
Preface

The enormous progress over the last decades in our understanding of the
mechanisms behind the complex system “Earth” is to a large extent based
on the availability of enlarged data sets and sophisticated methods for their
analysis. Univariate as well as multivariate time series are a particular class
of such data which are of special importance for studying the dynamical pro-
cesses in complex systems. Time series analysis theory and applications in
geo- and astrophysics have always been mutually stimulating, starting with
classical (linear) problems like the proper estimation of power spectra, which
has been put forward by Udny Yule (studying the features of sunspot activity)
and, later, by John Tukey.

In the second half of the 20th century, more and more evidence has been
accumulated that most processes in nature are intrinsically non-linear and
thus cannot be sufficiently studied by linear statistical methods. With mathe-
matical developments in the fields of dynamic system’s theory, exemplified by
Edward Lorenz’s pioneering work, and fractal theory, starting with the early
fractal concepts inferred by Harold Edwin Hurst from the analysis of geophys-
ical time series, nonlinear methods became available for time series analysis as
well. Over the last decades, these methods have attracted an increasing inter-
est in various branches of the earth sciences. The world’s leading associations
of geoscientists, the American Geophysical Union (AGU) and the European
Geosciences Union (EGU) have reacted to these trends with the formation of
special nonlinear focus groups and topical sections, which are actively present
at the corresponding annual assemblies.

Surprisingly, although nonlinear methods have meanwhile become an es-
tablished, but still developing toolbox for the analysis of geoscientific time
series, so far there has not been a book giving an overview over corresponding
applications of these methods. The aim of this volume is therefore to close this
apparent gap between the numerous excellent books on (i) geostatistics and
the “traditional” (linear) analysis of geoscientific time series, (ii) the nonlin-
ear modelling of geophysical processes, and (iii) the theory of nonlinear time
series analysis.
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This volume contains a collection of papers that were presented in a topical
session on “Applications of Nonlinear Time Series Analysis in the Geosciences”
at the General Assembly of the European Geosciences Union in Vienna from
April 15–20, 2007. More than 30 colleagues from various countries used this
opportunity to present and discuss their most recent results on the analysis of
time series from problems originated in the fields of climatology, atmospheric
sciences, hydrology, seismology, geodesy, and solar-terrestrial physics. Oral
and poster sessions included a total of 38 presentations, which attracted the
interest of many colleagues working both theoretically on and practically with
nonlinear methods of time series analysis in the geosciences. The feedback from
both presenters and audience has encouraged us to prepare this volume, which
is dedicated to both experts in nonlinear time series analysis and practitioners
in the various geoscientific disciplines who are in need of novel and advanced
analysis tools for their time series. In this volume, presentations shown at the
conference are complemented by invited contributions written by some of the
most distinguished colleagues in the field.

In order to allow the interested reader to easily find methods that are
suitable for his particular problems or questions, we have decided to arrange
this book in three parts that comprise typical applications from the fields of
climatology, geodynamics, and solar-terrestrial physics, respectively. However,
especially in the latter case, the assignment of the different subjects has not
always been unique, as there are obvious and rather strong links to the two
other fields. Moreover, we would like to note that there are methods whose
application has already become very common for studying problems from
either of these fields.

The first 7 chapters deal with problems from climatology and the atmo-
spheric sciences. A. Gluhovsky discusses the potential of subsampling for the
analysis of atmospheric time series, which usually cannot be described by
a simple linear stochastic model. In such cases, traditional estimates of al-
ready very simple statistics can be significantly biased, a problem that can be
solved by using subsampling methods. J. Mikšovský, P. Pǐsoft, and A. Raidl
report results on the spatial patterns of nonlinearity in simulations of global
circulation models as well as reanalysis data. S. Hallerberg, J. Bröcker, and
H. Kantz discuss different methods for the prediction of extreme events, a chal-
lenging problem of contemporary interest in various geoscientific disciplines.
D.B. Percival presents an overview about the use of the discrete wavelet trans-
form for the analysis of climatological time series, with a special consideration
of ice thickness and oxygen isotope data. G.S. Duane and J.P. Hacker describe
a framework for automatic parameter estimation in atmospheric models based
on the theory of synchronisation. W.W. Hsieh and A.J. Cannon report on
recent improvements on nonlinear generalisations of traditional multivariate
methods like principal component analysis and canonical correlation analysis,
which are based on the application of neural networks and allow the extraction
of nonlinear, dynamically relevant components. R. Donner, T. Sakamoto, and
N. Tanizuka discuss methods for quantifying the complexity of multivariate
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time series, and how such concepts can be used to study variations and spatio-
temporal dependences of climatological observables. As a particular example,
the case of Japanese air temperature records is considered.

