
Preface

Nowadays, we are facing numerous important imaging problems, as for exam-
ple, the detection of anti-personal land mines in post-war remediation areas,
detection of unexploded ordnances (UXO), nondestructive testing of materials,
monitoring of industrial processes, enhancement of oil production by efficient
reservoir characterization, and the various exciting and emerging developments
in noninvasive imaging techniques for medical purposes – computerized tomo-
graphy (CT), magnetic resonance imaging (MRI), positron emission tomography
(PET) and ultrasound tomography, to mention only a few. It is broadly recog-
nized that these problems can only be solved by a joint effort of experts in
mathematical and technical sciences.

The CIME Summer School on Imaging, held in Martina Franca, Italy, from
15 to 21 September, 2002, encompassed the theory and applications of imaging in
different disciplines including, medicine, geophysics, engineering, etc. The Sum-
mer School brought together leading experts in mathematical techniques and
applications in many different fields, to present a broad and useful introduction
for non-experts and practitioners alike to many aspects of this exciting field. The
main lecturers were Simon Arridge, Frank Natterer, George C. Papanicolaou and
William Symes. Seminars on related special topics were contributed by Oliver
Dorn, Miguel Moscoso and Alessandro Teta. Among the different topics dealt
with in the school, we may cite X-ray tomography, diffusive optical tomography
with possible applications to tumor detection in medicine by optical means, elec-
tromagnetic induction tomography used in geophysics, and techniques of seismic
tomography to image the wave velocity structure of a region and to obtain infor-
mation on possible oil or gas reservoirs, etc. Furthermore, there were extensive
discussions on the mathematical bases for analyzing these methods. The math-
ematical and computational techniques that are used for imaging have many
common features and form a rapidly developing part of applied mathematics.

The present volume contains a general introduction on image reconstruction
by M. Moscoso, some of the lectures and presentations given in the Summer
School (F. Natterer, O. Dorn et al., M. Moscoso, G. Dell’Antonio et al.), and
two additional lectures on other imaging techniques by A. Carpio and M.L.
Rapún and by O. Dorn.
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The lectures by Prof. Frank Natterer introduce the mathematical theory and
the reconstruction algorithms of computerized X-ray tomography. These lectures
give a short account of integral geometry and the Radon transform, reconstruc-
tion algorithms such as the filtered back projection algorithm, iterative methods
(for example, the Kaczmarz method) and Fourier methods. They also comment
on the three-dimensional case, which is the subject of current research. Many of
the fundamental tools and issues of computerized tomography, such as back pro-
jection, sampling, and high frequency analysis, have their counterparts in more
advanced imaging techniques for impedance, optical or ultrasound tomography
and are most easily studied in the framework of computerized tomography.

The chapter by O. Dorn, H. Bertete-Aguirre and G.C. Papanicolaou reviews
electromagnetic induction tomography, used to solve imaging problems in geo-
physical and environmental imaging applications. The focus is on realistic 3D
situations which provide serious computational challenges as well as interesting
novel mathematical problems to the practitioners. The chapter first introduces
the reader to the mathematical formulation of the underlying inverse problem;
it then describes the theory of sensitivity analysis in this application; it proposes
a nonlinear reconstruction algorithm for solving such problems efficiently; it dis-
cusses a regularization technique for stabilizing the reconstruction; and finally it
presents various numerical examples for illustrating the discussed concepts and
ideas.

The chapter by M. Moscoso presents optical imaging of biological tissue using
the polarization effects of a narrow beam of light. The biological tissue is modeled
as a continuous medium which varies randomly in space and which contains
inhomogeneities with no sharp boundaries. This differs from the more usual
point of view in which the biological tissue is modeled as a medium containing
discrete spherical particles of the same or different sizes. The propagation of
light is then described by a vector radiative transport equation which is solved
by a Monte Carlo method. A discussion on how to use polarization to improve
image reconstruction is given as well.

The chapter by A. Carpio and M.L. Rapún explains how to use topological
derivative methods to solve constrained optimization reformulations of inverse
scattering problems. This chapter gives formulas to calculate the topological
derivatives for the Helmholtz equation and for the equations of elastic waves.
Furthermore they explain and implement a practical iterative numerical scheme
to detect objects based on computing the topological derivative of a cost func-
tional associated to these equations in successive approximate domains. Many
examples of reconstruction of objects illustrate this method.

The chapter by O. Dorn deals with an inverse problem in underwater acoustic
and wireless communication. He establishes a link between the time-reversal
and adjoint methods for imaging and proposes a method for solving the inverse
problem based on iterative time-reversal experiments.

