
Preface

This book comprises 50 class-tested lectures which both the authors
have given to engineering and mathematics major students under the titles
Boundary Value Problems and Methods of Mathematical Physics at various
institutions all over the globe over a period of almost 35 years. The main
topics covered in these lectures are power series solutions, special func-
tions, boundary value problems for ordinary differential equations, Sturm–
Liouville problems, regular and singular perturbation techniques, Fourier
series expansion, partial differential equations, Fourier series solutions to
initial-boundary value problems, and Fourier and Laplace transform tech-
niques. The prerequisite for this book is calculus, so it can be used for
a senior undergraduate course. It should also be suitable for a beginning
graduate course because, in undergraduate courses, students do not have
any exposure to various intricate concepts, perhaps due to an inadequate
level of mathematical sophistication. The content in a particular lecture,
together with the problems therein, provides fairly adequate coverage of the
topic under study. These lectures have been delivered in one year courses
and provide flexibility in the choice of material for a particular one-semester
course. Throughout this book, the mathematical concepts have been ex-
plained very carefully in the simplest possible terms, and illustrated by a
number of complete workout examples. Like any other mathematical book,
it does contain some theorems and their proofs.

A detailed description of the topics covered in this book is as follows:
In Lecture 1 we find explicit solutions of the first-order linear differential
equations with variable coefficients, second-order homogeneous differential
equations with constant coefficients, and second-order Cauchy–Euler differ-
ential equations. In Lecture 2 we show that if one solution of the homoge-
neous second-order differential equation with variable coefficients is known,
then its second solution can be obtained rather easily. Here we also demon-
strate the method of variation of parameters to construct the solutions of
nonhomogeneous second-order differential equations.

In Lecture 3 we provide some basic concepts which are required to con-
struct power series solutions to differential equations with variable coeffi-
cients. Here through various examples we also explain ordinary, regular
singular, and irregular singular points of a given differential equation. In
Lecture 4 first we prove a theorem which provides sufficient conditions so
that the solutions of second-order linear differential equations can be ex-
pressed as power series at an ordinary point, and then construct power se-
ries solutions of Airy, Hermite, and Chebyshev differential equations. These
equations occupy a central position in mathematical physics, engineering,
and approximation theory. In Lectures 5 and 6 we demonstrate the method
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of Frobenius to construct the power series solutions of second-order linear
differential equations at a regular singular point. Here we prove a gen-
eral result which provides three possible different forms of the power series
solution. We illustrate this result through several examples, including La-
guerre’s equation, which arises in quantum mechanics. In Lecture 7 we
study Legendre’s differential equation, which arises in problems such as the
flow of an ideal fluid past a sphere, the determination of the electric field due
to a charged sphere, and the determination of the temperature distribution
in a sphere given its surface temperature. Here we also develop the polyno-
mial solution of the Legendre differential equation. In Lecture 8 we study
polynomial solutions of the Chebyshev, Hermite, and Laguerre differential
equations. In Lecture 9 we construct series solutions of Bessel’s differential
equation, which first appeared in the works of Euler and Bernoulli. Since
many problems of mathematical physics reduce to the Bessel equation, we
investigate it in somewhat more detail. In Lecture 10 we develop series so-
lutions of the hypergeometric differential equation, which finds applications
in several problems of mathematical physics, quantum mechanics, and fluid
dynamics.

Mathematical problems describing real world situations often have so-
lutions which are not even continuous. Thus, to analyze such problems
we need to work in a set which is bigger than the set of continuous func-
tions. In Lecture 11 we introduce the sets of piecewise continuous and
piecewise smooth functions, which are quite adequate to deal with a wide
variety of applied problems. Here we also define periodic functions, and
introduce even and odd extensions. In Lectures 12 and 13 we introduce
orthogonality of functions and show that the Legendre, Chebyshev, Her-
mite, and Laguerre polynomials and Bessel functions are orthogonal. Here
we also prove some fundamental properties about the zeros of orthogonal
polynomials.

