
Preface

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path
Integrals is a graduate–level monographic textbook. This is a book about pre-
diction & control of general nonlinear dynamics of high–dimensional complex
systems of various physical and non-physical nature and their underpinning
geometro–topological change.

The book starts with a textbook–like expose on nonlinear and chaotic dy-
namics (Chapter 1). After an introduction into attractors and chaos, a brief
history of chaos theory is given. Then, temporal chaotic dynamics is devel-
oped, both in its continuous form (nonlinear differential equations) and in
its discrete form (nonlinear iteration maps). Spatio–temporal chaotic dynam-
ics of nonlinear partial differential equations follows with some physiological
examples. The Chapter ends with modern techniques of chaos–control, both
temporal and spatio–temporal.

The dynamical edge of chaos physically corresponds to the phase transi-
tions. Therefore, Chapter 2 continues exposé on complex nonlinearity, from
the point of view of phase transitions and the related field of synergetics. After
the introduction and classification of equilibrium phase transitions, a brief on
Landau’s theory is given (providing a background for order–parameters and
synergetics). The concept is subsequently generalized into non–equilibrium
phase transitions, together with important examples of oscillatory, fractal and
noise–induced transitions. This core Chapter of the book also introduces the
concept of partition function, together with its general, path–integral descrip-
tion. After that the basic elements of Haken’s synergetics are presented, and
subsequently developed into synergetics of attractor neural networks.

While the natural stage for linear dynamics comprises of flat, Euclidean
geometry (with the corresponding calculation tools from linear algebra and
analysis), the natural stage for nonlinear dynamics is curved, Riemannian ge-
ometry (with the corresponding tools from tensor algebra and analysis). In
both cases, the system’s (kinetic) energy is defined by the metric form, either
Euclidean or Riemannian. The extreme nonlinearity – chaos – corresponds to
the topology change of this curved geometrical stage, usually called configu-
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ration manifold. Chapter 3 elaborates on geometry and topology change in
relation with complex nonlinearity and chaos.

Chapter 4 develops general nonlinear dynamics, both continuous and dis-
crete, deterministic and stochastic, in the unique form of path integrals and
their action–amplitude formalism. This most natural framework for represent-
ing both phase transitions and topology change starts with Feynman’s sum
over histories, to be quickly generalized into the sum over geometries and
topologies. This Chapter also gives a brief on general dynamics of fields and
strings, as well as a path–integral based introduction on the chaos field theory.
The Chapter concludes with a number of non–physical examples of complex
nonlinear systems defined by path integrals.

The last Chapter puts all the previously developed techniques together
and presents the unified form of complex nonlinearity. Here we have chaos,
phase transitions, geometrical dynamics and topology change, all working to-
gether in the form of path integrals. The concluding section is devoted to
discussion of hard vs. soft complexity, using the synergetic example of human
bio-mechanics.

The objective of the present monograph is to provide a serious reader with
a serious scientific tool that will enable them to actually perform a competitive
research in modern complex nonlinearity. The monograph includes a compre-
hensive bibliography on the subject and a detailed index. For all mathematical
questions, the reader is referred to our book Applied Differential Geometry:
A Modern Introduction. World Scientific, Singapore, 2007.

Target readership for this monograph includes all researchers and students
of complex nonlinear systems (in physics, mathematics, engineering, chem-
istry, biology, psychology, sociology, economics, medicine, etc.), working both
in industry (i.e., clinics) and academia.

Adelaide, V. Ivancevic, Defence Science & Technology Organisation,
Feb. 2008 Australia, e-mail: Vladimir.Ivancevic@dsto.defence.gov.au

T. Ivancevic, School of Mathematics, The University of Adelaide,
e-mail: Tijana.Ivancevic@adelaide.edu.au
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Phase Transitions and Synergetics

The dynamical edge of chaos physically corresponds to the popular phase
transitions. In this Chapter we present the basic principles of phase transi-
tions, which are used in synergetics. After the introduction and classification
of equilibrium phase transitions, a brief on Landau’s theory is given (provid-
ing a background for order–parameters and synergetics). The concept is sub-
sequently generalized into non–equilibrium phase transitions, together with
important examples of oscillatory, fractal and noise–induced transitions. This
core Chapter of the book also introduces the concept of partition function,
together with its general, path–integral description. After that the basic ele-
ments of Haken’s synergetics are presented, and subsequently developed into
synergetics of attractor neural networks.

2.1 Introduction to Phase Transitions

Recall that in thermodynamics, a phase transition (or phase change) is the
transformation of a thermodynamic system from one phase to another (see
Figure 2.1). The distinguishing characteristic of a phase transition is an abrupt
change in one or more physical properties, in particular the heat capacity, with
a small change in a thermodynamic variable such as the temperature.

2.1.1 Equilibrium Phase Transitions

In thermodynamics, a phase transition represents the transformation of a sys-
tem from one phase to another. Here the therm phase denotes a set of states of
a macroscopic physical system that have relatively uniform chemical compo-
sition and physical properties (i.e., density, crystal structure, index of refrac-
tion, and so forth.) The most familiar examples of phases are solids, liquids,
and gases. Less familiar phases include plasmas, Bose–Einstein condensates
and fermionic condensates and the paramagnetic and ferromagnetic phases of
magnetic materials.
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Fig. 2.1. Thermodynamic (or, equilibrium) phase transitions. Left: the term phase
transition is most commonly used to describe transitions between solid, liquid and
gaseous states of matter, in rare cases including plasma. Right: the transitions be-
tween the solid, liquid, and gaseous phases of a single component, due to the effects
of temperature and/or pressure (adapted and modified from [Wik07].)

In essence, all thermodynamic properties of a system (entropy, heat capac-
ity, magnetization, compressibility, and so forth) may be expressed in terms
of the free energy potential F and its partial derivatives. For example, the
entropy S is the first derivative of the free energy F with respect to the tem-
perature T , i.e., S = −∂F/∂T , while the specific heat capacity C is the second
derivative, C = T ∂S/∂T . As long as the free energy F remains analytic, all
the thermodynamic properties will be well–behaved.

Now, the distinguishing characteristic of a phase transition is an abrupt
sudden change in one or more physical properties, in particular the specific
heat c, with a small change in a thermodynamic variable such as the temper-
ature T . Standard examples of phase transitions are (see e.g., [LL78, Wik07]):

1. The transitions between the solid, liquid, and gaseous phases (boiling,
melting, sublimation, etc.)

2. The transition between the ferromagnetic and paramagnetic phases of
magnetic materials at the Curie point.

3. The emergence of superconductivity in certain metals when cooled below
a critical temperature.

4. Quantum condensation of bosonic fluids, such as Bose–Einstein conden-
sation and the superfluid transition in liquid helium.

5. The breaking of symmetries in the laws of physics during the early history
of the universe as its temperature cooled.

When a system goes from one phase to another, there will generally be a
stage where the free energy is non–analytic. This is known as a phase tran-
sition. Familiar examples of phase transitions are melting (solid to liquid),
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freezing (liquid to solid), boiling (liquid to gas), and condensation (gas to
liquid). Due to this non–analyticity, the free energies on either side of the
transition are two different functions, so one or more thermodynamic prop-
erties will behave very differently after the transition. The property most
commonly examined in this context is the heat capacity. During a transition,
the heat capacity may become infinite, jump abruptly to a different value, or
exhibit a ‘kink’ or discontinuity in its derivative1.

Therefore, phase transitions come about when the free energy of a sys-
tem is non–analytic for some choice of thermodynamic variables. This non–
analyticity generally stems from the interactions of an extremely large number
of particles in a system, and does not appear in systems that are too small.

2.1.2 Classification of Phase Transitions

Ehrenfest Classification

The first attempt at classifying phase transitions was the Ehrenfest classifi-
cation scheme, which grouped phase transitions based on the degree of non-
analyticity involved. Though useful, Ehrenfest’s classification is flawed, as we
will discuss in the next section.

Under this scheme, phase transitions were labelled by the lowest partial
derivative of the free energy that is discontinuous at the transition. First–order
phase transitions exhibit a discontinuity in the first derivative of the free en-
ergy with respect to a thermodynamic variable. The various solid⇒liquid⇒gas
transitions are classified as first–order transitions, as the density, which is the
first partial derivative of the free energy with respect to chemical potential,
changes discontinuously across the transitions2. Second–order phase transi-
tions have a discontinuity in a second derivative of the free energy. These
include the ferromagnetic phase transition in materials such as iron, where
the magnetization, which is the first derivative of the free energy with the
applied magnetic field strength, increases continuously from zero as the tem-
perature is lowered below the Curie temperature. The magnetic susceptibility,
the second derivative of the free energy with the field, changes discontinuously.
Under the Ehrenfest classification scheme, there could in principle be third,
fourth, and higher–order phase transitions.
1 In practice, each type of phase is distinguished by a handful of relevant ther-

modynamic properties. For example, the distinguishing feature of a solid is its
rigidity; unlike a liquid or a gas, a solid does not easily change its shape. Liquids
are distinct from gases because they have much lower compressibility: a gas in a
large container fills the container, whereas a liquid forms a puddle in the bottom.
Not all the properties of solids, liquids, and gases are distinct; for example, it is
not useful to compare their magnetic properties. On the other hand, the ferro-
magnetic phase of a magnetic material is distinguished from the paramagnetic
phase by the presence of bulk magnetization without an applied magnetic field.

2 The pressure must be continuous across the phase boundary in equilibrium.
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Modern Classification

The Ehrenfest scheme is an inaccurate method of classifying phase transitions,
for it is based on the mean–field theory of phases, which is inaccurate in
the vicinity of phase transitions, as it neglects the role of thermodynamic
fluctuations. For instance, it predicts a finite discontinuity in the heat capacity
at the ferromagnetic transition, which is implied by Ehrenfest’s definition of
second–order transitions. In real ferromagnets, the heat capacity diverges to
infinity at the transition.

In the modern classification scheme, phase transitions are divided into two
broad categories, named similarly to the Ehrenfest classes:

• The first–order phase transitions, or, discontinuous phase transitions, are
those that involve a latent heat. During such a transition, a system ei-
ther absorbs or releases a fixed (and typically large) amount of energy.
Because energy cannot be instantaneously transferred between the system
and its environment, first–order transitions are associated with mixed–
phase regimes in which some parts of the system have completed the tran-
sition and others have not. This phenomenon is familiar to anyone who has
boiled a pot of water: the water does not instantly turn into gas, but forms
a turbulent mixture of water and water vapor bubbles. Mixed–phase sys-
tems are difficult to study, because their dynamics are violent and hard to
control. However, many important phase transitions fall in this category,
including the solid⇒liquid⇒gas transitions.

• The second–order phase transitions are the continuous phase transitions .
These have no associated latent heat. Examples of second–order phase
transitions are the ferromagnetic transition, the superfluid transition, and
Bose–Einstein condensation.

2.1.3 Basic Properties of Phase Transitions

Critical Points

In systems containing liquid and gaseous phases, there exist a special combi-
nation of pressure and temperature, known as the critical point , at which the
transition between liquid and gas becomes a second–order transition. Near the
critical point, the fluid is sufficiently hot and compressed that the distinction
between the liquid and gaseous phases is almost non–existent.

This is associated with the phenomenon of critical opalescence, a milky
appearance of the liquid, due to density fluctuations at all possible wavelengths
(including those of visible light).

Symmetry

Phase transitions often (but not always) take place between phases with differ-
ent symmetry. Consider, for example, the transition between a fluid (i.e., liquid
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or gas) and a crystalline solid. A fluid, which is composed of atoms arranged
in a disordered but homogenous manner, possesses continuous translational
symmetry: each point inside the fluid has the same properties as any other
point. A crystalline solid, on the other hand, is made up of atoms arranged in
a regular lattice. Each point in the solid is not similar to other points, unless
those points are displaced by an amount equal to some lattice spacing.

Generally, we may speak of one phase in a phase transition as being more
symmetrical than the other. The transition from the more symmetrical phase
to the less symmetrical one is a symmetry–breaking process. In the fluid–
solid transition, for example, we say that continuous translation symmetry is
broken.

The ferromagnetic transition is another example of a symmetry–breaking
transition, in this case the symmetry under reversal of the direction of elec-
tric currents and magnetic field lines. This symmetry is referred to as ‘up–
down symmetry’ or ‘time–reversal symmetry’. It is broken in the ferromagnetic
phase due to the formation of magnetic domains containing aligned magnetic
moments. Inside each domain, there is a magnetic field pointing in a fixed
direction chosen spontaneously during the phase transition. The name time–
reversal symmetry comes from the fact that electric currents reverse direction
when the time coordinate is reversed.

The presence of symmetry–breaking (or nonbreaking) is important to the
behavior of phase transitions. It was pointed out by Landau that, given any
state of a system, one may unequivocally say whether or not it possesses a
given symmetry [LL78]. Therefore, it cannot be possible to analytically deform
a state in one phase into a phase possessing a different symmetry. This means,
for example, that it is impossible for the solid–liquid phase boundary to end
in a critical point like the liquid–gas boundary. However, symmetry–breaking
transitions can still be either first or second order.

Typically, the more symmetrical phase is on the high–temperature side of a
phase transition, and the less symmetrical phase on the low–temperature side.
This is certainly the case for the solid–fluid and ferromagnetic transitions.
This happens because the Hamiltonian of a system usually exhibits all the
possible symmetries of the system, whereas the low–energy states lack some
of these symmetries (this phenomenon is known as spontaneous symmetry
breaking.) At low temperatures, the system tends to be confined to the low–
energy states. At higher temperatures, thermal fluctuations allow the system
to access states in a broader range of energy, and thus more of the symmetries
of the Hamiltonian.

When symmetry is broken, one needs to introduce one or more extra vari-
ables to describe the state of the system. For example, in the ferromagnetic
phase one must provide the net magnetization, whose direction was sponta-
neously chosen when the system cooled below the Curie point. Such variables
are instances of order parameters. However, note that order parameters can
also be defined for symmetry–nonbreaking transitions.
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Symmetry–breaking phase transitions play an important role in cosmol-
ogy. It has been speculated that, in the hot early universe, the vacuum (i.e.,
the various quantum fields that fill space) possessed a large number of sym-
metries. As the universe expanded and cooled, the vacuum underwent a series
of symmetry–breaking phase transitions. For example, the electroweak tran-
sition broke the SU(2) × U(1) symmetry of the electroweak field into the
U(1) symmetry of the present–day electromagnetic field. This transition is
important to understanding the asymmetry between the amount of matter
and antimatter in the present–day universe.

Critical Exponents and Universality Classes

Continuous phase transitions are easier to study than first–order transitions
due to the absence of latent heat, and they have been discovered to have
many interesting properties. The phenomena associated with continuous phase
transitions are called critical phenomena, due to their association with critical
points.

It turns out that continuous phase transitions can be characterized by
parameters known as critical exponents. For instance, let us examine the be-
havior of the heat capacity near such a transition. We vary the temperature T
of the system while keeping all the other thermodynamic variables fixed, and
find that the transition occurs at some critical temperature Tc. When T is near
Tc, the heat capacity C typically has a power law behavior: C ∼ |Tc − T |−α .
Here, the constant α is the critical exponent associated with the heat capacity.
It is not difficult to see that it must be less than 1 in order for the transition to
have no latent heat. Its actual value depends on the type of phase transition
we are considering. For -1 < α < 0, the heat capacity has a ‘kink’ at the
transition temperature. This is the behavior of liquid helium at the ‘lambda
transition’ from a normal state to the superfluid state, for which experiments
have found α = −0.013± 0.003. For 0 < α < 1, the heat capacity diverges at
the transition temperature (though, since α < 1, the divergence is not strong
enough to produce a latent heat.) An example of such behavior is the 3D
ferromagnetic phase transition. In the 3D Ising model for uniaxial magnets,
detailed theoretical studies have yielded the exponent α ∼ 0.110.

Some model systems do not obey this power law behavior. For example,
mean–field theory predicts a finite discontinuity of the heat capacity at the
transition temperature, and the 2D Ising model has a logarithmic divergence.
However, these systems are an exception to the rule. Real phase transitions
exhibit power law behavior.

Several other critical exponents – β, γ, δ, ν, and η – are defined, examining
the power law behavior of a measurable physical quantity near the phase
transition.

It is a remarkable fact that phase transitions arising in different systems
often possess the same set of critical exponents. This phenomenon is known
as universality. For example, the critical exponents at the liquid–gas criti-
cal point have been found to be independent of the chemical composition
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of the fluid. More amazingly, they are an exact match for the critical expo-
nents of the ferromagnetic phase transition in uniaxial magnets. Such systems
are said to be in the same universality class. Universality is a prediction of
the renormalization group theory of phase transitions, which states that the
thermodynamic properties of a system near a phase transition depend only
on a small number of features, such as dimensionality and symmetry, and is
insensitive to the underlying microscopic properties of the system.

2.1.4 Landau’s Theory of Phase Transitions

Landau’s theory of phase transitions is a simple but powerful empirical ther-
modynamic theory by which the behavior of crystals at phase transitions can
be described. It is based simply on a power series expansion of the free energy
of the crystal with respect to one or a few prominent parameters distorting
the symmetry of the crystal. The symmetry of the distortion decides which
terms may be present, and which not. For example, odd terms on the power
series expansion often are not allowed because the energy of the system is
symmetric with respect to positive or negative distortion. With Landau’s the-
ory, the thermodynamics of the crystal (free energy, entropy, heat capacity)
can be directly linked to it’s structural state (volume, deviation from high
symmetry, etc.), and both can be described as they change as a function of
temperature or pressure.

More precisely, in Landau’s theory, the probability (density) distribution
function f is exponentially related to the potential F ,

f ≈ e−F(T ), (2.1)

if F is considered as a function of the order parameter o. Therefore, the most
probable order parameter is determined by the requirement F = min.

When M↑ elementary magnets point upwards and M↓ elementary magnets
point downwards, the magnetization order parameter o is given by

o = (M↑ −M↓)m, (2.2)

where m is the magnetic moment of a single elementary magnet.
We expand the potential F = F(o, T ) into a power series of o,

F(o, T ) = F(0, T ) + F ′(0, T )o + · · ·+ 1
4!
F ′′′′(0, T )o4 + · · · , (2.3)

and discus F as a function of o. In a number of cases F ′ = F ′′′ = 0, due to
inversion symmetry. In this case, F has the form

F(o, T ) = F(0, T ) +
σ

2
o2 +

β

4
o4, (2.4)

where β > 0, and σ = a(T−Tc), (a > 0), i.e., it changes its sign at the critical
temperature T = Tc.
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Recall that the (negative) first partial derivative of the free energy poten-
tial F with respect to the control parameter – temperature T is the entropy

S = −∂F(q, T )
∂T

. (2.5)

For T > Tc, σ > 0, and the minimum of F lies at o = o0 = 0, and

S = S0 = −∂F(0, T )
∂T

.

Also recall that the second partial derivative of F with respect to T is the
specific heat capacity (besides the factor T )

C = T
∂S

∂T
. (2.6)

One may readily check that S is continuous at T = Tc for σ = 0. However,
when we calculate the specific heat we get two different expressions above and
below the critical temperature and thus a discontinuity at T = Tc.

Closely related to the Landau’s theory of phase transitions is Ginzburg–
Landau model of superconductivity (named after Nobel Laureates Vitaly L.
Ginzburg and Lev D. Landau). It does not purport to explain the microscopic
mechanisms giving rise to superconductivity. Instead, it examines the macro-
scopic properties of a superconductor with the aid of general thermodynamic
arguments. Based on Landau’s previously–established theory of second–order
phase transitions, Landau and Ginzburg argued that the free energy F of a su-
perconductor near the superconducting transition can be expressed in terms
of a complex order parameter ψ, which describes how deep into the super-
conducting phase the system is. By minimizing the free energy with respect
to fluctuations in the order parameter and the vector potential, one arrives
at the Ginzburg–Landau equation, which is a generalization of the nonlinear
Schrödinger equation.

2.1.5 Example: Order Parameters in Magnetite Phase Transition

The mechanism of the phase transition in magnetite (Fe3O4) at TV = 122
K, discovered by Verwey [Ver39], has remained a big puzzle in the condensed
matter physics for almost 70 years. Developments in experimental and the-
oretical methods during last years enabled to reveal subtle changes in the
crystal and electronic structure below TV [RAP01, LYA04]. A simple charge
ordering picture in which metal–insulator transition is induced by electro-
static interactions was replaced by a highly complex scenario in which lattice,
charge, spin and orbital degrees of freedom are involved. Recent theoretical
studies revealed the important role of the local electron interactions and or-
bital correlations in the t2g states on iron ions [LYA04].
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The electronic interactions are complemented by the lattice deformation,
which breaks the cubic symmetry and induces a low–temperature (LT) mon-
oclinic phase driven by the electron–phonon interactions. In the work of
[PPO06, PPO07], the phonon spectrum of magnetite has been analyzed us-
ing the ab initio computational technique [PLK97]. We have identified two
primary order parameters (OPs) at kX = 2π

a (0, 0, 1) and kΔ = 2π
a (0, 0, 1

2 )
with the X3 and Δ5 symmetry, respectively, which both play important role
in the Verwey transition (VT): (i) the Δ5 mode is responsible for the dou-
bling of the unit cell along the c direction in the monoclinic phase, while (ii)
the X3 phonon induces the metal–insulator transition by its coupling to the
electronic states near the Fermi energy [PPO06]. Due to the electron–phonon
interaction the above OPs are combinations of the electron (charge–orbital)
and lattice components. This explains why the phonon soft mode has not been
observed. Instead, low–energy critical fluctuations of OPs were found by the
diffuse neutron scattering [FSY75]. The condensation of the OPs below TV
explains the crystal symmetry change as well as the charge-orbital ordering.

The group theory predicts also secondary OPs, which do not effect the
symmetry below TV but modify the properties of magnetite close to a transi-
tion point. At the Γ point, the T2g mode can be classified as the secondary OP,
and its coupling to the shear strain explains the softening of the C44 elastic
constant [SNM05]. The lowest T2g optic mode, marked in Fig. 1, could con-
tribute quantitatively to the free energy, but it does not play any significant
role for the VT.

In this section, following [PPO07], we analyze the Landau free energy for
the VT, and discuss a solution corresponding to the LT monoclinic phase. We
derive also the temperature dependence of C44.

Free Energy

The Landau free energy can be expanded into a series of the components of the
OPs. The invariant terms describing couplings between the OPs were derived
using the group theory methods [SH02]. The only nonzero components of the
primary OPs X3 and Δ5 are denoted by g and q, respectively. We include also
the secondary OP with the T2g symmetry (η) and shear–strain (ε). The free
energy can be written in the form [PPO07]

F = F0 +
α1

2
g2 +

β1

4
g4 +

γ1

6
g6 +

α2

2
q2 +

β2

4
q4 +

δ1

2
g2q2 (2.7)

+
α3

2
η2 +

α4

2
ε2 +

δ2

2
ηg2 +

δ3

2
εg2 + δ4ηε,

were F0 is the part of the potential, which does not change through the
transition. We assume that β1 > 0, β2 > 0 and γ1 > 0 to ensure the stability
of the potential at high temperatures. For the second–order terms we assume
standard temperature behavior αi = ai(T −Tci) near the critical temperature
Tci for i = 1, 2, 3, which would correspond to a continuous phase transition.
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The coefficient α4 is the shear elastic constant at high temperatures (C0
44).

The coupling between the primary OPs is biquadratic, between the secondary
and primary OPs has the linear–quadratic form, and the coupling between the
components of the secondary OP is of the bilinear type. Taking first derivatives
of F over all OPs we get [PPO07]

∂F
∂g

= g(α1 + β1g
2 + γ1g

4 + δ1q
2 + δ2η + δ3ε) = 0,

∂F
∂q

= q(α2 + β2q
2 + δ1g

2) = 0,

∂F
∂η

= α3η + δ4ε +
δ2

2
g2 = 0,

∂F
∂ε

= α4ε + δ4η +
δ3

2
g2 = 0.

The solution g = q = η = ε = 0 corresponds to the high–temperature cubic
symmetry (Fd3̄m). We obtain the dependence between g and q,

q2 = −δ1g
2 + α2

β2

, (2.8)

which has three possible solutions: (i) g = 0 and q2 = −α2
β2

if α2 < 0 (Pbcm),
(ii) q = 0 and g2 = −α2

δ1
if α2 > 0 and δ1 > 0 or α2 < 0 and δ1 > 0 (Pmna),

(iii) g �= 0 and q �= 0 (P2/c). In the brackets we put the space group sym-
bols, which characterize the low–symmetry phases. The solution (iii) which
corresponds to the experimentally observed LT monoclinic phase requires si-
multaneous condensation of both primary OPs. The necessary condition for
this is a negative value of δ1. Indeed, it has been established by the ab initio
studies that the total energy is lowered when the crystal is distorted by both
X3 and Δ5 modes [PPO07]. For δ1 < 0, (2.8) has a non–zero solution provided
that |δ1|g2 > α2. It implies that for α2 > 0 (T > Tc2), the phase transition
occurs when the OP g exceeds a critical value α2

|δ1| , so it has a discontinuous
(first–order) character.

From above relations we get [PPO07]

η =
δ3δ4 − δ2α4

2α3α4 − 2δ2
4

g2 ≡ λ1g
2, ε =

δ2δ4 − δ3α3

2α3α4 − 2δ2
4

g2 ≡ λ2g
2,

which shows that η �= 0 and ε �= 0 only if g �= 0. Eliminating q, η and ε, the
potential F can be written as a function of g

F = F ′
0 +

α

2
g2 +

β

4
g4 +

γ1

6
g6,

where the renormalized coefficients are
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F ′
0 = F0 −

α2
2

4β2

, α = α1 −
α2δ1

β2

,

β = β1 −
δ2
1

β2

+ 2α3λ
2
1 + 2α4λ

2
2 + 2δ2λ1 + 2δ3λ2 + 4δ4λ1λ2.

The zero–order and second–order terms depend on the parameters belonging
to the primary OPs. The secondary OPs modify only the forth–order term.
In this notation, the solution which minimizes the potential F reads

g2
o =

−β +
√

β2 − 4γα
2γ

, q2
o = −δ1g

2
o + α2

β2

,

ηo = λ1g
2
o , εo = λ2g

2
o .

To study the softening of C44, we have expressed the free energy as a
function of ε only. In these calculations we have omitted the sixth–order term,
which usually has a small contribution near the transition point. The elastic
constant C44 is obtained using the standard definition

C44(T ) =
∂2F
∂ε2

= C0
44 −

δ2

α′
3

− δ2
3

β′
1

, where (2.9)

δ = δ4 −
δ2δ3

2β′
1

, α′
3 = α3 −

δ2
2

2β′
1

= a3(T − T ′
c3), β′

1 = β1 −
δ2
1

β2

,

with T ′
c3 = Tc3 + δ2

2/2β
′
1. The second and third term in (2.9) are negative

at high temperatures, so both contribute to the softening of C44. It means
that all couplings included in (2.7) are involved in this behavior. The main
temperature dependence is caused by the second term, but also the last term
in (2.9) may depend on temperature. Omitting the last term, (2.9) can be
written in the form [PPO07]

C44 = C0
44

T − T0

T − T ′
c3

, (2.10)

where T0 = T ′
c3 + δ2/C0

44a3.
For more technical details, see [PPO07] and references therein.

2.1.6 Universal Mandelbrot Set as a Phase–Transition Model

The problem of stability of time evolution is one of the most important in
physics. Usually one can make the motion stable or unstable by changing some
parameters which characterize Hamiltonian of the system. Stability regions
can be represented on the phase diagram and transitions between them are
described by catastrophe theory [Tho89, Arn78]. It can seem that a physical
system or a mechanism can be taken from one domain of stability to any
other by continuous and quasi–static variation of these parameters, i.e., that
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the phase diagram is connected. However sometimes this expectation is wrong,
because domains of stability can be separated by points where our system is
getting totally destroyed. Unfortunately today it is too difficult to explore
the full phase diagram for generic physical system with many parameters.
Therefore, following [LL03], it was proposed in [DM06] to consider as a simpler
model the discrete dynamics of one complex variable. The phase diagram in
this case is known as Universal Mandelbrot Set (UMS). MS is a well–known
object in mathematics (see [Wik07, Fer23], as well as Figure 1.44 above), but
its theory is too formal and not well adjusted to the use in the phase transition
theory. In this section, following [Mor07], we will make MS more practical for
physical applications.

Structure of MS

First of all we remind the definition of MS and UMS from [DM06], which
different from conventional definition in mathematical literature, see below.
Mandelbrot Set (MS) is a set of points in the complex c plane. MS includes a
point c if the map x→ f(x, c) has stable periodic orbits. As shown in Figure2.2
MS consists of many clusters connected by trails, which in turn consist of
smaller clusters and so on. Each cluster is linear connected and can be divided
into elementary domains where only one periodic orbit is stable. Different
elementary domains can merge and even overlap. Boundary of elementary
domain of nth order, i.e., of a domain where an nth order orbit is stable, is a
real curve c(α) given by the system:

{
Gn(x, c) = 0
F ′
n(x, c) + 1 = eiα

, with

Fn(x, c) = f◦n(x, c)− x,

Gn(x, c) =
Fn(x, c)∏
mGm(x, c)

, (n = 1, ...,m).

Indeed, when Gn(x, c) vanishes then x belongs to the orbit of exactly the
nth order. This orbit is stable if | ∂∂xf◦n(x, c)| < 1, what implies the above
equation. The solution of this system may give us more than a single nth
order domain. Domains of different orders merge at the points c where

Resultantx (Gn(x, c), Gk(x, c)) = 0. (2.11)

Clearly, two orbits and thereafter domains merge only if n is divisor of k, so
it is reasonable to consider only Resultantx(Gn, Gmn) = 0, with m = 2, 3 . . .
and Discriminantx(Gn) for k = n.

Physically MS is a phase diagram of discrete dynamic of one complex
variable. It is clear from Figure 2.2 that one should distinguish between three
types of connectivity in different places of phase diagram. The first is linear



2.1 Introduction to Phase Transitions 185

connectivity: the possibility to connect any two points with a continuous line.
The second type is weak connectivity: it means that only a closure of our set
has linear connectivity. The third type we call strong connectivity: it means
that any two interior points are connected with a thick tube.

Entire MS on Figure 2.2 is weakly3 but not linearly connected and its
clusters are linearly, but not strongly connected. Universal Mandelbrot Set
(UMS) is unification of MS of different 1c−parametric families. When we rise
from MS to UMS we add more parameters to the base function. Thus entire
UMS could become strongly connected, but it is unclear whether this really
happens.

Fig. 2.2. The simplest examples of Mandelbrot sets MS(x2 + c) and MS(x3 + c),
constructed by Fractal Explorer [Fer23]. The picture explains the terms ‘clus-
ters’,‘elementary domain’ and ‘trails’. It is difficult to see any clusters except for
the central one in the main figure, therefore one of the smaller clusters is shown in
a separate enlarged picture to the left (adapted and modified from [Mor07]).

To explore MS of different functions we need to draw it. The method of MS
construction which we can derive from the definition of MS is following. We
are constructing the domains where different orbits are stable. We can build
them using the fact that if orbit is stable then absolute value of derivative df

dx
is less than one.

Simplification of the Resultant Condition

In this section we prove that the resultant condition (2.11) can be substituted
a by much simpler one [Mor07]:

Resultantx
(
Gn(x), (F ′

n + 1− eiα)
)

= 0, α =
2π
m

k.

To prove this equation, it is enough to find the points where

Resultantx(Fn,
Fnm(x)
Fn(x)

) = 0.

3 MS is usually claimed to be locally connected [Wik07], i.e., any arbitrary small
vicinity of a point of MS contains a piece of some cluster. In our opinion weak
connectivity is another feature, especially important for physical applications.
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Then:

Resultantx(Fn,
Fnm(x)
Fn(x)

) = Resultantx(Fn,
F ′
nm(x)
F ′
n(x)

) = 0.

By definition of F (x),

Fnm(x) = Fn(m−1) (Fn(x) + x) + Fn(x).

Then:

F ′
nm(x)
F ′
n(x)

=
F ′
n(m−1)(x)

F ′
n(x)

(F ′
n(x) + 1) + 1 =

F ′
n(m−1)(x)

F ′
n(x)

eiα + 1 =

= (. . . ((eiα + 1)eiα + 1)eiα + 1) . . .) + 1 =
m−1∑

l=0

eliα =
emiα − 1
eiα − 1

.

Thus (2.11) implies that emiα − 1 = 0 and therefore α = 2πk
m .

This theorem is a generalization of a well known fact for the central car-
dioid domain of MS(x2 + c) (see for example [Wik07]). This also provides a
convenient parametrization of generic MS.

A Fast Method for MS simulation

Historically MS was introduced in a different way from our formulation. We
call it M̃S. It depends not only on the family of functions, but also on a point
x0. If c belongs to the M̃S(f, x0) then

lim
n→∞

f◦n(x0) �= ∞

In the literature one usually puts x0 = 0 independently of the shape of f(x).

Such ˜MS(f, 0) �=MS(f), except for the families like f = xa + c. Existing
computer programs [Fer23] generate M̃S(f, 0), and can not be used to draw
the proper MS(f). Fortunately there is a simple relation [Mor07]:

MS(f) =
⋃

xcr

M̃S(f, xcr).

where union is over all critical points of f(x), f ′(xcr) = 0. Equation (2.1.6)
is closely related to hyperbolic and local connectivity conjectures [Wik07]. It
is also equivalent to the following two statements about the phase portrait in
the complex x plane:

(I) If liml→∞ f◦l(xcr) �=∞ then there is a stable periodic orbit O of finite
order which attracts xcr. It implies that

MS(f) ⊇
⋃

xcr

M̃S(f, xcr).
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(II) If O is a stable periodic orbit, then a critical point xcr exists, which
is attracted to O. This implies that

MS(f) ⊆
⋃

xcr

M̃S(f, xcr).

The statement (I) says that if liml→∞ f◦l(xcr) �= ∞ then this limit exists
and is a stable orbit with finite period, i.e., that there are no such things as
strange attractors in discrete dynamics of one complex variable. This state-
ment is unproved but we have no counter–examples.

The statement (II) is much easier. If x0 is a stable fixed point, then it
is surrounded by a disk–like domain, where |f ′(x)| < 1. Its boundary is
parametrized by f ′(x) = eiα and inside this area there is a point where
f ′(x) = 0, i.e., some critical point xcr of f . It is important that this en-
tire surrounding of x0 – and thus this xcr – lie inside the attraction domain
of x0:

|f(xcr)− f(x)| < |xcr − x|,
i.e., we found xcr which is attracted to x0. This argument can be easily ex-
tended to higher order orbits and can be used to prove (II). Equation (2.1.6)
leads to a simple upgrade of programs, which construct MS.

Reducing MS(x3 + c) to MS(x2 + c)

As application of our results we consider the 2C−parametric section of UMS
for the family

f(x) = a · x3 + (1− a) · x2 + c,

which interpolates between MS(x3+c) at a = 1 and MS(x2+c) at a = 0. We
extend consideration of [DM07a] to non–trivial second order clusters which
were beyond the reach of the methods used in that paper.

For more details on MS, see [Mor07].

2.1.7 Oscillatory Phase Transition

Coherent oscillations are observed in neural systems such as the visual cor-
tex and the hippocampus. The synchronization of the oscillators is considered
to play important roles in neural information processing [GKE89]. There are
mainly two viewpoints in the research of the oscillatory activity in neural
systems. In the first viewpoint, the activity of each neuron is expressed by
the firing rate, and the coherent oscillation appears owing to the interaction
of the excitatory and inhibitory neurons. Wilson–Cowan and Amari found
first oscillatory behavior theoretically in interacting neurons [WC72, Ama72].
Recently, [RRR02] proposed a more elaborate model to explain various EEG
rhythms and epileptic seizures. If the spatial freedom is taken into considera-
tion, the excitation wave can propagate. Wilson–Cowan performed numerical
simulations of two layers of excitable neurons and inhibitory neurons [WC72].
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In the second viewpoint, each neuron is regarded as an oscillator. Coherent os-
cillation appears as the global synchronization of the coupled oscillators. The
global synchronization in general coupled oscillators was first studied by Win-
free [Win67]. Kuramoto proposed a globally coupled phase oscillator model as
a solvable model for the global synchronization [Kur84]. The leaky–integrate–
fire model is one of the simplest models for a single neuron and often used to
study dynamical behaviors of neural networks. Each neuron receives an input
via synaptic connections from other neurons and it fires when the input goes
over a threshold and sends out impulses to other neurons. In that sense, the
coupling is instantaneous, and then the model is called pulse–coupled oscilla-
tors. Mirollo and Strogatz studied a globally coupled system of the integrate–
and–fire neurons, and showed that perfect synchronization occurs in a finite
time [MS90]. The synchronization of pulse coupled oscillators has been studied
in deterministic systems by many researchers [TMS93, GR93, VAE94]. If each
oscillator’s behavior is stochastic, the model is generalized to a noisy phase os-
cillator model and a noisy integrate–and–fire model. In the stochastic system,
the coherent oscillation appears as an analogue of the phase transition in the
statistical mechanics. Globally coupled noisy phase oscillators were studied
in [SK86, Kur91, Sak02, KS03], and globally coupled noisy integrate–and–fire
model were studied in [BH99, Bru00, HNT01]. The globally coupled system
is a useful model for the detailed analyzes, however, local or non–local inter-
actions are more plausible, since neurons interact with other neurons via long
axons or gap junctions. The non–locally coupled system of the deterministic
integrate–and–fire neurons was also studied [GE01]. In this section, following
[Sak04], we study a non–locally coupled noisy integrate–and–fire model with
the direct numerical simulation of the Fokker–Planck equation.