Lastly, the chapter by G. Dell’Antonio, R. Figari and A. Teta reviews the
theory of Hamiltonians with point interactions, i.e., with potentials supported on
a finite set of points. This chapter studies the mathematical basis of scattering
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with point scatterers, analyzes how such an idealized situation relates to short-
range potentials and discusses situations in which the strength of the potential
depends on the wave function as it has been proposed in the physics literature
on double barriers and other nanostructures. Knowing the solution of the di-
rect problem is of course a prerequisite to be able to image the scatterers from
measurements on a boundary.

Universidad Carlos III de Madrid Luis L. Bonilla
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Summary. We give a survey on the mathematics of computerized tomography. We
start with a short introduction to integral geometry, concentrating on inversion formu-
las, stability, and ranges. We then go over to inversion algorithms. We give a detailed
analysis of the filtered backprojection algorithm in the light of the sampling theorem.
We also describe the convergence properties of iterative algorithms. We shortly mention
Fourier based algorithms and the recent progresses made in their accurate implemen-
tation. We conclude with the basics of algorithms for cone beam scanning which is the
standard scanning mode in present days clinical practice.

1 Introduction

X-ray tomography, or computerized tomography (CT) is a technique for imaging
cross sections or slices (slice = τoµos (greek)) of the human body. It was intro-
duced in clinical practice in the 70s of the last century and has revolutionized
clinical radiology. See Webb (1990), Natterer and Ritman (2002) for the history
of CT.

The mathematical problem behind CT is the reconstruction of a function f in
R

2 from the set of its line integrals. This is a special case of integral geometry, i.e.
the reconstruction of a function from integrals over lower dimensional manifolds.
Thus, integral geometry is the backbone of the mathematical theory of CT.

CT was soon followed by other imaging modalities, such as emission tomo-
graphy (single particle emission tomography (SPECT) and positron emission
tomography (PET)), magnetic resonance imaging (MRI). CT also found appli-
cations in various branches of science and technology, e.g. in seismics, radar,
electron microscopy, and flow. Standard references are Herman (1980), Kak and
Slaney (1987), Natterer and Wübbeling (2001).

In these lectures we give an introduction into the mathematical theory and
the reconstruction algorithms of CT. We also discuss matters of resolution and
stability. Necessary prerequisites are calculus in R

n, Fourier transforms, and the
elements of sampling theory.
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Since the advent of CT many imaging techniques have come into being, some
of them being only remotely related to the straight line paradigm of CT, such
as impedance tomography, optical tomography, and ultrasound transmission to-
mography. For the study of these advanced technique a thorough understanding
of CT is at least useful. Many of the fundamental tools and issues of CT, such as
backprojection, sampling, and high frequency analysis, have their counterparts
in the more advanced techniques and are most easily in the framework of CT.

The outline of the paper is as follows. We start with a short account of the
relevant parts of integral geometry, with the Radon transform as the central tool.
Then we discuss in some detail reconstruction algorithms, in particular the nec-
essary discretizations for methods based on inversion formulas and convergence
properties of iterative algorithm. Finally we concentrate on the 3D case which
is the subject of current research.

2 Integral Geometry

In this section we introduce the relevant integral transforms, derive inversion
formulas, and study the ranges. For a thorough treatment see Gelfand, Graev,
and Vilenkin (1965), Helgason (1999), Natterer (1986).

2.1 The Radon Transform

Let f be a function in R
n. To avoid purely technical difficulties we assume f to

be smooth and of compact support, if not said otherwise.
For θ ∈ Sn−1, s ∈ R

1 we define

(Rf)(θ, s) =
∫

x·θ=s

f(x)dx . (1)

R is the Radon transform. dx is the restriction of the Lebesgue measure in R
n

to x · θ = s. Other notations are

(Rf)(θ, s) =
∫

θ⊥

f(sθ + y)dy (2)

with θ⊥ the subspace of R
n orthogonal to θ, and

(Rf)(θ, s) =
∫

δ(x · θ − s)f(x)dx (3)

with δ the Dirac δ-function.
The Radon transform is closely related to the Fourier transform

f̂(ξ) = (2π)−n/2

∫

Rn

e−ix·ξf(x)dx .

Namely, we have the so-called projection-slice theorem.
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Theorem 2.1.
(Rf)∧(θ, σ) = (2π)(n−1)/2f̂(σθ) .

Note that the Fourier transform on the left hand side is the 1D Fourier
transform of Rf with respect to its second variable, while the Fourier transform
on the right hand side is the nD Fourier transform of f .

For the proof of Theorem 2.1 we make use of the definition (2) of Radon
transform, yielding

(Rf)∧(θ, σ) = (2π)−1/2

∫

R1

e−isσ(Rf)(θ, s)ds

= (2π)−1/2

∫

R1

e−isσ

∫

θ⊥

f(sθ + y)dyds .

