
Preface

Statistical implicative analysis is a data analysis method created by Régis Gras
almost thirty years ago which has a significant impact on a variety of areas
ranging from pedagogical and psychological research to data mining. This
new concept has developed into a unifying methodology, and has generated a
powerful convergence of thought between mathematicians, statisticians, psy-
chologists, specialists in pedagogy and last, but not least, computer scientists
specialized in data mining.

Statistical implicative analysis (SIA) provides a framework for evaluating
the strength of implications; such implications are formed through common
knowledge acquisition techniques in any learning process, human or artificial.
Therefore, the epistemological interest of SIA is, in my opinion, of universal
interest for researchers. In many applications implications appear as “rules”
and, as it is often the case, rules have exceptions. SIA provides a powerful
instrument for quantifying the quality of a rule taking into account the real-
ity of these exceptions. Many applications, especially in data mining, extract
large sets of rules that are impossible to assimilate by humans and used effi-
ciently in decision processes. Therefore, it is important to develop measures
of interestingness for these rules and the success of SIA-based techniques in
this direction is indisputable.

This volume collects significant research contributions of several rather
distinct disciplines that benefit from SIA. Contributions range from psycho-
logical and pedagogical research, bioinformatics, knowledge management, and
data mining.

The first applications of SIA were in the realm of didactics and this field
is richly represented here by several contributions that focus on such diverse
problems as didactics of algebra and geometry, the teaching of functions rep-
resentations and graphing, Bayesian inference, and student representations of
physical activities.

Interesting data mining applications authored by leading researchers in the
field range from applying SIA in the study of rules produced by decision trees,
association rules generated by the analysis of transactional data, temporal
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rules, measures of interestingness for various types of rules, and hierarchical
organization of rules. A novel method for analyzing DNA microarrays is for-
mulated using SIA concepts. Furthermore, applications of SIA to the study of
ontologies and textual taxonomies, as well as applications to fuzzy knowledge
discovery are also included.

We have here a new volume that confirms the validity of a novel and
powerful statistical methodology, though many convincing applications. The
contributors have done a masterful job of exposition.

After reading this book, I have in mind a few applications of SIA in my own
research. I am convinced that the readers will find this volume as stimulating
as I did.

Boston, Prof. Dan A. Simovici
September, 2007 Department of Computer Science

University of Massachusetts at Boston University
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Summary. This paper presents an overview of the Statistical Implicative Analysis
which is a data analysis method devoted to the extraction and the structuration
of quasi-implications. Originally developed by Gras [11] for applications in the di-
dactics of mathematics, it has considerably evolved and has been applied to a wide
range of data, in particular in data mining. This paper is a synthesis which both
briefly presents the basic statistical framework of the approach and details recent
developments.

Key words: quasi-implication, implication intensity, implicative graph, implicative
hierarchy, typicality

1 Introduction

Two important components are involved in the operational human processes of
knowledge acquisition: facts and rules between facts or between rules them-
selves. Through one’s own culture and one’s own personal experience, the
learning process integrates a progressive elaboration of these knowledge forms.
It can be faced with regressions, questions or changes which arise from decisive
quashing, but the knowledge forms contribute to maintain a certain equilib-
rium. The rules formed inductively become quite stable when their success
number -which depends on their explicative or inferential quality- reaches a
certain level of confidence. At first, it is often difficult to replace an initial rule
by another when few counter-examples appear. If they increase, the confidence
in the rule can decrease and the rule can be reajusted or even rejected. How-
ever, when confirmations are numerous and counter-examples are rare, the
rule is robust and can stay in our minds. For instance, let us consider the
acceptable rule “All Ferraris are red”. Even if one or two counter-examples
happen this rule is maintained, and it will be even confirmed again by new
examples.

R. Gras and P. Kuntz: An overview of the Statistical Implicative Analysis (SIA) development,
Studies in Computational Intelligence (SCI) 127, 11–40 (2008)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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Hence, contrary to what happens in mathematics where rules do not allow
for any exception, the rules considered in human sciences are considered to
be acceptable when the number of counter-examples remains “tolerable” in
view of the number of situations where they are positive and efficient. In data
analysis, the problem is to determine a consensus criterion which quantifies
the confidence quality level of the rule according to the user’s requirements.
Our approach rests on three epistemological assumptions. The criterion is
statistical. It is non linearly, robust to noise (i.e. not very influenced by the
first counter-examples), and it becomes very low if the counter-examples often
reappear. Our choice can be questioned, however it has been confirmed in
various situations.

1.1 From didactics to data mining

“If a question is more complex than another, then each pupil who succeeds
in the first one should also succeed in the second one”. Every teacher knows
that this situation shows exceptions whatever the complexity degree between
questions. The evaluation and the structuration of such implicative relation-
ships between didactic situations are the generic problems at the origin of the
development of the Statistical Implicative Analysis (SIA) [11]. These prob-
lems, which have also drawn attention from psychologists interested in ability
tests [5, 27], have known a significant renewed interest in the last decade in
data mining.

Indeed, quasi-implications, also called association rules in this field, have
become the major concept in data mining to represent implicative trends be-
tween itemset patterns. In data mining, the paradigmatic framework is the
so-called basket analysis where a quasi-implication Ti → Tj means that if a
transaction contains a set of items Ti then it is likely to contain a set of items
Tj too. For simplicity’s sake, let us now on call “rule” a quasi-implication.
In data mining, rules are computed on large size databases. From the sem-
inal work of Agrawal et al. [1], numerous algorithms have been proposed to
mine such rules. Most of them attempt to extract a restricted set of relevant
rules, easy to interpret for decision-making. Yet, comparative experiments
have shown that results may vary with the choice of rule quality measures
(e.g. [13, 25]). In the rich literature devoted to this problem, interestingness
measures are often classified into two categories: the subjective (user-driven)
ones and the objective (data-driven) ones. Subjective measures aim at taking
into account unexpectedness and actionability relatively to prior knowledge,
while objective measures give priority to statistical criteria. Among the latter,
the most commonly used criterion for quantifiying the quality of a rule a→ b
is the combination of the support (the frequency f (a ∧ b)) which indicates
whether the items a and b occur reasonably often in the database, with the
confidence (the conditional frequency). However, it is well-known that the
confidence presents a major default: it is insensitive to the dilatation of f (a),
f (b) and the database size. Other functions measure a link or an absence of
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link between the items but, like χ2, they do not clearly specify the direction
of the relationship. Moreover, in addition to rule filtering, rule structuring is
necessary to highlight relationships and makes rule interpretation both easier
and more accurate.

The SIA provides a complete framework to evaluate the interestingness of
the rules and to structure them in order to discover relationships at differ-
ent granularity levels. The underlying objective is to highlight the emerging
properties of the whole system which can not be deduced from a simple de-
composition into sub-parts (e.g. [30]). All these properties, which emerge from
complex interactions -probably non linear-, contribute to the interpretation
of the global nature of the system.

1.2 Contents of the paper

Section 2 presents the statistical framework to measure the rule quality: we
first remind the reader the definition of the implication intensity for binary
variables and propose different properties. Section 3 presents the extensions of
the basic definition for different types of variables (modal, frequential, inter-
val), and an entropic version adapted to large datasets. The following sections
are concerned with rule structuration. Section 4 defines the implicative graph.
Section 5 generalizes the notion of rule to the notion of R-rule (rule of rule),
and section 6 describes the combinatorial structure of an implicative hierarchy
whose elements are R-rules. Aids for analyzing these complex structures are
developed in section 7 (significative levels of the implicative hierarchy) and
section 8 (supplementary individuals and variables). An illustration from a
real data corpus coming from a survey on teacher’s perception of training in
mathematics is presented in section 9.

