
Preface

The seventh Distributed and Parallel Systems conference (DAPSYS) is organized
by MTA SZTAKI Computer and Automation Research Institute in Debrecen. The
series of DAPSYS events started as a small regional meeting early in the nineties,
and since then it evolved a lot and became an acknowledged international scien-
tific event. The scope of the event has changed as well during the years following
the new trends in technology. The first event was dedicated to transputers whereas
in recent years, it is tagged with cluster and grid computing.

This year the whole conference was devoted to grid computing. Since desktop grid
systems were underrepresented at other conferences that deal with grid computing
we decided to give a special emphasis on desktop grids. According to this, David
Anderson was invited to give a keynote talk on BOINC systems, a large session
was organized with talks on various aspects of desktop grid systems and finally,
the EDGeS User and Industry Forum had also got a special session where talks
and discussions addressed the problem of how to integrate service grids and desk-
top grids.

The papers presented in this volume give a good overview of recent advances in
various aspects of grid computing. The proceedings is composed of five parts ac-
cording to the major topics of the conference - albeit they cover a much broader
range in this field. Part I is devoted to various aspects of desktop grid computing.
Several papers discuss how to integrate desktop grids with existing service grids
like the EGEE grid. One of the most important aspects of grid computing is how
to port applications to the grid. Part II shows several case studies in the field of
medical grid applications, climate modelling and digital library management. Grid
resource management and scheduling is still an important issue in large production
grid systems. Part III shows several new research directions in this field. Grid pro-
gramming environments and particularly organization of grid workflow systems
represent a major issue for the grid users. Part IV shows two systems (Kepler and
P-GRADE) how to handle security issues and database resources in such work-
flow systems. Part V contains papers dealing with other important aspects of grid
computing like QoS capabilities of grids, check-pointing in grids, batch query sys-
tems and finally a reputation-policy based trust model for grid resource selection.

viii Preface

There were three invited talks at the conference delivered by David Anderson,
Denis Caromel and Márk Jelasity. David Anderson was talking on the future of
volunteer desktop grid computing that was now aimed towards the exa-scale per-
formance target. Denis Caromel gave presentation on the ProActive Parallel Suite,
a GRID Java library for parallel, distributed, and concurrent computing, also fea-
turing mobility and security in a uniform framework. ProActive aims at simplify-
ing the programming of applications that are distributed on Local Area Network
(LAN), on cluster of workstations, or on the grid. ProActive promotes a strong
NoC approach, Network On Ship, to cope seamlessly with both distributed and
shared-memory multi-core machines. Mark Jelasity explained how to combine
P2P protocols into more complex, but still self-organizing and decentralized, pro-
tocols and frameworks. He also illustrated this compositional approach via an ex-
ample application: heuristic function optimization, that was a common Grid appli-
cation for solving very hard combinatorial or real valued optimization problems.

We would like to thank the members of the Program Committee and the additional
reviewers for their work in refereeing the submitted papers and ensuring the high
quality of DAPSYS 2008. Special thanks to those who helped us beyond their du-
ties. We are grateful to Susan Lagerstrom-Fife and her assistant, Sharon Palleschi
at Springer for their endless patience and valuable support in producing this vol-
ume. The conference could have never been realized without the devoted work of
the local organizers: János Végh, Piroska Biró and Kornél Kovács. The proceed-
ings was compiled in endless hours of checking every details by the tireless Eva
Feuer. Special thanks to the webmasters Károly Göschl and Attila Csaba Marosi
and Philippe Rigaux for providing the MyReview system.

Péter Kacsuk Róbert Lovas Zsolt Németh

Bridging the Data Management Gap Between
Service and Desktop Grids

Ian Kelley and Ian Taylor

Abstract Volunteer computing platforms have become a popular means of pro-
viding vast amounts of processing power to scientific applications through the use
of personal home computers. To date, with little exception, these systems have fo-
cused solely on exploiting idle CPU cycles and have yet to take full advantage of
other available resources such as powerful video card processors, hard disk stor-
age capacities, and high-speed network connections. As part of the EDGeS project,
we are working to expand this narrow scope to also utilize available network and
storage capabilities. In this paper we outline the justifications for this approach and
introduce how decentralized P2P networks are being built in the project to distribute
scientific data currently on the Grid.

1 Introduction

For a number of years, volunteer computing environments have been extremely suc-
cessful in leveraging the idle resources of personal computers. This has primarily
been orchestrated through a donation system whereby private individuals allow their
otherwise idle computers to be used by a third-party application for processing data.
To date, major volunteer computing systems, such as the Berkeley Open Infrastruc-
ture for Network Computing (BOINC) [1][2], have focused solely on harnessing
available CPU processing power, and have yet to take full advantage of the other
available resource capabilities. With the sharp increases in consumer networking
speeds and storage capacities over the past few years, utilizing idle network band-
width to distribute data has become both a possible and attractive opportunity for
volunteer computing.

