
Chapter 1
Rate of Adaptation of Large Populations

Feng Yu and Alison Etheridge

Abstract We consider the accumulation of beneficial and deleterious mutations in
asexual populations. The rate of adaptation is affected by the total mutation rate,
proportion of beneficial mutations, and population size N. We describe two models:
a strong selection model for large population size and a weak selection model for
moderate population size. For the strong selection model, we give an argument to
show that regardless of mutation rates, as long as the proportion of beneficial muta-
tions is strictly positive, the adaptation rate is at least O(log1−δ N), if the population
size is sufficiently large. For the weak selection model, we use a Girsanov transform
to perform some preliminary calculations that shed new light on the adaptation rate.

1.1 Background and Introduction

How does natural selection affect the rate of adaptation (defined to be the average
speed at which mean fitness of the population increases)? To be more specific, let
us assume we have a finite population of individuals, labelled i = 1, . . . ,N, each
accumulating µ mutations per generation on average (each mutation is assumed to
occur at a difference locus). A mutation is beneficial with probability q and dele-
terious with probability 1− q, In this work, we model all mutations to have the
same absolute “fitness effects” σ , but their sign may be positive or negative depend-
ing on whether the mutation is beneficial or deleterious. We denote the selection
coefficient σ , instead of s as in common in the biology literature, because we
want to reserve s for a time variable that we use for calculations later on. Refer
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to the description of model A in Sect. 1.2.1 and model B in Sect. 1.2.2 for the ex-
act meaning of fitness effects ±σ . A more sophisticated model should consider
mutations that have a distribution of fitness effects, e.g. an independent exponen-
tially distributed selective advantage associated with each new beneficial mutation
as proposed by Gillespie (1991). Recent numerical work by Hegreness et al. (2006),
however, suggests that in models where beneficial mutations have a distribution of
fitness advantages, dynamics of adaptation can be reasonably described by an equiv-
alent model where all beneficial mutations confer the same fitness advantage.

Without the effects of selection, we expect the rate of adaptation to be µ(2q−1).
If q < 1/2, then the rate of adaptation is in fact negative, meaning that the popu-
lation is becoming less fit with time. Selection should of course increase the rate
of adaptation, but by how much? By Fisher’s fundamental theorem (Fisher 1930),
the adaptation rate is roughly proportional to the variance of the fitness among in-
dividuals in the population. It is well known that selection reduces the variance of
fitness, but by how much and through what mechanisms this reduction occurs is not
well understood mathematically. This understanding is a necessary step towards un-
derstanding the advantage of sex and recombination. Specifically, selection causes
linkage disequilibrium and thus reduces the variance of fitness, whereas recombi-
nation reduces the linkage disequilibrium and thus increases the variance. The two
mechanisms combine to induce a “recombination/selection balance”.

Understanding the mechanisms through which selection and mutation interact
with each other to determine the variance of fitness among individuals in the popu-
lation and its adaptation rate also contributes to answering the following separate but
related question: Does there exist an upper limit to the rate of adaptation in asexual
populations? This question was originally posed to us by Nick Barton and can be
more easily described in the context of purely beneficial mutations, i.e. take q = 1
in the last paragraph. Let us first consider the simplest scenario where a single ben-
eficial mutation arises in an otherwise neutral population and no further mutations
occur until the fate of that mutant is known. This situation is well understood, both
in terms of p f ix, the fixation probability of the mutation, and the length of time it
takes this process to complete. The value of p f ix was settled by Haldane (1927),
who showed that if the selection coefficient associated with the mutation is σ , then
under these circumstances p f ix ≈ 2σ . In this case p f ix is almost independent of the
population size, N.

If the mutation does fix, the process whereby it increases in frequency from
1/N to 1 is known as a selective sweep. The duration of a selective sweep is
O(log(σN)/σ) generations. In particular, the length of a selective sweep is long
if the population size N is large. If one assumes that the mutation rate per individual
per generation is µ , then the overall mutation rate will be proportional to population
size and we see that for large populations the assumption that no new mutation will
arise during the time course of the sweep breaks down. Instead one expects multiple
overlapping sweeps. Because there is no recombination, of all the mutations present
in the population, only those on one lucky individual who eventually becomes the
common ancestor of all individuals in the population will fix. Gerrish and Lenski
(1998) called this effect clonal interference: clones that carry different beneficial
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mutations compete with each other and interfere with one another’s growth in the
population.

If the process has run long enough and is in some sort of stationarity, we can
assume p f ix to be the same for all mutations, all of which are by assumption benefi-
cial with fitness effect +σ . Furthermore, all mutations must eventually either fix or
become extinct in finite time. Then the rate of adaptation is proportional to µN p f ix,
where µN is the total number of mutations that occur to all individuals in the popula-
tion in a single generation. If p f ix is independent of population size, then we expect
an adaptation rate of O(N). But as the population size N becomes larger, the total
number of mutations extant in the population at any particular time also grows, and
thus the clonal interference will be more severe, reducing p f ix. This leads to the fol-
lowing question: If one does not limit the number of simultaneous selective sweeps,
what is p f ix, or equivalently, what is the rate of adaptation? As N → ∞, is the rate of
adaptation finite or does it increase without bound? Barton and Coe (2007) suggest
that there is an asymptotic limit to the rate of adaptation. Other authors (e.g. Rouzine
et al. 2003; Wilke 2004; Desai and Fisher 2007) argue that no such limit exists.

Previous work on this question has adopted two general approaches: (1) calculate
the fixation probability p f ix directly and (2) study the distribution of fitness of all
individuals in the population and ask how this distribution evolves with time. The
first approach was used in Gerrish and Lenski (1998), Wilke (2004) and Barton and
Coe (2007), amongst others. This approach does not seem to be easy to adapt into
a rigorous mathematical argument. Instead, we follow the second approach, i.e. to
consider the distribution of fitnesses in the population, as in Rouzine et al. (2003,
2007) and Desai and Fisher (2007).

We will follow Rouzine et al. (2003) in taking fitness effects to be additive and all
selection coefficients to be equal; thus, an individual’s fitness can be characterised
by the net number of beneficial mutations which it carries (which may be negative).
Writing Pk for the proportion of individuals with fitness equivalent to k beneficial
mutations, {Pk}k∈Z forms a type of travelling wave whose shape remains basically
unchanged over time. The position of the wave moves to the left or the right on
the fitness axis, depending on whether the adaptation rate is positive or negative.
The shape of the wave fluctuates stochastically even after a long time, and the fluc-
tuations are larger if the population size is smaller. So the approximation of this
stochastic wave by a fixed shape is most accurate when the population size is large.
The approach is to treat the “bulk” of the wave as deterministic but the leading edge
(i.e. the size of the fittest class) as stochastic. They found that the rate of adaptation,
which is equal to the speed of the travelling wave, asymptotically depends logarith-
mically on population size N, which is consistent with results of in vitro studies of
a type of RNA virus in Novella et al. (1995, 1999). Rouzine et al. (2007) offers an
improved treatment of the stochastic edge.