2 The implicative intensity for the binary case

2.1 The basic situation

Let us consider a population E of n objects or individuals described by a
finite set V of binary variables (attributes, criteria, scores, . . . ). We are here
interested in the following question: “To what extent the variable b is true when
the variable a is true” ? In other words, “do the subjects have a tendency for
having b when we know that they have a? ” In real-life situations — e.g. in
human sciences— deductive theorems of the logical form a ⇒ b are often
difficult to establish because of the exceptions. Consequently, it is necessary
to “mine” the dataset to extract rules reliable enough to conjecture causal
relationships which structure the population. At the descriptive level, they
allow to detect a certain stability in the structuration. And, at the predictive
level, they allow to make assumptions. However, the rule mining processes
require rigorous approaches which prevent a too flimsy empiricism.
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2.2 The statistical framework

Our approach, based on the non-parametric test reasoning, is close to the
Likelihood Linkage Analysis (LLA) developed by I.C. Lerman [26]. The quality
measurement of an implicative relationship a→ b is based on the unlikelihood
of the counter-example number in the dataset i.e. cases where b is false when
a is true [11, 12, 14]. To quantify this unlikelihood, we compare the deviation
between the contingency and a theoretical model associated with a random
drawing. In exploratory data analysis, we consider the deviation value and not
just the H0 acceptation/reject. This measure quantifies the “surprisingness”
of the expert faced with a number of counter-examples improbably small for
an independence assumed between the variables and for the cardinalities of
the considered data.

More precisely, let us denote by A ⊂ E the subset of individuals for which
a is true, by A its complementary set and by na = card (A) (resp. na) the
cardinal of A (resp. A). The logical rule A⇒ B is true when A ⊂ B. However,
this strict inclusion is exceptionally observed in real-life situations; in practice,
it is quite common to observe a few subjects where a is true and b is false
without having the general trend to have b when a is true contested. Conse-
quently, we consider in the following quasi-rules —called rules for simplicity’s
sake— of the form a→ b.

2.3 Definitions

To accept or reject a→ b it is quite common to consider the number na∧b =
card

(
A ∩B

)
of counter-examples. However, to quantify the surprisingness of

the rule, this number must be relativized according to n, na and nb. Intuitively,
it is all the more surprising to discover that a rule has a small number of
counter-examples as the data set is large. The objective of the implicative
intensity is precisely to express the unlikelihood of na∧b in E.

We compare the observed number of counter-examples na∧b with the num-
ber of expected counter-examples for an independence hypothesis. Like I.C.
Lerman with the similarity in LLA [26], we randomly draw two subsets X and
Y of, respectively, na and nb elements.

Definition 1. The rule a → b is said to be admissible for a given thresh-
old α if the probability of having the observed number of counter-examples
card

(
A ∩B

)
greater than the expected number card

(
X ∩ Y

)
is smaller

than α:
Pr
(
card

(
X ∩ Y

)
≤ card

(
A ∩B

))
≤ α

The distribution of card
(
X ∩ Y

)
depends on the drawing pattern. When

X and Y are draw with throw-in the distribution is Binomial, otherwise it is
Hypergeometric.
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Remark 1. For a certain process of drawing, the random variable card
(
X ∩ Y

)
follows a Poissonian distribution P (λ) with λ = nanb

n .

Let us consider a process where the individuals dynamically arrive e.g. a
flow of transactions which fill up a database. We stop the process when there
are na individuals with a true and nb individuals with b true. Let card

(
X ∩ Y

)
be the random variable associated with the counter-example number during
the process. We suppose that the process checks three hypotheses : (i) the
waiting times for the events (a and b) are independent random variables, (ii)
the distribution of the number of events which happen in the interval [t, t + T ]
only depends on T , (iii) two events can not simultaneously happen.

Consequently, the number of events which happen during a fixed period
follows a Poissonian distribution P (λ) where λ is the cadence of the event
arrival.

The probability of the event (a = 1) (resp. (b = 0)) is estimated by the
frequency na/n (resp. nb/n). Then, the probability of the joint event (a = 1
and b = 0) is estimated by

na

n
.
nb

n

Hence, for a flow of n individual, the arrivals of the event (a = 1 and b = 0)
follow a Poissonian distribution with parameter λ = nanb

n .
Consequently,

Pr
(
card

(
X ∩ Y

)
= s
)

= e−λ λs

s!
and the probability that the chance leads to a greater number of counter-

examples than those observed is defined by

Pr
(
card

(
X ∩ Y

)
≤ card

(
A ∩B

))
=

card(A∩B)∑
s=0

λs

s!
e−λ

In the following, we consider the Poissonian distribution. In the classical
approximation conditions, the other distributions converge on the Poissonian
type.

Let us consider, for nb 6= 0, the standardized random variable Q
(
a, b
)
:

Q
(
a, b
)

=
card

(
X ∩ Y

)
− nanb

n√
nanb

n

We denote by q
(
a, b
)

the observed value of Q
(
a, b
)

in the experimental
realization. It is defined by

q
(
a, b
)

=
na∧b −

nanb

n√
nanb

n
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This value measures a deviation between the contingency and the expected
value when a and b are independent.

When the approximation is justified (e.g. λ > 4) the random variable
Q
(
a, b
)

is approximatively N (0, 1)-distributed.

Definition 2. The implication intensity ϕ (a, b) of the rule a→ b is defined by

ϕ (a, b) = 1− Pr
(
Q
(
a, b
)
≤ q

(
a, b
))

=
1√
2π

∫ ∞

q(a,b)
e−

t2
2 dt

if nb 6= n, and ϕ (a, b) = 0 otherwise.

Definition 3. The implication intensity ϕ (a, b) is admissible for a given
threshold α if ϕ (a, b) ≥ 1− α.

The implication intensity measures the surprisingness to observe a small
number of counter-examples. It is an inductive and informative quality mea-
sure. Consequently, if the rule is trivial —-i.e. when B is small or equal to
E— this surprisingness is small.

Proposition 1. [12] Let us suppose that na is fixed and A ⊂ B. If nb tends
towards n, then ϕ (a, b) tends towards 0.

We set ϕ (a, b) = 0 if nb = n by continuity (consequence of the property 1).
If A ⊂ B then ϕ (a, b) can be smaller than 1 when the surprisingness is not
sufficient.

2.4 Comparison with some classical measures

The observed quasi-implication q
(
a, b
)

is not symmetrical. It is different from
the Pearson’s correlation coefficient ρ (a, b) which measures the linkage be-
tween a and b.

Proposition 2. [12] Let ρ (a, b) be the value of the Pearson’s correlation
between the binary variables a and b. If q

(
a, b
)
6= 0 then

ρ (a, b)
q
(
a, b
) = −

√
n

nbna

The variation of the implication intensity is different from the Loevinger’s
coefficient [27] and from the confidence conf (a, b) = na∧b/na. It increases non
linearly with the increasing of E, A and B, and it decreases with the trivial
situations. Moreover, the maximal intensity is not necessarily reached for the
inclusion A ⊂ B; indeed, the inductive quality may be quite low, whereas
conf (a, b) = 1 [13].
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2.5 Stability of the implication intensity

The implication intensity is noise-resistant in the neighbourhood of na∧b =
0 [13].

In the following, we study the sensitivity of ϕ (a, b) for small variations
of the parameters n, na, nb and na∧b. Previous numerical experiments have
confirmed the influence of the parameter variations on ϕ [10, 13]. Here, we
study the differentiation of q.