In Lecture 14 we introduce boundary value problems for second-order
ordinary differential equations and provide a necessary and sufficient con-
dition for the existence and uniqueness of their solutions. In Lecture 15
we formulate some boundary value problems with engineering applications,
and show that often solutions of these problems can be written in terms
of Bessel functions. In Lecture 16 we introduce Green’s functions of ho-
mogeneous boundary value problems and show that the solution of a given
nonhomogeneous boundary value problem can be explicitly expressed in
terms of Green’s function of the corresponding homogeneous equation.

In Lecture 17 we discuss the regular perturbation technique which re-
lates the unknown solution of a given initial value problem to the known
solutions of the infinite initial value problems. In many practical problems
one often meets cases where the methods of regular perturbations cannot
be applied. In the literature such problems are known as singular pertur-
bation problems. In Lecture 18 we explain the methodology of singular
perturbation technique with the help of some examples.
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If the coefficients of the homogeneous differential equation and/or of
the boundary conditions depend on a parameter, then one of the pioneer
problems of mathematical physics is to determine the values of the param-
eter (eigenvalues) for which nontrivial solutions (eigenfunctions) exist. In
Lecture 19 we explain some of the essential ideas involved in this vast field,
which is continuously growing.

In Lectures 20 and 21 we show that the sets of orthogonal polynomials
and functions we have provided in earlier lectures can be used effectively
as the basis in the expansions of general functions. This in particular leads
to Fourier’s cosine, sine, trigonometric, Legendre, Chebyshev, Hermite and
Bessel series. In Lectures 22 and 23 we examine pointwise convergence,
uniform convergence, and the convergence in the mean of the Fourier se-
ries of a given function. Here the importance of Bessel’s inequality and
Parseval’s equality are also discussed. In Lecture 24 we use Fourier series
expansions to find periodic particular solutions of nonhomogeneous differ-
ential equations, and solutions of nonhomogeneous self-adjoint differential
equations satisfying homogeneous boundary conditions, which leads to the
well-known Fredholm’s alternative.

In Lecture 25 we introduce partial differential equations and explain sev-
eral concepts through elementary examples. Here we also provide the most
fundamental classification of second-order linear equations in two indepen-
dent variables. In Lecture 26 we study simultaneous differential equations,
which play an important role in the theory of partial differential equations.
Then we consider quasilinear partial differential equations of the Lagrange
type and show that such equations can be solved rather easily, provided we
can find solutions of related simultaneous differential equations. Finally,
we explain a general method to find solutions of nonlinear first-order par-
tial differential equations which is due to Charpit. In Lecture 27 we show
that like ordinary differential equations, partial differential equations with
constant coefficients can be solved explicitly. We begin with homogeneous
second-order differential equations involving only second-order terms, and
then show how the operator method can be used to solve some particular
nonhomogeneous differential equations. Then, we extend the method to
general second and higher order partial differential equations. In Lecture
28 we show that coordinate transformations can be employed successfully
to reduce second-order linear partial differential equations to some standard
forms, which are known as canonical forms. These transformed equations
sometimes can be solved rather easily. Here the concept of characteristic
of second-order partial differential equations plays an important role.

The method of separation of variables involves a solution which breaks
up into a product of functions each of which contains only one of the vari-
ables. This widely used method for finding solutions of linear homoge-
neous partial differential equations we explain through several simple ex-
amples in Lecture 29. In Lecture 30 we derive the one-dimensional heat
equation and formulate initial-boundary value problems, which involve the
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heat equation, the initial condition, and homogeneous and nonhomogeneous
boundary conditions. Then we use the method of separation of variables
to find the Fourier series solutions to these problems. In Lecture 31 we
construct the Fourier series solution of the heat equation with Robin’s
boundary conditions. In Lecture 32 we provide two different derivations
of the one-dimensional wave equation, formulate an initial-boundary value
problem, and find its Fourier series solution. In Lecture 33 we continue
using the method of separation of variables to find Fourier series solutions
to some other initial-boundary value problems related to one-dimensional
wave equation. In Lecture 34 we give a derivation of the two-dimensional
Laplace equation, formulate the Dirichlet problem on a rectangle, and find
its Fourier series solution. In Lecture 35 we discuss the steady-state heat
flow problem in a disk. For this, we consider the Laplace equation in po-
lar coordinates and find its Fourier series solution. In Lecture 36 we use
the method of separation of variables to find the temperature distribution
of rectangular and circular plates in the transient state. Again using the
method of separation of variables, in Lecture 37 we find vertical displace-
ments of thin membranes occupying rectangular and circular regions. The
three-dimensional Laplace equation occurs in problems such as gravitation,
steady-state temperature, electrostatic potential, magnetostatics, fluid flow,
and so on. In Lecture 38 we find the Fourier series solution of the Laplace
equation in a three-dimensional box and in a circular cylinder. In Lecture
39 we use the method of separation of variables to find the Fourier series
solutions of the Laplace equation in and outside a given sphere. Here, we
also discuss briefly Poisson’s integral formulas. In Lecture 40 we demon-
strate how the method of separation of variables can be employed to solve
nonhomogeneous problems.