Putting x = sθ + y, i.e. s = x · θ, we have

(Rf)∧(θ, s) = (2π)−1/2

∫

Rn

e−iσx·θf(x)dx

= (2π)(n−1)/2f̂(σθ) .

The proofs of many of the following results follow a similar pattern. So we omit
proofs unless more sophisticated tools are needed.

It is possible to extend R to a bounded operator R : L2(Rn) → L2(Sn−1×R
1).

As such R has an adjoint R∗ : L2(Sn−1 × R
1) → L2(Rn) which is easily seen

to be
(R∗g)(x) =

∫

Sn−1

g(θ, x · θ)dθ . (4)

R∗ is called the backprojection operator in the imaging literature.
We also will make use of the Hilbert transform

(Hf)(s) =
1
π

∫
f(t)
s − t

dt (5)

which, in Fourier domain, is given by

(Hf)∧(σ) = −i sgn(σ)f̂(σ) (6)

with sgn(σ) the sign of the real number σ. Now we are ready to state and to
prove Radon’s inversion formula:

Theorem 2.2. Let g = Rf . Then

f =
1
2
(2π)1−nR∗Hn−1g(n−1)

where g(n−1) stands for the derivative of order n − 1 of g with respect to the
second argument.
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For the proof we write the Fourier inversion formula in polar coordinates and
make use of Theorem 2.1 and the evenness of g, i.e. g(θ, s) = g(−θ,−s).

Special cases of Theorem 2.2 are

f(x) =
1

4π2

∫

S1

∫

R1

g′(θ, s)
x · θ − s

dsdθ (7)

for n = 2 and

f(x) = − 1
8π2

∫

S2

g′′(θ, x · θ)dθ (8)

for n = 3. Note that there is a distinctive difference between (7) and (8): The
latter one is local in the sense that for the reconstruction of f at x0 only the
integrals g(θ, s) over those planes x · θ = s are needed that pass through x0 or
nearby. In contrast, (7) is not local in this sense, due to the integral over R1.

In order to study the stability of the inversion process we introduce the
Sobolev spaces Hα on R

n, Sn−1 × R
1 with norms

‖f‖2
Hα(Rn)

=
∫

Rn

(1 + |ξ|2)α|f̂(ξ)|2dξ ,

‖g‖2

Hα(Sn−1×R1)
=

∫

Sn−1

∫

R1

(1 + σ2)α|ĝ(θ, σ)|2dσdθ .

As in Theorem 2.1, the Fourier transform ĝ is the 1D Fourier transform of g
with respect to the second argument.

Theorem 2.3. There exist constants c, C > 0 depending only on α, n, such that

c‖f‖
Hα(Rn) ≤ ‖Rf‖

Hα+(n−1)/2 (Sn−1×R1) ≤ C‖f‖
Hα(Rn)

for f ∈ Hα(Rn) with support in |x| < 1.

The conclusion is that Rf is smoother than f by the order (n − 1)/2. This
indicates that the reconstruction process, i.e. the inversion of R, is slightly ill-
posed.

Finally we study the range of R.

Theorem 2.4. For m ≥ 0 an integer let

pm(θ) =
∫

R1

sm(Rf)(θ, s)ds .

Then, pm is a homogeneous polynomial of degree m in θ.

The proof is by verification. The question wether or not the condition of
Theorem 2.4 is sufficient for a function g of θ, s being in the range of R is the
subject of the famous Helgason–Ludwig theorem.

Theorem 2.4 has applications to cases in which the data function g is not
fully specified.
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2.2 The Ray Transform

For f a function in R
n, θ ∈ Sn−1, x ⊥ θ⊥ we define

(Pf)(θ, x) =
∫

R1

f(x + tθ)dt (9)

P is called the ray (or X-ray) transform. The projection-slice theorem for P reads

Theorem 2.5.
(Pf)∧(θ, ξ) = (2π)1/2f̂(ξ), ξ ∈ θ⊥ .

The Fourier transform on the left hand side is the (n − 1)D Fourier transform
in θ⊥, while the Fourier transform on the right hand side is the nD Fourier
transform in R

n.

The adjoint ray transform, which we call backprojection again, is given by

(P ∗g)(x) =
∫

Sn−1

g(θ,Eθx)dθ (10)

with Eθ the orthogonal projection onto θ⊥, i.e. Eθx = x− (x · θ)θ. We have the
following analogue of Radon’s inversion formula:

Theorem 2.6. Let g = Pf . Then

f =
1

2π|Sn−1| P ∗I−1g

with the Riesz potential
(I−1g)∧(ξ) = |ξ|ĝ(ξ)

in θ⊥.