Let us consider the parameters n, na, nb and na∧b as real numbers which
satisfy the following inequalities: na∧b ≤ inf (na, nb) et sup (na, nb) ≤ n. In
this case, q can be considered as a continuous differentiable function:

dq =
∂q

∂n
dn +

∂q

∂na
dna +

∂q

∂nb
dnb +

∂q

∂na∧b

dna∧b

To study the variability of q depending on nb, we replace nb by n − nb,
and consequently the sign in the partial derivative.

Example 2. Let us suppose that na is constant, and that nb and na∧b

may vary. Then,

∂q
∂nb

= 1
2na∧b

(
na

n

)1/2 (n− nb)
−3/2 + 1

2

(
na

n

)1/2 (n− nb)
−1/2

∂q
∂na∧b

= 1√
n

a∧b
n

∂q
∂na

= 0

Consequently, if ∆nb and ∆na∧b are positive, then ∆q
(
a, b
)

is positive.
This property can be interpreted as follows: for fixed n and na, the implica-
tion intensity decreases when the numbers of the b examples and the a ⇒ b
counter-examples increase. The implication intensity is maximal for the ob-
served values nb and na∧b, and minimal for nb + ∆nb and na∧b + ∆na∧b.

To examine the sensibility of the implication intensity, we consider ϕ as a
function of q:

ϕ (q) =
1√
2π

∫ ∞

q

e−t2dt

By differentiation, we obtain

dϕ

dq
= − 1√

2π
e−q2

< 0

This result confirms that the implication intensity decreases with q, and
it gives the speed of the variation.

With a similar approach, let us compare the stability of ϕ with the stability
of the confidence conf (a, b). The sensibility of conf to the variation of the
counter-examples is defined by



18 R. Gras, P. Kuntz

∂c

∂na∧b

= − 1
na

Consequently, as expected, the confidence increases when na∧b decreases.
However, the variation of the decreasing speed is constant whatever n and nb.
This situation highlights the limits of the parameter role in the sensitivity of
the measure.

3 Extensions to different types of variables

3.1 Modal and frequential variables

The basic situation

The first applicative framework of this research was concerned with the rep-
resentation that the teachers have of their own practice [3]. In a survey, a set
of teachers has been asked to order a list of significative words depending on
their importance. The resulting implications were: “if I select a word x with
the importance ix then I select the word y with the importance iy ≥ ix”.

In this case, we consider modal variables a ∈ [0, 1] which describe satisfac-
tion degrees. A similar case appears in situations where the variable frequency
can be interpreted as a pre-order on the set of the values given by the subjects.
Such situation appears in didactics when we study the success frequency for
a test composed of questions coming from different domains.

Formalization

Let us denote by a (i) and b (i) the values of i ∈ E for the modal variables a
and b, and by sa and sb their empirical standard-deviations.

Definition 4. [24]. For a pair (a, b) of modal variables, the implication in-
tensity, called the propension index, is defined by

qp

(
a, b
)

=
∑

i∈E a (i) b (i)− nanb

n√
(n2s2

a+n2
a)(n2s2

b
+n2

b
)

n3

Proposition 3. When a and b are binary variables then qp

(
a, b
)

= q
(
a, b
)
.

In this case, it is easy to prove that n2s2
a + n2

a = nna, n2s2
b

+ n2
b

= nnb

and
∑

i∈E a (i) b (i) = na∧b.
This extension remains valid for the frequential variables and the positive

numerical variables when they are normalized: ã (i) = a (i) / maxi∈E a (i).
A similar measure has been recently introduced by Régnier and Gras [29]

for ranking variables associated with a total order on a set of choices presented
to a judge population. In this case, the considered implication is “if an object
i is ordered by the judges at a place pi then an object j is ordered by the
same judges at a place pj > pi”.
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3.2 Variables on intervals

The basic situation

Let us consider a given set of biometric data. The considered implication is
“if the weight of a male is between 65 and 70 kgs then his height is between
1.70 and 1.76 m”.

More generally, let us consider two real variables a and b with a finite
number of values in the respective intervals A = [a1, a2] and B = [b1, b2].
Roughly speaking, the problem consists in finding implicative trends between
representative unions of sub-intervals of A and B.

Main steps of the heuristic

The problem is decomposed in two steps. First, we partition the inter-
vals A and B in a finite number of sub-intervals {A1, A2, . . . , Ap} and
{B1, B2, . . . , Bq} which depend on the structure of the a and b distributions:
there is an internal statistical homogeneity in each Ai (resp. Bi) and a high
dispersion between each pair Ai, Aj (resp. Bi, Bj). Second, we compute the
most significative implicative trends between unions of Ai and unions of Bj .

We have adapted the k-means algorithm for the interval partitioning prob-
lem [16]. The quality criteria of the partition are the intra-class and the inter-
class inertia. Let π (A) and π (B) be two partitions obtained by this approach
which respectively contain nA and nB elements. We denote by Ω (π (A)) (resp.
Ω (π (B))) the set of the 2nA−1 (resp. 2nB−1) partitions of A (resp. B) com-
posed of the unions of elements of π (A) (resp. π (B)) associated with adja-
cent intervals in A (resp. in B). For instance, if π (A) = {A1, A2, A3, A4} s.t.
A = A1 ∪A2 ∪A3 ∪A4 then

Ω (π (A)) =
{{{A1} , {A2} , {A3} , {A4}} , {{A1A2} , {A3} , {A4}} , . . . ,

{A1A2A3A4}}

For each pair (Pi, Pj) ∈ Ω (π (A))×Ω (π (B)) (resp. (Pj , Pi) ∈ Ω (π (B))×
Ω (π (A))) we compute the geometric mean of the implication intensities be-
tween each sub-interval of Pi (resp. Pj) and each sub-interval of Pj (resp. Pj).
Let us denote by maxAB and maxBA the respective maximal values between
Ω (π (A)) and Ω (π (B)) and between Ω (π (B)) and Ω (π (A)). The implica-
tion is optimal if there is a partitioning of A which corresponds to maxAB

and a partitioning of interval of B which corresponds to maxBA.

3.3 Interval variables

The basic situation

Let us consider a score distribution of a class for different subjects. The consid-
ered implication is “the sub-interval [2; 5.5] in mathematics generally implies



20 R. Gras, P. Kuntz

the sub-interval [4.25; 7.5] in physics”. These two sub-intervals belong to an
“optimal” partition -according to the inertia- of the definition domains [1; 18]
and [3; 20] of the scores in mathematics and in physics.

Main steps of the heuristic

The previous approach can be adapted to the interval variables, which are
symbolic data. Let us consider two variables a and b which are associated
with a series of intervals due to the measure imprecision: Ia

i (resp. Ib
i ) is the

interval of a (resp. b) for the individual i ∈ E. Let Ia (resp. Ib) be the interval
which contains all the a (resp. b) values. We can define on Ia and Ib a partition
which optimizes a given criterium. The intersections between Ia

i and Ia and
between Ib

i and Ib follow a distribution that takes into account the common
parts. Consequently, the problem is similar to the computation of the rules
between the on-interval variables (we refer to [16] for details).

3.4 The entropic version of the implication intensity

The limits of the basic implication intensity for large datasets

Pertinent results have been obtained with the implicative intensity ϕ for var-
ious applications where the data corpuses are relatively small (n < 300).
However, in data mining, numerical experiments have highlighted two limits
of ϕ for large datasets. First, it tends to be not discriminant enough when
the size of E dramatically increases (e.g. [8]); its values are close to 1 even
though the inclusion A ⊂ B is far from being perfect. Second, like numerous
measures proposed in the literature, it does not take into account the con-
trapositive b ⇒ a which could allow to reinforce the affirmation of the good
quality of the implicative relationship between a and b, and the capacity to
estimate the causality between the variables.

