
Preface

This book, like its companion volume Nonlinear Optimization with
Financial Applications, is an outgrowth of undergraduate and post-
graduate courses given at the University of Hertfordshire and the
University of Bergamo. It deals with the theory behind numerical
methods for nonlinear optimization and their application to a range of
problems in science and engineering. The book is intended for final year
undergraduate students in mathematics (or other subjects with a high
mathematical or computational content) and exercises are provided at
the end of most sections. The material should also be useful for postgra-
duate students and other researchers and practitioners who may be con-
cerned with the development or use of optimization algorithms. It is
assumed that readers have an understanding of the algebra of matrices
and vectors and of the Taylor and mean value theorems in several vari-
ables. Prior experience of using computational techniques for solving
systems of linear equations is also desirable, as is familiarity with the
behaviour of iterative algorithms such as Newton’s method for nonlinear
equations in one variable. Most of the currently popular methods for
continuous nonlinear optimization are described and given (at least) an
intuitive justification. Relevant convergence results are also outlined
and we provide proofs of these when it seems instructive to do so. This
theoretical material is complemented by numerical illustrations which
give a flavour of how the methods perform in practice.

The particular themes and emphases in this book have grown out of
the author’s experience at the Numerical Optimization Centre (NOC).
This was established in 1968 and its staff (including Laurence Dixon,
Ed Hersom, Joanna Gomulka, Sean McKeown and Zohair Maany) have
made important contributions in fields as diverse as quasi-Newton
methods, sequential quadratic programming, nonlinear least squares,
global optimization, optimal control and automatic differentiation.

xii Preface

The computational results quoted in this book have been obtained
using a Fortran90 module derived from the NOC’s OPTIMA library. This
software is not described in detail but interested readers can obtain it
from an ftp site. Some of the student exercises can be attempted using
OPTIMA but most can also be tackled in other ways, for example via the
SOLVER tool in Microsoft Excel, the MATLAB toolbox of optimization
procedures or the NAG libraries in C and Fortran.

I am indebted to many people for help in the writing of this book.
Besides the NOC colleagues already mentioned, I would like to thank
all the mathematics staff at the University of Hertfordshire for their
support. I have also received encouragement and advice from Marida
Bertocchi of the University of Bergamo, Alistair Forbes of the National
Physical Laboratory, Berc Rustem of Imperial College and Ming Zuo of
the University of Alberta. Any mistakes or omissions that remain are
entirely my responsibility. My thanks are also due to John Martindale,
Ann Kostant, Elizabeth Loew and their colleagues at Springer for
encouragement and help with the preparation of the book. Finally,
my deepest thanks go to my wife Nancy Mattson who, for a second
time, has put up with the domestic side-effects of my preoccupation
with authorship.

This book seeks to capture a view of the subject that I have acquired
over a working lifetime’s involvement with optimization and its appli-
cations. Optimization, by definition, is concerned with making things
better. It is natural, therefore, that it should apply its own principles to
itself and – in my experience, at least – this can generate a lively spirit
of friendly rivalry between practitioners and algorithm developers. This
spirit is worth celebrating in quasi-haiku form:

Optimization
means a quest for best answers
by the best methods.

Optimism means
believing both objectives
are achievable.

I hope readers will be stimulated by the challenge of finding more and
more effective solutions to practical problems that become increasingly
difficult.

Michael Bartholomew-Biggs
January, 2008

Chapter 1

Introducing Optimization

1.1. A tank design problem

In an optimization problem we seek values for certain design or control
variables which minimize (or sometimes maximize) an objective function.
A good example is the problem of finding the dimensions of a rectangular
open-topped tank in order to obtain the smallest surface area which
encloses a given volume, V ∗. (The purpose of such a design might be
to minimize heat loss through the sides.) We denote the height by x1

and the lengths of the edges of the base by x2 and x3. The volume and
surface area are then given by

V = x1x2x3 and S = 2x1x2 + 2x1x3 + x2x3.

Hence the design problem can be posed as

Minimize S = 2x1x2 + 2x1x3 + x2x3 subject to x1x2x3 = V ∗.
(1.1.1)

This is a three-variable optimization problem which includes an equality
constraint. Methods for solving problems of this kind are discussed in
Chapters 16–18; but an alternative unconstrained formulation can be
obtained by eliminating one of the unknowns. Because x3 = V ∗x−1

1 x−1
2

we can also seek the optimum tank dimensions by solving

Minimize S = 2x1x2 + 2V ∗x−1
2 + V ∗x−1

1 . (1.1.2)

The solution of problems of this kind is discussed in Chapters 5–11.
The optimal tank dimensions can be found by solving either (1.1.1)

or (1.1.2). However an important factor has been omitted from both
of them. If any two of the xi have negative values then the constraint

