, which can be a part of
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nature (such as a plant cell, an atom, a galaxy etc.) or an artificial technological
system (see Definition 1.2.3 below). Principally, everybody deals with systems in
his or her everyday life in a way similar to the approach of engineers or scientists.
For example, consider the problem of a table which is unstable due to an uneven
floor. This is a technical system and everybody knows what must be done to
solve the problem: we just have to put suitable pieces of cardboard under the
table legs. Each of us solves an abundant number of problems relating to simple
technological systems of this kind during our lifetime. Beyond this, there is a great
number of really difficult technical problems that can only be solved by engineers.
Characteristic of these more demanding problems is a high complexity of the
technical system. We would simply need no engineers if we did not have to deal
with complex technical systems such as computer processors, engines, and so on.
Similarly, we would not need scientists if processes such as the photosynthesis of
plants could be understood as simply as an unstable table. The reason why we have
scientists and engineers, virtually their right to exist, is the complexity of nature
and the complexity of technological systems.

Note 1.1.1 (The complexity challenge) It is the genuine task of scientists and
engineers to deal with complex systems, and to be effective in their work, they
most notably need specific methods to deal with complexity.

The general strategy used by engineers or scientists to break up the complexity of
their systems is the same strategy that we all use in our everyday life when we are
dealing with complex systems: simplification. The idea is just this: if something is
complex, make it simpler. Consider an everyday life problem related to a complex
system: A car that refuses to start. In this situation, everyone knows that a look at
the battery and fuel levels will solve the problem in most cases. Everyone will do
this automatically, but to understand the problem solving strategy behind this, let
us think of an alternative scenario. Assume someone is in this situation for the
first time. Assume that ‘‘someone’’ was told how to drive a car, that he has used the
car for some time, and now he is for the first time in a situation in which the car
does not start. Of course, we also assume that there is no help for miles around!
Then, looking under the hood for the first time, our ‘‘someone’’ will realize that
the car, which seems simple as long as it works well, is quite a complex system.
He will spend a lot of time until he will eventually solve the problem, even if we
admit that our ‘‘someone’’ is an engineer. The reason why each of us will solve this
problem much faster than this ‘‘someone’’ is of course the simple fact that this
situation is not new to us. We have experienced this situation before, and from our
previous experience we know what is to be done. Conceptually, one can say that
we have a simplified picture of the car in our mind similar to Figure 1.1. In the
moment when we realize that our car does not start, we do not think of the car as
the complex system that it really is, that is, we do not think of this conglomerate of
valves, pistons, and all the kind of stuff that can be found under the hood; rather,
we have this simplified picture of the car in our mind. We know that this simplified
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Tank Battery

Fig. 1.1 Car as a real system and as a model.

picture is appropriate in this given situation, and it guides us to look at the battery
and fuel levels and then to solve the problem within a short time.

This is exactly the strategy used by engineers or scientists when they deal
with complex systems. When an engineer, for example, wants to reduce the fuel
consumption of an engine, then he will not consider that engine in its entire
complexity. Rather, he will use simplified descriptions of that engine, focusing on
the machine parts that affect fuel consumption. Similarly, a scientist who wants
to understand the process of photosynthesis will use simplified descriptions of
a plant focusing on very specific processes within a single plant cell. Anyone
who wants to understand complex systems or solve problems related to complex
systems needs to apply appropriate simplified descriptions of the system under
consideration. This means that anyone who is concerned with complex systems
needs models, since simplified descriptions of a system are models of that system
by definition.

Note 1.1.2 (Role of models) To break up the complexity of a system under
consideration, engineers and scientists use simplified descriptions of that system
(i.e. models).

1.2
Systems, Models, Simulations

In 1965, Minsky gave the following general definition of a model [1, 2]:

Definition 1.2.1 (Model) To an observer B, an object A∗ is a model of an object
A to the extent that B can use A∗ to answer questions that interest him about A.

Note 1.2.1 (Formal definitions) Note that Definition 1.2.1 is a formal definition
in the sense that it operates with terms such as object or observer that are not
defined in a strict axiomatic sense similar to the terms used in the definitions
of standard mathematical theory. The same remark applies to several other
definitions in this book, including the definition of the term mathematical model
in Section 1.4. Definitions of this kind are justified for practical reasons, since
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they allow us to talk about the formally defined terms in a concise way. An
example is Definition 2.5.2 in Section 2.5.5, a concise formal definition of the
term overfitting, which uses several of the previous formal definitions.

The application of Definition 1.2.1 to the car example is obvious – we just have
to identify B with the car driver, A with the car itself, and A* with the simplified
tank/battery description of the car in Figure 1.1.

1.2.1
Teleological Nature of Modeling and Simulation

An important aspect of the above definition is the fact that it includes the
purpose of a model, namely, that the model helps us to answer questions and
to solve problems. This is important because particularly beginners in the field
of modeling tend to believe that a good model is one that mimics the part of
reality that it pertains to as closely as possible. But as was explained in the
previous section, modeling and simulation aims at simplification, rather than at a
useless production of complex copies of a complex reality, and hence, the contrary
is true:

Note 1.2.2 (The best model) The best model is the simplest model that still
serves its purpose, that is, which is still complex enough to help us understand a
system and to solve problems. Seen in terms of a simple model, the complexity
of a complex system will no longer obstruct our view, and we will virtually be
able to look through the complexity of the system at the heart of things.

The entire procedure of modeling and simulation is governed by its purpose
of problem solving – otherwise it would be a mere l’art pour l’art. As [3] puts
it, ‘‘modeling and simulation is always goal-driven, that is, we should know the
purpose of our potential model before we sit down to create it’’. It is hence natural
to define fundamental concepts such as the term model with a special emphasis
on the purpose-oriented or teleological nature of modeling and simulation. (Note that
teleology is a philosophical discipline dealing with aims and purposes, and the
term teleology itself originates from the Greek word telos, which means end or
purpose [4].) Similar teleological definitions of other fundamental terms, such as
system, simulation, and mathematical model are given below.

1.2.2
Modeling and Simulation Scheme

Conceptually, the investigation of complex systems using models can be divided
into the following steps:
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Note 1.2.3 (Modeling and simulation scheme)

Definitions
• Definition of a problem that is to be solved or of a question that

is to be answered
• Definition of a system, that is, a part of reality that pertains to

this problem or question

Systems Analysis
• Identification of parts of the system that are relevant for the

problem or question

Modeling
• Development of a model of the system based on the results of the

systems analysis step

Simulation
• Application of the model to the problem or question
• Derivation of a strategy to solve the problem or answer the

question

Validation
• Does the strategy derived in the simulation step solve the

problem or answer the question for the real system?

The application of this scheme to the examples discussed above is obvious: in
the car example, the problem is that the car does not start and the car itself is the
system. This is the ‘‘definitions’’ step of the above scheme. The ‘‘systems analysis’’
step identifies the battery and fuels levels as the relevant parts of the system as
explained above. Then, in the ‘‘modeling’’ step of the scheme, a model consisting
of a battery and a tank such as in Figure 1.1 is developed. The application of this
model to the given problem in the ‘‘simulation’’ step of the scheme then leads
to the strategy ‘‘check battery and fuel level’’. This strategy can then be applied
to the real car in the ‘‘validation’’ step. If it works, that is, if the car really starts
after refilling its battery or tank, we say that the model is valid or validated. If
not, we probably need a mechanic who will then look at other parts of the car,
that is, who will apply more complex models of the car until the problem is
solved.

In a real modeling and simulation project, the systems analysis step of the above
scheme can be a very time-consuming step. It will usually involve a thorough
evaluation of the literature. In many cases, the literature evaluation will show
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that similar investigations have been performed in the past, and one should
of course try to profit from the experiences made by others that are described
in the literature. Beyond this, the system analysis step usually involves a lot of
discussions and meetings that bring together people from different disciplines who
can answer your questions regarding the system. These discussion will usually
show that new data are needed for a better understanding of the system and for
the validation of the models in the validation step of the above scheme. Hence, the
definition of an experimental program is also another typical part of the systems
analysis step.

The modeling step will also involve the identification of appropriate software
that can solve the equations of the mathematical model. In many cases, it will
be possible to use standard software such as the software tools discussed in the
next chapters. Beyond this, it may be necessary to write your own software in
cases where the mathematical model involves nonstandard equations. An example
of this case is the modeling of the press section of paper machines, which
involves highly convection-dominated diffusion equations that cannot be treated
by standard software with sufficient precision, and which hence need specifically
tailored numerical software [5].

In the validation step, the model results will be compared with experimental data.
These data may come from the literature, or from experiments that have been
specifically designed to validate the model. Usually, a model is required to fit the
data not only quantitatively, but also qualitatively in the sense that it reproduces the
general shape of the data as closely as possible. See Section 3.2.3.4 for an example
of a qualitative misfit between a model and data. But, of course, even a model that
perfectly fits the data quantitatively and qualitatively may fail the validation step of
the above scheme if it cannot be used to solve the problem that is to be solved,
which is the most important criterion for a successful validation.

The modeling and simulation scheme (Note 1.2.3) focuses on the essential
steps of modeling and simulation, giving a rather simplified picture of what really
happens in a concrete modeling and simulation project. For different fields of
application, you may find a number of more sophisticated descriptions of the
modeling and simulation process in books such as [6–9]. An important thing that
you should note is that a real modeling and simulation project will very rarely
go straight through the steps of the above scheme; rather, there will be a lot
of interaction between the individual steps of the scheme. For example, if the
validation step fails, this will bring you back to one of the earlier steps in a loop-like
structure: you may then improve your model formulation, reanalyze the system,
or even redefine your problem formulation (if your original problem formulation
turns out to be unrealistic).

Note 1.2.4 (Start with simple models!) To find the best model in the sense of
Note 1.2.2, start with the simplest possible model and then generate a sequence
of increasingly complex model formulations until the last model in the sequence
passes the validation step.
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1.2.3
Simulation

So far we have given a definition of the term model only. The above modeling
and simulation schemes involve other terms, such as system and simulation, which
we may view as being implicitly defined by their role in the above scheme. Can
this be made more precise? In the literature, you will find a number of different
definitions, for example of the term simulation. These differences can be explained
by different interests of the authors. For example, in a book with a focus on the
so-called discrete event simulation which emphasizes the development of a system
over time, simulation is defined as ‘‘the imitation of the operation of a real-world
process or system over time’’ [6]. In general terms, simulation can be defined as
follows:

Definition 1.2.2 (Simulation) Simulation is the application of a model with
the objective to derive strategies that help solve a problem or answer a question
pertaining to a system.

Note that the term simulation originates from the Latin word ‘‘simulare’’, which
means ‘‘to pretend’’: in a simulation, the model pretends to be the real system.
A similar definition has been given by Fritzson [7] who defined simulation as
‘‘an experiment performed on a model’’. Beyond this, the above definition is a
teleological (purpose-oriented) definition similar to Definition 1.2.1 above, that is,
this definition again emphasizes the fact that simulation is always used to achieve
some goal. Although Fritzson’s definition is more general, the above definition
reflects the real use of simulation in science and engineering more closely.