Ian Kelley and Ian Taylor
School of Computer Science, Cardiff University, Cardiff, United Kingdom
e-mail: {I.R.Kelley,Ian.J.Taylor}@cs.cardiff.ac.uk

14 Ian Kelley and Ian Taylor

Enabling Desktop Grids for e-Science (EDGeS) [3][4] is an EU FP7 project that
is setting up infrastructure and building software to enable the integration of Service
Grids, or traditional Grid environments [5] generally composed of clusters and su-
percomputers, and Desktop Grid [1][6] systems, such as the popular volunteer com-
puting project BOINC. When moving jobs between these two environments, and
specifically when transferring a job from a Service Grid to a Desktop Grid, there is
a need for some form of data management scheme to serve the files to participating
Desktop Grid worker nodes.

One way to offload the central network needs that are created in this process
and limit exposure to foreign hosts is to use a brokered data distribution mecha-
nism. These brokers would act as a buffer between the two systems, receiving data
from local hosts and managing the wider distribution challenges. Using peer-to-peer
(P2P) techniques to implement such a system could be seen as a viable alternative to
centralized data distribution. Not only would this reduce the Service Grid resources
needed to integrate with a Desktop Grid, it could also mitigate the potential risk in-
volved in transferring jobs to the Desktop Grid. By providing an intermediary layer,
one is able to limit the number of peers to which a Service Grid node must dis-
tribute data. This can be further refined by applying project-based security criteria
to govern the membership composition of the data brokers. For the Desktop Grid
network, a P2P data distribution system would also allow current projects to take
full advantage of client-side network and storage capabilities, enabling the explo-
ration of new types of data-intensive application scenarios, ones that are currently
overly prohibitive given their large data transfer needs.

There are many ways the aforementioned functionality could be implemented,
ranging from BitTorrent-style networks [7][8], where there is a central tracker and
all participants share relatively equal loads, to more customizable networks that al-
low for clients and service providers to be grouped. Custom-built solutions would
have the advantage of facilitating different network topologies and data distribu-
tion algorithms. This allows for tailoring the network for the needs of an individual
application, albeit with the disadvantage of increased development effort and code
maintenance. In the case of BOINC, each of these approaches has its own distinct
advantages and disadvantages, as explored in [9], especially when one takes into
consideration the target user-community and their needs. Through the course of
the paper we will show the data distribution work being undertaken in the EDGeS
project as it advances towards interoperability between Service Grids and Desktop
Grids. In particular, we will explore some of the requirements and varying scenarios
that can appear in typical BOINC projects, outline the relative benefits of applying
these new techniques, and give an overview of the data distribution software we are
building for EDGeS.

The paper is organized as follows: section 2 gives background on the tools and
related technologies involved; section 3 discusses EDGeS’ data needs; section 4
gives an introduction of BOINC-specific requirements; section 5 overviews select
design issues when applying P2P technologies to volunteer computing; section 6
proposes our decentralized data center approach; and section 7 concludes.

Bridging the Data Management Gap Between Service and Desktop Grids 15

2 Background and related work

BOINC is currently the most widespread and successful volunteer computing Desk-
top Grid application ever, with over 50 distinct projects1 and almost three million
total computers from over 200 countries registered to date2. For data distribution,
BOINC projects generally use a single centralized server or a set of mirrors. This
centralized architecture, although very effective, incurs additional costs and can be
a potential bottleneck when tasks share input files or the central server has limited
bandwidth. Increasing the number of mirrors to accommodate increased loads puts
extra administrative burden on the project organiser and can prove very time con-
suming to manage.

Popular and proven P2P technologies [10][11][12] such as BitTorrent, or com-
mercial solutions like Amazon’s S33 or Google’s GFS [13], could be fairly effec-
tively applied to provide for the data needs of BOINC, at least as they relate strictly
to distribution. However, in the case of commercial products, there is a direct mon-
etary cost involved, and for P2P systems like BitTorrent, the facility to secure or
limit who is able to receive, cache, or propagate different pieces of information is
generally limited or nonexistent. For example, BitTorrent, like many other P2P sys-
tems, has focused on ensuring conventional file-sharing features, such as efficient
transfers, equal sharing and file integrity.

