
Preface

This book is an evolution from my book A First Course in Information
Theory published in 2002 when network coding was still at its infancy. The
last few years have witnessed the rapid development of network coding into
a research field of its own in information science. With its root in informa-
tion theory, network coding has not only brought about a paradigm shift in
network communications at large, but also had significant influence on such
specific research fields as coding theory, networking, switching, wireless com-
munications, distributed data storage, cryptography, and optimization theory.
While new applications of network coding keep emerging, the fundamental re-
sults that lay the foundation of the subject are more or less mature. One of
the main goals of this book therefore is to present these results in a unifying
and coherent manner.

While the previous book focused only on information theory for discrete
random variables, the current book contains two new chapters on information
theory for continuous random variables, namely the chapter on differential
entropy and the chapter on continuous-valued channels. With these topics
included, the book becomes more comprehensive and is more suitable to be
used as a textbook for a course in an electrical engineering department.

What Is in This book

Out of the 21 chapters in this book, the first 16 chapters belong to Part I,
Components of Information Theory, and the last 5 chapters belong to Part II,
Fundamentals of Network Coding. Part I covers the basic topics in information
theory and prepares the reader for the discussions in Part II. A brief rundown
of the chapters will give a better idea of what is in this book.

Chapter 1 contains a high-level introduction to the contents of this book.
First, there is a discussion on the nature of information theory and the main
results in Shannon’s original paper in 1948 which founded the field. There are
also pointers to Shannon’s biographies and his works.

Chapter 2 introduces Shannon’s information measures for discrete ran-
dom variables and their basic properties. Useful identities and inequalities in
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information theory are derived and explained. Extra care is taken in handling
joint distributions with zero probability masses. There is a section devoted
to the discussion of maximum entropy distributions. The chapter ends with a
section on the entropy rate of a stationary information source.

Chapter 3 is an introduction to the theory of I-Measure which establishes
a one-to-one correspondence between Shannon’s information measures and
set theory. A number of examples are given to show how the use of informa-
tion diagrams can simplify the proofs of many results in information theory.
Such diagrams are becoming standard tools for solving information theory
problems.

Chapter 4 is a discussion of zero-error data compression by uniquely de-
codable codes, with prefix codes as a special case. A proof of the entropy
bound for prefix codes which involves neither the Kraft inequality nor the
fundamental inequality is given. This proof facilitates the discussion of the
redundancy of prefix codes.

Chapter 5 is a thorough treatment of weak typicality. The weak asymp-
totic equipartition property and the source coding theorem are discussed. An
explanation of the fact that a good data compression scheme produces almost
i.i.d. bits is given. There is also an introductory discussion of the Shannon–
McMillan–Breiman theorem. The concept of weak typicality will be further
developed in Chapter 10 for continuous random variables.

Chapter 6 contains a detailed discussion of strong typicality which applies
to random variables with finite alphabets. The results developed in this chap-
ter will be used for proving the channel coding theorem and the rate-distortion
theorem in the next two chapters.

The discussion in Chapter 7 of the discrete memoryless channel is an en-
hancement of the discussion in the previous book. In particular, the new
definition of the discrete memoryless channel enables rigorous formulation
and analysis of coding schemes for such channels with or without feed-
back. The proof of the channel coding theorem uses a graphical model
approach that helps explain the conditional independence of the random
variables.

Chapter 8 is an introduction to rate-distortion theory. The version of the
rate-distortion theorem here, proved by using strong typicality, is a stronger
version of the original theorem obtained by Shannon.

In Chapter 9, the Blahut–Arimoto algorithms for computing the channel
capacity and the rate-distortion function are discussed, and a simplified proof
for convergence is given. Great care is taken in handling distributions with
zero probability masses.

Chapters 10 and 11 are devoted to the discussion of information theory for
continuous random variables. Chapter 10 introduces differential entropy and
related information measures, and their basic properties are discussed. The
asymptotic equipartition property for continuous random variables is proved.
The last section on maximum differential entropy distributions echoes the
section in Chapter 2 on maximum entropy distributions.
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Chapter 11 discusses a variety of continuous-valued channels, with the
continuous memoryless channel being the basic building block. In proving the
capacity of the memoryless Gaussian channel, a careful justification is given for
the existence of the differential entropy of the output random variable. Based
on this result, the capacity of a system of parallel/correlated Gaussian chan-
nels is obtained. Heuristic arguments leading to the formula for the capacity of
the bandlimited white/colored Gaussian channel are given. The chapter ends
with a proof of the fact that zero-mean Gaussian noise is the worst additive
noise.

Chapter 12 explores the structure of the I-Measure for Markov structures.
Set-theoretic characterizations of full conditional independence and Markov
random field are discussed. The treatment of Markov random field here maybe
too specialized for the average reader, but the structure of the I-Measure
and the simplicity of the information diagram for a Markov chain are best
explained as a special case of a Markov random field.

Information inequalities are sometimes called the laws of information
theory because they govern the impossibilities in information theory. In
Chapter 13, the geometrical meaning of information inequalities and the re-
lation between information inequalities and conditional independence are ex-
plained in depth. The framework for information inequalities discussed here
is the basis of the next two chapters.

Chapter 14 explains how the problem of proving information inequalities
can be formulated as a linear programming problem. This leads to a complete
characterization of all information inequalities provable by conventional tech-
niques. These inequalities, called Shannon-type inequalities, can be proved by
the World Wide Web available software package ITIP. It is also shown how
Shannon-type inequalities can be used to tackle the implication problem of
conditional independence in probability theory.

Shannon-type inequalities are all the information inequalities known dur-
ing the first half century of information theory. In the late 1990s, a few new
inequalities, called non-Shannon-type inequalities, were discovered. These in-
equalities imply the existence of laws in information theory beyond those laid
down by Shannon. In Chapter 15, we discuss these inequalities and their ap-
plications.

Chapter 16 explains an intriguing relation between information theory
and group theory. Specifically, for every information inequality satisfied by
any joint probability distribution, there is a corresponding group inequality
satisfied by any finite group and its subgroups and vice versa. Inequalities
of the latter type govern the orders of any finite group and their subgroups.
Group-theoretic proofs of Shannon-type information inequalities are given. At
the end of the chapter, a group inequality is obtained from a non-Shannon-
type inequality discussed in Chapter 15. The meaning and the implication of
this inequality are yet to be understood.

Chapter 17 starts Part II of the book with a discussion of the butterfly
network, the primary example in network coding. Variations of the butterfly
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network are analyzed in detail. The advantage of network coding over store-
and-forward in wireless and satellite communications is explained through a
simple example. We also explain why network coding with multiple infor-
mation sources is substantially different from network coding with a single
information source.

In Chapter 18, the fundamental bound for single-source network coding,
called the max-flow bound, is explained in detail. The bound is established
for a general class of network codes.

In Chapter 19, we discuss various classes of linear network codes on acyclic
networks that achieve the max-flow bound to different extents. Static network
codes, a special class of linear network codes that achieves the max-flow bound
in the presence of channel failure, are also discussed. Polynomial-time algo-
rithms for constructing these codes are presented.

In Chapter 20, we formulate and analyze convolutional network codes on
cyclic networks. The existence of such codes that achieve the max-flow bound
is proved.

Network coding theory is further developed in Chapter 21. The scenario
when more than one information source are multicast in a point-to-point
acyclic network is discussed. An implicit characterization of the achievable
information rate region which involves the framework for information inequal-
ities developed in Part I is proved.

How to Use This book
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Part I of this book by itself may be regarded as a comprehensive textbook
in information theory. The main reason why the book is in the present form
is because in my opinion, the discussion of network coding in Part II is in-
complete without Part I. Nevertheless, except for Chapter 21 on multi-source
network coding, Part II by itself may be used satisfactorily as a textbook on
single-source network coding.

An elementary course on probability theory and an elementary course
on linear algebra are prerequisites to Part I and Part II, respectively. For
Chapter 11, some background knowledge on digital communication systems
would be helpful, and for Chapter 20, some prior exposure to discrete-time
linear systems is necessary. The reader is recommended to read the chapters
according to the above chart. However, one will not have too much difficulty
jumping around in the book because there should be sufficient references to
the previous relevant sections.

This book inherits the writing style from the previous book, namely that all
the derivations are from the first principle. The book contains a large number
of examples, where important points are very often made. To facilitate the
use of the book, there is a summary at the end of each chapter.

This book can be used as a textbook or a reference book. As a textbook,
it is ideal for a two-semester course, with the first and second semesters cov-
ering selected topics from Part I and Part II, respectively. A comprehensive
instructor’s manual is available upon request. Please contact the author at
whyeung@ie.cuhk.edu.hk for information and access.

Just like any other lengthy document, this book for sure contains errors
and omissions. To alleviate the problem, an errata will be maintained at the
book homepage http://www.ie.cuhk.edu.hk/IT book2/.

Hong Kong, China Raymond W. Yeung
December, 2007
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Information Measures

Shannon’s information measures refer to entropy, conditional entropy, mutual
information, and conditional mutual information. They are the most impor-
tant measures of information in information theory. In this chapter, we in-
troduce these measures and establish some basic properties they possess. The
physical meanings of these measures will be discussed in depth in subsequent
chapters. We then introduce the informational divergence which measures
the “distance” between two probability distributions and prove some useful
inequalities in information theory. The chapter ends with a section on the
entropy rate of a stationary information source.

2.1 Independence and Markov Chains

We begin our discussion in this chapter by reviewing two basic concepts in
probability: independence of random variables and Markov chain. All the ran-
dom variables in this book except for Chapters 10 and 11 are assumed to be
discrete unless otherwise specified.

Let X be a random variable taking values in an alphabet X . The probabil-
ity distribution forX is denoted as {pX(x), x ∈ X}, with pX(x) = Pr{X = x}.
When there is no ambiguity, pX(x) will be abbreviated as p(x), and {p(x)}
will be abbreviated as p(x). The support of X, denoted by SX , is the set of
all x ∈ X such that p(x) > 0. If SX = X , we say that p is strictly positive.
Otherwise, we say that p is not strictly positive, or p contains zero probability
masses. All the above notations naturally extend to two or more random vari-
ables. As we will see, probability distributions with zero probability masses
are very delicate, and they need to be handled with great care.

Definition 2.1. Two random variables X and Y are independent, denoted by
X ⊥ Y , if

p(x, y) = p(x)p(y) (2.1)

for all x and y (i.e., for all (x, y) ∈ X × Y).
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For more than two random variables, we distinguish between two types of
independence.

Definition 2.2 (Mutual Independence). For n ≥ 3, random variables
X1,X2, · · · ,Xn are mutually independent if

p(x1, x2, · · · , xn) = p(x1)p(x2) · · · p(xn) (2.2)

for all x1, x2, · · ·, xn.

Definition 2.3 (Pairwise Independence). For n ≥ 3, random variables
X1,X2, · · · ,Xn are pairwise independent if Xi and Xj are independent for all
1 ≤ i < j ≤ n.

Note that mutual independence implies pairwise independence. We leave
it as an exercise for the reader to show that the converse is not true.

Definition 2.4 (Conditional Independence). For random variables X,Y ,
and Z, X is independent of Z conditioning on Y , denoted by X ⊥ Z|Y , if

p(x, y, z)p(y) = p(x, y)p(y, z) (2.3)

for all x, y, and z, or equivalently,

p(x, y, z) =

{
p(x,y)p(y,z)

p(y) = p(x, y)p(z|y) if p(y) > 0
0 otherwise

. (2.4)

The first definition of conditional independence above is sometimes more
convenient to use because it is not necessary to distinguish between the cases
p(y) > 0 and p(y) = 0. However, the physical meaning of conditional inde-
pendence is more explicit in the second definition.