M. Bartholomew-Biggs, Nonlinear Optimization with Engineering Applications,
DOI: 10.1007/978-0-387-78723-7 1, c© Springer Science+Business Media, LLC 2008

2 1. Introducing Optimization

on volume can still be satisfied but the surface area may be negative.
Because a negative value for S is necessarily less than a positive one,
a solution with, say, x1 < 0 and x2 < 0 might seem “better” than a
solution with all the xi positive. Of course, negative dimensions have
no practical meaning and so the problem formulation should explicitly
exclude them. We can do this by adding inequality constraints, as in

Minimize 2x1x2 + 2x1x3 + x2x3 s.t. x1x2x3 = V ∗, xi ≥ 0, i = 1, 2, 3.
(1.1.3)

or

Minimize 2x1x2 + 2V ∗x−1
2 + V ∗x−1

1 s.t. xi ≥ 0, i = 1, 2. (1.1.4)

(The abbreviation “s.t.” is often used instead of “subject to”.) Methods
for dealing with problems such as (1.1.3) and (1.1.4) are considered in
Chapters 20–23.

In this chapter and the next we restrict ourselves to unconstrained
problems involving only one variable. We can obtain such a problem
from the tank design example by adding an extra requirement that the
base must be square; that is, x2 = x3. Now the expressions for volume
and surface area become

V = x1x
2
2 and S = 4x1x2 + x2

2.

Using the constraint on V to eliminate x1, we get S in terms of x2 only;
that is,

S = 4V ∗x−1
2 + x2

2. (1.1.5)

Figure 1.1 shows S as a function of x2 when V ∗ = 5. In this case the
minimum occurs when x2 ≈ 2.2.

Figure 1.1 illustrates the well-known fact that, at the minimum of
a differentiable function, the slope – that is, the first derivative – is
zero. Hence, for this rather simple problem, we can obtain the minimum
surface area by solving

dS

dx2
= −4V ∗x−2

2 + 2x2 = 0

which gives x2 = (2V ∗)1/3. Hence, when V ∗ = 5, the optimum square
base has edges of length 2.1544.

Not all optimization problems are as easy as the minimization of
(1.1.5). Some objective functions are hard to differentiate; and, even
when the first derivative has been found, the equation obtained by set-
ting it to zero may be difficult to solve. This book describes some of the
computational methods used by engineers and scientists to deal with

1.2. Least squares data-fitting 3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
13

14

15

16

17

18

19

20

21

base

S
ur

fa
ce

 a
re

a

Surface area for square−based tank

Figure 1.1. Tank surface area as a function of x2.

optimization problems which do not have an analytical solution. Such
problems occur in many situations, for example, finding a formula which
gives the closest match to some experimental data, choosing the shortest
route which avoids a number of obstacles, or devising a maintenance
schedule which gives the least operating cost. Such case studies are used
later in the book as a basis for the practical comparison of different
optimization methods.

Exercises
1. What happens to the surface area (1.1.5) as x2 → 0? What is the

minimum value of S if x2 lies in the range −1 < x2 < 0?
2. If x2 = x3, reformulate (1.1.2) as an unconstrained minimization

problem involving x1 only. Using the value V ∗ = 5, plot a graph of
the objective function in the range 1 ≤ x1 ≤ 3. Hence deduce the
minimum surface area. What happens to the surface area as x1 → 0?

3. Formulate the problem of finding the maximum volume that can be
enclosed by a rectangular open tank with a fixed surface area and
then estimate a solution when the base of the tank is square and the
fixed surface area is 8. (Note that maximizing a function F (x) is
equivalent to minimizing −F (x).)

1.2. Least squares data-fitting

Suppose that a laboratory experiment produces a record of measured
temperatures, θ, (◦C) against time t (minutes), as in Table 1.1. Suppose
also that we believe the underlying relationship between θ and t is linear,
of the form θ = at, for some unknown coefficient a. The data points

4 1. Introducing Optimization

Measurement i 1 2 3 4

Time ti 1.0 2.0 3.0 4.0

Temperature θi 2.3 5.1 7.2 9.5

Table 1.1. Experimental data for temperature versus time.

do not, in fact, lie on a straight line (perhaps because of experimental
errors). Hence, out of all the straight lines which pass near the data
points, we wish to find the one which gives the best approximation, in
the sense that the discrepancies between the data and the straight line
model are as small as possible.

Figure 1.2 shows the errors ati − θi as vertical lines PP ′.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
1

2

3

4

5

6

7

8

9

10

time (minutes)

te
m

pe
ra

tu
re

 d
eg

re
es

 C

Data points and model line showing vertical displacement errors

P’

P

Figure 1.2. Data points and model line showing vertical errors.