The equation for a noisy integrate–and–fire neuron is written as

ẋ = 1− bx + I0 + ξ(t), (2.12)

where x is a variable corresponding to the membrane potential, b is a positive
parameter, I0 denotes an external input, and ξ(t) is the Gaussian white noise
satisfying 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). If x reaches a threshold 1, x jumps back to
0. If b < 1+ I0, each neuron fires spontaneously. The Fokker–Planck equation
for the Langevin equation (2.12) is [Sak04]

∂tP = − ∂

∂x
(1− bx + I0)P (x) + D

∂2P

∂x2
+ δ(x)J0(t), (2.13)

where J0(t) = −D(∂P/∂x)x=1 is the firing rate. The stationary distribution
P0(x) for the Fokker–Planck equation (2.13) is written as [Ric77]

P0(x) = P0(0)e{(ax−(1/2)bx2}/D, for x < 0, (2.14)

= P0(0)e{(ax−(1/2)bx2}/D

[

1−
∫ x
0

e{−az+(1/2)bz2}/Ddz
∫ 1

0
e{−az+(1/2)bz2}/Ddz

]

, for 0 < x < 1,
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where a = 1 + I0 and P (0) is determined from the normalization condition∫ 1

−∞ P0(x)dx = 1. The firing rate J0 is determined as

J0 = DP0(0)/
∫ 1

0

e{−az+(1/2)bz2}/Ddz.

We have performed direct numerical simulation of (2.13) with the finite dif-
ference method with Δx = 0.0002 and Δt = 2.5× 10−5, and checked that the
stationary probability distribution (2.14) is successfully obtained.

We assume a non–locally coupled system composed of the noisy integrate–
and–fire neurons. Each neuron interacts with other neurons via synaptic con-
nections. Time delay exists generally for the synaptic connections. A model
equation of the interacting noisy integrate–and–fire neurons is written as
[Sak04]

ẋi = 1− bxi + Ii + ξi(t),

where xi denotes the dimensionless membrane potential for the ith neuron,
ξi(t) denotes the noise term which is assumed to be mutually independent,
i.e., 〈ξi(t)ξj(t′)〉 = 2Dδi,jδ(t− t′), and Ii is the input to the ith neuron by the
mutual interaction. The input Ii to the ith neuron from the other neurons is
given by

Ii =
∑

j

∑

k

gi,j
1
τ

e−(t−tjk)/τ , (2.15)

where tjk is the time of the kth firing for the jth neuron, gi,j denotes the
interaction strength from the jth neuron to the ith neuron, and τ denotes a
decay constant. The sum is taken only for t > tjk. The effect of the firing of
the jth neuron to the ith neuron decays continuously with τ . If τ → 0, the
coupling becomes instantaneous. Equation (2.15) is equivalent to

İi = −{Ii −
∑

j

∑

k

gi,jδ(t− tjk)}/τ .

If there are infinitely many neurons at each position y, we can define the
number density of neurons with membrane potential x clearly at each position.
The number density is expressed as n(x, y, t) at position y and time t. The
non–locally coupled system can be studied with a mean–field approach. In the
mean–field approach, the number density is proportional to the probability
distribution P (x, y, t) for the probability variable x. The average value of δ(t−
tjk) expresses the average firing rate at time t at the position y. It is expressed
as J0(y, t) = −D(∂n/∂x)x=1. The number density n(x, y, t) therefore obeys
the Fokker–Planck type equation [Sak04]

∂tn(x, y) = − ∂

∂x
(1− bx + I(y, t))n(x, y) + D

∂2n

∂x2
+ δ(x)J0(y, t),

İ(y, t) = −{I(y, t)− J(y, t)}/τ ,

J(y, t) =
∫

g(y, y′)J0(y′, t)dy′,
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where g(y, y′) is the coupling strength from the neuron located at y′ to the
one at y, and I(y), J0(y) are respectively the input and the firing rate for the
neuron at y.

We have assumed that the time delay for the signal to transmit between
y′ and y can be neglected and g(y, y′) depends only on the distance |y − y′|,
i.e., g(y, y′) = g(|y − y′|). As two simple examples of the non-local coupling,
we use

g1(y, y′) = c exp(−κ|y − y′|) − d, g2(y, y′) = c exp(−κ|y − y′|) − d exp(−κ′|y − y′|).

These forms of the coupling imply that the interaction is excitable locally, but
the interaction strength decreases with the distance |y − y′|, and it becomes
inhibitory when |y−y′| is large. This Mexican–hat coupling was used in several
neural models [Ama77], especially to study the competitive dynamics in neural
systems. Although two layer models of excitatory neuron layer and inhibitory
neuron layer may be more realistic, we consider the above simpler one–layer
model. The inhibitory interaction approaches a constant value −d for the
coupling g1, and 0 for the coupling g2. The system size is assumed to be L =
10 as a simple example, and the periodic boundary conditions for the space
variable y are imposed. We choose the damping constants κ and κ′, as the
exponential function decays to almost 0 for the distance |y−y′| ∼ L. Therefore,
the dynamical behaviors do not depend on the system size L qualitatively in
the second model. But the dynamical behaviors depend on the system size L
in the first model, because the range of the inhibitory interaction is infinite
in the model.

There is a stationary and uniform solution n(x, y, t) = n0(x) and I(y, t) =
I0 in the non–locally coupled equation. The uniform solution satisfies

n0(x) = n0(0)e{ax−(1/2)bx2}/D, for x < 0,

= n0(0)e{ax−(1/2)bx2}/D

[

1−
∫ x
0

e{−az+(1/2)bz2}/Ddz
∫ 1

0
e{−az+(1/2)bz2}/Ddz

]

, for 0 < x < 1,

where the parameter a is determined by the self-consistent condition

a = 1− g0D(∂n0(x)/∂x)x=1, where g0 =
∫

g(y, y′)dy′.

To study the linear stability of the stationary and uniform solution, we
consider small deviations δn(x, y, t) = n(x, y, t)− n0(x) and δI(y, t) = I − I0
from the uniform solution. The small deviations can be expressed with the
Fourier series as

δn(x, y, t) =
∑

δnk(x, t) exp(iky) and δI(y, t) =
∑

δIk exp(iky)

under the periodic boundary conditions, where k = 2πm/L. The perturba-
tions δnk and δIk obey coupled linear equations [Sak04]



2.1 Introduction to Phase Transitions 191

∂δnk(x, t)

∂t
= − ∂

∂x
{(1 − bx + I0)δnk(x, t) + δIk(t)n0(x)} + D

∂2δnk
∂x2

+ δ(x)δJ0(t),

dδIk(t)

dt
= −{δIk(t) − g′δJ0k(t)}/τ, where (2.16)

δJ0k(t) = −D(∂nk/∂x)x=1andg′ =

∫
g(y, y′)eik(y

′−y)dy′.

For L is sufficiently large, g′ = 2cκ/(κ2 +k2)−dLδk,0 for the coupling g1 and
g′ = 2cκ/(κ2 + k2)− 2dκ′/(κ′2 + k2) for the coupling g2. The stability of the
stationary state is determined by the real part of the eigenvalues of the linear
equation (10). But, the stationary solution n0(x) is a nontrivial function of
x, and it is not so easy to obtain the eigenvalues. Here we have evaluated
the real part of the largest eigenvalue of the linear equation for various k
by direct numerical simulations of (2.16). The dynamical behavior in the long
time evolution of (2.16) is approximately expressed with the largest eigenvalue
λ, that is, δnk and δIk ∼ eλt for t 	 1. We have numerically calculated
the linear growth rate of the norm {

∫
(δnk)2dx + (δIk)2}1/2 (which grows as

e(Reλ)t for t	 1) every time–interval 0.001. Since the norm grows to infinity
or decays to zero in the natural time evolution of the linear equation, we have
renormalized the variables every time–interval 0.001, as the norm is 1 by the
rescaling cδnk → δnk and cδIk → δIk with a constant c.

Since the pulse propagates one round L with period T = 3.23, the ve-
locity of the travelling pulse is L/T ∼ 3.1. A regular limit cycle oscillation
with period T is observed at each point. The directions depend on the ini-
tial conditions. The travelling pulse state is an ordered state in the non-
locally coupled system. The locally excitable interaction facilitates the lo-
cal synchronization of the firing, but the global inhibition suppresses the
complete synchronization. As a result of the frustration, a travelling pulse
appears. The pulse state is different form the travelling pulse observed in
an excitable system, since the uniform state is unstable in our system and
the pulse state is spontaneously generated from the stationary asynchronous
state. The input I(y, t) to the neuron at position y exhibits regular limit cycle
oscillation.

As a second example, we consider a non–locally coupled system with the
coupling function

g2(y) = 1.8 exp(−4|y|)− 0.48 exp(−|y|).

A supercritical phase transition occurs at D ∼ 0.0155, which is also con-
sistent with the linear stability analysis. Near the critical value, the ampli-
tude of the oscillation is small and the wavy state seems to be sinusoidal. As
D is decreased, the oscillation amplitude increases and the sinusoidal waves
change into pulse trains gradually. Pulses are created periodically near x ∼ 6
and they are propagating alternatively in different directions. The inversely–
propagating pulses collide at x ∼ 1 and they disappear. Namely, there are a
pacemaker region (a source region) and a sink region of travelling pulses in
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this solution. This type of wavy state including a pacemaker region and the
simple pulse-train state are bistable.

In summary, we have studied the non–locally noisy integrate–and–fire
model with the Fokker–Planck equation. We have found that a travelling
pulse appears as a result of oscillatory phase transitions. We found also a
pulse-train state by changing the form of the interaction. The wavy states ap-
pear as a phase transition from a asynchronous state when the noise strength
is decreased. We have investigated a 1D system for the sake of simplicity of
numerical simulations, but we can generalize the model equation to a 2D sys-
tem easily. Our non–locally coupled integrate–and–fire model might be too
simple, however, the wavy state is one of the typical dissipative structures
far from equilibrium. Therefore, the spontaneously generated waves might be
observed as some kind of brain waves also in real neural systems. For more
details, see [Sak04].

2.1.8 Partition Function and Its Path–Integral Description

Recall that in statistical mechanics, the partition function Z is used for sta-
tistical description of a system in thermodynamic equilibrium. Z depends on
the physical system under consideration and is a function of temperature T as
well as other parameters (such as volume V enclosing a gas etc.). The parti-
tion function forms the basis for most calculations in statistical mechanics. It
is most easily formulated in quantum statistical mechanics (see e.g., [Fey72]).

Classical Partition Function

A system subdivided into N subsystems, where each subsystem (e.g., a parti-
cle) can attain any of the energies εj (j = 1, ..., N), has the partition function
given by the sum of its Boltzmann factors,

ζ =
∞∑

j=0

e−βεj ,

where β = 1
kBT

and kB is Boltzmann constant . The interpretation of ζ is that
the probability that the subsystem will have energy εj is e−βεj/ζ. When the
number of energies εj is definite (e.g., particles with spin in a crystal lattice
under an external magnetic field), then the indefinite sum is replaced with a
definite sum. However, the total partition function for the system containing
N subsystems is of the form

Z =
N∏

j=1

ζj = ζ1ζ2ζ3 · ...,

where ζj is the partition function for the jth subsystem. Another approach is
to sum over all system’s total energy states,
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Z =
N∑

r=1

e−βEr , where Ej = n
(j)
1 ε1 + n

(j)
2 ε2 + ...

In case of a system containing N non–interacting subsystems (e.g., a real gas),
the system’s partition function is given by

Z =
1
N !

ζN .

This equation also has the more general form

Z =
1

N !h3N

∫ N∏

i=1

d3qid3pi

N∑

i=1

e−βHi ,

where Hi = Hi(qi, pi) is the ith subsystem’s Hamiltonian, while h3N is a
normalization factor.

Given the partition function Z, the system’s free energy F is defined as

F = −kBT lnZ,

while the average energy U is given by

U =
1
Z

Eie
− Ei

kBT = − d

dβ
(lnZ) .

Liner Harmonic Oscillators in Thermal Equilibrium. The partition
function Z, free energy F , and average energy U of the system of M oscillators
can be found as follows: The oscillators do not interact with each other, but
only with the heat bath. Since each oscillator is independent, one can find Fi
of the ith oscillator and then F =

∑M
i=1 Fi. For each ith oscillator (that can

be in one of N states) we have [Fey72]

Zi =
N∑

n=1

e−
Ei

n
kBT , Fi = −kBT lnZi, Ui =

1
Z

N∑

n=1

Eine
− Ei

n
kBT .

Quantum Partition Function

Partition function Z of a quantum–mechanical system may be written as a
trace over all states (which may be carried out in any basis, as the trace is
basis–independent),

Z = Tr(e−βĤ),

where Ĥ is the system’s Hamiltonian operator. If Ĥ contains a dependence
on a parameter λ, as in Ĥ = Ĥ0 +λÂ, then the statistical average over Â may
be found from the dependence of the partition function on the parameter, by
differentiation,
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< Â >= −β−1 d

dλ
lnZ(β, λ).

However, if one is interested in the average of an operator that does not appear
in the Hamiltonian, one often adds it artificially to the Hamiltonian, calculates
Z as a function of the extra new parameter and sets the parameter equal to
zero after differentiation.

More general, in quantum field theory , we have a generating functional J of
the field φ(q) and the partition function is usually expressed by the Feynman
path integral [Fey72] (see Chapter 4)

Z[J ] =
∫
D[φ]ei(S[φ]+

∫
dNq J(q)φ(q)),

where S = S[φ] is the field action functional .

Vibrations of Coupled Oscillators

In this subsection, following [Fey72], we give both classical and quantum anal-
ysis of vibrations of coupled oscillators. R. Feynman used this method as a
generic model for the crystal lattice.

Consider a crystal lattice with A atoms per unit cell, such that 3A co-
ordinates α must be given to locate each atom. Also let Qα,N denote the
displacement from equilibrium of the coordinate α in the Nth cell. Qα,N+M

is the displacement of an atom in a cell close to N .
The kinetic energy of the lattice is given by

T =
1
2
Qα,NQα,N ,

while its potential energy (in linear approximation) is given by

V =
1
2
CMαβQα,NQβ,N+M .

Classical Problem

The so–called original Hamiltonian is given by

H =
∑

i

pi′2
2mi

+
1
2
Cij ′qi′qj ′,

where the qi′ are the coordinates of the amount of the lattice displacement
from its equilibrium, pi′ = miq̇

i′ are the canonical momenta, and Cij ′ = Cji′
are constants. To eliminate the mass constants mi, let

qi = qi′√mi and Cij =
Cij ′√
mimj

.
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Then

pi =
∂L

∂q̇i
=

pi′√
mi

, (L is the Lagrangian of the system)

and we get the simplified Hamiltonian

H =
1
2

∑

i

p2
i +

1
2
Cijq

iqj .

The Hamilton’s equations of motion now read

q̇i = ∂pi
H = pi, ṗi = −∂qiH = −Cijq

j = q̈i.

We now break the motion of the system into modes, each of which has its
own frequency ω. The total motion of the system is a sum of the motions of
the modes. Let the αth mode have frequency ωα so that

qi(α) = e−iωαta
(α)
i

for the motion of the αth mode, with a
(α)
i independent of time. Then

ω2
αa

(α)
i = Cija

(α)
j .

In this way, the classical problem of vibrations of coupled oscillators has been
reduced to the problem of finding eigenvalues and eigenvectors of the real,
symmetric matrix ‖Cij‖. In order to get the ωα we must solve the character-
istic equation

det
∥
∥Cij − ω2δij

∥
∥ = 0.

Then the eigenvectors a
(α)
i can be found. It is possible to choose the a

(α)
i so

that
a
(α)
i a

(β)
i = δαβ .

The general solution for qi is

qi = Cαq
i
(α),

where the Cα are arbitrary constants. If we take

Qα = Cαe−iωαt,

we get
qi = a

(α)
i Qα.

From this it follows that

a
(j)
i qi = a

(j)
i a

(α)
i Qα = δαjQα = Qj .

Making the change of variables, Qj = a
(j)
i qi, we get H =

∑
αHα, where

Hα =
1
2
p2
α +

1
2
ω2
αQα.

This has the expected solutions: Qα = Cαe−iωαt.
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Quantum–Mechanical Problem

Again we have the original Hamiltonian

H =
∑

i

pi′2
2mi

+
1
2
C

′

ijq
i′qj ′,

where this time

pi′ =
1
i

∂

∂qi′ (in normal units � = 1).

Making the same change of variables as before, we get

Qα = a
(α)
i qi = a

(α)
i

√
miq

i′,

H =
∑

α

Hα, where Hα = −1
2

∂2

∂Q2
α

+
1
2
ω2
αQα.

It follows immediately that the eigenvalues of our original Hamiltonian are

E =
∑

α

(Nα +
1
2
)ωα.

The solution of a quantum–mechanical system of coupled oscillators is trivial
once we have solved the characteristic equation

0 = det
∥
∥Cij − ω2δij

∥
∥ = det

∥∥
∥∥

Cij ′√
mimj

− ω2δij

∥∥
∥∥ .

If we have a solid with 1
3 (1023) atoms we must apparently find the eigenvalues

of a 1023 by 1023 matrix. But if the solid is crystal, the problem is enormously
simplified. The classical Hamiltonian for a crystal is

H =
1
2

∑

α,N

Q̇2
α,N +

1
2

∑

α,β,N,M

CMαβQα,NQβ,N+M ,

and the classical equation of motion for a crystal lattice is (using CMαβ = C−M
βα )

Q̈α,N = −
∑

M,β

CMαβQβ,N+M .

In a given mode, if one cell of the crystal is vibrating in a certain manner,
it is reasonable to expect all cells to vibrate the same way, but with different
phases. So we try

Qα,N = aα(K)e−iωteiK·N ,

where K expresses the relative phase between cells. The eiK·N factor allows
for wave motion. We now want to find the dispersion relations, or ω = ω(K).
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ω2aαeiK·N =
∑

M,β

(CMαβaβe
iK·M )eiK·N .

Let
γαβ(K) =

∑

M

CMαβe
iK·M

(note that γαβ(K) is Hermitian).
Then ω2aα =

∑
β γαβaβ , and we must solve the characteristic equation of

a 3A−by−3A matrix:
det |γαβ − ω2δαβ | = 0.

The solutions of the characteristic equation are

ω(r)(K) = ω(rK),

where r runs from 1 to 3A. The motion of a particular mode can be written

Q
(r)
α,N (K) = arα(K)e−iω(r)(K)r

eiK·N ,

where
arαa

∗r′
α = δrr′ .

Then the general motion can be described by

Qα,N =
∑

K,r

Cr(K)arα(K)e−iω(r)(K)r

eiK·N ,

where Cr(K) are arbitrary constants.
Let Qr(K) = Cr(K)e−iω(r)(K)r

. Qr(K) describe the motion of a particular
mode. Then we have

Qα,N =
∑

K,r

Qr(K)arα(K)eiK·N .

It follows that

Qr(K) ∝
∑

α,N

Qα,Na∗rα (K)e−iK·N , (∝ means ‘proportional to’),

and the Hamiltonian for the system is

H =
1
2

∑

α,N

⎡

⎣Q̇2
α,N +

∑

β,M

CMαβQα,NQβ,N+M

⎤

⎦

=
1
2

∑

K,r

[
|Q̇r(K)|2 + ω2(r)(K)|Qr(K)|2

]
.
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A Cubic Lattice of Harmonic Oscillators

Assume the unit cell to be a cubic lattice with one atom per cell. Each atom be-
haves as an harmonic oscillator, with spring constants kA (nearest neighbors),
and kB (diagonal–, or next–nearest neighbors). This case is fairly simple, and
we can simplify the notation: α = 1, 2, 3.

Q1,N = XN , Q2,N = YN , Q3,N = QN .

We wish to find the 3 natural frequencies associated with each k of the crystal.
To do this, we must find CMαβ and then γαβ . In complex coordinates,

V =
∑

α,β

Vαβ , where Vαβ =
∑

N,M

CMαβQ
∗
α,NQβ,N+M ,

where ∗ denotes complex conjugation. For example,

V11 =
∑

N,M

CM11X
∗
NXN+M .

If we express the displacement of atom N from its normal position as XN ,
then the potential energy from the distortion of the spring between atoms N
and M is

1
2
kM

[
(XN −XN+M ) · M

|M |

]2

,

where kM = kA for N + M a nearest neighbor to N , kM = kB for N + M a
next–nearest neighbor.

In summing over N and M to get the total potential energy we must
divide V by two, for we count each spring twice. If we use complex co-
ordinates, however, we multiply V by two to get the correct equations of
motion:

V =
1

2

∑

N,M

kM

[
(XN − XN+M ) · M

|M |

]2

,

V11 =
1

2

∑

N,M

kM

(
MX

|M |

)2

(X∗
N − X∗

N+M )(XN − XN+M )

=
1

2

∑

N,M

kM

(
MX

|M |

)2

[(X∗
NXN + X∗

N+MXN+M ) − (X∗
NXN+M + XNX∗

N+M )]

=
∑

N,M

kM

(
MX

|M |

)2

[X∗
NXN − XNX∗

N+M ] .

Comparing the above expressions we see that

C0
11 = 2kA + 4kB , C

±(1,0,0)
11 = −kA, and so on.
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In this way, all the CMαβ can be found. We can then calculate

γαβ(K) =
∑

M

CMαβe
iK·M .

We wish to solve
det |γαβ − ω2δαβ | = 0.

For each relative phase K, there are 3 solutions for ω. Thus we get 3N
values of ω and ω(r)(K).

2.1.9 Noise–Induced Non–Equilibrium Phase Transitions

Noise is usually thought of as a phenomenon which perturbs the observation
and creates disorder (see section 4.6.1). This idea is based mainly on our day
to day experience and, in the context of physical theories, on the study of
equilibrium systems. The effect of noise can, however, be quite different in
nonlinear non–equilibrium systems. Several situations have been documented
in the literature, in which the noise actually participates in the creation of
ordered states or is responsible for surprising phenomena through its interac-
tion with the nonlinearities of the system [HL84]. Recently, a quite spectacular
phenomenon was discovered in a specific model of a spatially distributed sys-
tem with multiplicative noise, white in space and time. It was found that
the noise generates an ordered symmetry–breaking state through a genuine
second–order phase transition, whereas no such transition is observed in the
absence of noise [BPT94, BPT97].

Recently it has been shown that a white and Gaussian multiplicative
noise can lead an extended dynamical system (fulfilling appropriate condi-
tions) to undergo a phase transition towards an ordered state, characterized
by a nonzero order parameter and by the breakdown of ergodicity [BPT94].
This result–first got within a Curie–Weiss–like mean–field approximation, and
further extended to consider the simplest correlation function approach–has
been confirmed through extensive numerical simulations [BPT97]. In addi-
tion to its critical nature as a function of the noise intensity σ, the newly
found noise–induced phase transition has the noteworthy feature of being
reentrant : for each value of D above a threshold one, the ordered state exists
only inside a window [σ1, σ2]. At variance with the known case of equilibrium
order⇒disorder transitions that are induced (in the simplest lattice models)
by the nearest–neighbor coupling constant D and rely on the bi–stability of
the local potential, the transition in the case at hand is led by the combined
effects of D and σ through the nonlinearities of the system. Neither the zero–
dimensional system (corresponding to the D = 0 limit) nor the deterministic
one (σ = 0) show any transition.
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General Zero–Dimensional System

To smoothly introduce the subject, we will start from the well–known logistic
equation, and add to it a multiplicative white noise.

Noisy Logistic Equation

Recall that the logistic equation (also called the Verhulst model or logistic
growth curve) is a model of population growth first published by P. Verhulst
in 1845 (see [Wei05]). The model is continuous in time, but a modification of
the continuous equation to a discrete quadratic recurrence equation known as
the logistic map is widely used in chaos theory . The standard logistic equation

ẋ = λx− x2, (2.17)

where the parameter λ is usually constrained to be positive, has a solution

x(t) =
1

1 +
(

1
x0
− 1

)
e−λt

.

Now, if we add a multiplicative zero–mean Gaussian white noise ξ = ξ(t)
with noise intensity σ to (2.17), we get the Langevin SDE (stochastic differ-
ential equation)

ẋ = λx− x2 + x ξ. (2.18)

If we apply the Stratonovitch interpretation to the Langevin equation (2.18),
we get the corresponding Fokker–Planck equation

∂tP (x, t) = −∂t
(
λx− x2

)
P (x, t) +

σ2

2
∂xx ∂xP (x, t) (2.19)

derermining the probability density P (x, t) for the variable x(t). The equation
(2.19) has the stationary probability density

Pst(x) =
1
Z

x
2λ
σ2 −1 exp

(
−2x

σ2

)

(where Z is a normalization constant), with two extrema:

x1 = 0, x2 = λ− σ2

2
.

General Zero–Dimensional Model

Now, following [BPT94, BPT97], we consider the following SDE that gener-
alizes noisy logistic equation (2.18),

ẋ = f(x) + g(x) ξ, (2.20)



2.1 Introduction to Phase Transitions 201

where, as above, ξ = ξ(t) denotes the Gaussian white noise with first two
moments

〈ξ(t) 〉 = 0, 〈ξ(t) ξ(t′)〉 = σ2δ(t− t′).

If we interpret equation (2.20) according to the Stratonovitch interpreta-
tion, we get the corresponding Fokker–Planck equation

∂tP (x, t) = −∂x [f(x) + P (x, t)] +
σ2

2
∂x (g(x) ∂x [g(x)P (x, t)]) ,

with the steady–state solution

Pst(x) =
1
Z

exp

(∫ x

0

f(y)− σ2

2 g(y)g′(y)
σ2

2 g2(y)
dy

)

, (2.21)

where g′(x) stands for the derivative of g(x) with respect to its argument. The
extrema of the steady–state probability density obey the following equation

f(x)− σ2

2
g(x)g′(x) = 0. (2.22)

Note that this equation is not identical to the equation f(x) = 0 for the steady
states in the absence of multiplicative noise. As a result, the most probable
states need not coincide with the deterministic stationary states. More im-
portantly, solutions can appear or existing solutions can be destabilized by
the noise. These changes in the asymptotic behavior of the system have been
generally named noise–induced phase transitions [HL84].

To illustrate this phenomenon, consider the case of a deterministically
stable steady state at x = 0, e.g.,

f(x) = −x + o(x),

perturbed by a multiplicative noise. As is clear from equations (2.6–2.22), a
noise term of the form

g(x) = 1 + x2 + o(x2)

will have a stabilizing effect, since

−(σ2/2)g(x)g′(x) = −σ2x + o(x2),

and it makes the coefficient of x more negative. On the other hand, noise of
the form

g(x) = 1− x2 + o(x2)

i.e., with maximal amplitude at the reference state x = 0, has the tendency to
‘destabilize’ the reference state. In fact, above a critical intensity σ2 > σ2

c = 1,
the stationary probability density will no longer have a maximum at x = 0,
and ‘noise–induced’ maxima can appear. This phenomenon remains possible
even if the deterministic steady–state equation, got by fixing the random value
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of the noise to a constant value λ, namely, f(x) + λg(x) = 0, has a unique
solution for all λ [BPT94, BPT97].

Following the formalism for equilibrium states, it is tempting to introduce
the notion of a ‘stochastic potential’ Ust(x) by writing:

Pst(x) ∼ exp [−Ust(x)] .

One concludes that for a system undergoing a noise–induced transition, e.g.,
for g(x) = 1 − x2 + o(x2), and for σ2 > σ2

c , the stochastic potential has
two minima. Consider now a spatially extended system got by coupling such
units. The coupling is such that it favors the nearest–neighbor units, to stay
at the same maximum of the probability density (minimum of the stochastic
potential). In analogy to what happens for equilibrium models (such as the
Landau–Ginzburg model), one expects that this system will undergo a phase
transition for some critical value of the ‘temperature’ (noise intensity) σ2.
However, it turns out that this is not the case. It was shown in [BPT94,
BPT97] that one needs a noise of precisely the other type, namely g(x) =
1 + x2 + o(x2), to generate a genuine phase transition.

General d−Dimensional System

The general model has been introduced in [BPT94, BPT97]: a dD extended
system of typical linear size L is restricted to a hypercubic lattice of N = Ld

points, whereas time is still regarded as a continuous variable. The state of
the system at time t is given by the set of stochastic variables {xi(t)} (i =
1, . . . , N) defined at the sites ri of this lattice, which obey a system of coupled
ordinary SDEs (with implemented Stratonovich interpretation)

ẋi = f(xi) + g(xi) ηi +
D

2d

∑

j∈n(i)

(xj − xi), (2.23)

Equations (2.23) are the discrete version of the partial SDE which in the
continuum would determine the state of the extended system: we recognize
in the first two terms the generalization of Langevin’s equation for site i to
the case of multiplicative noise (ηi is the colored multiplicative noise acting
on site ri). For the specific example, perhaps the simplest one exhibiting the
transition under analysis,

f(x) = −x(1 + x2)2, g(x) = 1 + x2. (2.24)

The last term in (2.23) is the lattice version of the Laplacian ∇2x of the
extended stochastic variable x(r, t) in a reaction–diffusion scheme. n(i) stands
for the set of 2d sites which form the immediate neighborhood of the site ri,
and the coupling constant D between neighboring lattice sites is the diffusion
coefficient.
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Here we want to investigate the effects of the self–correlation time τ of
the multiplicative noise on the model system just described [MDT00]. To that
end we must assume a specific form for the noises {ηi = ηi(t)}: we choose
Ornstein–Uhlenbeck noise, i.e., Gaussian distributed stochastic variables with
zero mean and exponentially decaying correlations,

〈ηi(t) ηj(t′)〉 = δij(σ2/2τ) exp(−|t− t′|/τ). (2.25)

They arise as solutions of an un–coupled set of Langevin SDEs,

τ η̇i = −ηi + σξi (2.26)

where the {ξi = ξi(t)} are white noises–namely, Gaussian stochastic variables
with zero mean and δ−correlated:

〈ξi(t) ξj(t′)〉 = δijδ(t− t′).

For τ → 0, the Ornstein–Uhlenbeck noise ηi(t) approaches the white–noise
limit ξWi (t) with correlations

〈ξWi (t) ξWj (t′)〉 = σ2δijδ(t− t′).

Mean–Field Approximation

The mean–field approximation here follows closely Curie–Weiss’ mean–field
approach to magnetism (see [MDT00]), and consists in replacing the last term
in (2.23)

Δi ≡
D

2d

∑

j∈n(i)

(xj − xi), (2.27)

by
Δ̄i ≡ D(x̄− xi), (2.28)

where x̄ is the order parameter that will be determined self–consistently. In
other words, the (short–ranged) interactions are substituted by a time– and
space–independent ‘external’ field whose value depends on the state of the sys-
tem. Since in this approximation equations (2.23) get immediately decoupled,
there is no use in keeping the subindex i and we may refer to the systems in
(2.23) and (2.26) as if they were single equations (Hereafter, the primes will
indicate derivatives with respect to x (clearly Δ̄′ = −D)).

If we take the time derivative of (2.23), replace first η̇ in terms of η and ξ
from (2.26) and then η in terms of ẋ and x from (2.23), we get the following
non–Markovian SDE:

τ(ẍ− g′

g
ẋ2) = −

(
1− τ

[
(f + Δ̄)′ − g′

g
(f + Δ̄)

])
ẋ + (f + Δ̄) + σgξ. (2.29)

Now, following [MDT00], we perform an adiabatic elimination of variables,
namely, neglecting ẍ and ẋ2, so that the system’s dynamics becomes governed
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by a Fokker–Planck equation. The resulting equation, being linear in ẋ (but
not in x), can be immediately solved for ẋ, giving

ẋ = Q(x; x̄) + S(x; x̄)ξ, (2.30)

with

Q(x; x̄) ≡ (f + Δ̄)θ, (2.31)
S(x; x̄) ≡ σgθ, (2.32)
θ(x; x̄) ≡ {1− τg[(f + Δ̄)/g]′}−1. (2.33)

The Fokker–Planck equation associated to the SDE (2.30) is

∂tP (x, t; x̄) = −∂x [R1(x; x̄)P (x, t; x̄)] +
1
2
∂2
x [R2(x; x̄)P (x, t; x̄)] , (2.34)

with drift and diffusion coefficients given by

R1(x; x̄) = Q +
1
4
(S2)′ (2.35)

R2(x; x̄) = S2. (2.36)

The solution of the time–independent Fokker–Planck equation leads to the
stationary probability density

Pst(x; x̄) =
1
Z

exp
[∫ x

0

dx′ 2R1(x′; x̄)− ∂x′R2(x′; x̄)
R2(x′; x̄)

]
. (2.37)

The value of x̄ arises from a self–consistency relation, once we equate it
to the average value of the random variable xi in the stationary state

x̄ = 〈x〉 ≡
∫ ∞

−∞
dxxPst(x; x̄) ≡ F (x̄). (2.38)

Now, the condition
dF

dx̄

∣
∣∣∣
x̄=0

= 1 (2.39)

allows us to find the transition line between the ordered and the disordered
phases.

Results

The mean–field approximation of the general dD extended system are the
following (see [MDT00]):

A. As in the white–noise case τ = 0, the ordering phase transition is reentrant
with respect to σ: for a range of values of D that depends on τ , ordered
states can only exist within a window [σ1, σ2]. The fact that this window
shifts to the right for small τ means that, for fixed D, color destroys order
just above σ1 but creates it just above σ2.
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B. For fixed σ > 1 and τ �= 0, ordered states exist only within a window
of values for D. Thus the ordering phase transition is also reentrant with
respect to D. For τ small enough the maximum value of D compatible with
the ordered phase increases rather steeply with σ, reaching a maximum
around σ ∼ 5 and then decreases gently. For τ ≥ 0.1 it becomes evident (in
the ranges of D and σ analyzed) that the region sustaining the ordered
phase is closed , and shrinks to a point for a value slightly larger than
τ = 0.123.

C. For fixed values of σ > 1 and D larger than its minimum for τ = 0, the
system always becomes disordered for τ large enough. The maximum value
of τ consistent with order altogether corresponds to σ ∼ 5 and D ∼ 32. In
other words, ordering is possible only if the multiplicative noise inducing
it has short memory.

D. The fact that the region sustaining the ordered phase finally shrinks to a
point means that even for that small region in the σ−D plane for which
order is induced by color, a further increase in τ destroys it. In other
words, the phase transition is also reentrant with respect to τ . For D large
enough there may exist even two such windows.

Order Parameter

As already mentioned above, the order parameter in this system is m ≡ |x̄|,
namely, the positive solution of the consistency equation (2.38). Consistently
with what has been discussed in (A) and (C), we see that as τ increases the
window of σ values where ordering occurs shrinks until it disappears. One also
notices that at least for this D, the value of σ corresponding to the maximum
order parameter varies very little with τ .

The short–time evolution of 〈x〉 can be obtained multiplying (2.34) by x
and integrating:

d〈x〉
dt

=
∫ ∞

−∞
dxR1(x; x̄)P (x, t; x̄). (2.40)

Let us assume an initial condition such that at early times P (x, t ∼ 0; x̄) =
δ(x− x̄). Equating x̄ = 〈x〉 as before, we get the order parameter equation

d〈x〉
dt

= R1(x̄, x̄). (2.41)

The solution of (2.41) has an initial rising period (it is initially unstable)
reaching very soon a maximum and tending to zero afterwards.

For D/σ2 →∞, equation (2.41) is valid also in the asymptotic regime since
Pst(x) = δ(x−x̄) [BPT97]. According to this criterion, in the D/σ2 →∞ limit
the system undergoes a second–order phase transition if the corresponding
zero-dimensional model presents a linear instability in its short–time dynam-
ics, i.e., if after linearizing (2.41):

〈ẋ〉 = −α〈x〉, (2.42)
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one finds that α < 0. We then see that the trivial (disordered) solution 〈x〉 = 0
is stable only for α > 0. For α < 0 other stable solutions with 〈x〉 �= 0 appear,
and the system develops order through a genuine phase transition. In this
case, 〈x〉 can be regarded as the order parameter. In the white noise limit
τ = 0 this is known to be the case for sufficiently large values of the coupling
D and for a window of values for the noise amplitude σ ∈ [σ1, σ2].

In summary, we have:

A. Multiplicative noise can shift or induce phase transitions in 0D systems.
B. Multiplicative noise can induce phase transitions in spatially extended

systems.
C. Mean–field approximation predicts a minimal coupling strength for the

appearance of noise induced phase transitions.
D. Mean–field approximation predicts, that the phase transition is reentrant,

i.e., the ordered phase is destroyed by even higher noise intensity.
E. Appearance of an ordered phase results from a nontrivial cooperative effect

between multiplicative noise, nonlinearity and diffusion.

2.1.10 Noise–Driven Ferromagnetic Phase Transition

Over the last decade, the dynamics of ferromagnetic systems below their criti-
cal temperatures in a periodically oscillating magnetic field have been studied
both theoretically [TO90, LP90, Ach97, SRM98, KWR01, FTR01, YTY02]
and experimentally [JY95]. The systems exhibit two qualitatively different be-
haviors referred to as symmetry–restoring oscillation (SRO) and symmetry–
breaking oscillation (SBO), depending on the frequency Ω and the amplitude
h of the applied magnetic field. It has been established that there exists a
sharp transition line between SRO and SBO on the (Ω, h) plane, which is
called the dynamical phase transition (DPT). The DPT was first observed
numerically in the deterministic mean–field system for a ferromagnet in a
periodically oscillating field [TO90], and has subsequently been studied in
numerous Monte Carlo simulations of the kinetic Ising system below criti-
cal temperature [LP90, Ach97, SRM98, KWR01]. It has also been observed
experimentally in [JY95].