Proposition 2.5. For random variables X,Y , and Z, X ⊥ Z|Y if and only if

p(x, y, z) = a(x, y)b(y, z) (2.5)

for all x, y, and z such that p(y) > 0.

Proof. The ‘only if’ part follows immediately from the definition of conditional
independence in (2.4), so we will only prove the ‘if’ part. Assume

p(x, y, z) = a(x, y)b(y, z) (2.6)

for all x, y, and z such that p(y) > 0. Then for such x, y, and z, we have

p(x, y) =
∑

z

p(x, y, z) =
∑

z

a(x, y)b(y, z) = a(x, y)
∑

z

b(y, z) (2.7)
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and

p(y, z) =
∑

x

p(x, y, z) =
∑

x

a(x, y)b(y, z) = b(y, z)
∑

x

a(x, y). (2.8)

Furthermore,

p(y) =
∑

z

p(y, z) =

(∑
x

a(x, y)

)(∑
z

b(y, z)

)
> 0. (2.9)

Therefore,

p(x, y)p(y, z)
p(y)

=

(
a(x, y)

∑
z

b(y, z)

)(
b(y, z)

∑
x

a(x, y)

)
(∑

x

a(x, y)

)(∑
z

b(y, z)

) (2.10)

= a(x, y)b(y, z) (2.11)
= p(x, y, z). (2.12)

For x, y, and z such that p(y) = 0, since

0 ≤ p(x, y, z) ≤ p(y) = 0, (2.13)

we have
p(x, y, z) = 0. (2.14)

Hence, X ⊥ Z|Y according to (2.4). The proof is accomplished. ��

Definition 2.6 (Markov Chain). For random variables X1,X2, · · · ,Xn,
where n ≥ 3, X1 → X2 → · · · → Xn forms a Markov chain if

p(x1, x2, · · · , xn)p(x2)p(x3) · · · p(xn−1)
= p(x1, x2)p(x2, x3) · · · p(xn−1, xn) (2.15)

for all x1, x2, · · ·, xn, or equivalently,

p(x1, x2, · · · , xn) ={
p(x1, x2)p(x3|x2) · · · p(xn|xn−1) if p(x2), p(x3), · · · , p(xn−1) > 0
0 otherwise . (2.16)

We note that X ⊥ Z|Y is equivalent to the Markov chain X → Y → Z.

Proposition 2.7. X1 → X2 → · · · → Xn forms a Markov chain if and only
if Xn → Xn−1 → · · · → X1 forms a Markov chain.
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Proof. This follows directly from the symmetry in the definition of a Markov
chain in (2.15). ��

In the following, we state two basic properties of a Markov chain. The
proofs are left as an exercise.

Proposition 2.8. X1 → X2 → · · · → Xn forms a Markov chain if and only if

X1 → X2 → X3

(X1,X2) → X3 → X4

...
(X1,X2, · · · ,Xn−2) → Xn−1 → Xn

(2.17)

form Markov chains.

Proposition 2.9. X1 → X2 → · · · → Xn forms a Markov chain if and only if

p(x1, x2, · · · , xn) = f1(x1, x2)f2(x2, x3) · · · fn−1(xn−1, xn) (2.18)

for all x1, x2, · · ·, xn such that p(x2), p(x3), · · · , p(xn−1) > 0.

Note that Proposition 2.9 is a generalization of Proposition 2.5. From
Proposition 2.9, one can prove the following important property of a Markov
chain. Again, the details are left as an exercise.

Proposition 2.10 (Markov Subchains). Let Nn = {1, 2, · · · , n} and let
X1 → X2 → · · · → Xn form a Markov chain. For any subset α of Nn, denote
(Xi, i ∈ α) by Xα. Then for any disjoint subsets α1, α2, · · · , αm of Nn such
that

k1 < k2 < · · · < km (2.19)

for all kj ∈ αj, j = 1, 2, · · · ,m,

Xα1 → Xα2 → · · · → Xαm
(2.20)

forms a Markov chain. That is, a subchain of X1 → X2 → · · · → Xn is also
a Markov chain.

Example 2.11. Let X1 → X2 → · · · → X10 form a Markov chain and
α1 = {1, 2}, α2 = {4}, α3 = {6, 8}, and α4 = {10} be subsets of N10. Then
Proposition 2.10 says that

(X1,X2) → X4 → (X6,X8) → X10 (2.21)

also forms a Markov chain.
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We have been very careful in handling probability distributions with zero
probability masses. In the rest of the section, we show that such distributions
are very delicate in general. We first prove the following property of a strictly
positive probability distribution involving four random variables.1

Proposition 2.12. Let X1,X2,X3, and X4 be random variables such that
p(x1, x2, x3, x4) is strictly positive. Then

X1 ⊥ X4|(X2,X3)
X1 ⊥ X3|(X2,X4)

}
⇒ X1 ⊥ (X3,X4)|X2. (2.22)

Proof. If X1 ⊥ X4|(X2,X3), then

p(x1, x2, x3, x4) =
p(x1, x2, x3)p(x2, x3, x4)

p(x2, x3)
. (2.23)

On the other hand, if X1 ⊥ X3|(X2,X4), then

p(x1, x2, x3, x4) =
p(x1, x2, x4)p(x2, x3, x4)

p(x2, x4)
. (2.24)

Equating (2.23) and (2.24), we have

p(x1, x2, x3) =
p(x2, x3)p(x1, x2, x4)

p(x2, x4)
. (2.25)

Therefore,

p(x1, x2) =
∑
x3

p(x1, x2, x3) (2.26)

=
∑
x3

p(x2, x3)p(x1, x2, x4)
p(x2, x4)

(2.27)

=
p(x2)p(x1, x2, x4)

p(x2, x4)
(2.28)

or
p(x1, x2, x4)
p(x2, x4)

=
p(x1, x2)
p(x2)

. (2.29)

Hence from (2.24),

p(x1, x2, x3, x4) =
p(x1, x2, x4)p(x2, x3, x4)

p(x2, x4)
=
p(x1, x2)p(x2, x3, x4)

p(x2)
(2.30)

for all x1, x2, x3, and x4, i.e., X1 ⊥ (X3,X4)|X2. ��
1 Proposition 2.12 is called the intersection axiom in Bayesian networks. See [287].
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If p(x1, x2, x3, x4) = 0 for some x1, x2, x3, and x4, i.e., p is not strictly
positive, the arguments in the above proof are not valid. In fact, the propo-
sition may not hold in this case. For instance, let X1 = Y , X2 = Z, and
X3 = X4 = (Y,Z), where Y and Z are independent random variables. Then
X1 ⊥ X4|(X2,X3), X1 ⊥ X3|(X2,X4), but X1 
⊥ (X3,X4)|X2. Note that
for this construction, p is not strictly positive because p(x1, x2, x3, x4) = 0 if
x3 
= (x1, x2) or x4 
= (x1, x2).

The above example is somewhat counter-intuitive because it appears that
Proposition 2.12 should hold for all probability distributions via a continuity
argument2 which would go like this. For any distribution p, let {pk} be a
sequence of strictly positive distributions such that pk → p and pk satisfies
(2.23) and (2.24) for all k, i.e.,

pk(x1, x2, x3, x4)pk(x2, x3) = pk(x1, x2, x3)pk(x2, x3, x4) (2.31)

and

pk(x1, x2, x3, x4)pk(x2, x4) = pk(x1, x2, x4)pk(x2, x3, x4). (2.32)

Then by the proposition, pk also satisfies (2.30), i.e.,

pk(x1, x2, x3, x4)pk(x2) = pk(x1, x2)pk(x2, x3, x4). (2.33)

Letting k → ∞, we have

p(x1, x2, x3, x4)p(x2) = p(x1, x2)p(x2, x3, x4) (2.34)

for all x1, x2, x3, and x4, i.e., X1 ⊥ (X3,X4)|X2. Such an argument would
be valid if there always exists a sequence {pk} as prescribed. However, the
existence of the distribution p(x1, x2, x3, x4) constructed immediately after
Proposition 2.12 simply says that it is not always possible to find such a
sequence {pk}.

Therefore, probability distributions which are not strictly positive can
be very delicate. For strictly positive distributions, we see from Proposi-
tion 2.5 that their conditional independence structures are closely related to
the factorization problem of such distributions, which has been investigated
by Chan [59].

2.2 Shannon’s Information Measures

We begin this section by introducing the entropy of a random variable. As
we will see shortly, all Shannon’s information measures can be expressed as
linear combinations of entropies.

2 See Section 2.3 for a more detailed discussion on continuous functionals.
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Definition 2.13. The entropy H(X) of a random variable X is defined as

H(X) = −
∑

x

p(x) log p(x). (2.35)

In the definitions of all information measures, we adopt the convention
that summation is taken over the corresponding support. Such a convention
is necessary because p(x) log p(x) in (2.13) is undefined if p(x) = 0.

The base of the logarithm in (2.13) can be chosen to be any convenient
real number greater than 1. We write H(X) as Hα(X) when the base of the
logarithm is α. When the base of the logarithm is 2, the unit for entropy is
the bit. When the base of the logarithm is e, the unit for entropy is the nat.
When the base of the logarithm is an integer D ≥ 2, the unit for entropy is
the D-it (D-ary digit). In the context of source coding, the base is usually
taken to be the size of the code alphabet. This will be discussed in Chapter 4.

In computer science, a bit means an entity which can take the value 0 or 1.
In information theory, the entropy of a random variable is measured in bits.
The reader should distinguish these two meanings of a bit from each other
carefully.

Let g(X) be any function of a random variable X. We will denote the
expectation of g(X) by Eg(X), i.e.,

Eg(X) =
∑

x

p(x)g(x), (2.36)

where the summation is over SX . Then the definition of the entropy of a
random variable X can be written as

H(X) = −E log p(X). (2.37)

Expressions of Shannon’s information measures in terms of expectations will
be useful in subsequent discussions.

The entropy H(X) of a random variable X is a functional of the prob-
ability distribution p(x) which measures the average amount of information
contained in X or, equivalently, the average amount of uncertainty removed
upon revealing the outcome of X. Note that H(X) depends only on p(x), not
on the actual values in X . Occasionally, we also denote H(X) by H(p).

For 0 ≤ γ ≤ 1, define

hb(γ) = −γ log γ − (1 − γ) log(1 − γ) (2.38)

with the convention 0 log 0 = 0, so that hb(0) = hb(1) = 0. With this conven-
tion, hb(γ) is continuous at γ = 0 and γ = 1. hb is called the binary entropy
function. For a binary random variable X with distribution {γ, 1 − γ},

H(X) = hb(γ). (2.39)

Figure 2.1 is the plot of hb(γ) versus γ in the base 2. Note that hb(γ)
achieves the maximum value 1 when γ = 1

2 .
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hb(γ)

γ

1

0 0.5 1

Fig. 2.1. hb(γ) versus γ in the base 2.

The definition of the joint entropy of two random variables is similar to
the definition of the entropy of a single random variable. Extension of this
definition to more than two random variables is straightforward.

Definition 2.14. The joint entropy H(X,Y ) of a pair of random variables
X and Y is defined as

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y) = −E log p(X,Y ). (2.40)

For two random variables, we define in the following the conditional en-
tropy of one random variable when the other random variable is given.