The next 5 chapters describe the analysis of time series in the fields of
oceanography and seismology. S.M. Barbosa, M.E. Silva, and M.J. Fernandes
discuss the issue of characterising the long-term variability of sea-level records
in the presence of nonstationarities, trends, or long-term memory. A. Ardalan
and H. Hashemi describe a framework for the empirical modelling of global
ocean tide and sea level variability using time series from satellite altimetry.
J.A. Hawkins, A. Warn-Varnas, and I. Christov use different linear as well as
nonlinear Fourier-type techniques for the analysis of internal gravity waves
from oceanographic time series. M.E. Ramirez, M. Berrocoso, M.J. González,
and A. Fernández describe a time-frequency analysis of GPS data from the
Deception Island Volcano (Southern Shetland Islands) for the estimation of
local crustal deformation. A. Jiménez, A.M. Posadas, and K.F. Tiampo use
a cellular automaton approach to derive a simple statistical model for the
spatio-temporal variability of seismic activity in different tectonically active
regions.

The final 4 chapters discuss problems related to dynamical processes on
the Sun and their relationship to the complex system “Earth”. I.M. Moroz
uses a topological method, the so-called template analysis, to study the in-
ternal structure of chaos in the Hide-Skeldon-Acheson dynamo, and com-
pares her results with those for the well-known Lorenz model. N.G. Mazur,
V.A. Pilipenko, and K.-H. Glassmeier describe a framework for the analy-
sis of solitary wave signals in geophysical time series, particularly satellite
observations of electromagnetic disturbances in the near-Earth environment.
M. Paluš and D. Novotná introduce a nonlinear generalisation of singular
spectrum analysis that can be used to derive dynamically meaningful oscilla-
tory components from atmospheric, geomagnetic, and solar variability signals.
Finally, R. Donner demonstrates the use of phase coherence analysis for un-
derstanding the long-term dynamics of the north-south asymmetry of sunspot
activity.

We would like to express our sincerest thanks to those people who made
the idea of this book becoming reality: the authors, who prepared their excel-
lent results for publication in this book and the numerous referees, who helped
us evaluating the scientific quality of all contributions and making them be-
ing ready for publication. We also acknowledge the support of Springer at all
stages during the preparation of this book. We do very much hope that it will
inspire many readers in their own scientific research.

Dresden / Porto, Reik Donner
January 2008 Susana Barbosa
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Abstract. We employed selected methods of time series analysis to investigate the
spatial and seasonal variations of nonlinearity in the NCEP/NCAR reanalysis data
and in the outputs of the global climate model HadCM3 of the Hadley Center. The
applied nonlinearity detection techniques were based on a direct comparison of the
results of prediction by multiple linear regression and by the method of local linear
models, complemented by tests using surrogate data. Series of daily values of relative
topography and geopotential height were analyzed. Although some differences of the
detected patterns of nonlinearity were found, their basic features seem to be iden-
tical for both the reanalysis and the model outputs. Most prominently, the distinct
contrast between weak nonlinearity in the equatorial area and stronger nonlinearity
in higher latitudes was well reproduced by the HadCM3 model. Nonlinearity tends
to be slightly stronger in the model outputs than in the reanalysis data. Nonlinear
behavior was generally stronger in the colder part of the year in the mid-latitudes
of both hemispheres, for both analyzed datasets.
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1 Introduction

The Earth’s climate system, as well as its atmospheric component, is an in-
trinsically nonlinear physical system. This nonlinearity is generally reflected
in many series of climatic variables such as atmospheric pressure or temper-
ature, but whether it is detectable and how strong it is depends on the type
of the variable [1, 2, 3], geographic area of its origin [2, 4, 5, 6] or length of
the signal [3]. The manifestations of nonlinearity in time series can be studied
in numerous ways, using different statistics or criteria of the presence of non-
linear behavior. The techniques applied so far to meteorological data involve
the calculation of the mutual information or persistence [1, 7, 8], statistics
based on the performance of a nonlinear predictive method [3, 4, 9], non-
linear correlations [10] or the examination of the character of the prediction
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residuals [2, 4, 5]. Tests using some form of surrogate data are frequently
employed [1, 2, 3, 4, 7, 9, 10]. The presence of nonlinearity can also be as-
sessed by comparing the performance of a linear and a nonlinear time series
analysis method. In the atmospheric sciences, such studies are frequently as-
sociated with the application of statistical methods for prediction [6, 11, 12],
or downscaling and postprocessing tasks [6, 13, 14, 15, 16]. Alongside with a
wide spectrum of techniques for the detection of nonlinearity, different authors
studied diverse types of signals, ranging from various variables related to the
local temperature [1, 3, 6, 7, 10, 13, 14, 15, 16] or pressure [1, 2, 3, 4, 5, 7] to
characteristics of larger-scale dynamics such as the mean hemispheric avail-
able potential energy [8]. Heterogeneity of the methods and datasets applied
by different researchers makes it difficult to directly compare the results and
use them to create a consistent global picture of the geographic variations of
nonlinearity. However, it also seems that there are some systematic regulari-
ties in the spatial distribution of nonlinearity or of the related characteristics
[2, 5, 6, 10, 17]. Here, we investigate this matter further, using a comparison of
the results of linear and nonlinear prediction and tests based on the surrogate
data.