Desktop Grid environments have different requirements to general file-sharing
P2P communities because security can become more of a complex issue than solely
guaranteeing data validity (see section 5.1). In Desktop Grids, it can be a requisite
that only certain amounts of data are shared with an individual peer. Communities
can also be reluctant to introduce a system that would have peers directly sharing
with one another, as it might have the potential (or perceived potential) to have
security implications for clients as ports are opened for outside connectivity. It is
therefore important not only for data integrity and reliability to be ensured, but also
to have available safeguards that can limit peer nodes’ exposure to malicious attacks.
It is these types of requirements that has prompted our work to create a custom P2P
network for data distribution that provides both client and server safeguards and
stricter controls for project administrators as to what network participants receive
and distribute data.

3 EDGeS’ data needs

In the EDGeS project a job can be transferred from a Service Grid to a Desktop
Grid. When this occurs, there is a need for some mechanism that either moves the

1 There are over 50 known BOINC projects. At the time of this writing, the BOINC website has a
list of 25 in which they have been in direct contact with: http://boinc.berkeley.edu/projects.php
2 http://boincstats.com
3 http://aws.amazon.com/s3

16 Ian Kelley and Ian Taylor

job’s input files directly to the Desktop Grid workers, or exposes them on the Service
Grid host for Desktop Grid peers to directly access and download.

At first glance, perhaps the easiest solution to enable access to the needed files
would be to simply expose the data directly from the Service Grid file system. Such
an approach would closely mimic the current functionality found in most Desktop
Grid projects, where data is distributed to all participants from a central machine
or through a set of known and static mirrors. This solution, although seemingly
attractive in its simplicity, has many limiting drawbacks. For example, the Service
Grid machine where the data is hosted might not be able to effectively serve the
numerous peers making requests due to bandwidth limitations. Where previously
the data was likely to be stored locally, allowing many processors access to it on
a shared file system, now each peer which wishes to perform work must download
an individual copy of the data to be analyzed. This can very quickly lead to a large
drain on network bandwidth, especially in the case of larger files that need to be
distributed to multiple workers.

In addition to raw resource usage concerns, there might also be security infras-
tructure and policies that would prevent access to local files from foreign and un-
trusted hosts. Anonymous access is generally not an issue for most BOINC projects,
as they are able to have dedicated and network isolated data servers. This could,
however, quickly become problematic, both technically and politically, if one tried
to somehow bootstrap a BOINC data server onto a cluster or supercomputer to en-
able access to users’ files. The situation is further complicated by the often complex
software dependencies in existing Grid systems that make deploying yet another
Grid service either not possible or at the very least unwelcome.

EDGeS requires a system that can adapt to varying input file sizes and replication
factors without unduly stressing or exposing the Service Grid layer. This require-
ment will become increasing relevant as the EDGeS project moves beyond its test
servers, which we can manage and configure, and begins connecting a wide range
of EGEE [14] resources to different Desktop Grid systems. In this scenario, each of
these federated Service Grid nodes will have different security infrastructures, in-
ternal policies, and network connectivity traits that would essentially render useless
any system that required them to install additional software or adapt security policy.
By pushing data to a P2P environment and offloading data distribution, Service Grid
nodes could transfer the data distribution responsibilities, making the integration of
Service and Desktop Grids more accessible.

4 BOINC requirements

As briefly mentioned in section 2, there are several dozen BOINC projects in opera-
tion. Every one of these projects shares a common thread with one another; each has
a highly parallel problem able to be split into thousands of independent tasks that
can be asynchronously processed. It is these properties that allow BOINC projects
to exploit a Desktop Grid environment and utilize the numerous volunteer comput-

Bridging the Data Management Gap Between Service and Desktop Grids 17

ing resources that are made available in the process. What isn’t apparent, however,
is that each of these projects can have vastly different levels of data intensity. This
can manifest itself in the form of varying data input and output file sizes, changing
replication facts, and different throughput requirements.

Given the dissimilar requirements for BOINC projects, there are many consider-
ations one must take when thinking of applying a P2P system to the BOINC mid-
dleware. Even if a list of all the possible data distribution-related aspects were com-
plied, various communities and application groups would have different priority
rankings as to which are the most important for their individual circumstances (e.g.,
security vs. usability). The list we present here does not delve into the details of dif-
ferent project’s data requirements, rather, it represents a few of the cross-cutting is-
sues that are generally present in any BOINC-based project. Additional example ar-
eas to explore, which are not covered here, include topics such as data access speed,
encryption, support for large data sets, and fuzzy query matching when searching
for data. However, for the interests of simplicity and because the previously men-
tioned areas are currently being investigated, we have limited the scope explored
here to the four issues listed below, which we believe to be key areas one must ad-
dress when considering a P2P system that will be useful to the BOINC community
as a whole.