The entropic implication intensity

To overcome these difficulties, we have proposed to modulate the value of
the surprise quantified by the implication intensity by taking into account
both the imbalance between card (A ∩B) and card

(
A ∩B

)
associated with

a⇒ b and the imbalance between card
(
A ∩B

)
and card

(
A ∩B

)
associated

with the contrapositive b ⇒ a [6, 7, 18]. We have introduced a new measure,
called the entropic implication intensity, based on the Shannon’s entropy to
non-linearly quantify these differences.

More precisely, let us first consider a weighted version of the implication
intensity φ (a, b) = (ϕ (a, b) .τ (a, b))1/2 where τ (a, b) measures the imbalance
between na∧b and na∧b and the imbalance between na∧b and na∧b. Intuitively,
the surprise measured by φ must be softened (resp. confirmed) when the
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number of counter-examples na∧b is high (resp. small) for the rule and its
contrapositive considering the observed numbers na and nb.

A well-known index for taking the imbalances into account non-linearly is
the Shannon’s conditional entropy. The conditional entropy Hb/a of cases (a
and b) and (a and b) given a is defined by

Hb/a = −na∧b

na
log2

na∧b

na
−

na∧b

na
log2

na∧b

na

and, similarly, the conditional entropy Hb/a of cases (a and b) and (a and
b) given b is defined by

Ha/b = −
na∧b

nb

log2

na∧b

nb

−
na∧b

nb

log2

na∧b

nb

We can here consider that these entropies measure the average uncertainty
on the random experiments in which we check whether b (resp. a) is realized
when a (resp. b) is observed. The complements of 1 for these uncertainties
Ib/a = 1 − Hb/a and Ib/a = 1 − Hb/a can be interpreted as the average
information collected by the realization of these experiments; the higher this
information is, the stronger the guarantee of the quality of the implication
and its contrapositive will be.

Intuitively, the expected behavior of the measure φ is determined by three
phases:

1. a slow reaction to the first counter-examples (robustness to noise).
2. an acceleration of the reject in the neighborhood of the balance.
3. an increasing rejection beyond the balance -which was not guaranteed by

the basic implication intensity ϕ.

Hence, in order to have the expected significance, our model must satisfy the
following constraints:

1. Integrating both the information relative to a → b and that relative to
b → a respectively measured by Ib/a and Ia/b. A product Ib/a.Ia/b is
well-adapted to simultaneously highlight the quality of these two values.

2. Raising the conditional entropies to the power for a fixed number α > 1
in the information definitions to reinforce the contrast between the differ-
ent phases described below:

((
1−Hα

b/a

)
.
(
1−Hα

a/b

))1/β

with β = 2α to
remain of the same dimension as ϕ.

3. The need to consider that the implications have lost their inclusive mean-
ing when the number of counter-examples is greater than half of the ob-
servation of a and b. Beyond these values we consider that the terms(
1−Hα

b/a

)
and

(
1−Hα

b/a

)
are equal to 0.



22 R. Gras, P. Kuntz

Let fa = na

n (resp. fb = nb

n ) be the frequency of a (resp. b) on E and fa∧b

be the frequency of the counter-examples. The proposed adjustment of the
previous informations Ib/a and Ia/b can be defined by-

Îα
b/a = 1−Hα

b/a = 1+
((

1−
fa∧b

fa

)
log2

(
1−

fa∧b

fa

)
+

fa∧b

fa
log2

(
fa∧b

fa

))α

if fa∧b ∈
[
0, fa

2

[
; otherwise, Îα

a/b = 0
and

Îα
a/b = 1−Hα

b/a
= 1+

((
1−

fa∧b

fb

)
log2

(
1−

fa∧b

fb

)
+

fa∧b

fb

log2

(
fa∧b

fb

))α

if fa∧b ∈
[
0, fa

2

[
; otherwise, Îα

a/b = 0.

Definition 5. The imbalances are measured by τ (a, b) —called the inclusion
index— defined by

τ (a, b) =
(
Îα

b/a.Îα
a/b

)1/2α

and, the weighted version of the implication intensity —called the entropic
implication intensity— is given by

φ (a, b) = (ϕ (a, b) .τ (a, b))1/2

Example 3.

b b
∑

a 200 400 600
a 600 2800 3400∑

800 3200 4000

b b
∑

a 400 200 600
a 1000 2400 3400∑

1400 2600 4000

b b
∑

a 40 20 60
a 60 280 340∑

100 300 400

Table 1. Distribution examples (a, b and c).

For the table 1.a, the implicative intensity is ϕ (a, b) = 0.9999. The entropic
functions are Ha/b = 0 = Hb/a. The weighting coefficient is τ (a, b) = 0. And,
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φ (a, b) = 0 whereas the confidence c (a, b) is equal to 0.333. The entropic
functions moderate the implication intensity when the inclusion is bad.

For the table 1.b, the implication intensity ϕ (a, b) = 1. The entropic
functions are Ha/b = 0.918 and Hb/a = 0.391. The weighting coefficient is
τ (a, b) = 0.6035. And, φ (a, b) = 0.777 and the confidence c (a, b) = 0.666.

The table 1.c proves that the correspondance between ϕ and φ is not
monotonous. The intensity implication is lower for the table 1.c than for the
table 1.b. And, it is the contrary for φ (a, b). Let us remark that the confidence
is the same for the two tables.

4 The implicative graph

When computing the implication intensities between all pairs of variables of V ,
we obtain a square matrix M of numbers in [0, 1]. The global structure of the
relationships between the variables does not clearly appear. To highlight this
structure we have associated a directed graph with M , called the implicative
graph [2, 11].

Let Φα be the relationship defined on V × V by ϕ for a given threshold
α ∈ [0, 1]: aΦαb if and only if ϕ (a, b)≥ α. The threshold α, which controls the
implicative quality of the rules, is chosen by the user. The relationship Φα is
reflexive, not symmetric and not transitive. However, it is interesting to con-
sider the partial order relationships between the subsets of V . Consequently,
we extend the relationship Φα: if aΦαb and bΦαc then we accept the transitive
closure aΦαc if and only if ϕ (a, c) ≥ 0.5 i.e. when the implicative trend of a
on c is better than the neutrality.

Hence, for a given threshold α, the graph GM,α is defined as follows: its
vertices are the variables of V , and there is an arc between a pair of variables
(a, b) if and only if aΦαb.

Different options of the software CHIC allows to easily interact with the
drawing of the graph.

5 From rules to R-rules

5.1 The basic situation

In the didactics of mathematics, one of the fundamental question is to identify
the source of the problems -both didactical and epistemological- the pupil is
faced with during his learning processes. These obstacles are based on the con-
ceptions the pupil is building up. These conceptions are structured by simple
or complex rules which together allow to elaborate the basis of a cognitive
model.

This structuration is neither a simple union of rules nor a classical
hierarchical structure where the variable classes are fit into partitions which
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are partially ordered by the relation “thiner than” which reflects the simi-
larity between the class elements. To complete the information provided by
the previous models, we have proposed the concept of R-rules (rules of rules)
which are an extension of the quasi-implications: their premisses and their
conclusions can be rules themselves [15, 17, 20, 23]. To guide the intuition a
parallel can be drawn from the proof theory with the logical implication:
(X ⇒ Y ) ⇒ (Z ⇒W ) describes an implication between the two theorems
X ⇒ Y and Z ⇒W previously established.

5.2 The R-rules and their interpretation

In the following, we consider binary variables. The R-rules are an extension
of the classical binary rules a → b to rules of rules R′ → R′′, which may be
complex themselves. For instance a→ (b→ c) is a R-rule between a variable
a and a rule (b→ c), and (a→ b) → (c→ d) is a R-rule between two rules
(a→ b) and (c→ d). To indicate the complexity of the implication composi-
tion, we associate a complexity degree with each R-rule.