Definition 2.15. For random variables X and Y , the conditional entropy of
Y given X is defined as

H(Y |X) = −
∑
x,y

p(x, y) log p(y|x) = −E log p(Y |X). (2.41)

From (2.41), we can write

H(Y |X) =
∑

x

p(x)

[
−
∑

y

p(y|x) log p(y|x)
]
. (2.42)

The inner sum is the entropy of Y conditioning on a fixed x ∈ SX . Thus we
are motivated to express H(Y |X) as

H(Y |X) =
∑

x

p(x)H(Y |X = x), (2.43)
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where
H(Y |X = x) = −

∑
y

p(y|x) log p(y|x). (2.44)

Observe that the right-hand sides of (2.13) and (2.44) have exactly the
same form. Similarly, for H(Y |X,Z), we write

H(Y |X,Z) =
∑

z

p(z)H(Y |X,Z = z), (2.45)

where
H(Y |X,Z = z) = −

∑
x,y

p(x, y|z) log p(y|x, z). (2.46)

Proposition 2.16.

H(X,Y ) = H(X) +H(Y |X) (2.47)

and
H(X,Y ) = H(Y ) +H(X|Y ). (2.48)

Proof. Consider

H(X,Y ) = −E log p(X,Y ) (2.49)
= −E log[p(X)p(Y |X)] (2.50)
= −E log p(X) − E log p(Y |X) (2.51)
= H(X) +H(Y |X). (2.52)

Note that (2.50) is justified because the summation of the expectation is over
SXY , and we have used the linearity of expectation3 to obtain (2.51). This
proves (2.47), and (2.48) follows by symmetry. ��

This proposition has the following interpretation. Consider revealing the
outcome of a pair of random variables X and Y in two steps: first the outcome
of X and then the outcome of Y . Then the proposition says that the total
amount of uncertainty removed upon revealing both X and Y is equal to the
sum of the uncertainty removed upon revealing X (uncertainty removed in the
first step) and the uncertainty removed upon revealing Y once X is known
(uncertainty removed in the second step).

Definition 2.17. For random variables X and Y , the mutual information
between X and Y is defined as

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

= E log
p(X,Y )
p(X)p(Y )

. (2.53)

3 See Problem 5 at the end of the chapter.
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Remark I(X;Y ) is symmetrical in X and Y .

Proposition 2.18. The mutual information between a random variable X
and itself is equal to the entropy of X, i.e., I(X;X) = H(X).

Proof. This can be seen by considering

I(X;X) = E log
p(X)
p(X)2

(2.54)

= −E log p(X) (2.55)
= H(X). (2.56)

The proposition is proved. ��

Remark The entropy of X is sometimes called the self-information of X.

Proposition 2.19.

I(X;Y ) = H(X) −H(X|Y ), (2.57)
I(X;Y ) = H(Y ) −H(Y |X), (2.58)

and
I(X;Y ) = H(X) +H(Y ) −H(X,Y ), (2.59)

provided that all the entropies and conditional entropies are finite (see Exam-
ple 2.46 in Section 2.8).

The proof of this proposition is left as an exercise.

From (2.57), we can interpret I(X;Y ) as the reduction in uncertainty
about X when Y is given or, equivalently, the amount of information about
X provided by Y . Since I(X;Y ) is symmetrical in X and Y , from (2.58), we
can as well interpret I(X;Y ) as the amount of information about Y provided
by X.

The relations between the (joint) entropies, conditional entropies, and mu-
tual information for two random variables X and Y are given in Propositions
2.16 and 2.19. These relations can be summarized by the diagram in Figure 2.2
which is a variation of the Venn diagram.4 One can check that all the rela-
tions between Shannon’s information measures for X and Y which are shown
in Figure 2.2 are consistent with the relations given in Propositions 2.16 and
2.19. This one-to-one correspondence between Shannon’s information mea-
sures and set theory is not just a coincidence for two random variables. We
will discuss this in depth when we introduce the I-Measure in Chapter 3.

Analogous to entropy, there is a conditional version of mutual information
called conditional mutual information.
4 The rectangle representing the universal set in a usual Venn diagram is missing

in Figure 2.2.
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H (X,Y  )

H (X |Y  ) H (Y|X  )

H (Y  )

I (X;Y  )
H (X  )

Fig. 2.2. Relationship between entropies and mutual information for two random
variables.

Definition 2.20. For random variables X, Y , and Z, the mutual information
between X and Y conditioning on Z is defined as

I(X;Y |Z) =
∑
x,y,z

p(x, y, z) log
p(x, y|z)
p(x|z)p(y|z) = E log

p(X,Y |Z)
p(X|Z)p(Y |Z)

. (2.60)

Remark I(X;Y |Z) is symmetrical in X and Y .

Analogous to conditional entropy, we write

I(X;Y |Z) =
∑

z

p(z)I(X;Y |Z = z), (2.61)

where

I(X;Y |Z = z) =
∑
x,y

p(x, y|z) log
p(x, y|z)
p(x|z)p(y|z) . (2.62)

Similarly, when conditioning on two random variables, we write

I(X;Y |Z, T ) =
∑

t

p(t)I(X;Y |Z, T = t), (2.63)

where

I(X;Y |Z, T = t) =
∑
x,y,z

p(x, y, z|t) log
p(x, y|z, t)

p(x|z, t)p(y|z, t) . (2.64)

Conditional mutual information satisfies the same set of relations given in
Propositions 2.18 and 2.19 for mutual information except that all the terms
are now conditioned on a random variable Z. We state these relations in the
next two propositions. The proofs are omitted.
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Proposition 2.21. The mutual information between a random variable X
and itself conditioning on a random variable Z is equal to the conditional
entropy of X given Z, i.e., I(X;X|Z) = H(X|Z).

Proposition 2.22.

I(X;Y |Z) = H(X|Z) −H(X|Y,Z), (2.65)
I(X;Y |Z) = H(Y |Z) −H(Y |X,Z), (2.66)

and
I(X;Y |Z) = H(X|Z) +H(Y |Z) −H(X,Y |Z), (2.67)

provided that all the conditional entropies are finite.

Remark All Shannon’s information measures are finite if the random vari-
ables involved have finite alphabets. Therefore, Propositions 2.19 and 2.22
apply provided that all the random variables therein have finite alphabets.

To conclude this section, we show that all Shannon’s information measures
are special cases of conditional mutual information. Let Φ be a degenerate ran-
dom variable, i.e., Φ takes a constant value with probability 1. Consider the
mutual information I(X;Y |Z). When X = Y and Z = Φ, I(X;Y |Z) becomes
the entropy H(X). When X = Y , I(X;Y |Z) becomes the conditional entropy
H(X|Z). When Z = Φ, I(X;Y |Z) becomes the mutual information I(X;Y ).
Thus all Shannon’s information measures are special cases of conditional mu-
tual information.

2.3 Continuity of Shannon’s Information Measures for
Fixed Finite Alphabets

In this section, we prove that for fixed finite alphabets, all Shannon’s infor-
mation measures are continuous functionals of the joint distribution of the
random variables involved. To formulate the notion of continuity, we first
introduce the variational distance5 as a distance measure between two prob-
ability distributions on a common alphabet.

Definition 2.23. Let p and q be two probability distributions on a common
alphabet X . The variational distance between p and q is defined as

V (p, q) =
∑
x∈X

|p(x) − q(x)|. (2.68)

5 The variational distance is also referred to as the L1 distance in mathematics.
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For a fixed finite alphabet X , let PX be the set of all distributions on X .
Then according to (2.13), the entropy of a distribution p on an alphabet X is
defined as

H(p) = −
∑
x∈Sp

p(x) log p(x), (2.69)

where Sp denotes the support of p and Sp ⊂ X . In order for H(p) to be
continuous with respect to convergence in variational distance6 at a particular
distribution p ∈ PX , for any ε > 0, there exists δ > 0 such that

|H(p) −H(q)| < ε (2.70)

for all q ∈ PX satisfying
V (p, q) < δ, (2.71)

or equivalently,

lim
p′→p

H(p′) = H
(

lim
p′→p

p′
)

= H(p), (2.72)

where the convergence p′ → p is in variational distance.
Since a log a→ 0 as a→ 0, we define a function l : [0,∞) →  by

l(a) =
{
a log a if a > 0
0 if a = 0 , (2.73)

i.e., l(a) is a continuous extension of a log a. Then (2.69) can be rewritten as

H(p) = −
∑
x∈X

l(p(x)), (2.74)

where the summation above is over all x in X instead of Sp. Upon defining a
function lx : PX →  for all x ∈ X by

lx(p) = l(p(x)), (2.75)

(2.74) becomes
H(p) = −

∑
x∈X

lx(p). (2.76)

Evidently, lx(p) is continuous in p (with respect to convergence in variational
distance). Since the summation in (2.76) involves a finite number of terms,
we conclude that H(p) is a continuous functional of p.

We now proceed to prove the continuity of conditional mutual information
which covers all cases of Shannon’s information measures. Consider I(X;Y |Z)
and let pXY Z be the joint distribution of X, Y , and Z, where the alphabets
X , Y, and Z are assumed to be finite. From (2.47) and (2.67), we obtain

I(X;Y |Z) = H(X,Z) +H(Y,Z) −H(X,Y,Z) −H(Z). (2.77)
6 Convergence in variational distance is the same as L1-convergence.
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Note that each term on the right-hand side above is the unconditional entropy
of the corresponding marginal distribution. Then (2.77) can be rewritten as

IX;Y |Z(pXY Z) = H(pXZ) +H(pY Z) −H(pXY Z) −H(pZ), (2.78)

where we have used IX;Y |Z(pXY Z) to denote I(X;Y |Z). It follows that

lim
p′

XY Z
→pXY Z

IX;Y |Z(p′XY Z)

= lim
p′

XY Z
→pXY Z

[H(p′XZ) +H(p′Y Z) −H(p′XY Z) −H(p′Z)] (2.79)

= lim
p′

XY Z
→pXY Z

H(p′XZ) + lim
p′

XY Z
→pXY Z

H(p′Y Z)

− lim
p′

XY Z
→pXY Z

H(p′XY Z) − lim
p′

XY Z
→pXY Z

H(p′Z). (2.80)

It can readily be proved, for example, that

lim
p′

XY Z
→pXY Z

p′XZ = pXZ , (2.81)

so that

lim
p′

XY Z
→pXY Z

H(p′XZ) = H
(

lim
p′

XY Z
→pXY Z

p′XZ

)
= H(pXZ) (2.82)

by the continuity of H(·) when the alphabets involved are fixed and finite.
The details are left as an exercise. Hence, we conclude that

lim
p′

XY Z
→pXY Z

IX;Y |Z(p′XY Z)

= H(pXZ) +H(pY Z) −H(pXY Z) −H(pZ) (2.83)
= IX;Y |Z(pXY Z), (2.84)

i.e., IX;Y |Z(pXY Z) is a continuous functional of pXY Z .
Since conditional mutual information covers all cases of Shannon’s infor-

mation measures, we have proved that all Shannon’s information measures
are continuous with respect to convergence in variational distance under the
assumption that the alphabets are fixed and finite. It is not difficult to show
that under this assumption, convergence in variational distance is equivalent
to L2-convergence, i.e., convergence in Euclidean distance (see Problem 8). It
follows that Shannon’s information measures are also continuous with respect
to L2-convergence. The variational distance, however, is more often used as a
distance measure between two probability distributions because it can be di-
rectly related with the informational divergence to be discussed in Section 2.5.

The continuity of Shannon’s information measures we have proved in this
section is rather restrictive and needs to be applied with caution. In fact, if
the alphabets are not fixed, Shannon’s information measures are everywhere
discontinuous with respect to convergence in a number of commonly used
distance measures. We refer the readers to Problems 28–31 for a discussion of
these issues.
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2.4 Chain Rules

In this section, we present a collection of information identities known as the
chain rules which are often used in information theory.