Desai and Fisher (2007) followed a similar but slightly different approach. Just
as in Rouzine et al. (2003), they studied the adaptation rate by studying how the
sizes of different fitness classes change with time, and they also divided classes
into deterministic and stochastic regimes. But instead of studying the wave speed
directly, they examined the variance of fitness and studied how much variance can
be maintained by mutation while the population is acted on by selection.
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We have so far concentrated on beneficial mutations. In reality, most mutations
are either neutral or deleterious. In particular, if all mutations in an asexual pop-
ulation were deleterious, the population would irreversibly accumulate deleterious
mutations, a process known as Muller’s ratchet. The first rigorous analysis of this
phenomenon was due to Haigh (1978). Despite a very considerable body of work on
Muller’s ratchet, e.g. Higgs and Woodcock (1995), Stephan et al. (1993), Gordo and
Charlesworth (2000) and Etheridge et al. (2007), a rigorous expression for the rate
of decline in mean fitness of the population remains elusive. In this work, we are
interested in both this rate of of decline in mean fitness and the question of whether
a large population can overcome Muller’s ratchet.

The conclusion we reach in Sect. 1.3 is the following: as long as the proportion
of beneficial mutations is strictly positive, the rate of adaptation is roughly O(logN)
for large N, where N is the population size. Cuthbertson et al. (2007) established a
rigorous lower bound of any fractional power of logN for the adaptation rate. This
shows that no matter how small the proportion of beneficial mutations is, a large
enough population size will yield a positive adaptation rate and Muller’s ratchet
is overcome. It also shows, in particular, that the rate of adaptation grows with-
out bound as N → ∞ in the all-mutations-beneficial case. This is consistent with
the findings of Rouzine et al. (2003), Wilke (2004) and Desai and Fisher (2007).
Furthermore, Barton and Coe (2007) argue that the adaptation rate in the case of un-
linked loci and thus no linkage disequilibrium (i.e. links between loci are disrupted
by very large recombination rates) is O(logN). If this is true, then recombination
can only increase the adaptation rate within the same order.

Throughout our work, we use continuous-time Moran models, where each indi-
vidual has an exponentially distributed lifetime and mutations fall on each individual
at a rate of µ . In the biological literature one would expect to see a Wright–Fisher
model, where each individual has a lifetime of exactly one generation and fitness is
often taken to be multiplicative. In the Moran model, individuals accumulate mu-
tations during their lifetime, rather than at reproduction as in the Wright–Fisher
model, but the average number of mutations accumulated by an individual during
one unit of time in the Moran model can be made to correspond to the average num-
ber of mutations accumulated by an individual at each reproduction event in the
Wright–Fisher model. Fitness in the context of Moran models is taken to be addi-
tive instead of multiplicative. For large populations, we expect that the results we
obtain for our (much more mathematically tractable) Moran model will mirror those
for the corresponding Wright–Fisher model.

Figure 1.1 shows a plot of the adaptation rate against log population size from
simulation results of model A described in Sect. 1.2.1. We observe that for each set
of parameters q, µ and σ , the rate of adaptation is roughly proportional to logN and
small population sizes may result in negative adaptation rates. Furthermore, larger
q results in a higher adaptation rate for fixed µ and σ . The upshot is that with µ and
σ held constant, the smaller the proportion of beneficial mutations, the larger the
population size required for Muller’s ratchet to be overcome.

The argument we present in Sect. 1.3, as well as the argument used in Rouzine
et al. (2003), works well only for large N, where the shape of the travelling wave can
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Fig. 1.1 Adaptation rate against population size, from top to bottom, for q = 4, 2, 1 and 0.2%,
µ = 0.01 and σ = 0.01. Circles represent actual data points and vertical bars represent 95% con-
fidence intervals

be treated as deterministic. For moderate N, its shape actually fluctuates and an ap-
proximation by a fixed shape becomes unsatisfactory. See Fig. 1.2 for a comparison
of the travelling wave for population sizes of N = 1,000 and N = 100,000; the shape
for N = 100,000 is far more stable than that of N = 1,000. In the case of moderate
population sizes, it may be more useful mathematically to rescale the mutation and
selection parameters with population size to obtain a process where the proportions
Pk of “individuals” in fitness class k can take any value in the interval [0,1]. Even
though the limiting process is an infinite population limit, its behaviour still resem-
bles a finite population process since by holding µN and σN constant and rescaling
time by N, we maintain genetic drift as we take the limit N → ∞. A limit we obtain
this way is often called a weak selection model. This is what we do in Sect. 1.2.2.
Because the sizes of essentially all fitness types are stochastic, studying the effects
of mutation and selection on the adaptation rate requires a different approach and
little mathematical analysis has so far been carried out. In Sect. 1.4, we show how to
obtain the weak selection model from a neutral one with a Girsanov transform and
then perform some calculations that shed new light on the adaptation rate. The aim
of working with a weak selection model is still to understand the effect of mutation
and selection on the adaptation rate, but this time for moderate population sizes.

The work is organised as follows. In Sect. 1.2, we formulate two models, a strong
selection individual-based model and a weak selection diffusion model, and perform
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Fig. 1.2 The travelling wave for two populations sizes: N = 1,000 and N = 100,000. Both plots
have parameters q = 1, µ = 0.02 and σ = 0.02

some preliminary calculations on both models. In Sect. 1.3, we present a non-
rigorous argument that leads to an asymptotic adaptation rate of roughly O(logN)
for the strong selection model. And finally in Sect. 1.4, we introduce the Girsanov
transform to obtain the weak selection model, and show how it can yield useful in-
formation on the adaptation rate. Throughout this work, we focus on mathematical
ideas that have the potential of being turned into rigorous arguments, rather than
rigorous arguments themselves, which appear elsewhere.

1.2 Two Models

We first describe a finite population Moran model: the strong selection model. Then
in Sect. 1.2.2 we describe a weak selection model in which mutation and selection
coefficients are taken to be O(1/N). As N → ∞, if time is measured in units of size
N, the model converges to an infinite-dimensional diffusion.

We assume constant population size N. Let Xi(t) ∈ Z, i = 1, . . . ,N, denote the
fitness type of the ith individual, defined to be the number of beneficial mutations
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minus the number of deleterious mutations carried by the individual. We assume all
mutations have the same absolute fitness effects; thus, the exact fitness of an individ-
ual is determined by its fitness type. Let Pk(t) denote the proportion of individuals
that have fitness k at time t, i.e.

Pk =
1
N

N

∑
i=1

δXi=k. (1.1)

For p∈PN(Z), the space of probability measures p on Z formed by N point masses
each with weight 1/N, define pk = p({k}) and

p[k,l] =
l

∑
i=k

pi, mn(p) = 〈kn, p〉 = ∑k∈Z kn pk,

m(p) = m1(p), cn(p) = ∑k∈Z(k−m(p))n pk.