Definition 6. The R-rules of degree 0 are variables of V . The R-rules of
degree 1 are the simple quasi-implications of the form a → b. A R-rule of
degree i, 1 < i ≤ p, is a rule R′ → R′′ between two R-rules R′ and R′′ whose
respective degrees j and k satisfy j + k = i− 1.

For instance, a→ b is a R-rule of degree 1, a→ (b→ c) a R-rule of degree
2 and (a→ b) → (c→ d) a R-rule of degree 3. When there is no ambiguity
we denote by R a R-rule of degree greater or equal than 1.

The R-rules allow to express different levels of abstraction: (1) situation
or object descriptions (conjunction of R-rules of degree 0), (2) implications
between variables (R-rules of degree 1), and (3) implications between impli-
cations (some R-rules of degree greater than 1). Consequently, their interpre-
tation may vary according to three typical cases:

1. when R→ a then a may be interpreted as a quasi-consequence of R;
2. the R-rule a → R means that a R-rule R may be partially deduced

from the observation of a. Moreover, although we here consider quasi-
implications only, the intuition can be supported by Heyting algebra where
an implication a⇒ (b⇒ c) is equivalent to (a AND b)⇒ c;

3. the R-rule R′ → R′′ means that the property R′′ is the quasi-corollary of
a previous property R′

5.3 A measure of cohesion of the R-rules

The objective is to discover R-rules with a good implicative quality —called
cohesion in the following— i.e. R-rules R′ → R′′ with a strong implicative
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relationship between the components of R′ and those of R′′. For instance, it
seems natural to form a R-rule (a→ b)→ (c→ d) if the implicative relation-
ships a → c, a → d, b → c and b → d are significant enough. Intuitively, this
means that they must contrast with the disorder of a random experience.

The entropy is well-suited to measure this disorder. Let us first consider
a R-rule a → b of degree 1. And, let Y be the random indicator vari-
able of the event

(
Q
(
a, b
)
≥ q

(
a, b
))

. The distribution of Y is defined by
Pr (Y = 1) = ϕ (a, b) and Pr (Y = 0) = 1− ϕ (a, b). The entropy of this expe-
rience is −p log2 p− (1− p) log2 (1− p) where p = ϕ (a, b).

The extreme values are 0 if ϕ (a, b) = 0 (by setting 0 log2 0 = 0) and 1 if
ϕ (a, b) = 0.5. This last value is reached when na∧b = nanb/n i.e. when na∧b

is equal to the expected mean. In this case, when ϕ (a, b) < 0.5, the mean-
ing of the implication is lost and it seems natural to set te cohesion equal to 0.

Definition 7. The cohesion c (a, b) of a R-rule a→ b of degree 1 is defined by

c (a, b) =
(
1− (−p log2 p− (1− p) log2 (1− p))2

)1/2

if p = ϕ (a, b) > 0.5 and c (a, b) = 0 otherwise.

We square the entropy to reinforce the contrast between values in [0, 1]
and the square root to the complement to 1 allows to measure the cohesion
on a same scale as the entropy.

The generalization of this definition to R-rules of higher degree is guided
by the following requirement: the cohesion of R′ → R′′ must take into
account both the cohesion of R′ and R′′ as well as the implicative relation-
ships between the attributes of R′ and those of R′′. Let ≺R be the left right
reading order on the variables which composed a R-rule. For instance, for
(a→ b)→ (c→ d) the order on {a, b, c, d} is defined by a ≺R b ≺R c ≺R d.

Then, a simple way to satisfy the previous requirements is to take the
mean of the cohesions of R′ and R′′ and of the cohesions if each ordered pairs
composed of one attribute of R′ and one attribute of R′′ in accordance with
the permutation orders. Here we favour the geometric mean as it is equal to
0 as soon as the cohesion of one ordered pair is equal to 0 (i.e. when an im-
plication is low or without surprise) and it is close to 1 when the cohesions of
all ordered pairs are high.

Definition 8. Let R be a R-rule of the form R′ → R′′ where R′ and R′′

are respectively associated with the orders a′1 ≺R′ a′2 ≺R′ . . . a′k and a′′1 ≺R′′

a′′2 ≺R′′ . . . a′′h. The cohesion of R is defined by

c (R) =

 ∏
i=1,k−1;j=2,k

c
(

a
′
i, a

′
j

)
.

∏
i=1,h−1;j=2,h

c
(

ai, a
′′
j

)
.

∏
i=1,k;j=1,h

c
(

a
′
i, a

′′
j

)2/r(r−1)

where r = k + h.
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6 The implicative hierarchy

6.1 The basic situation

Generally speaking, R-rules contribute to increasing the analysis richness. We
do not solely extract facts or isolated behaviors, but more general conducts,
revealing more global, less singular phenomena i.e. in didactics profound psy-
chological representations. The different complexity degrees of the R-rules
can be associated with a hierarchical structure which reflects the genesis of
the “operating knowledge” developed by Piaget [28]. We go from one level to
another by a process of reflecting abstraction: from object representation to
representation of operations on the objects, then to representation of opera-
tions on the operations. This process involves a dynamical hierarchical point
of view in contrast with the static point of view associated with a taxonomy.
Hence, the individual description of the R-rules by aggregating simple rules
is not sufficient. It is necessary to develop a global structure which reflects
the emerging properties of the whole. Consequently, we have developed the
concept of “implicative hierarchy” to structure the significant R-rules.

Let us introduce this notion by an example. A graphical representation
of an implicative hierarchy on the variable set V = {a, b, c, d, e} is given on
figure 1. The elements of the implicative hierarchy

−→
HV are R-rules:

−→
HV = {a, b, c, d, e, b→ c, e→ d, a→ (e→ d)}

a e d b c
Fig. 1. Graphical representation of the implicative hierarchy

−→
HV = {a, b, c, d,

e, b → c, e → d, a → (e → d)}

Note that contrary to hierarchies in classical hierarchical classification
(HC) the tree associated with the implicative hierarchy is not necessarily
connected. Intuitively, this means that it contains only significant R-rules ac-
cording to the cohesion measure.

6.2 Definitions

The R-rules which composed an implicative hierarchy can be associated with
k-permutations —called classes by analogy with the HC— that satisfy special
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interlocking conditions. For instance, in the example given below, the R-rule
a → (e→ d) is associated with the permutation aed. And, this is the only
possible association as the R-rule (a→ e) associated with the permutation ae

is not in
−→
HV . The class set HV associated with

−→
HV is

HV = {a, b, c, d, e, bc, ed, aed}

The R-rules are deduced by a recursive decomposition of the non elemen-
tary classes of HV . The class aed is the unique amalgamation of a ∈ HV

and ed ∈ HV . Since the class ed is associated with e → d, the class aed is
associated with a→ (e→ d).

More formally, let ΩV be the set of all k-permutations on the variable set
V , k = 1, p. The elements C of ΩV are strings with distinct characters. Let
≺ be the left-right reading order on the variables of a permutation of ΩV as
we defined it previously. In order to compare and combine the elements of
ΩV to form an implicative hierarchy, we define three operators on ΩV , whose
appelations are inspired by the set theory:

• Intersection. The intersection C ′∩̂C ′′ of two strings of ΩV is the largest
sub-string of contigous variables common to C ′ and C ′′. In case of equality
we keep the first sub-string of C ′ according to ≺. If C ′ = acdb and C ′′ =
cdab then C ′∩̂C ′′ = cd, and if C ′ = abcd and C ′′ = cdab then C ′∩̂C ′′ = ab.