Theorem 2.6 is not as useful as Theorem 2.2. The reason is that for n ≥ 3 (for
n = 2 Theorems 2.2 and 2.6 are equivalent) the dimension 2(n − 1) of the data
function g is greater than the dimension n of f . Hence the problem of inverting
P is vastly overdetermined. A useful formula would compute f from the values
g(θ, ·) where θ is restricted to some set S0 ⊆ Sn−1. Under which conditions on
S0 is f uniquely determined?

Theorem 2.7. Let n = 3, and assume that each great circle on S2 meets S0.
Then, f is uniquely determined by g(θ, ·), θ ∈ S0.

The condition on S0 in Theorem 2.7 is called Orlov’s completeness condition.
In the light of Theorem 2.5, the proof of Theorem 2.7 is almost trivial: Let
ξ ∈ R

3 \ {0}. According to Orlov’s condition there exists θ ∈ S0 on the great
circle ξ⊥ ∩ S2. For this θ, ξ ∈ θ⊥, hence

f̂(ξ) = (2π)−1/2ĝ(θ, ξ)

by Theorem 2.5. Thus f̂ is uniquely (and stably) determined by g on S0.
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An obvious example for a set S0 ⊆ S2 satisfying Orlov’s completeness con-
dition is a great circle. In that case inversion of P is simply 2D Radon inversion
on planes parallel to S0. Orlov gave an inversion formula for S0 a spherical zone.

2.3 The Cone-Beam Transform

The relevant integral transform for fully 3D X-ray tomography is the cone beam
transform in R

3

(Cf)(a, θ) =

∞∫

0

f(a + tθ)dt (11)

where θ ∈ S2. The main difference to the ray transform P is that the source
point a is restricted to a source curve A surrounding the object to be imaged.

Of course the following question arises: Which condition on A guarantees
that f is uniquely determined by (Cf)(a, ·)?

A first answer is: Whenever A has an accumulation point outside supp (f)
(provided f is sufficiently regular). Unfortunately, inversion under this assump-
tions is based on analytic continuation, a process that is notoriously unstable.
So this result is useless for practical reconstruction.

In order to find a stable reconstruction method (for suitable source curves A)
we make use of a relationship between C and R discovered by Grangeat (1991):

Theorem 2.8.

∂

∂s
(Rf)(θ, s) |s=a·θ =

∫

θ⊥∩S2

∂

∂θ
(Cf)(a, ω)dω .

The notation on the right hand side needs explication: (Cf)(a, ·) is a function
on S2. θ is a tangent vector to S2 for each ω ∈ S2 ∩ θ⊥. Thus the derivative ∂

∂θ
makes sense on S2 ∩ θ⊥.

Since Theorem 2.8 is the basis for present day’s work on 3D reconstruction
we sketch two proofs. The first one is completely elementary. Obviously it suffices
to put θ = e3, the third unit vector, in which case it reads

∂

∂s
(Rf)(θ, a3) =

∫

ω∈S1

⎡
⎣ ∂

∂z
(Cf)

⎛
⎝a,

⎛
⎝ω

z

⎞
⎠

⎞
⎠

⎤
⎦

z=0

dω

where a3 is the third component of the source point a. It is easy to verify that
right- and left-hand side both coincide with

∫

R2

∂f

∂x3

⎛
⎝a +

⎛
⎝x′

0

⎞
⎠

⎞
⎠ dx′ .

The second proof makes use of the formula
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∫

Sn−1

(Cf)(a, ω)h(θ · ω)dω =
∫

R1

(Rf)(θ, s)h(s − a · θ)ds

that holds – for suitable functions f in R
2 – for h a function in R

1 homogeneous
of degree 1 − n; see Hamaker et al. (1980).

Putting h = δ′ yields Theorem 2.8.

Theorem 2.9. Let the source curve A satisfy the following condition: Each plane
meeting supp (f) intersects A transversally. Then, f is uniquely (and stably)
determined by (Cf)(a, θ), a ∈ A, θ ∈ S2.

The condition on A in Theorem 2.9 is called the Kirillov–Tuy condition.
The proof of Theorem 2.9 starts out from Radon’s inversion formula (8) for

n = 3:

f(x) = − 1
8π2

∫

S2

[
∂2

∂s2
Rf(θ, s)

]
s=x·θ

dθ (12)

Now assume A satisfies the Kirillov–Tuy condition, and let x · θ = s be a plane
hitting supp (f). Then there exists a ∈ A such that a · θ = s, and

[
∂

∂s
Rf(θ, s)

]
s=x·θ

=
[

∂

∂s
Rf(θ, s)

]
s=a·θ

=
∫

θ⊥∩S2

∂

∂θ
(Cf)(a, ω)dω

is known by Theorem 2.8. Since A intersects the plane x · θ = s transversally
this applies also to the second derivative in (12). Hence the integral in (12) can
be computed from the known values of Cf for all planes x · θ = s hitting supp
(f), and for the others it is zero.