Recently, the DPT was investigated by introducing the model equation
[FTR01]

ṡ(t) = (Tc − T )s− s3 + h cosΩt.

This equation is a simplified model for the Ising spin system at the temper-
ature T below its critical value Tc in an external periodic magnetic field. By
appropriately scaling the magnetization s, time t, and the applied field, this
equation is written as

ṡ(t) = s− s3 + h cosΩt. (2.43)

The SBO and SRO are observed in (2.43) and the transition line between
them on the (Ω, h) plane is determined analytically [FTR01].
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It is quite interesting to ask whether DPT is observed under another kind
of applied field, especially random field with bounded amplitude. The fun-
damental aim of the present section is to study the dynamics of s(t) with
a dichotomous Markov noise (DMN) F (t) instead of periodically oscillating
external field h cosΩt (see, e.g., [Kam92]).

The equation of motion [OHF06]

ṡ = f(s) + F (t), (2.44)

with a nonlinear function f(s) and the DMN F (t) has been extensively stud-
ied by many authors (see, e.g., [KHL79, BBK02, HR83]). It is well known that
the master equation for the system can be derived, and then transition phe-
nomena of stationary probability densities concerning the intensity of F (t), for
example, are studied, which are referred to as the noise-induced phase transi-
tion [KHL79, HL84]. The asymptotic drift velocity 〈ṡ〉 in the case of f(s) being
periodic functions are also discussed as a specific dynamic property [BBK02].
Furthermore, the mean first–passage time (MFPT) and transition rates are
investigated as another important dynamic property when f(s) is the force
associated with the bistable potential given by (2.44).

Symmetry–Breaking Phase Transition

Model Equation and Noise–Induced Phase Transition

We consider the equation of motion driven by the external field F (t) [OHF06],

ds(t)
dt

= f(s) + F (t), (f(s) = s− s3) (2.45)

where F (t) is a symmetric DMN with taking the values ±H0. Here the proba-
bility p(τ) that F (t) continues to take the identical value +H0 or −H0 longer
than time τ is given by

p(τ) = e−τ/τf . (2.46)

This implies that the correlation time of F (t) is equal to τf/2. Throughout
this section, numerical integrations of (2.45) are carried out by using the Euler
difference scheme with the time increment Δt = 1/100.

Without DMN, s(t) eventually approaches either of the stationary fixed
points ±1, one of which is achieved according to the initial condition s(0) as
shown in Figure 2.3. In the presence of DMN, if H0 < Hc, Hc being defined
by

Hc ≡ 2(1/3)3/2 = 0.3849 · · · , (2.47)

then f(s) + H0 = 0(f(s) −H0 = 0) has three real roots sj+(sj−), (j = 1, 2,
and 3). Each value of sj± is graphically shown in Figure 2.3(a). On the other
hand, if H0 > Hc, then f(s) + H0 = 0 (f(s)−H0 = 0) has only one real root
s+ (s−) given by
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Fig. 2.3. The function f(s) = s − s3 is shown by solid lines. (a) Real roots sj±,
(j = 1, 2, 3) for H0 < Hc and (b) real roots s± for H0 > Hc of the algebraic
equation s − s3 ± H0 = 0. The definition of Hc is graphically represented (adapted
and modified from [OHF06]).

s± =
[
1
2

(
±H0 +

√
H2

0 −H2
c

)]1/3

+
[
1
2

(
±H0 −

√
H2

0 −H2
c

)]1/3

, (2.48)

which are indicated in Figure 2.3(b). Next let us consider the dynamics
described by (2.45) for H0 < Hc and for H0 > Hc, and discuss simi-
larity and difference between the dynamics in the periodically oscillating
field case and those in the present DMN case. A part of our results be-
longs to the context of the noise–induced phase transition and MFPT in
[KHL79, HL84, BBK02, HR83]. In the case of H0 < Hc, three motions numer-
ically integrated are shown in Figures 2.4(a) and (b). Two motions confined
in the ranges s1− < s(t) < s1+ and s3− < s(t) < s3+ are both stable. The
long time average 〈s(t)〉 of each motion does not vanish, and the motion is
called SBM in relation to DPT in the oscillating external field case. On the
other hand, the motion su(t) confined in the range s2+ < su(t) < s2− is un-
stable. The long time average of su(t) vanishes, and in this sense the motion
is called SRM. It should be noted that this unstable SRM is located between
two stable SBM, which has a similar characteristic to SBO of DPT [FTR01].

The motion of s(t) for H0 > Hc is shown in Figures 2.4(c) and (d). One
observes that there exists a stable SRM confined in the range s− < s(t) < s+.
For SRM, the time average of s(t) vanishes, i.e., 〈s(t)〉 = 0. The comparison
between Figures 2.4(b) and (d) suggests that the SRM for H0 > Hc is gen-
erated via the “attractor merging crisis” [Ott93] of the two SBM’s and one
unstable SRM, i.e., the two SBM’s and one unstable SRM disappear and then
one stable SRM takes place at H0 = Hc. This situation is similar to that in
the DPT case. However, in contrast to the DPT case, the transition line on
the (τ−1

f , H0) plane is independent of the correlation time τf of F (t) and the
average 〈s(t)〉 depends discontinuously on H0.
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Fig. 2.4. Figures (a) and (b) show the motions obtained by numerically integrating
(2.45) for H0 = 0.38(< Hc) and τf = 5, where two SBM’s (solid line) and an unstable
SRM (dashed line) are drawn. The unstable SRM is evaluated by replacing t → −t.
On the other hand, Figures (c) and (d) show the motions for H0 = 0.5(> Hc) and
τf = 10 (adapted and modified from [OHF06]).

Stationary Distribution Functions

In this subsection, we discuss the stationary distribution functions for SBM
and SRM. To this aim, we first consider a slightly general nonlinear Langevin
equation of motion driven by DMN [OHF06],

ẋ(t) = f(x) + g(x)F (t), (2.49)

where f(x) and g(x) are generally nonlinear functions of x and F (t) is
DMN [Ris84]. The temporal evolution of the distribution function P (x, F, t)
that x(t) and F (t) respectively take the values x and F (= ±H0) is determined
by [KHL79, HL84]

∂

∂t
P (x, t) = − ∂

∂x
[f(x)P (x, t) + H0g(x)q(x, t)] ,

∂

∂t
q(x, t) = − 2

τf
q(x, t)− ∂

∂x
[f(x)q(x, t) + H0g(x)P (x, t)] , (2.50)

where we put P (x, t) ≡ P (x,+H0, t)+P (x,−H0, t) and q(x, t) ≡ P (x,+H0, t)
− P (x,−H0, t). The stationary distribution P st(x) ≡ P (x,∞) is solved to
yield
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P st(x) = (2.51)

N
g(x)

H2
0g(x)2 − f(x)2

exp

{
− 1

τf

∫ x

dx′
[

1

f(x′) − H0g(x′)
+

1

f(x′) + H0g(x′)

]}
,

provided that each of the equations

ẋ = f(x) + H0g(x), ẋ = f(x)−H0g(x)

has at least one stable fixed point, where N is the normalization constant.
By substituting f(x) = x − x3 and g(x) = 1, ((2.45)), into (2.51), the

stationary distribution function P stSBM (s) for SBM (H0 < Hc) for s3− < s <
s3+ or s1− < s < s1+ is written as

P stSBM (s) ∝ |s2 − s2
1+|−β1+ |s2 − s2

1−|−β1− |s2 − s2
2+|−β2+ , (2.52)

βj± = 1− τ−1
f |(sj± − sk±)(sj± − sl±)|,

where (j, k, l) = (1, 2, 3), (2,3,1), and (3,1,2).
On the other hand, the stationary distribution function P stSRM (s) for the

SRM (H0 > Hc) for s− < s < s+ is obtained as

P stSRM (s) ∝ |s2 − s2
+|

τ
−1
f

3s2+−1
−1 [

(s2 + s2
+ − 1)2 − s2

+s2
]−

τ
−1
f

3s2+−1
−1

× exp

{
τ−1
f s+

(s2
+ − 1/3)

√
3s2

+ − 4

[

arctan

⎛

⎝ 2s− s+√
3s2

+ − 4

⎞

⎠

− arctan

⎛

⎝ 2s + s+√
3s2

+ − 4

⎞

⎠
]}

. (2.53)

As H0 is increased, the form of the stationary distribution function changes
drastically from the forms in (2.52) to (2.53) at H0 = Hc. This phenomenon
which is induced by the disappearance of two pairs of stable and unstable fixed
points [BBK02] is an example of the noise–induced phase transitions [HL84].

It turns out that the transition line between SRM and SBM on the (τ−1
f ,

H0) plane is given by H0 = Hc. Furthermore, the long time average of s(t),
〈s(t)〉, depends discontinuously on H0 at H0 = Hc. These behaviors are quite
different from those of the DPT case driven by periodically oscillating field,
F (t) = h cos(Ωt) [Ach97, FTR01]. The transition point hc for a fixed Ω
between SRO and SBO depends on the frequency Ω, and 〈s(t)〉 is a continuous
function of h.

MFPT Through the Channels

We hereafter discuss the dynamics for H0 slightly above Hc. Let us first con-
sider the behavior obeying the equations [OHF06]
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Fig. 2.5. Three orbits of the equation of motion (2.54) with ε = + for H0 > Hc.
The values of H0 are set to be H0 = 0.386 (dotted line), 0.4 (dashed line), and
0.5 (solid line), where all the initial conditions are chosen as s0 = s− (adapted and
modified from [OHF06]).

ṡ = s− s3 + εH0, (ε = + or−) (2.54)

for H0 > Hc, i.e., F (t) is fixed to be either +H0 or −H0. Equation (2.54) for
H0 > Hc is integrated to yield

t = − 1
2(3s2

ε − 1)
ln

(s− sε)2

s2 + sεs + s2
ε − 1

s2
0 + sεs0 + s2

ε − 1
(s0 − sε)2

(2.55)

+
6sε

2(3s2
ε − 1)

√
3s2
ε − 4

[

arctan

(
2s + sε√
3s2
ε − 4

)

− arctan

(
2s0 + sε√

3s2
ε − 4

)]

,

where s0 = s(0) and sε has been defined in (2.48). Figure 2.5 displays three
orbits given by (2.55) with s0 = s− and ε = +, which shows that s(t) ap-
proaches s+ in the limit t→∞. One observes that s(t) stays for a long time
in the vicinity of s = −1/

√
3 for H0 slightly above Hc. The small region in-

cluding the position s = −1/
√

3 is called the ‘channel’. From the symmetry
of the system, there also exists the channel near s = 1/

√
3 for F (t) = −H0,

as shown in Figure 2.3(b). Let us express the positions sch of the channels as

sch =
{
−1/

√
3, if F (t) = +H0

+1/
√

3, if F (t) = −H0
.

The characteristic time τ ch is then defined as the time span that the state
point s(t) passes through one of the channels for a constant F (t), either +H0

or −H0. τ ch can be estimated by integrating (2.54) around s ! sch as follows.
First, consider the case F (t) = −H0. By setting u(t) = s(t)−sch and assuming
|u| � sch, (2.54) is approximated as [OHF06]
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u̇ = −3schu2 − (H0 −Hc).

This can be integrated to give

u(t) = −
√

H0 −Hc
3sch

tan
[√

3sch(H0 −Hc)t
]

(2.56)

with the initial condition u(0) = 0. τ ch is estimated by the condition u(τ ch) =
∞ and thus

τ ch =
C

(H0 −Hc)1/2
, C =

π

2
√

3sch
. (2.57)

Let us next consider the process that the state point s(t) passes through
the channels under DMN. One finds that the time of passing through channels
increases as H0 approaches Hc. The MFPT τ̄ through channels was calculated
in [HR83] by analyzing the master equation. In the present subsection, we will
derive MFPT in terms of the time scales τf and τ ch from a phenomenological
viewpoint without use of the analysis made in [HR83].

The condition for passing through a channel is that F (t) continues to
take the identical value either +H0 or −H0 for time longer than τ ch. For H0

satisfying τf > τ ch, we obtain p(τ ch) = e−τch/τf ! 1, which implies that
F (t) almost always satisfies the condition for passing through the channel.
Therefore, τ̄ in the case of τf > τ ch is nearly equivalent to τ ch, i.e.,

τ̄ ! C

(H0 −Hc)1/2
. (2.58)

In the case of τf � τ ch, on the other hand, (2.46) gives p(τ ch) � 1. This
fact implies that the probability that F (t) continues to take the identical value
for time longer than τ ch is quite small and hence that τ̄ is much longer than
τ ch because it needs a long time to satisfy the condition for the state point to
pass through the channel. τ̄ in the case of τf � τ ch is explicitly determined as
follows. For a long τ̄ , let us divide τ̄ into subintervals each of which has the time
span τf . The divided individual time series are approximately independent of
each other. Therefore, τf/τ̄ is the probability that the state point passes
through a channel once because τ̄ is MFPT through the channel. On the
other hand, p(τ ch) is identical to the probability for s(t) to pass through the
channel once by definition of the probability. Therefore we get the relation
p(τ ch) ! τf/τ̄ , which leads to

τ̄−1 ! τ−1
f e−τch/τf = τ−1

f exp
[
− C

τf (H0 −Hc)1/2

]
(2.59)

with the constant C defined in (2.57). This expression agrees with the result
obtained in [HR83].

Equation (2.59) reveals that MFPT through the channel depends on H0−
Hc in a stretched exponential form for τf � τ ch, and is quite different from
the asymptotic form (2.58).
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Fig. 2.6. Time series of F (t) schematically indicating the time that s(t) jumps from
s+ to s−. s(t) jumps at the time t∗ in this case, where F (t) takes the value −H0

longer than τ ch for the first time in the time series of F (t) (adapted and modified
from [OHF06]).

Phenomenological Analysis

In order to discuss statistical characteristics of the dynamics passing through
the channels for τf � τ ch, we here develop a phenomenological approach.
The behaviors of s(t) for which we attempt to model are first summarized.
The initial condition of s(t) is set to be in the vicinity of s+. If a time interval
of F (t) satisfying the condition F (t) = −H0 becomes longer than τ ch for
the first time, then s(t) passes through sch and approaches s− in the time
interval. See Figure 2.6. The event in which s(t) jumps from s+ to s− occurs
only in this case. It should be noted that the jumps from s(t) > 0 (s(t) < 0)
to s(t) < 0 (s(t) > 0) are approximately independent of subsequent jumps.

Let us discretize the time t in the form t = kΔt, (k = 1, 2, 3, · · · ) as a
simple approach to develop the phenomenological analysis according to the
process noted above, where Δt is a certain small time step. Then, τ ch is
discretized as τ ch ≡ nchΔt with the corresponding integer nch. F (t) is assumed
to keep the same value for the interval Δt, which is denoted as Fk = F (kΔt).
The conditional probability p that Fj+1 takes the same value as Fj is given
by

p = e−Δt/τf , (2.60)

and the probability q that Fk+1 is different from Fk is therefore given by

q = 1− p. (2.61)

The system is analyzed phenomenologically as follows:

• We introduce the variable sk at a discretized time kΔt which takes two
values ±1.

• sk and Fk are initially set to s0 = +1 and F0 = +H0, respectively.
• sk jumps from +1 (−1) to−1 (+1) only if Fk continues to take the identical

value −H0 (+H0) for a time interval longer than nchΔt.
• sk does not jump from +1 (−1) to −1 (+1) even though Fk continues to

take +H0 (−H0) for any time interval longer than nchΔt.
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MFPT τ̄ through the Channel

We first derive the exact expression for the MFPT τ̄ through the channel with
the phenomenological approach. In considering the time series having Fk, τ̄
is evaluated as

τ̄ =
∑

l

lΔt
∑

0≤k≤l
g
(nch)
k,l qkpl−k

∣∣
∣∣∣∣
q=1−p

. (2.62)

Here g
(nch)
k,l is the number of the time sequences {Fj} for 0 ≤ j < l satisfying

that Fj changed its value k times in each {Fj} and sj jumps from +1 to −1
for the first time at t = lΔt.

Equation (2.62) is, furthermore, rewritten as

τ̄ = T̂Qnch
(q, p)

∣
∣
∣
q=1−p

with the differential operator T̂ and the quantity Qnch
(q, p) defined by

T̂ ≡ Δt

(
q

∂

∂q
+ p

∂

∂p

)
(2.63)

and
Qnch

(q, p) ≡
∑

l

∑

0≤k≤l
g
(nch)
k,l qkpl−k. (2.64)

One should note that the q- and p-dependences in Qnch
are crucial and that

q and p are considered to be independent in (2.64).
The explicit form of Qnch

(q, p) is then determined so as to satisfy the
following conditions:

1. In considering any length of time series giving Fk, there exists a time
interval of length nch in the last of the time series, where all the Fk take the
same value −H0, i.e., the condition that sk jumps from +1 to −1 is satisfied.

2. The condition for sk to jump from +1 to −1 is not satisfied before the
last time interval.

One should note that the equality Qn(1 − p, p) = 1 holds for any n, be-
cause the time interval described above always exists somewhere in a long
time series. Particularly, for n = nch, Qnch

(1− p, p) is obviously equal to the
probability that sj changes its sign, which must be unity for H0 > Hc.

The explicit form of Qn(q, p) is given by [OHF06]

Qn(q, p) =
(1− p)qpn−1

(1− p)2 − q2(1− pn−1)
, (2.65)

where the condition Qn(1−p, p) = 1 is easily confined. Applying the operator
(2.63) to the explicit form (2.65) with n = nch yields the relation
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τ̄ = T̂Qnch
(q, p)

∣∣∣
q=1−p

= Δt
2− pnch−1

(1− p)pnch−1

= Δt
2− eΔt/τf e−τch/τf

(1− e−Δt/τf )eΔt/τf e−τch/τf
,

where the last equality is obtained by using Eqs. (2.60) and (2.61) with the
relation τ ch = nchΔt. The exact expression of τ̄ is finally given by

τ̄ = τf

(
2eτch/τf − 1

)
(2.66)

in the limit of Δt→ 0 by keeping τ ch constant. Equation (2.66) qualitatively
agrees for τ ch/τf 	 1 with the result (2.59).

Distribution Function P (τ) for the Passage Time τ

The distribution function P (τ) for the passage time τ through the channel
sch is determined by solving the equation

P (τ) = δ(τ − T̂ )Qnch
(q, p)

∣∣
∣
q=1−p

, (2.67)

where δ(x) is the delta function. The Laplace transform L[P ](z) should be
calculated in order to solve (2.67). By using the series expansion of Qnch

(q, p)
given by (2.64), the Laplace transform of P (τ) is obtained as

L[P ](z) ≡
∫ ∞

0

e−τzP (τ)dτ = e−zT̂Qnch
(q, p)

∣
∣∣
q=1−p

=
∑

l

∑

0≤k≤l
g
(nch)
k,l (e−zΔtq)k(e−zΔtp)l−k

∣∣∣∣
∣∣
q=1−p

. (2.68)

Equation (2.68) implies that L[P ](z) can be obtained by replacing q and p by
e−zΔtq and e−zΔtp in Qnch

(q, p), respectively, i.e.,

L[P (τ)](z) = Qnch
(e−zΔtq, e−zΔtp)

∣∣
q=1−p . (2.69)

Substituting the explicit form (2.65) for n = nch into (2.69) yields the
equation

L[P (τ)](z) =
(τfz + 1)e−(z+τ−1

f )τch

τ2
fz

2 + 2τfz + e−(z+τ−1
f )τch

(2.70)

in the limit of Δt → 0 by keeping τ ch constant. By applying the inverse
Laplace transform to (2.70), the distribution function P (τ) is analytically
evaluated in the series expansion as



216 2 Phase Transitions and Synergetics

P (τ) = τ−1
f e−τ/τf

∞∑

k=0

θ(tk+1)
(−x)k

k!
dk

dxk
cosh

√
x

∣∣∣∣
x=(tk+1)2

=

τ−1
f e−τ/τf

[

θ(t1) cosh(t1)− θ(t2)
t2 sinh(t2)

2
+ θ(t3)

t3
2 cosh(t3)− t3 sinh(t3)

8

− θ(t4)
t4

3 sinh(t4)− 3t42 cosh(t4) + 3t4 sinh(t4)
48

+ · · ·
]

, (2.71)

where tk(τ) ≡ (τ − kτ ch)/τf and θ(t) is the Heaviside function defined by

θ(t) =
{

1 for t ≥ 0
0 for t < 0 . (2.72)

For details of the derivation of (2.71), see [OHF06].
Let us suppose to truncate the expansion (2.71) at k = kc for an arbitrary

kc. It should be noted that (2.71) gives the exact distribution for 0 < τ < kcτ ch
even though the truncation is executed, since all the terms individually include
θ(tk) and so the terms for k > kc do not contribute to P (τ) for τ < kcτ ch. The
analytical result (2.71) is compared with the numerically evaluated distribu-
tion. One observes that the phenomenological analysis quantitatively explains
the statistical property of passing through the channels. The characteristics
obtained from the figure are summarized as follows [OHF06]:

1. There exists a region where P (τ) = 0 for τ < τ ch, which presents the
minimal time of passing through the channels.

2. P (τ) decreases exponentially for τ 	 τ ch, P (τ) ∝ e−ατ with a constant
α.

3. The rate α increases as τf is increased. This tendency is consistent with
the fact that the probability of passing through channels increases as τf is
increased since DMN will often continue to take an identical value longer than
τ ch.

On the other hand, the expansion (2.71) disagrees with the correct value
in an exponential way for τ > kcτ ch. Let us try to obtain the asymptotic
solution of P (τ) for τ 	 τ ch. We have [OHF06]

〈e−z(τ−τch)〉 ! 1
1 + (τ̄ − τ ch)z

for |z| � τ−1
ch , (2.73)

where τ̄ is MFPT given in (2.66). The inverse Laplace transform of (2.73) is
straightforwardly calculated to give

P (τ) ! 1
τ̄ − τ ch

exp
(
−τ − τ ch

τ̄ − τ ch

)
,

which reveals that P (τ) decreases exponentially with the damping rate α =
(τ̄ − τ ch)−1 for τ 	 τ ch.
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Phenomenological Fourier Spectrum

We derive the Fourier spectrum of a time series s(t) by the phenomenological
analysis to focus on the dynamical characteristics in the SRM phase. The
Fourier spectrum Ix(ω) is defined by

Ix(ω) = lim
T→∞

1
T

〈∣∣∣∣∣

∫ T

0

x(t)e−iωtdt

∣∣∣∣∣

2〉

, (2.74)

i.e., the ensemble average of the Fourier transform of a time series x(t).
Let us first consider s0(t) ≡ sgn[s(t)]. Then the time series s0(t) is ex-

pressed as
s0(t) = (−1)n−1, for tn−1 ≤ t < tn (2.75)

with n ≥ 1, where tn denotes the nth time to cross zero for s(t). Hereafter,
t0 is set to be zero without loss of generality. By identifying that τn ≡ tn −
tn−1 is independently distributed according to (2.71), one obtains the Fourier
spectrum of s0(t) by the phenomenological analysis shown (see [OHF06]), in
the form

Is0(ω) =
4

τ̄ω2
'
(

1− 〈e−iωτn〉
1 + 〈e−iωτn〉

)
=

4
τ̄ω2

1− |〈e−iωτn〉|2
|1 + 〈e−iωτn〉|2 (2.76)

where '(X) represents the real part of X, and limN→∞
tN
N = 〈τn〉 = τ̄ is

used.
Substituting the explicit form of 〈e−iωτn〉 given in (2.70) with z = iω into

(2.76) yields

Is0 (ω) =

(
4τf

τ̄ω

)
ω3τ3

f + (4 − e−2τch/τf )ωτf − 2e−τch/τf (ωτf cos ωτch + 2 sin ωτch)

(4 + ω2τ2
f )(ω2τ2

f − 2ωτf e−τch/τf sin ωτch + e−2τch/τf )
.

(2.77)

The above result is confirmed by comparing with the numerically evaluated
Fourier spectrum for the normalized time series s0(t) (see [OHF06]).

Let us finally modify the phenomenological analysis which is compatible
with the numerically evaluated spectrum of the original time series s(t) with-
out normalization. Instead of (2.75), let us define

s̃(t) = (−1)n−1[1− a(t− tn−1)] for tn−1 ≤ t < tn

with n ≥ 1, where a(Δt) incorporates the wave form of the time series passing
through the channel and is assumed to be a(Δt) = 0 for Δt > τ ch. Note that
by setting a(Δt) = 0 also for Δt ≤ τ ch the result of original phenomenological
analysis is recovered. As shown in [OHF06], the Fourier spectrum Is̃(ω) for
s̃(t) as a modification to Is0(ω) is obtained in the form

Is̃(ω) = Is0(ω)
1 + |â(ω)|2 + 2'[â(ω)]

4
, (2.78)
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where
â(ω) ≡ 1− iω

∫ τch

0

a(t)e−iωtdt.

By approximating as a(Δt) = 1 + |sch| for 0 < Δt < τ ch, (2.78) reduces to

Is̃(ω) = Is0(ω)
(

1 + s2
ch

2
+

1− s2
ch

2
cosωτ ch

)
. (2.79)

Fore more technical details, see [OHF06].

2.1.11 Phase Transition in a Reaction–Diffusion System

Recently 1D reaction–diffusion systems have received much attention because
they show a variety of interesting critical phenomena such as non–equilibrium
phase transitions [Sch01]. A simple system of this type, which has been studied
widely in related literatures, is the Asymmetric Simple Exclusion Process
(ASEP) [DEH93]. In this 2–states model the particles are injected from the
left site of an open discreet lattice of length L. They diffuse in the system
and at the end of the lattice are extracted from the system. It is known that
depending on the injection and the extraction rates the ASEP shows different
boundary induced phase transitions. Non–equilibrium phase transition may
also happen in the systems with non–conserving dynamics. For instance in
[EKL02] the authors investigate a 3–states model consists of two species of
particles besides vacancies on a lattice with ring geometry. The dynamics of
this model consists of diffusion, creation and annihilation of both species of
the particles. They have found that the phase diagram of the model highly
depends on the annihilation rate of the particles. By changing the annihilation
rate of the particles, the system transfers from a maximal current phase to
a fluid phase. The density of the vacancies changes discontinuously from one
phase to the other phase.

In this section, following [JG07], we study a reaction–diffusion model on
a discrete lattice of length L with periodic boundary condition. Besides the
vacancies there are two different types of particles in the system. Throughout
this paper the vacancies and the particles are denoted by E, A and B. The
dynamics of the system is not conserving. The particles of type A and type B
hop to the left and to the right respectively. The total number of particles of
type B is a conserved quantity and assumed to be equal to M . The density of
these particles is defined as ρB = M

L . In contrast, the total number of particles
of type A is not a conserved quantity due to the creation and annihilation
of them. Only the nearest neighbors interactions are allowed and the model
evolves through the following processes

A∅ −→ ∅A with rate 1,
∅B −→ B∅ with rate 1,
AB −→ BA with rate 1,
A∅ −→ ∅∅ with rate ω,
∅∅ −→ A∅ with rate 1.

(2.80)
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As can be seen the parameter ω determines the annihilation rate for the
particles of type A which besides the number of the particles of type B i.e.,
ρB are the free parameters of the model. One should note that the annihilation
in our model only takes place for one species of particles. Our main aim in
the present work is to study the phase diagram of the model in terms of ω
and the density of the B particles.
In our model if one starts with a lattice without any vacancies the dynamics
of the model prevents it from evolving into other configurations consisting
of vacancies. In this case the system remains in its initial configuration and
the steady state of the system is trivial. In order to study the non-trivial
case we consider those configurations which have at least one vacancy. In
order to find the stationary probability distribution function of the system
we apply the Matrix Product Formalism (MPF) first introduced in [DEH93]
and then generalized in [KS97]. According to this formalism the stationary
probability for any configuration of a system with periodic boundary condition
is proportional to the trace of product of non–commuting operators which
satisfy a quadratic algebra. In our model we have three different states at each
site of the lattice associated with the presence of vacancies, the A particles
and the B particles. We assign three different operators E, A and B to each
state. Now the unnormalized steady state probability of a configuration C is
given by

P (C) =
1
ZL

Tr[
L∏

i=1

Xi], (2.81)

in which Xi = E if the site i is empty, Xi = A if the site i is occupied by a
particle of type A and Xi = B if it is occupied by a particle of type B. The
normalization factor ZL in the denominator of (2.81) is called the partition
function of the system and is given by the sum of unnormalized weights of
all accessible configurations. By applying the MPF one finds the following
quadratic algebra for our model [JG07]

AB = A + B,
AE = E,
EB = E,
E2 = ωE.

(2.82)

Now by defining

E = ω|V 〉〈W | in which 〈W |V 〉 = 1,

one can simply find
AB = A + B,
A|V 〉 = |V 〉,
〈W |B = 〈W |,
E = ω|V 〉〈W |.

(2.83)

The first three relations in (2.83) make a quadratic algebra which is well known
in the related literatures. It is the quadratic algebra of the ASEP when the
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boundary rates are equal to one.4 This algebra has an infinite dimensional
representation given by the following matrices and vectors

A =

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

1 1 0 0 · · ·
0 1 1 0
0 0 1 1
0 0 0 1
...

. . .

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

, B = AT ,

|V 〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0
...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, 〈W | = |V 〉T ,

in which T stands for transpose. In order to find the phase structure of the
system one can calculate the generating function of the partition function
of the system and study its singularities. In what follows we first calculate
the grandcanonical partition function of the system ZL(ξ) by introducing a
fugacity ξ for particles of type B. We then fix the fugacity of the B particles
using the following relation

ρB = lim
L→∞

ξ

L

∂ lnZL(ξ)
∂ξ

. (2.84)

The grandcanonical partition function of the system Z(ξ) can now be calcu-
lated from (2.81) and is given by [JG07]

ZL(ξ) =
∑

C
Tr[

L∏

i=1

Xi] = Tr[(A + ξB + E)L − (A + ξB)L]. (2.85)

One should note that the operator B in (2.81) is replaced with the opera-
tor ξB in which ξ should be fixed using (2.84). As we mentioned above the
stationary state of the system without vacancies is a trivial one, therefore in
(2.85) we have considered those configurations with at least one vacancy. The
generating function for ZL(ξ) can now be calculated using (2.83). Using the
same procedure introduced in [RSS00] and after some straightforward algebra
one finds

G(ξ, λ) =
∞∑

L=0

λL−1ZL(ξ) =
d
dλωU(ξ, λ)

1− ωU(ξ, λ)
, (2.86)

in which
4 The operator A and B should be regarded as the operators associated with the

particles and vacancies respectively.
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U(ξ, λ) =
∞∑

L=0

λL+1〈W |(A + ξB)L|V 〉.

The convergence radius of the formal series (2.86) which is the absolute value
of its nearest singularity to the origin can be written as

R(ξ) = lim
L→∞

ZL(ξ)
−1
L .

This is also the inverse of the largest eigenvalue of ZL(ξ). In the large L limit
using (2.84) this results in the following relation

ρB = ξ
∂

∂ξ
ln

1
R(ξ)

. (2.87)

Therefore one should only find the singularities of (2.86) and decide in which
region of the phase diagram which singularity is the smallest one. In order
to find the singularities of (2.86) one should first calculate U(ξ, λ). This can
easily be done by noting that the matrix A + ξB defined as

A + ξB =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

1 + ξ 1 0 0 · · ·
ξ 1 + ξ 1 0
0 ξ 1 + ξ 1
0 0 ξ 1 + ξ
...

. . .

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

,

satisfy the following eigenvalue relation

(A + ξB)|θ〉 = (1 + ξ + 2
√

ξCos(θ))|θ〉, (2.88)

for −π ≤ θ ≤ π in which we have defined [JG07]

|θ〉 =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

Sin(θ)
ξ1/2Sin(2θ)
ξSin(3θ)

ξ3/2Sin(4θ)
ξ2Sin(5θ)

...

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Considering the fact that
∫ π

−π

dθ

π
Sin(θ)Sin(nθ) = δ1,n,

one can easily see that
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|V 〉 =
∫ π

−π

dθ

π
Sin(θ)|θ〉. (2.89)

Now using (2.88)–(2.89) and the fact that 〈W |θ〉 = Sin(θ) one can easily show
that U(ξ, λ) is given by

U(ξ, λ) =
∫ π

−π

dθ

π

λSin(θ)2

1− λ(1 + ξ + 2
√

ξCos(θ))
(2.90)

which is valid for λ < 1
(1+

√
ξ)2

. The integral (2.90) can easily be calculated
using the Cauchy residue theorem by noting that it has three poles in the
complex plane. Two of them are inside the contour which is a circle of unite
radius around the origin and one is outside it. After some calculations one
finds

U(ξ, λ) =
1− λ− λξ −

√
(λ + λξ − 1)2 − 4λ2ξ

2λξ
.

Now that U(ξ, λ) is calculated one can simply find the singularities of (2.86).
It turns out that (2.86) has two different kinds of singularities: a simple root
singularity R1 = ω

(1+ω)(ω+ξ) which come from the denominator of (2.86) and
a square root singularity R2 = 1

(1+
√
ξ)2

. Therefore the model has two different
phases. The relation between the density of B particles and their fugacity in
each phase should be obtained from (2.87). In terms of the density of the B
particles ρB we find

R1 =
1− ρB
1 + ω

and R2 = (1− ρB)2.

Two different scenarios might happen: defining ωc = ρB

1−ρB
we find that for

ω > ωc the nearest singularity to the origin is R1 and for ω < ωc it is R2.
The density of the vacancies can be calculated quit similar to that of the B
particles. It is given by

ρE = ω
∂

∂ω
ln

1
R(ξ)

, (2.91)

in which R(ξ) is again the nearest singularity to the origin in each phase. The
density of the A particles is in turn ρA = 1−ρB−ρE . Let us now investigate the
current of the particles in each phase. Noting that the configurations without
vacancies are inaccessible, the particle current for each species is obtained to
be [JG07]

JA =
Tr[(ξAB + AE)(A + ξB + E)L−2 − (ξAB)(A + ξB)L−2]

Tr[(A + ξB + E)L − (A + ξB)L]
,

JB =
Tr[(ξAB + ξEB)(A + ξB + E)L−2 − (ξAB)(A + ξB)L−2]

Tr[(A + ξB + E)L − (A + ξB)L]
.

These relations can be simplified in the thermodynamic limit and one finds
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JA = R(ξ)(1 + (ξ − 1)ρA),
JB = R(ξ)(ξ + (1− ξ)ρB).

As we mentioned above for ω < ωc the nearest singularity to the origin is
always R2. The particle currents in this case are equal and we find

JA = JB = ρB(1− ρB).

In contrast for ω > ωc the nearest singularity to the origin is always R1 and
it turns out that the currents are not equal. We find JA = ω

(1+ω)2 and JB =
ρB(1− ρB). In what follows we bring the summery of the results concerning
the phase structure of the system

for ω < ωc

⎧
⎨

⎩

ρA = 1− ρB JA = ρB(1− ρB)
ρB = ρB JB = ρB(1− ρB)
ρE = 0

and

for ω > ωc

⎧
⎨

⎩

ρA = 1
1+ω JA = ω

(1+ω)2

ρB = ρB JB = ρB(1− ρB)
ρE = ω

1+ω − ρB

.

As can be seen for ω < ωc the density of vacancies is equal to zero which
means there are only A and B particles on the lattice. Since the density of
the B particles is fixed and equal to ρB the density of A particles should be
1− ρB . In this case, according to (2.80), both A and B particles have simply
ASEP dynamics and therefore their currents should be of the form ρ(1 − ρ)
and that JA = JB . This is in quite agreement with our calculations for JA and
JB . On the other hand for ω > ωc the density of vacancies on the lattice is no
longer zero. At the transition point ωc the density of the vacancies is zero but
it increases linearly in this phase. In terms of the density of the vacancies the
phase transition is a continuous transition. In this phase for ω < 1 we always
have JA > JB while for ω > 1 we have

JA > JB for ρB <
1

1 + ω

and JA < JB for
1

1 + ω
< ρB <

ω

1 + ω
.

In this paper we studied a 3–states model consists of A and B particles besides
the vacancies. The A particles are created and annihilated which is controlled
by ω while the B particles only diffuse on the lattice and have a fixed density
ρB . We found that the system have two phases depending on ρB and ω. The
current of the B particles is always a constant ρB(1 − ρB) throughout the
phase diagram while for the A particles it is given by different expressions in
each phase. As a generalization one could also consider a more general process



224 2 Phase Transitions and Synergetics

A∅ −→ ∅A with rate α,
∅B −→ B∅ with rate β,
AB −→ BA with rate 1,
A∅ −→ ∅∅ with rate λ,
∅∅ −→ A∅ with rate λ′,

with the quadratic algebra given by [JG07]

AB = A + B,
α A|V 〉 = |V 〉,
β 〈W |B = 〈W |,
E = λ

λ′α |V 〉〈W |.

and apply the same approach used in present section to study its phase dia-
gram.

2.1.12 Phase Transition in Negotiation Dynamics

Statistical physics has recently proved to be a powerful framework to address
issues related to the characterization of the collective social behavior of indi-
viduals, such as culture dissemination, the spreading of linguistic conventions,
and the dynamics of opinion formation [Wei00].

According to the ‘herding behavior’ described in sociology [Cha03], pro-
cesses of opinion formation are usually modelled as simple collective dynamics
in which the agents update their opinions following local majority [Gla63] or
imitation rules [Lig85]. Starting from random initial conditions, the system
self–organizes through an ordering process eventually leading to the emergence
of a global consensus, in which all agents share the same opinion. Deviations
from purely herding behavior are considered by introducing a certain level
of noise. In analogy with kinetic Ising models and contact processes [Odo04],
the presence of noise can induce non–equilibrium phase transitions from the
consensus state to disordered configurations, in which more than one opinion
is present.