The Fourier integral is a natural extension of Fourier trigonometric series
in the sense that it represents a piecewise smooth function whose domain
is semi-infinite or infinite. In Lecture 41 we develop the Fourier integral
with an intuitive approach and then discuss Fourier cosine and sine inte-
grals which are extensions of Fourier cosine and sine series, respectively.
This leads to Fourier cosine and sine transform pairs. In Lecture 42 we
introduce the complex Fourier integral and the Fourier transform pair and
find the Fourier transform of the derivative of a function. Then, we state
and prove the Fourier convolution theorem, which is an important result.
In Lectures 43 and 44 we consider problems in infinite domains which can
be effectively solved by finding the Fourier transform, or the Fourier sine or
cosine transform of the unknown function. For such problems usually the
method of separation of variables does not work because the Fourier series
are not adequate to yield complete solutions. We illustrate the method by
considering several examples, and obtain the famous Gauss–Weierstrass,
d’Alembert’s, and Poisson’s integral formulas.

In Lecture 45 we introduce some basic concepts of Laplace transform
theory, whereas in Lecture 46 we prove several theorems which facilitate the
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computation of Laplace transforms. The method of Laplace transforms has
the advantage of directly giving the solutions of differential equations with
given initial and boundary conditions without the necessity of first finding
the general solution and then evaluating from it the arbitrary constants.
Moreover, the ready table of Laplace transforms reduces the problem of
solving differential equations to mere algebraic manipulations. In Lectures
47 and 48 we employ the Laplace transform technique to find solutions
of ordinary and partial differential equations, respectively. Here we also
develop the famous Duhamel’s formula.

A given problem consisting of a partial differential equation in a domain
with a set of initial and/or boundary conditions is said to be well-posed if
it has a unique solution which is stable. In Lecture 49 we demonstrate that
problems considered in earlier lectures are well-posed. Finally, in Lecture
50 we prove a few theorems which verify that the series or integral form of
the solutions we have obtained in earlier lectures are actually the solutions
of the problems considered.

Two types of exercises are included in the book, those which illustrate
the general theory, and others designed to fill out text material. These
exercises form an integral part of the book, and every reader is urged to
attempt most, if not all of them. For the convenience of the reader we have
provided answers or hints to almost all the exercises.

In writing a book of this nature no originality can be claimed, only a
humble attempt has been made to present the subject as simply, clearly,
and accurately as possible. It is earnestly hoped that Ordinary and Partial
Differential Equations will serve an inquisitive reader as a starting point in
this rich, vast, and ever-expanding field of knowledge.

We would like to express our appreciation to Professors M. Bohner, S.K.
Sen, and P.J.Y. Wong for their suggestions and criticisms. We also want
to thank Ms. Vaishali Damle at Springer New York for her support and
cooperation.

Ravi P. Agarwal
Donal O’Regan



Lecture 2
Second-Order Differential

Equations

Generally, second-order differential equations with variable coefficients
cannot be solved in terms of the known functions. In this lecture we shall
show that if one solution of the homogeneous equation is known, then its
second solution can be obtained rather easily. Further, by employing the
method of variation of parameters, the general solution of the nonhomo-
geneous equation can be constructed provided two solutions of the corre-
sponding homogeneous equation are known.

Homogeneous equations. For the homogeneous linear DE of
second-order with variable coefficients

y′′ + p1(x)y′ + p2(x)y = 0, (2.1)

where p1(x) and p2(x) are continuous in J, there does not exist any method
to solve it. However, the following results are well-known.