In particular, m(p) is the mean fitness of the population, and c2(p) = m2(p)−m(p)2

is the second central moment of the population fitness, i.e. its variance.
The model of interest is one where each individual accumulates beneficial mu-

tations at a Poisson rate qµ and deleterious mutations at rate (1−q)µ . We assume
a so-called infinitely-many-sites model where each mutation is assumed to be new
and occur at a different locus on the genome.

1.2.1 Strong Selection Model

In the strong selection model, all individuals experience mutation, selection (which
introduces a drift reflecting the differential reproductive success based on fitness)
and genetic drift via resampling. This model, which we call model A, is described
below:

1. Mutation: For each individual i a mutation event occurs at rate µ . With probabil-
ity 1−q, Xi changes to Xi −1 and with probability q, Xi changes to Xi +1.

2. Selection: For each pair of individuals (i, j), at rate σ
N (Xi −Xj)+, individual i

replaces individual j.
3. Resampling: For each pair of individuals (i, j), at rate 1

2N , individual i replaces
individual j.

This model has a time scale such that one unit of time corresponds roughly to one
generation. Often one combines the resampling and selection into a single term.
Each pair of individuals is involved in a reproduction event at some constant rate
and the effect of selection is then that it is more likely to be the fitter individual that
reproduces. In fact, this is the selection mechanism in model B, which we describe
in Sect. 1.2.2. Since σ is typically rather small (one expects Nσ to be O(1)) our
formulation in model A is a very small perturbation of the model where resampling
and selection are combined into a single mechanism, and does not affect our results.
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The population Xi(t) forms the empirical measure Pk(t) by Eq. 1.1. We can also
describe the mechanisms of model A in terms of the Pk’s:

1. Mutation: For any k ∈ Z, at rate (1 − q)µNPk, Pk decreases by 1
N and Pk−1

increases by 1
N ; at rate qµNPk, Pk decreases by 1

N and Pk+1 increases by 1
N .

2. Selection: For any pair of k, l ∈ Z such that k > l, at rate σ(k − l)NPkPl , Pk
increases by 1

N and Pl decreases by 1
N .

3. Resampling: For any pair of k, l ∈ Z, at rate N
2 PkPl , Pk increases by 1

N and Pl

decreases by 1
N .

We perform a so-called martingale decomposition for Pk in Eq. 1.2 below, i.e. we
write Pk as a sum of deterministic drifts and martingales, where, roughly, the drift
describes the average evolution of Pk and the martingales describe how much the
evolution can differ from the average behaviour. For details of this type of calcu-
lation, see Ikeda and Watanabe (1981). For this work, we just point out that a pure
jump Markov process that increases by 1/N at rate r(t) decomposes into a drift term
1
N

∫ t
0 r(s) ds and a martingale term that has quadratic variation 1

N2

∫ t
0 r(s) ds.

Pk(t) = Pk(0)+ µ
∫ t

0
[q(Pk−1(s)−Pk(s))+(1−q)(Pk+1(s)−Pk(s))] ds

+σ
∫ t

0
∑
l∈Z

(k− l)Pk(s)Pl(s) ds+MP,1
k (t)+MP,2

k (t)

= Pk(0)+ µ
∫ t

0
(qPk−1(s)−Pk(s)+(1−q)Pk+1(s)) ds

+σ
∫ t

0
∑
l∈Z

(k− l)Pk(s)Pl(s) ds+MP,1
k (t)+MP,2

k (t), (1.2)

where MP,1
k and MP,2

k are orthogonal martingales, the first arising from the (compen-
sated) mutation mechanism and the second from the resampling and (compensated)
selection mechanisms. Both have maximum jump size 1/N and their quadratic vari-
ations are all O(1/N), i.e. [MP,1

k ](t) = O(1/N) and [MP,2
k ](t) = O(1/N). For exact

formulae for these quadratic variations, see Cuthbertson et al. (2007).
We can write the martingale decomposition of the mean m(P(t)) = ∑k kPk(t) as

follows:

m(P(t)) = m(P(0))+MP,m(t)+
∫ t

0
σ ∑

k,l∈Z

k(k− l)Pk(s)Pl(s)

+µ ∑
k∈Z

k(qPk−1(s)−Pk(s)+(1−q)Pk+1(s)) ds (1.3)

= m(P(0))+MP,m(t)+
∫ t

0
σ

[
m2(P(s))−m(P(s))2]

+µ ∑
k∈Z

[q(k +1)−1+(1−q)(k−1)]Pk(s) ds

= m(P(0))+MP,m(t)+
∫ t

0
σ [c2(P(s))+ µ(2q−1)] ds,
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where MP,m is a martingale whose quadratic variation is O(1/N). In differential
notations, we write

dm(P) = [µ(2q−1)+σc2(P)] dt +dMP,m. (1.4)

1.2.2 Weak Selection Model

For the weak selection model, we let µ̃ and σ̃ denote the mutation and selection
coefficients, respectively, and define

µ̃ = Nµ , σ̃ = Nσ ,

where µ and σ are the mutation and selection coefficients in the strong selection
model defined in Sect. 1.2.1. To obtain the mechanisms of the weak selection model,
we hold µ̃ and σ̃ constant (i.e. scale µ and σ down by N), combine the selection
and resampling mechanism into a single reproduction mechanism, and then speed
up time by N, to obtain the following Moran particle model with constant population
size N, which we call model B:

1. Mutation: For each individual i a mutation event occurs at rate µ̃ . With probabil-
ity 1−q, Xi changes to Xi −1 and with probability q, Xi changes to Xi +1.

2. Reproduction: For a pair of individuals (i, j), a reproduction event occurs at
rate 1. With probability 1

2 (1 + σ̃
N (Xi −Xj)), individual i replaces individual j;

with probability 1
2 (1− σ̃

N (Xi −Xj)), individual j replaces individual i.

In one unit of time, each individual experiences roughly N reproduction events;
thus, one unit of time corresponds to N generations in this model, and consequently
µ̃ and σ̃ correspond with Nµ and Nσ , respectively. Of course, the definition of this
reproduction mechanism runs into trouble if any two individuals i and j have fit-
ness difference larger than N/σ̃ , i.e. if |Xi −Xj| > N/σ̃ , in which case one of the
two probabilities in the reproduction mechanism becomes negative and the other be-
comes larger than 1. The probability of this happening will converge to 0 as N → ∞
and we ignore this possibility in the calculations below.

We use P(N)
k to denote the proportion of individuals of fitness type k, to emphasise

the fact that this is an empirical measure formed by N individuals each with mass
1/N, and that the process is a jump process with jump size 1/N. We will eventually
take an infinite population limit N → ∞ and obtain a process with continuous paths.
In terms of the proportions P(N)

k ’s, model B can be described as follows:

1. Mutation: For any k ∈ Z, at rate (1− q)µ̃NP(N)
k , P(N)

k decreases by 1
N and P(N)

k−1

increases by 1
N ; at rate qµ̃NP(N)

k , P(N)
k decreases by 1

N and P(N)
k+1 increases by 1

N .