The principle of ‘bounded confidence’ [DNA00], on the other hand, consists
in enabling interactions only between agents that share already some cultural
features (defined as discrete objects) [Axe97] or with not too different opinions
(in a continuous space) [DNA00, BKR03]. The overall behavior of the system
depends on the method used to discriminate ‘different’ and ‘similar’ opinions.
By tuning some threshold parameter, transitions are observed concerning the
number of opinions surviving in the (frozen) final state. This can be a situation
of consensus, in which all agents share the same opinion, polarization, in which
a finite number of groups with different opinions survive, or fragmentation,
with a final number of opinions scaling with the system size. For instance, in
the Axelrod model [Axe97] a consensus–to–fragmentation transition occurs as
the variability of cultural features is increased [CMV00].
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In this section, following [BDB07], we present a model of opinion dynam-
ics in which a consensus–polarization–fragmentation non–equilibrium phase
transition is driven by external noise, intended as an ‘irresolute attitude’ of
the agents in making decisions. The primary attribute of the model is that it
is based on a negotiation process, in which memory and feedback play a cen-
tral role. Moreover, apart from the consensus state, no configuration is frozen:
the stationary states with several coexisting opinions are still dynamical, in
the sense that the agents are still able to evolve, in contrast to the Axelrod
model [Axe97].

Let us consider a population of N agents, each one endowed with a mem-
ory, in which an a priori undefined number of opinions can be stored. In
the initial state, agents memories are empty. At each time step, an ordered
pair of neighboring agents is randomly selected. This choice is consistent with
the idea of directed attachment in the socio–psychological literature (see for
instance [Fri90]). The negotiation process is described by a local pairwise in-
teraction rule: a) the first agent selects randomly one of its opinions (or creates
a new opinion if its memory is empty) and conveys it to the second agent;
b) if the memory of the latter contains such an opinion, with probability β
the two agents update their memories erasing all opinions except the one in-
volved in the interaction (agreement), while with probability 1 − β nothing
happens; c) if the memory of the second agent does not contain the uttered
opinion, it adds such an opinion to those already stored in its memory (learn-
ing). Note that, in the special case β = 1, the negotiation rule reduces to
the Naming Game rule [BFC06], a model used to describe the emergence of
a communication system or a set of linguistic conventions in a population of
individuals. In our modelling the parameter β plays roughly the same role
as the probability of acknowledged influence in the socio–psychological liter-
ature [Fri90]. Furthermore, as already stated for other models [Cas05], when
the system is embedded in heterogeneous topologies, different pair selection
criteria influence the dynamics. In the direct strategy , the first agent is picked
up randomly in the population, and the second agent is randomly selected
among its neighbors. The opposite choice is called reverse strategy ; while the
neutral strategy consists in randomly choosing a link, assigning it an order
with equal probability.

At the beginning of the dynamics, a large number of opinions is created,
the total number of different opinions growing rapidly up to O(N). Then, if β
is sufficiently large, the number of opinions decreases until only one is left and
the consensus state is reached (as for the Naming Game in the case β = 1).
In the opposite limit, when β = 0, opinions are never eliminated, therefore
the only possible stationary state is the trivial state in which every agent
possesses all opinions. Thus, a non–equilibrium phase transition is expected
for some critical value βc of the parameter β governing the update efficiency.
In order to find βc, we exploit the following general stability argument. Let
us consider the consensus state, in which all agents possess the same unique
opinion, say A. Its stability may be tested by considering a situation in which
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A and another opinion, say B, are present in the system: each agent can
have either only opinion A or B, or both (AB state). The critical value βc
is provided by the threshold value at which the perturbed configuration with
these three possible states does not converge back to consensus.

The simplest assumption in modelling a population of agents is the homo-
geneous mixing (i.e., mean–field (MF) approximation), where the behavior of
the system is completely described by the following evolution equations for
the densities ni of agents with the opinion i [BDB07]

dnA/dt = −nAnB + βn2
AB +

3β − 1
2

nAnAB ,

dnB/dt = −nAnB + βn2
AB +

3β − 1
2

nBnAB , (2.92)

and nAB = 1− nA − nB . Imposing the steady state condition ṅA = ṅB = 0,
we get three possible solutions: 1) nA = 1, nB = 0, nAB = 0; 2) nA =
0, nB = 1, nAB = 0; and 3) nA = nB = b(β), nAB = 1 − 2b(β) with

b(β) = 1+5β−
√

1+10β+17β2

4β (and b(0) = 0). The study of the solutions’ stability
predicts a phase transition at βc = 1/3. The maximum non–zero eigenvalue of
the linearized system around the consensus solution becomes indeed positive
for β < 1/3, i.e., the consensus becomes unstable, and the population polarizes
in the nA = nB state, with a finite density of undecided agents nAB . The
model therefore displays a first order non–equilibrium transition between the
frozen absorbing consensus state and an active polarized state, in which global
observables are stationary on average, but not frozen, i.e., the population is
split in three dynamically evolving parts (with opinions A, B, and AB), whose
densities fluctuate around the average values b(β) and 1− 2b(β).

We have checked the predictions of (2.92) by numerical simulations of
N agents interacting on a complete graph [BDB07]. The convergence time
tconv required by the system to reach the consensus state indeed diverges at
βc = 1/3, with a power–law behavior (β − βc)−a, a ! 0.3. 5 Very interest-
ingly however, the analytical and numerical analysis of (2.92) predicts that
the relaxation time diverges instead as (β−βc)−1. This apparent discrepancy
arises in fact because (2.92) consider that the agents have at most two differ-
ent opinions at the same time, while this number is unlimited in the original
model (and in fact diverges with N). Numerical simulations reproducing the
two opinions case allow to recover the behavior of tconv predicted from (2.92).
We have also investigated the case of a finite number m of opinions available
to the agents. The analytical result a = 1 holds also for m = 3 (but analytical
analysis for larger m becomes out of reach), whereas preliminary numerical
simulations performed for m = 3, 10 with the largest reachable population size
5 The low value of a, which moreover slightly decreases as the system size increases,

does not allow to exclude a logarithmic divergence. This issue deserves more
investigations that we leave for future work.
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(N = 106) lead to an exponent a ! 0.74 ÷ 0.8. More extensive and system-
atic simulations are in order to determine the possible existence of a series
of universality classes varying the memory size for the agents. In any case,
the models with finite (m opinions) or unlimited memory define at least two
clearly different universality classes for this non–equilibrium phase transition
between consensus and polarized states (see [CG94] for similar findings in the
framework of non–equilibrium q-state systems).

Also, the transition at βc is only the first of a series of transitions: when de-
creasing β < βc, a system starting from empty initial conditions self-organizes
into a fragmented state with an increasing number of opinions. In principle,
this can be shown analytically considering the mean-field evolution equations
for the partial densities when m > 2 opinions are present, and studying, as a
function of β, the sign of the eigenvalues of a (2m − 1) × (2m − 1) stability
matrix for the stationary state with m opinions. For increasing values of m,
such a calculation becomes rapidly very demanding, thus we limit our analysis
to the numerical insights, from which we also get that the number of residual
opinions in the fragmented state follows the exponential law [BDB07]

m(β) ∝ exp [(βc − β)/C],

where C is a constant depending on the initial conditions (not shown).
We now extend the present analysis to more general interactions topolo-

gies, in which agents are placed on the vertices of a network, and the edges
define the possible interaction patterns [BDB07]. When the network is a ho-
mogeneous random one (Erdös–Rényi (ER) graph [ER59]), the degree distri-
bution is peaked around a typical value 〈k〉, and the evolution equations for
the densities when only two opinions are present provide the same transition
value βc = 1/3 and the same exponent −1 for the divergence of tconv as in
MF.

Since any real negotiation process takes place on social groups, whose
topology is generally far from being homogeneous, we have simulated the
model on various uncorrelated heterogeneous networks (using the uncorrelated
configuration model (UCM) [CBP05]), with power–law degree distributions
P (k) ∼ k−γ with exponents γ = 2.5 and γ = 3.

Very interestingly, the model still presents a consensus-polarization tran-
sition, in contrast with other opinion–dynamics models, like for instance the
Axelrod model [KET03], for which the transition disappears for heterogeneous
networks in the thermodynamic limit.

To understand these numerical results, we analyze, as for the fully con-
nected case, the evolution equations for the case of two possible opinions. Such
equations can be written for general correlated complex networks whose topol-
ogy is completely defined by the degree distribution P (k), i.e., the probability
that a node has degree k, and by the degree–degree conditional probability
P (k′|k) that a node of degree k′ is connected to a node of degree k (Markovian
networks). Using partial densities
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nkA = Nk
A/Nk, n

k
B = Nk

B/Nk and nkAB = Nk
AB/Nk,

i.e., the densities on classes of degree k, one derives mean–field type equations
in analogy with epidemic models. Let us consider for definiteness the neutral
pair selection strategy, the equation for nkA is in this case [BDB07]

dnkA
dt

= − 1
〈k〉n

k
Ak

∑

k′

P (k′|k)nk
′

B −
1

2〈k〉n
k
Ak

∑

k′

P (k′|k)nk
′

AB (2.93)

+
3β

2〈k〉kn
k
AB

∑

k′

P (k′|k)nk
′

A + 2
β

2〈k〉kn
k
AB

∑

k′

P (k′|k)nk
′

AB ,

dnkA
dt

= −knkA
〈k〉

∑

k′

P (k′|k)nk
′

B −
knkA
2〈k〉

∑

k′

P (k′|k)nk
′

AB

+
3βknkAB

2〈k〉
∑

k′

P (k′|k)nk
′

A +
βknkAB
〈k〉

∑

k′

P (k′|k)nk
′

AB ,

and similar equations hold for nkB and nkAB . The first term corresponds to the
situation in which an agent of degree k′ and opinion B chooses as second actor
an agent of degree k with opinion A. The second term corresponds to the case
in which an agent of degree k′ with opinions A and B chooses the opinion B,
interacting with an agent of degree k and opinion A. The third term is the
sum of two contributions coming from the complementary interaction; while
the last term accounts for the increase of agents of degree k and opinion A
due to the interaction of pairs of agents with AB opinion in which the first
agent chooses the opinion A.

Now, let us define [BDB07]

Θi =
∑

k′

P (k′|k)nk
′

i , (for i = A,B,AB).

Under the un-correlation hypothesis for the degrees of neighboring nodes, i.e.,
P (k′|k) = k′P (k′)/〈k〉, we get the following relation for the total densities
ni =

∑
k P (k)nki ,

d(nA − nB)
dt

=
3β − 1

2
ΘAB(ΘA −ΘB). (2.94)

If we consider a small perturbation around the consensus state nA = 1, with
nkA 	 nkB for all k, we can argue that

ΘA −ΘB =
∑

k

kP (k)(nkA − nkB)/〈k〉

is still positive, i.e., the consensus state is stable only for β > 1/3. In other
words, the transition point does not change in heterogeneous topologies when
the neutral strategy is assumed. This is in agreement with our numerical
simulations, and in contrast with the other selection strategies.

For more details on negotiation dynamics and its non–equilibrium phase
transitions, see [BDB07].
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2.2 Elements of Haken’s Synergetics

In this section we present the basics of the most powerful tool for high–
dimensional chaos control, which is the synergetics. This powerful scien-
tific tool to extract order from chaos has been developed outside of chaos
theory, with intention to deal with much more complex, high–dimensional,
hierarchical systems, in the realm of synergetics. Synergetics is an inter-
disciplinary field of research that was founded by H. Haken in 1969 (see
[Hak83, Hak93, Hak96, Hak00]). Synergetics deals with complex systems that
are composed of many individual parts (components, elements) that inter-
act with each other and are able to produce spatial, temporal or functional
structures by self–organization. In particular, synergetics searches for general
principles governing self–organization irrespective of the nature of the indi-
vidual parts of the systems that may belong to a variety of disciplines such
as physics (lasers, fluids, plasmas), meteorology, chemistry (pattern forma-
tion by chemical reactions, including flames), biology (morphogenesis, evolu-
tion theory) movement science, brain activities, computer sciences (synergetic
computer), sociology (e.g., city growth) psychology and psychiatry (including
Gestalt psychology).

The aim of synergetics has been to describe processes of spontaneous self–
organization and cooperation in complex systems built from many subsystems
which themselves can be complicated nonlinear objects (like many individual
neuro–muscular components of the human motion system, having their own
excitation and contraction dynamics, embedded in a synergistic way to pro-
duce coordinated human movement). General properties of the subsystems
are their own nonlinear/chaotic dynamics as well as mutual nonlinear/chaotic
interactions. Furthermore, the systems of synergetics are open. The influence
from outside is measured by a certain set of control parameters {σ} (like
amplitudes, frequencies and time characteristics of neuro–muscular driving
forces). Processes of self-organization in synergetics, (like musculo–skeletal co-
ordination in human motion dynamics) are observed as temporal macroscopic
patterns. They are described by a small set of order parameters {o}, similar
to those in Landau’s phase–transition theory (named after Nobel Laureate Lev
D. Landau) of physical systems in thermal equilibrium [Hak83].

Now, recall that the measure for the degree of disorder in any isolated, or
conservative, system (such a system that does not interact with its surround-
ing, i.e., does neither dissipate nor gain energy) is entropy . The second law
of thermodynamics6 states that in every conservative irreversible system the
entropy ever increases to its maximal value, i.e., to the total disorder of the
system (or remains constant for a reversible system).

Example of such a system is conservative Hamiltonian dynamics of human
skeleton in the phase–space Γ defined by all joint angles qi and momenta pi

7,
6 This is the only physical law that implies the arrow of time.
7 If we neglect joints dissipation and muscular driving forces, we are dealing with

pure skeleton conservative dynamics.
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defined by ordinary (conservative) Hamilton’s equations

q̇i = ∂pi
H, ṗi = −∂qiH. (2.95)

The basic fact of the conservative Hamiltonian system is that its phase–flow,
the time evolution of equations (5.1), preserves the phase–space volume (the
so–called Liouville measure), as proposed by the Liouville theorem. This might
look fine at first sight, however, the preservation of phase–space volume causes
structural instability of the conservative Hamiltonian system, i.e., the phase–
space spreading effect, by which small phase regions Rt will tend to get dis-
torted from the initial one R0 during the system evolution. The problem is
much more serious in higher dimensions than in lower dimensions, since there
are so many ‘directions’ in which the region can locally spread. Here we see
the work of the second law of thermodynamics on an irreversible process: the
increase of entropy towards the total disorder/chaos [Pen89]. In this way, the
conservative Hamiltonian systems of the form (5.1) cover the wide range of
dynamics, from completely integrable, to completely ergodic. Biodynamics of
human–like movement is probably somewhere in the middle of this range, the
more DOF included in the model, the closer to the ergodic case. One can eas-
ily imagine that the conservative skeleton–like system with 300 DOF, which
means 600–D system of the form (5.1), which is full of trigonometry (com-
ing from its noncommutative rotational matrices), is probably closer to the
ergodic than to the completely integrable case.

On the other hand, when we manipulate a system from the outside, by the
use of certain control parameters {σ}, we can change its degree of order (see
[Hak83, Hak93]). Consider for example water vapor . At elevated temperature
its molecules move freely without mutual correlation. When temperature is
lowered, a liquid drop is formed, the molecules now keep a mean distance
between each other. Their motion is thus highly correlated. Finally, at still
lower temperature, at the freezing point, water is transformed into ice crystals.
The transitions between the different aggregate states, also called phases, are
quite abrupt. Though the same kind of molecules are involved all the time,
the macroscopic features of the three phases differ drastically.

Similar type of ordering, but not related to the thermal equilibrium con-
ditions, occurs in lasers, mathematically given by Lorenz–like attractor equa-
tions. Lasers are certain types of lamps which are capable of emitting coherent
light. A typical laser consists of a crystal rod filled with gas, with the follow-
ing features important from the synergetics point of view: when the atoms
the laser material consists of are excited or ‘pumped’ from the outside, they
emit light waves. So, the pump power, or pump rate represents the control
parameter σ. At low pump power, the waves are entirely uncorrelated as in a
usual lamp. Could we hear light, it would sound like noise to us [Hak83].

When we increase the pump rate to a critical value σc, the noise disap-
pears and is replaced by a pure tone. This means that the atoms emit a pure
sinusoidal light wave which in turn means that the individual atoms act in a
perfectly correlated way – they become self–organized. When the pump rate
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is increased beyond a second critical value, the laser may periodically emit
very intense and short pulses. In this way the following instability sequence
occurs [Hak83]:

noise �→ {coherent oscillation at frequencyω1} �→
periodic pulses at frequency ω2 which modulate oscillation at frequency ω1

i.e., no oscillation �→ first frequency �→ second frequency.

Under different conditions the light emission may become chaotic or even
turbulent. The frequency spectrum becomes broadened.

The laser played a crucial role in the development of synergetics for various
reasons [Hak83]. In particular, it allowed detailed theoretical and experimental
study of the phenomena occurring within the transition region: lamp ↔ laser,
where a surprising and far–reaching analogy with phase transitions of systems
in thermal equilibrium was discovered. This analogy includes all basic phase–
transition effects: a symmetry breaking instability , critical slowing down and
hysteresis effect .

2.2.1 Phase Transitions and Synergetics

Besides water vapor, a typical example is a ferromagnet [Hak83]. When a fer-
romagnet is heated, it suddenly loses its magnetization. When temperature
is lowered, the magnet suddenly regains its magnetization. What happens on
a microscopic, atomic level, is this: We may visualize the magnet as being
composed of many, elementary (atomic) magnets (called spins). At elevated
temperature, the elementary magnets point in random directions. Their mag-
netic moments, when added up, cancel each other and no macroscopic mag-
netization results. Below a critical value of temperature Tc, the elementary
magnets are lined up, giving rise to a macroscopic magnetization. Thus the
order on the microscopic level is a cause of a new feature of the material on
the macroscopic level. The change of one phase to the other one is called phase
transition.

A thermodynamical description of a ferromagnet is based on analysis of
its free energy potential (in thermal equilibrium conditions). The free energy
F , depends on the control parameter σ = T , the temperature. We seek the
minimum of the potential F for a fixed value of magnetization o, which is
called order parameter in Landau’s theory of phase transitions (see Appendix).

This phenomenon is called a phase transition of second order because the
second derivative (specific heat) of the free energy potential F is discontin-
uous. On the other hand, the entropy S (the first derivative of F) itself is
continuous so that this transition is also referred to as a continuous phase
transition.

In statistical physics one also investigates the temporal change of the order
parameter – magnetization o. Usually, in a more or less phenomenological
manner, one assumes that o obeys an equation of the form
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ȯ = −∂F
∂o

= −σo− βo3. (2.96)

For σ → 0 we observe a phenomenon called critical slowing down, because the
‘particle’ with coordinate o falls down the slope of the ‘potential well’ more
and more slowly. Simple relation (2.96) is called order parameter equation.

We now turn to the case where the free energy potential has the form

F(o, T ) =
σ

2
o2 +

γ

3
o3 +

β

4
o4, (2.97)

(β and γ – positive but σ may change its sign according to σ = a(T−Tc), (a >
0)). When we change the control parameter – temperature T , i.e., the param-
eter σ, we pass through a sequence of deformations of the potential curve.

When lowering temperature, the local minimum first remains at o0 = 0.
When lowering temperature, the ‘particle’ may fall down from o0 to the new
(global) minimum of F at o1. The entropies of the two states, o0 and o1,
differ. This phenomenon is called a phase transition of first order because the
first derivative of the potential F with respect to the control parameter T
is discontinuous. Since the entropy S is discontinuous this transition is also
referred to as a discontinuous phase transition. When we now increase the
temperature, is apparent that the system stays at o1 longer than it had been
before when lowering the control parameter. This represents hysteresis effect .

In the case of the potential (2.97) the order parameter equation gets the
form

ȯ = −σo− γo2 − βo3.

Similar disorder ⇒ order transitions occur also in various non–equilibrium
systems of physics, chemistry, biology, psychology, sociology, as well as in
human motion dynamics. The analogy is subsumed in Table 1.

Table 1. Phase transition analogy
System in thermal equilibrium Non–equilibrium system
Free energy potential F Generalized potential V
Order parameters oi Order parameters oi
ȯi = − ∂F

∂oi
ȯi = − ∂V∂oi

Temperature T Control input u
Entropy S System output y
Specific Heat c System efficiency e

In the case of human motion dynamics, natural control inputs ui are mus-
cular torques Fi, natural system outputs yi are joint coordinates qi and mo-
menta pi, while the system efficiencies ei represent the changes of coordinates
and momenta with changes of corresponding muscular torques for the ith
joint,

eqi =
∂qi

∂Fi
, epi =

∂pi
∂Fi

.
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Order parameters oi represent certain important qualities of the human
motion system, depending on muscular torques as control inputs, similar to
magnetization, and usually defined by equations similar to (2.96) or

ȯi = −σo− γo2 − βo3,

with nonnegative parameters σ, β, γ, and corresponding to the second and first
order phase transitions, respectively. The choice of actual order parameters
is a matter of expert knowledge and purpose of macroscopic system modelling
[Hak83].

2.2.2 Order Parameters in Human/Humanoid Biodynamics

Basic Hamiltonian Model of Biodynamics

To describe the biodynamics of human–like movement, namely our covariant
force law [II05, II06a, II06b]:

Fi = mgija
j , that ‘in plain English’ reads :

force 1–form–field = mass distribution×acceleration vector–field,

we can also start from generalized Hamiltonian vector–field XH describing
the behavior of the human–like locomotor system

q̇i =
∂H

∂pi
+

∂R

∂pi
, (2.98)

ṗi = Fi −
∂H

∂qi
+

∂R

∂qi
, (2.99)

where the vector–field XH is generating time evolution, or phase–flow, of 2n
system variables: n generalized coordinates (joint angles qi) and n generalized
momenta (joint angular momenta pi), H = H(q, p) represents the system’s
conservative energy: kinetic energy + various mechano–chemical potentials,
R = R(q, p) denotes the nonlinear dissipation of energy, and Fi = Fi(t, q, p, σ)
are external control forces (biochemical energy inputs). The system parame-
ters include inertia tensor with mass distribution of all body segments, stiff-
ness and damping tensors for all joints (labelled by index i, which is, for
geometric reasons, written as a subscript on angle variables, and as a super-
script on momentum variables), as well as amplitudes, frequencies and time
characteristics of all active muscular forces (supposed to be acting in all the
joints; if some of the joints are inactive, we have the affine Hamiltonian control
system, see chapter 6).

The equation (2.98) is called the velocity equation, representing the flow
of the system (analogous to current in electrodynamics), while the equation
(2.99) is a Newton–like force equation, representing the effort of the sys-
tem (analogous to voltage). Together, these two functions represent Hamil-
tonian formulation of the biomechanical force–velocity relation of A.V. Hill
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[Hil38]. From engineering perspective, their (inner) product, flow · effort,
represents the total system’s power, equal to the time–rate–of–change of the
total system’s energy (included in H,R and Fi functions). And energy itself
is transformed into the work done by the system.

Now, the reasonably accurate musculo–skeletal biodynamics would include
say a hundred DOF, which means a hundred of joint angles and a hundred
of joint momenta, which further means a hundred of coupled equations of the
form of (2.98–2.99). And the full coupling means that each angle (and mo-
mentum) includes the information of all the other angles (and momenta), the
chain coupling means that each angle (and momentum) includes the infor-
mation of all the previous (i.e., children) angles (and momenta), the nearest
neighbor coupling includes the information of the nearest neighbors, etc.

No matter which coupling we use for modelling the dynamics of human
motion, one thing is certain: the coupling is nonlinear. And we obviously have
to fight chaos within several hundreds of variables.

Wouldn’t it be better if we could somehow be able to obtain a synthetic
information about the whole musculo–skeletal dynamics, synthesizing the hun-
dreds of equations of motion of type (2.98–2.99) into a small number of equa-
tions describing the time evolution of the so–called order parameters? If we
could do something similar to principal component analysis in multivariate
statistics and neural networks, to get something like ‘nonlinear factor dynam-
ics’?

Starting from the basic system (2.98–2.99), on the lowest, microscopic level
of human movement organization, the order parameter equations of macro-
scopic synergetics can be (at least theoretically), either exactly derived along
the lines of mezoscopic synergetics, or phenomenologically stated by the use
of the certain biophysical analogies and nonlinear identification and control
techniques (a highly complex nonlinear system like human locomotor appa-
ratus could be neither identified nor controlled by means of standard linear
engineering techniques).

Mezoscopic Derivation of Order Parameters

Basic Hamiltonian equations (2.98–2.99) are in general quite complicated
and can hardly be solved completely in the whole locomotor phase–space
Γ , spanned by the set of possible joint vectors {qi(t), pi(t)}. We therefore
have to restrict ourselves to local concepts for analyzing the behavior of our
locomotor system. To this end we shall consider a reference musculo–skeletal
state {q0, p0} and its neighborhood. Following the procedures of the mezo-
scopic synergetics (see [Hak83, Hak93]), we assume that the reference state
has the properties of an attractor and is a comparably low–dimensional object
in Γ . In order to explore the behavior of our locomotor system (dependent on
the set of control parameters σ) in the neighborhood of {q0, p0} we look for
the time development of small deviations from the reference state (to make
the formalism as simple as possible, we drop the joint index in this section)
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q(t) = q0 + δq(t), p(t) = p0 + δp(t),

and consider δq(t) and δp(t) as small entities. As a result we may linearize the
equations of δq and δp in the vicinity of the reference state {q0, p0}. We get

∂tδq(t) = L[q0, p0, σ] δq(t), ∂tδp(t) = K[q0, p0, σ] δp(t),

where L[.] and K[.] are linear matrices independent of δq(t) and δp(t), which
can be derived from the basic Hamiltonian vector–field (2.98–2.99) by stan-
dard synergetics methods [Hak83, Hak93, Hak96, Hak00]. We now assume that
we can construct a complete set of eigenvectors {l(j)(t), k(j)(t)} correspond-
ing to (2.96). These eigenvectors allow us to decompose arbitrary deviations
δq(t) and δp(t) into elementary collective deviations along the directions of
the eigenvectors

δq(t) = ξj(t) l
j(t), δp(t) = ζj(t) k

j(t), (2.100)

where ξj(t) and ζj(t) represent the excitations of the system along the di-
rections in the phase–space Γ prescribed by the eigenvectors lj(t) and kj(t),
respectively. These amplitudes are still dependent on the set of control param-
eters {σ}. We note that the introduction of the eigenvectors {lj(t), kj(t)} is of
crucial importance. In the realm of synergetics they are considered as the col-
lective modes or patterns of the system. Whereas the basic Hamiltonian equa-
tion (2.98–2.99) is formulated on the basis of the human locomotor–system
variables (coordinates and momenta) of the single subsystems (joints), we can
now give a new formulation which is based on these collective patterns and
describes the dynamical behavior of the locomotor system in terms of these
different collective patterns. Inserting relations (2.100) into the basic system
(2.98–2.99) we get equations for the amplitudes ξj(t) and ζj(t),

ξ̇i(t) = Aij · ξj(t) +nonlinear terms, ζ̇j(t) = Bij · ζj(t) +nonlinear terms,

where · denotes the scalar product, and it is assumed that the time dependence
of the linear matrices L and K is carried out by the eigenvectors leaving us
with constant matrices A and B.

We now summarize the results by discussing the following time–evolution
formulas for joint coordinates q(t) and momenta p(t),

q(t) = q0 + ξj(t) l
j(t), p(t) = p0 + ζj(t) k

j(t), (2.101)

which describes the time dependence of the phase vectors q(t) and p(t) through
the evolution of the collective patterns. Obviously, the reference musculo–
skeletal state {q0(t), p0(t)} can be called stable when all the possible exci-
tations {ξj(t), ζj(t)} decay during the curse of time. When we now change
the control parameters {σ} some of the {ξj(t), ζj(t)} can become unstable
and start to grow in time. The border between decay and growth in param-
eter space is called a Tablecritical region. Haken has shown that the few
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unstable amplitudes, denoted by uq and up, change very slowly in the vicin-
ity of a critical region, whereas the damped amplitudes, denoted by sq and
sp, quickly decay to values which are completely prescribed by the unsta-
ble modes. This fact is expressed as the Tableslaving principle of synergetics
[Hak83, Hak93, Hak96, Hak00], in our case reading as

sq = sq(uq), sp = sp(up).

These relations allow us to eliminate the stable modes in (2.101), and leave
us with a low–dimensional set of equations for the unstable modes which play
the role of the order parameters. These Tableorder parameter equations then
completely rule the behavior of our microscopic nD musculo–skeletal system
on macroscopic scales near an instability.

The fundamental result of synergetics consists in the observation that on
macroscopic scales new laws can be discovered which exist in their own right
[Hak83]. These laws which are expressed by the order parameter equations
turn out to be independent of the detailed nature of the subsystems and
their interactions. As a consequence this allows us to introduce the concept of
Tablenormal forms [Arn88] as a method to discus instabilities and qualitative
dynamics in the neighborhood of the critical regions. This method of phe-
nomenological synergetics allows us to start qualitative analysis from purely
macroscopic considerations.

Using the so–called Tableadiabatic elimination of fast variables [Hak83],
one tries to identify macroscopic quantities related to global musculo–skeletal
dynamics (similar but different from the mean–field center–of–mass dynamics)
– from experience and classifies them according to time–scale arguments. The
slowest variables are usually identified with the control parameters which are
assumed to be quasi static quantities. The slow macroscopic dynamics of the
system has to be attributed to the order parameters. Very quickly relaxing
variables have to be considered as enslaved modes.

2.2.3 Example: Synergetic Control of Biodynamics

Recall from [II05, II06a, II06b] that the basic microscopic synergetic level of
human musculo–skeletal dynamics (2.98–2.99), can be viewed on the highest,
macroscopic synergetic center–of–mass organization level of human motion
dynamics as a simple Hamilton oscillator , physically representing the damped,
sinusoidally driven pendulum (1.29) of the unit mass and length l

l2q̈ + γq̇ + lg sin q = A cos(pDt).

This equation expresses Newtonian second law of motion with the various
terms on the left representing acceleration, damping, and gravitation. The
angular momentum of the forcing pD, may be different from the natural fre-
quency of the pendulum. In order to minimize the number of adjustable pa-
rameters the equation may be rewritten in dimensionless form as
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q̈ + (1/ν)q̇ + sin q = ε cos(pDt),

where ν is the damping or quality parameter, ε is the forcing amplitude, and
pD is the drive frequency. The low–amplitude natural angular frequency of
the pendulum is unity, and time is regarded as dimensionless. This equation
satisfies the necessary conditions for chaos when it is written as an extended
Hamiltonian system

q̇ = p, ṗ = −(1/ν)p− sin q + ε cosφ, φ̇ = pD. (2.102)

The variable φ is introduced as the phase of the drive term. Three variables
are evident and also two nonlinear coupling terms. Whether the motion is
chaotic depends upon the values of the three parameters: damping, forcing
amplitude and drive frequency. For some values the pendulum locks onto the
driving force, oscillating in a periodic motion whose frequency is the driv-
ing frequency, possibly with some harmonics or subharmonics. But for other
choices of the parameters the pendulum motion is chaotic. One may view the
chaos as resulting from a subtle interplay between the tendency of the pendu-
lum to oscillate at its ‘natural’ frequency and the action of the forcing term.
The transitions between non–chaotic and chaotic states, due to changes in the
parameters, occur in several ways and depend delicately upon the values of
the parameters.

To include (in the simplest possible way) the muscle excitation–contraction
dynamics, and thus make the damped, driven Hamilton oscillator (2.102) a
more realistic macroscopic model for human motion dynamics, we assume
that the time–dependent forcing amplitude ε = ε(t) has the form of a low
pass filter, a characteristic feature of biological systems, given by first–order
transfer function K

Ts+1 . Here K denotes gain of the filter and T its time
constant.

Therefore, macroscopic mechanical model of human motion dynamics gets
the fully–functional form

q̈ + (1/ν)q̇ + sin q = K(1− e−t/T ) cos(pDt),

which can be rewritten in the form of extended Hamilton oscillator

q̇ = p, ṗ = −(1/ν)p− sin q + K(1− e−t/T ) cosφ, φ̇ = pD. (2.103)

Now, to effectively control the macroscopic HML model (2.103), we can
use two standard nonlinear–control techniques:

A. Adaptive Lie–derivative based geometric control; and
B. Adaptive fuzzy–logic based AI control.

2.2.4 Example: Chaotic Psychodynamics of Perception

Perceptual alternation phenomena of ambiguous figures have been studied for
a long time. Figure–ground, perspective (depth) and semantic ambiguities are
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well known (see, e.g., [Att71, Hak91]). When we view the Necker cube, which
is a classic example of perspective alternation, a part of the figure is per-
ceived either as front or back of a cube and our perception switches between
the two different interpretations (see Figure 2.7). In this circumstance the
external stimulus is kept constant, but perception undergoes involuntary and
random–like change. The measurements have been quantified in psychophys-
ical experiments and it becomes evident that the times between such changes
are approximately Gamma distributed [BMA72, BCR82, Hak91].

Fig. 2.7. Perception of the Necker cube with its two alternative interpretations
(modified and adapted from [NNM00]).

Mathematical model approaches to explaining the facts have been made
mainly from three situations based on the synergetics [DT89, DT90, CA93],
the BSB (brain–state–in–a–box) neural network model [KA85, RMS90, MM95],
and the PDP (parallel distributed processing) schema model [RM86, SKW95,
IN96]. Common to these approaches is that top–down designs are applied so
that the model can be manipulable by a few parameters and upon this ba-
sis fluctuating sources are brought in. The major interests seem to be not in
the relation between the whole function and its element (neuron), but in the
model building at the phenomenological level.

So far diverse types of chaotic dynamics have been confirmed at several
hierarchical levels in the real neural systems from single cells to cortical net-
works (e.g. ionic channels, spike trains from cells, EEG) [Arb95].
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Following [NNM00], in this section we present a perception model of am-
biguous patterns based on the chaotic neural network from the viewpoint of
bottom–up approach [NNM97], aiming at the functioning of chaos in dynamic
perceptual processes.

The chaotic neural network (CNN) composed of N chaotic neurons is
described as [ATT90, NKF97] (summation upon repeated indices is always
understood)

Xi(t + 1) = f(ηi(t + 1) + ζi(t + 1)), (2.104)

ηi(t + 1) = wij

t∑

d=0

kdfXj(t− d), (2.105)

ζi(t + 1) = −α

t∑

d=0

kdrXi(t− d)− θi, (2.106)

where Xi : output of neuron i(−1 ≤ Xi ≤ 1), wij : synaptic weight from
neuron j to neuron i, θi : threshold of neuron i, kf (kr) : decay factor for
the feedback (refractoriness) (0 ≤ kf , kr < 1), α : refractory scaling param-
eter, f : output function defined by f(y) = tanh(y/2ε) with the steepness
parameter ε. Owing to the exponentially decaying form of the past influ-
ence, (2.105) and (2.106) can be reduced to

ηi(t + 1) = kfηi(t) + wijXj(t), (2.107)
ζi(t + 1) = krζi(t)− αXi(t) + a, (2.108)

where a is temporally constant a ≡ −θi(1 − kr). All neurons are updated in
parallel, that is, synchronously. The network corresponds to the conventional
Hopfield discrete–time network :

Xi(t + 1) = f [wijXj(t)− θi] , (2.109)

when α = kf = kr = 0 (Hopfield network point (HNP)). The asymptotical
stability and chaos in discrete–time neural networks are theoretically investi-
gated in [MW89, CA97]. The stochastic fluctuation {Fi} is attached to (2.109)
of HNP together with the external stimulus {σi}:

Xi(t + 1) = f [wijXj(t) + σi + Fi(t)] ,

where
{

< Fi(t) >= 0
< Fi(t)Fj(t′) >= D2δtt′δij .

Under external stimuli, (2.104) is influenced as

Xi(t + 1) = f [ηi(t + 1) + ζi(t + 1) + σi] , (2.110)

where {σi} is the effective term by external stimuli. This is a simple and un–
artificial incorporation of stimuli as the changes of neural active potentials.



240 2 Phase Transitions and Synergetics

The two competitive interpretations are embedded in the network as min-
ima of the energy map (see Figure 2.8):

E = −1
2
wijXiXj ,

at HNP. This is done by using a iterative perception learning rule for p(< N)
patterns {ξμi } ≡ (ξμ1 , · · · , ξ

μ
N ), (μ = 1, · · · , p; ξμi = + 1or − 1) in the form :

wnewij = woldij +
∑

μ

δwμij , with δwμij =
1
N

θ(1− γμi )ξ
μ
i ξ
μ
j ,

where γμi ≡ ξμi wijξ
μ
j ,

and θ(h) is the unit step function. The learning mode is separated from the
performance mode by (2.110).

Fig. 2.8. Conceptual psychodynamic model of [NNM00], illustrating state transi-
tions induced by chaotic activity.

Simulations of the CNN have shown that the neural chaos leads to per-
ceptual alternations as responses to ambiguous stimuli in the chaotic neural
network. Its emergence is based on the simple process in a realistic bottom–
up framework. In the same stage, similar results can not be obtained by
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the stochastic activity. This simulation suggests functional usefulness of the
chaotic activity in perceptual systems even at higher cognitive levels. The
perceptual alternation appears to be an inherent feature built in the chaotic
neuron assembly. It may be interesting to study the brain with the exper-
imental technique (e.g., functional MRI) under the circumstance where the
perceptual alternation is running [NNM00].