Firewall and Router Configuration — Depending on an individual project’s con-
figuration, firewall and router issues could be problematic, with a general tradeoff
between “punching holes” in clients’ firewalls to be able to exploit their bandwidth
and the security concerns and extra software development or configuration this de-
mands. In volunteer computing projects it is especially important to provide a high
level of security to participants. If NATs are bypassed, they need to be done in a
secure and transparent (to the end-user) manner.

Malicious Users — The issue of which nodes are able to propagate data on the net-
work, and therefore which ones will have the ability to inflict damage, will largely
depend upon the individual policies of each hosting project. In the most restric-
tive case, only trusted and verified participants would be certified to propagate data.
In looser security configurations, which allow for the exploitation of a larger pool
of resources, security would have to be more flexible. Regardless of the decision,
data signing can help to prevent any analysis of corrupted data. This makes net-
work flooding the major concern, however, this can be limited relatively easily by
implementing a ranking system to report misbehaving data providers.

Exploiting Network Topology — The ability to exploit network topology such as
LANs and WAN proximity is a useful way to further limit the amount of necessary
bandwidth to serve project files. The trade-off is generally that the looser the system
becomes in its ability to adopt and utilize network proximity (such as providing
caching nodes on LANs) the more exposed the network is to abuse and potential
misconfiguration.

Integration with BOINC — It is important for any software that wishes to pro-
vide an added value to the larger BOINC community to have little or no impact on

18 Ian Kelley and Ian Taylor

current operating procedures. Requiring external libraries or other similar depen-
dencies could prove to be problematic and limit widespread uptake. The BOINC
client is currently written in C++ and any successful add-on would most likely have
to adapt to this requirement.

A more in-depth discussion of the above concerns and how they relate to the data
distribution software being designed in EDGeS, along with a comparison to BitTor-
rent is discussed in [9].

5 Design considerations

Beyond the issues above, there are a number of general factors that become impor-
tant when designing and deploying a data serving network across large-scale volun-
teer networks such as those in the BOINC community. For example, the size of the
network can vary dramatically between the extremely popular BOINC projects and
their less successful counterparts. Aside from sheer network size, different projects
will have varying data input and output file sizes, with some projects having a
peer transfer over a gigabyte per month while others require only a fraction of this
amount. For each project within BOINC, these factors are slightly different, and the
optimal network setup for one project might not be very efficient for another. These
differences make designing an optimal network for BOINC as a whole a challenging
task. Yet as shown in [15], the application of a P2P network layer would allow many
additional and unused network and storage resources to be leveraged by BOINC
projects without sacrificing necessary processing power.

In section 6, we introduce the data distribution software we are in the beginning
phases of developing. However, before talking of the implementation and design
specifics, it is useful to further expand upon the requirements listed in section 4 and
discuss some of the cross-cutting security issues shared between BOINC projects.
This will help to set the stage for the proposed architecture.

5.1 Security aspects

When building a P2P network for volunteer computing, there are a number of se-
curity requirements beyond the traditional notion of simply ensuring file integrity.
Due to the volatile and insecure nature of BOINC networks, a product of their open
participation policies, there can be reason to enforce limitations on which entities
are allowed to distribute and cache data. When opening the data distribution chan-
nels to public participation, security can become a concern. In this context, the area
of security can be roughly split into the following two distinct realms: user security
and data security.

Bridging the Data Management Gap Between Service and Desktop Grids 19

User security refers to the ability to protect the “volunteers” in the network from
any harm that could possibility be inflicted on their machine by another network
participant. This is a very important issue when one is within the realm of volun-
teer computing, as the resources are typically donated home computers that likely
contain volunteers’ important personal information and documents. In the case of
a security breech in which these volunteer resources were compromised by some
malicious entity, the potentially fallout could be enormous. Fear of a harsh backlash
has been one of the limiting factors to the incorporation of standard P2P technolo-
gies into the BOINC middleware. Even in the event where no actual security breech
takes place, requiring peers to share data with one another via P2P protocols, such
as BitTorrent, which enforces sharing, could have the down-side of alienating po-
tential volunteers. This could result from any number of factors, ranging from a
volunteer’s unwillingness to donate network resources (perhaps due to bandwidth
requirements from other computers on the same network or a metered data connec-
tion) to misconceived public perception that associates peer-to-peer technological
implementations with some of the more controversial uses of the technology.