1.2.4
System

Regarding the term system, you will again find a number of different definitions
in the literature, and again some of the differences between these definitions can
be explained by the different interests of their authors. For example, [10] defines
a system to be ‘‘a collection of entities, for example, people or machines, that act
and interact together toward the accomplishment of some logical end’’. According
to [11], a system is ‘‘a collection of objects and relations between objects’’. In the
context of mathematical models, we believe it makes sense to think of a ‘‘system’’
in very general terms. Any kind of object can serve as a system here if we have
a question relating to that object and if this question can be answered using
mathematics. Our view of systems is similar to a definition that has been given
by [12] (see also the discussion of this definition in [3]): ‘‘ A system is whatever is
distinguished as a system.’’ [3] gave another definition of a ‘‘system’’ very close to
our view of systems here: ‘‘A system is a potential source of data’’. This definition
emphasizes the fact that a system can be of scientific interest only if there is some
communication between the system and the outside world, as it will be discussed
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below in Section 1.3.1. A definition that includes the teleological principle discussed
above has been given by Fritzson [7] as follows:

Definition 1.2.3 (System) A system is an object or a collection of objects whose
properties we want to study.

1.2.5
Conceptual and Physical Models

The model used in the car example is something that exists in our minds only.
We can write it down on a paper in a few sentences and/or sketches, but it does
not have any physical reality. Models of this kind are called conceptual models [11].
Conceptual models are used by each of us to solve everyday problems such as
the car that refuses to start. As K.R. Popper puts it, ‘‘all life is problem solving’’,
and conceptual models provide us with an important tool to solve our everyday
problems [13]. They are also applied by engineers or scientists to simple problems
or questions similar to the car example. If their problem or question is complex
enough, however, they rely on experiments, and this leads us to other types of
models. To see this, let us use the modeling and simulation scheme (Note 1.2.3)
to describe a possible procedure followed by an engineer who wants to reduce the
fuel consumption of an engine: In this case, the problem is the reduction of fuel
consumption and the system is the engine. Assume that the systems analysis leads
the engineer to the conclusion that the fuel injection pump needs to be optimized.
Typically, the engineer will then create some experimental setting where he can
study the details of the fuel injection process.

Such an experimental setting is then a model in the sense that it will typically be
a very simplified version of that engine, that is, it will typically involve only a few
parts of the engine that are closely connected with the fuel injection process. In
contrast to a conceptual model, however, it is not only an idea in our mind but also a
real part of the physical world, and this is why models of this kind are called physical
models [11]. The engineer will then use the physical model of the fuel injection
process to derive strategies – for example, a new construction of the fuel injection
pump – to reduce the engine’s fuel consumption, which is the simulation step of
the above modeling and simulation scheme. Afterwards, in the validation step of
the scheme, the potential of these new constructions to reduce fuel consumption
will be tested in the engine itself, that is, in the real system. Physical models are
applied by scientists in a similar way. For example, let us think of a scientist who
wants to understand the photosynthesis process in plants. Similar to an engineer,
the scientist will set up a simplified experimental setting – which might be some
container with a plant cell culture – in which he can easily observe and measure the
important variables, such as CO2, water, light, and so on. For the same reasons as
above, anything like this is a physical model. As before, any conclusion drawn from
such a physical model corresponds to the simulation step of the above scheme, and
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the conclusions need to be validated by data obtained from the real system, that is,
data obtained from real plants in this case.

1.3
Mathematics as a Natural Modeling Language

1.3.1
Input–Output Systems

Any system that is investigated in science or engineering must be observable in
the sense that it produces some kind of output that can be measured (a system that
would not satisfy this minimum requirement would have to be treated by theolo-
gians rather than by scientists or engineers). Note that this observability condition
can also be satisfied by systems where nothing can be measured directly, such as
black holes, which produce measurable gravitational effects in their surroundings.
Most systems investigated in engineering or science do also accept some kind
of input data, which can then be studied in relation to the output of the system
(Figure 1.2a). For example, a scientist who wants to understand photosynthesis will
probably construct experiments where the carbohydrate production of a plant is
measured at various levels of light, CO2, water supply, and so on. In this case, the
plant cell is the system; the light, CO2, and water levels are the input quantities; and
the measured carbohydrate production is the output quantity. Or, an engineer who
wants to optimize a fuel injection pump will probably change the construction of
that pump in various ways and then measure the fuel consumption resulting from
these modified constructions. In this case, the fuel injection pump is the system,
the construction parameters changed by the engineer are the input parameters and
the resulting fuel consumption is the output quantity.

Note 1.3.1 (Input–output systems) Scientists or engineers investigate ‘‘input–
output systems’’, which transform given input parameters into output
parameters.

Note that there are of course situations where scientists are looking at the system
itself and not at its input–output relations, for example when a botanist just wants

OutputSystemInput

Input 1 Output 1
Input 2 Output 2
Input 3 Output 3

Input n Output n

.

.

.

(a) (b)

Fig. 1.2 (a) Communication of a system with the outside
world. (b) General form of an experimental data set.
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to describe and classify the anatomy of a newly discovered plant. Typically, however,
such purely descriptive studies raise questions about the way in which the system
works, and this is when input–output relations come into play. Engineers, on
the other hand, are always concerned with input–output relations since they are
concerned with technology. The Encyclopedia Britannica defines technology as
‘‘the application of scientific knowledge to the practical aims of human life’’. These
‘‘practical aims’’ will usually be expressible in terms of a system output, and the
tuning of system input toward optimized system output is precisely what engineers
typically do, and what is in fact the genuine task of engineering.

1.3.2
General Form of Experimental Data

The experimental procedure described above is used very generally in engineering
and in the (empirical) sciences to understand, develop, or optimize systems. It is
useful to think of it as a means to explore black boxes. At the beginning of an
experimental study, the system under investigation is similar to such a ‘‘black box’’
in the sense that there is some uncertainty about the processes that happen inside
the system when the input is transformed into the output. In an extreme case,
the experimenter may know only that ‘‘something’’ happens inside the system
which transforms input into output, that is, the system may be really a black
box. Typically, however, the experimenter will have some hypotheses about the
internal processes, which he wants to prove or disprove in the course of his
study. That is, experimenters typically are concerned with systems as gray boxes
which are located somewhere between black and white boxes (more details in
Section 1.5).

Depending on the hypothesis that the experimenter wants to investigate, he
confronts the system with appropriate input quantities, hoping that the outputs
produced by the system will help prove or disprove his hypothesis. This is similar
to a question-and-answer game: the experimenter poses questions to the system,
which is the input, and the system answers to these questions in terms of mea-
surable output quantities. The result is a data set of the general form shown in
Figure 1.2b. In rare cases, particularly if one is concerned with very simple systems,
the internal processes of the system may already be evident from the data set itself.
Typically, however, this experimental question-and-answer game is similar to the
questioning of an oracle: we know there is some information about the system in
the data set, but it depends on the application of appropriate ideas and methods
if one wants to uncover the information content of the data and, so to speak, shed
some light into the black box.

1.3.3
Distinguished Role of Numerical Data

Now what is an appropriate method for the analysis of experimental datasets? To
answer this question, it is important to note that in most cases experimental data
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are numbers and can be quantified. The input and output data of Figure 1.2b will
typically consist of columns of numbers. Hence, it is natural to think of a system
in mathematical terms. In fact, a system can be naturally seen as a mathematical
function, which maps given input quantities x into output quantities y = f (x)
(Figure 1.2a). This means that if one wants to understand the internal mechanics
of a system ‘‘black box’’, that is, if one wants to understand the processes inside
the real system that transform input into output, a natural thing to do is to
translate all these processes into mathematical operations. If this is done, one
arrives at a simplified representation of the real system in mathematical terms.
Now remember that a simplified description of a real system (along with a problem
we want to solve) is a model by definition (Definition 1.2.1). The representation
of a real system in mathematical terms is thus a mathematical model of that
system.

Note 1.3.2 (Naturalness of mathematical models) Input–output systems usu-
ally generate numerical (or quantifiable) data that can be described naturally in
mathematical terms.

This simple idea, that is, the mapping of the internal mechanics of real systems
into mathematical operations, has proved to be extremely fruitful to the under-
standing, optimization, or development of systems in science and engineering.
The tremendous success of this idea can only be explained by the naturalness of
this approach – mathematical modeling is simply the best and most natural thing
one can do if one is concerned with scientific or engineering problems. Looking
back at Figure 1.2a, it is evident that mathematical structures emanate from the
very heart of science and engineering. Anyone concerned with systems and their
input–output relations is also concerned with mathematical problems – regardless
of whether he likes it or not and regardless of whether he treats the system ap-
propriately using mathematical models or not. The success of his work, however,
depends very much on the appropriate use of mathematical models.

1.4
Definition of Mathematical Models

To understand mathematical models, let us start with a general definition. Many
different definitions of mathematical models can be found in the literature. The
differences between these definitions can usually be explained by the different
scientific interests of their authors. For example, Bellomo and Preziosi [14] define
a mathematical model to be a set of equations which can be used to compute the
time-space evolution of a physical system. Although this definition suffices for the
problems treated by Bellomo and Preziosi, it is obvious that it excludes a great
number of mathematical models. For example, many economical or sociological
problems cannot be treated in a time-space framework or based on equations only.
Thus, a more general definition of mathematical models is needed if one wants
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to cover all kinds of mathematical models used in science and engineering. Let us
start with the following attempt of a definition:

A mathematical model is a set of mathematical statements
M = {�1, �2, . . . , �n}.

Certainly, this definition covers all kinds of mathematical models used in science
and engineering as required. But there is a problem with this definition. For
example, a simple mathematical statement such as f (x) = ex would be a mathe-
matical model in the sense of this definition. In the sense of Minsky’s definition
of a model (Definition 1.2.1), however, such a statement is not a model as long
as it lacks any connection with some system and with a question we have relating
to that system. The above attempt of a definition is incomplete since it pertains to
the word ‘‘mathematical’’ of ‘‘mathematical model’’ only, without any reference to
purposes or goals. Following the philosophy of the teleological definitions of the
terms model, simulation, and system in Section 1.2, let us define instead:

Definition 1.4.1 (Mathematical Model) A mathematical model is a triplet
(S, Q , M) where S is a system, Q is a question relating to S, and M is a set of
mathematical statements M = {�1, �2, . . . , �n} which can be used to answer Q .

Note that this is again a formal definition in the sense of Note 1.2.1 in Section 1.2.
Again, it is justified by the mere fact that it helps us to understand the nature
of mathematical models, and that it allows us to talk about mathematical models
in a concise way. A similar definition was given by Bender [15]: ‘‘A mathematical
model is an abstract, simplified, mathematical construct related to a part of reality
and created for a particular purpose.’’ Note that Definition 1.4.1 is not restricted
to physical systems. It covers psychological models as well that may deal with
essentially metaphysical quantities, such as thoughts, intentions, feelings, and
so on. Even mathematics itself is covered by the above definition. Suppose, for
example, that S is the set of natural numbers and our question Q relating to S is
whether there are infinitely many prime numbers or not. Then, a set (S, Q , M) is
a mathematical model in the sense of Definition 1.4.1 if M contains the statement
‘‘There are infinitely many prime numbers’’ along with other statements which
prove this statement. In this sense, the entire mathematical theory can be viewed
as a collection of mathematical models.