• Union. The union C ′∪̂C ′′ of two distinct strings C ′ and C ′′ s.t. C ′∩̂C ′′ = ∅
is the concatenation of C ′ and C ′′ with C ′ first according to ≺. If C ′ = aceb
and C ′′ = fgh than C ′∪̂C ′′ = acebfgh.

• Difference. For three strings C, C ′ and C ′′ of ΩV s.t. C = C ′∪̂C ′′, the dif-
ference C−̂C ′ between C and C ′ is C ′′ and the difference C−̂C ′′ between
C and C ′′ is C ′. If C = abc, C ′ = ab and C ′′ = c then C−̂C ′ = c and
C−̂C ′′ = ab.

Definition 9. An implicative hierarchy HV is a subset of permutations of ΩV

satisfying the three following requirements:

1. HV contains the variables of V , called elementary classes
2. for each pair C ′, C ′′ ∈ HV , C ′∩̂C ′′ = {∅, C ′, C ′′}
3. for each non elementary class C ∈ HV , there is a single pair C ′, C ′′ ∈ HV

s.t. C = C ′∪̂C ′′

From the condition 2, a hierarchy is a partially ordered set with the in-
clusion relation ⊂̂ defined on ΩV by: C ′⊂̂C ′′ if and only if C ′∩̂C ′′ = C ′. The
condition 3 is required to recover all the classes of the hierarchy.

The isolated interpretation of a class of the hierarchy is tricky since it is
a k-permutation which does not state the implication composition. For in-
stance, if we analyse the class aed ∈ HV all alone, we do not know the exact
meaning of aed: it could be either a→ (e→ d) or (a→ e)→ d. However, the
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whole HV class set allows to dispel ambiguity: a→ (e→ d) is chosen as ed is
a class of HV .

Proposition 4. [15] Each non elementary class C of an implicative hierarchy
HV can be associated with a unique R-rule.

The R-rule set
−→
HV associated with HV can be graphically represented by

a valuated binary directed tree:

• each of the elementary classes are located at a terminal node;
• each of the internal node is represented by an arrow which describles the

R-rule subtended by the associated class;
• the height h (C) ∈ R+ of each node C satisfies the following condition: for

each node C ′ ∈ HV s.t. C ′⊂̂C then h (C) > h (C ′).

6.3 Construction of an implicative hierarchy

The significant R-rules which form an implicative hierarchy are calculated by
a incremental algorithm similar to the basic process of the classical HC. The
amalgamation criterium is here the maximization of the cohesion.

At each level hi of HV , a new R-rule is built. It results from the amalga-
mation of two R-rules built at a previous level hj , 0 < j < i. More precisely,

• the initial level h0 of HV is composed of the variable set V ;
• at h1, two variables of V with the maximal cohesion are “grouped” together

to form a R-rule of degree 1;
• at h2, the R-rule is composed either of two variables not yet aggregated,

called separate variables, or of the R-rule of degree 1 built at h1 and a sep-
arate variable. The selected R-rule is the one with the maximal cohesion;

• at h3, the R-rule may be of three types: a R-rule of degree 1 composed
of two separate variables, a R-rule of degree 2 composed of a R-rule of
degree 1 built at h1 or h2 and a separate variable, or a R-rule of degree 3
composed of the two R-rules of degree 1 built at h1 and h2.

• and so on. The process stops as soon each cohesion of the new potential
R-rules is null.

For instance, for the implicative hierarchy of the figure 1, the process stops
at h3 if the cohesion is null for the R-rules (a→ (d→ e)) → (b→ c) and
(b→ c)→ (a→ (e→ d)).

We refer to [15] for an algorithmic description of this algorithm and the
analysis of its complexity.

The directed hierarchy HV can be associated with a valuation which sat-
isfies the ultrametric inequality.
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Proposition 5. [15] For any class C of HV , let us define the height h of C
by h (C) = 1 − c (C) if C is non elementary and h (C) = 0 otherwise, where
c (C) is the cohesion of the R-rule associated with C. Let u be a dissimilarity
on V × V defined by

• u (a, b) = 1 if a and b are not amalgameted in HV ,
• u (a, b) = h (Cab) otherwise

where Cab is the smallest class of HV which contains both a and b. The dis-
similarity u is symmetric, positive and satisfies the ultrametric inequality:

u(a, b) ≤ Max {u (a, c) , u (b, c)}

for any a, b, c ∈ V .

From the Benzécri-Johnson theorem [4,22] this property a posteriory jus-
tifies our choice of the word “hierarchy”.

7 The significative levels of the implicative hierarchy

7.1 The basic situation

Due to the multiplicity of the levels in the implicative hierarchy, it is nec-
essary to highlight those which are the more relevant for the structuration
process. In psycho-didactical or sociological applications, these levels seem to
correspond to consistent and stable conceptions. Hence, they contribute to a
finest interpretation of the set of the computed R-rules.

We have investigated two different approaches for this problem. The first
one is based on a rank analysis used in HC by Lerman [26]: it compares the
quality of the partitions obtained at each level of the hierarchy. The second
one is more local [19]: it focusses on the quality of the R-rules built at each
level. In the following, we present the first approach which is the only one to
be implemented in the CHIC software [9].

7.2 A criterium to determine the significative levels

Let us note that the cohesion coefficient defined in the section 5.3 can be
associated with a pre-ordering �c on P = V × V − {(a, a) , (b, b) , . . .}:

(a, b) �c (c, d)⇔ c (a, b) ≤ c (c, d)

The idea consists in determining the levels of HV which “better express”
this pre-ordering. At each level hk, two sets of variable pairs can be distin-
guished: the set Ak of the amalgameted variable pairs at hk, and the set
Sk of the separate variable pairs (not yet amalgameted to form a R-rule of
degree ≥ 1). By construction, Ak ∪ Sk = P .



30 R. Gras, P. Kuntz

Let G�c
be the graph of �c. The set G�c

∩ (Ak × Sk) is composed of
pairs of pairs which respect �c at the level k. For instance, let us consider the
variable set V = {a, b, e, f} such that c (a, b) < c (e, f). Let us suppose that at
the level hk the variables e, f and k are separate whereas the variables a and b
are amalgameted in a class. Then, the pair ((e, f) , (a, b)) ∈ G�c ∩ (Ak × Sk).

The objective is now to measure the adequation between G�c
and Ak× Sk.

Let us denote by Θ the set of all the pre-orderings on P = V × V −
{(a, a) , (b, b) , . . .} with the same cardinality as �c. We consider the random
preordering G∗on Θ -with a uniform distribution-. From the theorem of Wald
and Wolfowitz [31] we can deduce that the theoretical mean of G∗∩(Ak × Sk)
is µ = 1/2 card (Ak × Sk) and its standard deviation is

σ =
1
12

(card (Ak × Sk) (cardG∗ + 1))

The adequation between G�c and Ak × Sk at the level hk is measured by

s (�c, k) =
card (G�c

∩ (Ak × Sk))− µ

σ

Definition 10. A level hk of the implicative hierarchy HV is significative if
it is a local maximum of s (�c k): s (�c, k − 1) < s (�c, k) < s (�c, k + 1)

If G�c ∩ (Ak × Sk) = Ak × Sk then the partition Ak × Sk on V × V
associated with the structuration at hk is in total accordance with the pre-
ordering induced by the cohesion.

8 Typicality and contributions

8.1 The basic situation

Like in factorial analysis, we introduce the notion of “additional variable”: it
does not contribute to the computation of the relationships involved in the
implicative hierarchy, but it brings an additional information for its interpre-
tation(e.g. age, sex, social-professional category).

Our objective is to identify individuals, or individual groups, and addi-
tional variables which contribute to class forming at each level of the implica-
tive hierarchy.