A common way to find the best approximation is to choose a to mini-
mize the sum of squares of these vertical errors; that is, we want a to
solve the problem

Minimize F (a) =
4∑

i=1

(ati − θi)2. (1.2.1)

At a minimum of F , the first derivative F ′(a) is zero. Hence the optimum
value of a satisfies

dF

da
= 2

4∑

i=1

(ati − θi)ti = 0. (1.2.2)

This leads to

a

4∑

i=1

t2i =
4∑

i=1

θiti.

1.2. Least squares data-fitting 5

Substituting for ti and θi from Table 1.1 we get 30a = 72.1 and so
a ≈ 2.4033.

This simple problem is an example of the least squares approach to
approximating a set of data points by a model function. The approach
can be extended (as shown in later chapters) to models with more than
one unknown coefficient.

The data-fitting problem we have just solved is extremely easy because
F is a quadratic function of the variable a. This means that equation
(1.2.2) is linear and yields a unique answer. We now show that some
optimization problems are not so straightforward by considering another
way to minimize discrepancies between the data and the model. Rather
than dealing with just the vertical error at a data point, we take account
of the total displacement given by the perpendicular distance of (ti, θi)
from the line θ = at as shown in Figure 1.3.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
1

2

3

4

5

6

7

8

9

10

time (minutes)

te
m

pe
ra

tu
re

 d
eg

re
es

 C

Data points and model line showing total displacement errors

P

P’

Figure 1.3. Data points and model line showing total displacement errors.

We can determine the perpendicular distance between point and line
as follows. A typical point, P ′, on the line θ = at has coordinates (t, at)
and the slope of the line joining P ′ to the data point P with coordinates
(ti, θi) is

m =
at − θi

t − ti
.

We want to find the value of t which makes m = −a−1 because the line
PP ′ will then be perpendicular to θ = at and P ′ will be the model point
which is closest to the data point P . The value of t at the footpoint P ′

is found by solving
−a−1(t − ti) = at − θi.

6 1. Introducing Optimization

Hence P ′ is defined by

t = τi =
a−1ti + θi

a + a−1
=

ti + aθi

a2 + 1
. (1.2.3)

The total displacement PP ′ is then
√

(ti − τi)2 + (θi − aτi)2 and to get
the optimum straight line θ = at we must find a by solving

Minimize F̂ (a) =
8∑

i=1

φ2
i (1.2.4)

where φi = (ti − τi) and φi+4 = (θi − aτi) for i = 1, . . . , 4. (1.2.5)

Of course, τ1, . . . , τ4 and φ1, . . . , φ8 are functions of a. If we substitute
the known values of ti and θi we see that (1.2.4) is a more complicated
expression than the corresponding function (1.2.1) in the vertical least-
squares problem. From (1.2.3) we get

τ1 =
1 + 2.3a
a2 + 1

; τ2 =
2 + 5.1a
a2 + 1

; τ3 =
3 + 7.2a
a2 + 1

; τ4 =
4 + 9.5a
a2 + 1

.

Hence

φ1 =
(

1 − 1 + 2.3a
a2 + 1

)
, φ5 =

(
2.3 − a + 2.3a2

a2 + 1

)

with similar expressions for the remaining φi.
It is now clear that the function (1.2.4) is not quadratic and its first

derivative is not linear. Hence, forming and solving the equation F̂ ′(a) =
0 is more difficult than for the vertical least-squares problem. In practice,
we would normally minimize a function such as F̂ (a) by using iterative
methods of the kind described in the next chapter. More information
about total least squares and the footpoint problem is given in [27].

We can, of course, estimate the minimum of F̂ (a) by plotting a graph,
as shown in Figure 1.4. In this case, the best straight line approximation
in the total least squares sense is very similar to the approximation based
on vertical least squares with slope a ≈ 2.4.

Exercises
1. Using vertical displacements, find the straight line y = mx to give a

least-squares approximation to the data points (3, 7), (4, 8), (6, 11).
2. Show that the footpoint P ′ could have been found by putting τi = tf

where t = tf solves the problem

Minimize (ti − t)2 + (θi − at)2.

1.3. A routing problem 7

2.342.34 2.36 2.38 2.4 2.42 2.44 2.46
0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

a

F
(a)

Plot of objective function for total least squares problem

Figure 1.4. Plot of F̂ (a) the total least squares error function.

3. Use the data in the worked example to find expressions for φ2, . . . , φ4

and φ6, . . . , φ8; hence complete the expression for F̂ (a) in (1.2.4) and
obtain the expression for F̂ ′(a). Plot a graph to estimate the solution
of F̂ ′(a) = 0.

4. Consider the data in Table 1.1 and suppose θ4 is changed to 14.2.
Calculate a model line θ = at using both vertical and total least
squares. Comment on the difference between the two solutions.

