
Preface

An introductory course on Software Engineering remains one of the hardest
subjects to teach largely because of the wide range of topics the area encom-
passes. I have believed for some time that we often tend to teach too many
concepts and topics in an introductory course resulting in shallow knowledge
and little insight on application of these concepts. And Software Engineering
is finally about application of concepts to efficiently engineer good software
solutions.

Goals

I believe that an introductory course on Software Engineering should focus on
imparting to students the knowledge and skills that are needed to successfully
execute a commercial project of a few person-months effort while employing
proper practices and techniques. It is worth pointing out that a vast majority
of the projects executed in the industry today fall in this scope—executed by
a small team over a few months. I also believe that by carefully selecting the
concepts and topics, we can, in the course of a semester, achieve this. This is
the motivation of this book.

The goal of this book is to introduce to the students a limited number of
concepts and practices which will achieve the following two objectives:

– Teach the student the skills needed to execute a smallish commercial project.

– Provide the students necessary conceptual background for undertaking ad-
vanced studies in software engineering, through courses or on their own.



vi Preface

Organization

I have included in this book only those concepts that I believe are founda-
tional and through which the two objectives mentioned above can be met. Ad-
vanced topics have been consciously left out. As executing a software project
requires skills in two dimensions—engineering and project management—this
book focuses on key tasks in these two dimensions, and discusses concepts and
techniques that can be applied to effectively execute these tasks.

The book is organized in a simple manner, with one chapter for each of
the key tasks in a project. For engineering, these tasks are requirements analy-
sis and specification, architecture design, module level design, coding and unit
testing, and testing. For project management, the key tasks are project plan-
ning and project monitoring and control, but both are discussed together in
one chapter on project planning as even monitoring has to be planned. In addi-
tion, the book contains one chapter that clearly defines the problem domain of
Software Engineering, and another chapter that discusses the central concept
of software process which integrates the different tasks executed in a project.

Each chapter opens with some introduction and then clearly lists the chapter
goals, or what the reader can expect to learn from the chapter. For the task
covered in the chapter, the important concepts are first discussed, followed
by a discussion of the output of the task, the desired quality properties of the
output, and some practical methods and notations for performing the task. The
explanations are supported by examples, and the key learnings are summarized
in the end for the reader. The chapter ends with some self-assessment exercises.

Target Audience

The book is primarily intented for an introductory course on Software Engi-
neering in any undergraduate or graduate program. It is targeted for students
who know programming but have not had a formal exposure to software engi-
neering.

The book can also be used by professionals who are in a similar state—know
some programming but want to be introduced to the systematic approach of
software engineering.



Preface vii

Teaching Support and Supplemental Resources

Though the book is self-contained, some teaching support and supplemental
resources are available through a website. The URL is:

http://www.cse.iitd.ac.in/ConciseIntroToSE
The resources available on the site include:

– The powerpoint presentations for each chapter in ppt format so instructors
can change them to suit their style.

– Various templates for different outputs in a project, that can be used for the
student project in the course.

– A case study with most of the major outputs of the project.

– Some practice exercises for unit testing and inspections.

Acknowledgments

I would like to express my gratitude to my editor, Wayne Wheeler, who con-
ceived this idea of a concise introductory book and created this opportunity.

I would also like to express my thanks to my wife, Shikha, and my daughters
Sumedha and Sunanda for once again bearing with my moods and odd hours.

Pankaj Jalote
New Delhi, May 2008



2
Software Processes

Now that we have a better understanding of the problem domain that software
engineering deals with, let us orient our discussion to software engineering itself.
Software engineering is defined as the systematic approach to the development,
operation, maintenance, and retirement of software [52].

We have seen that besides delivering software, high quality, low cost, and
low cycle time are also goals which software engineering must achieve. In other
words, the systematic approach must help achieve a high quality and productiv-
ity (Q&P). In software, the three main factors that influence Q&P are people,
processes, and technology. That is, the final quality delivered and productivity
achieved depends on the skills of the people involved in the software project,
the processes people use to perform the different tasks in the project, and the
tools they use.

As it is people who ultimately develop and deliver (and productivity is
measured with respect to people’s effort as the basic input), the main job
of processes is to help people achieve higher Q&P by specifying what tasks
to do and how to do them. Tools are aids that help people perform some of
the tasks more efficiently and with fewer errors. It should therefore be clear
that to satisfy the objective of delivering software with high Q&P, processes
form the core. Consequently, in software engineering, the focus is primarily on
processes, which are referred to as the systematic approach in the definition
given above. It is this focus on process that distinguishes software engineering
from most other computing disciplines. Many other computing disciplines focus
on some type of product—operating systems, databases, etc.—while software
engineering focuses on the process for producing the products.

P. Jalote, A Concise Introduction to Software Engineering,
DOI: 10.1007/978-1-84800-302-6 2, c© Springer-Verlag London Limited 2008



10 2. Software Processes

As processes form the heart of software engineering, with tools and tech-
nology providing support to efficiently execute the processes, this book focuses
primarily on processes. In this chapter we will discuss:

– Role of a process and a process model in a project.

– Various component processes in the software process and the key role of the
development process and the project management process.

– Various models for the development process—waterfall, prototyping, itera-
tive, RUP, timeboxing, and XP.

– The overall structure of the project management process and its key phases.

2.1 Process and Project

A process is a sequence of steps performed for a given purpose [52]. As men-
tioned earlier, while developing (industrial strength) software, the purpose is to
develop software to satisfy the needs of some users or clients, as shown in Figure
2.1. A software project is one instance of this problem, and the development
process is what is used to achieve this purpose.

Figure 2.1: Basic problem.

So, for a project its development process plays a key role—it is by following
the process the desired end goal of delivering the software is achieved. However,
as discussed earlier, it is not sufficient to just reach the final goal of having the
desired software, but we want that the project be done at low cost and in low
cycle time, and deliver high-quality software. The role of process increases due
to these additional goals, and though many processes can achieve the basic



2.2 Component Software Processes 11

goal of developing software in Figure 2.1, to achieve high Q&P we need some
“optimum” process. It is this goal that makes designing a process a challenge.