Proposition 2.24 (Chain Rule for Entropy).

H(X1,X2, · · · ,Xn) =
n∑

i=1

H(Xi|X1, · · · ,Xi−1). (2.85)

Proof. The chain rule for n = 2 has been proved in Proposition 2.16. We
prove the chain rule by induction on n. Assume (2.85) is true for n = m,
where m ≥ 2. Then

H(X1, · · · ,Xm,Xm+1)
= H(X1, · · · ,Xm) +H(Xm+1|X1, · · · ,Xm) (2.86)

=
m∑

i=1

H(Xi|X1, · · · ,Xi−1) +H(Xm+1|X1, · · · ,Xm) (2.87)

=
m+1∑
i=1

H(Xi|X1, · · · ,Xi−1), (2.88)

where in (2.86) we have used (2.47) by letting X = (X1, · · · ,Xm) and Y =
Xm+1, and in (2.87) we have used (2.85) for n = m. This proves the chain
rule for entropy. ��

The chain rule for entropy has the following conditional version.

Proposition 2.25 (Chain Rule for Conditional Entropy).

H(X1,X2, · · · ,Xn|Y ) =
n∑

i=1

H(Xi|X1, · · · ,Xi−1, Y ). (2.89)

Proof. The proposition can be proved by considering

H(X1,X2, · · · ,Xn|Y )
= H(X1,X2, · · · ,Xn, Y ) −H(Y ) (2.90)
= H((X1, Y ),X2, · · · ,Xn) −H(Y ) (2.91)

= H(X1, Y ) +
n∑

i=2

H(Xi|X1, · · · ,Xi−1, Y ) −H(Y ) (2.92)

= H(X1|Y ) +
n∑

i=2

H(Xi|X1, · · · ,Xi−1, Y ) (2.93)

=
n∑

i=1

H(Xi|X1, · · · ,Xi−1, Y ), (2.94)
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where (2.90) and (2.93) follow from Proposition 2.16, while (2.92) follows from
Proposition 2.24.

Alternatively, the proposition can be proved by considering

H(X1,X2, · · · ,Xn|Y )

=
∑

y

p(y)H(X1,X2, · · · ,Xn|Y = y) (2.95)

=
∑

y

p(y)
n∑

i=1

H(Xi|X1, · · · ,Xi−1, Y = y) (2.96)

=
n∑

i=1

∑
y

p(y)H(Xi|X1, · · · ,Xi−1, Y = y) (2.97)

=
n∑

i=1

H(Xi|X1, · · · ,Xi−1, Y ), (2.98)

where (2.95) and (2.98) follow from (2.43) and (2.45), respectively, and (2.96)
follows from an application of Proposition 2.24 to the joint distribution of
X1,X2, · · · ,Xn conditioning on {Y = y}. This proof offers an explanation to
the observation that (2.89) can be obtained directly from (2.85) by condition-
ing on Y in every term. ��

Proposition 2.26 (Chain Rule for Mutual Information).

I(X1,X2, · · · ,Xn;Y ) =
n∑

i=1

I(Xi;Y |X1, · · · ,Xi−1). (2.99)

Proof. Consider

I(X1,X2, · · · ,Xn;Y )
= H(X1,X2, · · · ,Xn) −H(X1,X2, · · · ,Xn|Y ) (2.100)

=
n∑

i=1

[H(Xi|X1, · · · ,Xi−1) −H(Xi|X1, · · · ,Xi−1, Y )] (2.101)

=
n∑

i=1

I(Xi;Y |X1, · · · ,Xi−1), (2.102)

where in (2.101), we have invoked both Propositions 2.24 and 2.25. The chain
rule for mutual information is proved. ��

Proposition 2.27 (Chain Rule for Conditional Mutual Information).
For random variables X1,X2, · · · ,Xn, Y , and Z,

I(X1,X2, · · · ,Xn;Y |Z) =
n∑

i=1

I(Xi;Y |X1, · · · ,Xi−1, Z). (2.103)
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Proof. This is the conditional version of the chain rule for mutual information.
The proof is similar to that for Proposition 2.25. The details are omitted. ��

2.5 Informational Divergence

Let p and q be two probability distributions on a common alphabet X . We
very often want to measure how much p is different from q and vice versa. In
order to be useful, this measure must satisfy the requirements that it is always
nonnegative and it takes the zero value if and only if p = q. We denote the
support of p and q by Sp and Sq, respectively. The informational divergence
defined below serves this purpose.

Definition 2.28. The informational divergence between two probability dis-
tributions p and q on a common alphabet X is defined as

D(p‖q) =
∑

x

p(x) log
p(x)
q(x)

= Ep log
p(X)
q(X)

, (2.104)

where Ep denotes expectation with respect to p.

In the above definition, in addition to the convention that the summation
is taken over Sp, we further adopt the convention c log c

0 = ∞ for c > 0.
With this convention, if D(p‖q) < ∞, then p(x) = 0 whenever q(x) = 0, i.e.,
Sp ⊂ Sq.

In the literature, the informational divergence is also referred to as relative
entropy or the Kullback-Leibler distance. We note that D(p‖q) is not symmet-
rical in p and q, so it is not a true metric or “distance.” Moreover, D(·‖·) does
not satisfy the triangular inequality (see Problem 14).

In the rest of the book, the informational divergence will be referred to as
divergence for brevity. Before we prove that divergence is always nonnegative,
we first establish the following simple but important inequality called the
fundamental inequality in information theory.

Lemma 2.29 (Fundamental Inequality). For any a > 0,

ln a ≤ a− 1 (2.105)

with equality if and only if a = 1.

Proof. Let f(a) = ln a − a + 1. Then f ′(a) = 1/a − 1 and f ′′(a) = −1/a2.
Since f(1) = 0, f ′(1) = 0, and f ′′(1) = −1 < 0, we see that f(a) attains
its maximum value 0 when a = 1. This proves (2.105). It is also clear that
equality holds in (2.105) if and only if a = 1. Figure 2.3 is an illustration of
the fundamental inequality. ��
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1
a 

a − 1

ln a

Fig. 2.3. The fundamental inequality ln a ≤ a − 1.

Corollary 2.30. For any a > 0,

ln a ≥ 1 − 1
a

(2.106)

with equality if and only if a = 1.

Proof. This can be proved by replacing a by 1/a in (2.105). ��

We can see from Figure 2.3 that the fundamental inequality results from
the convexity of the logarithmic function. In fact, many important results in
information theory are also direct or indirect consequences of the convexity
of the logarithmic function!

Theorem 2.31 (Divergence Inequality). For any two probability distribu-
tions p and q on a common alphabet X ,

D(p‖q) ≥ 0 (2.107)

with equality if and only if p = q.

Proof. If q(x) = 0 for some x ∈ Sp, then D(p‖q) = ∞ and the theorem is
trivially true. Therefore, we assume that q(x) > 0 for all x ∈ Sp. Consider

D(p‖q) = (log e)
∑
x∈Sp

p(x) ln
p(x)
q(x)

(2.108)

≥ (log e)
∑
x∈Sp

p(x)
(

1 − q(x)
p(x)

)
(2.109)

= (log e)

⎡
⎣∑

x∈Sp

p(x) −
∑
x∈Sp

q(x)

⎤
⎦ (2.110)

≥ 0, (2.111)
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where (2.109) results from an application of (2.106), and (2.111) follows from∑
x∈Sp

q(x) ≤ 1 =
∑
x∈Sp

p(x). (2.112)

This proves (2.107).
For equality to hold in (2.107), equality must hold in (2.109) for all x ∈ Sp

and also in (2.111). For the former, we see from Lemma 2.29 that this is the
case if and only if

p(x) = q(x) for all x ∈ Sp, (2.113)

which implies ∑
x∈Sp

q(x) =
∑
x∈Sp

p(x) = 1, (2.114)

i.e., (2.111) holds with equality. Thus (2.113) is a necessary and sufficient
condition for equality to hold in (2.107).

It is immediate that p = q implies (2.113), so it remains to prove the
converse. Since

∑
x q(x) = 1 and q(x) ≥ 0 for all x, p(x) = q(x) for all x ∈ Sp

implies q(x) = 0 for all x 
∈ Sp, and therefore p = q. The theorem is proved.
��

We now prove a very useful consequence of the divergence inequality called
the log-sum inequality.

Theorem 2.32 (Log-Sum Inequality). For positive numbers a1, a2, · · · and
nonnegative numbers b1, b2, · · · such that

∑
i ai <∞ and 0 <

∑
i bi <∞,

∑
i

ai log
ai

bi
≥
(∑

i

ai

)
log
∑

i ai∑
i bi

(2.115)

with the convention that log ai

0 = ∞. Moreover, equality holds if and only if
ai/bi = constant for all i.

The log-sum inequality can easily be understood by writing it out for the
case when there are two terms in each of the summations:

a1 log
a1
b1

+ a2 log
a2
b2

≥ (a1 + a2) log
a1 + a2
b1 + b2

. (2.116)

Proof. Let a′i = ai/
∑

j aj and b′i = bi/
∑

j bj . Then {a′i} and {b′i} are proba-
bility distributions. Using the divergence inequality, we have

0 ≤
∑

i

a′i log
a′i
b′i

(2.117)

=
∑

i

ai∑
j aj

log
ai/
∑

j aj

bi/
∑

j bj
(2.118)

=
1∑
j aj

[∑
i

ai log
ai

bi
−
(∑

i

ai

)
log

∑
j aj∑
j bj

]
, (2.119)
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which implies (2.115). Equality holds if and only if a′i = b′i for all i or ai/bi =
constant for all i. The theorem is proved. ��

One can also prove the divergence inequality by using the log-sum in-
equality (see Problem 20), so the two inequalities are in fact equivalent. The
log-sum inequality also finds application in proving the next theorem which
gives a lower bound on the divergence between two probability distributions
on a common alphabet in terms of the variational distance between them. We
will see further applications of the log-sum inequality when we discuss the
convergence of some iterative algorithms in Chapter 9.

Theorem 2.33 (Pinsker’s Inequality).

D(p‖q) ≥ 1
2 ln 2

V 2(p, q). (2.120)

Both divergence and the variational distance can be used as measures of
the difference between two probability distributions defined on the same al-
phabet. Pinsker’s inequality has the important implication that for two proba-
bility distributions p and q defined on the same alphabet, if D(p‖q) or D(q‖p)
is small, then so is V (p, q). Furthermore, for a sequence of probability distri-
butions qk, as k → ∞, if D(p‖qk) → 0 or D(qk‖p) → 0, then V (p, qk) → 0.
In other words, convergence in divergence is a stronger notion of convergence
than convergence in variational distance.

The proof of Pinsker’s inequality as well as its consequence discussed above
is left as an exercise (see Problems 23 and 24).

2.6 The Basic Inequalities

In this section, we prove that all Shannon’s information measures, namely
entropy, conditional entropy, mutual information, and conditional mutual in-
formation, are always nonnegative. By this, we mean that these quantities are
nonnegative for all joint distributions for the random variables involved.