8.2 A representation space

Let C be the class built at the level hk of the hierarchy HV . This class results
from the amalgamation of two classes C ′ ∈ HV and C ′′ ∈ Hv not amalgameted
at the previous level hk−1.
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The variable pair (a, b) is a generic pair at hk if ϕ (a, b) ≥ ϕ (i, j) for any
i ∈ C ′ and j ∈ C ′′. The generic intensity at hk is denoted by ϕk = ϕ (a, b).
This pair characterizes the most noticeable implicative effect for a given class.

Moreover, the classes C ′ and C ′′ are themselves the results of an amalga-
mation at a lower level. Hence, at each level hg, g ≤ k, of HV , we can deter-
mine a generic pair: the resulting vector (ϕ1, ϕ2, . . . , ϕk) ∈ [0, 1]k is called the
implicative vector of the class C built at hk.

A similar representation can be used for evaluating the impact of an in-
dividual on the formation of a path on the implicative graph GM,α. Let us
consider a path P of length k on GM,α with a transitive closure (i.e. each
arc is associated with a rule with an implication intensity greater than 0.5).
Then, P contains k (k − 1) /2 transitive arcs. A pair (a, b) of P is generic if
ϕ (a, b) ≥ ϕ (i, j) for any i, j ∈ P .

The vectors (ϕ1, ϕ2, . . . , ϕk) ∈ [0, 1]k form a representation space where
the individuals can be projected. In the following, we precise the properties
of this space for an implicative hierarchy. They could be similarly defined for
an implicative graph.

8.3 Implicative power of an individual on a class

In this subsection, we define a dissimilarity on E ×HV to measure the “prox-
imity” between an individual i ∈ E and a class C ∈ HV .

We first check if the individual i is in accordance with the implication of
the generic pair (a, b) of C at the level hk. Let us denote by a (i) (resp. b (i))
the binary variable which characterizes the presence/absence of a (resp. b) for
i. The contribution of i to the pair (a, b) is defined by

• ϕi,k = 1 if a(i) = 1 or 0 and b (i) = 1
• ϕi,k = 0 if a (i) = 1 and b (i) = 0
• ϕi,k = p ∈ ]0, 1[ if a (i) = b (i) = 0

In practice, p is set to the neutral value 0.5.
Any individual i is associated with a k-dimensional vector

(
ϕi,1, ϕi,2, . . . ,

ϕi,k

)
which characterizes its contribution to the k generic pairs of the class

C buit at hk. An individual whose components are equal to the implicative
vector (ϕ1, ϕ2, . . . , ϕk) is called the optimal typical individual.

We measure the typicality of i in C by the χ2 distance between the dis-
tributions (1− ϕg) and (1− ϕi,g), for g = 1, k. In contrast with the usual
Euclidean distance, it allows to compare ϕg −ϕi,g to ϕg and to normalize the
distance effect for large ϕg.

Definition 11. The implicative distance d2 (i, C) between an individual i ∈ E
and a class C ∈ HV built at the level hk is defined by
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d1 (i, C) =

(
1
k

k∑
g=1

(ϕg − ϕi,g)
2

1− ϕg

)1/2

If it exists g s.t. ϕg = 0 we set (ϕg − ϕi,g) / (1− ϕg) = 0. In this case,
the generic implication is maximal and thus it exists an excellent implicative
relationship for all the individuals i ∈ E (ϕi,g = 1).

Remark 2. Let us consider a class C ∈ HV at the level hk. We can define a
metric space structure on E with

dC (i, j) =

(
1
k

k∑
g=1

(ϕi,g − ϕj,g)
2

1− ϕg

)1/2

for any (i, j) ∈ E2.

The distance dC (i, j) measures the behavior difference between i and j consid-
ering C. It defines a discrete topological C-structure on E. Let us consider the
vectors (ϕi,1, ϕi,2, . . . , ϕi,k) and the norm

∥∥∥−→i −−→j ∥∥∥ = dC (i, j). This topology
is equivalent to the previous one (similarly to the duality in correspondence
analysis). The elements of the diagonal matrix of the symmetrical operator
associated with the quadratic form which defines dC are (k (1− ϕi))

−1 for
i = 1, k. Let us remark that the semantic of the vector sum is not precised in
the SIA. Nevertheless, it could be interesting to characterize the individuals
which belong to a ball of a given diameter with a given center (e.g. the optimal
individual).

8.4 Individual and group typicalities

Definition 12. The typicality γ (i, C) of an individual i ∈ E for a class
C ∈ HV is defined by the ratio between the distance d1 (i, C) and the maximal
value of the distance on the individual set:

γ (i, C) = 1− d1 (i, C)
Maxj∈Ed1 (j, C)

The maximal distance d1 (j, C) is reached by the individuals with null or
very low ϕi,k. They are contrasting with the generic rules. And, the typicality
of i is large when i is different from these individuals.

A straightforward extension of the previous definition allows to define the
typicality γ (G, C) of a individual group G ⊂ E:

γ (G, C) =
1

card (G)

∑
i∈G

γ (i, C)
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In practice, an operational tool is required to evaluate the statistical sig-
nificancy of a group typicality. The basic idea consists in partitioning E in
two opposite groups E1 and E2 with regards to their typicalities γ (E1, C) and
γ (E2, C) in C. This dispersion can be measured by the inter-class inertia. The
barycenter γ of the typicalities γ (E1, C) and γ (E2, C) is defined by

γ =
1
n

(card (E1) γ (E1, C) + card (E2) γ (E2, C))

By construction, γ is also the barycenter of all the individual typicalities
in E. Consequently, the inter-class inertia is

VE =
card (E1)

n
(γ (E1, C)− γ)2 +

card (E2)
n

(γ (E2, C)− γ)2

Definition 13. An individual group G∗
C ⊂ E is optimal for a class C ∈ HV

if its typicality is greater than the typicality of its complementary set in E,
and if it constitutes with this later a bi-partitioning which maximizes VE. This
partition is said to be significant.

It is interesting to detect the group or the additional variable associated
with the greatest typicality for the optimal group. We measure the surprising-
ness of the proportion of concerned individuals. Let {Ei}i be a given partition
of E. It can be defined by an additional variable. For each class Ei, we con-
sider the random variable Xi which is a random subset of E of cardinality
card (Ei), and the random variable Zi defined by Zi = card (Ei ∩G∗

C). The
variable Zi follows a Binomial distribution with parameters card (Ei) and
card (G∗

C) /n [21].

Definition 14. The most typical group of the class C is the subset Ei ⊂ E
which minimizes the probability pi on the set {pi =Pr (Zi > card (Xi ∩G∗

C))}i.

The probability piis an error of the first kind: the risk of making a mistake
when considering that the group is not typical.

8.5 Contribution

The contribution is different from the typicality: it measures the individual
and additional variable responsabilities for the existence of a rule or a R-rule
between the variables of V .

Let us consider two variables a ∈ V and b ∈ V linked by a rule a → b
at the first level h1 of the implicative hierarchy Hv. The contribution of an
individual i to (a, b) is defined by ϕi,1. This notion can be extended to the
formation of a class C at the level hk.



34 R. Gras, P. Kuntz

Definition 15. The distance d2 (i, C) between an individual i ∈ E and a class
C at the level hk of the implicative hierarchy HV is defined by

d2 (i, C) =
1
k

k∑
g=1

(1− ϕi,g)
2

The contribution θ (i, C) of i ∈ E to C ∈ HV is defined by θ (i, C) =
1− d2 (i, C).

The maximal value of θ (i, C) is equal to 1; it is reached for an individual
i whose components ϕi,g are all equal to 1.

The concepts defined in the previous sections can be easily adapted to the
distance d2. In practice, the contribution is often easier to interpret than the
typicality.