A significant portion of the existing studies dealing with the issue of nonlin-
earity in time series focus on the analysis of individual scalar signals, typically
employing time delayed values for the construction of the space of predictors
or phase space reconstruction. Due to the complex behavior the atmosphere
exhibits, and the relatively small size of the available records, the informa-
tion content in a single series is limited and often insufficient for an effective
application of nonlinear techniques. But meteorological measurements are fre-
quently available for more than one variable, and they are carried out at mul-
tiple locations. When a multivariate system is used instead of a single scalar
series, more information about the local state of the climate system can be
obtained. It also seems that multivariate systems exhibit a generally stronger
detectable nonlinear behavior [3]. For these reasons, and because using mul-
tiple input variables is common in many tasks of statistical meteorology and
climatology, we focused on settings with multivariate predictors in this study.
We restricted our attention to just a few of the available variables, defining
the temperature and pressure structure of the atmosphere. The two illustra-
tive cases presented here are based on forecasts of daily values of the relative
topography 850-500 hPa (which is closely related to the temperature of the
lower troposphere) and of the geopotential height of the 850 hPa level (one of
the variables characterizing the structure of the field of atmospheric pressure).
Along with investigating the character of the series derived from actual mea-
surements (NCEP/NCAR reanalysis), attention was paid to the potential of
the global climate model HadCM3 to reproduce the structures detected in the
observed data. This should help to assess whether such simulation is able to
capture not just the basic characteristics of the Earth’s climate, but also the
eventual nonlinear features of the respective time series. The utilized datasets
are presented in Sect. 2, the techniques applied to quantitatively evaluate
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nonlinearity are described in Sect. 3. Section 4 is devoted to the study of the
spatial variations of nonlinearity. Section 5 focusses on the influence of the
presence of the annual cycle in the series and seasonal changes of the detected
patterns. Finally, in Sect. 6, the results are discussed with regard to their pos-
sible physical cause and practical implications. Color versions of the presented
maps of the geographical distribution of nonlinearity (Figs. 3, 5, 6, 8 and 9)
can be accessed at http://www.miksovsky.info/springer2008.htm.

2 Data

Direct atmospheric observations and measurements suffer from a number of
potential problems. Their locations are typically unevenly spaced and cov-
erage of some areas of the Earth is limited. Data from different sources are
often incompatible and sometimes flawed. This restricts the usability of raw
measurements for an analysis such as ours, the goal of which is to derive glob-
ally comparable results. To avoid or reduce the aforementioned problems, we
used a gridded dataset in this study instead of direct measurements – the
NCEP/NCAR reanalysis [18, 19] (hereinafter NCEP/NCAR). The reanalysis
is a dataset derived from measurements at weather stations, as well as in-
puts from rawinsondes, meteorological satellites and other sources. The input
observations are processed by a fixed data assimilation system, including a
numerical forecast model, and the resulting series are available in a regular
horizontal grid of 2.5◦ by 2.5◦. Here, daily values of the geopotential height of
the 850 hPa level (hereinafter H850) and 500 hPa level have been employed in
a reduced 5◦ by 5◦ horizontal resolution, for the period between 1961 and 2000.
From the values of the geopotential heights, the relative topography 850-500
hPa (RT850-500) has been computed. This quantity describes the thickness of
the layer between the 850 hPa and 500 hPa levels and it is proportional to its
mean virtual temperature. According to the classification used by Kalnay et
al. [18], geopotential heights fall into the A–category of variables, thus reflect-
ing the character of actual measurements rather than the specific properties of
the model applied to create the reanalysis. A typical example of the analyzed
series of RT850-500 in the equatorial area and in the mid-latitudes is shown
in Fig. 1.

The recently increased interest in climate change instigated an intensive
development of the models of the global climate. These simulations, to be
reasonably realistic, must describe all key components of the climate system as
well as the connections among them. As a result, the models are very complex
and demanding with respect to the required computational resources. But
despite their sophistication, no model is able to mimic the observed climate
with absolute accuracy. A very important task in climate modeling is therefore
validating the models, i.e., assessing their ability to reproduce the real climate.
The common validation procedures are usually based on the basic statistical
characteristics of the model outputs; here, we focus on the ability of a climate
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Fig. 1: A section of the analyzed data: Time series of daily values of the relative
topography 850-500 hPa in the equatorial area (0◦E, 0◦N) and in the mid-latitudes
(0◦E, 50◦N), for the years 1991 and 1992.

simulation to produce time series with the same nonlinear qualities as the
real climate. For this task, we chose one of the major global climate models,
HadCM3 of the Hadley Centre [20, 21]. The model outputs were used in a
reduced horizontal resolution of 3.75◦ (longitude) by 5◦ (latitude). The model
integration employed here was based on the observed concentrations of the
greenhouse gasses and estimates of past changes in ozone concentration and
sulfur emissions prior to the year 1990, and the emission scenario SRES B2
afterwards [21]. Since we only used the period from 1961 to 2000 for our
analysis, and there is just very little difference among the SRES scenarios in
the 1990s, the specific scenario choice should not be crucial.