The notation (S, Q , M) in Definition 1.4.1 emphasizes the chronological order
in which the constituents of a mathematical model usually appear. Typically, a
system is given first, then there is a question regarding that system, and only then
a mathematical model is developed. Each of the constituents of the triplet (S, Q ,
M) is an indispensable part of the whole. Regarding M, this is obvious, but S and Q
are important as well. Without S, we would not be able to formulate a question Q ;
without a question Q , there would be virtually ‘‘nothing to do’’ for the mathematical
model; and without S and Q , the remaining M would be no more than ‘‘l’art pour
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l’art’’. The formula f (x) = ex, for example, is such a purely mathematical ‘‘l’art
pour l’art’’ statement as long as we do not connect it with a system and a question.
It becomes a mathematical model only when we define a system S and a question
Q relating to it. For example, viewed as an expression of the exponential growth
period of plants (Section 3.10.4), f (x) = ex is a mathematical model which can
be used to answer questions regarding plant growth. One can say it is a genuine
property of mathematical models to be more than ‘‘l’art pour l’art’’, and this is
exactly the intention behind the notation (S, Q , M) in Definition 2.3.1. Note that the
definition of mathematical models by Bellomo and Preziosi [14] discussed above
appears as a special case of Definition 1.4.1 if we restrict S to physical systems, M to
equations, and only allow questions Q which refer to the space-time evolution of S.

Note 1.4.1 (More than ‘‘l’art pour l’art’’) The system and the question relating
to the system are indispensable parts of a mathematical model. It is a genuine
property of mathematical models to be more than mathematical ‘‘l’art pour l’art’’.

Let us look at another famous example that shows the importance of Q . Suppose
we want to predict the behavior of some mechanical system S. Then the appropri-
ate mathematical model depends on the problem we want to solve, that is, on the
question Q . If Q is asking for the behavior of S at moderate velocities, classical
(Newtonian) mechanics can be used, that is, M = {equations of Newtonian mechan-
ics}. If, on the other hand, Q is asking for the behavior of S at velocities close to the
speed of light, then we have to set M = {equations of relativistic mechanics} instead.

1.5
Examples and Some More Definitions

Generally speaking, one can say we are concerned with mathematical models in the
sense of Definition 1.4.1 whenever we perform computations in our everyday life,
or whenever we apply the mathematics we have learned in schools and universities.
Since everybody computes in his everyday life, everybody uses mathematical
models, and this is why it was valid to say that ‘‘everyone models and simulates’’
in the preface of this book. Let us look at a few examples of mathematical models
now, which will lead us to the definitions of some further important concepts.

Note 1.5.1 (Everyone models and simulates) Mathematical models in the
sense of Definition 1.4.1 appear whenever we perform computations in our
everyday life.

Suppose we want to know the mean age of some group of people. Then, we apply
a mathematical model (S, Q , M) where S is that group of people, Q asks for their
mean age, and M is the mean value formula x = (∑n

i=1 xi
)
/n. Or, suppose we want

to know the mass X of some substance in the cylindrical tank of Figure 1.3, given



14 1 Principles of Mathematical Modeling
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Fig. 1.3 Tank problem.

a constant concentration c of the substance in that tank. Then, a multiplication of
the tank volume with c gives the mass X of the substance, that is,

X = 5πc (1.1)

This means we apply a model (S, Q , M) where S is the tank, Q asks for the mass
of the substance, and M is Equation 1.1. An example involving more than simple
algebraic operations is obtained if we assume that the concentration c in the tank of
Figure 1.3 depends on the height coordinate, x. In that case, Equation 1.1 turns into

X = π ·
∫ 5

0
c(x) dx (1.2)

This involves an integral, that is, we have entered the realms of calculus now.

Note 1.5.2 (Notational convention) Variables such as X and c in Equation 1.1,
which are used without further specification are always assumed to be real
numbers, and functions such as c(x) in Equation 1.2 are always assumed to be
real functions with suitable ranges and domains of definition (such as c : [0, 5]
→ R+ in the above example) unless otherwise stated.

In many mathematical models (S, Q , M) involving calculus, the question Q asks
for the optimization of some quantity. Suppose for example we want to minimize
the material consumption of a cylindrical tin having a volume of 1 l. In this case,

M = {πr2h = 1, A = 2πr2 + 2πrh → min} (1.3)

can be used to solve the problem. Denoting by r and h the radius and height of the
tin, the first statement in Equation 1.3 expresses the fact that the tin volume is 1 l.
The second statement requires the surface area of the tin to be minimal, which is
equivalent to a minimization of the metal used to build the tin. The mathematical
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problem 1.3 can be solved if one inserts the first equation of (1.3) into the second
equation of (1.3), which leads to

A(r) = 2πr2 + 2

r
→ min (1.4)

This can then be treated using standard calculus (A′(r) = 0 etc.), and the optimal
tin geometry obtained in this way is

r = 3

√
1

2π
≈ 0.54 dm (1.5)

h = 3

√
4

π
≈ 1.08 dm (1.6)

1.5.1
State Variables and System Parameters

Several general observations can be made referring to the examples in the last
section. As discussed in Section 1.1 above, the main benefit of the modeling
procedure lies in the fact that the complexity of the original system is reduced. This
can be nicely seen in the last example. Of course, each of us knows that a cylindrical
tin can be described very easily based on its radius r and its height h. This means
everyone of us automatically applies the correct mathematical model, and hence,
– similar to the car problem discussed in Section 1.1 – everybody automatically

believes that the system in the tin problem is a simple thing. But if we do not apply
this model to the tin, it becomes a complex system. Imagine a Martian or some
other extraterrestrial being who never saw a cylinder before. Suppose we would say
to this Martian: ‘‘Look, here you have some sheets of metal and a sample tin filled
with water. Make a tin of the same shape which can hold that amount of water, and
use as little metal as possible.’’ Then this Martian will – at least initially – see the
original complexity of the problem. If he is smart, which we assume, he will note
that infinitely many possible tin geometries are involved here. He will realize that
an infinite set of (x, y)-coordinates would be required to describe the sample tin
based on its set of coordinates. He will realize that infinitely many measurements,
or, equivalently, algebraic operations would be required to obtain the material
consumption based on the surface area of the sample tin (assuming that he did not
learn about transcendental numbers such as π in his Martian school . . . ).

From this original (‘‘Martian’’) point of view we thus see that the system S of the
tin example is quite complex, in fact an infinite-dimensional system. And we see
the power of the mathematical modeling procedure which reduces those infinite
dimensions to only two, since the mathematical solution of the above problem
involves only two parameters: r and h (or, equivalently, r and A). Originally, the
system ‘‘tin’’ in the above example is an infinite-dimensional thing not only with
respect to its set of coordinates or the other aspects mentioned above, but also
with respect to many other aspects which have been neglected in the mathematical
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model since they are unimportant for the solution of the problem, for example the
thickness of the metal sheets, or its material, color, hardness, roughness and so on.
All the information which was contained in the original system S = ‘‘tin’’ is reduced
to a description of the system as a mere Sr = {r, h} in terms of the mathematical
model. Here, we have used the notation Sr to indicate that Sr is not the original
system which we denote S, but rather the description of S in terms of the math-
ematical model, which we call the ‘‘reduced system’’. The index ‘‘r’’ indicates that
the information content of the original system S is reduced as we go from S to Sr.

Note 1.5.3 (A main benefit) The reduction of the information content of
complex systems in terms of reduced systems (Definition 1.5.2) is one of the main
benefits of mathematical models.

A formal definition of the reduced system Sr can be given in two steps as follows:

Definition 1.5.1 (State variables) Let (S, Q , M) be a mathematical model.
Mathematical quantities s1, s2, . . . , sn which describe the state of the system S in
terms of M and which are required to answer Q are called the state variables of
(S, Q , M).

Definition 1.5.2 (Reduced system and system parameters) Let s1, s2, . . . ,
sn be the state variables of a mathematical model (S, Q , M). Let p1, p2, . . . ,
pm be mathematical quantities (numbers, variables, functions) which describe
properties of the system S in terms of M, and which are needed to compute the
state variables. Then Sr = {p1, p2, . . . , pm} is the reduced system and p1, p2, . . . , pm

are the system parameters of (S, Q , M).

This means that the state variables describe the system properties we are really
interested in, while the system parameters describe system properties needed
to obtain the state variables mathematically. Although we finally need the state
variables to answer Q , the information needed to answer Q is already in the
system parameters, that is, in the reduced system Sr. Using Sr, this information is
expressed in terms of the state variables by means of mathematical operations, and
this is then the final basis to answer Q . For example, in the tank problem above we
were interested in the mass of the substance; hence, in this example we have one
state variable, that is, n = 1 and s1 = X . To obtain s1, we used the concentration
c; hence, we have one system parameter in that example, that is, m = 1 and p1 =
c. The reduced system in this case is Sr = {c}. By definition, the reduced system
contains all information about the system which we need to get the state variable,
that is, to answer Q . In the tin example, we needed the surface area of the tin to
answer Q , that is, in that case we had again one state variable s1 = A. On the other
hand, two system parameters p1 = r and p2 = h were needed to obtain s1, that is,
in this case the reduced system is Sr = {r, h}.
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S r
 
= {r}

(a) (b)

Fig. 1.4 (a) Potted plant. (b) The same potted plant written as a reduced system.

Let us look at another example. In Section 3.10.4 below, a plant growth model will
be discussed which is intended to predict the time evolution of the overall biomass
of a plant. To achieve this, none of the complex details of the system ‘‘plant’’
will be considered except for its growth rate. This means the complex system
S = ‘‘plant’’ is reduced to a single parameter in this model: the growth rate r of
the plant. In the above notation, this means we have Sr = {r} (Figure 1.4). It is not
necessary to be a botanist to understand how dramatic this information reduction
really is: everything except for the growth rate is neglected, including all kinds
of macroscopic and microscopic substructures of the plant, its roots, its stem, its
leaves as well as its cell structure, all the details of the processes that happen inside
the cells, and so on. From the point of view of such a brutally simplified model,
it makes no difference whether it is really concerned with the complex system
‘‘plant’’, or with some shapeless green pulp of biomass that might be obtained after
sending the plant through a shredder, or even with entirely other systems, such as
a bacteria culture or a balloon that is being inflated.

All that counts from the point of view of this model is that a growth rate can
be assigned to the system under consideration. Naturally, botanists do not really
like this brutal kind of models, which virtually send there beloved ones through a
shredder. Anyone who presents such a model on a botanist’s conference should
be prepared to hear a number of questions beginning with ‘‘Why does your model
disregard . . . ’’. At this point we already know how to answer this kind of question:
we know that according to Definition 1.4.1, a mathematical model is a triplet (S, Q ,
M) consisting of a system S, a question Q , and a set of mathematical statements
M, and that the details of the system S that are represented in M depend on the
question Q that is to be answered by the model. In this case, Q was asking for the
time development of the plant biomass, and this can be sufficiently answered based
on a model that represents the system S = ‘‘plant’’ as Sr = {r}. Generally one can
say that the reduced system of a well-formulated mathematical model will consist
of no more than exactly those properties of the original system that are important
to answer the question Q that is being investigated.

Note 1.5.4 (Importance of experiments) Typically, the properties (parameters)
of the reduced system are those which need experimental characterization. In
this way, the modeling procedure guides the experiments, and instead of making
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the experimenter superfluous (a frequent misunderstanding), it helps to avoid
superfluous experiments.