Theorem 2.8 in conjunction with Radon’s inversion formula (8) is the basis
for reconstruction formulas for C with source curves A satisfying the Kirillov–
Tuy condition. The simplest source curve one can think of, a circle around the
object, does not satisfy the Kirillov–Tuy condition. For a circular source curve
an approximate inversion formula, the FDK formula, exists; see Feldkamp et al.
(1984). In medical applications the source curve is a helix.

2.4 The Attenuated Radon Transform

Let n = 2. The attenuated Radon transform of f is defined to be

(Rµf)(θ, s) =
∫

x·θ=s

e−(Cµ)(x,θ⊥)f(x)dx
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where µ is another function in R
2 and θ⊥ is the unit vector perpendicular to

θ such that det (θ, θ⊥) = 1. This transform comes up in SPECT, where f the
(sought-for) activity distribution and µ the attenuation map.

Rµ admits an inversion formula very similar to Radon’s inversion formula
for R:

Theorem 2.10. Let g = Rµf . Then,

f =
1
4π

Re div R∗
−µ(θe−hHehg)

where

h =
1
2
(I + iH)Rµ ,

(R∗
µg)(x) =

∫

S1

e−(Cµ)(x,θ⊥)g(θ, x · θ)dθ .

This is Novikov’s inversion formula; see Novikov (2000). Note that the back-
projection R∗

−µ is applied to a vector valued function. For µ = 0 Novikov’s
formula reduces to Radon’s inversion formula (7).

There is also an extension of Theorem 2.4 to the attenuated case:

Theorem 2.11. Let k > m ≥ 0 integer and h the function from Theorem 2.10.
Then, ∫

R1

∫

S1

smeikϕ+h(θ,s)(Rµf)(θ, s)dθds = 0

where θ =

⎛
⎝ cos ϕ

sin ϕ

⎞
⎠.

The proofs of Theorems 2.10 and 2.11 are quite involved. They are both
based on the following remark: Let

u(x, θ) = h(θ, x · θ) − (Cµ)(x, θ⊥) .

Then, u admits a Fourier series representation as

u(x, θ) =
∑

�>0 odd

u�(x)ei�ϕ

with certain functions u�(x) and θ =

⎛
⎝ cos ϕ

sinϕ

⎞
⎠.

Of course this amounts to saying that u(x, ·) admits an analytic continuation
from S1 into the unit disk.
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2.5 Vectorial Transforms

Now let f be a vector field. The scalar transforms P , R can be applied compo-
nentwise, so Pf , Rf make sense. They give rise to the vectorial ray transform

(Pf)(θ, s) = θ · (Pf)(θ, s) , x ∈ θ⊥

and the Radon normal transform

(R⊥f)(θ, s) = θ · (Rf)(θ, s) .

Obviously, vectorial transforms can’t be invertible. In fact their null spaces are
huge.

Theorem 2.12. Pf = 0 if and only if f = ∇ψ for some ψ.

The nontrivial part of the proof makes use of Theorem 2.5: If Pf = 0, then,
for ξ ∈ θ⊥

(Pf)∧(θ, ξ) = θ · (Pf)∧(θ, ξ) = (2π)1/2θ · f̂(ξ) = 0 .

Hence θ⊥ is invariant under f̂ . This is only possible if f̂(ξ) = iψ̂(ξ)ξ with some
ψ̂(ξ). It remains to show that ψ̂ is sufficiently regular to conclude that f = ∇ψ.

A similar proof leads to

Theorem 2.13. Let n = 3. R⊥f = 0 if and only if f = curl φ for some φ.

Inversion formulas can be derived for those parts of the solution that are
uniquely determined. We make use of the Helmholtz decomposition to write a
vector f in the form

f = fs + f i

where fs is the solenoidal part (i.e. div fs = 0 or fs = curl φ) and f i is the
irrotational part (i.e. curl f i = 0, f i = ∇ψ). Then, Theorem 2.12 states that the
solenoidal part of f is uniquely determined by Pf , while the irrotational part of
f is uniquely determined by R⊥f .

We have the following inversion formula:

Theorem 2.14. Let g = Pf and let f be solenoidal (i.e. f i = 0). Then,

f =
n − 1

2π|Sn−2| P
∗I−1g ,

(P∗g)(x) =
∫

Sn−1

g(θ,Eθx)θdθ

and I−1 is the Riesz potential already used in Theorem 2.6.