It is necessary to be cognizant of the fact that the BOINC community relies upon
volunteers to function, and any “peer-to-peer” data distribution scheme that is imple-
mented must allow for users to opt-out if they do not wish to share their bandwidth
or storage capacity. Even in the instance where users have opted to share data, a gen-
erally high level of consideration has to be given to ensure that their computers are
adequately protected from attacks. In current BOINC environments this is solved
by having a centralized, and presumably non-hostile, authority that distributes both
executables and data. Although even in this scenario, there are still chances that
the servers could be compromised, or that the executables distributed have inherent
security flaws, this is generally a very minimal risk and would be a consequence
of actions of the application stakeholders, not third-party unknown distributers. It
is these considerations and requirements that make applying P2P protocols such as
BitTorrent, which enforce tit-for-tat sharing, problematic.

Data security can be a complex matter. First, there is the issue of file integrity,
which we will not go into in detail here, mainly because there are many well-known
and suitable techniques to validate the authenticity of files, such as hashing and sign-
ing. More interesting and novel is investigating security schemes for which to select
and distribute data-sets to peers. When looking at this issue in more detail, it can
further be broken down into two broad subject areas: authentication and authoriza-
tion.

Authentication is the verification process by which an entity identifies itself to oth-
ers and gives evidence to its validity. Public key infrastructure (PKI) [16] is a proven
tool that can be fairly effectively applied for performing peer identity authentication.
In the simplest case, this can be done by having a central authority (i.e., the BOINC
manager) sign and issue either full or proxy certificates to those it deems trustworthy
enough to distribute data on its behalf. When another peer on the network contacts
this “trusted” entity, it can use the public key from the centralized BOINC manager
to verify the authenticity of the trusted peer. This process can likewise be performed

20 Ian Kelley and Ian Taylor

in reverse, provided clients are also issued certificates, as a means for the data dis-
tributers to validate the identity of the clients and verify they have the proper creden-
tials to retrieve data. The process of using certificates for mutual authentication can
be a fairly effective solution that would provide individual peers with certainty that
the host they are retrieving data from has been delegated the proper authority and
visa versa. More interesting use-cases that provide for interaction between multiple
virtual organizations (VOs) and hierarchal delegation (e.g., certificate-chaining and
cross-certification agreements) can be derived from this simple arrangement, but are
beyond the scope of this paper [17][18].

Authorization is a much more interesting question than authorization. This is pri-
marily because there are standardized techniques for authentication that can be
widely applied to many different applications with little or no modification. Au-
thorization conversely is application-specific, differing with each individual appli-
cation’s unique needs and authority structures. Although there are tools to help de-
fine authorization policies and enforce them [19], the policies themselves will be
different with each application.

At the most basic level of authorizing select peers to cache and distribute data as
they see fit, authorization is very simple and should not prove problematic. For ex-
ample, it is possible to issue special certificates to the data cachers (as mentioned in
the authentication section) that allows them to validate as data distributors. However,
when more dynamic and customizable queries are needed, such as finer-grained
control over what data can be propagated by individual data cachers, the issue of
authorization becomes more complex. When this occurs, the issue requires more
due diligence, and any scheme that goes beyond a simple yes/no query must be cus-
tomized specifically to the target environment, in this case, not only BOINC, but
potentially each target community.

6 Proposed architecture: ADICS

The peer-to-peer Architecture for Data-Intensive Cycle Sharing (ADICS) [20] is
an effort to build a P2P software layer that can be used by scientific applications,
specifically those engaged in volunteer computing, to distribute, manage, and main-
tain their data. Therefore, the core infrastructure of ADICS is being built with the
needs of a scientific user and application in mind. As a software development pack-
age being supported by the EDGeS project, ADICS is taking very close consider-
ation of the issues raised in section 3. It should be noted, however, that the core
infrastructure is being architected to be fairly application agnostic and should there-
fore be applicable to other applications that want to distribute data in a peer-to-peer
environment.

Based upon the previously mentioned security and user requirements, the net-
work we have chosen to implement at this time is an architecture that has three
distinct entities: workers, data centers, and data providers. In this 3-tiered, bridged

Bridging the Data Management Gap Between Service and Desktop Grids 21

architecture, the data provider pushes files to the data center overlay network, which
self-organizes using P2P techniques to propagate data amongst itself. This data cen-
ter layer then serves pull requests for data from the workers. Figure 1 gives a gen-
eralized overview of how the different components in ADICS relate to one another
after the initial discovery phase. During discovery, a worker node would send a
request to known access points in the data center overlay network and retrieve an
updated list of connection points from which it can harvest data. If this process fails,
likely due to a stale list of hosts, the worker node is able to contact the static data
provider to request a new data center reference. Subsequent requests for data are

Fig. 1 ADICS schematic of the organization of the dis-
tributed entities that shows a data provider serving data
to the caching layer, which is, in turn, distributed to the
worker nodes.

made to the data center layer, and
the worker is then able to contact
one or more centers for download-
ing.