1.5.2
Using Computer Algebra Software

Let us make a few more observations relating to the ‘‘1 l tin’’ example above. The
mathematical problem behind this example can be easily solved using software. For
example, using the computer algebra software Maxima, the problem can be solved
as follows:

1: A(r):=2 *%pi *rˆ2 +2/r;
2: define(A1(r),diff(A(r),r));
3: define(A2(r),diff(A1(r),r));
4: solve(A1(r) =0);
5: r:rhs(solve(A1(r)=0)[3]);
6: r,numer;
7: A2(r)>0,pred;

(1.7)

These are the essential commands in the Maxima program Tin.mac which you
find in the book software. See Appendix A for a description of the book software
and Appendix C for a description of how you can run Tin.mac within Maxima. In
1.7, the numbers 1:, 2:, and so on are not a part of the code, but just line numbers
that we will use for referencing. Line 1 of the code defines the function A(r) from
Equation 1.4, which describes the material consumption that is to be minimized
(note that %pi is the Maxima notation of π ). As you know from calculus, you can
minimize A(r) by solving A′(r) = 0 [16, 17]. The solutions of this equations are the
critical points, which can be relative maxima or minima depending on the sign
of the second derivative A′′ of A. Lines 2 and 3 of the above code define the first
and second derivatives of A(r) as the Maxima functions A1(r) and A2(r). Line 4
solves A′(r) = 0 using Maxima’s solve command, which gives the result shown in
Figure 1.5 if you are using wxMaxima (see Appendix C for details on wxMaxima).

As the figure shows, A′(r) = 0 gives three critical points. The first two critical
points involve the imaginary number i (which is designated as ‘‘%i’’ within
Maxima), so these are complex numbers which can be excluded here [17]. The third
solution in Figure 1.5 is the solution that really solves the tin problem (compare
Equation 1.5 above). Line 5 of Equation 1.7 stores this solution in the variable r,
using ‘‘[3]’’ to address the third element in the list shown in Figure 1.5. Since

(%o9) [r =
3 %i − 1

221/3%pi1/3
, ,r = − r =3 %i + 1

221/3%pi1/3 21/3%pi1/3

1
]

Fig. 1.5 Result of line 4 of Equation 1.7 in wxMaxima.
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this element is an equation, rhs is then used to pick the right-hand side of this
equation. Maxima’s numer command can be used as in line 6 of Equation 1.7 if
you want to have the solution in a decimal numerical format. Finally, Maxima’s
pred command can be used as in line 7 of Equation 1.7 to verify that the value
of the second derivative is positive at the critical point that was stored in r (a
necessary condition for that critical point to be a minimum [17]). In Maxima,
line 7 gives ‘‘true’’, which means that the second derivative is indeed positive as
required.

1.5.3
The Problem Solving Scheme

In this example – and similarly in many other cases – one can clearly distin-
guish between the formulation of a mathematical model on the one hand and
the solution of the resulting mathematical problem on the other hand, which
can be done with appropriate software. A number of examples will show this
below. This means that it is not necessary to be a professional mathematician
if one wants to work with mathematical models. Of course, it is useful to have
mathematical expertise. Mathematical expertise is particularly important if one
wants to solve more advanced problems, or if one wants to make sure that the
results obtained with mathematical software are really solutions of the original
problem and no numerical artifacts. As we will see below, the latter point is
of particular importance in the solution of partial differential equations (PDEs).
However, people with insufficient mathematical expertise may of course just ask
a mathematician. Typically, mathematical modeling projects will have an inter-
disciplinary character. The important point that we should note here is the fact
that the formulation of mathematical models can also be done by nonmathemati-
cians. Above all, the people formulating the models should be experts regarding
the system under consideration. This book is intended to provide particularly
nonmathematicians with enough knowledge about the mathematical aspects of
modeling such that they can deal at least with simple mathematical models on
their own.

Note 1.5.5 (Role of software) Typically, the formulation of a mathematical
model is clearly separated from the solution of the mathematical problems
implied by the model. The latter (‘‘the hard work’’) can be done by software in
many cases. People working with mathematical models hence do not need to be
professional mathematicians.

The tin example shows another important advantage of mathematical modeling.
After the tin problem was formulated mathematically (Equation 1.4), the powerful
and well-established mathematical methods of calculus became applicable. Using
the appropriate software (see 1.7), the problem could then be solved with little
effort. Without the mathematical model for this problem, on the other hand, an
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Fig. 1.6 Problem solving scheme.

experimental solution of this problem would have taken much more time. In
a similar way, many other problems in science and engineering can be solved
effectively using mathematics. From the point of view of science and engineering,
mathematics can be seen as a big resource of powerful methods and instruments
that can be used to solve problems, and it is the role of mathematical models to
make these methods and instruments applicable to originally nonmathematical
problems. Figure 1.6 visualizes this process. The starting point is a real-world
system S together with a question Q relating to S. A mathematical model (S, Q , M)
then opens up the way into the ‘‘mathematical universe’’, where the problem can be
solved using powerful mathematical methods. This leads to a problem solution in
mathematical terms (A*), which is then translated into an answer A to the original
question Q in the last step.

Note 1.5.6 (Mathematical models as door opener) Translating originally non-
mathematical problems into the language of mathematics, mathematical models
virtually serve as a door opener toward the ‘‘mathematical universe’’ where pow-
erful mathematical methods become applicable to originally nonmathematical
problems.

As the figure shows, the mathematical model virtually controls the ‘‘problem
solving traffic’’ between the real and mathematical worlds, and hence, its natural
position is located exactly at the borderline between these worlds. The role of
mathematics in Figure 1.6 can be described like a subway train: since it would be
a too long and hard way to go from the system S and question Q to the desired
answer A in the real world, smart problem solvers go into the ‘‘mathematical
underground’’, where powerful mathematical methods provide fast trains toward
the problem solution.

1.5.4
Strategies to Set up Simple Models

In many cases, a simple three-step procedure can be used to set up a mathematical
model. Consider the following
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Problem 1:
Which volumes of fluids A and B should be mixed to obtain 150 l of a fluid
C that contains 70 gl−1 of a substance, if A and B contain 50 gl−1 and 80 gl−1,
respectively?

For this simple problem, many of us will immediately write down the correct
equations:

x + y = 150 (1.8)

50x + 80y = 70 · 150 (1.9)

where x [ l ] and y [ l ] are the unknown volumes of the fluids A and B. For more
complex problems, however, it is good to have a systematic procedure to set up the
equations. A well-proven procedure that works for a great number of problems can
be described as follows:

Note 1.5.7 (Three steps to setup a model)
• Step 1: Determine the number of unknowns, that is, the number

of quantities that must be determined in the problem. In many
problem formulations, you just have to read the last sentence
where the question is asked.

• Step 2: Give precise definitions of the unknowns, including units.
It is a practical experience that this should not be lumped with
step 1.

• Step 3: Reading the problem formulation sentence by sentence,
translate this information into mathematical statements which
involve the unknowns defined in step 2.

Let us apply this to Problem 1 above. In step 1 and step 2, we would ascertain that
Problem 1 asks for two unknowns which can be defined as

• x: volume of fluid A in the mixture [ l ]
• y: volume of fluid B in the mixture [ l ]

These steps are important because they tell us about the unknowns that can
be used in the equations. As long as the unknowns are unknown to us, it will
be hard to write down meaningful equations in step 3. Indeed, it is a frequent
beginner’s mistake in mathematical modeling to write down equations which
involve unknowns that are not sufficiently well defined. People often just pick up
symbols that appear in the problem formulation – such as A, B, C in problem 1
above – and then write down equations like

50A + 80B = 70 (1.10)
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This equation is indeed almost correct, but it is hard to check its correctness as
long as we lack any precise definitions of the unknowns. The intrinsic problem with
equations such as Equation 1.10 lies in the fact that A, B, C are already defined in
the problem formulation. There, they refer to the names of the fluids, although they
are (implicitly) used to express the volumes of the fluids in Equation 1.10. Thus, let
us now write down the same equation using the unknowns x and y defined above:

50x + 80y = 70 (1.11)

Now the definitions of x and y can be used to check this equation. What we see
here is that on the left-hand side of Equation 1.11, the unit is (grams), which results
from the multiplication of 50 gl−1 with x [l]. On the right-hand side of Equation
1.11, however, the unit is grams per liter. So we have different units on the different
sides of the equation, which proves that this is a wrong equation. At the same
time, a comparison of the units may help us to get an idea of what must be done
to obtain a correct equation. In this case, it is obvious that a multiplication of the
right-hand side of Equation 1.11 with some quantity expressed in liter would solve
the unit problem. The only quantity of this kind in the problem formulation is the
150 l volume which is required as the volume of the mixture, and multiplying the
70 in Equation 1.11 with 150 indeed solves the problem in this case.

Note 1.5.8 (Check the units!) Always check that the units on both sides of your
equations are the same. Try to ‘‘repair’’ any differences that you may find using
appropriate data of your problem.

A major problem in step 3 is to identify those statements in the problem formula-
tion which correspond to mathematical statements, such as equations, inequalities,
and so on. The following note can be taken as a general guideline for this:

Note 1.5.9 (Where are the equations?) The statements of the problem formu-
lation that can be translated into mathematical statements, such as equations,
inequalities, and so on, are characterized by the fact that they impose restrictions
on the values of the unknowns.

Let us analyze some of the statements in Problem 1 above in the light of this
strategy:

• Statement 1: 150 l of fluid C are required.
• Statement 2: Fluid A contains 50 gl−1 of the substance.
• Statement 3: Fluid B contains 80 gl−1 of the substance.
• Statement 4: Fluid C contains 70 gl−1 of the substance.

Obviously, statement 1 is a restriction on the values of x and y, which translates
immediately into the equation:

x + y = 150 (1.12)
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Statement 2 and statement 3, on the other hand, impose no restriction on the
unknowns. Arbitrary values of x and y are compatible with the fact that fluids
A and B contain 50 gl−1 and 80 gl−1 of the substance, respectively. Statement 4,
however, does impose a restriction on x and y. For example, given a value of x, a
concentration of 70 gl−1 in fluid C can be realized only for one particular value of
y. Mathematically, statement 4 can be expressed by Equation 1.9 above. You may be
able to write down this equation immediately. If you have problems to do this, you
may follow a heuristic (i.e. not 100% mathematical) procedure, where you try to
start as close to the statement in the problem formulation as possible. In this case,
we could begin with expressing statement 4 as

{
Concentration of substance in fluid C

} = 70 (1.13)

Then, you would use the definition of a concentration as follows:

{
Mass of substance in fluid C

}

{
Volume of the mixture

} = 70 (1.14)

The next step would be to ascertain two things:
• The mass of the substance in fluid C comes from fluids A

and B.
• The volume of the mixture is 150 l.

This leads to

{
Mass of substance in fluid A

} + {
Mass of substance in fluid B

}

150
= 70 (1.15)

The masses of the substance in A and B can be easily derived using the
concentrations given in Problem 1 above:

50x + 80y

150
= 70 (1.16)

This is Equation 1.9 again. The heuristic procedure that we have used here to
derive this equation is particularly useful if you are concerned with more complex
problems where it is difficult to write down an equation like Equation 1.9 just
based on intuition (and where it is dangerous to do this since your intuition can be
misleading). Hence, we generally recommend the following:

Note 1.5.10 (Heuristic procedure to set up mathematical statements) If you
want to translate a statement in a problem formulation into a mathematical
statement, such as an equation or inequality, begin by mimicking the statement
in the problem formulation as closely as possible. Your initial formulation
may involve nonmathematical statements similar to Equation 1.13 above. Try



24 1 Principles of Mathematical Modeling

then to replace all nonmathematical statements by expressions involving the
unknowns.