For more results see Sharafutdinov (1994).
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3 Reconstruction Algorithms

There are essentially three classes of reconstruction algorithms. The first class
is based on exact or approximate inversion formulas, such as Radon’s inversion
formula. The prime example is the filtered backprojection algorithm. It’s not only
the work horse in clinical radiology, but also the model for many algorithms in
other fields. The second class consists of iterative methods, with Kaczmarz’s
method (called algebraic reconstruction technique (ART) in tomography) as
prime example. The third class is usually called Fourier methods, even though
Fourier techniques are used also in the first class. Fourier methods are direct
implementations of the projection slice theorem (Theorems 2.1, 2.5) without any
reference to integral geometry.

3.1 The Filtered Backprojection Algorithm

This can be viewed as an implementation of Radon’s inversion formula
(Theorem 2.2). However it is more convenient to start out from the formula

Theorem 3.1. Let V = R∗v. Then,

V ∗ f = R∗(v ∗ g)

where the convolution on the left hand side is in R
n, i.e.

(V ∗ f)(x) =
∫

Rn

V (x − y)f(y)dy

and the convolution on the right hand side is in R
1, i.e.

(v ∗ g)(θ, s) =
∫

R1

v(θ, s − t)g(θ, t)dt .

The proof of Theorem 3.1 require not much more than the definition of R∗.
Theorem 3.1 is turned into an (approximate) inversion formula for R by

choosing V ∼ δ. Obviously V is the result of the reconstruction procedure for
f = δ. Hence V is the point spread function, i.e. the function the algorithm
would reconstruct if the true f were the δ-function.

Theorem 3.2. Let V = R∗v with v independent of θ. Then,

V̂ (ξ) = 2(2π)(n−1)/2|ξ|1−nv̂(|ξ|) .

For V to be close to δ we need V̂ to be close to (2π)−
n
2 , hence

v̂(σ) ∼ 1
2
(2π)−n+1/2σn−1 .

Let φ be a low pass filter, i.e. φ(σ) = 0 for |σ| > 1 and, for convenience, φ
even. Let Ω be the (spatial) bandwidth. By Shannon’s sampling theorem Ω
corresponds to the (spatial) resolution 2π/Ω:
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Theorem 3.3. Let f be Ω-bandlimited, i.e. f̂(ξ) = 0 for |ξ| > Ω. Then, f is
uniquely determined by f(h�), � ∈ Z

n, h ≤ π/Ω. Moreover, if h ≤ 2π/Ω, then
∫

Rn

f(x)dx = hn
∑

�

f(h�) .

An example for a Ω-bandlimited function in R
1 is f(x) = sinc(Ωx) where

sinc(x) = sin(x)/x is the so-called sinc-function. From looking at the graph of f
we conclude that bandwidth Ω corresponds to resolution 2π/Ω.

We remark that Theorem 3.3 has the following corollary:
Assume that f , g are Ω-bandlimited. Then,

∫

Rn

f(x)g(x)dx = hn
∑

�

f(h�)g(h�)

provided that h ≤ π/Ω. This is true since fg has bandwidth 2Ω.
We put

v̂(σ) = 2(2π)(n−1)/2|σ|n−1φ(σ/Ω) .

v is called the reconstruction filter. As an example we put n = 2 and take as φ
the ideal low pass, i.e.

φ(σ) =

⎧⎨
⎩

1 , |σ| ≤ 1 ,

0 , |σ| > 1 .

Then,

v(s) =
Ω2

4π2
u(Ωs) , u(s) = sinc(s) − 1

2

(
sinc

(s

2

))2

.

Now we describe the filtered backprojection algorithm for the reconstruction of
the function f from g = Rf . We assume that f has the following properties:

f is supported in |x| ≤ ρ (13)

f is essentially Ω-bandlimited, i.e. (14)

f̂(ξ) is negligible in some sense for |ξ| > Ω .

Since f is essentially Ω-bandlimited we conclude from Theorem 2.1 that the
same is true for g. Hence, by a loose application of the sampling theorem,

(v ∗ g)(θ, s�) = ∆s
∑

k

v(θ, s� − sk)g(θ, sk) (15)

where s� = �∆s and ∆s ≤ π/Ω. Equation (15) is the filtering step in the filtered
backprojection algorithm. In the backprojection step we compute R∗(v ∗ g) in a
discrete setting. We restrict ourselves to the case n = 2, i.e.
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(R∗(v ∗ g))(x) =
∫

S1

(v ∗ g)(θ, x·)dθ .

In order to discretize this integral properly we make use of Theorem 3.3 again.
For this we have to determine the bandwidth of the function ϕ �→ (v ∗ g)(θ, x · θ)

where θ =

⎛
⎝ cos ϕ

sin ϕ

⎞
⎠ .