The reasoning behind this is
to allow for only a subset of
peers that match certain perfor-
mance and security thresholds to
share data with the rest of the net-
work. By implementing an opt-
in and (for the moment centrally)
validated system for data sharing,
many of the security considera-
tions (see sections 4 and 5) such as
router configuration, automatically
opening ports, and rouge hosts
providing data can be marginal-
ized. In this scenario, the data cen-

ter subset of peers on the network act as “true peers” in the sense that that both send
and receive on an equal standing with their data center neighbors, however, they
act solely as servers to the workers. One benefit of this approach is that, workers
continue to operate relatively unchanged from their previous BOINC working con-
ditions, with the relatively minor addition of a distributed data lookup.

Secure data centers are the name we have given members of the super-peer over-
lay that are engaged in data sharing. The secure aspects becomes apparent when
constraints are later put upon the registration phase, thereby restricting the set of
peers that are allowed to propagate data. Policy decisions as to which participants,
if any, are allowed to host and redistribute data would be made by each individual
BOINC project, with ADICS providing the base infrastructure to aide the process as
well as a default implementation. Once the general tools are in place, more complex
scenarios can be explored that go beyond simply restricting data center member-
ship. For example, constraints could be introduced to govern the relative sensitivity
of data and retention policies. Adding these new types of functionality would al-
low for more advanced use-cases, albeit with the additional costs of software and
network complexity.

22 Ian Kelley and Ian Taylor

Based upon the preliminary results of [21] and the arguments presented here, it
is our belief that decentralized data centers can prove to be both valid and useful
solutions to distributing data in Desktop Grid environments. There is, however, a
tradeoff between functionality and complexity that needs to be adequately addressed
and balanced if such technologies are to be adopted by production environments
such as BOINC.

6.1 Prototype development

Initial development in ADICS was based upon the Peer-to-Peer Simplified (P2PS)
middleware [22], a generic P2P infrastructure and JXTA [23]. Although both P2PS
and JXTA provide generic tools for building super-peer networks, they proved to
be limiting either in their ability to scale or to form role-based groups where the
developer can explicitly form the topology and control message relaying without
major modifications. Specifically, P2PS and JXTA have been abandoned because of
two main reasons. First, neither allow the fine-grained access controls needed for
the data layer. Second, there are no caching policies in either system for data rather
than metadata (adverts or queries). Therefore, the data layer would essentially have
to be built from scratch, meaning that the benefits of either system are reduced to
providing their respective P2P abstractions. It was therefore decided that the bene-
fits of using these systems were far outweighed by the drawbacks of the additional
dependencies they placed upon the end-user, and their increased complexity.

The current focus is on implementing a specific system that fits into the current
BOINC messaging layer, yet is generic enough to be applied in a number of dif-
ferent ways. To this end, we are developing a prototype that will help to define the
entities and evolve the design of the network and its messages. This will allow us
to validate the selected topology and show that it is useful to solve the security and
data propagation issues introduced earlier in this paper.

Figure 2 gives a general overview of the different network interactions that a
worker has in the current prototype. In order to enable the prototype to function in-
dependently of BOINC and speed development, we have implemented a very basic
work generation entity (the Network Manager) that generates work units to fulfill
client requests and begin the data retrieval cycle. It should be noted that in the pro-
totype available at the time of this writing, the data center layer is fed by the central
repository, and does not self-propigate data amongst itself.

• (1) A worker requests a WorkUnit from a known Network Manager server.
(1b) The worker receives the response and extracts a list of DataQueries, which
contain information on how to identify the job’s data dependencies. Currently
this is a unique ID, however, it could also be a more sophisticated query.

• (2) The worker contacts a Data Lookup Service, and provides it with one or more
DataQueries. Currently this service is known and centralized, however, there are
plans to decentralize it and provide it as a service on the Data Center layer.
(2b) The Data Lookup Service attempts to match each DataQuery to a real file

Bridging the Data Management Gap Between Service and Desktop Grids 23

mapping and, if successful, returns a DataPointer for each DataQuery. The Dat-
aPointer contains a list of Data Centers that are believed to have he file, as well
as any associated metadata about the file that is available.

• (3) For each DataPointer, the worker extracts the location of one or more Data
Centers that are believed to host the file. The worker then directly connects to
one or more (currently one) Data Center for retrieval.
(3b) The Data Center retrieves the file from its local disk space and sends it to
the worker.

In its current implementation, the prototype is very similar in nature to how
early Napster worked, with a central metadata server keeping track of where

Fig. 2 Diagram showing the basic flow of messages
from the worker to the various other network entities.

data is located. The Data Lookup
Service is also reminiscent of a
BitTorrent tracker, which performs
essentially the same functions on
behalf of a single file.