Note that what we have described here corresponds to the systems analysis and
modeling steps of the modeling and simulation scheme in Note 1.2.3. Equations
1.8 and 1.9 can be easily solved (by hand and . . . ) on the computer using Maxima’s
solve command as it was described in Section 1.5.2 above. In this case, the
Maxima commands

1: solve([
2: x+y =150
3: ,50*x+80*y=70*150
4: ]);

(1.17)

yield the following result:

[[x =50, y =100]] (1.18)

You find the above code in the file Mix.mac in the book software (see Ap-
pendix A). As you see, the result is written in a nested list structure (lists are written
in the form ‘‘[a,b,c,. . . ]’’ in Maxima): the inner list [x = 50,y = 100] gives
the values of the unknowns of the solution computed by Maxima, while the outer
list brackets are necessary to treat situations where the solution is nonunique (see
the example in Section 1.5.2 above).

Note that lines 1–4 of Equation 1.17 together form a single solve command that
is distributed over several lines here to achieve a better readability of the system
of equations. Note also that the comma at the beginning of line 3 could also have
been written at the end of line 2, which may seem more natural at a first glance.
The reason for this notation is that in this way it is easier to generate a larger
system of equations, by using copies of line 3 with a ‘‘paste and copy’’ mechanism
for example. If you do that and have the commas at the end of each line, your
last equation generated in this way will end with a comma which should not be
there – so we recommend this kind of notation as a ‘‘foolproof ’’ method, which
makes your life with Maxima and other computer algebra software easier.

1.5.4.1 Mixture Problem
Since Problem 1 in the last section was rather easy to solve and the various recom-
mendations made there may thus seem unnecessary at least with respect to this
particular problem, let us now see how a more complex problem is solved using
these ideas:

Problem 2:
Suppose the fluids A, B, C, D contain the substances S1, S2, S3 according to the
following table (concentrations in grams per liter):
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A B C D

S1 2.5 8.2 6.4 12.7
S2 3.2 15.1 13.2 0.4
S3 1.1 0.9 2.2 3.1

What is the concentration of S3 in a mixture of these fluids that contains 75%
(percent by volume) of fluids A and B and which contains 4 gl−1 and 5 gl−1 of
the substances S1 and S2, respectively?

Referring to step 1 and step 2 of the three-step procedure described in Note
1.5.7, it is obvious that we have only one unknown here which can be defined as
follows:

• x: concentration of S3 in the mixture (grams per liter)

Now step 3 requires us to write down mathematical statements involving x.
According to Note 1.5.9, we need to look for statements in the above problem
formulation that impose a restriction on the unknown x. Three statements of this
kind can be identified:

• Statement 1: 75% of the mixture consists of A and B.
• Statement 2: The mixture contains 4 gl−1 of S1.
• Statement 3: The mixture contains 5 gl−1 of S2.

Each of these statements excludes a great number of possible mixtures and
thus imposes a restriction on x. Beginning with statement 1, it is obvious that this
statement can not be formulated in terms of x. We are here in a situation where a
number of auxiliary variables is needed to translate the problem formulation into
mathematics.

Note 1.5.11 (Auxiliary variables) In some cases, the translation of a problem
into mathematics may require the introduction of auxiliary variables. These
variables are ‘‘auxiliary’’ in the sense that they help us to determine the unknowns.
Usually, the problem formulation will provide enough information such that the
auxiliary variables and the unknowns can be determined (i.e. the auxiliary
variables will just increase the size of the system of equations).

In this case, we obviously need the following auxiliary variables:
• xA: percent (by volume) of fluid A in the mixture
• xB: percent (by volume) of fluid B in the mixture
• xC: percent (by volume) of fluid C in the mixture
• xD: percent (by volume) of fluid D in the mixture
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Now the above statement 1 can be easily expressed as

xA + xB = 0.75 (1.19)

Similar to above, statement 2 and statement 3 can be formulated as

{
Concentration of S1 in the mixture

} = 4 (1.20)

and
{
Concentration of S2 in the mixture

} = 5 (1.21)

Based on the information provided in the above table (and again following a
similar procedure as in the previous section), these equations translate to

2.5xA + 8.2xB + 6.4xC + 12.7xD = 4 (1.22)

and

3.2xA + 15.1xB + 13.2xC + 0.4xD = 5 (1.23)

Since x is the concentration of S3 in the mixture, a similar argumentation
shows

1.1xA + 0.9xB + 2.2xC + 3.1xD = x (1.24)

So far we have the four equations 1.19, 1.22, 1.23, and 1.24 for the five unknowns
x, xA, xB, xC, and xD, that is, we need one more equation. In this case, the missing
equation is given implicitly by the definition of xA, xB, xC, and xD. These variables
express percent values, and hence, we have

xA + xB + xC + xD = 1 (1.25)

Altogether, we have now obtained the following system of linear equations:

xA + xB = 0.75 (1.26)

2.5xA + 8.2xB + 6.4xC + 12.7xD = 4 (1.27)

3.2xA + 15.1xB + 13.2xC + 0.4xD = 5 (1.28)

1.1xA + 0.9xB + 2.2xC + 3.1xD = x (1.29)

xA + xB + xC + xD = 1 (1.30)

Again, this system of equations can be solved similar to above using Maxima.
In the Maxima program Mix1.mac in the book software (see Appendix A), the
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problem is solved using the following code

1: out:solve([
2: xA+xB=0.75
3: ,2.5*xA+8.2*xB+6.4*xC+12.7*xD=4
4: ,3.2*xA+15.1*xB+13.2*xC+0.4*xD=5
5: ,1.1*xA+0.9*xB+2.2*xC+3.1*xD=x
6: ,xA+xB+xC+xD=1
7: ]);
8: out,numer;

(1.31)

which yields the following results in Maxima:

141437 1365 1783 77 14485

(%o6) [[x = ------, xD =----, xC = -----, xB =----, xA =------]]
98620 19724 9862 4931 19724

(%o7) [[x = 1.434161427702292, xD = 0.06920502940580003, xC = 0.1807949705942,

xB = 0.01561549381464206, xA = 0.7343845061853579]]

As can be seen, the equation system 1.26–1.30 corresponds to lines 2–6 of the
above code and these lines of code are embedded into Maxima’s solve command
similar to the code in 1.17 that was discussed in the previous section. The only
new thing is that the result of the solve command is stored in a variable named
out in line 1 of Equation 1.31. This variable out is then used in line 8 of the code
to produce a decimal result using Maxima’s numer command. This is why the
Maxima output above comprises of two parts: The output labeled as ‘‘(%o6)’’ is the
immediate output of the solve command, and as you can see above the solution
is expressed in terms of fractions there. Although this is the most precise way
to express the solution, one may prefer decimal numbers in practice. To achieve
this, the numer command in line 8 of code (1.31) produces the second part of the
above output which is labeled as ‘‘(%o7)’’. So we can finally say that the solution
of problem 2 above is x ≈ 1.43 gl−1, which is the approximate concentration of S3

in the mixture.

1.5.4.2 Tank Labeling Problem
When fluids are stored in horizontal, cylindrical tanks similar to the one shown
in Figure 1.7b, one typically wants to have labels on the front side of the tank as
shown in Figure 1.7a. In practice, this problem is often solved ‘‘experimentally’’,
that is, by filling the tank with well-defined fluid volumes, and then setting the
labels at the position of the fluid surface that can be seen from outside. This
procedure may of course be inapplicable in situations where the fluid surface
cannot be seen from outside. More important, however, is the cost argument: this
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Fig. 1.7 (a) Tank front side with volume labels.
(b) Unknowns and auxiliary variables of the tank labeling
problem.

experimental procedure is expensive in terms of time (working time of the people
who are performing the experiment) and material (e.g. the water that is wasted
during the experiment). It is much cheaper here to apply the mathematical model
that will be developed below. Unfortunately, the situation in this example – where
the problem could be solved cheap and efficiently using mathematical models and
open-source software, but where expensive experimental procedures or, in some
cases, expensive commercial software solutions are used – is still rather the rule
than the exception in many fields.

Let us start with the development of an appropriate mathematical model. Let h
(decimeters) be the height of a label at the front side of the tank as indicated in
Figure 1.7b, and let V(h) (cubic decimeters) be the filling volume of the tank that
corresponds to h. If we want to determine the label height for some filling volume
Vf, then the following equation must be solved for h:

V(h) = Vf (1.32)

Referring to Figure 1.7b, V(h) can be expressed as

V(h) = ACD · L (1.33)

where ACD (square decimeters) corresponds to the surface at the front side of
the tank that is enclosed by the line segments AC, CD and DA. ACD can be
expressed as

ACD = ABCD − ABC (1.34)

where the circular segment ABCD is

ABCD = 2α

2π
πr2 = αr2 (1.35)

In the last equation, α is expressed in radians (which makes sense here since the
problem is solved based on Maxima below, which uses radians in its trigonometric
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functions). The surface of the triangle ABC is

ABC = x(r − h) (1.36)

where

x =
√

r2 − (r − h)2 (1.37)

due to the theorem of Pythagoras. Using the last five equations and

α = cos−1
(

r − h

r

)
(1.38)

in Equation 1.32 yields

L · cos−1
(

r − h

r

)
r2 − L

√
r2 − (r − h)2(r − h) = Vf (1.39)

Unlike the equations treated in the last sections, this is now a transcendental
equation that cannot be solved in closed form using Maxima’s solve command as
before. To solve Equation 1.39, numerical methods such as the bisection method
or Newton’s method must be applied [18]. In Maxima, the find_root command
can be applied as follows:

1: for i:1 thru 4 do
2: (
3: out:find root(
4: L*acos((r-h)/r)*rˆ2-L*sqrt(rˆ2-(r-h)ˆ2)*(r-h)=i*1000
5: ,h,0,r
6: ),
7: print("Label for V=",i*1000,"l:",out,"dm")
8: );

(1.40)

This is the essential part of Label.mac, a Maxima code which is a part of the book
software (see Appendix A), and which solves the tank labeling problem assuming
a 10 000 l tank of length L = 2 m based on Equation 1.39. Equation 1.39 appears in
line 4 of the code, with its right-hand side replaced by i*1000 which successively
generates 1000, 2000, 3000, and 4000 as the right-hand side of the equation due
to the for command that is applied in line 1, so the problem is solved for 1000,
2000, 3000, and 4000 l of filling volume in a single run of the code (note that the
5000, 6000, and so on labels can be easily derived from this if required). What the
for. . . thru. . . do command in line 1 precisely does is this: it first sets i = 1 and
then executes the entire code between the brackets in lines 2 and 8, which solves the
problem for Vf = 1000 l; then, it sets i = 2 and executes the entire code between the
brackets in lines 2 and 8 again, which solves the problem for Vf = 2000, and so on
until the same has been done for i = 4 (the upper limit given by ‘‘thru’’ in line 1).
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Note that the arguments of the find_root command are in lines 4 and 5,
between the brackets in lines 3 and 6. Its first argument is the equation that is
to be solved (line 4), which is then followed by three more arguments in line 5:
the variable to be solved for (h in this case), and upper and lower limits for the
interval in which the numerical algorithm is expected to look for a solution of the
equation (0 and r in this case). Usually, reasonable values for these limits can be
derived from the application – in this case, it is obvious that h > 0, and it is likewise
obvious that we will have h = r for 5000 l filling volume since a 10 000–l tank is
assumed, which means that we will have h < r for filling volumes below 5000 l. The
print command prints the result to the computer screen. Note how text, numbers
and variables (such as the variable out that contains the result of the find_root
command, see line 3) can be mixed in this command. Since the print is a part
of the for. . . thru. . .do environment, it is invoked four times and produces the
following result:

Label for V= 1000 l: 3.948086422946864 dm
Label for V= 2000 l: 6.410499677168014 dm
Label for V= 3000 l: 8.582542383270068 dm
Label for V= 4000 l: 10.62571600771833 dm

1.5.5
Linear Programming

All mathematical models considered so far were formulated in terms of equations
only. Remember that according to Definition 1.4.1, a mathematical model may in-
volve any kind of mathematical statements. For example, it may involve inequalities.
One of the simplest class of problems involving inequalities are linear program-
ming problems that are frequently used e.g. in operations research. Consider
the following problem taken from the linear programming article of Wikipedia.
org:

Linear programming example
Suppose a farmer has a piece of farm land, say A square kilometers large, to be
planted with either wheat or barley or some combination of the two. Furthermore,
suppose the farmer has a limited permissible amount F of fertilizer and P of
insecticide which can be used, each of which is required in different amounts
per unit area for wheat (F1, P1) and barley (F2, P2). Let S1 be the selling price
of wheat, and S2 the price of barley. How many square kilometers should be
planted with wheat versus barley to maximize the revenue?