We must distinguish process specification or description from the process
itself. A process is a dynamic entity which captures the actions performed.
Process specification, on the other hand, is a description of process which pre-
sumably can be followed in some project to achieve the goal for which the
process is designed.

In a project, a process specification may be used as the process the project
plans to follow. The actual process is what is actually done in the project. Note
that the actual process can be different from the planned process, and ensuring
that the specified process is being followed is a nontrivial problem. However, in
this book, we will assume that the planned and actual processes are the same
and will not distinguish between the two and will use the term process to refer
to both.

A process model specifies a general process, which is “optimum” for a class
of projects. That is, in the situations for which the model is applicable, using
the process model as the project’s process will lead to the goal of developing
software with high Q&P. A process model is essentially a compilation of best
practices into a “recipe” for success in the project. In other words, a process is
a means to reach the goals of high quality, low cost, and low cycle time, and
a process model provides a process structure that is well suited for a class of
projects.

A process is often specified at a high level as a sequence of stages. The
sequence of steps for a stage is the process for that stage, and is often referred
to as a subprocess of the process.

2.2 Component Software Processes

As defined above, a process is the sequence of steps executed to achieve a
goal. Since many different goals may have to be satisfied while developing soft-
ware, multiple processes are needed. Many of these do not concern software
engineering, though they do impact software development. These could be con-
sidered nonsoftware process. Business processes, social processes, and training
processes are all examples of processes that come under this. These processes
also affect the software development activity but are beyond the purview of
software engineering.

The processes that deal with the technical and management issues of soft-
ware development are collectively called the software process. As a software
project will have to engineer a solution and properly manage the project, there



12 2. Software Processes

are clearly two major components in a software process—a development pro-
cess and a project management process. The development process specifies all
the engineering activities that need to be performed, whereas the management
process specifies how to plan and control these activities so that cost, sched-
ule, quality, and other objectives are met. Effective development and project
management processes are the key to achieving the objectives of delivering the
desired software satisfying the user needs, while ensuring high productivity and
quality.

During the project many products are produced which are typically com-
posed of many items (for example, the final source code may be composed of
many source files). These items keep evolving as the project proceeds, creating
many versions on the way. As development processes generally do not focus on
evolution and changes, to handle them another process called software configu-
ration control process is often used. The objective of this component process is
to primarily deal with managing change, so that the integrity of the products
is not violated despite changes.

These three constituent processes focus on the projects and the products
and can be considered as comprising the product engineering processes, as their
main objective is to produce the desired product. If the software process can
be viewed as a static entity, then these three component processes will suffice.
However, a software process itself is a dynamic entity, as it must change to adapt
to our increased understanding about software development and availability of
newer technologies and tools. Due to this, a process to manage the software
process is needed.

The basic objective of the process management process is to improve the
software process. By improvement, we mean that the capability of the process
to produce quality goods at low cost is improved. For this, the current software
process is studied, frequently by studying the projects that have been done
using the process. The whole process of understanding the current process,
analyzing its properties, determining how to improve, and then affecting the
improvement is dealt with by the process management process.

The relationship between these major component processes is shown in Fig-
ure 2.2. These component processes are distinct not only in the type of activities
performed in them, but typically also in the people who perform the activities
specified by the process. In a typical project, development activities are per-
formed by programmers, designers, testers, etc.; the project management pro-
cess activities are performed by the project management; configuration control
process activities are performed by a group generally called the configuration
controller; and the process management process activities are performed by the
software engineering process group (SEPG).

In this book, we will focus primarily on processes relating to product



2.3 Software Development Process Models 13

Figure 2.2: Software processes.

engineering, particularly the development and project management processes.
Much of the book discusses the different phases of a development process and
the subprocesses or methodologies used for executing these phases. For the rest
of the book, we will use the term software process to mean product engineering
processes, unless specified otherwise.

2.3 Software Development Process Models

For the software development process, the goal is to produce a high-quality
software product. It therefore focuses on activities directly related to production
of the software, for example, design, coding, and testing. As the development
process specifies the major development and quality control activities that need
to be performed in the project, it forms the core of the software process. The
management process is often decided based on the development process.

A project’s development process defines the tasks the project should per-
form, and the order in which they should be done. A process limits the degrees
of freedom for a project by specifying what types of activities must be under-
taken and in what order, such that the “shortest” (or the most efficient) path
is obtained from the user needs to the software satisfying these needs. The
process drives a project and heavily influences the outcome.

As discussed earlier, a process model specifies a general process, usually as a
set of stages in which a project should be divided, the order in which the stages
should be executed, and any other constraints and conditions on the execution
of stages. The basic premise behind a process model is that, in the situations for
which the model is applicable, using the process model as the project’s process



14 2. Software Processes

will lead to low cost, high quality, reduced cycle time, or provide other benefits.
In other words, the process model provides generic guidelines for developing a
suitable process for a project.

Due to the importance of the development process, various models have
been proposed. In this section we will discuss some of the major models.

2.3.1 Waterfall Model

The simplest process model is the waterfall model, which states that the phases
are organized in a linear order. The model was originally proposed by Royce
[74], though variations of the model have evolved depending on the nature of
activities and the flow of control between them. In this model, a project be-
gins with feasibility analysis. Upon successfully demonstrating the feasibility of
a project, the requirements analysis and project planning begins. The design
starts after the requirements analysis is complete, and coding begins after the
design is complete. Once the programming is completed, the code is integrated
and testing is done. Upon successful completion of testing, the system is in-
stalled. After this, the regular operation and maintenance of the system takes
place. The model is shown in Figure 2.3.

The basic idea behind the phases is separation of concerns—each phase
deals with a distinct and separate set of concerns. By doing this, the large and
complex task of building the software is broken into smaller tasks (which, by
themselves, are still quite complex) of specifying requirements, doing design,
etc. Separating the concerns and focusing on a select few in a phase gives a
better handle to the engineers and managers in dealing with the complexity of
the problem.