One of the main differences
between these previous systems
and the described here data cen-
ter scheme is the potential for the
addition of security criteria which
restricts the data service layer to
a subset of the available peers.
The next step in ADICS develop-
ment is to decentralize the data
lookup facility through implement
self-organizing traits on the data
center layer, and to add security
constraints on the propagation and
lookup of data. At the time of this
writing, this is currently a work-in-
progress.

One of the clear issues raised in
section 4 was that of integration with the existing BOINC software stack. ADICS is
currently being designed and built in Java, which naturally creates a client depen-
dency on a JRE. As mentioned in section 4, this can pose a problem when trying to
later integrate ADICS into the BOINC client layer. Two possible solutions to this
problem are: (1) add a JRE to the required software to run BOINC, which could
severely limit adoption of ADICS; and, (2) create a C++ implementation of ADICS
for workers that provides download capabilities. This would allow for the core dis-
covery and data propagation layer to be left in Java. By doing so, we would limit
the JRE requirement to nodes that wish to operate as data centers. Current design
and plans for ADICS are pursuing option 1, in order to build a working system as
quickly as possible. The necessity of option 2 will be reassessed later based upon
feedback from the BOINC user-community.

24 Ian Kelley and Ian Taylor

It should be noted that the software discussed here is currently under heavy de-
velopment and is expected to evolve as new challenges are encountered. As part of
the EDGeS project deliverables, the first public prototype of ADICS will be released
in December 2008. This prototype will have functionality that allows for the propa-
gation, caching, and sharing of data, using the decentralized data center architecture
outlined here.

6.2 Research theories verified through simulation

Much work in the few months since EDGeS started has focused on using simula-
tion tools, such as NS-2 [24] and [21]. The goal of this work is to verify the ideas
presented here and define the general structure of a network that supports EDGeS’
needs and attempts to model the transfer of typical sized data files and network
loads for current BOINC projects, such as Einstein@HOME. This is currently be-
ing achieved through the construction of reusable network topologies that represent
standard home Internet connections in systems like NS-2. We are applying these
topologies to the ADICS prototype code though the third-party AgentJ libaries [25]
that allows for the attachment of Java entities to NS-2. Currently we are using this
to represent the behaviour of the central data repository (i.e., the BOINC server),
the data caching layer, and the connected peers, while taking into consideration pa-
rameters such as the network links and the underlying protocols.

Previous simulation work [21] was also successfully undertaken to explore a
more general cycle-sharing paradigm and the suitability of a data center approach
for caching job input files in distributed environments such as BOINC. Although
the work presented in that paper was more generalized, the fundamental “dynamic
caching” and data distribution aspects are consistent with the ones presented here.
These prior simulations were very useful in helping to shape the general discus-
sion and move towards the more specific network simulations that are taking place
now. We are continuing to refine those simulations to mimic real-life use-cases, in
addition to the NS-2 models previously mentioned.

7 Conclusion

In this paper we have discussed some of the data issues that arise in the EDGeS
project as Service Grid jobs are migrated to a Desktop Grid environment. One low-
cost way to provide the needed bandwidth and data storage to support this scenario
is to exploit client-side network capacities in a P2P-type system for distributed data
sharing and propagation. The brokered approach outlined here, ADICS, can pro-
vide a happy medium between a “true” P2P system implementation that treats par-
ticipants relatively equally and the current static mirroring being used by BOINC
projects. ADICS has three main entities: data providers that push data onto the net-

Bridging the Data Management Gap Between Service and Desktop Grids 25

work; data centers (or cachers) that conform to some security requirement that al-
lows them to propagate data on the data providers’ behalf; and, data consumers (or
workers) that execute jobs and request input files from the data center layer. The
architecture outlined here is currently being pursued within the EDGeS project. It is
hoped this paper will further the discussion on the applicability of P2P technologies
in the scientific community and encourage others to explore it as a valid and useful
approach for data distribution.

Acknowledgements This work was supported by the CoreGRID Network of Excellence, the Cen-
ter for Computation & Technology at Louisiana State University, EPSRC grant EP/C006291/1, and
the EU FP7 EDGeS grant RI 211727.

References

1. “BOINC - Berkeley Open Infrastructure for Network Computing.” [Online]. Available:
http://boinc.berkeley.edu/

2. D. P. Anderson, “BOINC: A System for Public-Resource Computing and Storage,” in 5th
IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA, November 2004,
pp. 365–372.