Denoting the area planted with wheat and barley with x1 and x2 respectively, the
problem can be formulated as follows:

x1, x2 ≥ 0 (1.41)

x1 + x2 ≤ A (1.42)
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F1x1 + F2x2 ≤ F (1.43)

P1x1 + P2x2 ≤ P (1.44)

S1x1 + S2x2 → max (1.45)

Here, Equation 1.41 expresses the fact that the farmer cannot plant a negative
area, Equation 1.42 the fact that no more than the given A square kilometers of farm
land can be used, Equations 1.43 and 1.44 express the fertilizer and insecticide
limits, respectively, and Equation 1.45 is the required revenue maximization.
Taking Equations 1.41–1.45 as M, the system S as the farm land and the question
Q , ‘‘How many square kilometers should be planted with wheat versus barley to
maximize the revenue?’’, a mathematical model (S, Q , M) is obtained. For any set
of parameter values for A, F, P, . . . , the problem can again be easily solved using
Maxima. This is done in the Maxima program Farm.mac which you find in the
book software (see Appendix A). Let us look at the essential commands of this code:

1: load(simplex);
2: U:[x1>=0
3: ,x2>=0
4: ,x1+x2<=A
5: ,F1*x1+F2*x2 <=F
6: ,P1*x1+P2*x2<=P];
7: Z:S1*x1+S2*x2;
8: maximize lp(Z,U);

(1.46)

Line 1 of this code loads a package required by Maxima to solve linear program-
ming problems. Lines 2–6 define the inequalities, corresponding to Equations
1.41–1.44 above. Note that lines 2–6 together make up a single command that
stores the list of inequalities in the variable U. Line 7 defines the function Z that
is to be maximized, and the problem is then solved in line 8 using Maxima’s
maximize_lp command. Based on the parameter settings in Farm.mac, Maxima
produces the following result:

[100, [x2 = 50, x1 = 0]]

This means that a maximum revenue of 100 is obtained if the farmer plants
barley only (50 square kilometers).

1.5.6
Modeling a Black Box System

In Section 1.3 it was mentioned that the systems investigated by scientists or
engineers typically are ‘‘input–output systems’’, which means they transform the
given input parameters into output parameters. Note that the previous examples
were indeed referring to such ‘‘input–output systems’’. In the tin example, the
radius and height of the tin are input parameters and the surface area of the tin is
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Fig. 1.8 (a) System 1 with input x (N) and output y (cm).
(b) System 1 data (file spring.csv in the book software).

the output parameter. In the plant growth example, the growth rate of the plant and
its initial biomass is the input and the resulting time–biomass curve is the output
(details in Chapter 3). In the tank example, the geometrical data of the tank and the
concentration distribution are input parameters while the mass of the substance is
the output. In the linear programming examples, the areas planted with wheat or
barley are the input quantities and the resulting revenue is the output. Similarly,
all systems in the examples that will follow can be interpreted as input–output
systems.

The exploration of an example input–output system in some more detail will
now lead us to further important concepts and definitions. Assume a ‘‘system 1’’
as in Figure 1.8 which produces an output length y (centimeters) for every given
input force x [N]. Furthermore, assume that we do not know about the processes
inside the system that transform x into y, that is, let this system be a ‘‘black box’’
to us as described above. Consider the following problem:

Q : Find an input x that generates an output y = 20 cm.

This defines the question Q of the mathematical model (S, Q , M) that we are
going to define. S is the ‘‘system 1’’ in Figure 1.8a, and we are now looking for an
appropriate set of mathematical statements M that can help us to answer Q .

All that the investigator of system 1 can do is to produce some data using the
system, hoping that these data will reveal something about the processes occurring
inside the ‘‘black box’’. Assume that the data in the file spring.csv (which you find
in the PhenMod/LinReg directory of the book software, see Appendix A) have been
obtained from this system, see Figure 1.8b. To see what happens, the investigator
will probably produce a plot of the data as in Figure 1.9a. Note that the plots in
Figure 1.9 were generated using the scatter plot option of OpenOffice.org Calc (see
Appendix A on how you can obtain this software). Figure 1.9a suggests that there
is an approximately linear dependence between the x- and y-data. Mathematically,
this means that the function y = f (x) behind the data is a straight line:

f (x) = ax + b (1.47)

Now the investigator can apply a statistical method called linear regression (which
will be explained in detail in Section 2.2) to determine the coefficients a and b of
this equation from the data, which leads to the ‘‘regression line’’

f (x) = 0.33x − 0.5 (1.48)
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Fig. 1.9 (a) Plot of the data in spring.csv. (b) System 1
data with regression line. Both plots generated using Calc,
see Section 2.1.1.1.

Figure 1.9b shows that there is a good coincidence or, in statistical terminology,
a good ‘‘fit’’ between this regression line and the data. Equation 1.48 can now be
used as the M of a mathematical model of system 1. The question Q stated above
(‘‘Which system input x generates a desired output y = 20 cm? ’’) can then be easily
answered by setting y = f (x) = 20 in Equation 1.48, that is,

20 = 0.33x − 0.5 (1.49)

which gives x ≈ 62.1 N. Of course, this is just an approximate result for several
reasons. First of all, Figure 1.9 shows that there are some deviations between the
regression line and the data. These deviations may be due to measurement errors,
but they may also reflect some really existing effects. If the deviations are due to
measurement errors, then the precise location of the regression line and hence,
the prediction of x for y = 20 cm is affected by these errors. If, on the other hand,
the deviations reflect some really existing effects, then Equation 1.48 is no more
than an approximate model of the processes that transform x into y in system 1,
and hence, the prediction of x for y = 20 cm will be only approximate. Beyond this,
predictions based on data such as the data in Figure 1.8b are always approximate
for principal reasons. The y-range of these data ends at 16 cm, and system 1 may
behave entirely different for y-values beyond 16 cm which we would not be able
to see in such a data set. Therefore, the experimental validation of predictions
derived from mathematical models is always an indispensable part of the modeling
procedure (see Section 1.2). See also Chapter 2 for a deeper discussion of the quality
of predictions obtained from black box models.

The example shows the importance of statistical methods in mathematical model-
ing. First of all, statistics itself is a collection of mathematical models that can be
used to describe data or to draw inferences from data [19]. Beyond this, statistical
methods provide a necessary link between nonstatistical mathematical models and
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the real world. In mathematical modeling, one is always concerned with experi-
mental data, not only to validate model predictions, but also to develop hypotheses
about the system, which help to set up appropriate equations. In the example, the
data led us to the hypothesis that there is a linear relation between x and y. We have
used a plot of the data (Figure 1.9) and the regression method to find the coefficients
in Equation 1.48. These are methods of descriptive statistics, which can be used to
summarize or describe data. Beyond this, inferential statistics provides methods
that allow conclusions to be drawn from data in a way that accounts for randomness
and uncertainty. Some important methods of descriptive and inductive statistics
will be introduced below (Section 2.1).

Note 1.5.12 Statistical methods provide the link between mathematical models
and the real world.

The reader might say that the estimate of x above could also have been obtained
without any reference to models or computations, by a simple tuning of the input
using the real, physical system 1. We agree that there is no reason why models
should be used in situations where this can be done with little effort. In fact, we
do not want to propose any kind of a fundamentalist ‘‘mathematical modeling
and simulation’’ paradigm here. A pragmatic approach should be used, that is, any
problem in science and engineering should be treated using appropriate methods,
may this be mathematical models or a tuning of input parameters using the real
system. It is just a fact that in many cases the latter cannot be done in a simple
way. The generation of data such as in Figure 1.8 may be expensive, and thus,
an experimental tuning of x toward the desired y may be inapplicable. Or, the
investigator may be facing a very complex interaction of several input and output
parameters, which is rather the rule than the exception as explained in Section 1.1.
In such cases, the representation of a system in mathematical terms can be the
only efficient way to solve the problem.

1.6
Even More Definitions

1.6.1
Phenomenological and Mechanistic Models

The mathematical model used above to describe system 1 is called a phenomeno-
logical model since it was constructed based on experimental data only, treating the
system as a black box, that is, without using any information about the internal
processes occurring inside system 1 when x is transformed into y. On the other
hand, models that are constructed using information about the system S are called
mechanistic models, since such models are virtually based on a look into the internal
mechanics of S. Let us define this as follows [11]:
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Definition 1.6.1 (Phenomenological and mechanistic models) A mathematical
model (S, Q , M) is called
• phenomenological, if it was constructed based on experimental

data only, using no a priori information about S,
• mechanistic, if some of the statements in M are based on a priori

information about S.

Phenomenological models are also called empirical models, statistical models,
data-driven models or black box models for obvious reasons. Mechanistic models
for which all necessary information about S are available are also called white box
models. Most mechanistic models are located somewhere between the extreme
black and white box cases, that is, they are based on some information about S
while some other important information is unavailable. Such models are sometimes
called gray box models or semi-empirical models [20].

To better understand the differences between phenomenological and mechanistic
models, let us now construct an alternative mechanistic model for system 1
(Figure 1.8). Above, we have treated system 1 as a black box, that is, we have used
no information about the way in which system 1 transforms some given input x into
the output y (Figure 1.8). Let us now assume that the internal mechanics of system
1 looks as shown in Figure 1.10, that is, assume that system 1 is a mechanical
spring, x is a force acting on that spring, and y is the resulting elongation. This
is now an a priori information about system 1 in the sense of Definition 1.6.1
above, and it can be used to construct a mechanistic mathematical model based
on elementary physical knowledge. As is well known, mechanical springs can be
described by Hooke’s law, which in this case reads

x = k · y (1.50)

where k is the spring constant (newtons per centimeter), a measure of the elasticity
of the spring. The parameter k is either known (e.g. from the manufacturer of the
spring), or estimated based on data such as those in Figure 1.8. Now the following
mechanistic mathematical model (S, Q , M) is obtained:

• S: System 1
• Q : Which system input x generates a desired output of

y = 20 cm?
• M: Equation 1.50

x

x

y
y

Fig. 1.10 Internal mechanics of system 1.
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Based on this model, question Q can be answered as before by setting y = 20 cm
in the model equation (1.50), which leads to

x = k · 20 (1.51)

that is, we can answer the question Q depending on the value of the spring constant,
k. For example, assuming a value of k ≈ 3.11 N cm−1 for the spring constant, we
would get the same estimate x ≈ 62.1 N as above. The mechanistic model of system
1 has several important advantages compared to the phenomenological model, and
these advantages are characteristic advantages of the mechanistic approach. First of
all, mechanistic models generally allow better predictions of system behavior. The
phenomenological model equation (1.48) was derived from the data in Figure 1.8.
These data involve forces x between 10 and 50 N. As mentioned below in our
discussion of regression methods, this means that one can expect Equation 1.48
to be valid only close to this range of data between 10 and 50 N. The mechanistic
model equation (1.50), on the other hand, is based on the well-established physical
theory of a spring. Hence, we have good reason to expect its validity even outside
the range of our own experimental testing.