The requirements analysis phase is mentioned as “analysis and planning.”
Planning is a critical activity in software development. A good plan is based on
the requirements of the system and should be done before later phases begin.
However, in practice, detailed requirements are not necessary for planning.
Consequently, planning usually overlaps with the requirements analysis, and a
plan is ready before the later phases begin. This plan is an additional input to
all the later phases.

Linear ordering of activities has some important consequences. First, to
clearly identify the end of a phase and the beginning of the next, some cer-
tification mechanism has to be employed at the end of each phase. This is
usually done by some verification and validation means that will ensure that
the output of a phase is consistent with its input (which is the output of the
previous phase), and that the output of the phase is consistent with the overall
requirements of the system.



2.3 Software Development Process Models 15

Figure 2.3: The waterfall model.

The consequence of the need for certification is that each phase must have
some defined output that can be evaluated and certified. That is, when the ac-
tivities of a phase are completed, there should be some product that is produced
by that phase. The outputs of the earlier phases are often called work products
and are usually in the form of documents like the requirements document or



16 2. Software Processes

design document. For the coding phase, the output is the code. Though the set
of documents that should be produced in a project is dependent on how the
process is implemented, the following documents generally form a reasonable
set that should be produced in each project:

– Requirements document

– Project plan

– Design documents (architecture, system, detailed)

– Test plan and test reports

– Final code

– Software manuals (e.g., user, installation, etc.)

One of the main advantages of the waterfall model is its simplicity. It is concep-
tually straightforward and divides the large task of building a software system
into a series of cleanly divided phases, each phase dealing with a separate logi-
cal concern. It is also easy to administer in a contractual setup—as each phase
is completed and its work product produced, some amount of money is given
by the customer to the developing organization.

The waterfall model, although widely used, has some strong limitations.
Some of the key limitations are:

1. It assumes that the requirements of a system can be frozen (i.e., baselined)
before the design begins. This is possible for systems designed to automate
an existing manual system. But for new systems, determining the require-
ments is difficult as the user does not even know the requirements. Hence,
having unchanging requirements is unrealistic for such projects.

2. Freezing the requirements usually requires choosing the hardware (because
it forms a part of the requirements specification). A large project might
take a few years to complete. If the hardware is selected early, then due
to the speed at which hardware technology is changing, it is likely that
the final software will use a hardware technology on the verge of becoming
obsolete. This is clearly not desirable for such expensive software systems.

3. It follows the “big bang” approach—the entire software is delivered in one
shot at the end. This entails heavy risks, as the user does not know until
the very end what they are getting. Furthermore, if the project runs out
of money in the middle, then there will be no software. That is, it has the
“all or nothing” value proposition.

4. It encourages “requirements bloating”. Since all requirements must be spec-
ified at the start and only what is specified will be delivered, it encourages



2.3 Software Development Process Models 17

the users and other stakeholders to add even those features which they
think might be needed (which finally may not get used).

5. It is a document-driven process that requires formal documents at the end
of each phase.

Despite these limitations, the waterfall model has been the most widely used
process model. It is well suited for routine types of projects where the require-
ments are well understood. That is, if the developing organization is quite fa-
miliar with the problem domain and the requirements for the software are quite
clear, the waterfall model works well, and may be the most efficient process.

2.3.2 Prototyping

The goal of a prototyping-based development process is to counter the first
limitation of the waterfall model. The basic idea here is that instead of freezing
the requirements before any design or coding can proceed, a throwaway proto-
type is built to help understand the requirements. This prototype is developed
based on the currently known requirements. Development of the prototype ob-
viously undergoes design, coding, and testing, but each of these phases is not
done very formally or thoroughly. By using this prototype, the client can get an
actual feel of the system, which can enable the client to better understand the
requirements of the desired system. This results in more stable requirements
that change less frequently.

Prototyping is an attractive idea for complicated and large systems for
which there is no manual process or existing system to help determine the
requirements. In such situations, letting the client “play” with the prototype
provides invaluable and intangible inputs that help determine the requirements
for the system. It is also an effective method of demonstrating the feasibility
of a certain approach. This might be needed for novel systems, where it is
not clear that constraints can be met or that algorithms can be developed to
implement the requirements. In both situations, the risks associated with the
projects are being reduced through the use of prototyping. The process model
of the prototyping approach is shown in Figure 2.4.

A development process using throwaway prototyping typically proceeds as
follows [40]. The development of the prototype typically starts when the prelim-
inary version of the requirements specification document has been developed.
At this stage, there is a reasonable understanding of the system and its needs
and which needs are unclear or likely to change. After the prototype has been
developed, the end users and clients are given an opportunity to use and ex-
plore the prototype. Based on their experience, they provide feedback to the



18 2. Software Processes

Figure 2.4: The prototyping model.

developers regarding the prototype: what is correct, what needs to be modified,
what is missing, what is not needed, etc. Based on the feedback, the prototype
is modified to incorporate some of the suggested changes that can be done
easily, and then the users and the clients are again allowed to use the system.
This cycle repeats until, in the judgment of the prototype developers and an-
alysts, the benefit from further changing the system and obtaining feedback is
outweighed by the cost and time involved in making the changes and obtaining
the feedback. Based on the feedback, the initial requirements are modified to
produce the final requirements specification, which is then used to develop the
production quality system.

For prototyping for the purposes of requirement analysis to be feasible, its
cost must be kept low. Consequently, only those features are included in the
prototype that will have a valuable return from the user experience. Excep-
tion handling, recovery, and conformance to some standards and formats are
typically not included in prototypes. In prototyping, as the prototype is to be
discarded, there is no point in implementing those parts of the requirements
that are already well understood. Hence, the focus of the development is to
include those features that are not properly understood. And the development
approach is “quick and dirty” with the focus on quick development rather than
quality. Because the prototype is to be thrown away, only minimal documenta-
tion needs to be produced during prototyping. For example, design documents,
a test plan, and a test case specification are not needed during the development
of the prototype. Another important cost-cutting measure is to reduce testing.
Because testing consumes a major part of development expenditure during reg-
ular software development, this has a considerable impact in reducing costs. By
using these types of cost-cutting methods, it is possible to keep the cost of the
prototype to less than a few percent of the total development cost.