Fig. 2: An example of the structure of the pattern of predictors, displayed for the
predictand series located at 0◦E, 50◦N. Black circles mark the positions of the pre-
dictors, the grid illustrates the reduced horizontal resolution of the NCEP/NCAR
and HadCM3 data, used in this study.
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3 Methods

3.1 General Settings

One of the key issues of the multivariate approach to the construction of the
space of predictors is the selection of a suitable set of input variables. Unlike
for some simple low-dimensional dynamical systems, a perfect phase-space
reconstruction is impossible from climatic time series, due to the complexity
of the underlying system. In the case of practical time series analysis tasks,
a finite-dimensional local approximation of the phase space may suffice. To
predict values of a scalar series in some grid point, we used a pre-set pattern
of predictors, centered on the location of the predictand and spanning 30◦ in
longitude and 20◦ in latitude (Fig. 2). A different configuration of predictors
was chosen for each of the two tasks presented: In the case of the RT850-500
forecast, the dimension of the predictor space was N = 18, with 9 values
of RT850-500 and 9 values of H850 in a configuration shown in Fig. 2. For
the forecast of H850, 9 predictors were used, all of which were of the H850
type. Note that, despite the different spatial resolution of the NCEP/NCAR
reanalysis and the HadCM3 model, the selected pattern of predictors could be
applied for both of them directly, without interpolating the data to a common
grid.

All predictors xi(t), i = 1, . . . , N , were transformed to have zero mean
and standard deviation equal to

√
cosϕ, using the linear transformation

xi(t) →
√

cos(ϕ)(xi(t)−xi)/σi (ϕ being latitude of the respective grid point,
xi mean value of the predictor series and σi its standard deviation). Hence,
the predictor’s variance was proportional to the size of the area character-
ized by the corresponding grid point. The presented results were derived from
the outcomes of prediction one day ahead, carried out for grid points located
between 70◦N and 70◦S (the areas closest to the poles were excluded from
the analysis, due to the severe deformation of the applied spatial pattern of
predictors in high latitudes).

3.2 Direct Comparison-Based Approach

Our primary technique of quantification of nonlinearity was based on a direct
comparison of the root mean square errors (RMSEs) of prediction by a linear
reference method, multiple linear regression, and by its nonlinear counterpart,
the method of local linear models. In the case of linear regression, the value of
the scalar predictand y at time t+1 was computed as a linear combination of
the values of individual predictors xi, i = 1, . . . , N , in the previous time step

ŷ(t + 1) = a0 +
N∑

i=1

aixi(t) , (1)

where the coefficients aj , j = 0, . . . , N , were calculated to minimize the sum
of the squared values of the residuals ŷ(t) − y(t).
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Even a nonlinear system can be described rather well when the linear
model is applied locally for smaller portions of the phase space instead of a
global linear approximation. This concept has been successfully utilized for the
construction of forecast models for many different types of time series. Several
related studies are reprinted in [22] and the basic principles of the method of
local models are also described, e.g., in [23]. The dynamics in the individual re-
gions of the input space is approximated by linear mappings based on (1), but
an individual linear predictive model (or a set of coefficients ai, respectively)
is constructed for each value of t. To create such a local model, only a certain
number M of the predictors-predictand pairs, representing the states of the
system most similar to the one at time t, is employed to compute the coeffi-
cients. The similarity of individual states was quantified by the distance of the
respective N -dimensional vectors of predictors x(t) = (x1(t), x2(t), . . . , xN (t))
here, using the Euclidian norm.

To calculate the out-of-sample root mean square error of the prediction,
the analyzed series were divided into two subintervals. The years 1961–1990
were used as a calibration set, i.e., for the computation of the coefficients
of the above described models. These were then tested for the years 1991–
2000. The values of RMSE we obtained for the prediction by multiple linear
regression (RMSEMLR) and local linear models (RMSELM) were compared
by computing

SSLM = 1 − (RMSELM/RMSEMLR)2 , (2)

which will be referred to as the local models’ skill score. Its definition is
based on the commonly used concept of a skill score, described, e.g., in [24].
SSLM vanishes when both methods perform equally well in terms of RMSE
and it equals to one for a perfect forecast by local models (presuming that
RMSEMLR �= 0). The number M of predictors-predictand pairs used for
the computation of the coefficients of the local models is one of the adjustable
parameters of the method of local models. Depending on the specific structure
of the local climate system, different values of M may be suitable to minimize
RMSE. Here, local models constructed with M = 250, 500 and 1000 were
tested for each grid point; the variant giving the lowest RMSE was then used
in the subsequent analysis.

3.3 Surrogate Data-Based Approach

The above described approach yields results which are interesting from a
practical perspective, but, strictly speaking, it only refers to a relation of
two particular techniques, both of which may have their specifics. Another
method, which does not rely on comparing different mappings, exists. It uses
modified series (so-called surrogate series or surrogates), which preserve se-
lected properties of the original signal, but are consistent with some general
null hypothesis. Here, the hypothesis is that the data originates from a linear
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Gaussian process, the output of which may have been modified by a static
monotonic nonlinear filter. The values of a nonlinearity-sensitive statistic are
then compared for the original series and multiple surrogates, and if a sta-
tistically significant difference is detected, the null hypothesis is rejected. It
should be noted that the formal rejection does not necessarily prove the pres-
ence of nonlinearity in the signal, as it can be caused by other reasons, such as
nonstationarity of the series or imperfection of the surrogate-generating proce-
dure. For details see, e.g., [9], where the principles of the surrogate data-based
tests are presented in depth, or [25], where the usability of several methods
of generating surrogates is discussed for various geophysical data.