2. Reproduction: For any pair of k, l ∈ Z, at rate N2

2 (1 + σ̃
N (k − l))P(N)

k P(N)
l , P(N)

k

increases by 1
N and P(N)

l decreases by 1
N ; at rate N2

2 (1− σ̃
N (k− l))P(N)

k P(N)
l , P(N)

l

increases by 1
N and P(N)

k decreases by 1
N .
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Just as for model A, we can perform the martingale decomposition to obtain

P(N)
k (t) = P(N)

k (0)+ µ̃
∫ t

0

(
qP(N)

k−1(s)−P(N)
k (s)+(1−q)P(N)

k+1(s)
)

ds

+σ̃
∫ t

0
∑
l∈Z

(k− l)P(N)
k (s)P(N)

l (s) ds+M(N),P,1
k (t)+M(N),P,2

k (t),

= P(N)
k (0)+ µ̃

∫ t

0

(
qP(N)

k−1(s)−P(N)
k (s)+(1−q)P(N)

k+1(s)
)

ds

+σ̃
∫ t

0

(
k−m

(
P(N)(s)

))
P(N)

k (s) ds+M(N),P,1
k (t)+M(N),P,2

k (t),

where M(N),P,1
k and M(N),P,2

k are orthogonal martingales, the first arising from the
(compensated) mutation mechanism and the second from the reproduction mech-
anism. Because we have sped up time by a factor of N, the quadratic variation of
M(N),P,2 (which we recall arises from the resampling) is no longer of O(1/N):

[
M(N),P,1

k

]
(t) = O(1/N),

[
M(N),P,1

k ,M(N),P,1
l

]
(t) = 0 if |k− l| ≥ 2,

[
M(N),P,2

k

]
(t) =

∫ t

0
∑
l∈Z

P(N)
k (s)P(N)

l (s) ds

=
∫ t

0
P(N)

k (s)(1−P(N)
k (s)) ds,

[
M(N),P,2

k ,M(N),P,2
l

]
(t) = −

∫ t

0
P(N)

k (s)P(N)
l (s) ds if k �= l.

Because M(N),P,2 is O(1), it persists even after taking the limit N →∞, while M(N),P,1

goes away since it is O(1/N).
We take the limit N → ∞ to obtain a process Pk(t) that is continuous for each

k ∈ Z and t ≥ 0 and satisfies the martingale problem

Pk(t) = Pk(0)+ µ̃
∫ t

0
(qPk−1(s)−Pk(s)+(1−q)Pk+1(s)) ds

+σ̃
∫ t

0
(k−m(P(s)))Pk(s) ds+MP

k (t), (1.5)

where MP
k are martingales with quadratic variation process

[
MP

k ,MP
k′
]
(t) =

∫ t

0
Pk(s)(δkk′ −Pk′(s)) ds, (1.6)

where δkk′ = 1 if k = k′ and δkk′ = 0 otherwise.
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The existence and uniqueness of the solution of this martingale problem is non-
trivial, but it will appear elsewhere and we do not go into detail here. The martin-
gales MP

k can be represented in terms of Brownian motions in the following way:

MP
k (t) =

∫ t

0
∑
l∈Z

√
Pk(s)Pl(s) dWkl(s), (1.7)

where {Wkl : k, l ∈ Z,k > l} are independent Brownian motions and we define
Wkl = −Wlk for k, l ∈ Z and k < l and Wkk ≡ 0 for k ∈ Z. We now verify that MP

k
has the quadratic variation process specified by Eq. 1.6. We write Pk = Pk(s) if this
causes no confusion. In differential notation,

d[MP
k ,MP

k′ ] = ∑
l,l′

√
PkPlPk′Pl′ d[Wkl ,Wk′l′ ]

for k �= l. Since k �= l, d[Wkl ,Wk′l′ ] = −dt if k = l′ and l = k′ and d[Wkl ,Wk′l′ ] = 0
otherwise. Therefore,

d[MP
k ,MP

k′ ] = −
√

PkPlPlPk dt = −PkPl dt.

Similarly,

d[MP
k ] = ∑

l,l′

√
P2

k Pk′Pl′ d[Wkl ,Wkl′ ]

= ∑
l

√
P2

k P2
l d[Wkl ,Wkl ]+ ∑

l,l′:l �=l′

√
P2

k PlPl′ d[Wkl ,Wkl′ ].

Since d[Wkl ,Wkl ] = dt if l �= k, and if l �= l′ then d[Wkl ,Wkl′ ] = 0, we have

d[MP
k ] = ∑

l �=k
PkPl dt = Pk(1−Pk) dt.

Thus, we can write the solution to the martingale problem (Eq. 1.5) as the solu-
tion to the following infinite system of stochastic differential equations (SDEs),

dPk = [µ̃(qPk−1 −Pk +(1−q)Pk+1)+ σ̃(k−m(P))Pk] dt + ∑
l∈Z

√
PkPl dWkl , (1.8)

and then associate an infinite-dimensional operator Aσ̃ ,q,µ̃ with this system:

Aσ̃ ,q,µ̃ f (p) = ∑
k

[µ̃(qpk−1 − pk +(1−q)pk+1)+ σ̃(k−m(p))pk]
∂ f
∂ pk

+
1
2 ∑

k,l
pk(δkl − pl)

∂ 2 f
∂ pk∂ pl

. (1.9)
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The operator Aσ̃ ,q,µ̃ f (p) is usually called the generator of the stochastic process
and its domain can be taken to be C2(P(Z)), the space of twice continuously
differentiable functions on P(Z), the space of probability measures on Z. For con-
venience, we will refer to the stochastic process that solves Eq. 1.8 as the process
associated with the generator Aσ̃ ,q,µ̃ .

If we set σ̃ = 0, then the process associated with A0,q,µ̃ solves the SDE

dPk = [µ̃(qPk−1 −Pk +(1−q)Pk+1)] dt + ∑
l∈Z

√
PkPl dWkl ,

and can be thought of as the neutral process that has only the mutation (both bene-
ficial and deleterious) and neutral resampling mechanisms. Because the resampling
mechanism is neutral, many techniques, e.g. the look-down construction (Donnelly
and Kurtz 1999), can be brought to bear on this process and consequently many
quantities can be calculated for the neutral process. The main technique we use to
study the selected process Aσ̃ ,q,µ̃ is to write it as a Girsanov transform of the neutral
process A0,q,µ̃ . We will discuss this technique in more detail in Sect. 1.4.

1.3 Strong Selection: Asymptotic Adaptation Rate

In this section, we take large population size and focus on the strong selection model
A that we described in Sect. 1.2.1. We give a non-rigorous argument that leads to an
asymptotic adaptation rate of roughly O(logN), as long as q is strictly positive and
regardless of the selection and mutation parameters.