Theorem 3.4. For k an integer we have

2π∫

0

e−ikϕ(v ∗ g)(θ, x · θ)dϕ =
ik

2π

∫

|y|<ρ

f(y)e−ikψ

Ω∫

−Ω

v̂k(σ)Jk(−σ|x − y|)dσdy

where ψ = arg(y) and Jk is the Bessel function of order k of the first kind.

All that is needed for the proof is the integral representation

Jk(s) =
i−k

2π

2π∫

0

e−ikϕ+s cos ϕdϕ

of the Bessel function.
By Debye’s asymptotic relation (see Abramowitz and Stegun (1970)), Jk(s) is

negligibly small for |s| < |k| and |k| large. Hence the left hand side in Theorem 3.4
is negligible for 2Ωρ < |k|. In other words, the function ϕ �→ (v ∗ g)(θ, x · θ) has
essential bandwidth 2Ωρ. According to Theorem 3.3,

(R∗(v ∗ g))(x) = ∆ϕ
∑

j

(v ∗ g)(θj , x · θj) (16)

where θj =

⎛
⎝ cos ϕj

sin ϕj

⎞
⎠, ϕj = j∆ϕ, provided that ∆ϕ ≤ π/Ωρ.

The formulas (16), (17) describe the filtered backprojection algorithm – ex-
cept for an interpolation step in the second argument. It is generally acknowl-
edged that linear interpolation suffices.

3.2 Iterative Algorithms

The equations one has to solve in CT are usually of the form

Rjf = gj , j = 1, . . . , p (17)
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where Rj are certain linear operators from a Hilbert space into an Hilbert space
Hj . For instance, for the 2D problem we have

(Rjf)(s) = (Rf)(θj , s) . (18)

Kaczmarz’s method solves linear systems of the kind (18) by successively pro-
jecting orthogonally onto the affine subspaces Rjf = gj of H:

fj = Pjmodpfj−1 , j = 1, 2, . . . .

Here, Pj is the orthogonal projection onto Rjf = gj , i.e.

Pjf = f − R∗
j (RjR

∗
j )

−1(Rjf − gj) .

For the application to tomography we replace the operator RjR
∗
j by a simpler

one, Cj , and introduce a relaxation parameter ω. Putting

Pjf = f − R∗
jC

−1
j (Rjf − gj) ,

Pω
j f = (1 − ω)f + ωPjf

we have the following convergence result.

Theorem 3.5. Let (17) be consistent. Assume that Cj ≤ RjR
∗
j (i.e. Cj her-

mitian and Cj − RjR
∗
j positive semidefinite) and 0 < ω < 2. Then, fj =

Pω
jmodpfj−1 converges for f0 = 0 to the solution of (18) with minimal norm.

The condition 0 < ω < 2 is reminiscent of the SOR (successive overre-
laxation) method of numerical analysis. In fact Kaczmarz’s method can be
viewed as an SOR method applied to the linear system R∗Rf = R∗g where
R = R1 × · · · × Rp.

Theorem 3.5 can be applied directly to tomographic problems. The conver-
gence behaviour depends critically on the choice of ω and of the ordering of (17).
We analyse this for the standard case (18). For convenience we assume that f is
supported in |x| < 1 and gj = 0, j = 1, . . . , p.

The following result is due to Hamaker and Solmon (1978):

Theorem 3.6. Let Cm be the linear subspace of L2(|x| < 1) spanned by Tm(x ·
θ1), . . . , Tm(x · θp), Tm the first kind Chebysheff polynomials. Then,

PjCm ⊆ Cm .

This means that Cm is an invariant subspace under the iteration of
Theorem 3.6. Thus we can study the convergence behaviour on each of these
finite dimensional subspaces separately. Let ρm(ω) be the spectral radius of

Pω = Pω
1 · · ·Pω

p .

ρm(ω) can be computed numerically:
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First we consider the solid lines. They correspond to ω = 1. For the sequential
ordering ϕj = jπ/p, j = 1, . . . , p the values of ρm(ω) are displayed in the top
figure. We see that ρm(ω) is fairly large for low order subspaces Cm, indicating
slow convergence for low frequency parts of f , i.e. for the overall features of f .
The other figures shows the corresponding values of ρm(ω) for a non-consecutive
ordering of the ϕj suggested by Herman and Meyer (1993) and for a random
ordering respectively. Both orderings yield much smaller values of ρm(ω), in
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particular on the low order subspaces. The conclusion is that for practical work
one should never use the consecutive ordering, and random ordering is usually
as good as any other more sophisticated ordering.

In particular in emission tomography the use of multiplicative iterative meth-
ods is quite common. The most popular of these multiplicative algorithms is the
expectation-maximization (EM) algorithm: Let Af = g be a linear system, with
all the elements of the (not necessarily square) matrix A being non-negative.
Assume that A is normalized such that A1 = 1 where 1 stands for vectors of
suitable dimension containing only 1′s. The EM algorithm for the solution of
Af = g reads

f j+1 = f jA∗ g

Af j
, j = 1, 2, . . . ,

where division and multiplication are understood componentwise. One can show
that f j converges to the minimizer of the log likelihood function

�(f) =
∑

i

(gi log(Af)i − (Af)i) .