2.3 Software Development Process Models 19

And the returns from this extra cost can be substantial. First, the experience
of developing the prototype will reduce the cost of the actual software develop-
ment. Second, as requirements will be more stable now due to the feedback from
the prototype, there will be fewer changes in the requirements. Consequently
the costs incurred due to changes in the requirements will be substantially re-
duced. Third, the quality of final software is likely to be far superior, as the
experience engineers have obtained while developing the prototype will enable
them to create a better design, write better code, and do better testing. And fi-
nally, developing a prototype mitigates many risks that exist in a project where
requirements are not well known.

Overall, prototyping is well suited for projects where requirements are hard
to determine and the confidence in the stated requirements is low. In such
projects where requirements are not properly understood in the beginning,
using the prototyping process model can be the most effective method for
developing the software. It is also an excellent technique for reducing some
types of risks associated with a project.

2.3.3 Iterative Development

The iterative development process model counters the third and fourth limita-
tions of the waterfall model and tries to combine the benefits of both proto-
typing and the waterfall model. The basic idea is that the software should be
developed in increments, each increment adding some functional capability to
the system until the full system is implemented.

The iterative enhancement model [4] is an example of this approach. In the
first step of this model, a simple initial implementation is done for a subset of
the overall problem. This subset is one that contains some of the key aspects
of the problem that are easy to understand and implement and which form
a useful and usable system. A project control list is created that contains, in
order, all the tasks that must be performed to obtain the final implementation.
This project control list gives an idea of how far along the project is at any
given step from the final system.

Each step consists of removing the next task from the list, designing the
implementation for the selected task, coding and testing the implementation,
performing an analysis of the partial system obtained after this step, and updat-
ing the list as a result of the analysis. These three phases are called the design
phase, implementation phase, and analysis phase. The process is iterated until
the project control list is empty, at which time the final implementation of the
system will be available. The iterative enhancement model is shown in Figure
2.5.



20 2. Software Processes

Figure 2.5: The iterative enhancement model.

The project control list guides the iteration steps and keeps track of all
tasks that must be done. Based on the analysis, one of the tasks in the list
can include redesign of defective components or redesign of the entire system.
However, redesign of the system will generally occur only in the initial steps.
In the later steps, the design would have stabilized and there is less chance
of redesign. Each entry in the list is a task that should be performed in one
step of the iterative enhancement process and should be simple enough to be
completely understood. Selecting tasks in this manner will minimize the chances
of error and reduce the redesign work. The design and implementation phases
of each step can be performed in a top-down manner or by using some other
technique.

Though there are clear benefits of iterative development, particularly in
allowing changing requirements, not having the all-or-nothing risk, etc., there
are some costs associated with iterative development also. For example, as
the requirements for future iterations are not known, the design of a system
may not be too robust. Also, changes may have to be made to the existing
system to accommodate requirements of the future iterations, leading to extra
rework and/or discarding of work done earlier. Overall, it may not offer the best
technical solution, but the benefits may outweigh the costs in many projects.

Another common approach for iterative development is to do the require-
ments and the architecture design in a standard waterfall or prototyping ap-
proach, but deliver the software iteratively. That is, the building of the system,
which is the most time and effort-consuming task, is done iteratively, though
most of the requirements are specified upfront. We can view this approach as
having one iteration delivering the requirements and the architecture plan, and
then further iterations delivering the software in increments. At the start of
each delivery iteration, which requirements will be implemented in this release
are decided, and then the design is enhanced and code developed to implement
the requirements. The iteration ends with delivery of a working software system



2.3 Software Development Process Models 21

providing some value to the end user. Selecting of requirements for an iteration
is done primarily based on the value the requirement provides to the end users
and how critical they are for supporting other requirements. This approach is
shown in Figure 2.6.

Figure 2.6: Iterative delivery approach.

The advantage of this approach is that as the requirements are mostly
known upfront, an overall view of the system is available and a proper archi-
tecture can be designed which can remain relatively stable. With this, hopefully
rework in development iterations will diminish. At the same time, the value to
the end customer is delivered iteratively so it does not have the all-or-nothing
risk. Also, since the delivery is being done incrementally, and planning and
execution of each iteration is done separately, feedback from an iteration can
be incorporated in the next iteration. Even new requirements that may get un-
covered can also be incorporated. Hence, this model of iterative development
also provides some of the benefits of the model discussed above.

The iterative approach is becoming extremely popular, despite some diffi-
culties in using it in this context. There are a few key reasons for its increasing
popularity. First and foremost, in today’s world clients do not want to invest too
much without seeing returns. In the current business scenario, it is preferable
to see returns continuously of the investment made. The iterative model per-
mits this—after each iteration some working software is delivered, and the risk
to the client is therefore limited. Second, as businesses are changing rapidly
today, they never really know the “complete” requirements for the software,
and there is a need to constantly add new capabilities to the software to adapt
the business to changing situations. Iterative process allows this. Third, each
iteration provides a working system for feedback, which helps in developing
stable requirements for the next iteration. Below we will describe some other



22 2. Software Processes

process models, all of them using some iterative approach.

2.3.4 Rational Unified Process

Rational Unified Process (RUP) [51, 63] is another iterative process model
that was designed by Rational, now part of IBM. Though it is a general pro-
cess model, it was designed for object-oriented development using the Unified
Modeling Language (UML). (We will discuss these topics in a later chapter).

RUP proposes that development of software be divided into cycles, each
cycle delivering a fully working system. Generally, each cycle is executed as a
separate project whose goal is to deliver some additional capability to an exist-
ing system (built by the previous cycle). Hence, for a project, the process for a
cycle forms the overall process. Each cycle itself is broken into four consecutive
phases:

– Inception phase

– Elaboration phase

– Construction phase

– Transition phase

Each phase has a distinct purpose, and completion of each phase is a well-
defined milestone in the project with some clearly defined outputs. The purpose
of the inception phase is to establish the goals and scope of the project, and
completion of this phase is the lifecycle objectives milestone. This milestone
should specify the vision and high-level capability of the eventual system, what
business benefits it is expected to provide, some key illustrative use cases of the
system, key risks of the project, and a basic plan of the project regarding the
cost and schedule. Based on the output of this phase, a go/no-go decision may
be taken. And if the project is to proceed, then this milestone represents that
there is a shared vision among the stakeholders and they agree to the project,
its vision, benefits, cost, usage, etc.