For each grid point, 10 surrogates were created from the respective multi-
variate system of time series. Prediction by the method of local linear mod-
els was carried out for each of the surrogates and an arithmetic average
RMSE SURR of the resulting RMSEs was computed. A skill score-based vari-
able, analogous to (2), was then calculated using RMSE for the original series
RMSELM and RMSE SURR:

SS SURR = 1 − (RMSELM/RMSE SURR)2. (3)

In order to keep the computational demands at a reasonable level, the sur-
rogate data-based analysis was performed just for M = 250. Also, the years
1991–2000 were used for both calibration and testing of the mappings. The
surrogate series were generated by the iterative amplitude adjusted Fourier
transform [26] in its multivariate form [9]; the program package TISEAN by
Hegger et al. [27] was applied for this task.

4 Spatial Patterns of Nonlinearity

Figure 3a shows the geographical distribution of the local models’ skill score
SSLM, obtained for the NCEP/NCAR RT850-500 forecast. The most promi-
nent feature of the detected pattern is the strong latitudinal variance of nonlin-
earity. Near the equator, just very small and mostly statistically insignificant
difference between the performance of purely linear regression and local linear
models was found. Nonlinear behavior becomes visibly stronger in the mid-
latitudes, and it is more pronounced on average in the northern hemisphere,
where major nonlinearity was detected for all grid points north of circa 25◦N
(Fig. 4). In the southern hemisphere, the strongest nonlinearity was located
in a band approximately between 25◦S and 50◦S. This structure seems to be
well reproduced by the HadCM3 model (Fig. 3b), although the nonlinear be-
havior is slightly stronger in the model data in the northern hemisphere – see
Table 1, columns 1 and 2. The spatial correlation of the SSLM fields for the
NCEP/NCAR and HadCM3 data was evaluated by computing the Pearson
correlation coefficient, after linear interpolation of the HadCM3 data-based
values of SSLM to the 5◦ by 5◦ grid of NCEP/NCAR. For the entire area
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Fig. 3: Geographical distribution of the local models’ skill score SSLM, obtained
for the RT850-500 prediction, using the NCEP/NCAR (a) and HadCM3 (b) data.
Diamonds mark the positions of the grid points where daily errors of prediction by
the method of local models were not statistically significantly lower than for linear
regression at the 95% confidence level, according to the one-sided paired sign test.

between 70◦N and 70◦S, the correlation was 0.91. When just extratropical
areas were taken into account, the resemblance of the SSLM patterns was
stronger in the northern hemisphere than in the southern one (Table 1, col-
umn 3). Similar values of correlation were also obtained when the Spearman
rank-order correlation coefficient was used instead of the Pearson one.

Aside from the dominant latitudinal dependence, the detected nonlinearity
patterns also exhibited a distinct finer structure. As can be seen in Fig. 3a for
the NCEP/NCAR reanalysis data, local maxima of nonlinearity were found
over Europe, North America, East Asia and the northern part of the Pacific
Ocean, and east of the landmasses of the southern hemisphere. The HadCM3
data yielded a very similar pattern (Fig. 3b). After the average latitudinal
structure was filtered out by subtracting the respective latitudinal averages
from the values of SSLM in every grid point, the spatial correlation of the
NCEP/NCAR and HadCM3 SSLM patterns was still rather high, though the
resemblance of both fields was clearly stronger in the northern hemisphere
(Table 1, column 4).



Global Patterns of Nonlinearity in Atmospheric Data 25

Fig. 4: Distribution of SSLM in different latitudes, obtained for the RT850-500
prediction (latitude values are positive north of the equator).

Table 1: Regional averages of SSLM, obtained for the RT850-500 prediction in the
case of the NCEP/NCAR (column 1) and HadCM3 (column 2) data and spatial cor-
relations of the NCEP/NCAR and HadCM3 SSLM patterns for the original values
of SSLM (column 3) and after the average latitudinal dependence has been filtered
out (column 4).