2.2.5 Kick Dynamics and Dissipation–Fluctuation Theorem

Deterministic Delayed Kicks

Following [Hak02], we consider the mechanical example of a soccer ball that is
kicked by a soccer player and rolls over grass, whereby its motion will be slowed
down. We start with the Newton’s (second) law of motion, mv̇ = force, and
in order to get rid of superfluous constants, we put temporarily m = 1. The
force on the r.h.s. consists of the damping force -γv(t) of the grass (where γ is
the damping constant) and the sharp force F (t) = sδ(t− σ) of the individual
kick occurring at time t = σ (where s is the strength of the kick, and δ is
the Dirac’s ‘delta’ function). In this way, the (single) kick equation of the ball
motion becomes

v̇ = −γv(t) + sδ(t− σ), (2.111)

with the general solution
v(t) = sG(t− σ),

where G(t− σ) is the Green’s function8

G(t− σ) =
{

0 for t < σ
e−γ(t−σ) for t ≥ σ

.

Now, we can generalize the above to N kicks with individual strengths sj ,
occurring at a sequence of times {σj}, so that the total kicking force becomes

F (t) =
N∑

j=1

sjδ(t− σj).

In this way, we get the multi–kick equation of the ball motion
8 This is the Green’s function of the first order system (2.111). Similarly, the Green’s

function

G(t − σ) =

{
0 for t < σ

(t − σ)e−γ(t−σ) for t ≥ σ

corresponds to the second order system

(
d

dt
+ γ

)2

G(t − σ) = δ(t − σ).
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v̇ = −γv(t) +
N∑

j=1

sjδ(t− σj),

with the general solution

v(t) =
N∑

j=1

sjG(t− σj). (2.112)

As a final generalization, we would imagine that the kicks are continuously
exerted on the ball, so that kicking force becomes

F (t) =
∫ T

t0

s(σ)δ(t− σ)dσ ≡
∫ T

t0

dσF (σ)δ(t− σ),

so that the continuous multi–kick equation of the ball motion becomes

v̇ = −γv(t) +
∫ T

t0

s(σ)δ(t− σ)dσ ≡ −γv(t) +
∫ T

t0

dσF (σ)δ(t− σ),

with the general solution

v(t) =
∫ T

t0

dσF (σ)G(t− σ) =
∫ T

t0

dσF (σ)e−γ(t−σ). (2.113)

Random Kicks and Langevin Equation

We now denote the times at which kicks occur by tj and indicate their direction
in a one–dimensional game by (±1)j , where the choice of the plus or minus
sign is random (e.g., throwing a coin). Thus the kicking force can be written
in the form [Hak02]

F (t) = s

N∑

j=1

δ(t− tj)(±1)j , (2.114)

where for simplicity we assume that all kicks have the same strength s. When
we observe many games, then we may perform an average < ... > over all
these different performances,

< F (t) >= s <
N∑

j=1

δ(t− tj)(±1)j > . (2.115)

Since the direction of the kicks is assumed to be independent of the time at
which the kicks happen, we may split (2.115) into the product

< F (t) >= s <

N∑

j=1

δ(t− tj) >< (±1)j > .
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As the kicks are assumed to happen with equal frequency in both directions,
we get the cancellation

< (±1)j >= 0,

which implies that the average kicking force also vanishes,

< F (t) >= 0.

In order to characterize the strength of the force (2.114), we consider a
quadratic expression in F , e.g., by calculating the correlation function for
two times t, t′,

< F (t)F (t′) >= s2 <
∑

j

δ(t− tj)(±1)j
∑

k

δ(t′ − tk)(±1)k > .

As the ones for j �= k will cancel each other and for j = k will become 1, the
correlation function becomes a single sum

< F (t)F (t′) >= s2 <
∑

j

δ(t− tj)δ(t′ − tk) >, (2.116)

which is usually evaluated by assuming the Poisson process for the times of
the kicks.

Now, proper description of random motion is given by Langevin rate equa-
tion, which describes the Brownian motion: when a particle is immersed in a
fluid, the velocity of this particle is slowed down by a force proportional to its
velocity and the particle undergoes a zig–zag motion (the particle is steadily
pushed by much smaller particles of the liquid in a random way). In physical
terminology, we deal with the behavior of a system (particle) which is coupled
to a heat bath or reservoir (namely the liquid). The heat bath has two effects
[Hak02]:

A. It decelerates the mean motion of the particle; and
B. It causes statistical fluctuation.

The standard Langevin equation has the form

v̇ = −γv(t) + F (t), (2.117)

where F (t) is a fluctuating force with the following properties:

A. Its statistical average (2.115) vanishes; and
B. Its correlation function (2.116) is given by

< F (t)F (t′) >= Qδ(t− t0), (2.118)

where t0 = T/N denotes the mean free time between kicks, and Q = s2/t0
is the random fluctuation.



244 2 Phase Transitions and Synergetics

The general solution of the Langevin equation (2.117) is given by (2.113).
The average velocity vanishes, < v(t) >= 0, as both directions are possible

and cancel each other. Using the integral solution (2.113) we get

< v(t)v(t′) >=<

∫ t

t0

dσ

∫ t′

t0

dσ′F (σ)F (σ′)e−γ(t−σ)e−γ(t
′−σ′) >,

which, in the steady–state, reduces to

< v(t)v(t′) >=
Q

2γ
e−γ(t−σ),

and for equal times

< v(t)2 >=
Q

2γ
.

If we now repeat all the steps performed so far with m �= 1, the final result
reads

< v(t)2 >=
Q

2γm
. (2.119)

Now, according to thermodynamics, the mean kinetic energy of a particle
is given by

m

2
< v(t)2 >=

1
2
kBT, (2.120)

where T is the (absolute) temperature, and kB is the Boltzman’s constant.
Comparing (2.119) and (2.120), we get the important Einstein’s result

Q = 2γkBT,

which says that whenever there is damping, i.e., γ �= 0, then there are random
fluctuations (or noise) Q. In other words, fluctuations or noise are inevitable
in any physical system. For example, in a resistor (with the resistance R) the
electric field E fluctuates with a correlation function (similar to (2.118))

< E(t)E(t′) >= 2RkBTδ(t− t0).

This is the simplest example of the fluctuation–dissipation theorem.

2.3 Synergetics of Recurrent and Attractor Neural
Networks

Recall that recurrent neural networks are neural networks with synaptic feed-
back loops. Provided that we restrict ourselves to large neural systems, we
can apply to their analysis tools from statistical mechanics. Here, we have two
possibilities. Under the common conditions of synaptic symmetry, the stochas-
tic process of evolving neuron states leads towards an equilibrium situation



2.3 Synergetics of Recurrent and Attractor Neural Networks 245

where the microscopic state probabilities are known, where the classical tech-
niques of equilibrium statistical mechanics can be applied. On the other hand,
for non–symmetric networks, where the asymptotic (stationary) statistics are
not known, synergetic techniques from non–equilibrium statistical mechanics
are the only tools available for analysis. Here, the ‘natural’ set of macroscopic
order parameters to be calculated can be defined in practice as the smallest
set which will obey closed deterministic equations in the limit of an infinitely
large network.

Being high–dimensional nonlinear systems with extensive feedback, the dy-
namics of recurrent neural networks are generally dominated by a wealth of
different attractors, and the practical use of recurrent neural networks (in both
biology and engineering) lies in the potential for creation and manipulation
of these attractors through adaptation of the network parameters (synapses
and thresholds). Input fed into a recurrent neural network usually serves to
induce a specific initial configuration (or firing pattern) of the neurons, which
serves as a cue, and the ‘output’ is given by the (static or dynamic) attractor
which has been triggered by this cue. The most familiar types of recurrent
neural network models, where the idea of creating and manipulating attrac-
tors has been worked out and applied explicitly, are the so–called attractor
neural networks for associative memory, designed to store and retrieve infor-
mation in the form of neuronal firing patterns and/or sequences of neuronal
firing patterns. Each pattern to be stored is represented as a microscopic state
vector. One then constructs synapses and thresholds such that the dominant
attractors of the network are precisely the pattern vectors (in the case of static
recall), or where, alternatively, they are trajectories in which the patterns are
successively generated microscopic system states. From an initial configura-
tion (the ‘cue’, or input pattern to be recognized) the system is allowed to
evolve in time autonomously, and the final state (or trajectory) reached can be
interpreted as the pattern (or pattern sequence) recognized by network from
the input. For such programmes to work one clearly needs recurrent neural
networks with extensive ergodicity breaking : the state vector will during the
course of the dynamics (at least on finite time–scales) have to be confined
to a restricted region of state space (an ‘ergodic component’), the location of
which is to depend strongly on the initial conditions. Hence our interest will
mainly be in systems with many attractors. This, in turn, has implications at
a theoretical/mathematical level: solving models of recurrent neural networks
with extensively many attractors requires advanced tools from disordered sys-
tems theory, such as statical replica theory and dynamical partition function
analysis.

The equilibrium statistical mechanical techniques can provide much de-
tailed quantitative information on the behavior of recurrent neural networks,
but they obviously have serious restrictions. The first one is that, by defi-
nition, they will only provide information on network properties in the sta-
tionary state. For associative memories, for instance, it is not clear how one
can calculate quantities like sizes of domains of attraction without solving the
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dynamics. The second, and more serious, restriction is that for equilibrium
statistical mechanics to apply the dynamics of the network under study must
obey detailed balance, i.e., absence of microscopic probability currents in the
stationary state. For recurrent networks in which the dynamics take the form
of a stochastic alignment of neuronal firing rates to post–synaptic potentials
which, in turn, depend linearly on the firing rates, this requirement of detailed
balance usually implies symmetry of the synaptic matrix. From a physiologi-
cal point of view this requirement is clearly unacceptable, since it is violated
in any network that obeys Dale’s law as soon as an excitatory neuron is con-
nected to an inhibitory one. Worse still, in any network of graded–response
neurons detailed balance will always be violated, even when the synapses are
symmetric. The situation will become even worse when we turn to networks
of yet more realistic (spike–based) neurons, such as integrate-and-fire ones.
In contrast to this, non–equilibrium statistical mechanical techniques, it will
turn out, do not impose such biologically non–realistic restrictions on neuron
types and synaptic symmetry, and they are consequently the more appropri-
ate avenue for future theoretical research aimed at solving biologically more
realistic models (for details, see [Coo01, SC00, SC01, CKS05]).

2.3.1 Stochastic Dynamics of Neuronal Firing States

Recall that the simplest non–trivial definition of a recurrent neural network
is that where N binary neurons σi ∈ {−1, 1} (in which the states ‘1’ and ‘-1’
represent firing and rest, respectively) respond iteratively and synchronously
to post–synaptic potentials (or local fields) hi(σ), with σ = (σ1, . . . , σN ).
The fields are assumed to depend linearly on the instantaneous neuron states
(summation convention upon repeated indices is always used):

Parallel Dynamics: σi( +1) = sgn [hi(σ( )) + Tηi( )] , hi(σ) = Jijσj+θi.
(2.121)

The stochasticity is in the independent random numbers ηi( ) ∈ R (represent-
ing threshold noise), which are all drawn according to some distribution w(η).
The parameter T is introduced to control the amount of noise. For T = 0
the process (2.121) is deterministic: σi( + 1) = sgn[hi(σ( ))]. The opposite
extreme is choosing T = ∞, here the system evolution is fully random. The
external fields θi represent neural thresholds and/or external stimuli, Jij rep-
resents the synaptic efficacy at the junction j → i (Jij > 0 implies excitation,
Jij < 0 inhibition). Alternatively we could decide that at each iteration step  
only a single randomly drawn neuron σi� is to undergo an update of the type
(2.121):

Sequential Dynamics: i �= i� : σi( + 1) = σi( ),
i = i� : σi( + 1) = sgn [hi(σ( )) + Tηi( )] ,

(2.122)

with the local fields as in (2.121). The stochasticity is now both in the inde-
pendent random numbers ηi( ) (the threshold noise) and in the site i� to be
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updated, drawn randomly from the set {1, . . . , N}. For simplicity we assume
w(−η) = w(η), and define

g(z) = 2

∫ z

0
dη w(η) : g(−z) = −g(z), lim

z→±∞
g(z) = ±1, ∂zg(z) ≥ 0.

Popular choices for the threshold noise distributions are

w(η) = (2π)−
1
2 e−

1
2η

2
: g(z) = Erf[z/

√
2],

w(η) =
1
2
[1− tanh2(η)] : g(z) = tanh(z).

Now, from the microscopic equations (2.121,2.122), which are suitable for
numerical simulations, we can derive an equivalent but mathematically more
convenient description in terms of microscopic state probabilities p�(σ). Equa-
tions (2.121,2.122) state that, if the system state σ( ) is given, a neuron i to
be updated will obey

Prob [σi( + 1)] =
1
2

[1 + σi( + 1) g[βhi(σ( ))]] , (2.123)

with β = T−1. In the case (2.121) this rule applies to all neurons, and thus
we simply get p�+1(σ) =

∏N
i=1

1
2 [1 + σi g[βhi(σ( ))]]. If, on the other hand,

instead of σ( ) only the probability distribution p�(σ) is given, this expression
for p�+1(σ) is to be averaged over the possible states at time  :

Parallel Dynamics : p�+1(σ) =
∑

σ′

W [σ;σ′] p�(σ′), (2.124)

W [σ;σ′] =
N∏

i=1

1
2

[1 + σi g[βhi(σ′)]] .

This is the standard representation of a Markov chain. Also the sequential
process (2.122) can be formulated in terms of probabilities, but here expression
(2.123) applies only to the randomly drawn candidate i�. After averaging over
all possible realisations of the sites i� we get

p�+1(σ) =
1
N

⎧
⎨

⎩
[
∏

j =i
δσj ,σj(�)]

1
2

[1 + σi g[βhi(σ( ))]]

⎫
⎬

⎭
,

with the Kronecker symbol: δij = 1, if i = j and δij = 0, otherwise. If, instead
of σ( ), the probabilities p�(σ) are given, this expression is to be averaged
over the possible states at time  , with the result:

p�+1(σ) =
1

2N
[1 + σi g[βhi(σ)]] p�(σ)

+
1

2N
[1 + σi g[βhi(Fiσ)]] p�(Fiσ),



248 2 Phase Transitions and Synergetics

with the state-flip operators FiΦ(σ) = Φ(σ1, . . . , σi−1,−σi, σi+1, . . . , σN ).
This equation can again be written in the standard form

p�+1(σ) =
∑

σ′

W [σ;σ′] p�(σ′),

but now with the transition matrix

Sequential Dynamics: W
[
σ; σ′] = δσ,σ′ +

1

N
{wi(Fiσ)δσ,Fiσ′ − wi(σ)δσ,σ′} ,

(2.125)

where δσ,σ′ =
∏

i

δσi,σ′
i

and wi(σ) =
1
2

[1− σi tanh [βhi(σ)]] .

(2.126)
Note that, as soon as T > 0, the two transition matrices W [σ;σ′] in
(2.124,2.125) both describe ergodic systems: from any initial state σ′ one can
reach any final state σ with nonzero probability in a finite number of steps (be-
ing one in the parallel case, and N in the sequential case). It now follows from
the standard theory of stochastic processes (see e.g., [Kam92, Gar85]) that in
both cases the system evolves towards a unique stationary distribution p∞(σ),
where all probabilities p∞(σ) are non–zero [Coo01, SC00, SC01, CKS05].

The above processes have the (mathematically and biologically) less ap-
pealing property that time is measured in discrete units. For the sequential
case we will now assume that the duration of each of the iteration steps is
a continuous random number (for parallel dynamics this would make little
sense, since all updates would still be made in full synchrony). The statistics
of the durations are described by a function π�(t), defined as the probability
that at time t precisely  updates have been made. Upon denoting the previ-
ous discrete-time probabilities as p̂�(σ), our new process (which now includes
the randomness in step duration) will be described by

pt(σ) =
∑

�≥0

π�(t)p̂�(σ) =
∑

�≥0

π�(t)
∑

σ′

W � [σ;σ′] p0(σ′),

and time has become a continuous variable. For π�(t) we make the Poisson
choice,

π�(t) =
1
 +

(
t

Δ
)�e−t/Δ.

From 〈 〉π = t/Δ and 〈 2〉π = t/Δ + t2/Δ2 it follows that Δ is the average
duration of an iteration step, and that the relative deviation in  at a given
t vanishes for Δ → 0 as

√
〈 2〉π − 〈 〉2π/〈 〉π =

√
Δ/t. The nice properties of

the Poisson distribution under temporal derivation allow us to derive:

Δṗt(σ) =
∑

σ′

W [σ;σ′] pt(σ′)− pt(σ).

For sequential dynamics, we choose Δ = 1
N so that, as in the parallel case,

in one time unit each neuron will on average be updated once. The master
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equation corresponding to (2.125) acquires the form wi(σ); (2.126) now play
the role of transition rates. The choice Δ = 1

N implies
√
〈 2〉π − 〈 〉2π/〈 〉π =√

1/Nt, so we will still for N → ∞ no longer have uncertainty in where we
are on the t axis.

Alternatively, we could start with continuous neuronal variables σi (rep-
resenting e.g., firing frequencies or oscillator phases), where i = 1, . . . , N , and
with stochastic equations of the form

σi(t + Δ) = σi(t) + Δfi(σ(t)) +
√

2TΔξi(t). (2.127)

Here, we have introduced (as yet unspecified) deterministic state–dependent
forces fi(σ), and uncorrelated Gaussian distributed random forces ξi(t) (the
noise), with

〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δijδt,t′ .

As before, the parameter T controls the amount of noise in the system, rang-
ing from T = 0 (deterministic dynamics) to T = ∞ (completely random
dynamics). If we take the limit Δ→ 0 in (2.127) we find a Langevin equation
(with a continuous time variable) [Coo01, SC00, SC01, CKS05]:

σ̇i(t) = fi(σ(t)) + ηi(t). (2.128)

This equation acquires its meaning only as the limit Δ → 0 of (2.127). The
moments of the new noise variables ηi(t) = ξi(t)

√
2T/Δ in (2.128) are given

by
〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = 2Tδijδ(t− t′).

This can be derived from the moments of the ξi(t). For instance:

〈ηi(t)ηj(t′)〉 = lim
Δ→0

2T
Δ
〈ξi(t)ξj(t′)〉

= 2Tδij lim
Δ→0

1
Δ

δt,t′ = 2TCδijδ(t− t′).

The constant C is found by summing over t′, before taking the limit Δ→ 0,
in the above equation:

∫
dt′ 〈ηi(t)ηj(t′)〉 = lim

Δ→0
2T

∞∑

t′=−∞
〈ξi(t)ξj(t′)〉

= 2Tδij lim
Δ→0

∞∑

t′=−∞
δt,t′ = 2Tδij .

Thus C = 1, which indeed implies 〈ηi(t)ηj(t′)〉 = 2Tδijδ(t−t′). More directly,
one can also calculate the moment partition function:
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〈ei
∫
dtψi(t)ηi(t)〉 = lim

Δ→0

∏

i,t

∫
dz√
2π

e−
1
2 z

2+izψi(t)
√

2TΔ (2.129)

= lim
Δ→0

∏

i,t

e−TΔψ
2
i (t) = e−T

∫
dt

∑
i ψ

2
i (t). (2.130)

On the other hand, a mathematically more convenient description of the
process (2.128) is provided by the Fokker–Planck equation for the microscopic
state probability density pt(σ) = 〈δ[σ − σ(t)]〉, which we will now derive.
For the discrete–time process (2.127) we expand the δ−distribution in the
definition of pt+Δ(σ) (in a distributional sense) [Coo01, SC00, SC01, CKS05]:

pt+Δ(σ)− pt(σ) = 〈δ
[
σ − σ(t)−Δf(σ(t))−

√
2TΔξ(t)

]
〉 − 〈δ[σ − σ(t)]〉

= − ∂

∂σi
〈δ[σ − σ(t)]

[
Δfi(σ(t)) +

√
2TΔξi(t)

]
〉

+ TΔ
∂2

∂σi∂σj
〈δ[σ − σ(t)]ξi(t)ξj(t)〉+O(Δ

3
2 ).

The variables σ(t) depend only on noise variables ξj(t′) with t′ < t, so that
for any function A,

〈A[σ(t)]ξi(t)〉 = 〈A[σ(t)]〉〈ξi(t)〉 = 0, and
〈A[σ(t)]ξi(t)ξj(t)〉 = δij〈A[σ(t)]〉.

As a consequence, we have:

1
Δ

[pt+Δ(σ)− pt(σ)] = − ∂

∂σi
〈δ[σ − σ(t)]fi(σ(t))〉

+ T
∂2

∂σ2
i

〈δ[σ − σ(t)]〉+O(Δ
1
2 )

= − ∂

∂σi
[pt(σ)fi(σ)] + T

∂2

∂σ2
i

pt(σ) +O(Δ
1
2 ).

By taking the limit Δ→ 0 we then arrive at the Fokker–Planck equation:

ṗt(σ) = − ∂

∂σi
[pt(σ)fi(σ)] + T

∂2

∂σ2
i

pt(σ). (2.131)

In the case of graded–response neurons, the continuous variable σi repre-
sents the membrane potential of neuron i, and (in their simplest form) the
deterministic forces are given by

fi(σ) = Jij tanh[γσj ]− σi + θi, with γ > 0,

and with the θi representing injected currents. Conventional notation is re-
stored by putting σi → ui. Thus equation (2.128) specializes to
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u̇i(t) = Jij tanh[γuj(t)]− ui(t) + θi + ηi(t). (2.132)

One often chooses T = 0 (i.e., ηi(t) = 0), the rationale being that threshold
noise is already assumed to have been incorporated via the nonlinearity in
(2.132).

In our second example the variables σi represent the phases of coupled
neural oscillators, with forces of the form

fi(σ) = Jij sin(σj − σi) + ωi.

Individual synapses Jij now try to enforce either pair–wise synchronization
(Jij > 0), or pair–wise anti–synchronization (Jij < 0), and the ωi represent
the natural frequencies of the individual oscillators. Conventional notation
dictates σi → ξi, giving [Coo01, SC00, SC01, CKS05]

ξ̇i(t) = ωi + Jij sin[ξj(t)− ξi(t)] + ηi(t). (2.133)

2.3.2 Synaptic Symmetry and Lyapunov Functions

In the deterministic limit T → 0 the rules (2.121) for networks of syn-
chronously evolving binary neurons reduce to the deterministic map

σi( + 1) = sgn [hi(σ( ))] . (2.134)

It turns out that for systems with symmetric interactions, Jij = Jji for all
(ij), one can construct a Lyapunov function, i.e., a function of σ which during
the dynamics decreases monotonically and is bounded from below (see e.g.,
[Kha92]):

Binary & Parallel Dynamics: L[σ] = −
∑

i

|hi(σ)| − σiθi. (2.135)

Clearly, L ≥ −
∑
i[
∑
j |Jij | + |θi|] −

∑
i |θi|. During iteration of (2.134) we

find:

L[σ( + 1)]− L[σ( )] = −
∑

i

|hi(σ( + 1))|

+ σi( + 1)[Jijσj( ) + θi]− θi [σi( + 1)− σi( )]

= −
∑

i

|hi(σ( + 1))|+ σi( )hi(σ( + 1))

= −
∑

i

|hi(σ( + 1))| [1− σi( + 2)σi( )] ≤ 0,

where we have used (2.134) and Jij = Jji. So L decreases monotonically until
a stage is reached where σi( + 2) = σi( ) for all i. Thus, with symmetric
interactions this system will in the deterministic limit always end up in a
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limit cycle with period ≤ 2. A similar result is found for networks with binary
neurons and sequential dynamics. In the limit T → 0 the rules (2.122) reduce
to the map

σi( + 1) = δi,i�sgn [hi(σ( ))] + [1− δi,i� ]σi( ). (2.136)

(in which we still have randomness in the choice of site to be updated). For
systems with symmetric interactions and without self–interactions, i.e., Jii = 0
for all i, we again find a Lyapunov function:

Binary & Sequential Dynamics: L[σ] = −1
2
σiJijσj − σiθi. (2.137)

This quantity is bounded from below, L ≥ − 1
2

∑
ij |Jij |−

∑
i |θi|. Upon calling

the site i� selected for update at step  simply i, the change in L during
iteration of (2.136) can be written as [Coo01, SC00, SC01, CKS05]:

L[σ( + 1)]− L[σ( )] = −θi[σi( + 1)− σi( )]

− 1
2
Jik[σi( + 1)σk( + 1)− σi( )σk( )]

− 1
2
Jji[σj( + 1)σi( + 1)− σj( )σi( )]

= [σi( )− σi( + 1)][Jijσj( ) + θi]
= −|hi(σ( ))| [1− σi( )σi( + 1)] ≤ 0.

Here we used (2.136), Jij = Jji, and absence of self–interactions. Thus L
decreases monotonically until σi(t + 1) = σi(t) for all i. With symmetric
synapses, but without diagonal terms, the sequentially evolving binary neu-
rons system will in the deterministic limit always end up in a stationary state.

Now, one can derive similar results for models with continuous variables.
Firstly, in the deterministic limit the graded–response equations (2.132) sim-
plify to

u̇i(t) = Jij tanh[γuj(t)]− ui(t) + θi. (2.138)

Symmetric networks again admit a Lyapunov function (without a need to
eliminate self-interactions):

Graded–Response Dynamics : L[u] = −1
2
Jij tanh(γui) tanh(γuj) +

∑

i

[
γ

∫ ui

0

dv v[1− tanh2(γv)]− θi tanh(γui)
]
.

Clearly, L ≥ −1
2

∑
ij |Jij | −

∑
i |θi|; the term in L[u] with the integral is non–

negative. During the noise–free dynamics (2.138) one can use the identity

∂L

∂ui
= −γu̇i[1− tanh2(γui)],
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valid only when Jij = Jji, to derive [Coo01, SC00, SC01, CKS05]

L̇ =
∂L

∂ui
u̇i = −γ

∑

i

[1− tanh2(γui)] u̇2
i ≤ 0.

Again L is found to decrease monotonically, until u̇i = 0 for all i, i.e., until
we are at a fixed–point.

The coupled oscillator equations (2.133) reduce in the noise–free limit to

ξ̇i(t) = ωi + Jij sin[ξj(t)− ξi(t)]. (2.139)

Note that self-interactions Jii always drop out automatically. For symmet-
ric oscillator networks, a construction of the type followed for the graded–
response equations would lead us to propose

Coupled Oscillators Dynamics: L[ξ] = −1
2
Jij cos[ξi − ξj ]− ωiξi. (2.140)

This function decreases monotonically, due to ∂L/∂ξi = −ξ̇i:

L̇ =
∂L

∂ξi
ξ̇i = −

∑

i

ξ̇
2

i ≤ 0.

Actually, (2.139) describes gradient descent on the surface L[ξ]. However, due
to the term with the natural frequencies ωi the function L[ξ] is not bounded, so
it cannot be a Lyapunov function. This could have been expected; when Jij =
0 for all (i, j), for instance, one finds continually increasing phases, ξi(t) =
ξi(0)+ωit. Removing the ωi, in contrast, gives the bound L ≥ −

∑
j |Jij |. Now

the system must go to a fixed-point. In the special case ωi = ω (N identical
natural frequencies) we can transform away the ωi by putting ξ(t) = ξ̃i(t)+ωt,
and find the relative phases ξ̃i to go to a fixed-point.

2.3.3 Detailed Balance and Equilibrium Statistical Mechanics

The results got above indicate that networks with symmetric synapses are
a special class [Coo01, SC00, SC01, CKS05]. We now show how synaptic
symmetry is closely related to the detailed balance property, and derive a
number of consequences. An ergodic Markov chain of the form (2.124,2.125),
i.e.,

p�+1(σ) =
∑

σ′

W [σ;σ′] p�(σ′), (2.141)

is said to obey detailed balance if its (unique) stationary solution p∞(σ) has
the property

W [σ;σ′] p∞(σ′) = W [σ′;σ] p∞(σ), (for all σ,σ′). (2.142)
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All p∞(σ) which satisfy (2.142) are stationary solutions of (2.141), this is
easily verified by substitution. The converse is not true. Detailed balance
states that, in addition to p∞(σ) being stationary, one has equilibrium: there
is no net probability current between any two microscopic system states.

It is not a trivial matter to investigate systematically for which choices of
the threshold noise distribution w(η) and the synaptic matrix {Jij} detailed
balance holds. It can be shown that, apart from trivial cases (e.g., systems
with self–interactions only) a Gaussian distribution w(η) will not support
detailed balance. Here we will work out details only for the choice w(η) =
1
2 [1 − tanh2(η)], and for T > 0 (where both discrete systems are ergodic).
For parallel dynamics the transition matrix is given in (2.124), now with
g[z] = tanh[z], and the detailed balance condition (2.142) becomes

eβσihi(σ
′)p∞(σ′)

∏
i cosh[βhi(σ′)]

=
eβσ

′
ihi(σ)p∞(σ)

∏
i cosh[βhi(σ)]

, (for all σ,σ′). (2.143)

All p∞(σ) are non-zero (ergodicity), so we may safely put

p∞(σ) = eβ[θiσi+K(σ)]
∏

i

cosh[βhi(σ)],

which, in combination with definition (2.121), simplifies the detailed balance
condition to:

K(σ)−K(σ′) = σi [Jij − Jji]σ′
j , (for all σ,σ′). (2.144)

Averaging (2.144) over all possible σ′ gives K(σ) = 〈K(σ′)〉σ′ for all σ,
i.e., K is a constant, whose value follows from normalizing p∞(σ). So, if
detailed balance holds the equilibrium distribution must be [Coo01, SC00,
SC01, CKS05]:

peq(σ) ∼ eβθiσi

∏

i

cosh[βhi(σ)]. (2.145)

For symmetric systems detailed balance indeed holds: (2.145) solves (2.143),
since K(σ) = K solves the reduced problem (2.144). For non-symmetric sys-
tems, however, there can be no equilibrium. For K(σ) = K the condition
(2.144) becomes

∑
ij σi [Jij − Jji]σ′

j = 0 for all σ,σ′ ∈ {−1, 1}N . For N ≥ 2
the vector pairs (σ,σ′) span the space of all N×N matrices, so Jij−Jji must
be zero. For N = 1 there simply exists no non-symmetric synaptic matrix. In
conclusion: for binary networks with parallel dynamics, interaction symmetry
implies detailed balance, and vice versa.

For sequential dynamics, with w(η) = 1
2 [1− tanh2(η)], the transition ma-

trix is given by (2.125) and the detailed balance condition (2.142) simplifies
to

eβσihi(Fiσ)p∞(Fiσ)
cosh [βhi(Fiσ)]

=
e−βσihi(σ)p∞(σ)

cosh [βhi(σ)]
, (for all σ, i).



2.3 Synergetics of Recurrent and Attractor Neural Networks 255

Self–interactions Jii, inducing hi(Fiσ) �= hi(σ), complicate matters. Therefore
we first consider systems where all Jii = 0. All stationary probabilities p∞(σ)
being non–zero (ergodicity), we may write:

p∞(σ) = eβ[θiσi+
1
2σiJijσj+K(σ)]. (2.146)

Using relations like

JklFi(σkσl) = Jklσkσl − 2σi [Jik + Jki]σk,

we can simplify the detailed balance condition to

K(Fiσ)−K(σ) = σi [Jik − Jki]σk, (for all σ, i).

If to this expression we apply the general identity

[1− Fi] f(σ) = 2σi〈σif(σ)〉σi
,

we find for i �= j [Coo01, SC00, SC01, CKS05]:

K(σ) = −2σiσj [Jij − Jji] , (for all σ and all i �= j).

The left–hand side is symmetric under permutation of the pair (i, j), which
implies that the interaction matrix must also be symmetric: Jij = Jji for all
(i, j). We now find the trivial solution K(σ) = K (constant), detailed balance
holds and the corresponding equilibrium distribution is

peq(σ) ∼ e−βH(σ), H(σ) = −1
2
σiJijσj − θiσi.

In conclusion: for binary networks with sequential dynamics, but without self–
interactions, interaction symmetry implies detailed balance, and vice versa. In
the case of self–interactions the situation is more complicated. However, here
one can still show that non-symmetric models with detailed balance must be
pathological, since the requirements can be met only for very specific choices
for the {Jij}.

Now, let us turn to the question of when we find microscopic equilibrium
(stationarity without probability currents) in continuous models described
by a Fokker–Planck equation (2.131). Note that (2.131) can be seen as a
continuity equation for the density of a conserved quantity:

ṗt(σ) +
∂

∂σi
Ji(σ, t) = 0.

The components Ji(σ, t) of the current density are given by

Ji(σ, t) = [fi(σ)− T
∂

∂σi
]pt(σ).
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Stationary distributions p∞(σ) are those which give
∑
i
∂
∂σi

Ji(σ,∞) = 0
(divergence-free currents). Detailed balance implies the stronger statement
Ji(σ,∞) = 0 for all i (zero currents), so

fi(σ) = T
∂ log p∞(σ)

∂σi
, or

fi(σ) = −∂H(σ)
∂σi

, p∞(σ) ∼ e−βH(σ), (2.147)

for some H(σ), i.e., the forces fi(σ) must be conservative. However, one can
have conservative forces without a normalizable equilibrium distribution. Just
take H(σ) = 0, i.e., fi(σ, t) = 0: here we have peq(σ) = C, which is not
normalizable for σ ∈ R

N . For this particular case equation (2.131) is solved
easily:

pt(σ) = [4πTt]−N/2
∫

dσ′ p0(σ′)e−[σ−σ′]2/4Tt,

so the limit limt→∞ pt(σ) does not exist. One can prove the following (see e.g.,
[Zin93]). If the forces are conservative and if p∞(σ) ∼ e−βH(σ) is normalizable,
then it is the unique stationary solution of the Fokker–Planck equation, to
which the system converges for all initial distributions p0 ∈ L1[RN ] which
obey

∫
RN dσ eβH(σ)p2

0(σ) <∞.
Note that conservative forces must obey [Coo01, SC00, SC01, CKS05]

∂fi(σ)
∂σj

− ∂fj(σ)
∂σi

= 0, (for all σ and all i �= j). (2.148)

In the graded–response equations (2.138) the deterministic forces are

fi(u) = Jij tanh[γuj ]− ui + θi, where
∂fi(u)
∂uj

− ∂fj(u)
∂ui

= γ{Jij [1− tanh2[γuj ]− Jji[1− tanh2[γui]}.

At u = 0 this reduces to Jij − Jji, i.e., the interaction matrix must be sym-
metric. For symmetric matrices we find away from u = 0:

∂fi(u)
∂uj

− ∂fj(u)
∂ui

= γJij{tanh2[γui]− tanh2[γuj ]}.

The only way for this to be zero for any u is by having Jij = 0 for all i �= j,
i.e., all neurons are disconnected (in this trivial case the system (2.138) does
indeed obey detailed balance). Network models of interacting graded–response
neurons of the type (2.138) apparently never reach equilibrium, they will
always violate detailed balance and exhibit microscopic probability currents.
In the case of coupled oscillators (2.133), where the deterministic forces are

fi(ξ) = Jij sin[ξj − ξi] + ωi,
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one finds the left-hand side of condition (2.148) to give

∂fi(ξ)
∂ξj

− ∂fj(ξ)
∂ξi

= [Jij − Jji] cos[ξj − ξi].

Requiring this to be zero for any ξ gives the condition Jij = Jji for any
i �= j. We have already seen that symmetric oscillator networks indeed have
conservative forces:

fi(ξ) = −∂H(ξ)/∂ξi, with H(ξ) = −1
2
Jij cos[ξi − ξj ]− ωiξi.

If in addition we choose all ωi = 0 the function H(σ) will also be bounded from
below, and, although p∞(ξ) ∼ e−βH(ξ) is still not normalizable on ξ ∈ R

N , the
full 2π−periodicity of the function H(σ) now allows us to identify ξi+2π ≡ ξi
for all i, so that now ξ ∈ [−π, π]N and

∫
dξ e−βH(ξ) does exist. Thus sym-

metric coupled oscillator networks with zero natural frequencies obey detailed
balance. In the case of non-zero natural frequencies, in contrast, detailed bal-
ance does not hold.

The above results establish the link with equilibrium statistical mechanics
(see e.g., [Yeo92, PB94]). For binary systems with symmetric synapses (in the
sequential case: without self-interactions) and with threshold noise distribu-
tions of the form

w(η) =
1
2
[1− tanh2(η)],

detailed balance holds and we know the equilibrium distributions. For sequen-
tial dynamics it has the Boltzmann form (2.147) and we can apply standard
equilibrium statistical mechanics. The parameter β can formally be identi-
fied with the inverse ‘temperature’ in equilibrium, β = T−1, and the function
H(σ) is the usual Ising–spin Hamiltonian. In particular we can define the
partition function Z and the free energy F [Coo01, SC00, SC01, CKS05]:

peq(σ) =
1
Z

e−βH(σ), H(σ) = −1
2
σiJijσj − θiσi, (2.149)

Z =
∑

σ

e−βH(σ), F = −β−1 logZ. (2.150)

The free energy can be used as the partition function for equilibrium averages.
Taking derivatives with respect to external fields θi and interactions Jij , for
instance, produces 〈σi〉 = −∂F/∂θi and 〈σiσj〉 = −∂F/∂Jij , whereas equi-
librium averages of arbitrary state variable f(σ) can be obtained by adding
suitable partition terms to the Hamiltonian:

H(σ) → H(σ) + λf(σ), 〈f〉 = lim
λ→0

∂F

∂λ
.