Theorem 2.34. For random variables X, Y , and Z,

I(X;Y |Z) ≥ 0, (2.121)

with equality if and only if X and Y are independent when conditioning on Z.
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Proof. Observe that

I(X;Y |Z)

=
∑
x,y,z

p(x, y, z) log
p(x, y|z)
p(x|z)p(y|z) (2.122)

=
∑

z

p(z)
∑
x,y

p(x, y|z) log
p(x, y|z)
p(x|z)p(y|z) (2.123)

=
∑

z

p(z)D(pXY |z‖pX|zpY |z), (2.124)

where we have used pXY |z to denote {p(x, y|z), (x, y) ∈ X × Y}, etc. Since
for a fixed z, both pXY |z and pX|zpY |z are joint probability distributions on
X × Y, we have

D(pXY |z‖pX|zpY |z) ≥ 0. (2.125)

Therefore, we conclude that I(X;Y |Z) ≥ 0. Finally, we see from Theorem 2.31
that I(X;Y |Z) = 0 if and only if for all z ∈ Sz,

p(x, y|z) = p(x|z)p(y|z) (2.126)

or
p(x, y, z) = p(x, z)p(y|z) (2.127)

for all x and y. Therefore, X and Y are independent conditioning on Z. The
proof is accomplished. ��

As we have seen in Section 2.2 that all Shannon’s information mea-
sures are special cases of conditional mutual information, we already have
proved that all Shannon’s information measures are always nonnegative.
The nonnegativity of all Shannon’s information measures is called the basic
inequalities.

For entropy and conditional entropy, we offer the following more direct
proof for their nonnegativity. Consider the entropyH(X) of a random variable
X. For all x ∈ SX , since 0 < p(x) ≤ 1, log p(x) ≤ 0. It then follows from the
definition in (2.13) that H(X) ≥ 0. For the conditional entropy H(Y |X) of
random variable Y given random variable X, since H(Y |X = x) ≥ 0 for each
x ∈ SX , we see from (2.43) that H(Y |X) ≥ 0.

Proposition 2.35. H(X) = 0 if and only if X is deterministic.

Proof. If X is deterministic, i.e., there exists x∗ ∈ X such that p(x∗) = 1
and p(x) = 0 for all x 
= x∗, then H(X) = −p(x∗) log p(x∗) = 0. On the
other hand, if X is not deterministic, i.e., there exists x∗ ∈ X such that
0 < p(x∗) < 1, then H(X) ≥ −p(x∗) log p(x∗) > 0. Therefore, we conclude
that H(X) = 0 if and only if X is deterministic. ��
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Proposition 2.36. H(Y |X) = 0 if and only if Y is a function of X.

Proof. From (2.43), we see that H(Y |X) = 0 if and only if H(Y |X = x)
= 0 for each x ∈ SX . Then from the last proposition, this happens if and
only if Y is deterministic for each given x. In other words, Y is a function
of X. ��

Proposition 2.37. I(X;Y ) = 0 if and only if X and Y are independent.

Proof. This is a special case of Theorem 2.34 with Z being a degenerate
random variable. ��

One can regard (conditional) mutual information as a measure of (con-
ditional) dependency between two random variables. When the (conditional)
mutual information is exactly equal to 0, the two random variables are (con-
ditionally) independent.

We refer to inequalities involving Shannon’s information measures only
(possibly with constant terms) as information inequalities. The basic inequal-
ities are important examples of information inequalities. Likewise, we refer to
identities involving Shannon’s information measures only as information iden-
tities. From the information identities (2.47), (2.57), and (2.65), we see that
all Shannon’s information measures can be expressed as linear combinations
of entropies provided that the latter are all finite. Specifically,

H(Y |X) = H(X,Y ) −H(X), (2.128)
I(X;Y ) = H(X) +H(Y ) −H(X,Y ), (2.129)

and

I(X;Y |Z) = H(X,Z) +H(Y,Z) −H(X,Y,Z) −H(Z). (2.130)

Therefore, an information inequality is an inequality which involves only
entropies.

As we will see later in the book, information inequalities form the most
important set of tools for proving converse coding theorems in information
theory. Except for a number of so-called non-Shannon-type inequalities, all
known information inequalities are implied by the basic inequalities. Infor-
mation inequalities will be studied systematically in Chapters 13, 14, and 15.
In the next section, we will prove some consequences of the basic inequalities
which are often used in information theory.

2.7 Some Useful Information Inequalities

In this section, we prove some useful consequences of the basic inequalities
introduced in the last section. Note that the conditional versions of these
inequalities can be proved by techniques similar to those used in the proof of
Proposition 2.25.
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Theorem 2.38 (Conditioning Does Not Increase Entropy).

H(Y |X) ≤ H(Y ) (2.131)

with equality if and only if X and Y are independent.

Proof. This can be proved by considering

H(Y |X) = H(Y ) − I(X;Y ) ≤ H(Y ), (2.132)

where the inequality follows because I(X;Y ) is always nonnegative. The in-
equality is tight if and only if I(X;Y ) = 0, which is equivalent by Proposi-
tion 2.37 to X and Y being independent. ��

Similarly, it can be shown that

H(Y |X,Z) ≤ H(Y |Z), (2.133)

which is the conditional version of the above proposition. These results have
the following interpretation. Suppose Y is a random variable we are interested
in, and X and Z are side-information about Y . Then our uncertainty about Y
cannot be increased on the average upon receiving side-information X. Once
we know X, our uncertainty about Y again cannot be increased on the average
upon further receiving side-information Z.

Remark Unlike entropy, the mutual information between two random vari-
ables can be increased by conditioning on a third random variable. We refer
the reader to Section 3.4 for a discussion.

Theorem 2.39 (Independence Bound for Entropy).

H(X1,X2, · · · ,Xn) ≤
n∑

i=1

H(Xi) (2.134)

with equality if and only if Xi, i = 1, 2, · · · , n are mutually independent.

Proof. By the chain rule for entropy,

H(X1,X2, · · · ,Xn) =
n∑

i=1

H(Xi|X1, · · · ,Xi−1) (2.135)

≤
n∑

i=1

H(Xi), (2.136)

where the inequality follows because we have proved in the last theorem that
conditioning does not increase entropy. The inequality is tight if and only if
it is tight for each i, i.e.,
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H(Xi|X1, · · · ,Xi−1) = H(Xi) (2.137)

for 1 ≤ i ≤ n. From the last theorem, this is equivalent to Xi being indepen-
dent of X1,X2, · · · ,Xi−1 for each i. Then

p(x1, x2, · · · , xn)
= p(x1, x2, · · · , xn−1)p(xn) (2.138)
= p(p(x1, x2, · · · , xn−2)p(xn−1)p(xn) (2.139)

...
= p(x1)p(x2) · · · p(xn) (2.140)

for all x1, x2, · · · , xn, i.e., X1,X2, · · · ,Xn are mutually independent.
Alternatively, we can prove the theorem by considering

n∑
i=1

H(Xi) −H(X1,X2, · · · ,Xn)

= −
n∑

i=1

E log p(Xi) +E log p(X1,X2, · · · ,Xn) (2.141)

= −E log[p(X1)p(X2) · · · p(Xn)] + E log p(X1,X2, · · · ,Xn) (2.142)

= E log
p(X1,X2, · · · ,Xn)
p(X1)p(X2) · · · p(Xn)

(2.143)

= D(pX1X2···Xn
‖pX1pX2 · · · pXn

) (2.144)
≥ 0, (2.145)

where equality holds if and only if

p(x1, x2, · · · , xn) = p(x1)p(x2) · · · p(xn) (2.146)

for all x1, x2, · · · , xn, i.e., X1,X2, · · · ,Xn are mutually independent. ��

Theorem 2.40.
I(X;Y,Z) ≥ I(X;Y ), (2.147)

with equality if and only if X → Y → Z forms a Markov chain.

Proof. By the chain rule for mutual information, we have

I(X;Y,Z) = I(X;Y ) + I(X;Z|Y ) ≥ I(X;Y ). (2.148)

The above inequality is tight if and only if I(X;Z|Y ) = 0, or X → Y → Z
forms a Markov chain. The theorem is proved. ��
Lemma 2.41. If X → Y → Z forms a Markov chain, then

I(X;Z) ≤ I(X;Y ) (2.149)

and
I(X;Z) ≤ I(Y ;Z). (2.150)
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Before proving this inequality, we first discuss its meaning. Suppose X
is a random variable we are interested in, and Y is an observation of X. If
we infer X via Y , our uncertainty about X on the average is H(X|Y ). Now
suppose we process Y (either deterministically or probabilistically) to obtain
a random variable Z. If we infer X via Z, our uncertainty about X on the
average is H(X|Z). Since X → Y → Z forms a Markov chain, from (2.149),
we have

H(X|Z) = H(X) − I(X;Z) (2.151)
≥ H(X) − I(X;Y ) (2.152)
= H(X|Y ), (2.153)

i.e., further processing of Y can only increase our uncertainty about X on the
average.

Proof. Assume X → Y → Z, i.e., X ⊥ Z|Y . By Theorem 2.34, we have

I(X;Z|Y ) = 0. (2.154)

Then

I(X;Z) = I(X;Y,Z) − I(X;Y |Z) (2.155)
≤ I(X;Y,Z) (2.156)
= I(X;Y ) + I(X;Z|Y ) (2.157)
= I(X;Y ). (2.158)

In (2.155) and (2.157), we have used the chain rule for mutual information.
The inequality in (2.156) follows because I(X;Y |Z) is always nonnegative,
and (2.158) follows from (2.154). This proves (2.149).

Since X → Y → Z is equivalent to Z → Y → X, we also have proved
(2.150). This completes the proof of the lemma. ��

From Lemma 2.41, we can prove the more general data processing theorem.

Theorem 2.42 (Data Processing Theorem). If U → X → Y → V forms
a Markov chain, then

I(U ;V ) ≤ I(X;Y ). (2.159)

Proof. Assume U → X → Y → V . Then by Proposition 2.10, we have U →
X → Y and U → Y → V . From the first Markov chain and Lemma 2.41, we
have

I(U ;Y ) ≤ I(X;Y ). (2.160)

From the second Markov chain and Lemma 2.41, we have

I(U ;V ) ≤ I(U ;Y ). (2.161)

Combining (2.160) and (2.161), we obtain (2.159), proving the theorem. ��
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2.8 Fano’s Inequality

In the last section, we have proved a few information inequalities involving
only Shannon’s information measures. In this section, we first prove an upper
bound on the entropy of a random variable in terms of the size of the alpha-
bet. This inequality is then used in the proof of Fano’s inequality, which is
extremely useful in proving converse coding theorems in information theory.

Theorem 2.43. For any random variable X,

H(X) ≤ log |X |, (2.162)

where |X | denotes the size of the alphabet X . This upper bound is tight if and
only if X is distributed uniformly on X .

Proof. Let u be the uniform distribution on X , i.e., u(x) = |X |−1 for all
x ∈ X . Then

log |X | −H(X)

= −
∑

x∈SX

p(x) log |X |−1 +
∑

x∈SX

p(x) log p(x) (2.163)

= −
∑

x∈SX

p(x) log u(x) +
∑

x∈SX

p(x) log p(x) (2.164)

=
∑

x∈SX

p(x) log
p(x)
u(x)

(2.165)

= D(p‖u) (2.166)
≥ 0, (2.167)

proving (2.162). This upper bound is tight if and if only D(p‖u) = 0, which
from Theorem 2.31 is equivalent to p(x) = u(x) for all x ∈ X , completing
the proof. ��
Corollary 2.44. The entropy of a random variable may take any nonnegative
real value.