The basic idea of this approach is to treat the “bulk” of the travelling wave (where
Pk = O(1)) as deterministic and only treat the front and tail of this wave (where
Pk 
 1) as stochastic. This is similar to the approach taken in Rouzine et al. (2003),
where an approximate expression for the shape of wave is first derived using a de-
terministic equation. There is an infinite family of solutions to this deterministic
equation, parameterised by the wave speed. To determine the correct wave speed
for a given population size, stochasticity at the front of the wave must be taken into
account. In our work, we derive a set of moment equations and show that the se-
lection mechanism dictates that the form of the wave is approximately Gaussian.
We then calculate the speed of this wave in two ways, one using the bulk, the other
using the front. These two speeds must be the same, which gives us a constraint that
determines our approximation to the adaptation rate.

With the martingale term MP,1 and MP,2 of O(1/
√

N), the effect of noise on Pk
can be considered to be quite small if P is much larger than 1/N. For P in this range,
we have from Eq. 1.2,

dPk ≈
[

µ(qPk−1 −Pk +(1−q)Pk+1)+σ ∑
l∈Z

(k− l)PkPl

]

dt

= [µ(qPk−1 −Pk +(1−q)Pk+1)+σ(k−m(P))Pk] dt. (1.10)
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This is similar to Eq. 2 in Rouzine et al. (2003), except that they treated discrete
time. With Pk evolving according to Eq. 1.10, we can write the evolution of the
mean fitness m(P) in the following way:

dm(P) = (µ(2q−1)+σc2(P)) dt, (1.11)

which is simply Eq. 1.4 on dropping the martingale term MP,m. We can use the above
two equations to calculate the evolution of cn(p) = ∑k(k−m(p))n pk:

dcn(P)
dt

= ∑
k

(k−m(P))n [µ(qPk−1 −Pk +(1−q)Pk+1)+σ(k−m(P))Pk]

−∑
k

n(k−m(P))n−1(µ(2q−1)+σc2(P))Pk

= µ ∑
k

(k−m(P))n[qPk−1 −Pk +(1−q)Pk+1]−n(k−m(P))n−1(2q−1)Pk

+σ(cn+1 −ncn−1c2)
= µ ∑

k
(k−m(P))n−1[q(k +1−m(P))− (k−m(P))

+(1−q)(k−1−m(P))−n(2q−1)]Pk +σ(cn+1 −ncn−1c2).

Thus,

dcn(P)
dt

= σ(cn+1(P)−ncn−1(P)c2(P)). (1.12)

Notice that Eq. 1.12 does not depend on the mutation coefficient µ , and thus the
mutation mechanism does not affect the overall shape of the wave. Since the mar-
tingale term MP,m that we dropped in Eq. 1.4 to obtain Eq. 1.11 is small compared
with Pk where Pk is significantly larger than 1/N, we can assume the shape of the
wave, as described by the central moments cn, evolves approximately deterministi-
cally according to Eq. 1.12. Setting the right-hand side of Eq. 1.12 to zero for all
n ≥ 2, we see that the shape of P is approximately Gaussian, although Eq. 1.12
admits any Gaussian distribution as its solution regardless of its variance. In other
words, Eq. 1.12 has an infinite family of solutions, each a Gaussian distribution, and
the system itself yields no information on the exact value of the variance.

It is the behaviour at the front and tail of the wave that determines the value
of this variance (and hence the wave speed). Suppose then that P is approximately
Gaussian with mean fitness m(P) and variance b2. The population size N is large
but finite so the “front” of the wave is approximately where the level of P reaches
1/N (i.e. one individual). This level is roughly at K +m(P) where K satisfies

1
2πb2 e−K2/2b2

=
1
N

,

which implies that

K ≈ b
√

2logN. (1.13)
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We assume that a single individual is born at site K + m(P) at time t = 0 and try
to find out how long it takes for an individual to be born at site K + 1 + m(P).
This is how long it takes the wave to advance by one. Let Z(t) be the number of
individuals of the fittest type, that is the size of the population at site K + m(P),
then Eq. 1.10 says that until a beneficial mutation falls on site K + m(P), Z(t) in-
creases exponentially at rate σK − µ , ignoring beneficial mutations occurring to
type K −1+m(P), i.e.

Z(t) ≈ e(σK−µ)t . (1.14)

While the number of individuals at site K +m(P) grows, all of them are accumu-
lating beneficial and deleterious mutations at rates qµ and (1− q)µ , respectively.
As soon as one of these individuals accumulates a beneficial mutation, the “front”
of the wave will have advanced by one. The probability that no beneficial mutation
occurs to any individuals with fitness K +m(P) is

exp
(

−qµ
∫ t

0
Z(s) ds

)

= exp
(

− qµ
σK −µ

(
e(σK−µ)t −1

))

,

using the expression for Z(t) in Eq. 1.14. Therefore, the average time when the front
advances by one can be calculated to be

eqµ/(σK−µ)

σK −µ

∫ ∞

1/(σK−µ)

e−qµu

u
du.

Using the fact that for small ε ,
∫ ∞

ε e−qµu/u du = log(1/ε)+O(1), we deduce that
the average time until the front advances by one is roughly 1

σK−µ log(σK − µ) for
large K, which gives a wave speed of (σK −µ)/ log(σK −µ).

But by Eq. 1.11, the wave speed is µ(2q− 1) + σc2(P) = µ(2q− 1) + σb2 ≈
µ(2q−1)+σK2/(2logN), using Eq. 1.13. This leads to the following consistency
condition:

σK −µ
log(σK −µ)

= µ(2q−1)+
σK2

2 logN
.

For large K, this approximately reduces to

K log(σK) = 2logN.

This is a transcendental equation with no closed-form solution. If K = logN, then the
left-hand side is greater than the right-hand side; if, on the other hand, K = log1−δ N
for any small positive δ , then left-hand side is less than the right-hand side. So K
is between logN and any fractional power of logN, i.e. a bit smaller than O(logN),
which implies a wave speed, that is a rate of adaptation, of order between logN and
any fractional power of logN.
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In Cuthbertson et al. (2007), we in fact established a rigorous asymptotic lower
bound of log1−δ N (where δ is any small positive number) for the adaptation rate, as
long as q is strictly positive and regardless of the selection and mutation parameters.
The proof uses some of the ideas outlined in this section.

1.4 Weak Selection: Girsanov Calculations

Now we turn to the weak selection model of Sect. 1.2.2. We would like to study
the adaptation rate of the selected process associated with generator Aσ̃ ,q,µ̃ (defined
in Eq. 1.9) with σ̃ �= 0. We can get a set of moment equations similar to Eq. 1.12,
which is not closed and is therefore difficult to study. The neutral process associated
with A0,q,µ̃ , on the other hand, is much easier to study. The central idea of our
approach is to find a relationship between the probability measure associated with
the selected process and that associated with the neutral process. The technique we
use is the Girsanov transform.