Theorem 2.1. There exist exactly two solutions y1(x) and y2(x) of
(2.1) which are linearly independent (essentially different) in J, i.e., there
does not exist a constant c such that y1(x) = cy2(x) for all x ∈ J.

Theorem 2.2. Two solutions y1(x) and y2(x) of (2.1) are linearly
independent in J if and only if their Wronskian defined by

W (x) = W (y1, y2)(x) =
∣∣∣∣ y1(x) y2(x)

y′
1(x) y′

2(x)

∣∣∣∣ (2.2)

is different from zero for some x = x0 in J.

Theorem 2.3. For the Wronskian defined in (2.2) the following Abel’s
identity holds:

W (x) = W (x0) exp
(
−
∫ x

x0

p1(t)dt

)
, x0 ∈ J. (2.3)

Thus, if Wronskian is zero at some x0 ∈ J, then it is zero for all x ∈ J.

Theorem 2.4. If y1(x) and y2(x) are solutions of (2.1) and c1 and c2

are arbitrary constants, then c1y1(x) + c2y2(x) is also a solution of (2.1).
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Further, if y1(x) and y2(x) are linearly independent, then any solution y(x)
of (2.1) can be written as y(x) = c1y1(x) + c2y2(x), where c1 and c2 are
suitable constants.

Now we shall show that, if one solution y1(x) of (2.1) is known (by
some clever method) then we can employ variation of parameters to find
the second solution of (2.1). For this, we let y(x) = u(x)y1(x) and substitute
this in (2.1), to get

(uy1)′′ + p1(uy1)′ + p2(uy1) = 0,

or
u′′y1 + 2u′y′

1 + uy′′
1 + p1u

′y1 + p1uy′
1 + p2uy1 = 0,

or
u′′y1 + (2y′

1 + p1y1)u′ + (y′′
1 + p1y

′
1 + p2y1)u = 0.

However, since y1 is a solution of (2.1), the above equation with v = u′ is
the same as

y1v
′ + (2y′

1 + p1y1)v = 0, (2.4)

which is a first-order equation, and it can be solved easily provided y1 �= 0
in J. Indeed, multiplying (2.4) by y1, we find

(y2
1v′ + 2y′

1y1v) + p1y
2
1v = 0,

which is the same as
(y2

1v)′ + p1(y2
1v) = 0;

and hence

y2
1v = c exp

(
−
∫ x

p1(t)dt

)
,

or, on taking c = 1,

v(x) =
1

y2
1(x)

exp
(
−
∫ x

p1(t)dt

)
.

Hence, the second solution of (2.1) is

y2(x) = y1(x)
∫ x 1

y2
1(t)

exp
(
−
∫ t

p1(s)ds

)
dt. (2.5)

Example 2.1. It is easy to verify that y1(x) = x2 is a solution of the
DE

x2y′′ − 2xy′ + 2y = 0, x �= 0.

For the second solution we use (2.5), to obtain

y2(x) = x2

∫ x 1
t4

exp
(
−
∫ t(

−2s

s2

)
ds

)
dt = x2

∫ x 1
t4

t2dt = −x.
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We note that the substitution w = y′/y converts (2.1) into a first-order
nonlinear DE

w′ + p1(x)w + p2(x) + w2 = 0. (2.6)

This DE is called Riccati’s equation. In general it is not integrable, but
if a particular solution, say, w1(x) is known, then by the substitution z =
w − w1(x) it can be reduced to Bernoulli’s equation (see Problem 1.6). In
fact, we have

z′ + w′
1(x) + p1(x)(z + w1(x)) + p2(x) + (z + w1(x))2 = 0,

which is the same as

z′ + (p1(x) + 2w1(x))z + z2 = 0. (2.7)

Since this equation can be solved easily to obtain z(x), the solution of (2.6)
takes the form w(x) = w1(x) + z(x).

Example 2.2. It is easy to verify that w1(x) = x is a particular solution
of the Riccati equation

w′ = 1 + x2 − 2xw + w2.

The substitution z = w − x in this equation gives the Bernoulli equation

z′ = z2,

whose general solution is z(x) = 1/(c−x), x �= c. Thus, the general solution
of the given Riccati’s equation is w(x) = x + 1/(c− x), x �= c.