SSLM Correlation

Region NCEP/NCAR HadCM3 Original Filtered

25◦N–70◦N 0.29 0.34 0.75 0.60
20◦S–20◦N 0.04 0.06 0.89 0.45
70◦S–25◦S 0.24 0.23 0.55 0.48

When the results of the H850 prediction were applied as a basis for a non-
linearity detection, a somewhat different pattern emerged (Fig. 5). The basic
latitudinal structure with very weak nonlinearity in the equatorial area was
still present, but other details of the detected structure differed from the ones
found for the RT850-500 prediction. In the northern hemisphere, maximum
values of SSLM were located over the northwestern part of the Atlantic Ocean
and the adjacent part of North America, as well as over the northern part of
the Pacific Ocean. Both these maxima were rather well expressed, while the
rest of the northern hemisphere exhibited weaker nonlinearity. In the southern
hemisphere, the maxima of SSLM were less localized. The overall degree of
nonlinearity was lower than for the RT850-500 prediction (Table 2, columns
1 and 2). The similarity of the patterns obtained from the NCEP/NCAR and
HadCM3 data was again very strong, with a value of global spatial correla-
tion of 0.9. The nonlinearity was stronger on average in the HadCM3 outputs
than in the NCEP/NCAR reanalysis. As for the match of the patterns of
SSLM with filtered-out latitudinal dependence, there was still a high positive
correlation, stronger in the northern hemisphere (Table 2, column 4).
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Fig. 5: Same as Fig. 3, for the prediction of H850 instead of RT850-500.

Table 2: Same as Table 1, for the prediction of H850 instead of RT850-500.

SSLM Correlation

Region NCEP/NCAR HadCM3 Original Filtered

25◦N–70◦N 0.10 0.13 0.84 0.85
20◦S–20◦N 0.02 0.03 0.71 0.52
70◦S–25◦S 0.09 0.14 0.75 0.71

As can be seen from Fig. 6, the pattern of nonlinearity obtained for the
RT850-500 prediction by means of surrogate data and expressed through
SS SURR is very similar to the one presented above for the direct comparison
technique (Fig. 3a). To illustrate the distribution of RMSE in the ensemble
of surrogates, a more detailed example of the outcomes is shown in Fig. 7 for
the grid points along the 0◦ meridian. The results for the HadCM3 data are
not shown, but they also confirm the outcomes of the direct comparison of
multiple linear regression and local linear models. Similarly, surrogate data-
based verification of the results derived from the H850 prediction showed no
major differences either.

It should be mentioned that when an identical setting is used for direct
comparison-based and surrogate data-based tests, including an equal size of
the calibration set, SSLM is systematically smaller than SS SURR. The reason
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Fig. 6: Geographical distribution of SS SURR, obtained for the RT850-500 prediction,
using the NCEP/NCAR data. Diamonds mark positions of the grid points, where the
value of RMSE for the original series was not smaller than for all 10 surrogates. This
is equivalent to the non-rejection of the hypothesis of a linear Gaussian generating
process at the confidence level of about 91%, according to the usually applied one-
sided rank-order test, described, e.g., in [9]. Testing at a higher confidence level
would require more surrogates, but even then, the results would be almost identical,
as additional tests have shown for selected individual grid points.
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0°E, 25°N 0°E, 0°N

Fig. 7: Left panel : RMSE of the RT850-500 prediction by the local linear models
method and its range for the respective surrogate series, for grid points at 0◦E
(NCEP/NCAR data). Right panels: Values of RMSE (m) obtained for the original
series and individual surrogates in the three selected grid points.

for this difference is related to the behavior of the method of local models
for purely linear series. When the processed signal contains no deterministic
nonlinear component (like surrogates do) and M is smaller than the size of the
calibration set, the method of local models performs slightly worse than linear
regression. Our choice of a shorter calibration set for the surrogate data-based
tests (Sect. 3.3) has actually partly compensated for this shift, because the
magnitude of detected nonlinearity generally decreases with the reduction of
the size of the calibration set.
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Fig. 8: Same as Fig. 3a, for series with removed annual cycle.
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Fig. 9: Same as Fig. 3a, for the DJF (a) and JJA (b) seasons (winter and summer
in the northern hemisphere) instead of the entire year.
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5 Seasonal Variations of Nonlinearity

The annual cycle is among the strongest oscillations in the climate system.
It dominates series of many climatic variables, especially in higher latitudes
(see example in Fig. 1). This also means that the geographical areas with
a well-defined annual cycle coincide to some degree with the regions, where
strong nonlinearity was detected. To assess the possible relationship, we re-
peated some of the tests for the series with removed annual cycle. The removal
was carried out by subtracting the mean climatological annual cycle of the
respective variable, computed for the years 1961–2000 and smoothed by an
11–day moving average. An example of the results is shown in Fig. 8, for the
RT850-500 prediction. As a comparison to Fig. 3a reveals, the values of SSLM

generally decreased after the annual cycle removal. Although this change was
relatively small on average (e.g., the average value of SSLM decreased from
0.29 to 0.23 in the area north of 25◦N, and from 0.24 to 0.21 south of 25◦S),
it was profound in the regions with the highest amplitude of the annual cycle
of RT850-500. For instance, the maximum of SSLM, originally detected over
East Asia and the adjacent part of the Pacific Ocean, disappeared almost
completely. In the southern hemisphere, the changes associated with the an-
nual cycle removal were generally smaller. In the case of the H850 prediction,
the shape of the pattern of SSLM remained practically identical for the an-
nual cycle-free series, though the average degree of nonlinearity also slightly
decreased.