In the elaboration phase, the architecture of the system is designed, based
on the detailed requirements analysis. The completion of this phase is the life-
cycle architecture milestone. At the end of this phase, it is expected that most
of the requirements have been identified and specified, and the architecture of
the system has been designed (and specified) in a manner that it addresses the
technical risks identified in the earlier phase. In addition, a high-level project
plan for the project has been prepared showing the remaining phases and iter-
ations in those, and the current perception of risks. By the end of this phase,



2.3 Software Development Process Models 23

the critical engineering decisions regarding the choice of technologies, architec-
ture, etc. have been taken, and a detailed understanding of the project exists.
Outputs of this milestone allow technical evaluation of the proposed solution,
as well as a better informed decision about cost-benefit analysis of the project.

In the construction phase, the software is built and tested. This phase results
in the software product to be delivered, along with associated user and other
manuals, and successfully completing this phase results in the initial operational
capability milestone being achieved.

The purpose of the transition phase is to move the software from the devel-
opment environment to the client’s environment, where it is to be hosted. This
is a complex task which can require additional testing, conversion of old data
for this software to work, training of personnel, etc. The successful execution
of this phase results in achieving the milestone product release. The different
phases and milestones in RUP are shown in Figure 2.7.

Figure 2.7: The RUP model.

Though these phases are consecutive, each phase itself may have multiple
iterations, with each iteration delivering to an internal or external customer
some well-defined output which is often a part of the final deliverable of that
phase’s milestone. Generally, it is expected that the construction phase will
be broken into multiple iterations, each iteration producing a working system
which can be used for feedback, evaluation, beta-testing, etc. Though itera-
tions in construction are done often and it is clear what an iteration in this
phase delivers, iterations may be done meaningfully in other phases as well.
For example, in the elaboration phase, the first iteration may just specify the
overall architecture and high-level requirements, while the second iteration may
be done to thrash out the details. As another example, there may be multiple
iterations to transition the developed software, with each iteration “making
live” some part or some feature of the developed software.

RUP has carefully chosen the phase names so as not to confuse them with
the engineering tasks that are to be done in the project, as in RUP the en-
gineering tasks and phases are separate. Different engineering activities may



24 2. Software Processes

be performed in a phase to achieve its milestones. RUP groups the activities
into different subprocesses which it calls core process workflows. These sub-
processes correspond to the tasks of performing requirements analysis, doing
design, implementing the design, testing, project management, etc. Some of the
subprocesses are shown in Table 2.1.

One key difference of RUP from other models is that it has separated the
phases from the tasks and allows multiple of these subprocesses to function
within a phase. In waterfall (or waterfall-based iterative model), a phase within
a process was linked to a particular task performed by some process like re-
quirements, design, etc. In RUP these tasks are separated from the stages,
and it allows, for example, during construction, execution of the requirements
process. That is, it allows some part of the requirement activity be done even
in construction, something the waterfall did not allow. So, a project, if it so
wishes, may do detailed requirements only for some features during the elabora-
tion phase, and may do detailing of other requirements while the construction
is going on (maybe the first iteration of it). This not only allows a project
a greater degree of flexibility in planning when the different tasks should be
done, it also captures the reality of the situation—it is often not possible to
specify all requirements at the start and it is best to start the project with
some requirements and work out the details later.

Though a subprocess may be active in many phases, as can be expected,
the volume of work or the effort being spent on the subprocess will vary with
phases. For example, it is expected that a lot more effort will be spent in the
requirement subprocess during elaboration, and less will be spent in construc-
tion, and still less, if any, will be spent in transition. Similarly, the model has
the development process active in elaboration, which allows a project to build
a prototype during the elaboration phase to help its requirements activity, if
needed. However, most of the implementation does happen in the construction
phase. The effort spent in a subprocess in different phases will, of course, de-
pend on the project. However, a general pattern is indicated in Table 2.1 by
specifying if the level of effort for the phase is high, medium, low, etc.

Table 2.1: Activity level of subprocesses in different phases of RUP.
Inception Elaboration Construction Transition

Requirements High High Low Nil
Anal. and Design Low High Medium Nil
Implementation Nil Low High Low
Test Nil Low High Medium
Deployment Nil Nil Medium High
Proj. Mgmt. Medium Medium Medium Medium
Config. Mgmt Low Low High High



2.3 Software Development Process Models 25

Overall, RUP provides a flexible process model, which follows an iterative
approach not only at a top level (through cycles), but also encourages iterative
approach during each of the phases in a cycle. And in phases, it allows the
different tasks to be done as per the needs of the project.

2.3.5 Timeboxing Model

To speed up development, parallelism between the different iterations can be
employed. That is, a new iteration commences before the system produced
by the current iteration is released, and hence development of a new release
happens in parallel with the development of the current release. By starting an
iteration before the previous iteration has completed, it is possible to reduce
the average delivery time for iterations. However, to support parallel execution,
each iteration has to be structured properly and teams have to be organized
suitably. The timeboxing model proposes an approach for these [60, 59].

In the timeboxing model, the basic unit of development is a time box, which
is of fixed duration. Since the duration is fixed, a key factor in selecting the
requirements or features to be built in a time box is what can be fit into the time
box. This is in contrast to regular iterative approaches where the functionality
is selected and then the time to deliver is determined. Timeboxing changes
the perspective of development and makes the schedule a nonnegotiable and a
high-priority commitment.

Each time box is divided into a sequence of stages, like in the waterfall
model. Each stage performs some clearly defined task for the iteration and
produces a clearly defined output. The model also requires that the duration
of each stage, that is, the time it takes to complete the task of that stage,
is approximately the same. Furthermore, the model requires that there be a
dedicated team for each stage. That is, the team for a stage performs only
tasks of that stage—tasks for other stages are performed by their respective
teams. This is quite different from other iterative models where the implicit
assumption is that the same team performs all the different tasks of the project
or the iteration.