Nonhomogeneous equations. Now we shall find a particular
solution of the nonhomogeneous equation

y′′ + p1(x)y′ + p2(x)y = r(x). (2.8)

For this also we shall apply the method of variation of parameters. Let
y1(x) and y2(x) be two solutions of (2.1). We assume y(x) = c1(x)y1(x) +
c2(x)y2(x) is a solution of (2.8). Note that c1(x) and c2(x) are two unknown
functions, so we can have two sets of conditions which determine c1(x) and
c2(x). Since

y′ = c1y
′
1 + c2y

′
2 + c′1y1 + c′2y2

as a first condition we assume that

c′1y1 + c′2y2 = 0. (2.9)

Thus, we have
y′ = c1y

′
1 + c2y

′
2
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and on differentiation

y′′ = c1y
′′
1 + c2y

′′
2 + c′1y

′
1 + c′2y

′
2.

Substituting these in (2.8), we get

c1(y′′
1 + p1y

′
1 + p2y1) + c2(y′′

2 + p1y
′
2 + p2y2) + (c′1y

′
1 + c′2y

′
2) = r(x).

Clearly, this equation, in view of y1(x) and y2(x) being solutions of (2.1),
is the same as

c′1y
′
1 + c′2y

′
2 = r(x). (2.10)

Solving (2.9), (2.10), we find

c′1 = − r(x)y2(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
, c′2 =

r(x)y1(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
;

and hence a particular solution of (2.8) is

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= −y1(x)
∫ x r(t)y2(t)∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣
dt + y2(x)

∫ x r(t)y1(t)∣∣∣∣ y1(t) y2(t)
y′
1(t) y′

2(t)

∣∣∣∣
dt

=
∫ x

H(x, t)r(t)dt,

(2.11)
where

H(x, t) =
∣∣∣∣ y1(t) y2(t)

y1(x) y2(x)

∣∣∣∣
/ ∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣ . (2.12)

Thus, the general solution of (2.8) is

y(x) = c1y1(x) + c2y2(x) + yp(x). (2.13)

The following properties of the function H(x, t) are immediate:

(i). H(x, t) is defined for all (x, t) ∈ J × J ;

(ii). ∂jH(x, t)/∂xj , j = 0, 1, 2 are continuous for all (x, t) ∈ J × J ;

(iii). for each fixed t ∈ J the function z(x) = H(x, t) is a solution of the
homogeneous DE (2.1) satisfying z(t) = 0, z′(t) = 1; and

(iv). the function

v(x) =
∫ x

x0

H(x, t)r(t)dt
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is a particular solution of the nonhomogeneous DE (2.8) satisfying y(x0) =
y′(x0) = 0.

Example 2.3. Consider the DE

y′′ + y = cotx.

For the corresponding homogeneous DE y′′ + y = 0, sin x and cosx are
solutions. Thus, its general solution can be written as

y(x) = c1 sinx + c2 cosx +
∫ x

∣∣∣∣ sin t cos t
sinx cosx

∣∣∣∣∣∣∣∣ sin t cos t
cos t − sin t

∣∣∣∣
cos t

sin t
dt

= c1 sinx + c2 cosx −
∫ x

(sin t cosx − sin x cos t)
cos t

sin t
dt

= c1 sinx + c2 cosx − cosx sin x + sin x

∫ x 1 − sin2 t

sin t
dt

= c1 sinx + c2 cosx − cosx sin x − sin x

∫ x

sin tdt + sin x

∫ x 1
sin t

dt

= c1 sinx + c2 cosx + sin x

∫ x cosec t(cosec t − cot t)
(cosec t − cot t)

dt

= c1 sinx + c2 cosx + sin x ln[cosecx − cotx].

Finally, we remark that if the functions p1(x), p2(x) and r(x) are contin-
uous on J and x0 ∈ J, then the DE (2.8) together with the initial conditions

y(x0) = y0, y′(x0) = y1 (2.14)

has a unique solution. The problem (2.8), (2.14) is called an initial value
problem. Note that in (2.14) conditions are prescribed at the same point,
namely, x0.