3. “Enabling Desktop Grids for e-Science.” [Online]. Available: http://www.edges-grid.eu
4. Z. Balaton, Z. Farkas, G. Gombas, P. Kacsuk, R. Lovas, A. C. Marosi, A. Emmen, G. Ter-

styanszky, T. Kiss, I. Kelley, I. Taylor, O. Lodygensky, M. Cardenas-Montes, G. Fedak, and
F. Araujo, “EDGeS: The Common Boundary Between Service and Desktop Grids,” in To be
published in a special volume of the CoreGRID Springer series., 2008.

5. I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Int. Journal
of Supercomputing Applications, vol. 11, no. 2, pp. 115–128, 1997.

6. F. Cappello et al., “Computing on Large-Scale Distributed Systems: XtremWeb Architecture,
Programming Models, Security, Tests and Convergence with Grid,” Future Generation Com-
puter Systems , vol. 21, no. 3, pp. 417–437, 2005.

7. B. Cohen, “Incentives Build Robustness in BitTorrent,” in Workshop on Economics of Peer-
to-Peer Systems (P2PEcon’03), Berkeley, CA, June 2003.

8. “Bittorrent.” [Online]. Available: http://www.bittorrent.com/
9. F. Costa, I. Kelley, L. Silva, and I. Taylor, “Peer-To-Peer Techniques for Data Distribution in

Desktop Grid Computing Platforms,” in To be published in a special volume of the CoreGRID
Springer series., 2008.

10. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “OceanStore: an architecture for global-
scale persistent storage,” SIGPLAN Not., vol. 35, no. 11, pp. 190–201, 2000.

11. S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, N. Tammineedi, and S. L. Scott,
“FreeLoader: Scavenging Desktop Storage Resources for Scientific Data,” in SC ’05: Pro-
ceedings of the 2005 ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2005, p. 56.

12. I. Clarke, S. G. Miller, O. Sandberg, B. Wiley, and T. W. Hong, “Protecting Free Expression
Online with Freenet,” IEEE Internet Computing, pp. 40–49, January, February 2002.

13. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” SIGOPS Oper. Syst.
Rev., vol. 37, no. 5, pp. 29–43, 2003.

14. “EGEE: Enabling Grids for E-science in Europe.” [Online]. Available: http://public.eu-
egee.org

26 Ian Kelley and Ian Taylor

15. D. P. Anderson and G. Fedak, “The computational and storage potential of volunteer com-
puting,” in CCGRID ’06: Proceedings of the Sixth IEEE International Symposium on Cluster
Computing and the Grid. Washington, DC, USA: IEEE Computer Society, 2006, pp. 73–80.

16. “IETF Public Key Infrastructure Working Group.” [Online]. Available:
http://www.ietf.org/html.charters/pkix-charter.html

17. K. Berket, A. Essiari, and A. Muratas, “PKI-based security for peer-to-peer information shar-
ing,” Peer-to-Peer Computing, 2004. Proceedings. Proceedings. Fourth International Confer-
ence on, pp. 45–52, 25-27 Aug. 2004.

18. J. E. Altman, “PKI Security for JXTA Overlay Networks,” IAM Consulting, Inc., Tech. Rep.,
2003.

19. T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch, R. Ananthakrishnan,
B. Baker, M. Goode, and K. Keahey, “Identity Federation and Attribute-based Authorization
through the Globus Toolkit, Shibboleth, GridShib, and MyProxy,” in NIST PKI Workshop,
April 2006.

20. “Peer-to-Peer Architecture for Data-Intensive Cycle Sharing (ADICS).” [Online]. Available:
http://www.p2p-adics.org

21. P. Cozza, I. Kelley, C. Mastroianni, D. Talia, and I. Taylor, “Cache-enabled super-peer over-
lays for multiple job submission on grids,” in Grid Middleware and Services: Challenges and
Solutions, D. Talia, R. Yahyapour, and W. Ziegler, Eds. Springer, 2008, to appear.

22. I. Wang, “P2PS (Peer-to-Peer Simplified),” in Proceedings of 13th Annual Mardi Gras Confer-
ence - Frontiers of Grid Applications and Technologies. Louisiana State University, February
2005, pp. 54–59.

23. “Project JXTA.” [Online]. Available: http://www.jxta.org/
24. “The Ns2 Simulator.” [Online]. Available: http://www.isi.edu/nsnam/ns/
25. I. Taylor, I. Downard, B. Adamson, and J. Macker, “AgentJ: Enabling Java NS-2 Simulations

for Large Scale Distributed Multimedia Applications,” in Second International Conference on
Distributed Frameworks for Multimedia DFMA 2006, Penang, Malaysia, 14th to 17th May
2006.