In the parallel case (2.145) we can again formally write the equilibrium prob-
ability distribution in the Boltzmann form [Per84] and define a corresponding
partition function Z̃ and a free energy F̃ :
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peq(σ) =
1
Z

e−βH̃(σ), H̃(σ) = −θiσi −
1
β

∑

i

log 2 cosh[βhi(σ)], (2.151)

Z̃ =
∑

σ

e−βH̃(σ), F̃ = −β−1 log Z̃, (2.152)

which again serve to generate averages: H̃(σ) → H̃(σ) + λf(σ), 〈f〉 =
limλ→0 ∂F̃ /∂λ. However, standard thermodynamic relations involving deriva-
tion with respect to β need no longer be valid, and derivation with re-
spect to fields or interactions generates different types of averages, such as
[Coo01, SC00, SC01, CKS05]

−∂F̃

∂θi
= 〈σi〉+ 〈tanh[βhi(σ)]〉, − ∂F̃

∂Jii
= 〈σi tanh[βhi(σ)]〉,

i �= j :
∂F̃

∂Jii
= 〈σi tanh[βhj(σ)]〉+ 〈σj tanh[βhi(σ)]〉.

One can use 〈σi〉 = 〈tanh[βhi(σ)]〉, which can be derived directly from the
equilibrium equation peq(σ) =

∑
σ′ W [σ;σ′]peq(σ), to simplify the first of

these identities.
A connected network of graded–response neurons can never be in an equi-

librium state, so our only model example with continuous neuronal variables
for which we can set up the equilibrium statistical mechanics formalism is the
system of coupled oscillators (2.133) with symmetric synapses and absent (or
uniform) natural frequencies ωi. If we define the phases as ξi ∈ [−π, π] we
have again an equilibrium distribution of the Boltzmann form, and we can
define the standard thermodynamic quantities:

peq(ξ) =
1
Z

e−βH(ξ), H(ξ) = −1
2
Jij cos[ξi − ξj ], (2.153)

Z =
∫ π

−π
· · ·

∫ π

−π
dξ e−βH(ξ), F = −β−1 logZ. (2.154)

These generate equilibrium averages in the usual manner. For instance

〈cos[ξi − ξj ]〉 = − ∂F

∂Jij
,

whereas averages of arbitrary state variables f(ξ) follow, as before, upon in-
troducing suitable partition terms:

H(ξ) → H(ξ) + λf(ξ), 〈f〉 = lim
λ→0

∂F

∂λ
.
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2.3.4 Simple Recurrent Networks with Binary Neurons

Networks with Uniform Synapses

We now turn to a simple toy model to show how equilibrium statistical me-
chanics is used for solving neural network models, and to illustrate similarities
and differences between the different dynamics types [Coo01, SC00, SC01,
CKS05]. We choose uniform infinite-range synapses and zero external fields,
and calculate the free energy for the binary systems (2.121,2.122), parallel
and sequential, and with threshold–noise distribution w(η) = 1

2 [1− tanh2(η)]:

Jij = Jji = J/N, (i �= j), Jii = θi = 0, (for all i).

The free energy is an extensive object, limN→∞ F/N is finite. For the models
(2.121,2.122) we now get:

Binary & Sequential Dynamics:

lim
N→∞

F/N = − lim
N→∞

(βN)−1 log
∑

σ

eβN[ 1
2Jm

2(σ)],

Binary & Parallel Dynamics:

lim
N→∞

F̃ /N = − lim
N→∞

(βN)−1 log
∑

σ

eN [log 2 cosh[βJm(σ)]],

with the average activity m(σ) = 1
N

∑
k σk. We have to count the number of

states σ with a prescribed average activity m = 2n/N − 1 (n is the number
of neurons i with σi = 1), in expressions of the form

1
N

log
∑

σ

eNU [m(σ)] =
1
N

log
N∑

n=0

(
N
n

)
eNU [2n/N−1]

=
1
N

log
∫ 1

−1

dm eN [log 2−c∗(m)+U [m]],

lim
N→∞

1
N

log
∑

σ

eNU [m(σ)] = log 2 + max
m∈[−1,1]

{U [m]− c∗(m)} ,

with the entropic function

c∗(m) =
1
2
(1 + m) log(1 + m) +

1
2
(1−m) log(1−m).

In order to get there we used Stirling’s formula to get the leading term of the
factorials (only terms which are exponential in N survive the limit N →∞),
we converted (for N → ∞) the summation over n into an integration over
m = 2n/N − 1 ∈ [−1, 1], and we carried out the integral over m via saddle–
point integration (see e.g., [Per92]). This leads to a saddle–point problem
whose solution gives the free energies [Coo01, SC00, SC01, CKS05]:
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lim
N→∞

F/N = min
m∈[−1,1]

fseq(m), βfseq(m) = c∗(m)− log 2− 1
2
βJm2.

(2.155)
lim
N→∞

F̃ /N = min
m∈[−1,1]

fpar(m), βfpar(m) = c∗(m)−2 log 2−log cosh[βJm].

(2.156)
The equations from which to solve the minima are easily got by differentiation,
using d

dmc∗(m) = tanh−1(m). For sequential dynamics we find

Binary & Sequential Dynamics: m = tanh[βJm], (2.157)

which is the so–called Curie–Weiss law . For parallel dynamics we find

m = tanh [βJ tanh[βJm]] .

One finds that the solutions of the latter equation again obey a Curie–Weiss
law. The definition m̂ = tanh[β|J |m] transforms it into the coupled equations
m = tanh[β|J |m̂] and m̂ = tanh[β|J |m], from which we derive

0 ≤ [m− m̂]2 = [m− m̂] [tanh[β|J |m̂]− tanh[β|J |m]] ≤ 0.

Since tanh[β|J |m] is a monotonically increasing function of m, this implies
m̂ = m, so

Binary & Parallel Dynamics: m = tanh[β|J |m]. (2.158)

Our study of the toy models has thus been reduced to analyzing the nonlinear
equations (2.157) and (2.158). If J ≥ 0 (excitation) the two types of dynamics
lead to the same behavior. At high noise levels, T > J , both minimisation
problems are solved by m = 0, describing a disorganized (paramagnetic) state.
This can be seen upon writing the right–hand side of (2.157) in integral form
[Coo01, SC00, SC01, CKS05]:

m2 = m tanh[βJm] = βJm2

∫ 1

0

dz [1− tanh2[βJmz]] ≤ βJm2.

So m2[1− βJ ] ≤ 0, which gives m = 0 as soon as βJ < 1. A phase transition
occurs at T = J (a bifurcation of non–trivial solutions of (2.157)), and for
T < J the equations for m are solved by the two non-zero solutions of (2.157),
describing a state where either all neurons tend to be firing (m > 0) or where
they tend to be quiet (m < 0). This becomes clear when we expand (2.157) for
small m: m = βJm+O(m3), so precisely at βJ = 1 one finds a de–stabilization
of the trivial solution m = 0, together with the creation of (two) stable non–
trivial ones. Furthermore, using the identity c∗(tanhx) = x tanhx−log coshx,
we get from (2.155,2.156) the relation limN→∞ F̃ /N = 2 limN→∞ F/N . For
J < 0 (inhibition), however, the two types of dynamics give quite different
results. For sequential dynamics the relevant minimum is located at m = 0
(the paramagnetic state). For parallel dynamics, the minimization problem is
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invariant under J → −J , so the behavior is again of the Curie-Weiss type, with
a paramagnetic state for T > |J |, a phase transition at T = |J |, and order
for T < |J |. This difference between the two types of dynamics for J < 0
is explained by studying dynamics. For the present (toy) model in the limit
N → ∞ the average activity evolves in time according to the deterministic
laws [Coo01, SC00, SC01, CKS05]

ṁ = tanh[βJm]−m, m(t + 1) = tanh[βJm(t)],

for sequential and parallel dynamics, respectively. For J < 0 the sequential
system always decays towards the trivial state m = 0, whereas for sufficiently
large β the parallel system enters the stable limit–cycle m(t) = Mβ(−1)t,
where Mβ is the non-zero solution of (2.158). The concepts of ‘distance’ and
‘local minima’ are quite different for the two dynamics types; in contrast to
the sequential case, parallel dynamics allows the system to make the transition
m→ −m in equilibrium.

Phenomenology of Hopfield Models

Recall that the Hopfield model [Hop82] represents a network of binary neurons
of the type (2.121,2.122), with threshold noise w(η) = 1

2 [1 − tanh2(η)], and
with a specific recipe for the synapses Jij aimed at storing patterns, motivated
by suggestions made in the late nineteen-forties [Heb49]. The original model
was in fact defined more narrowly, as the zero noise limit of the system (2.122),
but the term has since then been accepted to cover a larger network class.
Let us first consider the simplest case and try to store a single pattern ξ ∈
{−1, 1}N in noise–less infinite–range binary networks. Appealing candidates
for interactions and thresholds would be Jij = ξiξj and θi = 0 (for sequential
dynamics we put Jii = 0 for all i). With this choice the Lyapunov function
(2.137) becomes:

Lseq[σ] =
1
2
N − 1

2
[ξiσi]

2.

This system indeed reconstructs dynamically the original pattern ξ from an
input vector σ(0), at least for sequential dynamics. However, en passant we
have created an additional attractor: the state -ξ. This property is shared by
all binary models in which the external fields are zero, where the Hamiltonians
H(σ) (2.149) and H̃(σ) (2.151) are invariant under an overall sign change
σ → −σ. A second feature common to several (but not all) attractor neural
networks is that each initial state will lead to pattern reconstruction, even
nonsensical (random) ones.

The Hopfield model is got by generalizing the previous simple one-
pattern recipe to the case of an arbitrary number p of binary patterns
ξμ = (ξμ1 , . . . , ξ

μ
N ) ∈ {−1, 1}N [Coo01, SC00, SC01, CKS05]:

Jij =
1
N

ξμi ξ
μ
j , θi = 0 (for all i; μ = 1, ..., p), (2.159)

(sequential dynamics : Jii → 0, for all i).
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The prefactor N−1 has been inserted to ensure that the limit N → ∞ will
exist in future expressions. The process of interest is that where, triggered
by correlation between the initial state and a stored pattern ξλ, the state
vector σ evolves towards ξλ. If this happens, pattern ξλ is said to be recalled.
The similarity between a state vector and the stored patterns is measured by
so–called Hopfield overlaps

mμ(σ) =
1
N

ξμi σi. (2.160)

The Hopfield model represents as an associative memory, in which the recall
process is described in terms of overlaps.

Analysis of Hopfield Models Away From Saturation

A binary Hopfield network with parameters given by (2.159) obeys detailed
balance, and the Hamiltonian H(σ) (2.149) (corresponding to sequential dy-
namics) and the pseudo-Hamiltonian H̃(σ) (2.151) (corresponding to parallel
dynamics) become [Coo01, SC00, SC01, CKS05]

H(σ) = −1
2
N

p∑

μ=1

m2
μ(σ) +

1
2
p, (2.161)

H̃(σ) = − 1
β

∑

i

log 2 cosh[βξμi mμ(σ)],

with the overlaps (2.160). Solving the statics implies calculating the free en-
ergies F and F̃ :

F = − 1
β

log
∑

σ

e−βH(σ), F̃ = − 1
β

log
∑

σ

e−βH̃(σ).

Upon introducing the short-hand notation m = (m1, . . . ,mp) and ξi =
(ξ1
i , . . . , ξ

p
i ), both free energies can be expressed in terms of the density of

states D(m) = 2−N
∑

σ δ[m−m(σ)]:

F/N = − 1
β

log 2− 1
βN

log
∫

dm D(m) e
1
2βNm2

+
p

2N
, (2.162)

F̃ /N = − 1
β

log 2− 1
βN

log
∫

dm D(m) e
∑N

i=1 log 2 cosh[βξi·m], (2.163)

using
∫

dm δ[m −m(σ)] = 1. In order to proceed, we need to specify how
the number of patterns p scales with the system size N . In this section we
will follow [AGS85] (equilibrium analysis following sequential dynamics) and
[FK88] (equilibrium analysis following parallel dynamics), and assume p to be
finite. One can now easily calculate the leading contribution to the density
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of states, using the integral representation of the δ−function and keeping in
mind that according to (2.162,2.163) only terms exponential in N will retain
statistical relevance for N →∞:

lim
N→∞

1
N

logD(m) = lim
N→∞

1
N

log
∫

dx eiNx·m〈e−iσiξi·x〉σ

= lim
N→∞

1
N

log
∫

dx eN [ix·m+〈log cos[ξ·x]〉ξ],

with the abbreviation 〈Φ(ξ)〉ξ = limN→∞
1
N

∑N
i=1 Φ(ξi). The leading contri-

bution to both free energies can be expressed as a finite-dimensional integral,
for large N dominated by that saddle–point (extremum) for which the exten-
sive exponent is real and maximal [Coo01, SC00, SC01, CKS05]:

lim
N→∞

F/N = − 1
βN

log
∫

dmdx e−Nβf(m,x) = extrx,m f(m,x),

lim
N→∞

F̃ /N = − 1
βN

log
∫

dmdx e−Nβf̃(m,x) = extrx,m f̃(m,x), with

f(m,x) = −1
2m

2 − ix ·m− β−1〈log 2 cos [βξ · x]〉ξ,

f̃(m,x) = −β−1〈log 2 cosh [βξ ·m]〉ξ − ix ·m− β−1〈log 2 cos [βξ · x]〉ξ.

The saddle–point equations for f and f̃ are given by:

f : x = im, im = 〈ξ tan [βξ · x]〉ξ,

f̃ : x = i〈ξ tanh [βξ ·m]〉ξ, im = 〈ξ tan [βξ · x]〉ξ.

In saddle-points x turns out to be purely imaginary. However, after a shift
of the integration contours, putting x = ix�(m) + y (where ix�(m) is the
imaginary saddle–point, and where y ∈ R

p) we can eliminate x in favor of
y ∈ R

p which does have a real saddle–point, by construction.(Our functions
to be integrated have no poles, but strictly speaking we still have to verify
that the integration segments linking the original integration regime to the
shifted one will not contribute to the integrals. This is generally a tedious and
distracting task, which is often skipped. For simple models, however (e.g.,
networks with uniform synapses), the verification can be carried out properly,
and all is found to be safe.) We then get

Sequential Dynamics: m = 〈ξ tanh[βξ ·m]〉ξ,

Parallel Dynamics: m = 〈ξ tanh[βξ · [〈ξ′ tanh[βξ′ ·m]〉ξ′ ]]〉ξ,

(compare to e.g., (2.157,2.158)). The solutions of the above two equations will
in general be identical. To see this, let us denote m̂ = 〈ξ tanh [βξ ·m]〉ξ, with
which the saddle point equation for f̃ decouples into:
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m = 〈ξ tanh [βξ · m̂]〉ξ, m̂ = 〈ξ tanh [βξ ·m]〉ξ, so

[m− m̂]2 = 〈[(ξ ·m)− (ξ · m̂)] [tanh(βξ · m̂)− tanh(βξ ·m)]〉ξ.

Since tanh is a monotonicaly–increasing function, we must have [m− m̂] ·ξ =
0 for each ξ that contributes to the averages 〈. . .〉ξ. For all choices of patterns
where the covariance matrix Cμν = 〈ξμξν〉ξ is positive definite, we thus get
m = m̂. The final result is: for both types of dynamics (sequential and parallel)
the overlap order parameters in equilibrium are given by the solution m∗ of

m = 〈ξ tanh [βξ ·m]〉ξ, which minimises (2.164)

f(m) =
1
2
m2 − 1

β
〈log 2 cosh [βξ ·m]〉ξ. (2.165)

The free energies of the ergodic components are limN→∞ F/N = f(m∗) and
limN→∞ F̃ /N = 2f(m∗). Adding partition terms of the form H → H +
λg[m(σ)] to the Hamiltonians allows us identify 〈g[m(σ)]〉eq = limλ→0 ∂F/∂λ
= g[m∗]. Thus, in equilibrium the fluctuations in the overlap order parameters
m(σ) (2.160) vanish for N →∞. Their deterministic values are simply given
by m∗. Note that in the case of sequential dynamics we could also have used
linearization with Gaussian integrals (as used previously for coupled oscillators
with uniform synapses) to arrive at this solution, with p auxiliary integrations,
but that for parallel dynamics this would not have been possible.

Now, in analysis of order parameter equations, we will restrict our further
discussion to the case of randomly drawn patterns, so [Coo01, SC00, SC01,
CKS05]

〈Φ(ξ)〉ξ = 2−p
∑

ξ∈{−1,1}p

Φ(ξ), 〈ξμ〉ξ = 0, 〈ξμξν〉ξ = δμν .

We first establish an upper bound for the temperature for where non–trivial
solutions m∗ could exist, by writing (2.164) in integral form:

mμ = β〈ξμ(ξ ·m)
∫ 1

0

dλ[1− tanh2[βλξ ·m]]〉ξ,

from which we deduce

0 = m2 − β〈(ξ ·m)2
∫ 1

0

dλ[1− tanh2 [βλξ ·m]]〉ξ

≥ m2 − β〈(ξ ·m)2〉ξ = m2(1− β),

For T > 1 the only solution of (2.164) is the paramagnetic state m = 0, which
gives for the free energy per neuron –T log 2 and –2T log 2 (for sequential and
parallel dynamics, respectively). At T = 1 a phase transition occurs, which
follows from expanding (2.164) for small |m| in powers of τ = β − 1:
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mμ = (1 + τ)mμ −
1
3
mνmρmλ〈ξμξνξρξλ〉ξ

+ O(m5, τm3) = mμ[1 + τ −m2 +
2
3
m2
μ] +O(m5, τm3).

The new saddle–point scales as mμ = m̃μτ
1/2 + O(τ3/2), with for each μ:

m̃μ = 0 or 0 = 1− m̃2 + 2
3m̃

2
μ.

The solutions are of the form m̃μ ∈ {−m̃, 0, m̃}. If we denote with n the
number of non-zero components in the vector m̃, we derive from the above
identities: m̃μ = 0 or m̃μ = ±

√
3/
√

3n− 2. These saddle-points are called
mixture states, since they correspond to microscopic configurations correlated
equally with a finite number n of the stored patterns (or their negatives).
Without loss of generality we can always perform gauge transformations on
the set of stored patterns (permutations and reflections), such that the mixture
states acquire the form [Coo01, SC00, SC01, CKS05]

m = mn(

n times
︷ ︸︸ ︷
1, . . . , 1,

p−n times
︷ ︸︸ ︷
0, . . . , 0 ), (2.166)

mn = [
3

3n− 2
]
1
2 (β − 1)1/2 + . . .

These states are in fact saddle–points of the surface f(m) (2.165) for any
finite temperature, as can be verified by substituting (2.166) as an ansatz
into (2.164):

μ ≤ n : mn = 〈ξμ tanh[βmn

∑

ν≤n
ξν ]〉ξ,

μ > n : 0 = 〈ξμ tanh[βmn

∑

ν≤n
ξν ]〉ξ.

The second equation is automatically satisfied since the average factorizes.
The first equation leads to a condition determining the amplitude mn of the
mixture states:

mn = 〈[ 1
n

∑

μ≤n
ξμ] tanh[βmn

∑

ν≤n
ξν ]〉ξ. (2.167)

The corresponding values of f(m), to be denoted by fn, are

fn =
1
2
nm2

n −
1
β
〈log 2 cosh[βmn

∑

ν≤n
ξν ]〉ξ. (2.168)

The relevant question at this stage is whether or not these saddle-points cor-
respond to local minima of the surface f(m) (2.165). The second derivative
of f(m) is given by

∂2f(m)
∂mμ∂mν

= δμν − β〈ξμξν
[
1− tanh2 [βξ ·m]

]
〉ξ, (2.169)
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where a local minimum corresponds to a positive definite second derivative.
In the trivial saddle–point m = 0 this gives simply δμν(1−β), so at T = 1 this
state destabilizes. In a mixture state of the type (2.166) the second derivative
becomes:

D(n)
μν = δμν − β〈ξμξν [1− tanh2[βmn

∑

ρ≤n
ξρ]]〉ξ.

Due to the symmetries in the problem the spectrum of the matrix D(n)

can be calculated. One finds the following eigen–spaces, with

Q = 〈tanh2[βmn

∑

ρ≤n
ξρ]〉ξ and R = 〈ξ1ξ2 tanh2[βmn

∑

ρ≤n
ξρ]〉ξ,

Eigenspace : Eigenvalue :
I : x = (0, . . . , 0, xn+1, . . . , xp), 1− β[1−Q],
II : x = (1, . . . , 1, 0, . . . , 0), 1− β[1−Q + (1− n)R],
III : x = (x1, . . . , xn, 0, . . . , 0),

∑
μ xμ = 0, 1− β[1−Q + R].

The eigen–space III and the quantity R only come into play for n > 1. To find
the smallest eigenvalue we need to know the sign of R. With the abbreviation
Mξ =

∑
ρ≤n ξρ we find [Coo01, SC00, SC01, CKS05]:

n(n − 1)R = 〈M2
ξ tanh2[βmnMξ ]〉ξ − n〈tanh2[βmnMξ ]〉ξ

= 〈[M2
ξ − 〈M2

ξ′ 〉ξ′ ] tanh2[βmn|Mξ |]〉ξ

= 〈[M2
ξ − 〈M2

ξ′ 〉ξ′ ]
{

tanh2[βmn

√
M2

ξ ] − tanh2[βmn

√
〈M2

ξ′ 〉ξ′ ]
}
〉ξ ≥ 0.

We may now identify the conditions for an n−mixture state to be a local
minimum of f(m). For n = 1 the relevant eigenvalue is I, now the quantity Q
simplifies considerably. For n > 1 the relevant eigenvalue is III, here we can
combine Q and R into one single average:

n = 1 : 1− β[1− tanh2[βm1]] > 0
n = 2 : 1− β > 0

n ≥ 3 : 1− β[1− 〈tanh2[βmn

∑n
ρ=3 ξρ]〉ξ] > 0

The n = 1 states, correlated with one pattern only, are the desired solutions.
They are stable for all T < 1, since partial differentiation with respect to β
of the n = 1 amplitude equation (2.167) gives

m1 = tanh[βm1] → 1− β[1− tanh2[βm1]]
= m1[1− tanh2[βm1]](∂m1/∂β)−1,

so that clearly sgn[m1] = sgn[∂m1/∂β]. The n = 2 mixtures are always unsta-
ble. For n ≥ 3 we have to solve the amplitude equations (2.167) numerically
to evaluate their stability. It turns out that only for odd n will there be a



2.3 Synergetics of Recurrent and Attractor Neural Networks 267

critical temperature below which the n−mixture states are local minima of
f(m).

We have now solved the model in equilibrium for finite p and N → ∞.
For non–random patterns one simply has to study the bifurcation properties
of equation (2.164) for the new pattern statistics at hand; this is only quali-
tatively different from the random pattern analysis explained above. The oc-
currence of multiple saddle–points corresponding to local minima of the free
energy signals ergodicity breaking. Although among these only the global min-
imum will correspond to the thermodynamic equilibrium state, the non–global
minima correspond to true ergodic components, i.e., on finite time–scales they
will be just as relevant as the global minimum.

2.3.5 Simple Recurrent Networks of Coupled Oscillators

Coupled Oscillators with Uniform Synapses

Models with continuous variables involve integration over states, rather than
summation. For a coupled oscillator network (2.133) with uniform synapses
Jij = J/N and zero frequencies ωi = 0 (which is a simple version of the
model in [Kur84]) we get for the free energy per oscillator [Coo01, SC00,
SC01, CKS05]:

lim
N→∞

F/N = − lim
N→∞

1
βN

log
∫ π

−π
· · ·

∫ π

−π
dξ ×

×e(βJ/2N)[[∑ i cos(ξi)]
2+[

∑
i sin(ξi)]

2].

We would now have to ‘count’ microscopic states with prescribed average
cosines and sines. A faster route exploits auxiliary Gaussian integrals, via the
identity

e
1
2y

2
=

∫
Dz eyz, (2.170)

with the short–hand Dx = (2π)−
1
2 e−

1
2x

2
dx (this alternative would also have

been open to us in the binary case; my aim in this section is to explain both
methods):

lim
N→∞

F/N = − lim
N→∞

1
βN

log
∫ π

−π
· · ·

∫ π

−π
dξ

∫
DxDy ×

×e
√
βJ/N[x∑ i cos(ξi)+y

∑
i sin(ξi)]

= − lim
N→∞

1
βN

log
∫

DxDy

[∫ π

−π
dξ ecos(ξ)

√
βJ(x2+y2)/N

]N

= − lim
N→∞

1
βN

log
∫ ∞

0

dq qe−
1
2Nβ|J|q

2 ×

×
[∫ π

−π
dξ eβ|J|q cos(ξ)

√
rmsgn(J)

]N
,
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where we have transformed to polar coordinates, (x, y) = q
√

β|J |N(cos θ, sin θ),
and where we have already eliminated (constant) terms which will not survive
the limit N → ∞. Thus, saddle–point integration gives us, quite similar to
the previous cases (2.155,2.156):

lim
N→∞

F/N = min
q≥0

f(q),
J > 0 : βf(q) = 1

2β|J |q2 − log[2πI0(β|J |q)]
J < 0 : βf(q) = 1

2β|J |q2 − log[2πI0(iβ|J |q)]
,

(2.171)
in which the In(z) are the Bessel functions (see e.g., [AS72]). The equa-
tions from which to solve the minima are got by differentiation, using
d
dz I0(z) = I1(z):in which the In(z) are the Bessel functions (see e.g., [AS72]).
The equations from which to solve the minima are got by differentiation, using
d
dz I0(z) = I1(z):

J > 0 : q =
I1(β|J |q)
I0(β|J |q)

, J < 0 : q = i
I1(iβ|J |q)
I0(iβ|J |q)

. (2.172)

Again, in both cases the problem has been reduced to studying a single non-
linear equation. The physical meaning of the solution follows from the identity
-2∂F/∂J = 〈N−1

∑
i=j cos(ξi − ξj)〉:

lim
N→∞

〈[ 1
N

∑

i

cos(ξi)]
2〉+ lim

N→∞
〈[ 1
N

∑

i

sin(ξi)]
2〉 = sgn(J) q2.

From this equation it also follows that q ≤ 1. Note: since ∂f(q)/∂q = 0 at
the minimum, one only needs to consider the explicit derivative of f(q) with
respect to J . If the synapses induce anti-synchronization, J < 0, the only
solution of (2.172) (and the minimum in (2.171)) is the trivial state q = 0. This
also follows immediately from the equation which gave the physical meaning of
q. For synchronizing forces, J > 0, on the other hand, we again find the trivial
solution at high noise levels, but a globally synchronized state with q > 0 at
low noise levels. Here a phase transition occurs at T = 1

2J (a bifurcation of
non–trivial solutions of (2.172)), and for T < 1

2J the minimum of (2.171) is
found at two non-zero values for q. The critical noise level is again found upon
expanding the saddle–point equation, using

I0(z) = 1 +O(z2) and I1(z) =
1
2
z +O(z3) : q =

1
2
βJq +O(q3).

Precisely at βJ = 2 one finds a de-stabilization of the trivial solution q = 0,
together with the creation of (two) stable non–trivial ones. Note that, in view
of (2.171), we are only interested in non–negative values of q. One can prove,
using the properties of the Bessel functions, that there are no other (discon-
tinuous) bifurcations of non–trivial solutions of the saddle–point equation.
Note, finally, that the absence of a state with global anti-synchronization for
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J < 0 has the same origin as the absence of an anti-ferromagnetic state for
J < 0 in the previous models with binary neurons. Due to the long-range
nature of the synapses Jij = J/N such states simply cannot exist: whereas
any set of oscillators can be in a fully synchronized state, if two oscillators
are in anti-synchrony it is already impossible for a third to be simultaneously
in anti-synchrony with the first two (since anti-synchrony with one implies
synchrony with the other) [Coo01, SC00, SC01, CKS05].

Coupled Oscillator Attractor Networks

Let us now turn to an alternative realisation of information storage in a re-
current network based upon the creation of attractors [Coo01, SC00, SC01,
CKS05]. We will solve models of coupled neural oscillators of the type (2.133),
with zero natural frequencies (since we wish to use equilibrium techniques),
in which real-valued patterns are stored as stable configurations of oscillator
phases, following [Coo89]. Let us, however, first find out how to store a single
pattern ξ ∈ [−π, π]N in a noise-less infinite-range oscillator network. For sim-
plicity we will draw each component ξi independently at random from [−π, π],
with uniform probability density. This allows us to use asymptotic properties
such as |N−1

∑
j ei�ξj | = O(N− 1

2 ) for any integer  . A sensible choice for the
synapses would be Jij = cos[ξi−ξj ]. To see this we work out the corresponding
Lyapunov function (2.140):

L[ξ] = − 1
2N2

cos[ξi − ξj ] cos[ξi − ξj ],

L[ξ] = − 1
2N2

cos2[ξi − ξj ] = −1
4

+O(N− 1
2 ),

where the factors of N have been inserted to achieve appropriate scaling in
the N →∞ limit. The function L[ξ], which is obviously bounded from below,
must decrease monotonically during the dynamics. To find out whether the
state ξ is a stable fixed–point of the dynamics we have to calculate L and
derivatives of L at ξ = ξ:

∂L

∂ξi

∣∣∣
∣
ξ

=
1

2N2

∑

j

sin[2(ξi − ξj)],

∂2L

∂ξ2
i

∣∣
∣∣
ξ

=
1

N2

∑

j

cos2[ξi − ξj ],

i �= j :
∂2L

∂ξi∂ξj

∣
∣∣∣
ξ

= − 1
N2

cos2[ξi − ξj ].

Clearly limN→∞ L[ξ] = − 1
4 . Putting ξ = ξ + Δξ, with Δξi = O(N0), we find
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L[ξ + Δξ]− L[ξ] = Δξi
∂L

∂ξi
|ξ (2.173)

+
1
2
ΔξiΔξj

∂2L

∂ξi∂ξj
|ξ +O(Δξ3)

=
1

4N

∑

i

Δξ2
i −

1
2N2

ΔξiΔξj cos2[ξi − ξj ] +O(N− 1
2 ,Δξ3)

=
1
4
{ 1
N

∑

i

Δξ2
i − [

1
N

∑

i

Δξi]
2 − [

1
N

Δξi cos(2ξi)]
2

−[
1
N

∑

i

Δξi sin(2ξi)]
2}+O(N− 1

2 ,Δξ3).

In leading order in N the following three vectors in R
N are normalized and

orthogonal:

e1 =
1√
N

(1, 1, . . . , 1), e2 =
√

2√
N

(cos(2ξ1), . . . , cos(2ξN )),

e2 =
√

2√
N

(sin(2ξ1), . . . , sin(2ξN )).

We may therefore use

Δξ2 ≥ (Δξ·1)2 + (Δξ · 2)2 + (Δξ · 3)2,

insertion of which into (2.173) leads to

L[ξ + Δξ]− L[ξ] ≥ [
1

2N

∑

i

Δξi cos(2ξi)]
2

+ [
1

2N

∑

i

Δξi sin(2ξi)]
2 +O(N− 1

2 ,Δξ3).

Thus for large N the second derivative of L is non-negative at ξ = ξ, and the
phase pattern ξ has indeed become a fixed–point attractor of the dynamics
of the noise-free coupled oscillator network. The same is found to be true for
the states ξ = ±ξ + α(1, . . . , 1) (for any α).

We next follow the strategy of the Hopfield model and attempt to simply
extend the above recipe for the synapses to the case of having a finite number
p of phase patterns ξμ = (ξμ1 , . . . , ξ

μ
N ) ∈ [−π, π]N , giving

Jij =
1
N

p∑

μ=1

cos[ξμi − ξμj ], (2.174)

where the factor N , as before, ensures a proper limit N →∞ later. In analogy
with our solution of the Hopfield model we define the following averages over
pattern variables:
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〈g[ξ]〉ξ = lim
N→∞

∑

i

g[ξi], ξi = (ξ1
i , . . . , ξ

p
i ) ∈ [−π, π]p.

We can write the Hamiltonian H(ξ) of (2.153) in the form [Coo01, SC00,
SC01, CKS05]

H(ξ) = − 1
2N

p∑

μ=1

cos[ξμi − ξμj ] cos[ξi − ξj ]

= −N

2

p∑

μ=1

{
mμ
cc(ξ)2 + mμ

cs(ξ)2 + mμ
sc(ξ)2 + mμ

ss(ξ)2
}
,

in which

mμ
cc(ξ) =

1
N

cos(ξμi ) cos(ξi), (2.175)

mμ
cs(ξ) =

1
N

cos(ξμi ) sin(ξi),

mμ
sc(ξ) =

1
N

sin(ξμi ) cos(ξi), (2.176)

mμ
ss(ξ) =

1
N

sin(ξμi ) sin(ξi).

The free energy per oscillator can now be written as

F/N = − 1
βN

log
∫
· · ·

∫
dξ e−βH(ξ) =

− 1
βN

log
∫
· · ·

∫
dξ e

1
2βN

∑
μ

∑
		m

μ
		(ξ)2 ,

with ## ∈ {cc, ss, cs, sc}. Upon introducing the notation m�� = (m1
��, . . . ,m

p
��)

we can again express the free energy in terms of the density of states
D({m��}) = (2π)−N

∫
· · ·

∫
dξ

∏
�� δ[m�� −m��(σ)]:

F/N = − 1
β

log(2π)− 1
βN

log
∫ ∏

��

dm�� D({m��})e
1
2βN

∑
		 m2

		 . (2.177)

Since p is finite, the leading contribution to the density of states (as N →∞),
which will give us the entropy, can be calculated by writing the δ−functions
in integral representation:
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lim
N→∞

1
N

logD({m��}) = lim
N→∞

1
N

log
∫ ∏

��

[
dx�� eiNx		·m		

]
×

∫
. . .

∫
dξ

(2π)N
×

e−i[x
μ
cc cos(ξμ

i ) cos(ξi)+x
μ
cs cos(ξμ

i ) sin(ξi)+x
μ
sc sin(ξμ

i ) cos(ξi)+x
μ
ss sin(ξμ

i ) sin(ξi)]

= extr{x		}{i
∑

��

x�� ·m�� + 〈log
∫

dξ

2π
×

e−i[x
μ
cc cos(ξμ) cos(ξ)+xμ

cs cos(ξμ) sin(ξ)+xμ
sc sin(ξμ) cos(ξ)+xμ

ss sin(ξμ) sin(ξ)]〉ξ}.

The relevant extremum is purely imaginary so we put x�� = iβy�� (see our
previous discussion for the Hopfield model) and, upon inserting the density of
states into our original expression for the free energy per oscillator, arrive at

lim
N→∞

F/N = extr{m		,y		} f({m��,y��}),

f({m��,y��}) = − 1
β

log(2π)− 1
2

∑

��

m2
�� +

∑

��

y�� ·m��

− 1
β
〈log

∫
dξ

2π
eβ[yμ

cc cos(ξμ) cos(ξ)+yμ
cs cos(ξμ) sin(ξ)+yμ

sc sin(ξμ) cos(ξ)+yμ
ss sin(ξμ) sin(ξ)]〉ξ

Taking derivatives with respect to the order parameters m�� gives us y�� =
m��, with which we can eliminate the y��. Derivation with respect to the m��

subsequently gives the saddle–point equations

mμ
cc = (2.178)

〈cos[ξμ]
∫

dξ cos[ξ]eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]

∫
dξ eβ cos[ξ][mν

cc cos[ξν ]+mν
sc sin[ξν ]]+β sin[ξ][mν

cs cos[ξν ]+mν
ss sin[ξν ]]

〉ξ,

mμ
cs = (2.179)

〈cos[ξμ]
∫

dξ sin[ξ]eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]

∫
dξ eβ cos[ξ][mν

cc cos[ξν ]+mν
sc sin[ξν ]]+β sin[ξ][mν

cs cos[ξν ]+mν
ss sin[ξν ]]

〉ξ,

mμ
sc = (2.180)

〈sin[ξμ]
∫

dξ cos[ξ]eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]

∫
dξ eβ cos[ξ][mν

cc cos[ξν ]+mν
sc sin[ξν ]]+β sin[ξ][mν

cs cos[ξν ]+mν
ss sin[ξν ]]

〉ξ,

mμ
ss = (2.181)

〈sin[ξμ]
∫

dξ sin[ξ]eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]

∫
dξ eβ cos[ξ][mν

cc cos[ξν ]+mν
sc sin[ξν ]]+β sin[ξ][mν

cs cos[ξν ]+mν
ss sin[ξν ]]

〉ξ,

The equilibrium values of the observables m��, as defined in (2.175,2.176),
are now given by the solution of the coupled equations (2.178-2.181) which
minimizes



2.3 Synergetics of Recurrent and Attractor Neural Networks 273

f({m��}) =
1
2

∑

��

m2
�� −

1
β
〈log

∫
dξ × (2.182)

eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]〉ξ.

We can confirm that the relevant saddle–point must be a minimum by in-
specting the β = 0 limit (infinite noise levels):

lim
β→0

f({m��}) =
1
2

∑

��

m2
�� −

1
β

log(2π).

From now on we will restrict our analysis to phase pattern components
ξμi which have all been drawn independently at random from [−π, π], with
uniform probability density, so that 〈g[ξ]〉ξ = (2π)−p

∫ π
−π . . .

∫ π
−π dξ g[ξ]. At

β = 0 (T =∞) one finds only the trivial state mμ
�� = 0. It can be shown that

there will be no discontinuous transitions to a non–trivial state as the noise
level (temperature) is reduced. The continuous ones follow upon expansion of
the equations (2.178-2.181) for small {m��}, which is found to give (for each
μ and each combination ##):

mμ
�� =

1
4
βmμ

�� +O({m2
��}).