Mechanistic models do also allow better predictions of modified systems. Assume
for example that system 1 in Figure 1.10 is replaced by a system 2 that consists of
two springs. Furthermore, assume that each of these system 2 springs has the same
spring constant k as the system 1 spring. Then, in the phenomenological approach,
the model developed for system 1 would be of no use, since we would not know
about the similarity of these two systems (remember that the phenomenological
approach assumes that no details are known about the internal mechanics of the
system under consideration). This means that a new phenomenological model
would have to be developed for system 2. A new data set similar to Figure 1.8 would
be required, appropriate experiments would have to be performed, and afterwards, a
new regression line similar to Figure 1.9 would have to be derived from the data. In
the mechanistic approach, on the other hand, Hooke’s law would immediately tell
us that in the case of two springs the appropriate modification of Equation 1.50 is

x = 2k · y (1.52)

Another advantage of mechanistic models is the fact that they usually involve
physically interpretable parameters, that is, parameters which represent real properties
of the system. To wit: the numerical coefficients of the phenomenological model
equation 1.47 are just numbers which cannot be related to the system. The
parameter k of the mechanistic model equation 1.50, on the other hand, can be
related to system properties, and this is of particular importance when we want
to optimize system performance. For example, if we want smaller forces x to be
required for a given elongation y, then in the phenomenological approach we would
have to test a number of systems 2, 3, 4, . . . , until we would eventually arrive at some
system with the desired properties. That is, we would have to apply a trial-and-error
method. The mechanistic model, on the other hand, tells us exactly what we have
to do: we have to replace the system 1 spring with a spring having a smaller spring



1.6 Even More Definitions 37

constant k, and this will reduce the force x required for a given elongation y. In
this simple example, it may be hard to imagine that someone would really use
the phenomenological approach instead of Hooke’s law. But the example captures
an essential difference between phenomenological and mechanistic models, and it
tells us that we should use mechanistic models if possible.

So, if mechanistic models could be set up easily in every imaginable situation, we
would not have to talk about phenomenological models here. However, in many
situations, it is not possible or feasible to use mechanistic models. As an essential
prerequisite, mechanistic models need a priori knowledge of the system. If nothing is
known about the system, then we are in the ‘‘black box’’ situation and have to apply
phenomenological models. Suppose, for example, we want to understand why
some roses wilt earlier than others (this example will be explained in more detail in
Section 2.3). Suppose we assume that this is related to the concentrations of certain
carbohydrates that can be measured. Then we cannot set up a mechanistic model as
long as we do not know all the relevant processes that connect those carbohydrate
concentrations with the observed freshness of the rose. Unless these processes
are known, all we can do is to produce some data (carbohydrate concentration
versus some appropriate measure of rose freshness) and analyze these data using
phenomenological models.

This kind of situation where little is known about the system under investigation
is rather the rule than the exception, particularly at early stages of a scientific
investigation, or at the early stages of a product development in engineering. We
may also be in a situation where we principally know enough details about the
system under investigation, but where the system is so complex that it would take
too much time and resources to setup a mechanistic model. An example is the op-
timization of the wear resistance of composite materials: Suppose that a composite
material is made of the materials M1, M2, . . . , Mn, and we want to know how the
relative proportions of these materials should be chosen in order to maximize the
composite materials resistance to wear. Then, the wear resistance of the composite
material can depend in an extremely complex way on its composition. The author
has investigated a situation of this kind where mechanistic modeling attempts
failed due to the complexity of the overall system, and where a black box-type
phenomenological neural network approach (see Section 2.5) was used instead
[21]. An important advantage of phenomenological models is that they can be used in
black box situations of this kind, and that they typically require much less time and
resources. Pragmatic considerations should decide which type of model is used in
practice. A mechanistic model will certainly be a bad choice if we need three weeks
to make it work, and if it does not give substantially better answers to our question
Q compared to a phenomenological model which can be set up within a day.

Note 1.6.1 (Phenomenological vs. mechanistic) Phenomenological models are
universally applicable, easy to set up, but limited in scope. Mechanistic models
typically involve physically interpretable parameters, allow deeper insights into
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system performance and better predictions, but they require a priori information
on the system and often need more time and resources.

1.6.2
Stationary and Instationary models

It was already mentioned above that the question Q is an important factor that
determines the appropriate mathematical model (S, Q , M). As an example, we have
considered the alternative treatment of mechanical problems with the equations of
classical or relativistic mechanics depending on the question Q that is investigated.
In the system 1 example, we have used Q : ‘‘Which system input x generates a
desired output of y = 20 cm? ’’. Let us now modify this Q in order to find other
important classes of mathematical models. Consider the following question:

Q : If a constant force x acts on the spring beginning with t = 0, what is the
resulting elongation y(t) of the spring at times t > 0?

This question cannot be answered based on the models developed above.
The phenomenological model (Equation 1.48) as well as the mechanistic model
(Equation 1.50) both refer to the so-called stationary state of system 1. This means
that the elongation y expressed by these equations represents the time-independent
(= stationary) state of the spring which is achieved after the spring has been
elongated into the state of equilibrium where the force x exactly matches the force
of the spring. On the other hand, the above question asks for the instationary (i.e.
time-dependent) development of the elongation y(t), beginning with time t = 0
when the force x is applied to the spring. To compute this y(t), an instationary
mathematical model (S, Q , M) is needed where the mathematical statements
in M involve the time t. Models of this kind can be defined based on ordinary
differential equations (details in Chapter 3). To make this important distinction
between stationary and instationary models precise, let us define

Definition 1.6.2 (Stationary/instationary models) A mathematical model (S,
Q , M) is called
• instationary, if at least one of its system parameters or state

variables depends on time and
• stationary otherwise.

1.6.3
Distributed and Lumped models

Suppose now that the spring in system 1 broke into pieces under normal operational
conditions, and that it is now attempted to construct a more robust spring. In such
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a situation, it is natural to ask the following question:

Q : Which part of the spring should be reinforced?

Naturally, those parts of the spring which bear the highest mechanical stresses
should be reinforced. To identify these regions, we need to know the distribution
of stresses inside the spring under load. Let σ (x, y, z) denote the mechanical stress
distribution inside the spring depending on the spatial coordinates x, y, and z.
Then we need a mathematical model with σ (x, y, z) as a state variable. Such a
mathematical model can be formulated based on PDEs as will be explained in
Chapter 4. The important difference between this model and the previous models
of system 1 lies in the fact that in this case the state variable depends on the spatial
coordinates. To predict the equilibrium elongation of the spring using Equations
1.47 or 1.50, it was sufficient to describe the spring based on the spring constant k
only. These equations, however, cannot be used to derive any spatially distributed
information regarding the spring. In this kind of models, all spatial information
is lumped together into the parameter k. In the case above, this was justified by
the fact that the equilibrium position of a spring can be predicted with sufficient
precision using k. On the other hand, if one is asking for the internal stress
distribution in the spring, a spatially distributed description of the stresses inside
the spring is needed. This motivates the following:

Definition 1.6.3 (Distributed/lumped models) A mathematical model (S, Q ,
M) is called
• distributed, if at least one of its system parameters or state

variables depends on a space variable,
• lumped otherwise.

1.7
Classification of Mathematical Models

Based on the examples in the last section, the reader can now distinguish between
some basic classes of mathematical models. We will now widen our perspective
toward a look at the entire ‘‘space of mathematical models’’, that is, this section will
give you an idea of various types of mathematical models that are used in practice.

Note 1.7.1 The practical use of a classification of mathematical models lies
in the fact that you understand ‘‘where you are’’ in the space of mathematical
models, and which types of models might be applicable to your problem beyond
the models that you have already used.
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1.7.1
From Black to White Box Models

The ‘‘space of mathematical models’’ evolves naturally from Definition 1.4.1, where
we have defined a mathematical model to be a triple (S, Q , M) consisting of a system
S, a question Q , and a set of mathematical statements M. Based on this definition,
it is natural to classify mathematical models in an SQM space. Figure 1.11a shows
one possible approach to visualize this SQM space of mathematical models, based
on a classification of mathematical models between black and white box models.
Psychological and social systems constitute the ‘‘black box’’ end of the spectrum.
Only very vague phenomenological models can be developed for these systems due
to their complexity and due to the fact that too many subprocesses are involved
which are not sufficiently understood. On the other hand, mechanical systems,
electrical circuits etc. are at the white box end of the spectrum since they can be very
well understood in terms of mechanistic models (a famous example is Newton’s
model of planetary motion).

Note that the three dimensions of a mathematical model (S, Q , M) can be
seen in the figure: the systems (S) are classified on top of the bar, immediately
below the bar there is a list of objectives that mathematical models in each of the
segments may have (which is Q), and at the bottom end there are corresponding
mathematical structures (M) ranging from algebraic equations (AEs) to differential
equations (DEs). Equation 1.47 (Section 1.5.6) is an example of a mathematical
model in the form of an AE. As suggested by Figure 1.11, black box regression
models of this kind are widely used for the modeling for example, of psychological,
social, or economic systems (see Chapter 2 for more on regression models). On the
other hand, the wine fermentation model discussed in Section 3.10.2 exemplifies
the modeling of a biological/chemical system using ODEs (see Chapters 3 and 4
for more examples of DE models).

The ‘‘Q ’’-criteria in Figure 1.11a illustrate that mathematical models can be used
to solve increasingly challenging problems as the model gradually turns from a
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Fig. 1.11 (a) Classification of mathematical models between
black and white box models (adapted from [3]). (b) Classifi-
cation of mathematical models in the SQM space.
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black box to a white box model. At the black box end of the spectrum, models can
be used to make more or less reliable predictions based on data. For example, you
may think here of attempts that have been made to predict share prices using the
neural network methods described in Chapter 2 [22]. The model of a biological
predator–prey system discussed in Section 3.10.1 is already ‘‘white enough’’ such
that it can be used for an analysis of the dynamical system behavior in terms of
phase plot diagrams such as Figure 3.17. Beyond this, models of chemical systems
can be so precise that they can be used for a control of a process such as the wine
fermentation process discussed in Section 3.10.2.

At the white box end of the spectrum, mathematical models can be applied to
design, test, and optimize systems and processes on the computer before they
are actually physically realized. This is used e.g. in virtual engineering, which
includes techniques such as interactive design using CFD (see [23] and Section
4.10.3) or virtual prototyping [7, 24, 25]. As an example, you may think of the
computation of the temperature distribution within a three-dimensional device
using finite-element software, as it will be discussed in Section 4.9 below. Based
on the method described there, what-if studies can be performed, that is, it can
be investigated what happens with the temperature distribution if you change
certain characteristics of the device virtually on the computer, and this can then
be used to optimize the construction of the device so as to achieve certain desired
characteristics of the temperature distribution.

1.7.2
SQM Space Classification: S Axis

Since mathematical models are characterized by their respective individual S, Q
and M ‘‘values’’, one can also think of each model as being located somewhere
in the ‘‘SQM space’’ of Figure 1.11b. On each of the S-, Q- and M-axes of the
figure, mathematical models are classified with respect to a number of criteria
which were compiled based on various classification attempts in the literature
[3, 11, 20, 26–30]. Let us explain these criteria, beginning with the S axis of
Figure 1.11b:

Physical – conceptual. Physical systems are part of the real world, for example, a
fish or a car. Conceptual systems are made up of thoughts and ideas, for example,
a set of mathematical axioms. This book focuses entirely on physical systems.