1.4.1 The Girsanov Transform

The Girsanov theorem tells us how the stochastic process changes if we change
the underlying probability measure. We review this briefly for the simplest case of
adding drift to a one-dimensional standard Brownian motion. Suppose W (t) is a
Brownian motion under the probability measure P. Let {Ft}t≥0 be the correspond-
ing filtration. Let a(t) be an Ft-adapted process, then Z(t) = exp{

∫ t
0 a(s) dB(s)−

1
2

∫ t
0 a(s)2 ds} is a local martingale. If a(t) satisfies the Novikov condition, i.e.

E[exp{
∫ t

0 a(s)2 ds}] < ∞, then Z(t) is actually a martingale and we can define a
probability Q by

dQ

dP

∣
∣
∣
∣
Ft

= Z(t).

By the Girsanov theorem (see Karatzas and Shreve 1991), the process

X(t) = X(0)−
∫ t

0
a(s) ds+B(t)

is a Brownian motion under Q. This gives us a way of relating the distribution of
the standard Brownian motion and that of a Brownian motion with drift.

The Girsanov theorem works equally well when the Brownian motion described
above is replaced with more general continuous martingales or the dimension is
larger than 1 but finite. For the infinite-dimensional setting, we can use Dawson’s
Girsanov theorem (see Dawson 1991 and Theorem 7.9 of Etheridge 2000) devel-
oped for Dawson–Watanabe superprocesses. We first recall the neutral model that
we obtained in Sect. 1.2.2 as the infinite population limit of processes described by
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model B. Setting σ̃ = 0 in Eq. 1.8, the neutral process satisfies the following infinite
system of SDEs:

dPk = [µ̃(qPk−1 −Pk +(1−q)Pk+1)] dt +dMk, (1.15)

where we define the martingale

Mk(t) =
∫ t

0
∑
l∈Z

√
Pk(s)Pl(s) dWkl(s).

We associate this process with its generator A0,q,µ̃ , with Aσ̃ ,q,µ̃ defined in Eq. 1.9
for any σ̃ . Let P0 denote the law of {Pk,k ∈ Z} evolving according to the neutral
generator A0,q,µ̃ , then by definition, Mk is a martingale under P0. We define the
function an(p)

an(p) = σ̃

(

n−∑
k

kpk

)

= σ̃(n−m(p))

and Z to be a process that satisfies the following SDE:

dZ = Z ∑
n

an dMn = σ̃Z ∑
n

(n−m(p)) dMn. (1.16)

In particular, if the Novikov condition is satisfied, i.e. if

E
P0

[

exp
(

σ̃2
∫ T

0
c2(P(s)) ds

)]

< ∞,

then Z is a martingale up to time T under P0. The Novikov condition does hold
for the process A0,q,µ̃ under the stationary measure of the process centred about its
mean, but we skip the details, which will appear elsewhere. We define

M̃k(t) = Mk(t)− σ̃
∫ t

0
∑
n

an(s) d[Mk,Mn](s) (1.17)

= Mk(t)− σ̃
∫ t

0
∑
n

(n−m(P(s)))(δkn −Pk(s))Pn(s) ds

= Mk(t)− σ̃
∫ t

0

[

(k−m(P(s)))Pk(s)−∑
n

(n−m(P(s)))Pk(s)Pn(s)
]

ds

= Mk(t)− σ̃
∫ t

0
(k−m(P(s)))Pk(s) ds,

where we use Eq. 1.6 in the second line. By Dawson’s Girsanov theorem, M̃k is a
Pσ̃ -martingale, where

dPσ̃
dP0

∣
∣
∣
∣
Ft

= Z(t)

and
[Mk,Ml ](t) = [M̃k,M̃l ](t).
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Although they are martingales under different probability measures, the M̃k’s and
Mk’s have the same cross-variation structures; thus as in Eq. 1.7 for Mk, we can
define {W̃kl : k, l ∈ Z,k > l} to be independent Brownian motions, W̃kl = −W̃lk for
k, l ∈ Z and k < l, and W̃kk ≡ 0 for k ∈ Z. Then

M̃P
k (t) =

∫ t

0
∑
l∈Z

√
Pk(s)Pl(s) dW̃kl(s) (1.18)

are martingales under Pσ̃ . From the definition of M̃ in Eq. 1.17, we see that M
satisfies

dMk = dM̃k(t)+ σ̃(k−m(P(t)))Pk(t) dt. (1.19)

From Eq. 1.15, we easily obtain dMk = dPk − [µ̃(qPk−1 −Pk +(1−q)Pk+1)] dt. We
plug this into the left-hand side of Eq. 1.19 and Eq. 1.18 into its right-hand side to
obtain

dPk = [µ̃(qPk−1 −Pk +(1−q)Pk+1)+ σ̃(k−m(P))Pk] dt + ∑
l∈Z

√
PkPl dW̃kl .

We see this is exactly the SDE in Eq. 1.8 with generator Aσ̃ ,q,µ̃ , except the Brownian
motions Wkl are replaced with another family of Brownian motions W̃kl .

To summarise, Wkl’s are Brownian motions under P0, which is the law for the
process P associated with A0,q,µ̃ , while W̃kl’s are Brownian motions under Pσ̃ , the
law for P associated with Aσ̃ ,q,µ̃ . The Radon–Nikodym derivative (dPσ̃ /dP0)|Ft is
given by Z(t), which is a martingale that satisfies Eq. 1.16 and can be written out
explicitly:

Z(t) = exp

(∫ t

0
∑
k

ak(P(s)) dMk(s)−
1
2

∫ t

0
∑
k,l

ak(P(s))al(P(s)) d[Mk,Ml ](s)

)

.

We now find a more convenient expression for Z(t). The first integral in the expo-
nent is

∫ t

0
∑
k

ak(P(s)) dMk(s) = σ̃
∫ t

0
∑
k,l

(k−m(P(s)))
√

Pk(s)Pl(s) dWkl(s)

= σ̃
∫ t

0
∑
k

k∑
l

√
Pk(s)Pl(s) dWkl(s) = σ̃ ∑

k
kMk(s),

where the second equality comes from the fact ∑k,l
√

Pk(s)Pl(s) dWkl(s) = 0, since
Wkl = −Wlk. By Eq. 1.15,

∑
k

kMk(t) = ∑
k

kPk(t)−∑
k

kPk(0)−
∫ t

0
∑
k

k[µ̃(qPk−1(s)−Pk(s)+(1−q)Pk+1(s))] ds

= m(P(t))−m(P(0))− µ̃(2q−1)t.
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The second integral in the exponent is
∫ t

0
∑
k,l

ak(P(s))al(P(s)) d[Mk,Ml ](s)

= σ̃2
∫ t

0
∑
k,l

(k−m(P(s)))(l−m(P(s)))(δkl −Pk(s))Pl(s) ds

= σ̃2
∫ t

0
∑
k

(k−m(p(s)))2Pk(s) ds = σ̃2
∫ t

0
c2(P(s)) ds.