Proof. Consider a random variable X defined on a fixed finite alphabet X .
We see from the last theorem that H(X) = log |X | is achieved when X is
distributed uniformly on X . On the other hand, H(X) = 0 is achieved when
X is deterministic. For 0 ≤ a ≤ |X |−1, let

g(a) = H ({1 − (|X | − 1)a, a, · · · , a}) (2.168)
= −l(1 − (|X | − 1)a) − (|X | − 1)l(a), (2.169)

where l(·) is defined in (2.73). Note that g(a) is continuous in a, with g(0) = 0
and g(|X |−1) = log |X |. For any value 0 < b < log |X |, by the intermediate
value theorem of continuous functions, there exists a distribution for X such
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that H(X) = b. Then we see that H(X) can take any positive value by letting
|X | be sufficiently large. This accomplishes the proof. ��

Remark Let |X | = D, or the random variable X is a D-ary symbol. When
the base of the logarithm is D, (2.162) becomes

HD(X) ≤ 1. (2.170)

Recall that the unit of entropy is the D-it when the logarithm is in the base D.
This inequality says that a D-ary symbol can carry at most 1 D-it of infor-
mation. This maximum is achieved when X has a uniform distribution. We
already have seen the binary case when we discuss the binary entropy function
hb(p) in Section 2.2.

We see from Theorem 2.43 that the entropy of a random variable is finite as
long as it has a finite alphabet. However, if a random variable has a countable
alphabet,7 its entropy may or may not be finite. This will be shown in the
next two examples.

Example 2.45. Let X be a random variable such that

Pr{X = i} = 2−i, (2.171)

i = 1, 2, · · · . Then

H2(X) =
∞∑

i=1

i2−i = 2, (2.172)

which is finite.

For a random variable X with a countable alphabet and finite entropy,
we show in Appendix 2.A that the entropy of X can be approximated by the
entropy of a truncation of the distribution of X.

Example 2.46. Let Y be a random variable which takes values in the subset
of pairs of integers {

(i, j) : 1 ≤ i <∞ and 1 ≤ j ≤ 22i

2i

}
(2.173)

such that
Pr{Y = (i, j)} = 2−2i

(2.174)

for all i and j. First, we check that

∞∑
i=1

22i
/2i∑

j=1

Pr{Y = (i, j)} =
∞∑

i=1

2−2i

(
22i

2i

)
= 1. (2.175)

7 An alphabet is countable means that it is either finite or countably infinite.



34 2 Information Measures

Then

H2(Y ) = −
∞∑

i=1

22i
/2i∑

j=1

2−2i

log2 2−2i

=
∞∑

i=1

1, (2.176)

which does not converge.

Let X be a random variable and X̂ be an estimate on X which takes value
in the same alphabet X . Let the probability of error Pe be

Pe = Pr{X 
= X̂}. (2.177)

If Pe = 0, i.e., X = X̂ with probability 1, then H(X|X̂) = 0 by Proposi-
tion 2.36. Intuitively, if Pe is small, i.e., X = X̂ with probability close to
1, then H(X|X̂) should be close to 0. Fano’s inequality makes this intuition
precise.

Theorem 2.47 (Fano’s Inequality). Let X and X̂ be random variables
taking values in the same alphabet X . Then

H(X|X̂) ≤ hb(Pe) + Pe log(|X | − 1), (2.178)

where hb is the binary entropy function.

Proof. Define a random variable

Y =
{

0 if X = X̂
1 if X 
= X̂ . (2.179)

The random variable Y is an indicator of the error event {X 
= X̂}, with
Pr{Y = 1} = Pe and H(Y ) = hb(Pe). Since Y is a function X and X̂,

H(Y |X, X̂) = 0. (2.180)

Then

H(X|X̂)
= H(X|X̂) +H(Y |X, X̂) (2.181)
= H(X,Y |X̂) (2.182)
= H(Y |X̂) +H(X|X̂, Y ) (2.183)
≤ H(Y ) +H(X|X̂, Y ) (2.184)

= H(Y ) +
∑
x̂∈X

[
Pr{X̂ = x̂, Y = 0}H(X|X̂ = x̂, Y = 0)

+Pr{X̂ = x̂, Y = 1}H(X|X̂ = x̂, Y = 1)
]
. (2.185)

In the above, (2.181) follows from (2.180), (2.184) follows because condi-
tioning does not increase entropy, and (2.185) follows from an application of
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(2.43). Now X must take the value x̂ if X̂ = x̂ and Y = 0. In other words, X
is conditionally deterministic given X̂ = x̂ and Y = 0. Therefore, by Proposi-
tion 2.35,

H(X|X̂ = x̂, Y = 0) = 0. (2.186)

If X̂ = x̂ and Y = 1, then X must take a value in the set {x ∈ X : x 
= x̂}
which contains |X | − 1 elements. By Theorem 2.43, we have

H(X|X̂ = x̂, Y = 1) ≤ log(|X | − 1), (2.187)

where this upper bound does not depend on x̂. Hence,

H(X|X̂)

≤ hb(Pe) +

(∑
x̂∈X

Pr{X̂ = x̂, Y = 1}
)

log(|X | − 1) (2.188)

= hb(Pe) + Pr{Y = 1} log(|X | − 1) (2.189)
= hb(Pe) + Pe log(|X | − 1), (2.190)

which completes the proof. ��

Very often, we only need the following simplified version when we apply
Fano’s inequality. The proof is omitted.

Corollary 2.48. H(X|X̂) < 1 + Pe log |X |.
Fano’s inequality has the following implication. If the alphabet X is finite,

as Pe → 0, the upper bound in (2.178) tends to 0, which implies H(X|X̂) also
tends to 0. However, this is not necessarily the case if X is countable, which
is shown in the next example.

Example 2.49. Let X̂ take the value 0 with probability 1. Let Z be an inde-
pendent binary random variable taking values in {0, 1}. Define the random
variable X by

X =
{

0 if Z = 0
Y if Z = 1 , (2.191)

where Y is the random variable in Example 2.46 whose entropy is infinity. Let

Pe = Pr{X 
= X̂} = Pr{Z = 1}. (2.192)

Then

H(X|X̂) (2.193)
= H(X) (2.194)
≥ H(X|Z) (2.195)
= Pr{Z = 0}H(X|Z = 0) + Pr{Z = 1}H(X|Z = 1) (2.196)
= (1 − Pe) · 0 + Pe ·H(Y ) (2.197)
= ∞ (2.198)

for any Pe > 0. Therefore, H(X|X̂) does not tend to 0 as Pe → 0.
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2.9 Maximum Entropy Distributions

In Theorem 2.43, we have proved that for any random variable X,

H(X) ≤ log |X |, (2.199)

with equality when X is distributed uniformly over X . In this section, we
revisit this result in the context that X is a real random variable.

To simplify our discussion, all the logarithms are in the base e. Consider
the following problem:

Maximize H(p) over all probability distributions p defined on a count-
able subset S of the set of real numbers, subject to

∑
x∈Sp

p(x)ri(x) = ai for 1 ≤ i ≤ m, (2.200)

where Sp ⊂ S and ri(x) is defined for all x ∈ S.

The following theorem renders a solution to this problem.

Theorem 2.50. Let
p∗(x) = e−λ0−

∑m

i=1
λiri(x) (2.201)

for all x ∈ S, where λ0, λ1, · · · , λm are chosen such that the constraints in
(2.200) are satisfied. Then p∗ maximizes H(p) over all probability distribu-
tion p on S, subject to the constraints in (2.200).

Proof. For any p satisfying the constraints in (2.200), consider

H(p∗) −H(p)

= −
∑
x∈S

p∗(x) ln p∗(x) +
∑
x∈Sp

p(x) ln p(x) (2.202)

= −
∑
x∈S

p∗(x)

(
−λ0 −

∑
i

λiri(x)

)
+
∑
x∈Sp

p(x) ln p(x) (2.203)

= λ0

(∑
x∈S

p∗(x)

)
+
∑

i

λi

(∑
x∈S

p∗(x)ri(x)

)
+
∑
x∈Sp

p(x) ln p(x) (2.204)

= λ0 · 1 +
∑

i

λiai +
∑
x∈Sp

p(x) ln p(x) (2.205)

= λ0

⎛
⎝∑

x∈Sp

p(x)

⎞
⎠+

∑
i

λi

⎛
⎝∑

x∈Sp

p(x)ri(x)

⎞
⎠+

∑
x∈Sp

p(x) ln p(x) (2.206)

= −
∑
x∈Sp

p(x)

(
−λ0 −

∑
i

λiri(x)

)
+
∑
x∈Sp

p(x) ln p(x) (2.207)
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= −
∑
x∈Sp

p(x) ln p∗(x) +
∑
x∈Sp

p(x) ln p(x) (2.208)

=
∑
x∈Sp

p(x) ln
p(x)
p∗(x)

(2.209)

= D(p‖p∗) (2.210)
≥ 0. (2.211)

In the above, (2.207) is obtained from (2.203) by replacing p∗(x) by p(x)
and x ∈ S by x ∈ Sp in the first summation, while the intermediate steps
(2.204)–(2.206) are justified by noting that both p∗ and p satisfy the con-
straints in (2.200). The last step is an application of the divergence inequality
(Theorem 2.31). The proof is accomplished. ��

Remark For all x ∈ S, p∗(x) > 0, so that Sp∗ = S.

The following corollary of Theorem 2.50 is rather subtle.

Corollary 2.51. Let p∗ be a probability distribution defined on S with

p∗(x) = e−λ0−
∑m

i=1
λiri(x) (2.212)

for all x ∈ S. Then p∗ maximizes H(p) over all probability distribution p
defined on S, subject to the constraints∑

x∈Sp

p(x)ri(x) =
∑
x∈S

p∗(x)ri(x) for 1 ≤ i ≤ m. (2.213)

Example 2.52. Let S be finite and let the set of constraints in (2.200) be
empty. Then

p∗(x) = e−λ0 , (2.214)

a constant that does not depend on x. Therefore, p∗ is simply the uniform
distribution over S, i.e., p∗(x) = |S|−1 for all x ∈ S. This is consistent with
Theorem 2.43.

Example 2.53. Let S = {0, 1, 2, · · ·}, and let the set of constraints in (2.200)
be ∑

x

p(x)x = a, (2.215)

where a ≥ 0, i.e., the mean of the distribution p is fixed at some nonnegative
value a. We now determine p∗ using the prescription in Theorem 2.50. Let

qi = e−λi (2.216)

for i = 0, 1. Then by (2.201),
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p∗(x) = q0qx1 . (2.217)

Evidently, p∗ is a geometric distribution, so that

q0 = 1 − q1. (2.218)

Finally, we invoke the constraint (2.200) on p to obtain q1 = (a + 1)−1. The
details are omitted.

2.10 Entropy Rate of a Stationary Source

In the previous sections, we have discussed various properties of the entropy of
a finite collection of random variables. In this section, we discuss the entropy
rate of a discrete-time information source.

A discrete-time information source {Xk, k ≥ 1} is an infinite collection of
random variables indexed by the set of positive integers. Since the index set
is ordered, it is natural to regard the indices as time indices. We will refer to
the random variables Xk as letters.

We assume that H(Xk) <∞ for all k. Then for any finite subset A of the
index set {k : k ≥ 1}, we have

H(Xk, k ∈ A) ≤
∑
k∈A

H(Xk) <∞. (2.219)

However, it is not meaningful to discuss H(Xk, k ≥ 1) because the joint
entropy of an infinite collection of letters is infinite except for very special
cases. On the other hand, since the indices are ordered, we can naturally define
the entropy rate of an information source, which gives the average entropy per
letter of the source.

Definition 2.54. The entropy rate of an information source {Xk} is defined as

HX = lim
n→∞

1
n
H(X1,X2, · · · ,Xn) (2.220)

when the limit exists.

We show in the next two examples that the entropy rate of a source may
or may not exist.