Problems

2.1. Given the solution y1(x), find the second solution of the following
DEs:

(i) (x2 − x)y′′ + (3x − 1)y′ + y = 0 (x �= 0, 1), y1(x) = (x − 1)−1

(ii) x(x − 2)y′′ + 2(x − 1)y′ − 2y = 0 (x �= 0, 2), y1(x) = (1 − x)
(iii) xy′′ − y′ − 4x3y = 0 (x �= 0), y1(x) = exp(x2)
(iv) (1 − x2)y′′ − 2xy′ + 2y = 0 (|x| < 1), y1(x) = x.
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2.2. The differential equation

xy′′ − (x + n)y′ + ny = 0

is interesting because it has an exponential solution and a polynomial so-
lution.

(i) Verify that one solution is y1(x) = ex.

(ii) Show that the second solution has the form y2(x) = cex
∫ x

tne−tdt.
Further, show that with c = −1/n!,

y2(x) = 1 +
x

1!
+

x2

2!
+ · · · + xn

n!
.

Note that y2(x) is the first n + 1 terms of the Taylor series about x = 0 for
ex, that is, for y1(x).

2.3. The differential equation

y′′ + δ(xy′ + y) = 0

occurs in the study of the turbulent flow of a uniform stream past a circular
cylinder. Verify that y1(x) = exp(−δx2/2) is one solution. Find its second
solution.

2.4. Let y1(x) �= 0 and y2(x) be two linearly independent solutions of
the DE (2.1). Show that y(x) = y2(x)/y1(x) is a nonconstant solution of
the DE

y1(x)y′′ + (2y′
1(x) + p1(x)y1(x))y′ = 0.

2.5. Let the function p1(x) be differentiable in J. Show that the substi-
tution y(x) = z(x) exp

(
− 1

2

∫ x
p1(t)dt

)
transforms (2.1) to the differential

equation

z′′ +
(

p2(x) − 1
2
p′1(x) − 1

4
p2
1(x)
)

z = 0.

In particular show that the substitution y(x) = z(x)/
√

x transforms
Bessel’s DE

x2y′′ + xy′ + (x2 − a2)y = 0, (2.15)

where a is a constant (parameter), into a simple DE

z′′ +
(

1 +
1 − 4a2

4x2

)
z = 0. (2.16)

2.6. Let v(x) be the solution of the initial value problem

y′′ + p1y
′ + p2y = 0, y(0) = 0, y′(0) = 1
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where p1 and p2 are constants. Show that the function

y(x) =
∫ x

x0

v(x − t)r(t)dt

is the solution of the nonhomogeneous DE

y′′ + p1y
′ + p2y = r(x)

satisfying y(x0) = y′(x0) = 0.

2.7. Find general solutions of the following nonhomogeneous DEs:

(i) y′′ + 4y = sin 2x

(ii) y′′ + 4y′ + 3y = e−3x

(iii) y′′ + 5y′ + 4y = e−4x.

2.8. Verify that y1(x) = x and y2(x) = 1/x are solutions of

x3y′′ + x2y′ − xy = 0.

Use this information and the variation of parameters method to find the
general solution of

x3y′′ + x2y′ − xy = x/(1 + x).

Answers or Hints

2.1. (i) ln x/(x−1) (ii) (1/2)(1−x) ln[(x−2)/x]−1 (iii) e−x2
(iv)(x/2)×

ln[(1 + x)/(1 − x)] − 1.

2.2. (i) Verify directly (ii) Use (2.5).

2.3. e−δx2/2
∫ x

eδt2/2dt.

2.4. Use y2(x) = y1(x)y(x) and the fact that y1(x) and y2(x) are solu-
tions.

2.5. Verify directly.

2.6. Use Leibniz’s formula:
d
dx

∫ β(x)

α(x) f(x, t)dt = f(x, β(x))dβ
dx − f(x, α(x))dα

dx +
∫ β(x)

α(x)
∂f
∂x (x, t)dt.

2.7. (i) c1 cos 2x + c2 sin 2x − 1
4x cos 2x (ii) c1e

−x + c2e
−3x − 1

2xe−3x

(iii) c1e
−x + c2e

−4x − 1
3xe−4x.

2.8. c1x + (c2/x) + (1/2)[(x − (1/x)) ln(1 + x) − x ln x − 1].