9 Illustration

We illustrate the applicative interest of the different concepts presented be-
low on a data set stemming from a survey of the French Public Education
Mathematical Teacher Society on the level in mathematics of pupils in the
final year of secondary education and the perception of this subject [8]. In
parallel with evaluation tests for students, a set of 311 teachers have been
asked on the objectives of the training in mathematics (table 2 presents some
items used in the following) and their opinions about commonly shared ideas
on this subject (table 3). For each proposition, the teacher could answer
“I agree with this idea” (positive opinion), “I disagree” (negative opinion) or
“I partially agree”.

The figure 3 presents a part of the directed hierarchy obtained on the set
composed of the objectives and the different modalities for the opinions (51
items). The interpretation of the whole set of rules is far beyond the scope of
this paper. Nevertheless, we have selected some of them, easy to interpret for
a non specialist in education theory, to show the use of a directed hierarchy
on a real-life corpus. As for the complementarity of this structure with a more
classical approach based on the relationship representation by a graph, it is
highlighted in figure 2. The vertex set V of this graph contains the same items
as those selected for figure, and there is an arc between two vertices ai and
aj of V if and only if ϕ (ai, aj) ≥ 0.5 and for any ak ∈ V , ϕ (ai, ak) < 0.5 and
ϕ (aj , ak) < 0.5 (e.g. [2]). The choice of the threshold comes from the fact that
beyond 0.5 the implicative tendency (e.g. ai → aj) is better than neutrality.
It is important to note that, due to the non transitivity of the relationship
on A induced by ϕ, the existence of two arcs of the form (ai, aj) and (aj , ak)
does not entail the existence of the arc (ai, ak). For instance, in figure, we can
not deduce a relationship between the items E and OP7.
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E

I

OP8

OP7 OP6

AOP4

OP5

OP2

N

Fig. 2. A part of the implicative graph on the items of the survey on the training
in mathematics

Fig. 3. A part of the directed hierarchy on the items of the survey on the training
in mathematics
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On the other hand, beside the binary rules, most of the R-rules of the total
directed hierarchy involve three or four items. The interpretation of rules with
more attributes are generally more difficult to interpret. Nevertheless, they
provide more information than the set of the implied binary rules.

The R-rule (N → A) → OP6 has the following meaning: if know-how
acquisition must be accompanied by knowledge acquisition, then the teacher
ask for well-defined programs. In this case, focussing on knowledge requires
a predefined charter from the institution. The R-rule allows to give a more
synthetical interpretation than the binary rules: these are concerned with
the behaviour, as seen within the behavioural framework, whereas the R-rule
here describes a conduct of a higher order which determines the behaviour.
Teachers who consider that the objective C (Preparation to civic and social
life) is not relevant are mostly responsible for this R-rule. They have a very
restrictive representation of the teaching of maths, focussed on the subject,
and their teaching conforms to national standard without any questioning.

The R-rule (OP2→ (OP5→ OP4)) can be interpreted as follows: if I wish
to keep up the complete problem for the A-level exam and if the importance
given to the demonstration in maths is subordinated to a fixed scale of grading,
then I conform to the national syllabus instructions. This rule corresponds
to a class of teachers subjected to the institution and conservative in their
educational choices. They consider that, in France, the land of Descartes,
the demonstration is the foundation of the mathematical activity and that
the complete problem at the exam is the evaluation criterion. For them, the
syllabuses and the grading scales defined by the institution are essential to
teaching and assessment. We find again a very classical teaching conception
based on an explicit and unconditional support to the institution.

Contrary to the previous ones, the R-rule (I → (E → (OP8→ OP7)))
can be interpreted as a sign of an openminded didactic conception. Indeed, it
means that if a teacher lays the emphasis on the critical mind development
and the imagination and creativity, then he considers that a personal train-
ing of the pupils in the search of examples and counter-examples is sufficient
for discovering divisibility features by themselves. This R-rule reveals a rela-
tionship between the non-dogmatic behaviours of the teacher and the wish to
place the pupil in a situation of personal research.

A Knowledge acquisition
B Preparation to professional life
C Preparation to civic and social life
D Preparation to examinations
E Development of imagination and creativity
I Development of critical mind
N Know-how acquisition

Table 2. Some items from the list of the objectives of training in mathematics
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OP1 It’s true that maths are an element of selection
OP2 For the A-level exam, I prefer a complete problem with different

parts rather than independent questions
OP3 In my grading system, I give more importance to the reasoning

than to the result
OP3 When I correct, I prefer a very detailed grading system
OP5 The demonstration is the only rigourous way to do maths
OP6 I prefer well-defined programs precising what I must do and not do
OP7 In the last form of secondary education, a pupil should be able

to recognize whether a number written in the base 10 is divisible by 4

OP8 In the last form of secondary education, a pupil should be able to give
an example or counter-example of the following statement: if two
applications f and g are strictly increasing on a given interval, then
the product f × g is also increasing.

OPX Individual estimation of a size (e.g. width, length)

Table 3. Some items from the list of the commonly shared ideas in the teaching of
maths

We study now the additional information brought by the supplementary
variable which defines the main option of the cursus: Scientific (S), Economic
and Social (ES), Arts (A) and Technology (T ). The observed distribution of
the variable is: S = 155, ES = 68, A = 22 and T = 66.

Let us consider the class C = (E → (OP8→ OP7)) → OPX. This rule
corresponds to a class of teachers which give importance to imagination and
personnal research. The most typical modality for this variable is S (scientific).
Indeed, 116 teachers of the option S on 155 are in the optimal group G∗

Cof
cardinality 201. Let X be a random subset of same cardinality as S (155) and
Z be random variable defined by the intersection of X and the optimal group
G∗. Then, Z follows a binomial distribution of parameters 155 and 201/311 =
0.656. The probability for Z to be greater than 116 is the risk 0.00393. The
analysis of the series of the risks associated with the different options S, A
and T shows that the most typical modality of the class C is S. The pair
(S, C) is said to be mutually specific. Similarly, the most typical modality of
the rule B → K is T ; consequently, the pair (T, (B,K)) is mutually specific. It
confirms that the teachers in technical cursus consider that the mathematics
should be useful for the professional life (B) and consequently for the other
disciplines.

The computation of the contribution of S to C shows that 111 teachers
on 311 participate to the optimal group. The number of teachers of S has
decreased (from 116 to 67), and its proportion in the optimal group is signif-
icantly lower than for the typicality computation. The teachers of S are the
most typical, i.e. in accordance with the general behavior of the population.
However, their contribution to the four involved variables is lower than the
contribution of the teachers of the other cursus. The risk is equal to 0.0251: it
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is more than 6 times greater than the typicality. This remark illustrates the
nuances brought by the two concepts: typicality and contribution.

10 Conclusion

In this paper we have proposed an overview of the Statistical Implicative
Analysis. Beyond the results, we have related the genesis of the considered
problems which arise from questions of experts in different fields. The the-
oretical basis is quite simple, but the numerous questions on the original
assumptions, which do not appear here, have lead to modifications and some-
times to deeper revisions. Fortunately, the proposed answers go beyond the
original framework, and SIA is now a data analysis method, based on a non
symmetrical approach, which has been shown to be relevant for various ap-
plications.

In the next future, we are planning to consider new problems: (i) the exten-
sion of SIA to vectorial data, (ii) and to fuzzy variables, (iii) the integration
of missing data, (iv) the redundant rule reduction. We are also interested in
the complementarity of SIA with other approaches, in particular with decision
trees (see Ritschard’s paper in this book). And, we will obviously carry on ex-
ploring real-life data sets and confronting our theoretical tools to experimental
analysis to make them evolve.
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