Having time-boxed iterations with stages of equal duration and having ded-
icated teams renders itself to pipelining of different iterations. (Pipelining is a
concept from hardware in which different instructions are executed in paral-
lel, with the execution of a new instruction starting once the first stage of the
previous instruction is finished.)

To illustrate the use of this model, consider a time box consisting of
three stages: requirement specification, build, and deployment. The require-
ment stage is executed by its team of analysts and ends with a prioritized list



26 2. Software Processes

of requirements to be built in this iteration along with a high-level design. The
build team develops the code for implementing the requirements, and performs
the testing. The tested code is then handed over to the deployment team, which
performs predeployment tests, and then installs the system for production use.
These three stages are such that they can be done in approximately equal time
in an iteration.

With a time box of three stages, the project proceeds as follows. When the
requirements team has finished requirements for timebox-1, the requirements
are given to the build team for building the software. The requirements team
then goes on and starts preparing the requirements for timebox-2. When the
build for timebox-1 is completed, the code is handed over to the deployment
team, and the build team moves on to build code for requirements for timebox-
2, and the requirements team moves on to doing requirements for timebox-3.
This pipelined execution of the timeboxing process is shown in Figure 2.8 [59].

Figure 2.8: Executing the timeboxing process model.

With a three-stage time box, at most three iterations can be concurrently
in progress. If the time box is of size T days, then the first software delivery will
occur after T days. The subsequent deliveries, however, will take place after
every T/3 days. For example, if the time box duration T is 9 weeks (and each
stage duration is 3 weeks), the first delivery is made 9 weeks after the start
of the project. The second delivery is made after 12 weeks, the third after 15
weeks, and so on. Contrast this with a linear execution of iterations, in which
the first delivery will be made after 9 weeks, the second after 18 weeks, the
third after 27 weeks, and so on.

There are three teams working on the project—the requirements team, the
build team, and the deployment team. The teamwise activity for the 3-stage
pipeline discussed above is shown in Figure 2.9 [59].

It should be clear that the duration of each iteration has not been reduced.



2.3 Software Development Process Models 27

Figure 2.9: Tasks of different teams.

The total work done in a time box and the effort spent in it also remains the
same—the same amount of software is delivered at the end of each iteration as
the time box undergoes the same stages. If the effort and time spent in each
iteration also remains the same, then what is the cost of reducing the delivery
time? The real cost of this reduced time is in the resources used in this model.
With timeboxing, there are dedicated teams for different stages and the total
team size for the project is the sum of teams of different stages. This is the
main difference from the situation where there is a single team which performs
all the stages and the entire team works on the same iteration.

Hence, the timeboxing provides an approach for utilizing additional man-
power to reduce the delivery time. It is well known that with standard methods
of executing projects, we cannot compress the cycle time of a project substan-
tially by adding more manpower. However, through the timeboxing model, we
can use more manpower in a manner such that by parallel execution of different
stages we are able to deliver software quicker. In other words, it provides a way
of shortening delivery times through the use of additional manpower.

Timeboxing is well suited for projects that require a large number of fea-
tures to be developed in a short time around a stable architecture using stable
technologies. These features should be such that there is some flexibility in
grouping them for building a meaningful system in an iteration that provides
value to the users. The main cost of this model is the increased complexity of
project management (and managing the products being developed) as multiple
developments are concurrently active. Also, the impact of unusual situations in
an iteration can be quite disruptive. Further details about the model, as well
as a detailed example of applying the model on a real commercial project, are
given in [60, 59].



28 2. Software Processes

2.3.6 Extreme Programming and Agile Processes

Agile development approaches evolved in the 1990s as a reaction to documen-
tation and bureaucracy-based processes, particularly the waterfall approach.
Agile approaches are based on some common principles, some of which are
[www.extremeprogramming.org]:

– Working software is the key measure of progress in a project.

– For progress in a project, therefore, software should be developed and deliv-
ered rapidly in small increments.

– Even late changes in the requirements should be entertained (small-increment
model of development helps in accommodating them).

– Face-to-face communication is preferred over documentation.

– Continuous feedback and involvement of customer is necessary for developing
good-quality software.

– Simple design which evolves and improves with time is a better approach
than doing an elaborate design up front for handling all possible scenarios.

– The delivery dates are decided by empowered teams of talented individuals
(and are not dictated).

Many detailed agile methodologies have been proposed, some of which are
widely used now. Extreme programming (XP) is one of the most popular and
well-known approaches in the family of agile methods. Like all agile approaches,
it believes that changes are inevitable and rather than treating changes as un-
desirable, development should embrace change. And to accommodate change,
the development process has to be lightweight and quick to respond. For this,
it develops software iteratively, and avoids reliance on detailed and multiple
documents which are hard to maintain. Instead it relies on face-to-face com-
munication, simplicity, and feedback to ensure that the desired changes are
quickly and correctly reflected in the programs. Here we briefly discuss the
development process of XP, as a representative of an agile process.

An extreme programming project starts with user stories which are short
(a few sentences) descriptions of what scenarios the customers and users would
like the system to support. They are different from traditional requirements
specification primarily in details—user stories do not contain detailed require-
ments which are to be uncovered only when the story is to be implemented,
therefore allowing the details to be decided as late as possible. Each story is
written on a separate card, so they can be flexibly grouped.

The empowered development team estimates how long it will take to imple-
ment a user story. The estimates are rough, generally stated in weeks. Using



2.3 Software Development Process Models 29

these estimates and the stories, release planning is done which defines which
stories are to be built in which system release, and the dates of these releases.
Frequent and small releases are encouraged, and for a release, iterations are
employed. Acceptance tests are also built from the stories, which are used to
test the software before the release. Bugs found during the acceptance testing
for an iteration can form work items for the next iteration. This overall process
is shown in Figure 2.10.

Figure 2.10: Overall process in XP.

Development is done in iterations, each iteration lasting no more than a
few weeks. An iteration starts with iteration planning in which the stories to
be implemented in this iteration are selected—high-value and high-risk stories
are considered as higher priority and implemented in early iterations. Failed
acceptance tests in previous iteration also have to be handled. Details of the
stories are obtained in the iteration for doing the development.