Example 2.55. Let {Xk} be an i.i.d. source with generic random variable X.
Then

lim
n→∞

1
n
H(X1,X2, · · · ,Xn) = lim

n→∞

nH(X)
n

(2.221)

= lim
n→∞

H(X) (2.222)

= H(X), (2.223)

i.e., the entropy rate of an i.i.d. source is the entropy of any of its single letters.
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Example 2.56. Let {Xk} be a source such that Xk are mutually independent
and H(Xk) = k for k ≥ 1. Then

1
n
H(X1,X2, · · · ,Xn) =

1
n

n∑
k=1

k (2.224)

=
1
n

n(n+ 1)
2

(2.225)

=
1
2
(n+ 1), (2.226)

which does not converge as n→ ∞ although H(Xk) <∞ for all k. Therefore,
the entropy rate of {Xk} does not exist.

Toward characterizing the asymptotic behavior of {Xk}, it is natural to
consider the limit

H ′
X = lim

n→∞
H(Xn|X1,X2, · · · ,Xn−1) (2.227)

if it exists. The quantity H(Xn|X1,X2, · · · ,Xn−1) is interpreted as the con-
ditional entropy of the next letter given that we know all the past history of
the source, and H ′

X is the limit of this quantity after the source has been run
for an indefinite amount of time.

Definition 2.57. An information source {Xk} is stationary if

X1,X2, · · · ,Xm (2.228)

and
X1+l,X2+l, · · · ,Xm+l (2.229)

have the same joint distribution for any m, l ≥ 1.

In the rest of the section, we will show that stationarity is a sufficient
condition for the existence of the entropy rate of an information source.

Lemma 2.58. Let {Xk} be a stationary source. Then H ′
X exists.

Proof. Since H(Xn|X1,X2, · · · ,Xn−1) is lower bounded by zero for all n, it
suffices to prove that H(Xn|X1,X2, · · · ,Xn−1) is non-increasing in n to con-
clude that the limit H ′

X exists. Toward this end, for n ≥ 2, consider

H(Xn|X1,X2, · · · ,Xn−1)
≤ H(Xn|X2,X3, · · · ,Xn−1) (2.230)
= H(Xn−1|X1,X2, · · · ,Xn−2), (2.231)

where the last step is justified by the stationarity of {Xk}. The lemma is
proved. ��
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Lemma 2.59 (Cesáro Mean). Let ak and bk be real numbers. If an → a as
n→ ∞ and bn = 1

n

∑n
k=1 ak, then bn → a as n→ ∞.

Proof. The idea of the lemma is the following. If an → a as n→ ∞, then the
average of the first n terms in {ak}, namely bn, also tends to a as n→ ∞.

The lemma is formally proved as follows. Since an → a as n → ∞, for
every ε > 0, there exists N(ε) such that |an − a| < ε for all n > N(ε). For
n > N(ε), consider

|bn − a| =

∣∣∣∣∣ 1n
n∑

i=1

ai − a
∣∣∣∣∣ (2.232)

=

∣∣∣∣∣ 1n
n∑

i=1

(ai − a)
∣∣∣∣∣ (2.233)

≤ 1
n

n∑
i=1

|ai − a| (2.234)

=
1
n

⎛
⎝N(ε)∑

i=1

|ai − a| +
n∑

i=N(ε)+1

|ai − a|

⎞
⎠ (2.235)

<
1
n

N(ε)∑
i=1

|ai − a| +
(n−N(ε))ε

n
(2.236)

<
1
n

N(ε)∑
i=1

|ai − a| + ε. (2.237)

The first term tends to 0 as n → ∞. Therefore, for any ε > 0, by taking n
to be sufficiently large, we can make |bn − a| < 2ε. Hence bn → a as n→ ∞,
proving the lemma. ��

We now prove that H ′
X is an alternative definition/interpretation of the

entropy rate of {Xk} when {Xk} is stationary.

Theorem 2.60. The entropy rate HX of a stationary source {Xk} exists and
is equal to H ′

X .

Proof. Since we have proved in Lemma 2.58 that H ′
X always exists for a

stationary source {Xk}, in order to prove the theorem, we only have to prove
that HX = H ′

X . By the chain rule for entropy,

1
n
H(X1,X2, · · · ,Xn) =

1
n

n∑
k=1

H(Xk|X1,X2, · · · ,Xk−1). (2.238)

Since
lim

k→∞
H(Xk|X1,X2, · · · ,Xk−1) = H ′

X (2.239)
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from (2.227), it follows from Lemma 2.59 that

HX = lim
n→∞

1
n
H(X1,X2, · · · ,Xn) = H ′

X . (2.240)

The theorem is proved. ��

In this theorem, we have proved that the entropy rate of a random source
{Xk} exists under the fairly general assumption that {Xk} is stationary. How-
ever, the entropy rate of a stationary source {Xk} may not carry any physical
meaning unless {Xk} is also ergodic. This will be explained when we discuss
the Shannon–McMillan–Breiman Theorem in Section 5.4.

Appendix 2.A: Approximation of Random Variables
with Countably Infinite Alphabets by Truncation

Let X be a random variable with a countable alphabet X such that H(X) <
∞. Without loss of generality, X is taken to be the set of positive integers.
Define a random variable X(m) which takes values in

Nm = {1, 2, · · · ,m} (2.241)

such that

Pr{X(m) = k} =
Pr{X = k}

Pr{X ∈ Nm} (2.242)

for all k ∈ Nm, i.e., the distribution of X(m) is the truncation of the distri-
bution of X up to m.

It is intuitively correct that H(X(m)) → H(X) as m → ∞, which we
formally prove in this appendix. For every m ≥ 1, define the binary random
variable

B(m) =
{

1 if X ≤ m
0 if X > m . (2.243)

Consider

H(X) = −
m∑

k=1

Pr{X = k} log Pr{X = k}

−
∞∑

k=m+1

Pr{X = k} log Pr{X = k}. (2.244)

As m→ ∞,

−
m∑

k=1

Pr{X = k} log Pr{X = k} → H(X). (2.245)

Since H(X) <∞,
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−
∞∑

k=m+1

Pr{X = k} log Pr{X = k} → 0 (2.246)

as k → ∞. Now consider

H(X)
= H(X|B(m)) + I(X;B(m)) (2.247)
= H(X|B(m) = 1)Pr{B(m) = 1} +H(X|B(m) = 0)

×Pr{B(m) = 0} + I(X;B(m)) (2.248)
= H(X(m))Pr{B(m) = 1} +H(X|B(m) = 0)

×Pr{B(m) = 0} + I(X;B(m)). (2.249)

As m → ∞, H(B(m)) → 0 since Pr{B(m) = 1} → 1. This implies
I(X;B(m)) → 0 because

I(X;B(m)) ≤ H(B(m)). (2.250)

In (2.249), we further consider

H(X|B(m) = 0)Pr{B(m) = 0}

= −
∞∑

k=m+1

Pr{X = k} log
Pr{X = k}

Pr{B(m) = 0} (2.251)

= −
∞∑

k=m+1

Pr{X = k}(log Pr{X = k}

− log Pr{B(m) = 0}) (2.252)

= −
∞∑

k=m+1

(Pr{X = k} log Pr{X = k})

+

( ∞∑
k=m+1

Pr{X = k}
)

log Pr{B(m) = 0} (2.253)

= −
∞∑

k=m+1

Pr{X = k} log Pr{X = k}

+Pr{B(m) = 0} log Pr{B(m) = 0}. (2.254)

As m→ ∞, the summation above tends to 0 by (2.246). Since Pr{B(m) =
0} → 0, Pr{B(m) = 0} log Pr{B(m) = 0} → 0. Therefore,

H(X|B(m) = 0)Pr{B(m) = 0} → 0, (2.255)

and we see from (2.249) that H(X(m)) → H(X) as m→ ∞.
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Chapter Summary

Markov Chain: X → Y → Z forms a Markov chain if and only if

p(x, y, z) = a(x, y)b(y, z)

for all x, y, and z such that p(y) > 0.

Shannon’s Information Measures:

H(X) = −
∑

x

p(x) log p(x) = −E log p(X),

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

= E log
p(X,Y )
p(X)p(Y )

,

H(Y |X) = −
∑
x,y

p(x, y) log p(y|x) = −E log p(Y |X),

I(X;Y |Z) =
∑
x,y,z

p(x, y, z) log
p(x, y|z)
p(x|z)p(y|z) = E log

p(X,Y |Z)
p(X|Z)p(Y |Z)

.

Some Useful Identities:

H(X) = I(X;X),
H(Y |X) = H(X,Y ) −H(X),
I(X;Y ) = H(X) −H(X|Y ),

I(X;Y |Z) = H(X|Z) −H(X|Y,Z).

Chain Rule for Entropy:

H(X1,X2, · · · ,Xn) =
n∑

i=1

H(Xi|X1, · · · ,Xi−1).

Chain Rule for Mutual Information:

I(X1,X2, · · · ,Xn;Y ) =
n∑

i=1

I(Xi;Y |X1, · · · ,Xi−1).

Informational Divergence: For two probability distributions p and q on a
common alphabet X ,

D(p‖q) =
∑

x

p(x) log
p(x)
q(x)

= Ep log
p(X)
q(X)

.

Fundamental Inequality: For any a > 0, ln a ≤ a− 1, with equality if and
only if a = 1.
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Divergence Inequality: D(p‖q) ≥ 0, with equality if and only if p = q.

Log-Sum Inequality: For positive numbers a1, a2, · · · and nonnegative num-
bers b1, b2, · · · such that

∑
i ai <∞ and 0 <

∑
i bi <∞,

∑
i

ai log
ai

bi
≥
(∑

i

ai

)
log
∑

i ai∑
i bi
.

Equality holds if and only if ai

bi
= constant for all i.

The Basic Inequalities: All Shannon’s information measures are nonnegative.

Some Useful Properties of Shannon’s Information Measures:

1. H(X) ≤ log |X | with equality if and only if X is uniform.
2. H(X) = 0 if and only if X is deterministic.
3. H(Y |X) = 0 if and only if Y is a function of X.
4. I(X;Y ) = 0 if and only X and Y are independent.

Fano’s Inequality: Let X and X̂ be random variables taking values in the
same alphabet X . Then

H(X|X̂) ≤ hb(Pe) + Pe log(|X | − 1).

Conditioning Does Not Increase Entropy:H(Y |X) ≤ H(Y ), with equal-
ity if and only if X and Y are independent.

Independence Bound for Entropy:

H(X1,X2, · · · ,Xn) ≤
n∑

i=1

H(Xi)

with equality if and only if Xi, i = 1, 2, · · · , n are mutually independent.

Data Processing Theorem: If U → X → Y → V forms a Markov chain,
then I(U ;V ) ≤ I(X;Y ).

Maximum Entropy Distributions: Let

p∗(x) = e−λ0−
∑m

i=1
λiri(x)

for all x ∈ S, where λ0, λ1, · · · , λm are chosen such that the constraints∑
x∈Sp

p(x)ri(x) = ai for 1 ≤ i ≤ m
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are satisfied. Then p∗ maximizes H(p) over all probability distributions p on
S subject to the above constraints.

Entropy Rate of a Stationary Source:

1. The entropy rate of an information source {Xk} is defined as

HX = lim
n→∞

1
n
H(X1,X2, · · · ,Xn)

when the limit exists.
2. The entropy rate HX of a stationary source {Xk} exists and is equal to

H ′
X = lim

n→∞
H(Xn|X1,X2, · · · ,Xn−1).

Problems

1. Let X and Y be random variables with alphabets X = Y = {1, 2, 3, 4, 5}
and joint distribution p(x, y) given by

1
25

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
2 1 2 0 0
2 0 1 1 1
0 3 0 2 0
0 0 1 1 3

⎤
⎥⎥⎥⎥⎦ .