There exists also a version of the EM algorithm that decomposes the system
Af = g into smaller ones, Ajf = gj , j = 1, . . . , p, as in the Kaczmarz method
(ordered subset EM, OSEM; see Hudson and Larkin (1992)). As in the Kaczmarz
method one can obtain good convergence properties by a good choice of the
ordering, and the convergence analysis is very much the same.

For more on iterative methods in CT see Censor (1981).

3.3 Fourier Methods

Fourier methods make direct use of relations such as Theorem 2.1. Let’s consider
the 2D case in which we have

f̂(σθ) = (2π)−1/2ĝ(θ, σ) , g = Rf . (19)

In order to implement this we first have to do a 1D discrete Fourier transform
on g for each direction θj :

ĝ(θj , σ�) = (2π)−1/2∆s
∑

k

e−iσ�skg(θj , sk)

where sk = k∆s and σ� = �∆σ. This provides f̂ at the points σ�θj which
form a grid in polar coordinates. The problem is now to do a 2D inverse Fourier
transform on this polar coordinate grid. Various methods have been developed for
doing this, in particular the gridding method and various fast Fourier transform
on non-equispaced grids; see Fourmont (1999), Beylkin (1995), Steidl (1998).
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4 Reconstruction from Cone Beam Data

One of the most urgent needs of present day’s X-ray CT is the development
of accurate and efficient algorithms for the reconstruction of f from (Cf)(a, θ)
where a is on a source curve A (typically a helix) and θ ∈ S2. In practice, θ is
restricted to a subset of S0, but we ignore this additional difficulty.

We assume that the source curve A satisfies Tuy’s condition, i.e. A intersects
each plane hitting supp (f) transversally. Let A be the curve x = a(λ), λ ∈ Λ.
Tuy’s condition implies that for each s with (Rf)(θ, s) = 0 there is λ such that
s = a(λ) · θ. In fact there may be more than one such λ, but we assume that
their number is finite. Then we may choose a function M(θ, s) such that

∑
λ

s=a(λ)·θ

M(θ, λ) = 1

for each s. Let g(λ, θ) = (Cf)(a(λ), θ) be the data function. Put

G(λ, θ) =
∫

θ⊥∩S2

∂

∂θ
g(λ, ω)dω .

Then we have

Theorem 4.1. Let w be a function in R
1 and V = R∗w′. Then,

(V ∗ f)(x) =
∫

S2

∫

Λ

w((x − a(λ)) · θ)G(λ, θ)|a′(λ) · θ|M(θ, λ)dλdθ .

For the proof we start out from the 3D case of Theorem 3.1:

(V ∗ f)(x) =
∫

S2

∫

R1

w′(x · θ − s)(Rf)(θ, s)dsdθ

=
∫

S2

∫

R1

w(x · θ − s)(Rf)′(θ, s)dsdθ .

In the s integral we make the substitution s = a(λ) · θ, obtaining

(V ∗ f)(x) =
∫

S2

∫

Λ

w((x − a) · θ)(Rf)′(θ, a(λ) · θ)|a′(λ) · θ|M(θ, λ)dλdθ ,

the factor M(θ, s) being due to the fact that λ → a(λ) · θ is not one-to-one. By
Theorem 2.8,

(Rf)′(θ, a(λ) · θ) = G(λ, θ) ,

and this finishes the proof.
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Theorem 4.1 is the starting point for a filtered backprojection algorithm. For

w′ = − 1
8π2

δ′ ,

δ the 1D δ-function, we have V = δ, the 3D δ-function, hence

f(x) =
∫

Λ

|x − a(λ)|−2Gw

(
λ,

x − a(λ)
|x − a(λ)|

)
dλ ,

Gw(λ, ω) = − 1
8π2

∫

S2

δ′(ω · θ)G(λ, θ)|a′(λ) · θ|M(θ, λ)dθ, ω ∈ S2 .

This is the formula of Clack and Defrise (1994) and Kudo and Saito (1994). For
more recent work see Katsevich (2002).

There exist various approximate solutions to the cone-beam reconstruction
problem, most prominently the FDK formula for a circular source curve (which
doesn’t suffice Tuy’s condition). It can be viewed as a clever adaption of the 2D
filtered backprojection algorithm to 3D; see Feldkamp, Davis and Kress (1984).
An approximate algorithm based on Orlov’s condition of Theorem 2.7 is the π
method of Danielsson et al. (1999).
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