The development approach used in an iteration has some unique practices.
First, it envisages that development is done by pairs of programmers (called
pair programming and which we will discuss further in Chapter 7), instead
of individual programmers. Second, it suggests that for building a code unit,
automated unit tests be written first before the actual code is written, and
then the code should be written to pass the tests. This approach is referred
to as test-driven development, in contrast to regular code-first development in
which programmers first write code and then think of how to test it. (We will
discuss test-driven development further in Chapter 7.) As functionality of the
unit increases, the unit tests are enhanced first, and then the code is enhanced
to pass the new set of unit tests. Third, as it encourages simple solutions as
well as change, it is expected that the design of the solution devised earlier
may at some point become unsuitable for further development. To handle this
situation, it suggests that refactoring be done to improve the design, and then
use the refactored code for further development. During refactoring, no new
functionality is added, only the design of the existing programs is improved.
(Refactoring will be discussed further in Chapter 7.) Fourth, it encourages
frequent integration of different units. To avoid too many changes in the base
code happening together, only one pair at a time can release their changes and
integrate into the common code base. The process within an iteration is shown



30 2. Software Processes

in Figure 2.11.

Figure 2.11: An iteration in XP.

This is a very simplified description of XP. There are many other rules
in XP relating to issues like rights of programmers and customers, communi-
cation between the team members and use of metaphors, trust and visibility
to all stakeholders, collective ownership of code in which any pair can change
any code, team management, building quick spike solutions to resolve diffi-
cult technical and architectural issues or to explore some approach, how bugs
are to be handled, how what can be done within an iteration is to be esti-
mated from the progress made in the previous iteration, how meetings are to
be conducted, how a day in the development should start, etc. The website
www.extremeprogramming.org is a good source on these, as well as other as-
pects of XP.

XP, and other agile methods, are suitable for situations where the volume
and pace of requirements change is high, and where requirement risks are con-
siderable. Because of its reliance on strong communication between all the team
members, it is effective when teams are collocated and of modest size, of up to
about 20 members. And as it envisages strong involvement of the customer in
the development, as well as in planning the delivery dates, it works well when
the customer is willing to be heavily involved during the entire development,
working as a team member.

2.3.7 Using Process Models in a Project

We have seen many different development process models. What is the need
for the different models? As mentioned earlier, while developing (industrial
strength) software, the purpose is not only to develop software to satisfy the
needs of some users or clients, but we want that the project be done in low
cost and cycle time, and deliver high-quality software. In addition, there could
be other constraints in a project that the project may need to satisfy. Hence,
given the constraints of the project, we would like to employ the process model



2.3 Software Development Process Models 31

that is likely to maximize the chances of delivering the software, and achieve
the highest Q&P. Hence, selecting a suitable development process model for a
project is a key decision that a project manager has to take. Let us illustrate
this by a few examples.

Suppose a small team of developers has been entrusted with the task of
building a small auction site for a local university. The university administration
is willing to spend some time at the start to help develop the requirements, but
it is expected that their availability will be limited later. The team has been
given 4 months to finish the project, and an extension of the deadline seems
very improbable. It also seems that the auction site will have some features that
are essential, but will also have some features that are desirable but without
which the system can function reasonably well.

With these constraints, it is clear that a waterfall model is not suitable
for this project, as the “all or nothing” risk that it entails is unacceptable
due to the inflexible deadline. The iterative enhancement model where each
iteration does a complete waterfall is also not right as it requires requirements
analysis for each iteration, and the users and clients are not available later.
However, the iterative delivery approach in which the complete requirements
are done in the first iteration but delivery is done in iterations seems well suited,
with delivery being done in two (or three) iterations (as time is short). From
the requirements, the project team can decide what functionality is essential
to have in a working system and include it in the first iteration. The other
desirable features can be planned for the second iteration. With this approach,
the chances of completing the first iteration before the final deadline increase.
That is, with this model, the chances of delivering a working system increase.
RUP, as it allows iterations in each phase, is also a suitable model.

Consider another example where the customers are in a highly competitive
environment where requirements depend on what the competition is doing, and
delivering functionality regularly is highly desirable. Furthermore, to reduce
cost, the customer wants to outsource as much project work as possible to
another team in another country.

For this project, clearly waterfall is not suitable as requirements are not even
known at the start. Iterative enhancement also may not work as it may not be
able to deliver rapidly. XP will be hard to apply as it requires that the entire
team, including the customer, be collocated. For this project, the timeboxing
model seems to fit the best. The whole project can employ three teams—one
of analysts who will work with the customer to determine the requirements,
one to do the development (which could be in some low-cost destination), and
the third to do the deployment, which will be where the site is hosted. By
suitably staffing the teams, the duration of each of the three phases—analysis
and design, build, and deployment—can be made approximately equal. Then



32 2. Software Processes

the timeboxing model can be applied.
Consider another project, where a university wants to automate the reg-

istration process. It already has a database of courses and pre-requisites, and
a database of student records. In this project, as the requirements are well
understood (since registrations have been happening manually), the waterfall
model seems to be the optimum.

2.4 Project Management Process

While the selection of the development process decides the phases and tasks
to be done, it does not specify things like how long each phase should last,
or how many resources should be assigned to a phase, or how a phase should
be monitored. And quality and productivity in the project will also depend
critically on these decisions. To meet the cost, quality, and schedule objectives,
resources have to be properly allocated to each activity for the project, and
progress of different activities has to be monitored and corrective actions taken
when needed. All these activities are part of the project management process.
Hence, a project management process is necessary to ensure that the engineer-
ing process ends up meeting the real-world objectives of cost, schedule, and
quality.

The project management process specifies all activities that need to be
done by the project management to ensure that cost and quality objectives
are met. Its basic task is to ensure that, once a development process is chosen,
it is implemented optimally. That is, the basic task is to plan the detailed
implementation of the process for the particular project and then ensure that
the plan is properly executed. For a large project, a proper management process
is essential for success.