Thus a continuous transition to recall states occurs at T = 1
4 . Full classification

of all solutions of (2.178-2.181) is ruled out. Here we will restrict ourselves
to the most relevant ones, such as the pure states, where mμ

�� = m��δμλ
(for some pattern label λ). Here the oscillator phases are correlated with
only one of the stored phase patterns (if at all). Insertion into the above
expression for f({m��}) shows that for such solutions we have to minimize
[Coo01, SC00, SC01, CKS05]

f({m��}) =
1
2

∑

��

m2
�� −

1
β

∫
dξ

2π
log

∫
dξ × (2.183)

eβ cos[ξ][mcc cos[ξ]+msc sin[ξ]]+β sin[ξ][mcs cos[ξ]+mss sin[ξ]].

We anticipate solutions corresponding to the (partial) recall of the stored
phase pattern ξλ or its mirror image (modulo overall phase shifts ξi → ξi+ δ,
under which the synapses are obviously invariant). Insertion into (2.178-2.181)
of the state

ξi = ξλi + δ gives (mcc,msc,mcs,mss) =
1
2
(cos δ,− sin δ, sin δ, cos δ).

Similarly, insertion into (2.178-2.181) of

ξi = −ξλi + δ gives (mcc,msc,mcs,mss) =
1
2
(cos δ, sin δ, sin δ,− cos δ).

Thus we can identify retrieval states as those solutions which are of the form
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(i) retrieval of ξλ : (mcc,msc,mcs,mss) = m(cos δ,− sin δ, sin δ, cos δ),

(ii) retrieval of − ξλ : (mcc,msc,mcs,mss) = m(cos δ, sin δ, sin δ,− cos δ),

with full recall corresponding to m = 1
2 . Insertion into the saddle–point equa-

tions and into (2.183), followed by an appropriate shift of the integration
variable ξ, shows that the free energy is independent of δ (so the above two
ansätzes solve the saddle–point equations for any δ) and that

m =
1
2

∫
dξ cos[ξ]eβm cos[ξ]

∫
dξ eβm cos[ξ]

, f(m) = m2 − 1
β

log
∫

dξ eβm cos[ξ].

Expansion in powers of m, using log(1 + z) = z − 1
2z

2 + O(z3), reveals that
non-zero minima m indeed bifurcate continuously at T = β−1 = 1

4 :

f(m) +
1
β

log[2π] = (1− 1
4
β)m2 +

1
64

β3m4 +O(m6). (2.184)

Retrieval states are obviously not the only pure states that solve the
saddle–point equations. The function (2.183) is invariant under the follow-
ing discrete (non-commuting) transformations:

I : (mcc,msc,mcs,mss) → (mcc,msc,−mcs,−mss),
II : (mcc,msc,mcs,mss) → (mcs,mss,mcc,msc).

We expect these to induce solutions with specific symmetries. In particular
we anticipate the following symmetric and antisymmetric states:

symmetric under I :(mcc, msc, mcs, mss) =
√

2m(cos δ, sin δ, 0, 0),
antisymmetric under I :(mcc, msc, mcs, mss) =

√
2m(0, 0, cos δ, sin δ),

symmetric under II :(mcc, msc, mcs, mss) = m(cos δ, sin δ, cos δ, sin δ),
antisymmetric under II :(mcc, msc, mcs, mss) = m(cos δ, sin δ,− cos δ,− sin δ).

Insertion into the saddle–point equations and into (2.183) shows in all four
cases the parameter δ is arbitrary and that always

m =
1√
2

∫
dξ

2π
cos[ξ]

∫
dξ cos[ξ]eβm

√
2 cos[ξ] cos[ξ]

∫
dξ eβm

√
2 cos[ξ] cos[ξ]

,

f(m) = m2 − 1
β

∫
dξ

2π
log

∫
dξ eβm

√
2 cos[ξ] cos[ξ].

Expansion in powers of m reveals that non-zero solutions m here again bifur-
cate continuously at T = 1

4 :

f(m) +
1
β

log[2π] = (1− 1
4
β)m2 +

3
2
· 1
64

β3m4 +O(m6). (2.185)

However, comparison with (2.184) shows that the free energy of the pure recall
states is lower. Thus the system will prefer the recall states over the above
solutions with specific symmetries.
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Note, that the free energy and the order parameter equation for the pure
recall states can be written in terms of Bessel functions as follows:

m =
1
2
I1(βm)
I0(βm)

, f(m) = m2 − 1
β

log[2πI0(βm)]

2.3.6 Attractor Neural Networks with Binary Neurons

The simplest non–trivial recurrent neural networks consist of N binary neu-
rons σi ∈ {−1, 1}, which respond stochastically to post-synaptic potentials
(or local fields) hi(σ), with σ = (σ1, . . . , σN ). The fields depend linearly on
the instantaneous neuron states,

hi(σ) = Jijσj + θi,

with the Jij representing synaptic efficacies, and the θi representing external
stimuli and/or neural thresholds [Coo01, SC00, SC01, CKS05].

Closed Macroscopic Laws for Sequential Dynamics

Here, we will first show how for sequential dynamics (where neurons are up-
dated one after the other) one can calculate, from the microscopic stochastic
laws, differential equations for the probability distribution of suitably defined
macroscopic observables. For mathematical convenience our starting point
will be the continuous-time master equation for the microscopic probability
distribution pt(σ)

ṗt(σ) = {wi(Fiσ)pt(Fiσ)− wi(σ)pt(σ)} , (2.186)

wi(σ) =
1
2
[1− σi tanh[βhi(σ)]],

with FiΦ(σ) = Φ(σ1, . . . , σi−1,−σi, σi+1, . . . , σN ).
Let us illustrate the basic ideas with the help of a simple (infinite range)

toy model: Jij = (J/N)ηiξj and θi = 0 (the variables ηi and ξi are arbitrary,
but may not depend on N). For ηi = ξi = 1 we get a network with uniform
synapses. For ηi = ξi ∈ {−1, 1} and J > 0 we recover the Hopfield [Hop82]
model with one stored pattern. Note: the synaptic matrix is non-symmetric
as soon as a pair (ij) exists such that ηiξj �= ηjξi, so in general equilibrium
statistical mechanics will not apply. The local fields become hi(σ) = Jηim(σ)
with m(σ) = 1

N

∑
k ξkσk. Since they depend on the microscopic state σ only

through the value of m, the latter quantity appears to constitute a natural
macroscopic level of description. The probability density of finding the macro-
scopic state m(σ) = m is given by Pt[m] =

∑
σ pt(σ)δ[m −m(σ)]. Its time

derivative follows upon inserting (2.186):
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Ṗt[m] =
∑

σ

pt(σ)wk(σ)
{
δ[m−m(σ) +

2
N

ξkσk]− δ [m−m(σ)]
}

=
∂

∂m

{
∑

σ

pt(σ)δ [m−m(σ)]
2
N

ξkσkwk(σ)

}

+O(
1
N

).

Inserting our expressions for the transition rates wi(σ) and the local fields
hi(σ) gives:

Ṗt[m] =
∂

∂m

{
Pt[m]

[
m− 1

N
ξk tanh[ηkβJm]

]}
+O(N−1).

In the limit N →∞ only the first term survives. The general solution of the
resulting Liouville equation is

Pt[m] =
∫

dm0 P0[m0]δ [m−m(t|m0)] ,

where m(t|m0) is the solution of

ṁ = lim
N→∞

1
N

ξk tanh[ηkβJm]−m, m(0) = m0. (2.187)

This describes deterministic evolution; the only uncertainty in the value of m
is due to uncertainty in initial conditions. If at t = 0 the quantity m is known
exactly, this will remain the case for finite time–scales; m turns out to evolve
in time according to (2.187).

Let us now allow for less trivial choices of the synaptic matrix {Jij} and
try to calculate the evolution in time of a given set of macroscopic observables
Ω(σ) = (Ω1(σ), . . . , Ωn(σ)) in the limit N → ∞. There are no restrictions
yet on the form or the number n of these state variables; these will, however,
arise naturally if we require the observables Ω to obey a closed set of deter-
ministic laws, as we will see. The probability density of finding the system in
macroscopic state Ω is given by [Coo01, SC00, SC01, CKS05]:

Pt [Ω] =
∑

σ

pt(σ)δ [Ω−Ω(σ)] . (2.188)

Its time derivative is got by inserting (2.186). If in those parts of the resulting
expression which contain the operators Fi we perform the transformations
σ → Fiσ, we arrive at

Ṗt [Ω] =
∑

σ

pt(σ)wi(σ) {δ [Ω−Ω(Fiσ)]− δ [Ω−Ω(σ)]} .

If we define
Ωμ(Fiσ) = Ωμ(σ) + Δiμ(σ)
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and make a Taylor expansion in powers of {Δiμ(σ)}, we finally get the so–
called Kramers–Moyal expansion:9

Ṗt [Ω] =
∑

�≥1

(−1)�

 +

n∑

μ1=1

· · ·
n∑

μ�=1

∂�

∂Ωμ1
· · · ∂Ωμ�

{
Pt [Ω]F (�)

μ1···μ�
[Ω; t]

}
.

(2.189)
It involves conditional averages 〈f(σ)〉Ω;t and the ‘discrete derivatives’

Δjμ(σ) = Ωμ(Fjσ)−Ωμ(σ),

F
(l)
μ1···μl

[Ω; t] = 〈wj(σ)Δjμ1
(σ) · · ·Δjμ�

(σ)〉Ω;t,

〈f(σ)〉Ω;t =
∑

σ pt(σ)δ [Ω−Ω(σ)] f(σ)
∑

σ pt(σ)δ [Ω−Ω(σ)]
. (2.190)

Retaining only the  = 1 term in (2.189) would lead us to a Liouville equation,
which describes deterministic flow in Ω space. Including also the  = 2 term
leads us to a Fokker–Planck equation which, in addition to flow, describes
diffusion of the macroscopic probability density. Thus a sufficient condition for
the observables Ω(σ) to evolve in time deterministically in the limit N →∞
is:

lim
N→∞

∑

�≥2

1
 +

n∑

μ1=1

· · ·
n∑

μ�=1

〈|Δjμ1
(σ) · · ·Δjμ�

(σ)|〉Ω;t = 0. (2.191)

In the simple case where all observables Ωμ scale similarly in the sense that all
‘derivatives’ Δjμ = Ωμ(Fiσ) − Ωμ(σ) are of the same order in N (i.e., there
is a monotonic function Δ̃N such that Δjμ = O(Δ̃N ) for all jμ), for instance,
criterion (2.191) becomes:

lim
N→∞

nΔ̃N
√

N = 0. (2.192)

If for a given set of observables condition (2.191) is satisfied, we can for large
N describe the evolution of the macroscopic probability density by a Liouville
equation:

Ṗt [Ω] = − ∂

∂Ωμ

{
Pt [Ω]F (1)

μ [Ω; t]
}

,

whose solution describes deterministic flow,
9 The Kramers–Moyal expansion (2.189) is to be interpreted in a distributional

sense, i.e., only to be used in expressions of the form
∫

dΩt(Ω)G(Ω) with smooth
functions G(Ω), so that all derivatives are well–defined and finite. Furthermore,
(2.189) will only be useful if the Δjμ, which measure the sensitivity of the macro-
scopic quantities to single neuron state changes, are sufficiently small. This is
to be expected: for finite N any observable can only assume a finite number of
possible values; only for N → ∞ may we expect smooth probability distributions
for our macroscopic quantities.
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Pt[Ω] =
∫

dΩ0P0[Ω0]δ[Ω−Ω(t|Ω0)],

with Ω(t|Ω0) given, in turn, as the solution of

Ω̇(t) = F(1) [Ω(t); t] , Ω(0) = Ω0. (2.193)

In taking the limit N → ∞, however, we have to keep in mind that the
resulting deterministic theory is got by taking this limit for finite t. According
to (2.189) the  > 1 terms do come into play for sufficiently large times t; for
N →∞, however, these times diverge by virtue of (2.191).

Now, equation (2.193) will in general not be autonomous; tracing back
the origin of the explicit time dependence in the right–hand side of (2.193)
one finds that to calculate F(1) one needs to know the microscopic probability
density pt(σ). This, in turn, requires solving equation (2.186) (which is exactly
what one tries to avoid). We will now discuss a mechanism via which to
eliminate the offending explicit time dependence, and to turn the observables
Ω(σ) into an autonomous level of description, governed by closed dynamic
laws. The idea is to choose the observables Ω(σ) in such a way that there is
no explicit time dependence in the flow field F(1) [Ω; t] (if possible). According
to (2.190) this implies making sure that there exist functions Φμ [Ω] such that

lim
N→∞

wj(σ)Δjμ(σ) = Φμ [Ω(σ)] , (2.194)

in which case the time dependence of F(1) indeed drops out and the macro-
scopic state vector simply evolves in time according to [Coo01, SC00, SC01,
CKS05]:

Ω̇ = Φ [Ω] , Φ = (Φ1[Ω], . . . , Φn[Ω]).

Clearly, for this closure method to apply, a suitable separable structure of
the synaptic matrix is required. If, for instance, the macroscopic observ-
ables Ωμ depend linearly on the microscopic state variables σ (i.e., Ωμ(σ) =
1
N

∑N
j=1 ωμjσj), we get with the transition rates defined in (2.186):

Ω̇μ = lim
N→∞

1
N

ωμj tanh(βhj(σ))−Ωμ, (2.195)

in which case the only further condition for (2.194) to hold is that all local
fields hk(σ) must (in leading order in N) depend on the microscopic state
σ only through the values of the observables Ω; since the local fields depend
linearly on σ this, in turn, implies that the synaptic matrix must be sepa-
rable: if Jij =

∑
μKiμωμj then indeed hi(σ) =

∑
μKiμΩμ(σ) + θi. Next

we will show how this approach can be applied to networks for which the
matrix of synapses has a separable form (which includes most symmetric and
non–symmetric Hebbian type attractor models). We will restrict ourselves to
models with θi = 0; introducing non–zero thresholds is straightforward and
does not pose new problems.
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Application to Separable Attractor Networks

We consider the following class of models, in which the interaction matrices
have the form

Jij =
1
N

Q(ξi; ξj), ξi = (ξ1
i , . . . , ξ

p
i ). (2.196)

The components ξμi , representing the information (’patterns’) to be stored or
processed, are assumed to be drawn from a finite discrete set Λ, containing nΛ
elements (they are not allowed to depend on N). The Hopfield model [Hop82]
corresponds to choosing Q(x;y) = x ·y and Λ ≡ {−1, 1}. One now introduces
a partition of the system {1, . . . , N} into npΛ so–called sublattices Iη:

Iη = {i| ξi = η}, {1, . . . , N} =
⋃

η

Iη, (η ∈ Λp).

The number of neurons in sublattice Iη is denoted by |Iη| (this number
will have to be large). If we choose as our macroscopic observables the average
activities (‘magnetizations’) within these sublattices, we are able to express
the local fields hk solely in terms of macroscopic quantities:

mη(σ) =
1
|Iη|

∑

i∈Iη

σi, hk(σ) = pηQ (ξk;η)mη, (2.197)

with the relative sublattice sizes pη = |Iη|/N . If all pη are of the same order
in N (which, for example, is the case if the vectors ξi have been drawn at
random from the set Λp) we may write Δjη = O(npΛN

−1) and use (2.192). The
evolution in time of the sublattice activities is then found to be deterministic
in the N →∞ limit if limN→∞ p/ logN = 0. Furthermore, condition (2.194)
holds, since

wj(σ)Δjη(σ) = tanh[βpη′Q (η;η′)mη′ ]−mη.

This situation is described by (2.195), and that the evolution in time of the
sublattice activities is governed by the following autonomous set of differential
equations [RKH88]:

ṁη = tanh[βpη′Q (η;η′)mη′ ]−mη. (2.198)

We see that, in contrast to the equilibrium techniques as described above,
here there is no need at all to require symmetry of the interaction matrix
or absence of self-interactions. In the symmetric case Q(x;y) = Q(y;x) the
system will approach equilibrium; if the kernel Q is positive definite this can
be shown, for instance, by inspection of the Lyapunov function L{mη}:10

10 Recall that Lyapunov function is a function of the state variables which is bounded
from below and whose value decreases monotonically during the dynamics, see
e.g., [Kha92]. Its existence guarantees evolution towards a stationary state (under
some weak conditions).
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L{mη} =
1
2
pηmηQ(η;η′)mη′pη′

− 1
β

∑

η

pη log cosh[βQ(η;η′)mη′pη′ ],

which is bounded from below and obeys:

L̇ = − [pηṁη]Q(η;η′) [pη′ṁη′ ] ≤ 0. (2.199)

Note that from the sublattice activities, in turn, follow the Hopfield overlaps
mμ(σ),

mμ(σ) =
1
N

ξμi σi = pηημmη. (2.200)

Simple examples of relevant models of the type (2.196), the dynamics of which
are for large N described by equation (2.198), are for instance the ones where
one applies a nonlinear operation Φ to the standard Hopfield–type [Hop82]
(or Hebbian) interactions . This nonlinearity could result from e.g., a clipping
procedure or from retaining only the sign of the Hebbian values:

Jij =
1
N

Φ(ξμi ξ
μ
j ) : e.g.,

Φ(x) =

⎧
⎨

⎩

−K for x ≤ K
x for −K < x < K
K for x ≥ K

, or Φ(x) = sgn(x).

The effect of introducing such nonlinearities is found to be of a quantitative
nature, giving rise to little more than a re-scaling of critical noise levels and
storage capacities. We will illustrate this statement by working out the p = 2
equations for randomly drawn pattern bits ξμi ∈ {−1, 1}, where there are only
four sub-lattices, and where pη = 1

4 for all η (details can be found in e.g.,
[DHS91]). Using Φ(0) = 0 and Φ(−x) = −Φ(x) (as with the above examples)
we get from (2.198):

ṁη = tanh[
1
4
βΦ(2)(mη −m−η)]−mη. (2.201)

Here the choice made for Φ(x) shows up only as a re-scaling of the temperature.
From (2.201) we further get d

dt (mη + m−η) = −(mη + m−η). The system
decays exponentially towards a state where, according to (2.200), mη = −m−η

for all η. If at t = 0 this is already the case, we find (at least for p = 2)
decoupled equations for the sub-lattice activities.

Now, equations (2.198,2.200) suggest that at the level of overlaps there will
be, in turn, closed laws if the kernel Q is bilinear, Q(x;y) =

∑
μν xμAμνyν ,

or [Coo01, SC00, SC01, CKS05]:

Jij =
1
N

ξμi Aμνξ
ν
j , ξi = (ξ1

i , . . . , ξ
p
i ). (2.202)
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We will see that now the ξμi need not be drawn from a finite discrete set
(as long as they do not depend on N). The Hopfield model corresponds to
Aμν = δμν and ξμi ∈ {−1, 1}. The fields hk can now be written in terms of
the overlaps mμ:

hk(σ) = ξk ·Am(σ), m = (m1, . . . ,mp), mμ(σ) =
1
N

ξμi σi.

For this choice of macroscopic variables we find Δjμ = O(N−1), so the evo-
lution of the vector m becomes deterministic for N → ∞ if, according to
(2.192), limN→∞ p/

√
N = 0. Again (2.194) holds, since

wj(σ)Δjμ(σ) =
1
N

ξk tanh [βξk ·Am]−m.

Thus the evolution in time of the overlap vector m is governed by a closed set
of differential equations:

ṁ = 〈ξ tanh [βξ ·Am] 〉ξ −m, 〈Φ(ξ)〉ξ =
∫

dξ ρ(ξ)Φ(ξ), (2.203)

with ρ(ξ) = limN→∞ N−1
∑
i δ[ξ − ξi]. Symmetry of the synapses is not re-

quired. For certain non–symmetric matrices A one finds stable limit–cycle so-
lutions of (2.203). In the symmetric case Aμν = Aνμ the system will approach
equilibrium; the Lyapunov function (2.199) for positive definite matrices A
now becomes:

L{m} =
1
2
m ·Am− 1

β
〈 log cosh [βξ ·Am] 〉ξ.

As a second simple application of the flow equations (2.203) we turn to
the relaxation times corresponding to the attractors of the Hopfield model
(where Aμν = δμν). Expanding (2.203) near a stable fixed–point m∗, i.e.,
m(t) = m∗ + x(t) with |x(t)| � 1, gives the linearized equation

ẋμ = [β〈ξμξν tanh[βξ ·m∗]〉ξ − δμν ]xν +O(x2). (2.204)

The Jacobian of (2.203), which determines the linearized equation (2.204),
turns out to be minus the curvature matrix of the free energy surface at the
fixed-point. The asymptotic relaxation towards any stable attractor is gen-
erally exponential, with a characteristic time τ given by the inverse of the
smallest eigenvalue of the curvature matrix. If, in particular, for the fixed–
point m∗ we substitute an n−mixture state, i.e., mμ = mn (μ ≤ n) and
mμ = 0 (μ > n), and transform (2.204) to the basis where the correspond-
ing curvature matrix D(n) (with eigenvalues Dn

λ) is diagonal, x → x̃, we get
x̃λ(t) = x̃λ(0)e−tD

n
λ + . . .so τ−1 = minλDn

λ , which we have already calculated
in determining the character of the saddle–points of the free-energy surface.
The relaxation time for the n−mixture attractors decreases monotonically
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with the degree of mixing n, for any noise level. At the transition where a
macroscopic state m∗ ceases to correspond to a local minimum of the free en-
ergy surface, it also de–stabilizes in terms of the linearized dynamic equation
(2.204) (as it should). The Jacobian develops a zero eigenvalue, the relaxation
time diverges, and the long–time behavior is no longer got from the linearized
equation. This gives rise to critical slowing down (i.e., power law relaxation
as opposed to exponential relaxation). For instance, at the transition temper-
ature Tc = 1 for the n = 1 (pure) state, we find by expanding (2.203):

ṁμ = mμ[
2
3
m2
μ −m2] +O(m5),

which gives rise to a relaxation towards the trivial fixed–point of the form
m ∼ t−

1
2 .

If one is willing to restrict oneself to the limited class of models (2.202)
(as opposed to the more general class (2.196)) and to the more global level
of description in terms of p overlap parameters mμ instead of npΛ sublattice
activities mη, then there are two rewards. Firstly there will be no restrictions
on the stored pattern components ξμi (for instance, they are allowed to be
real-valued); secondly the number p of patterns stored can be much larger for
the deterministic autonomous dynamical laws to hold (p �

√
N instead of

p � logN , which from a biological point of view is not impressive [Coo01,
SC00, SC01, CKS05].

Closed Macroscopic Laws for Parallel Dynamics

We now turn to the parallel dynamics counterpart of (2.186), i.e., the Markov
chain

p�+1(σ) =
∑

σ′

W [σ;σ′] p�(σ′), (2.205)

W [σ;σ′] =
N∏

i=1

1
2

[1 + σi tanh[βhi(σ′)]] ,

with σi ∈ {−1, 1}, and with local fields hi(σ) defined in the usual way. The
evolution of macroscopic probability densities will here be described by dis-
crete maps, in stead of differential equations.

Let us first see what happens to our previous toy model: Jij = (J/N)ηiξj
and θi = 0. As before we try to describe the dynamics at the (macroscopic)
level of the quantity m(σ) = 1

N

∑
k ξkσk. The evolution of the macroscopic

probability density Pt[m] is got by inserting (2.205):
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Pt+1[m] =
∑

σσ′

δ [m−m(σ)]W [σ;σ′] pt(σ′)

=
∫

dm′ W̃t [m,m′]Pt[m′], with (2.206)

W̃t [m,m′] =
∑

σσ′ δ [m−m(σ)] δ [m′ −m(σ′)]W [σ;σ′] pt(σ′)
∑

σ′ δ [m′ −m(σ′)] pt(σ′)
.

We now insert our expression for the transition probabilities W [σ;σ′] and
for the local fields. Since the fields depend on the microscopic state σ only
through m(σ), the distribution pt(σ) drops out of the above expression for
W̃t which thereby loses its explicit time–dependence, W̃t [m,m′] → W̃ [m,m′]:

W̃ [m,m′] = e−
∑

i log cosh(βJm′ηi)〈δ [m−m(σ)] eβJm
′ηiσi〉σ

with 〈 . . . 〉σ = 2−N
∑

σ

. . .

Inserting the integral representation for the δ−function allows us to perform
the average:

W̃ [m,m′] =
[
βN

2π

] ∫
dk eNΨ(m,m′,k),

Ψ = iβkm + 〈 log coshβ[Jηm′ − ikξ]〉η,ξ − 〈 log coshβ[Jηm′]〉η.

Since W̃ [m,m′] is (by construction) normalized,
∫

dm W̃ [m,m′] = 1, we
find that for N → ∞ the expectation value with respect to W̃ [m,m′] of
any sufficiently smooth function f(m) will be determined only by the value
m∗(m′) of m in the relevant saddle–point of Ψ :

∫
dm f(m)W̃

[
m, m′] =

∫
dmdk f(m)eNΨ(m,m′,k)

∫
dmdk eNΨ(m,m′,k)

→ f(m∗(m′)), (N → ∞).

Variation of Ψ with respect to k and m gives the two saddle–point equations:

m = 〈ξ tanhβ[Jηm′ − ξk]〉η,ξ, k = 0.

We may now conclude that limN→∞ W̃ [m,m′] = δ [m−m∗(m′)] with m∗(m′)
= 〈ξ tanh(βJηm′)〉η,ξ, and that the macroscopic equation (2.206) becomes
[Coo01, SC00, SC01, CKS05]:

Pt+1[m] =
∫

dm′ δ
[
m− 〈ξ tanh(βJηm′)〉ηξ

]
Pt[m′], (N →∞).

This describes deterministic evolution. If at t = 0 we know m exactly, this
will remain the case for finite time-scales, and m will evolve according to a
discrete version of the sequential dynamics law (2.187):

mt+1 = 〈ξ tanh[βJηmt]〉η,ξ.
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We now try to generalize the above approach to less trivial classes of
models. As for the sequential case we will find in the limit N →∞ closed de-
terministic evolution equations for a more general set of intensive macroscopic
state variables Ω(σ) = (Ω1(σ), . . . , Ωn(σ) if the local fields hi(σ) depend on
the microscopic state σ only through the values of Ω(σ), and if the number
n of these state variables necessary to do so is not too large. The evolution of
the ensemble probability density (2.188) is now got by inserting the Markov
equation (2.205):

Pt+1 [Ω] =
∫

dΩ′ W̃t [Ω,Ω′]Pt [Ω′] , (2.207)

W̃t [Ω,Ω′] =
∑

σσ′ δ [Ω−Ω(σ)] δ [Ω′ −Ω(σ′)]W [σ;σ′] pt(σ′)
∑

σ′ δ [Ω′ −Ω(σ′)] pt(σ′)
(2.208)

= 〈δ [Ω−Ω(σ)] 〈e[βσihi(σ
′)−log cosh(βhi(σ

′))]〉Ω′;t〉σ,

with 〈 . . . 〉σ = 2−N
∑

σ . . ., and with the conditional (or sub-shell) aver-
age defined as in (2.190). It is clear from (2.208) that in order to find au-
tonomous macroscopic laws, i.e., for the distribution pt(σ) to drop out, the
local fields must depend on the microscopic state σ only through the macro-
scopic quantities Ω(σ): hi(σ) = hi[Ω(σ)]. In this case W̃t loses its explicit
time–dependence, W̃t [Ω,Ω′] → W̃ [Ω,Ω′]. Inserting integral representations
for the δ−functions leads to:

W̃ [Ω,Ω′] =
[
βN

2π

]n ∫
dK eNΨ(Ω,Ω′,K),

Ψ = iβK ·Ω +
1
N

log 〈eβ[
∑

i σihi[Ω
′]−iNK·Ω(σ)]〉σ

− 1
N

∑

i

log cosh[βhi[Ω′]].

Using the normalization
∫

dΩ W̃ [Ω,Ω′] = 1, we can write expectation values
with respect to W̃ [Ω,Ω′] of macroscopic quantities f [Ω] as

∫
dΩ f [Ω]W̃ [Ω,Ω′] =

∫
dΩdK f [Ω]eNΨ(Ω,Ω′,K)

∫
dΩdK eNΨ(Ω,Ω′,K)

. (2.209)

For saddle–point arguments to apply in determining the leading order in N
of (2.209), we encounter restrictions on the number n of our macroscopic
quantities (as expected), since n determines the dimension of the integrations
in (2.209). The restrictions can be found by expanding Ψ around its maximum
Ψ∗. After defining x = (Ω,K), of dimension 2n, and after translating the
location of the maximum to the origin, one has [Coo01, SC00, SC01, CKS05]

Ψ(x) = Ψ∗ − 1
2
xμxνHμν + xμxνxρLμνρ +O(x4), giving
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∫
dx g(x)eNΨ(x)

∫
dx g(x)eNΨ(x)

− g(0) =
∫

dx [g(x)− g(0)]e−
1
2Nx·Hx+NxμxνxρLμνρ+O(Nx4)

∫
dx e−

1
2Nx·Hx+NxμxνxρLμνρ+O(Nx4)

=
∫

dy [g(y/
√

N)− g(0)]e−
1
2y·Hy+yμyνyρLμνρ/

√
N+O(y4/N)

∫
dy e−

1
2y·Hy+yμyνyρLμνρ/

√
N+O(y4/N)

=

∫
dy

[
N− 1

2 y ·∇g(0) +O(y2/N)
]
e−

1
2y·Hy

[
1 + yμyνyρLμνρ/

√
N +O(y6/N)

]

∫
dy e−

1
2y·Hy

[
1 + yμyνyρLμνρ/

√
N +O(y6/N)

]

= O(n2/N) +O(n4/N2) + non− dominant terms, (N,n→∞),

with H denoting the Hessian (curvature) matrix of the surface Ψ at the min-
imum Ψ∗. We thus find

lim
N→∞

n/
√

N = 0 : lim
N→∞

∫
dΩ f [Ω]W̃ [Ω,Ω′] = f [Ω∗(Ω′)] ,

where Ω∗(Ω′) denotes the value of Ω in the saddle–point where Ψ is mini-
mized. Variation of Ψ with respect to Ω and K gives the saddle–point equa-
tions:

Ω =
〈Ω(σ)eβ[σihi[Ω

′]−iNK·Ω(σ)]〉σ
〈eβ[σihi[Ω′]−iNK·Ω(σ)]〉σ

, K = 0.

We may now conclude that limN→∞ W̃ [Ω,Ω′] = δ [Ω−Ω∗(Ω′)], with

Ω∗(Ω′) =
〈Ω(σ)eβσihi[Ω

′]〉σ
〈eβσihi[Ω′]〉σ

,

and that for N → ∞ the macroscopic equation (2.207) becomes Pt+1[Ω] =∫
dΩ′ δ[Ω − Ω∗(Ω′)]Pt[Ω′]. This relation again describes deterministic evo-

lution. If at t = 0 we know Ω exactly, this will remain the case for finite
time–scales and Ω will evolve according to

Ω(t + 1) =
〈Ω(σ)eβσihi[Ω(t)]〉σ
〈eβσihi[Ω(t)]〉σ

. (2.210)

As with the sequential case, in taking the limit N → ∞ we have to keep in
mind that the resulting laws apply to finite t, and that for sufficiently large
times terms of higher order in N do come into play. As for the sequential case,
a more rigorous and tedious analysis shows that the restriction n/

√
N → 0

can in fact be weakened to n/N → 0. Finally, for macroscopic quantities
Ω(σ) which are linear in σ, the remaining σ−averages become trivial, so that
[Ber91]:

Ωμ(σ) =
1
N

ωμiσi : Ωμ(t + 1) = lim
N→∞

1
N

ωμi tanh [βhi[Ω(t)]] .
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Application to Separable Attractor Networks

The separable attractor models (2.196), described at the level of sublattice
activities (2.197), indeed have the property that all local fields can be written
in terms of the macroscopic observables. What remains to ensure deterministic
evolution is meeting the condition on the number of sublattices. If all relative
sublattice sizes pη are of the same order in N (as for randomly drawn patterns)
this condition again translates into limN→∞ p/ logN = 0 (as for sequential
dynamics). Since the sublattice activities are linear functions of the σi, their
evolution in time is governed by equation (2.210), which acquires the form:

mη(t + 1) = tanh[βpη′Q (η;η′)mη′(t)]. (2.211)

As for sequential dynamics, symmetry of the interaction matrix does not play
a role.

At the more global level of overlaps mμ(σ) = N−1
∑
i ξ
μ
i σi we, in turn,

get autonomous deterministic laws if the local fields hi(σ) can be expressed in
terms if m(σ) only, as for the models (2.202) (or, more generally, for all models
in which the interactions are of the form Jij =

∑
μ≤p fiμξ

μ
j ), and with the

following restriction on the number p of embedded patterns: limN→∞ p/
√

N =
0 (as with sequential dynamics). For the bilinear models (2.202), the evolution
in time of the overlap vector m (which depends linearly on the σi) is governed
by (2.210), which now translates into the iterative map:

m(t + 1) = 〈ξ tanh[βξ ·Am(t)]〉ξ, (2.212)

with ρ(ξ) as defined in (2.203). Again symmetry of the synapses is not re-
quired. For parallel dynamics it is far more difficult than for sequential dy-
namics to construct Lyapunov functions, and prove that the macroscopic
laws (2.212) for symmetric systems evolve towards a stable fixed–point (as
one would expect), but it can still be done. For non–symmetric systems the
macroscopic laws (2.212) can in principle display all the interesting, but com-
plicated, phenomena of non–conservative nonlinear systems. Nevertheless, it
is also not uncommon that the equations (2.212) for non–symmetric systems
can be mapped by a time–dependent transformation onto the equations for
related symmetric systems (mostly variants of the original Hopfield model).

Note that the fixed–points of the macroscopic equations (2.198) and
(2.203) (derived for sequential dynamics) are identical to those of (2.211)
and (2.212) (derived for parallel dynamics). The stability properties of these
fixed–points, however, need not be the same, and have to be assessed on a
case–by–case basis. For the Hopfield model, i.e., equations (2.203,2.212) with
Aμν = δμν , they are found to be the same, but already for Aμν = −δμν the
two types of dynamics would behave differently [Coo01, SC00, SC01, CKS05].
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2.3.7 Attractor Neural Networks with Continuous Neurons

Closed Macroscopic Laws

We have seen above that models of recurrent neural networks with continuous
neural variables (e.g., graded–response neurons or coupled oscillators) can
often be described by a Fokker–Planck equation for the microscopic state
probability density pt(σ):

ṗt(σ) = − ∂

∂σi
[pt(σ)fi(σ)] + T

∑

i

∂2

∂σ2
i

pt(σ).

Averages over pt(σ) are denoted by 〈G〉 =
∫

dσ pt(σ)G(σ, t). From (2.131)
one gets directly (through integration by parts) an equation for the time
derivative of averages [Coo01, SC00, SC01, CKS05]:

d

dt
〈G〉 = 〈∂G

∂t
〉+ 〈

[
fi(σ) + T

∂

∂σi

]
∂G

∂σi
〉. (2.213)

In particular, if we apply (2.213) to G(σ, t) = δ[Ω − Ω(σ)], for any set of
macroscopic observables Ω(σ) = (Ω1(σ), . . . , Ωn(σ)) (in the spirit of the pre-
vious section), we get a dynamic equation for the macroscopic probability
density Pt(Ω) = 〈δ[Ω−Ω(σ)]〉, which is again of the Fokker–Planck form:

Ṗt(Ω) = − ∂

∂Ωμ

{
Pt(Ω) 〈

[
fi(σ) + T

∂

∂σi

]
∂

∂σi
Ωμ(σ)〉Ω;t

}
(2.214)

+ T
∂2

∂Ωμ∂Ων

{
Pt(Ω) 〈

[
∂

∂σi
Ωμ(σ)

] [
∂

∂σi
Ων(σ)

]
〉Ω;t

}
,

with the conditional (or sub–shell) averages:

〈G(σ)〉Ω,t =
∫

dσ pt(σ)δ[Ω−Ω(σ)]G(σ)∫
dσ pt(σ)δ[Ω−Ω(σ)]

.

From (2.214) we infer that a sufficient condition for the observables Ω(σ)
to evolve in time deterministically (i.e., for having vanishing diffusion matrix
elements in (2.214)) in the limit N →∞ is

lim
N→∞

〈
∑

i

[
∑

μ

∣∣∣
∣

∂

∂σi
Ωμ(σ)

∣∣∣
∣

]2

〉Ω;t = 0. (2.215)

If (2.215) holds, the macroscopic Fokker–Planck equation (2.214) reduces for
N →∞ to a Liouville equation, and the observables Ω(σ) will evolve in time
according to the coupled deterministic equations:

Ω̇μ = lim
N→∞

〈
[
fi(σ) + T

∂

∂σi

]
∂

∂σi
Ωμ(σ)〉Ω;t. (2.216)
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The deterministic macroscopic equation (2.216), together with its associated
condition for validity (2.215) will form the basis for the subsequent analysis.

The general derivation given above went smoothly. However, the equations
(2.216) are not yet closed. It turns out that to achieve closure even for simple
continuous networks we can no longer get away with just a finite (small)
number of macroscopic observables (as with binary neurons). This we will
now illustrate with a simple toy network of graded–response neurons:

u̇i(t) = Jij g[uj(t)]− ui(t) + ηi(t),

with g[z] = 1
2 [tanh(γz) + 1] and with the standard Gaussian white noise ηi(t).

In the language of (2.131) this means

fi(u) = Jijg[uj ]− ui.

We choose uniform synapses Jij = J/N , so fi(u) → (J/N)
∑
j g[uj ] − ui. If

(2.215) were to hold, we would find the deterministic macroscopic laws

Ω̇μ = lim
N→∞

〈
∑

i

[
J

N

∑

j

g[uj ]− ui + T
∂

∂ui
]

∂

∂ui
Ωμ(u)〉Ω;t. (2.217)

In contrast to similar models with binary neurons, choosing as our macroscopic
level of description Ω(u) again simply the average m(u) = N−1

∑
i ui now

leads to an equation which fails to close [Coo01, SC00, SC01, CKS05]:

ṁ = lim
N→∞

J 〈 1
N

∑

j

g[uj ]〉m;t −m.