Natural – technical. Naturally, a natural system is a part of nature, such as a fish
or a flower, while a technical system is a car, a machine, and so on. An example of
a natural system is the predator–prey system treated in Section 3.10.1, the stormer
viscometer treated in Section 2.4 exemplifies a technical system.

Stochastic – deterministic. Stochastic systems involve random effects, such as
rolling dice, share prices and so on. Deterministic systems involve no or very little
random effects, for example, mechanical systems, such as the planetary system, a
pendulum, and so on. In a deterministic system, a particular state A of the system
is always followed by one and the same state B, while A may be followed by B,
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C or other states in an unpredictable way if the system is stochastic [31]. Below,
stochastic models will be considered mainly in Chapter 2 and deterministic models
mainly in Chapters 3 and 4.

Continuous – discrete. Continuous systems involve quantities that change con-
tinuously with time, such as sugar and ethanol concentrations in a wine fermenter
(Section 3.10.2). Discrete systems, on the other hand, involve quantities that change
at discrete times only, such as the number of individuals in animal populations
(Section 3.10.1). Note that on the M axis of Figure 1.11, continuous systems can
be represented by discrete mathematical statements and vice versa (e.g. a contin-
uous mathematical formulation is used in Section 3.10.1 to describe the discrete
predator–prey system).

Dimension. Depending on their spatial symmetries, physical systems can be
described using 1, 2, or 3 space variables. As will be discussed in Section 4.3.3, the
number of space variables used to describe a physical system is called its dimension
(frequently denoted 1D, 2D, or 3D). Examples: a 1D temperature distribution is
computed in Section 4.6 and a 3D temperature distribution in Section 4.9.

Field of application. We can distinguish between chemical systems, physical
systems, biological systems, and so on. Systems from these and more fields of
application will be considered below.

1.7.3
SQM Space Classification: Q Axis

On the Q- axis of Figure 1.11b, we have the following categories:

Phenomenological – mechanistic. This has been discussed in detail in Section 1.6.
Phenomenological models are treated in Chapter 2 and mechanistic models in
Chapters 3 and 4.

Stationary – instationary. Again, this has been discussed in Section 1.6. As dis-
cussed there, it depends on the question which we are asking (i.e. on the ‘‘Q ’’ of
a mathematical model (S, Q , M)) whether a stationary (time-independent) or in-
stationary (time-dependent) model is appropriate. See also Problem 1 (instationary)
and Problem 2 (stationary) in Section 4.1.3.

Lumped – distributed. Again, see Section 1.6. As was discussed there, it depends
on the question which we are asking (i.e. on the ‘‘Q ’’ of a mathematical model (S,
Q , M)) whether a lumped (space-independent) or distributed (space-dependent)
model is appropriate. The wine fermentation model (Section 3.10.2) is an example
of a lumped model since it does not use spatial coordinates. On the other hand,
the computation of a 3D temperature distribution in Section 4.9 is based on a
distributed model.

Direct – inverse. Consider an input–output system as in Figure 1.2a. If Q
assumes given input and system parameters and asks for the output, the model
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solves a so-called direct problem [3]. Most of the models below refer to direct
problems. If, on the other hand, Q asks for the input or for parameters of S, the
model solves a so-called inverse problem [32]. If Q asks for parameters of S, the
resulting problem is also called a parameter identification problem. Examples are
the regression and neural network models discussed in Chapter 2, and the fitting
of ODEs to data discussed in Section 3.9. If Q asks for input parameters, the
resulting problem is also called a control problem, since in this case the problem is
to control the input in a way that generates some desired output ([33] and 4.11.3).

Research – management. Research models are used if Q aims at the understand-
ing of S; management models, on the other hand, are used if the focus is on the
solution of practical problems related to S. As pointed out in [20], research models
tend to be more complex and less manageable from a practical point of view.
Depending on Q , the same mathematical equations can be a part of a research or of
a management model. For example, the predator–prey model described in Section
3.10.1 is a research model if the investigator just wants to understand the oscilla-
tions of the predator and prey populations, and it is a management model if is used
to control the predator and prey populations (but as discussed in Section 3.10.1,
this model is so simple that it cannot be seriously used as a management model).

Speculation – design. See the above discussion of Figure 1.11a.
Scale. Depending on Q , the model will describe the system on an appropriate

scale. For example, depending on Q it can be appropriate to virtually follow a fluid
particle on its way through the complex channels of a porous medium, or just to
compute the pressure drop across a porous medium based on its permeability.
Obviously, these cases correspond to a description of a porous medium on two scales
(microscopic/macroscopic). Details of this example will follow in Section 4.10.2.

1.7.4
SQM Space Classification: M Axis

Finally, let us look at the categories on the M-axis of Figure 1.11b:

Linear – nonlinear. In linear models, the unknowns (or their derivatives) are
combined using linear mathematical operations only, such as addition/subtraction
or multiplication with parameters. Nonlinear models, on the other hand, may in-
volve the multiplication of unknowns, the application of transcendental functions,
and so on. Nonlinear models typically have more (and more interesting) solu-
tions but are harder to solve. Examples are linear or nonlinear regression models
(Sections 2.2 and 2.4, respectively) and linear or nonlinear ODEs (Section 3.5).

Analytical – numerical. In analytic models, the system behavior can be expressed
in terms of mathematical formulas involving the system parameters. Based on these
models, qualitative effects of parameters and the entire system behavior can be
studied theoretically, without using concrete values for the parameters. Numerical
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models, on the other hand, can be used to obtain the system behavior for specific
parameter values. See Section 3.6 for a general discussion of analytical models
(which are also called closed form models) versus numerical models.

Autonomous – nonautonomous. This is a mathematical classification of insta-
tionary models (see above). If an equation does not depend explicitly on time, it is
called autonomous, otherwise nonautonomous; see the examples in Section 3.5.

Continuous – discrete. In continuous models, the independent variables may
assume arbitrary (typically real) values within some interval. For example, many of
the ODE models discussed in Chapter 3 use time (within some time interval) as
the independent variable. In discrete models, on the other hand, the independent
variables may assume some discrete values only. An example is the discrete
event simulation technique discussed in Section 2.7.2, or the Nicholson–Bailey
host–parasite interaction model discussed in Section 4.11.1, where the time
variable just counts the number of breeding seasons instead of expressing the
(continuous) physical time.

Difference equations. In difference equations, the quantity of interest is obtained
as a sequence of discrete values. Usually, this is expressed in terms of recurrence
relations in which each term of the sequence depends on previous terms. Differ-
ence equations are frequently used to describe discrete systems. See the examples
in Section 4.11.1.

Differential equations. Differential equations are equations involving derivatives
of an unknown function. They are a main tool to set up continuous mechanistic
models, see the examples in Chapters 3 and 4.

Integral equations. Integral equations are equations involving an integral of an
unknown function.

Algebraic equations. AEs are equations involving the usual algebraic operations
such as addition, subtraction, division, and so on. Examples are Equations (1.1) or
(1.4) in Section 1.5, or the regression equations discussed in Chapter 2.

Note that some of the above categorizations of mathematical models overlap.
For example, both phenomenological and mechanistic models can be lumped or
distributed, stationary or instationary, and so on. Thus, it may have confused the
reader if a single chapter would have been devoted to each of these categorizations.
Instead, it was decided to select the categorization between phenomenological mod-
els (Chapter 2) and mechanistic models (Chapters 3 and 4) as the main perspective
and as a principle to organize the book. The other categorizations are treated
within this perspective, that is, they will be referred to in the context of appropriate
examples. Note that referring to Figure 1.11b we can say that the categorization of
mathematical models between phenomenological and mechanistic models divides
the SQM space of mathematical models into two different ‘‘half-spaces’’ along the
Q-axis. We will repeatedly come back to the above classification of mathematical
models in the course of this book, using it like a compass (or, in more up-to-date
terminology: like a GPS system) so that the reader will always know about his
actual position in the overall space of mathematical models.
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1.8
Everything Looks Like a Nail?

To some extent, the modeling and simulation scheme discussed above is just an
idealistic theory of how mathematical modeling should work, and this must of course
be distinguished from the way in which people are dealing with mathematical
models in practice. Being aware of this fact, Golomb [34] compiled the following:

Note 1.8.1 (Don’ts of Mathematical Modeling)
1. Don’t believe that the model is the reality.
2. Don’t extrapolate beyond the region of fit.
3. Don’t distort reality to fit the model.
4. Don’t retain a discredited model.
5. Don’t fall in love with your model.

Don’t No. 1 reminds us of the limitations of our models, that is, we should
always be aware of the simplifying assumptions made in a model when discussing
its implications for the real system. You may know the cave allegory of the Greek
philosopher Plato, which provides a nice picture of the relationship between a
model and the reality, Figure 1.12 [35]. In this allegory, prisoners are chained deep
inside a cave in a way that restricts their view to one particular wall of the cave.
Behind the prisoners, there is a big fire and some people who are using the light of
that fire to project three-dimensional objects such as puppets, animals, and plants
onto the cave wall. Plato assumes that the prisoners are chained in the cave since
their childhood and thus have never seen anything else apart from the shadows on
that cave wall. Thus, they believe that these shadows are the reality, although the

Fig. 1.12 Plato’s cave allegory: Don’t believe that
the model is the reality! (Figure: B. Blüm, idea:
http://commons.wirimedia.org.)
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shadows are of course no more than simplified, two-dimensional models of the
real, three-dimensional objects behind them. Very similarly, we must be aware of
the fact that we are always ‘‘chained’’ in some way as long as we think about reality
in terms of a scientific model, which restricts our view on the real system more or
less depending on its inherent assumptions.

Don’t No. 2 says that models should be used for prediction only in those regions
of the parameter space where they are sufficiently supported by experimental data
(see Section 2.2.2 and Note 2.2.3 for more details), while Don’ts Nos 3–5 basically
require us to abandon models that fail to pass the validation step of the modeling
and simulation scheme (Note 1.2.3). In [11], the message of Don’t Nos 3–5 is
expressed as follows:

When you have a hammer, you look for a nail.
When you have a good hammer, everything looks like a nail.

You understand the message: People always tend to solve problems similar to the
way in which they successfully solved problems in the past. Yesterday, our problem
might have been to drive a nail into a piece of wood, and we might have solved
this problem adequately using a hammer. Today, however, we may have to drive a
screw into a piece of wood, and it is of course not quite such a good idea to use the
hammer again. Similarly, mathematical models are like tools that help us to solve
problems, and we will always tend to reuse the models that helped us to solve our
yesterday’s problems. This is like a law of nature in mathematical modeling, similar
to Newton’s law of inertia; let us call it the ‘‘law of inertia of mathematical modeling’’.
Forces need to be applied to physical bodies to change their state of motion, and
in a similar way forces need to be applied in a mathematical modeler’s mind
before he will eventually agree to replace established models by more adequate
approaches. Even great scientists such as A. Einstein were affected by this kind
of inertia. Einstein did not like the idea that the physical universe is probabilistic
rather than deterministic (a consequence of the ‘‘Copenhagen interpretation’’ of
quantum mechanics), and he expressed this aversion in his famous quote ‘‘God
does not play dice with the universe’’ [36]. But do not take this as an excuse for
any violation of Golomb’s Don’t’s. It just shows that everybody, including yourself,
should use models with care.