1.3. A routing problem

Suppose a robot vehicle starts at the origin and is required to proceed
to a point P , as shown in Figure 1.5. It must move initially along the
x-axis and then turn towards P at some point Q. The circle represents a
“no-go” area which the vehicle must avoid. The point Q is to be chosen
to minimize a combination of the total distance travelled and the length
of the route that lies within the circle.

If the line from Q to P cuts the circle at R and S then we can define
the optimum route as the one which minimizes

F = distance OQ + distance QP + ρ(distance RS)

where ρ is a positive constant. This form of function penalizes the por-
tion of the route inside the no-go region. If ρ is large we expect little
or none of the optimum route to pass through the circle. On the other
hand, as ρ → 0, the optimum route will come closer to the straight line
OP .

8 1. Introducing Optimization

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P

Q

R

S

Figure 1.5. A routing problem.

If P has coordinates (xp, yp) and if x is the (unknown) distance OQ
then the total length of the route is

d(x) = x +
√

(x − xp)2 + y2
p. (1.3.1)

(We are assuming that P and the circle are in the positive quadrant
and hence that x is positive.) We now need to determine the points of
intersection (if any) of line QP and the circle. We assume that P is
outside the no-go area and also that the circle does not cut the x-axis;
it follows that the line segment QP will either cut the circle twice or not
at all. The coordinates of any point on the line between Q and P are

(x + λ(xp − x), λyp) where 0 ≤ λ ≤ 1.

If the no-go area has centre (xc, yc) and radius r then points of inter-
section with QP occur when λ satisfies

(x + λ(xp − x) − xc)2 + (λyp − yc)2 − r2 = 0.

This simplifies to αλ2 + βλ + γ = 0, where the coefficients are given by

α = (x − xp)2 + y2
p, β = 2[(xp − x)(x − xc) − ypyc] (1.3.2)

and γ = (x − xc)2 + y2
c − r2. (1.3.3)

We let δ = β2 − 4αγ. If δ ≤ 0 there are no points of intersection with
the circle and so the distance RS is zero. On the other hand, if δ > 0
the intersection points are given by

λ1 =
−β +

√
δ

2α
, λ2 =

−β −
√

δ

2α
. (1.3.4)

1.3. A routing problem 9

The distance RS is then given by |λ1 −λ2| × (distance QP). Hence the
optimum route is obtained by minimizing

F (x) = d(x) + ρv(x) (1.3.5)

where d(x) is given by (1.3.1) and

v(x) = |λ1 − λ2|
√

(x − xp)2 + y2
p. (1.3.6)

Note that α, β and γ are functions of x because of (1.3.2) and (1.3.3).
Hence (1.3.4) implies that λ1 and λ2 also depend on x. It is possible –
but not trivial – to differentiate F (x) but it will not be possible to find
an analytical solution to the equation F ′(x) = 0.

If we take the target point (xp, yp) as (5,4) and define the no-go region
by xc = yc = 2, r = 1 then we can plot the function (1.3.5), as shown
in Figure 1.6. It is clear that the optimum value of x is about 1.62. The
solution path leaves the x-axis at a point Q such that PQ is a tangent
to the circular boundary of the no-go region.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

x

F
(x

)

Cost function for the routing problem

Figure 1.6. Nonsmooth cost function for the routing problem.

Figure 1.6 shows that the minimum corresponds to a “kink” in F (x);
that is, the slope of (1.3.5) is not zero at the optimum but instead has a
discontinuity. This is due to the presence of the square root in (1.3.6).
The function (1.3.5) is said to be nonsmooth.

Most of the optimization methods described in this book are intended
for use with smooth (i.e., continuously differentiable) functions. We can
formulate the routing problem in terms of a function which is smooth if
we choose to minimize

Φ(x) = d(x) + ρv(x)3 (1.3.7)

10 1. Introducing Optimization

Figure 1.7. Smooth cost function for the routing problem.

whose graph is given in Figure 1.7 (for ρ = 1). The minimum of (1.3.7)
occurs at approximately the same place as that of the nonsmooth func-
tion (1.3.5). The use of functions such as (1.3.7) in some real-life routing
problems is described in [65, 9].

Exercises
1. Calculate expressions for the first derivatives of (1.3.1) and (1.3.6).
2. Using the sample data xp = 5, yp = 4, xc = yc = 2, r = 1, plot

graphs to determine the minima of (1.3.5) and (1.3.7) when ρ =
0.5, 0.05 and 0.005. Comment on any differences you observe.

3. Use the data xp = 4, yp = 8, xc = 4, yc = 2, r = 2 to plot graphs of
(1.3.5) and (1.3.7) with ρ = 1 in the range 0 ≤ x ≤ 10. Comment on
what you observe.