The term N−1
∑
j g[uj ] cannot be written as a function of N−1

∑
i ui. We

might be tempted to try dealing with this problem by just including the
offending term in our macroscopic set, and choose Ω(u) = (N−1

∑
i ui, N

−1
∑
i g[ui]). This would indeed solve our closure problem for the m−equation,

but we would now find a new closure problem in the equation for the newly
introduced observable. The only way out is to choose an observable function,
namely the distribution of potentials

ρ(u;u) =
1
N

∑

i

δ[u− ui], (2.218)

ρ(u) = 〈ρ(u;u)〉 = 〈 1
N

∑

i

δ[u− ui]〉.

This is to be done with care, in view of our restriction on the number
of observables: we evaluate (2.218) at first only for n specific values uμ
and take the limit n → ∞ only after the limit N → ∞. Thus we define
Ωμ(u) = 1

N

∑
i δ[uμ−ui], condition (2.215) reduces to the familiar expression

limN→∞ n/
√

N = 0, and we get for N → ∞ and n → ∞ (taken in that
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order) from (2.217) a diffusion equation for the distribution of membrane po-
tentials (describing a so–called ‘time–dependent Ornstein–Uhlenbeck process’
[Kam92, Gar85]):

ρ̇(u) = − ∂

∂u

{
ρ(u)

[
J

∫
du′ ρ(u′)g[u′]− u

]}
+ T

∂2

∂u2
ρ(u). (2.219)

The natural solution of (2.219) 11 is the Gaussian distribution

ρt(u) = [2πΣ2(t)]−
1
2 e−

1
2 [u−u(t)]2/Σ2(t), (2.220)

in which Σ = [T + (Σ2
0 − T )e−2t]

1
2 , and u evolves in time according to

d

dt
u = J

∫
Dz g[u + Σz]− u,

with Dz = (2π)−
1
2 e−

1
2 z

2
dz. We can now also calculate the distribution p(s)

of neuronal firing activities si = g[ui] at any time,

p(s) =
∫

du ρ(u) δ[s− g[u]] =
ρ(ginv[s])

∫ 1

0
ds′ ρ(ginv[s′])

.

For our choice g[z] = 1
2 + 1

2 tanh[γz] we have ginv[s] = 1
2γ log[s/(1− s)], so in

combination with (2.220)12

0 < s < 1 : p(s) =
e−

1
2 [(2γ)−1 log[s/(1−s)]−u]2/Σ2

∫ 1

0
ds′ e−

1
2 [(2γ)−1 log[s′/(1−s′)]−u]2/Σ2

.

Application to Graded–Response Attractor Networks

We will now turn to attractor networks with graded–response neurons of the
type (2.132), in which p binary patterns ξμ = (ξμ1 , . . . , ξ

μ
N ) ∈ {−1, 1}N have

been stored via separable Hebbian synapses (2.202): Jij = (2/N)ξμi Aμνξ
ν
j (the

extra factor 2 is inserted for future convenience). Adding suitable thresholds
θi = − 1

2

∑
j Jij to the right–hand sides of (2.132), and choosing the nonlinear-

ity g(z) = 1
2 (1 + tanh[γz]) would then give us [Coo01, SC00, SC01, CKS05]

11 For non-Gaussian initial conditions ρ0(u) the solution of (2.219) would in time
converge towards the Gaussian solution.

12 None of the above results (not even those on the stationary state) could have
been got within equilibrium statistical mechanics, since any network of connected
graded–response neurons will violate detailed balance. Secondly, there appears to
be a qualitative difference between simple networks (e.g., Jij = J/N) of binary
neurons versus those of continuous neurons, in terms of the types of macroscopic
observables needed for deriving closed deterministic laws: a single number m =
N−1 ∑

i σi versus a distribution ρ(σ) = N−1 ∑
i δ[σ − σi] .
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u̇i(t) =
∑

μν

ξμi Aμν
1
N

∑

j

ξνj tanh[γuj(t)]− ui(t) + ηi(t),

so the deterministic forces are fi(u) = N−1
∑
μν ξ

μ
i Aμν

∑
j ξ
ν
j tanh[γuj ]− ui.

Choosing our macroscopic observables Ω(u) such that (2.215) holds, would
lead to the deterministic macroscopic laws

Ω̇μ = lim
N→∞

∑

μν

Aμν〈
[

1
N

ξνj tanh[γuj ]
] [

ξμi
∂

∂ui
Ωμ(u)

]
〉Ω;t (2.221)

+ lim
N→∞

〈
[
T

∂

∂ui
− ui

]
∂

∂ui
Ωμ(u)〉Ω;t.

As with the uniform synapses case, the main problem to be dealt with is how
to choose the Ωμ(u) such that (2.221) closes. It turns out that the canonical
choice is to turn to the distributions of membrane potentials within each of
the 2p sub–lattices, as introduced above :

Iη = {i| ξi = η} : ρη(u;u) =
1
|Iη|

∑

i∈Iη

δ[u− ui], (2.222)

ρη(u) = 〈ρη(u;u)〉,

with η ∈ {−1, 1}p and limN→∞ |Iη|/N = pη. Again we evaluate the distribu-
tions in (2.222) at first only for n specific values uμ and send n → ∞ after
N →∞. Now condition (2.215) reduces to limN→∞ 2p/

√
N = 0. We will keep

p finite, for simplicity. Using identities such as
∑
i . . . =

∑
η

∑
i∈Iη . . . and

i ∈ Iη:

∂

∂ui
ρη(u;u) = −|Iη|−1 ∂

∂u
δ[u− ui],

∂2

∂u2
i

ρη(u;u) = |Iη|−1 ∂2

∂u2
δ[u− ui],

we then get for N → ∞ and n → ∞ (taken in that order) from equation
(2.221) 2p coupled diffusion equations for the distributions ρη(u) of membrane
potentials in each of the 2p sub-lattices Iη:

ρ̇η(u) = − ∂

∂u
{ρη(u)[ημAμνpη′η′ν

∫
du′ ρη′(u′) tanh[γu′]− u]}+ T

∂2

∂u2
ρη(u).

(2.223)
Equation (2.223) is the basis for our further analysis. It can be simplified only
if we make additional assumptions on the system’s initial conditions, such as
δ−distributed or Gaussian distributed ρη(u) at t = 0 (see below); otherwise
it will have to be solved numerically.

It is clear that (2.223) is again of the time–dependent Ornstein–Uhlenbeck
form, and will thus again have Gaussian solutions as the natural ones [Coo01,
SC00, SC01, CKS05]:

ρt,η(u) = [2πΣ2
η(t)]−

1
2 e−

1
2 [u−uη(t)]2/Σ2

η(t),
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in which Ση(t) = [T + (Σ2
η(0) − T )e−2t]

1
2 , and with the uη(t) evolving in

time according to

d

dt
uη = pη′(η ·Aη′)

∫
Dz tanh[γ(uη′ + Ση′z)]− uη. (2.224)

Our problem has thus been reduced successfully to the study of the 2p coupled
scalar equations (2.224). We can also measure the correlation between the
firing activities si(ui) = 1

2 [1 + tanh(γui)] and the pattern components (similar
to the overlaps in the case of binary neurons). If the pattern bits are drawn at
random, i.e., limN→∞ |Iη|/N = pη = 2−p for all η, we can define a ‘graded–
response’ equivalent mμ(u) = 2N−1ξμi si(ui) ∈ [−1, 1] of the Hopfield pattern
overlaps:

mμ(u) =
2
N

ξμi si(u) =
1
N

ξμi tanh(γui) +O(N− 1
2 )

= pη ημ

∫
du ρη(u;u) tanh(γu) +O(N− 1

2 ).

Full recall of pattern μ implies si(ui) = 1
2 [ξμi + 1], giving mμ(u) = 1. Since

the distributions ρη(u) obey deterministic laws for N →∞, the same will be
true for the overlaps m = (m1, . . . ,mp). For the Gaussian solutions (2.224) of
(2.223) we can now proceed to replace the 2p macroscopic laws (2.224), which
reduce to d

dtuη = η ·Am−uη and give uη = uη(0)e−t+η ·A
∫ t
0
ds es−tm(s),

by p integral equations in terms of overlaps only:

mμ(t) = pη ημ

∫
Dz tanh[γ(uη(0)e−t (2.225)

+ η ·A
∫ t

0

ds es−tm(s) + z
√

T + (Σ2
η(0)− T )e−2t)],

with Dz = (2π)−
1
2 e−

1
2 z

2
dz. Here the sub–lattices only come in via the initial

conditions.
The equations describing the asymptotic (stationary) state can be written

entirely without sub-lattices,13

mμ = 〈ξμ
∫

Dz tanh[γ(ξ ·Am+ z
√

T )]〉ξ, (2.226)

ρη(u) = [2πT ]−
1
2 e−

1
2 [u−η·Am]2/T ,

by taking the t → ∞ limit in (2.225), using uη → η ·Am, Ση →
√

T , and
the familiar notation
13 Note the appealing similarity with previous results on networks with binary neu-

rons in equilibrium. For T = 0 the overlap equations (2.226) become identical to
those found for attractor networks with binary neurons and finite p (hence our
choice to insert an extra factor 2 in defining the synapses), with γ replacing the
inverse noise level β in the former.
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〈g(ξ)〉ξ = lim
N→∞

1
N

∑

i

g(ξi) = 2−p
∑

ξ∈{−1,1}p

g(ξ).

For the simplest non–trivial choice, Aμν = δμν (i.e., Jij = (2/N)
∑
μ ξμi ξ

μ
j ,

as in the Hopfield [Hop82] model) equation (2.226) yields the familiar pure
and mixture state solutions. For T = 0 we find a continuous phase transition
from non–recall to pure states of the form mμ = mδμν (for some ν) at γc = 1.
For T > 0 we have in (2.226) an additional Gaussian noise, absent in the
models with binary neurons. Again the pure states are the first non–trivial
solutions to enter the stage. Substituting mμ = mδμν into (2.226) gives

m =
∫

Dz tanh[γ(m+ z
√

T )]. (2.227)

Writing (2.227) as m2 = γm
∫m
0

dk[1 −
∫

Dz tanh2[γ(k + z
√

T )]] ≤ γm2,
reveals that m = 0 as soon as γ < 1. A continuous transition to an m > 0
state occurs when

γ−1 = 1−
∫

Dz tanh2[γz
√

T ].

A parametrization of this transition line in the (γ, T )−plane is given by

γ−1(x) = 1−
∫

Dz tanh2(zx),

T (x) = x2/γ2(x), x ≥ 0.

Discontinuous transitions away from m = 0 (for which there is no evidence)
would have to be calculated numerically. For γ =∞ we get the equation m =
erf[m/

√
2T ], giving a continuous transition to m > 0 at Tc = 2/π ≈ 0.637.

Alternatively the latter number can also be found by taking limx→∞ T (x) in
the above parametrization:

Tc(γ = ∞) = lim
x→∞

x2[1−
∫

Dz tanh2(zx)]2

= lim
x→∞

[
∫

Dz
∂

∂z
tanh(zx)]2 = [2

∫
Dz δ(z)]2 = 2/π.

Let us now turn to dynamics. It follows from (2.226) that the ‘natural’
initial conditions for uη and Ση are of the form: uη(0) = η·k0 and Ση(0) = Σ0

for all η. Equivalently:

t = 0 : ρη(u) = [2πΣ2
0 ]−

1
2 e−

1
2 [u−η·k0]

2/Σ2
0 ,

k0 ∈ R
p, Σ0 ∈ R.

These would also be the typical and natural statistics if we were to prepare
an initial firing state {si} by hand, via manipulation of the potentials {ui}.
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For such initial conditions we can simplify the dynamical equation (2.225) to
[Coo01, SC00, SC01, CKS05]

mμ(t) = 〈 ξμ

∫
Dz tanh[γ(ξ · [k0e−t (2.228)

+ A
∫ t

0

ds es−tm(s)] + z
√

T + (Σ2
0 − T )e−2t)]〉ξ. (2.229)

For the special case of the Hopfield synapses, i.e., Aμν = δμν , it follows from
(2.228) that recall of a given pattern ν is triggered upon choosing k0,μ = k0δμν
(with k0 > 0), since then equation (2.228) generates mμ(t) = m(t)δμν at any
time, with the amplitude m(t) following from

m(t) =
∫

Dz tanh[γ[k0e−t +
∫ t

0

ds es−tm(s) + z
√

T + (Σ2
0 − T )e−2t]],

(2.230)
which is the dynamical counterpart of equation (2.227) (to which indeed it
reduces for t→∞).

We finally specialize further to the case where our Gaussian initial con-
ditions are not only chosen to trigger recall of a single pattern ξν , but in
addition describe uniform membrane potentials within the sub-lattices, i.e.,
k0,μ = k0δμν and Σ0 = 0, so ρη(u) = δ[u − k0ην ]. Here we can derive from
(2.230) at t = 0 the identity m0 = tanh[γk0], which enables us to express k0

as k0 = (2γ)−1 log[(1 + m0)/(1−m0)], and find (2.230) reducing to

m(t) =
∫

Dz tanh[e−t log[
1 + m0

1−m0
]
1
2 + γ[

∫ t

0

ds es−tm(s) + z
√

T (1− e−2t)]].

Compared to the overlap evolution in large networks of binary networks (away
from saturation) one can see richer behavior, e.g., non–monotonicity [Coo01,
SC00, SC01, CKS05].

2.3.8 Correlation– and Response–Functions

We now turn to correlation functions Cij(t, t′) and response functions Gij(t, t′).
These will become the language in which the partition function methods are
formulated, which will enable us to solve the dynamics of recurrent networks
in the (complex) regime near saturation (we take t > t′):

Cij(t, t′) = 〈σi(t)σj(t′)〉, Gij(t, t′) = ∂〈σi(t)〉/∂θj(t′) (2.231)

The {σi} evolve in time according to equations of the form (2.186) (binary
neurons, sequential updates), (2.205) (binary neurons, parallel updates) or
(2.131) (continuous neurons). The θi represent thresholds and/or external
stimuli, which are added to the local fields in the cases (2.186,2.205), or added
to the deterministic forces in the case of a Fokker–Planck equation (2.131).
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We retain θi(t) = θi, except for a perturbation δθj(t′) applied at time t′ in
defining the response function. Calculating averages such as (2.231) requires
determining joint probability distributions involving neuron states at different
times.

Fluctuation–Dissipation Theorems

For networks of binary neurons with discrete time dynamics of the form
p�+1(σ) =

∑
σ′ W [σ;σ′] p�(σ′), the probability of observing a given ‘path’

σ( ′) → σ( ′ + 1) → . . . → σ( − 1) → σ( ) of successive configurations be-
tween step  ′ and step  is given by the product of the corresponding transition
matrix elements (without summation):

Prob[σ( ′), . . . ,σ( )] = W [σ( );σ( − 1)]W [σ( − 1);
σ( − 2)] . . .W [σ( ′ + 1);σ( ′)]p�′(σ( ′)).

This allows us to write [Coo01, SC00, SC01, CKS05]

Cij( ,  ′) =
∑

σ(�′)

· · ·
∑

σ(�)

Prob[σ( ′), . . . ,σ( )]σi( )σj( ′) (2.232)

=
∑

σσ′

σiσ
′
jW

�−�′ [σ;σ′]p�′(σ′),

Gij( ,  ′) =
∑

σσ′σ′′

σiW
�−�′−1[σ;σ

′′
]
[

∂

∂θj
W [σ

′′
;σ′]

]
p�′(σ′). (2.233)

From (2.232) and (2.233) it follows that both Cij( ,  ′) and Gij( ,  ′) will in
the stationary state, i.e., upon substituting p�′(σ′) = p∞(σ′), only depend
on  −  ′: Cij( ,  ′) → Cij( −  ′) and Gij( ,  ′) → Gij( −  ′). For this we
do not require detailed balance. Detailed balance, however, leads to a simple
relation between the response function Gij(τ) and the temporal derivative of
the correlation function Cij(τ).

We now turn to equilibrium systems, i.e., networks with symmetric
synapses (and with all Jii = 0 in the case of sequential dynamics). We calculate
the derivative of the transition matrix that occurs in (2.233) by differentiat-
ing the equilibrium condition peq(σ) =

∑
σ′ W [σ;σ′]peq(σ′) with respect to

external fields:

∂

∂θj
peq(σ) =

∑

σ′

{∂W [σ;σ′]
∂θj

peq(σ′) + W [σ;σ′]
∂

∂θj
peq(σ′)}.

Detailed balance implies peq(σ) = Z−1e−βH(σ) (in the parallel case we sim-
ply substitute the appropriate Hamiltonian H → H̃), giving ∂peq(σ)/∂θj =
−[Z−1∂Z/∂θj + β∂H(σ)/∂θj ]peq(σ), so that
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∑

σ′

∂W [σ;σ′]
∂θj

peq(σ′) = β{
∑

σ′

W [σ;σ′]
∂H(σ′)

∂θj
peq(σ′)− ∂H(σ)

∂θj
peq(σ)},

in which the term containing Z drops out. We now get for the response func-
tion (2.233) in equilibrium the following result:

Gij( ) = (2.234)

β
∑

σσ′

σiW
�−1 [σ;σ′]

{
∑

σ′′

W [σ′;σ′′]
∂H(σ′′)

∂θj
peq(σ′′)− ∂H(σ′)

∂θj
peq(σ′)

}

.

The structure of (2.234) is similar to what follows upon calculating the evolu-
tion of the equilibrium correlation function (2.232) in a single iteration step:

Cij( )− Cij( − 1) =
∑

σσ′

σiW
�−1 [σ;σ′]× (2.235)

× {
∑

σ′′

W [σ′;σ′′]σ′′
j peq(σ′′)− σ′

jpeq(σ′)}.

Finally we calculate the relevant derivatives of the two Hamiltonians

H(σ) = −Jijσiσj + θiσi, and

H̃(σ) = −θiσi − β−1
∑

i

log 2 cosh[βhi(σ)]

(with hi(σ) = Jijσj + θi),

∂H(σ)
∂θj

= −σj ,
∂H̃(σ)
∂θj

= −σj − tanh[βhj(σ)].

For sequential dynamics we hereby arrive directly at a fluctuation–dissipation
theorem. For parallel dynamics we need one more identity (which follows from
the definition of the transition matrix in (2.205) and the detailed balance
property) to transform the tanh occurring in the derivative of H̃:

tanh[βhj(σ′)]peq(σ′) =
∑

σ′′

σ′′
jW [σ′′;σ′] peq(σ′)

=
∑

σ′′

W [σ′;σ′′]σ′′
j peq(σ′′).

For parallel dynamics  and  ′ are the real time labels t and t′, and we get,
with τ = t− t′:

Gij(τ > 0) = −β[Cij(τ + 1)− Cij(τ − 1)], Gij(τ ≤ 0) = 0. (2.236)

For the continuous-time version (2.186) of sequential dynamics the time t is
defined as t =  /N , and the difference equation (2.235) becomes a differential
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equation. For perturbations at time t′ in the definition of the response function
(2.233) to retain a non-vanishing effect at (re-scaled) time t in the limit N →
∞, they will have to be re-scaled as well: δθj(t′) → Nδθj(t′). As a result:

Gij(τ) = −βθ(τ)
d

dτ
Cij(τ). (2.237)

The need to re–scale perturbations in making the transition from discrete to
continuous times has the same origin as the need to re-scale the random forces
in the derivation of the continuous-time Langevin equation from a discrete-
time process. Going from ordinary derivatives to function derivatives (which
is what happens in the continuous–time limit), implies replacing Kronecker
delta’s δt,t′ by Dirac delta-functions according to δt,t′ → Δδ(t− t′), where Δ
is the average duration of an iteration step. Equations (2.236) and (2.237) are
examples of so–called fluctuation–dissipation theorems (FDT).

For systems described by a Fokker–Planck equation (2.131) the simplest
way to calculate correlation- and response-functions is by first returning to
the underlying discrete-time system and leaving the continuous time limit
Δ→ 0 until the end. We saw above that for small but finite time-steps Δ the
underlying discrete-time process is described by [Coo01, SC00, SC01, CKS05]

t =  Δ, p�Δ+Δ(σ) = [1 +ΔLσ +O(Δ
3
2 )]p�Δ(σ),

with  = 0, 1, 2, . . . and with the differential operator

Lσ = − ∂

∂σi
[fi(σ)− T

∂

∂σi
].

From this it follows that the conditional probability density p�Δ(σ|σ′,  ′Δ)
for finding state σ at time  Δ, given the system was in state σ′ at time  ′Δ,
must be

p�Δ(σ|σ′,  ′Δ) = [1 +ΔLσ +O(Δ
3
2 )]�−�

′
δ[σ − σ′]. (2.238)

Equation (2.238) will be our main building block. Firstly, we will calculate
the correlations:

Cij( Δ,  ′Δ) = 〈σi( Δ)σj( ′Δ)〉

=
∫

dσdσ′ σiσ
′
j p�Δ(σ|σ′,  ′Δ)p�′Δ(σ′)

=
∫

dσ σi[1+ΔLσ +O(Δ
3
2 )]�−�

′
∫

dσ′ σ′
jδ[σ − σ′]p�′Δ(σ′)

=
∫

dσ σi[1+ΔLσ +O(Δ
3
2 )]�−�

′
[σj p�′Δ(σ)] .

At this stage, we can take the limits Δ → 0 and  ,  ′ → ∞, with t =  Δ and
t′ =  ′Δ finite, using limΔ→0[1 + ΔA]k/Δ = ekA:
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Cij(t, t′) =
∫

dσ σi e(t−t′)Lσ [σj pt′(σ)] . (2.239)

Next we turn to the response function. A perturbation applied at time t′ =  ′Δ
to the Langevin forces fi(σ) comes in at the transition σ( ′Δ) → σ( ′Δ + Δ).
As with sequential dynamics binary networks, the perturbation is re-scaled
with the step size Δ to retain significance as Δ→ 0:

Gij( Δ,  ′Δ) =
∂〈σi( Δ)〉
Δ∂θj( ′Δ)

=
∂

Δ∂θj( ′Δ)

∫
dσdσ′ σi p�Δ(σ|σ′,  ′Δ)p�′Δ(σ′)

=
∫

dσdσ′dσ
′′

σi p�Δ(σ|σ′′
,  ′Δ+Δ)

[
∂p�′′Δ+Δ(σ|σ′,  ′Δ)

Δ∂θj

]
p�′Δ(σ′)

=
∫

dσdσ′dσ
′′

σi[1+ΔLσ +O(Δ
3
2 )]�−�

′−1δ[σ − σ
′′
]×

[
1
Δ

∂

∂θj
[1 + ΔLσ′′ +O(Δ

3
2 )]δ[σ

′′ − σ′]
]
p�′Δ(σ′)

= −
∫

dσdσ′dσ
′′

σi[1+ΔLσ +O(Δ
3
2 )]�−�

′−1 ×

δ[σ − σ
′′
]δ[σ

′′ − σ′][
∂

∂σ′
j

+O(Δ
1
2 )] p�′Δ(σ′)

= −
∫

dσ σi[1+ΔLσ +O(Δ
3
2 )]�−�

′−1[
∂

∂σj
+O(Δ

1
2 )] p�′Δ(σ).

We take the limits Δ→ 0 and  ,  ′ →∞, with t =  Δ and t′ =  ′Δ finite:

Gij(t, t′) = −
∫

dσ σi e(t−t′)Lσ
∂

∂σj
pt′(σ). (2.240)

Equations (2.239) and (2.240) apply to arbitrary systems described by Fokker–
Planck equations. In the case of conservative forces, i.e., fi(σ) = −∂H(σ)/∂σi,
and when the system is in an equilibrium state at time t′ so that Cij(t, t′) =
Cij(t − t′) and Gij(t, t′) = Gij(t − t′), we can take a further step using
pt′(σ) = peq(σ) = Z−1e−βH(σ). In that case, taking the time derivative of
expression (2.239) gives

∂

∂τ
Cij(τ) =

∫
dσ σi eτLσLσ [σj peq(σ)] .

Working out the key term in this expression gives

Lσ[σj peq(σ)] = −
∑

i

∂

∂σi
[fi(σ)− T

∂

∂σi
][σj peq(σ)]

= T
∂

∂σj
peq(σ)−

∑

i

∂

∂σi
[σjJi(σ)],
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with the components of the probability current density Ji(σ) = [fi(σ) −
T ∂
∂σi

]peq(σ). In equilibrium, however, the current is zero by definition, so
only the first term in the above expression survives. Insertion into our previous
equation for ∂Cij(τ)/∂τ , and comparison with (2.240) leads to the FDT for
continuous systems [Coo01, SC00, SC01, CKS05]:

Continuous Dynamics: Gij(τ) = −βθ(τ)
d

dτ
Cij(τ).

We will now calculate the correlation and response functions explicitly, and
verify the validity or otherwise of the FDT relations, for attractor networks
away from saturation.

Simple Attractor Networks with Binary Neurons

We will consider the continuous time version (2.186) of the sequential dy-
namics, with the local fields hi(σ) = Jijσj + θi, and the separable interaction
matrix (2.202). We already solved the dynamics of this model for the case with
zero external fields and away from saturation (i.e., p �

√
N). Having non–

zero, or even time–dependent, external fields does not affect the calculation
much; one adds the external fields to the internal ones and finds the macro-
scopic laws (2.203) for the overlaps with the stored patterns being replaced
by [Coo01, SC00, SC01, CKS05]

ṁ(t) = lim
N→∞

1
N

ξi tanh [βξi ·Am(t) + θi(t)]−m(t), (2.241)

Fluctuations in the local fields are of vanishing order in N (since the fluctua-
tions in m are), so that one can easily derive from the master equation (2.186)
the following expressions for spin averages:

d

dt
〈σi(t)〉 = tanhβ[ξi · Am(t)+ θi(t)]− 〈σi(t)〉, (2.242)

i �= j :
d

dt
〈σi(t)σj(t)〉 = tanhβ[ξi · Am(t)+ θi(t)]〈σj(t)〉

+ tanhβ[ξj · Am(t)+ θj(t)]〈σi(t)〉 − 2〈σi(t)σj(t)〉.

Correlations at different times are calculated by applying (2.242) to situations
where the microscopic state at time t′ is known exactly, i.e., where pt′(σ) =
δσ,σ′ for some σ′:

〈σi(t)〉|σ(t′)=σ′ = σ′
ie

−(t−t′) +
∫ t

t′
ds es−t tanhβ × (2.243)

×[ξi ·Am(s;σ′, t′)+ θi(s)],
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with m(s;σ′, t′) denoting the solution of (2.241) following initial condition
m(t′) = 1

N σ′
iξi. If we multiply both sides of (2.243) by σ′

j and average over
all possible states σ′ at time t′ we get in leading order in N :

〈σi(t)σj(t′)〉 = 〈σi(t′)σj(t′)〉e−(t−t′) +
∫ t

t′
ds es−t〈 tanhβ[ξi ·Am(s;σ(t′), t′)+ θi(s)]σj(t′)〉.

Because of the existence of deterministic laws for the overlaps m in the N →
∞ limit, we know with probability one that during the stochastic process the
actual value m(σ(t′)) must be given by the solution of (2.241), evaluated at
time t′. As a result we get, with Cij(t, t′) = 〈σi(t)σj(t′)〉:

Cij(t, t′) = Cij(t′, t′)e−(t−t′) + (2.244)
∫ t

t′
ds es−t tanhβ[ξi ·Am(s)+ θi(s)]〈σj(t′)〉.

Similarly we get from the solution of (2.242) an equation for the leading order
in N of the response functions, by derivation with respect to external fields:

∂〈σi(t)〉
∂θj(t′)

= βθ(t− t′)
∫ t

−∞
ds es−t

[
1− tanh2 β[ξi ·Am(s) + θi(s)]

]
×

×
[

1
N

(ξi ·Aξk)
∂〈σk(s)〉
∂θj(t′)

+ δijδ(s− t′)
]
, or

Gij(t, t′) = βδijθ(t− t′)e−(t−t′) [1− tanh2 β[ξi ·Am(t′) + θi(t′)]
]
(2.245)

+ βθ(t− t′)
∫ t

t′
ds es−t ×

×
[
1− tanh2 β[ξi ·Am(s) + θi(s)]

] 1
N

(ξi ·Aξk)Gkj(s, t
′).

For t = t′ we retain in leading order in N only the instantaneous single-site
contribution

lim
t′↑t

Gij(t, t′) = βδij
[
1− tanh2 β[ξi ·Am(t) + θi(t)]

]
. (2.246)

This leads to the following ansatz for the scaling with N of the Gij(t, t′),
which can be shown to be correct by insertion into (2.245), in combination
with the correctness at t = t′ following from (2.246):

i = j : Gii(t, t′) = O(1), i �= j : Gij(t, t′) = O(N−1)

Note that this implies 1
N (ξi ·Aξk)Gkj(s, t′) = O( 1

N ). In leading order in N
we now find
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Gij(t, t′) = βδijθ(t− t′)e−(t−t′) [1− tanh2 β[ξi ·Am(t′) + θi(t′)]
]
. (2.247)

For those cases where the macroscopic laws (2.241) describe evolution to a
stationary state m, obviously requiring stationary external fields θi(t) = θi,
we can take the limit t→∞, with t−t′ = τ fixed, in (2.244) and (2.247). Using
the t → ∞ limits of (2.242) we subsequently find time translation invariant
expressions: limt→∞ Cij(t, t− τ) = Cij(τ) and limt→∞ Gij(t, t− τ) = Gij(τ),
with in leading order in N

Cij(τ) = tanhβ[ξi ·Am+ θi] tanhβ[ξj ·Am+ θj ]

+ δije−τ
[
1− tanh2 β[ξi ·Am + θi]

]
,

Gij(τ) = βδijθ(τ)e−τ
[
1− tanh2 β[ξi ·Am + θi]

]
,

for which the fluctuation–dissipation theorem (2.237) holds [Coo01, SC00,
SC01, CKS05]:

Gij(τ) = −βθ(τ)
d

dτ
Cij(τ).

We now turn to the parallel dynamical rules (2.205), with the local fields
hi(σ) = Jijσj + θi, and the interaction matrix (2.202). As before, having
time–dependent external fields amounts simply to adding these fields to the
internal ones, and the dynamic laws (2.212) are found to be replaced by

m(t + 1) = lim
N→∞

1
N

ξi tanh [βξi ·Am(t) + θi(t)] . (2.248)

Fluctuations in the local fields are again of vanishing order in N , and the
parallel dynamics versions of equations (2.242), to be derived from (2.205),
are found to be

〈σi(t+ 1)〉 = tanhβ[ξi ·Am(t)+ θi(t)], (2.249)

i �= j : 〈σi(t+ 1)σj(t+ 1)〉 = (2.250)
tanhβ[ξi ·Am(t)+ θi(t)] tanhβ[ξj ·Am(t)+ θj(t)].

With m(t;σ′, t′) denoting the solution of the map (2.248) following initial
condition m(t′) = 1

N σ′
iξi, we immediately get from equations (2.249,2.250)

the correlation functions:

Cij(t, t) = δij + [1− δij ] tanhβ[ξi ·Am(t− 1)+ θi(t− 1)]×
tanhβ[ξj ·Am(t− 1)+ θj(t− 1)],

t > t′ : Cij(t, t′) = 〈 tanhβ[ξi ·Am(t− 1;σ(t′), t′)+ θi(t− 1)]σj(t′)〉
= tanhβ[ξi ·Am(t− 1)+ θi(t− 1)] tanhβ[ξj ·Am(t′ − 1)+ θj(t′ − 1)].



2.3 Synergetics of Recurrent and Attractor Neural Networks 301

From (2.249) also follow equations determining the leading order in N of
the response functions Gij(t, t′), by derivation with respect to the external
fields θj(t′):

t′ > t− 1 : Gij(t, t′) = 0,
t′ = t− 1 : Gij(t, t′) = βδij

[
1− tanh2 β[ξi ·Am(t− 1) + θi(t− 1)]

]
,

t′ < t− 1 : Gij(t, t′) = β
[
1− tanh2 β[ξi ·Am(t− 1) + θi(t− 1)]

]
×

× 1
N (ξi ·Aξk)Gkj(t− 1, t′).

It now follows iteratively that all off–diagonal elements must be of vanishing
order in N : Gij(t, t − 1) = δijGii(t, t − 1) → Gij(t, t − 2) = δijGii(t, t −
2) → . . ., so that in leading order

Gij(t, t′) = βδijδt,t′+1

[
1− tanh2 β[ξi ·Am(t′) + θi(t′)]

]
.

For those cases where the macroscopic laws (2.248) describe evolution to a
stationary state m, with stationary external fields, we can take the limit t→
∞, with t− t′ = τ fixed above. We find time translation invariant expressions:
limt→∞ Cij(t, t − τ) = Cij(τ) and limt→∞ Gij(t, t − τ) = Gij(τ), with in
leading order in N :

Cij(τ) = tanhβ[ξi ·Am+ θi] tanhβ[ξj ·Am+ θj ]

+ δijδτ,0
[
1− tanh2 β[ξi ·Am + θi]

]
,

Gij(τ) = βδijδτ,1
[
1− tanh2 β[ξi ·Am + θi]

]
,

obeying the Fluctuation-Dissipation Theorem (2.236):

Gij(τ > 0) = −β[Cij(τ + 1)− Cij(τ − 1)].

Graded–Response Neurons with Uniform Synapses

Let us finally find out how to calculate correlation and response function
for the simple network (2.132) of graded–response neurons, with (possibly
time–dependent) external forces θi(t), and with uniform synapses Jij = J/N
[Coo01, SC00, SC01, CKS05]:

u̇i(t) =
J

N

∑

j

g[γuj(t)]− ui(t) + θi(t) + ηi(t). (2.251)

For a given realisation of the external forces and the Gaussian noise variables
{ηi(t)} we can formally integrate (2.251) and find

ui(t) = ui(0)e−t +
∫ t

0

ds es−t
[
J

∫
du ρ(u;u(s)) g[γu] + θi(s) + ηi(s)

]
,

(2.252)
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with the distribution of membrane potentials ρ(u;u) = N−1
∑
i δ[u − ui].

The correlation function Cij(t, t′) = 〈ui(t)uj(t′)〉 immediately follows from
(2.252). Without loss of generality we can define t ≥ t′. For absent external
forces (which were only needed in order to define the response function), and
upon using 〈ηi(s)〉 = 0 and 〈ηi(s)ηj(s′)〉 = 2Tδijδ(s− s′), we arrive at

Cij(t, t′) = Tδij(et
′−t − e−t

′−t) +

〈
[
ui(0)e−t + J

∫
du g[γu]

∫ t

0

ds es−tρ(u;u(s))
]
×

×
[

uj(0)e−t
′
+ J

∫
du g[γu]

∫ t′

0

ds′ es
′−t′ρ(u;u(s′))

]

〉.

For N →∞, however, we know the distribution of potentials to evolve deter-
ministically: ρ(u;u(s)) → ρs(u) where ρs(u) is the solution of (2.219). This
allows us to simplify the above expression to

N →∞ : Cij(t, t′) = Tδij(et
′−t − e−t

′−t) (2.253)

+ 〈
[
ui(0)e−t + J

∫
du g[γu]

∫ t

0

ds es−tρs(u)
]
×

×
[

uj(0)e−t
′
+ J

∫
du g[γu]

∫ t′

0

ds′ es
′−t′ρs′(u)

]

〉.

Next we turn to the response function Gij(t, t′) = δ〈ui(t)〉/δξj(t′) (its
definition involves functional rather than scalar differentiation, since time is
continuous). After this differentiation the forces {θi(s)} can be put to zero.
Functional differentiation of (2.252), followed by averaging, then leads us to

Gij(t, t′) = θ(t− t′) δij et
′−t − J

∫
du g[γu]

∂

∂u
×

∫ t

0

ds es−t
1
N

∑

k

lim
θ→0

〈 δ[u− uk(s)]
δuk(s)
δθj(t′)

〉.

In view of (2.252) we make the self-consistent ansatz δuk(s)/δξj(s′) = O(N−1)
for k �= j. This produces

N →∞ : Gij(t, t′) = θ(t− t′) δij et
′−t.

Since equation (2.219) evolves towards a stationary state, we can also take the
limit t→∞, with t−t′ = τ fixed, in (2.253). Assuming non–pathological decay
of the distribution of potentials allows us to put limt→∞

∫ t
0
ds es−tρs(u) = ρ(u)

(the stationary solution of (2.219)), with which we find also (2.253) reducing
to time translation invariant expressions for N → ∞, limt→∞ Cij(t, t − τ) =
Cij(τ) and limt→∞ Gij(t, t− τ) = Gij(τ), in which
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Cij(τ) = Tδije−τ + J2

{∫
du ρ(u)g[γu]

}2

,

Gij(τ) = θ(τ)δije−τ .

Clearly the leading orders in N of these two functions obey the fluctuation-
dissipation theorem:

Gij(τ) = −βθ(τ)
d

dτ
Cij(τ).

As with the binary neuron attractor networks for which we calculated the
correlation and response functions earlier, the impact of detailed balance vi-
olation (occurring when Aμν �= Aνμ in networks with binary neurons and
synapses (2.202), and in all networks with graded–response neurons on the
validity of the fluctuation-dissipation theorems, vanishes for N → ∞, pro-
vided our networks are relatively simple and evolve to a stationary state in
terms of the macroscopic observables (the latter need not necessarily happen.
Detailed balance violation, however, would be noticed in the finite size effects
[CCV98].