Therefore,

Z(t) = exp
(

σ̃ [m(P(t))−m(P(0))− µ̃(2q−1)t]− σ̃2

2

∫ t

0
c2(P(s)) ds

)

,

where P solves the neutral SDE (Eq. 1.15).

1.4.2 Moments of the Neutral Process

For the calculations on the selected process (Eq. 1.8) that we perform in Sect. 1.4.3,
we need to know some asymptotic moments of the neutral process (Eq. 1.15). We
drop the notational dependence on p of the moments, m, c2, c3, etc. The mean of P
obeys

dm = µ̃ ∑
k

k[(qPk−1 −Pk +(1−q)Pk+1)] dt +dM

= µ̃(2q−1) dt +dM, (1.20)

where we define the martingale

M(t) = ∑
k

kMk(t),

which has quadratic variation

d[M] = ∑
k,l,k′,l′

k
√

PkPlk′
√

Pk′Pl′ d[Wkl ,Wk′l′ ]

= ∑
k,l,k′,l′:k′=k,l′=l

kk′
√

PkPlPk′Pl′ dt − ∑
k,l,k′,l′:k=l′,k′=l

kk′
√

PkPlPk′Pl′ dt

= ∑
k,l

k2PkPl dt − ∑
k,l,k′,l′

klPkPl dt

= (m2 −m2) dt

= c2 dt.

Shiga (1982) showed that although there does not exist a stationary distribution
for the neutral process P(t), there does exist a stationary distribution for the process
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centred about its mean, and furthermore, the centred process is ergodic, i.e. after a
long time, the process behaves like the stationary distribution. Therefore, we expect
the expectation of all the central moments of P to converge to something as t → ∞.
To find the exact value of limt→0 EP0 [cn(P(t))], n = 2,3, . . ., we use the generator
A0,q,µ̃ to calculate its effect on cn. First, it can be verified that for n ≥ 2,

∂cn

∂ pk
= (k−m)n − kncn−1

∂ 2cn

∂ pk∂ pl
= −ln(k−m)n−1 −nk((l −m)n−1 − (n−1)lcn−2),

where c1 = 0 and c0 = 1 and m = m(p). Plugging these two formulae into the defi-
nition of A0,q,µ̃ in Eq. 1.9, we obtain

A0,q,µ̃ cn = µ̃ ∑
k

[q(k−m+1)n − (k−m)n − (1−q)(k−m−1)n]pk

−µ̃(2q−1)ncn−1 +
1
2

n(n−1)c2cn−2 −ncn

=
1
2

n(n−1)c2cn−2 −ncn + µ̃
n

∑
i=2

(
k
i

)

(q+(−1)i(1−q))cn−i.

In particular,

A0,q,µ̃c2 = µ̃ − c2

A0,q,µ̃c3 = µ̃(2q−1)−3c3

A0,q,µ̃c4 = µ̃(6c2 +1)+6c2
2 −4c4

A0,q,µ̃c5 = µ̃(10c3 +10(2q−1)c2 +(2q−1))+10c3c2 −5c5, (1.21)

and Itô’s formula yields

cn(P(t)) = cn(P(0))+
∫ t

0
A0,q,µ̃ cn(P(s)) ds

+
∫ t

0
∑
k,l

[(k−m(P(s))n − kncn−1(P(s))]
√

Pk(s)Pl(s) dWkl(s), (1.22)

where the last integral is a martingale. For c2, we take expectation on both sides
of Eq. 1.22 to obtain

EP0 [c2(P(t))] = EP0 [c2(P(0))]+
∫ t

0
(µ̃ −EP0 [c2(P(s))]) ds.

In differential form, we can write

d
dt

EP0 [c2(P(t))] = µ̃ −EP0 [c2(P(t))].
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Thus, EP0 [c2(P(t))] = EP0 [c2(P(0))]e−t + µ̃(1− e−t), and hence

lim
t→∞

EP0 [c2(P(t))] = µ̃. (1.23)

Similarly,

lim
t→∞

EP0 [c3(P(t))] =
µ̃
3

(2q−1). (1.24)

For n = 4 and n = 5, A0,q,µ̃cn involves terms of the form cn−2c2 in addition to cn:

A0,q,µ̃(c2
2) = 2µ̃c2 + c4 −3c2

2,

A0,q,µ̃(c3c2) = µ̃ [c3 +(2q−1)c2]+ c5 −6c3c2.

Combining the above two formulae with Eq. 1.21 yields

lim
t→∞

EP0 [c4(P(t))] = 5µ̃ lim
t→∞

EP0 [c2(P(t))]+
µ̃
2

= 5µ̃2 +
µ̃
2

,

lim
t→∞

EP0 [c2
2(P(t))] =

7
3

lim
t→∞

EP0 [c2(P(t))]+
µ̃
2

=
7
3

µ̃2 +
µ̃
2

,

lim
t→∞

EP0 [c5(P(t))] = µ̃(2q−1)
(

5µ̃
3

+
3
20

)

,

lim
t→∞

EP0 [c3(P(t))c2(P(t))] = µ̃(2q−1)
(

µ̃
2

+
1
40

)

. (1.25)

Lastly, we need the following result

d[M,cn] = ∑
k,l,k′,l′

((k−m)n −nkcn−1)k′
√

PkPlPk′Pl′ d[Wkl ,Wk′l′ ]

=

(

∑
k

k((k−m)n −nkcn−1)Pk −∑
k,l

((k−m)n −nkcn−1)lPkPl

)

dt

= ∑
k

(k−m)((k−m)n −nkcn−1)Pk dt

= (cn+1 −ncn−1c2) dt. (1.26)

1.4.3 Representation Using the Neutral Process

From Eq. 1.8, the mean of the selected process P̃ satisfies

m(P̃(t)) = m(P̃(0))+
∫ t

0
∑
k

k[µ̃(qP̃k−1(s)− P̃k(s)+(1−q)P̃k+1(s))

+σ̃(k−m(P̃(s)))P̃k(s)] ds+M(t)

= µ̃(2q−1)t + σ̃
∫ t

0
c2(P̃(s)) ds+M(t). (1.27)
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This is similar to Eq. 1.4, i.e. the strong selection case of model A, where the rate
of adaptation is also proportional to the variance of fitness. The critical quantity of
interest is the integrated variance

∫ t
0 c2(P̃(s)) ds. But if we try to write down the

evolution equation of c2, we will again obtain a system resembling Eq. 1.12.
For the weak selection model, however, we have a representation of the selected

process Aσ̃ ,q,µ̃ in terms of the neutral process, and we can write central moments of
the selected process using this representation. For example, let P(t) be the solution
to the neutral SDE (Eq. 1.15), then the integrated variance of the selected process
associated with Aσ̃ ,q,µ̃ can be written as

EPσ̃

[∫ t

0
c2(P̃(s)) ds

]

= EP0

[

Z(t)
∫ t

0
c2(P(s)) ds

]

. (1.28)

We define
N(t) =

∫ t

0
c2(P(s)) ds

and write

Z(t) = exp
(

σ̃M(t)− σ̃2

2
N(t)

)

.