In many situations, the annual cycle cannot be treated as simply an oscil-
lation superposed to the variations at other time scales. Different seasons are
associated with different atmospheric dynamics in many regions, and proper-
ties of the analyzed time series, including their eventual nonlinearity, may thus
periodically vary throughout the year. Because of this, the analysis of climatic
data is often performed separately for different parts of the year, typically sea-
sons or months. We used this approach to investigate the seasonal variations
of SSLM. The results below are shown for the parts of the year corresponding
to climatological winter (December, January and February – DJF) and sum-
mer (June, July and August – JJA) of the northern hemisphere. When the
analysis was carried out for separate seasons, the RMSE of the prediction by
linear regression decreased for most grid points in the annual average. The
performance of the method of local models usually became worse, primarily
due to the reduction of the amount of data available for the calibration of the
mappings. As a result, the average magnitude of nonlinearity decreased some-
what, compared to the situation when the series were analyzed as the whole.
Despite this change, the basic features of the patterns of SSLM were still the
same, as can be seen from an example of the results based on the RT850-500
forecast (Fig. 9). In the equatorial area, the nonlinearity remained very weak
or undetectable in all seasons. In higher latitudes, the patterns retained some
of the basic shape, detected for the year as the whole, but their magnitude
visibly varied with the season. The overall nonlinearity was stronger in the
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DJF season than in JJA in the northern hemisphere, while in higher latitudes
of the southern hemisphere, this variation was reversed and JJA exhibited
stronger nonlinearity than DJF on average (Fig. 10, Table 3, columns 1 and
2). The seasonal changes were stronger expressed in the northern hemisphere.
The seasonal variation was well simulated by the HadCM3 model (Table 3,
columns 3 and 4) and it was also detectable in the results based on the forecast
of H850, for both the NCEP/NCAR and HadCM3 data (not shown).

6 Discussion

All performed analyses revealed a common basic latitudinal structure with
just negligible nonlinearity in the equatorial regions, but generally stronger
nonlinear behavior in the mid-latitudes of both hemispheres. A detailed anal-
ysis of the factors behind the observed patterns might be problematic, because
they do not seem to be a result of a single driving force, but rather their com-
plex combination. There are, however, some possible links worth mentioning.
In the case of the results based on the RT850-500 prediction, there may be
a connection between more pronounced nonlinearity in the mid-latitudes and
the activity of the polar front. The strongest nonlinear behavior over Europe
and North America seems to coincide with the position of the zones where air
masses of different origin often interact. In the southern hemisphere, where
the landmasses are less extensive, areas of the strongest nonlinearity are typi-
cally located rather east of the continents, possibly because of the interaction
of the landmass with the prevailing westerlies. Between approximately 50◦S
and 60◦S, where the amount of land is very small, nonlinearity is weaker
on average. A removal of the annual cycle from the series slightly decreases
the magnitude of detected nonlinearity, but except for the regions where the
annual variation is very strong (East Asia), the effect of the annual cycle pres-
ence does not dominate the results. For the H850 forecast, there appears to
be a certain connection of the areas with strong nonlinearity to the zones of
high horizontal gradient of H850. In the northern hemisphere, such areas are
typically associated with deep stationary cyclones, which are usually present
over the North Atlantic and North Pacific during winter. The match is not
perfect though, and there may be some other factors involved. Altogether, it
seems that nonlinearity tends to be stronger in the regions with more com-
plex dynamics, where strong driving or perturbing factors are in effect. This
hypothesis is supported by the fact that nonlinearity is generally more pro-
nounced during the colder season in the mid-latitudes of both hemispheres,
i.e., in situations when the temperature gradient between the equatorial area
and the polar region is strongest. The fact that the seasonal variations are
more distinct in the northern hemisphere is probably an effect of the uneven
distribution of the continents, resulting in a larger influence of the continental
climate in the northern mid-latitudes.
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Fig. 10: Distribution of SSLM, obtained for the prediction of RT850-500 for the DJF
and JJA seasons in different latitudes (NCEP/NCAR data).

Table 3: Seasonal variations of nonlinearity (expressed by SSLM) in the
NCEP/NCAR and HadCM3 data, for the RT850-500 prediction.