The activities in the management process for a project can be grouped
broadly into three phases: planning, monitoring and control, and termination
analysis. Project management begins with planning, which is perhaps the most
critical project management activity. The goal of this phase is to develop a plan
for software development following which the objectives of the project can be
met successfully and efficiently. A software plan is usually produced before the
development activity begins and is updated as development proceeds and data
about progress of the project becomes available. During planning, the major
activities are cost estimation, schedule and milestone determination, project
staffing, quality control plans, and controlling and monitoring plans. Project
planning is undoubtedly the single most important management activity, and
it forms the basis for monitoring and control. We will devote one full chapter



2.4 Project Management Process 33

later in the book to project planning.
Project monitoring and control phase of the management process is the

longest in terms of duration; it encompasses most of the development process.
It includes all activities the project management has to perform while the
development is going on to ensure that project objectives are met and the
development proceeds according to the developed plan (and update the plan,
if needed). As cost, schedule, and quality are the major driving forces, most of
the activity of this phase revolves around monitoring factors that affect these.
Monitoring potential risks for the project, which might prevent the project from
meeting its objectives, is another important activity during this phase. And if
the information obtained by monitoring suggests that objectives may not be
met, necessary actions are taken in this phase by exerting suitable control on
the development activities.

Monitoring a development process requires proper information about the
project. Such information is typically obtained by the management process from
the development process. Consequently, the implementation of a development
process model should ensure that each step in the development process produces
information that the management process needs for that step. That is, the
development process provides the information the management process needs.
However, interpretation of the information is part of monitoring and control.

Whereas monitoring and control last the entire duration of the project,
the last phase of the management process—termination analysis—is performed
when the development process is over. The basic reason for performing termi-
nation analysis is to provide information about the development process and
learn from the project in order to improve the process. This phase is also of-
ten called postmortem analysis. In iterative development, this analysis can be
done after each iteration to provide feedback to improve the execution of fur-
ther iterations. We will not discuss it further in the book; for an example of a
postmortem report the reader is referred to [57].

The temporal relationship between the management process and the devel-
opment process is shown in Figure 2.12. This is an idealized relationship show-
ing that planning is done before development begins, and termination analysis
is done after development is over. As the figure shows, during the development,
from the various phases of the development process, quantitative information
flows to the monitoring and control phase of the management process, which
uses the information to exert control on the development process.

We will in a later chapter discuss in detail the project planning phase. As a
plan also includes planning for monitoring, we will not discuss the monitoring
separately but discuss it as part of the planning activity.



34 2. Software Processes

Figure 2.12: Temporal relationship between development and management pro-
cess.

2.5 Summary

– The quality and productivity achieved in a software project depends on the
process used for executing the project. Due to this, processes form the heart
of software engineering.

– A process is the set of activities that are performed in some order so that
the desired results will be achieved. A process model is a general process
specification which has been found to be best suited for some situations.

– A software process consists of many different component processes, most im-
portant being the development process and the project management process.

– Development process focuses on how the software is to be engineered. There
are many different process models, each being well suited for some type of
problems.

– The waterfall model is conceptually the simplest model of software de-
velopment, where the requirement, design, coding, and testing phases are
performed in linear progression. It has been very widely used, and is suit-
able for well-understood problems.

– In the prototyping model, a prototype is built before building the final
system, which is used to further develop the requirements leading to more
stable requirements. This is useful for projects where requirements are not
clear.

– In the iterative development model, software is developed in iterations,
each iteration resulting in a working software system. This model does not



2.5 Summary 35

require all requirements to be known at the start, allows feedback from
earlier iterations for next ones, and reduces risk as it delivers value as the
project proceeds.

– In RUP, a project is executed in a sequence of four phases—inception, elab-
oration, construction, and transition, each ending in a defined milestone. A
phase may itself be done iteratively. The subprocesses of requirements, de-
sign, coding, testing, etc. are considered as active throughout the project,
though their intensity varies from phase to phase. RUP is a flexible frame-
work which can allow a project to follow a traditional waterfall if it wants
to, or allow prototyping, if it so wishes.

– In the timeboxing model, the different iterations are of equal time duration,
and are divided into equal length stages. There is a committed team for
each stage of an iteration. The different iterations are then executed in
a pipelined manner, with each dedicated team working on its stage but
for different iterations. As multiple iterations are concurrently active, this
model reduces the average completion time of each iteration and hence is
useful in situations where short cycle time is highly desirable.

– Agile approaches to development are based on some key principles like
developing software in small iterations, working system as the measure of
progress, and allowing change at any time. In extreme programming (XP)
approach, a project starts with short user stories, details of which are
obtained in the iteration in which they are implemented. In an iteration,
development is done by programmer-pairs, following the practices of test-
driven development, frequent integration, and having simple designs which
are refactored when needed.

– The project management process focuses on planning and controlling the de-
velopment process and consists of three major phases—planning, monitoring
and control, and termination analysis. Much of project management revolves
around the project plan, which is produced during the planning phase.

Self-Assessment Exercises

1. What is the relationship between a process model, process specification, and
process for a project?

2. What are the key outputs during an iteration in a project following an iterative
development model?

3. Which of the development process models discussed in this chapter would you
employ for the following projects?



36 2. Software Processes

a) A simple data processing project.
b) A data entry system for office staff who have never used computers before.

The user interface and user-friendliness are extremely important.
c) A spreadsheet system that has some basic features and many other desirable

features that use these basic features.
d) A web-based system for a new business where requirements are changing fast

and where an in-house development team is available for all aspects of the
project.

e) A Web-site for an on-line store which has a long list of desired features it
wants to add, and it wants a new release with new features to be done very
frequently.

4. A project uses the timeboxing process model with three stages in each time box
(as discussed in the chapter), but with unequal length. Suppose the requirement
specification stage takes 2 weeks with a team of 2 people, the build stage takes
3 weeks with a team of 4 people, and deployment takes 1 week with a team of
2 people. Design the process for this project that maximizes resource utilization.
Assume that each resource can do any task. (Hint: Exploit the fact that the sum
of durations of the first and the third stage is equal to the duration of the second
stage.)

5. What effect is the project monitoring activity likely to have on the development
process?