We expand Z into a Taylor series around 0 and write the term inside the expectation
on the right-hand side of Eq. 1.28 as follows, dropping the dependence on t of M
and N in our notation:

Z(t)N =
∞

∑
k=0

1
k!

(

σ̃M− σ̃2

2
N

)k

N.

We can write the left-hand side of Eq. 1.28 as an expansion in the selection
coefficient σ̃ :

EPσ̃

[∫ t

0
c2(P̃(s)) ds

]

= EP0

[
∞

∑
k=0

1
k!

(

σ̃M− σ̃2

2
N

)k

N

]

= EP0

[

N +
(

σ̃M− σ̃2

2
N

)

N +
1
2

(

σ̃M− σ̃2

2
N

)2

N

+
1
6

(

σ̃M− σ̃2

2
N

)3

N + . . .

]

= EP0 [N]+ σ̃EP0 [MN]+
σ̃2

2
EP0

[
(M2 −N)N

]

+
σ̃3

6
EP0

[
(M3 −3MN)N

]
+ . . . ,
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where in the last step we have taken the expectation inside the infinite sum, which
needs to be justified rigorously. Assuming we can do this, we can quite easily com-
pute the approximate value of the first few terms in the above expansion by hand for
large time and they yield some interesting information about the rate of adaptation
of the selected process Aσ̃ ,q,µ̃ . For the first term in the expansion

EP0 [N] = EP0

[∫ t

0
c2(P(s)) ds

]

=
∫ t

0
EP0 [c2(P(s))] ds,

since limt→∞ EP0 [c2(P(t))] = µ̃ by (1.23), N increases at rate µ̃ for large t.
Now we compute the second term in the expansion EP0 [MN].

d(MN) = M dN +dmartingale = Mc2 ds+dmartingale.

Thus, as t → ∞, EP0 [M(t)N(t)] increases at a rate of limt→∞ EP0 [M(t)c2(t)].

d(Mc2) = M dc2 +d[M,c2]+dmartingale
= (−Mc2 + c3) dt +dmartingale

by Eq. 1.26. Taking expectation on both sides, we get

EP0 [M(t)c2(P(t))] =
∫ t

0
EP0 [c3(P(s))]−EP0 [M(s)c2(P(s))] ds.

By an argument similar to that leading to Eq. 1.23, we should expect

lim
t→∞

EP0 [M(t)c2(P(t))] = lim
t→∞

EP0 [c3(P(t))] =
µ̃
3

(2q−1),

by Eq. 1.24. Thus, EP0 [MN] increases at a rate of µ̃
3 (2q−1) as t → ∞.

For the third term in the expansion EP0
[
(M2 −N)N

]
, we first observe that

M(t)2 −N(t) is a martingale and can be written as
∫ t

0 2M(s) dM(s). Therefore

d((M2 −N)c2) = (M2 −N) dc2 +d[M2 −N,c2]+dmartingale
= −(M2 −N)c2 dt +2Md[M,c2]+dmartingale
= [−(M2 −N)c2 +2Mc3] dt +dmartingale.

by Eq. 1.26. So we need to calculate limt→∞ EP0 [M(t)c3(P(t))]:

d(Mc3) = M dc3 +d[M,c3]+dmartingale
= (−3Mc3 + c4 −3c2

2) dt +dmartingale,

by Eqs. 1.21 and 1.26. From Eq. 1.25, we have

lim
t→∞

EP0 [c4(P(t))−3c2(P(t))2] = −2µ̃2 − µ̃,
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which means that

lim
t→∞

EP0 [(M(t)2 −N(t))c2(P(t))] = 2 lim
t→∞

EP0 [M(t)c3(P(t))]

=
2
3

lim
t→∞

EP0 [c4(P(t))−3c2(P(t))2]

= −2
3
(2µ̃2 + µ̃).

So we should expect EP0
[
(M2 −N)N

]
to increase at a rate of − 2

3 (2µ̃2 + µ̃) as
t → ∞.

Similarly, we can calculate that EP0
[
(M3 −3MN)N

]
increases at a rate of

4µ̃(2q− 1)( µ̃
6 + 1

40 ) as t → ∞. Thus, we can write down the first few terms of the
expansion of the left-hand side of Eq. 1.28 for large t

µ̃t + σ̃
µ̃
3

(2q−1)t − σ̃2 1
3
(2µ̃2 + µ̃)t + σ̃3 2

3
(2q−1)

(
µ̃2

6
+

µ̃
40

)

t + · · · .

Plugging this result into Eq. 1.27, we see that we can write the limiting adaptation
rate of the process (Eq. 1.8) as an expansion in σ̃ , where the first few terms are as
follows:

µ̃(2q−1)+ σ̃ µ̃ + σ̃2(2q−1)
µ̃
3
− σ̃3

(
2
3

µ̃2 +
µ̃
3

)

+σ̃4(2q−1)
(

µ̃2

9
+

µ̃
60

)

+ · · · . (1.29)

The first term above is simply the adaptation rate for the neutral process A0,q,µ̃ .
The second term can be interpreted as the first-order correction on the adaptation
rate assuming the selected process Aσ̃ ,q,µ̃ has the same variance of fitness µ̃ as the
neutral process A0,q,µ̃ . We expect the selected process to have a smaller variance
of fitness than the neutral process. But the second-order correction (the σ̃2 term)
actually increases the variance if 2q−1 > 0. If 2q−1 < 0, on the other hand, then
all correction terms on the variance of fitness are negative, as expected. It is the
third-order correction (the σ̃3 term) that starts to reduce the variance of fitness in
the case of 2q−1 > 0.

1.5 Open Problems

Although we have laid out in Sect. 1.4.3 a way to write the adaptation rate in the
form of a series in the selection coefficient σ̃ , and demonstrated how, in principle,
one can calculate every term in this series, any term above σ̃5 becomes very te-
dious to calculate by hand. For the series to be of use for realistic ranges of σ̃ , say
10–100, an efficient way of calculating higher-order terms in the series (Eq. 1.29)
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becomes necessary. The selection coefficient σ̃ in the weak selection model roughly
corresponds with σN in the strong selection model. As N becomes larger, the strong
selection model becomes a better approximation. But how large does N need to get
for the strong selection model to be a reasonable approximation? From simulations,
σN ≥ 500 seems to be sufficient. Is there a reasonable way to quantitatively mea-
sure how good or bad the strong selection model is, so that we obtain some sort of
confidence interval for the prediction on adaptation rate we obtain using this model?
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