Calculate H(X),H(Y ),H(X|Y ),H(Y |X), and I(X;Y ).
2. Prove Propositions 2.8, 2.9, 2.10, 2.19, 2.21, and 2.22.
3. Give an example which shows that pairwise independence does not imply

mutual independence.
4. Verify that p(x, y, z) as defined in Definition 2.4 is a probability distribu-

tion. You should exclude all the zero probability masses from the summa-
tion carefully.

5. Linearity of expectation It is well known that expectation is linear, i.e.,
E[f(X) + g(Y )] = Ef(X) + Eg(Y ), where the summation in an expec-
tation is taken over the corresponding alphabet. However, we adopt in
information theory the convention that the summation in an expectation
is taken over the corresponding support. Justify carefully the linearity of
expectation under this convention.

6. The identity I(X;Y ) = H(X)−H(X|Y ) is invalid if H(X|Y ) (and hence
H(X)) is equal to infinity. Give an example such that I(X;Y ) has a finite
value but both H(X) and H(Y |X) are equal to infinity.

7. Let p′XY and pXY be probability distributions defined on X × Y, where
X and Y are fixed finite alphabets. Prove that

lim
p′

XY
→pXY

p′x = pX ,

where the limit is taken with respect to the variational distance.
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8. Let pk and p be probability distributions defined on a common finite
alphabet. Show that as k → ∞, if pk → p in variational distance, then
pk → p in L2 and vice versa.

9. Consider any probability distribution p(x, y, z) and let

q(x, y, z) =
{
p(x)p(y)p(z|x, y) if p(x, y) > 0
0 otherwise .

a) Show that q(x, y, z) is in general not a probability distribution.
b) By ignoring the fact that q(x, y, z) may not be a probability distribu-

tion, application of the divergence inequality D(p‖q) ≥ 0 would yield
the inequality

H(X) +H(Y ) +H(Z|X,Y ) ≥ H(X,Y,Z),

which indeed holds for all jointly distributed random variables X,Y ,
and Z. Explain.

10. Let Cα =
∑∞

n=2
1

n(log n)α .
a) Prove that

Cα

{
<∞ if α > 1
= ∞ if 0 ≤ α ≤ 1 .

Then
pα(n) = [Cαn(log n)α]−1, n = 2, 3, · · ·

is a probability distribution for α > 1.
b) Prove that

H(pα)
{
<∞ if α > 2
= ∞ if 1 < α ≤ 2 .

11. Prove that H(p) is concave in p, i.e., for 0 ≤ λ ≤ 1 and λ̄ = 1 − λ,

λH(p1) + λ̄H(p2) ≤ H(λp1 + λ̄p2).

12. Let (X,Y ) ∼ p(x, y) = p(x)p(y|x).
a) Prove that for fixed p(x), I(X;Y ) is a convex functional of p(y|x).
b) Prove that for fixed p(y|x), I(X;Y ) is a concave functional of p(x).

13. Do I(X;Y ) = 0 and I(X;Y |Z) = 0 imply each other? If so, give a proof.
If not, give a counterexample.

14. Give an example for which D(·‖·) does not satisfy the triangular
inequality.

15. Let X be a function of Y . Prove that H(X) ≤ H(Y ). Interpret this
result.

16. Prove that for any n ≥ 2,

H(X1,X2, · · · ,Xn) ≥
n∑

i=1

H(Xi|Xj , j 
= i).
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17. Prove that

H(X1,X2) +H(X2,X3) +H(X1,X3) ≥ 2H(X1,X2,X3).

Hint: Sum the identities

H(X1,X2,X3) = H(Xj , j 
= i) +H(Xi|Xj , j 
= i)

for i = 1, 2, 3 and apply the result in Problem 16.
18. For a subset α of Nn = {1, 2, · · · , n}, denote (Xi, i ∈ α) by Xα. For

1 ≤ k ≤ n, let

Hk =
1(
n
k

) ∑
α:|α|=k

H(Xα)
k

.

Here Hk is interpreted as the average entropy per random variable when
k random variables are taken from X1,X2, · · · ,Xn at a time. Prove that

H1 ≥ H2 ≥ · · · ≥ Hn.

This sequence of inequalities, due to Han [147], is a generalization of
the independence bound for entropy (Theorem 2.39). See Problem 6 in
Chapter 21 for an application of these inequalities.

19. For a subset α of Nn = {1, 2, · · · , n}, let α = Nn\α and denote (Xi, i ∈ α)
by Xα. For 1 ≤ k ≤ n, let

H ′
k =

1(
n
k

) ∑
α:|α|=k

H(Xα|Xα)
k

.

Prove that
H ′

1 ≤ H ′
2 ≤ · · · ≤ H ′

n.

Note that H ′
n is equal to Hn in the last problem. This sequence of inequal-

ities is again due to Han [147]. See Yeung and Cai [406] for an application
of these inequalities.

20. Prove the divergence inequality by using the log-sum inequality.
21. Prove that D(p‖q) is convex in the pair (p, q), i.e., if (p1, q1) and (p2, q2)

are two pairs of probability distributions on a common alphabet, then

D(λp1 + λp2‖λq1 + λq2) ≤ λD(p1‖q1) + λD(p2‖q2)

for all 0 ≤ λ ≤ 1, where λ = 1 − λ.
22. Let pXY and qXY be two probability distributions on X × Y. Prove that

D(pXY ‖qXY ) ≥ D(pX‖qX).
23. Pinsker’s inequality. Let V (p, q) denote the variational distance between

two probability distributions p and q on a common alphabet X . We will
determine the largest c which satisfies

D(p‖q) ≥ cd2(p, q).
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a) Let A = {x : p(x) ≥ q(x)}, p̂ = {p(A), 1 − p(A)}, and q̂ = {q(A), 1 −
q(A)}. Show that D(p‖q) ≥ D(p̂‖q̂) and V (p, q) = V (p̂, q̂).

b) Show that toward determining the largest value of c, we only have to
consider the case when X is binary.

c) By virtue of (b), it suffices to determine the largest c such that

p log
p

q
+ (1 − p) log

1 − p
1 − q − 4c(p− q)2 ≥ 0

for all 0 ≤ p, q ≤ 1, with the convention that 0 log 0
b = 0 for b ≥ 0

and a log a
0 = ∞ for a > 0. By observing that equality in the

above holds if p = q and considering the derivative of the left-hand
side with respect to q, show that the largest value of c is equal to
(2 ln 2)−1.

24. Let p and qk, k ≥ 1 be probability distributions on a common alphabet.
Show that if qk converges to p in divergence, then it also converges to p
in variational distance.

25. Find a necessary and sufficient condition for Fano’s inequality to be tight.
26. Determine the probability distribution defined on {0, 1, · · · , n} that max-

imizes the entropy subject to the constraint that the mean is equal to m,
where 0 ≤ m ≤ n.

27. Show that for a stationary source {Xk}, 1
nH(X1,X2, · · · ,Xn) is non-

increasing in n.
28. For real numbers α > 1 and β > 0 and an integer n ≥ α, define the

probability distribution

D(α,β)
n =

⎧⎪⎪⎨
⎪⎪⎩1 −

(
logα
log n

)β

,
1
n

(
logα
log n

)β

, · · · , 1
n

(
logα
log n

)β

,︸ ︷︷ ︸
n

0, 0, · · ·

⎫⎪⎪⎬
⎪⎪⎭ .

Let ν = {1, 0, 0, . . .} be the deterministic distribution.

a) Show that limn→∞D
(
ν||D(α,β)

n

)
= 0.

b) Determine limn→∞H
(
D(α,β)

n

)
.

29. Discontinuity of entropy with respect to convergence in divergence. Let P
be the set of all probability distributions on a countable alphabet. A func-
tion f : P →  is continuous with respect to convergence in divergence
at P ∈ P if for any ε > 0, there exists δ > 0 such that |f(P ) − f(Q)| < ε
for all Q ∈ P satisfying D(P‖Q) < δ; otherwise, f is discontinuous at P .
a) Let H : P →  be the entropy function. Show that H is discontinu-

ous at the deterministic distribution ν = {1, 0, 0, · · · , }. Hint: Use the
results in Problem 28.

b) Show that H is discontinuous at P = {p0, p1, p2, · · ·} for all P such
that H(P ) <∞. Hint: Consider the probability distribution
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Qn =
{
p0 −

p0√
log n

, p1 +
p0

n
√

log n
, p2 +

p0

n
√

log n
, · · · ,

pn +
p0

n
√

log n
, pn+1, pn+2, . . .

}

for large n.
30. Discontinuity of entropy with respect to convergence in variational dis-

tance. Refer to Problem 29. The continuity of a function f : P →  with
respect to convergence in variational distance can be defined similarly.
a) Show that if a function f is continuous with respect to convergence

in variational distance, then it is also continuous with respect to con-
vergence in divergence. Hint: Use Pinsker’s inequality.

b) Repeat (b) in Problem 29 with continuity defined with respect to
convergence in variational distance.

31. Continuity of the entropy function for a fixed finite alphabet. Refer to
Problems 29 and 30. Suppose the domain of H is confined to P ′, the set
of all probability distributions on a fixed finite alphabet. Show that H is
continuous with respect to convergence in divergence.

32. Let p = {p1, p2, · · · , pn} and q = {q1, q2, · · · , qn} be two sets of real num-
bers such that pi ≥ pi′ and qi ≥ qi′ for all i < i′. We say that p is majorized
by q if

∑m
i=1 pi ≤

∑m
j=1 qj for all m = 1, 2, . . . , n, where equality holds

when m = n. A function f : n →  is Schur-concave if f(p) ≥ f(q)
whenever p is majorized by q. Now let p and q be probability distribu-
tions. We will show in the following steps that H(·) is Schur-concave.
a) Show that for p 
= q, there exist 1 ≤ j < k ≤ n which satisfy the

following:
i) j is the largest index i such that pi < qi.
ii) k is the smallest index i such that i > j and pi > qi.
iii) pi = qi for all j < i < k.

b) Consider the distribution q∗ = {q∗1 , q∗2 , · · · , q∗n} defined by q∗i = qi for
i 
= j, k and

(q∗j , q
∗
k) =

{
(pj , qk + (qj − pj)) if pk − qk ≥ qj − pj

(qj − (pk − qk), pk) if pk − qk < qj − pj
.

Note that either q∗j = pj or q∗k = pk. Show that
i) q∗i ≥ q∗i′ for all i ≤ i′.
ii)
∑m

i=1 pi ≤
∑m

i=1 q
∗
i for all m = 1, 2, · · · , n.

iii) H(q∗) ≥ H(q).
c) Prove that H(p) ≥ H(q) by induction on the Hamming distance

between p and q, i.e., the number of places where p and q differ.

In general, if a concave function f is symmetric, i.e., f(p) = f(p′) where
p′ is a permutation of p, then f is Schur-concave. We refer the reader to [246]
for the theory of majorization. (Hardy, Littlewood, and Pólya [154].)
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Historical Notes

The concept of entropy has its root in thermodynamics. Shannon [322] was the
first to use entropy as a measure of information. Informational divergence was
introduced by Kullback and Leibler [214], and it has been studied extensively
by Csiszár [80] and Amari [14].

Most of the materials in this chapter can be found in standard textbooks
in information theory. The main concepts and results are due to Shannon
[322]. Pinsker’s inequality is due to Pinsker [292]. Fano’s inequality has its
origin in the converse proof of the channel coding theorem (to be discussed in
Chapter 7) by Fano [107]. Generalizations of Fano’s inequality which apply to
random variables with countable alphabets have been obtained by Han and
Verdú [153] and by Ho [165] (see also [168]). Maximum entropy, a concept in
statistical mechanics, was expounded in Jaynes [186].