NCEP/NCAR HadCM3

Area DJF JJA DJF JJA

25◦N–70◦N 0.23 0.16 0.27 0.20
20◦S–20◦N 0.01 0.01 0.02 0.02
70◦S–25◦S 0.16 0.20 0.16 0.18

The two presented cases, based on the prediction of geopotential height
and relative topography one day ahead, represent just a fraction of possible
settings. From additional tests, carried out for different predictand-predictors
combinations, it seems that the basic structure with weak nonlinearity in the
equatorial area is typical for most situations. On the other hand, the finer de-
tails of the detected patterns vary, especially with the type of the predictand.
The exact number and geographical configuration of predictors seem to be
less important, as long as they sufficiently characterize the local state of the
atmosphere. Beside the type of the studied variables, we also paid attention
to the sensitivity of the results to the specific details of the tests. It appears
that the results are rather robust to the changes of the size of the source
area of predictors, although a use of a too big or too small area leads to a
general increase of the prediction error and a weakening of detected nonlinear-
ity. The outcomes remain very similar when the input data are pre-processed
by principal component analysis, instead of using the point-wise predictors
directly. The method of eventual normalization of the predictors also does
not appear to be of major importance. The observed patterns of nonlinearity
seem to be rather stable in time, i.e., the specific choice of the analyzed period
does not have any major effect on the outcomes of the tests. The relatively
most distinct changes compared to the presented results were detected in the
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NCEP/NCAR data when the 1960s were chosen as the testing set instead of
the years 1991–2000, especially in the southern hemisphere. This difference
can probably be contributed to the variations in the amount of observational
data, entering the reanalysis, as discussed below. The applied tests were all
based on prediction one day ahead – with an increase of the lead time, non-
linearity quickly weakened and it became undetectable for predictions more
than approximately five days ahead, even in the regions where the nonlinear
behavior was originally strongest. This is in good agreement with the fact
that a deterministic weather prediction is impossible for too long lead times,
regardless of the method.

Most of the patterns of nonlinearity identified in the NCEP/NCAR re-
analysis data were also found in the outputs of the HadCM3 model. From the
perspective of applied nonlinear time series analysis tasks (such as statistical
downscaling carried out by nonlinear methods), the fact that a climate model
is able to reproduce the character of the observed data is encouraging. Still,
from the results obtained for a single representative of global climate models,
it is not possible to infer whether all existing climate simulations do behave
in a similar fashion. It is interesting that the correspondence of the structures
found in the NCEP/NCAR and HadCM3 data tends to be better in the north-
ern hemisphere. Although this fact can at least partially be a consequence of
the specifics of the model’s physics, it might also be contributed to the char-
acter of the reanalysis data. To assess the possible influence of the specific
properties of the NCEP/NCAR reanalysis, we repeated some of the tests for
another commonly used gridded dataset based on observations, the ERA-40
reanalysis [28]. Although some differences were found, the resemblance of the
results from the NCEP/NCAR and ERA-40 data was generally strong in the
northern hemisphere, but somewhat weaker in the southern one. This implies
that caution is needed in interpretation of the model-reanalysis differences,
particularly in the southern latitudes, as they may be a result of a limited
amount of observational data used by the reanalysis (and possibly some other
specifics of the NCEP/NCAR dataset), not just imperfections of the climate
model. This especially applies to the period preceding the era of meteorologi-
cal satellites – e.g., the amount of data entering the NCEP/NCAR reanalysis
is very low before the year 1979 south of approximately 40◦S [19].

We have shown that the direct comparison of prediction by linear regres-
sion and by local linear models yields nonlinearity patterns very similar to
the approach based on the application of local linear models for surrogate
data. A practical advantage of the direct comparison lies in its speed, as there
is no need for multiple realizations of a nonlinear model. This is especially
convenient in the case of an analysis like ours, carried out for thousands of
grid points and repeated for numerous settings. Another benefit of the direct
comparison is that it provides specific information about the potential gain
from employing a nonlinear method; its fundamental drawback is that such
information may only be valid for the combination of the methods applied.
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7 Conclusions

By analyzing the series of selected atmospheric variables, we were able to con-
firm the presence of systematic geographical and seasonal variations of nonlin-
earity. Simple and unequivocal physical explanation of the results beyond the
basic tropics/mid-latitudes and summer/winter contrast may be problematic,
because the finer details of the detected patterns are probably a product of
multiple influences and they are subject to the type of the predictand variable
and some other factors. To find out whether any other general regularities exist
would require a systematic analysis performed for a large number of variables
and pressure levels. Regardless of the exact cause of the detected structures,
their character was simulated fairly well by the HadCM3 model. From the
practical perspective, this finding is rather promising, as it confirms that data
produced by the current generation of global climate models can be utilized
for the study of nonlinear properties of the climate system.
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1. M. Paluš, D. Novotná: Testing for nonlinearity in weather records, Phys. Lett.
A 193, 67 (1994)

2. D. A. S. Patil, B. R. Hunt, J. A. Carton: Identifying low-dimensional nonlinear
behavior in atmospheric data, Mon. Weather Rev. 129, 2116 (2001)

3. J. Miksovsky, A. Raidl: Testing for nonlinearity in European climatic time series
by the method of surrogate data, Theor. Appl. Climatol. 83, 21 (2006)

4. M. C. Casdagli: Characterizing Nonlinearity in Weather and Epilepsy Data: A
Personal View. In:Nonlinear Dynamics and Time Series, ed by C. D. Cutler,
D. T. Kaplan (American Mathematical Society, Providence, Rhode Island 1997)
pp 201–222

5. G. Sugihara, M. Casdagli, E. Habjan, et al.: Residual delay maps unveil global
patterns of atmospheric nonlinearity and produce improved local forecasts, P.
Natl. Acad. Sci. USA 96, 14210 (1999)

6. J. Miksovsky, A. Raidl: Testing the performance of three nonlinear methods of
time series analysis for prediction and downscaling of European daily tempera-
tures, Nonlinear Proc. Geoph. 12, 979 (2005)
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