
Preface

In the theory of locally compact topological groups, the aspects and notions
from abstract group theory have conquered a meaningful place from the be-
ginning (see New Bibliography in [44] and, e.g. [41–43]). Imposing group-
theoretical conditions on the closed connected subgroups of a topological
group has always been the way to develop the theory of locally compact
groups along the lines of the theory of abstract groups.

Despite the fact that the class of algebraic groups has become a classical
object in the mathematics of the last decades, most of the attention was con-
centrated on reductive algebraic groups. For an affine connected solvable alge-
braic group G, the theorem of Lie–Kolchin has been considered as definitive
for the structure of G, whereas for connected non-affine groups, the atten-
tion turns to the analytic and homological aspects of these groups, which are
quasi-projective varieties (cf. [79, 80, 89]). Complex Lie groups and algebraic
groups as linear groups are an old theme of group theory, but connectedness of
subgroups does not play a crucial rôle in this approach, as can be seen in [97].
Non-linear complex commutative Lie groups are a main subject of complex
analysis (cf. [1, 7]).

In these notes we want to include systematically algebraic groups, as well
as real and complex Lie groups, in the frame of our investigation. Although
affine algebraic groups over fields of characteristic zero are related to linear
Lie groups (cf. [11–13]), the theorems depending on the group topology differ
(cf. e.g. Remark 5.3.6). For algebraic groups we want to stress the differences
between algebraic groups over a field of characteristic p > 0 and over fields of
characteristic zero.

One essential task of group theory is the description of a given group
by its composition of more elementary groups. There are two kinds of most
elementary Lie groups and algebraic groups. One class is formed by such
groups that have a dense cyclic subgroup; such groups are commutative. In
the class of locally compact groups these groups are determined in [15], in the
class of algebraic groups (over a not necessarily algebraically closed field) they
are classified in [24]. The other kind of elementary groups are those which have
a chain as lattice of their subgroups. In the class of finite groups they are cyclic
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groups of prime power order. In Lie groups and in algebraic groups the lattice
of closed connected subgroups is a chain precisely in the following cases. If
such groups do not have dimension one then in the class of Lie groups they are
Shafarevich extensions of simple complex tori (cf. [7], Chapter 1, Section 6).
In the class of algebraic groups over fields of characteristic zero they are either
simple abelian varieties or extensions of a one-dimensional affine group by a
simple abelian variety (cf. Theorem 4.1.3). In the class of algebraic groups
over fields of positive characteristic the situation is much more complicated.
Besides simple abelian varieties and extensions of a one-dimensional torus
by a simple abelian variety there are also affine algebraic groups having a
chain as lattice of connected closed subgroups. If they are commutative then
they are Witt groups (cf. [89], Chapter 7, Sections 8 and 10), if they are not
commutative then they form a very rich family of unipotent groups as our
work shows.

Already J. Dieudonné was interested in groups having a chain as their lat-
tice of closed connected subgroups; for such groups we introduce in this book
the term chain. Namely, in [19], Section 7, he deals with non-commutative two-
dimensional groups of this type and remarks that they are counter-examples
to conjectures derived from the case of characteristic zero. In general, one rea-
son for the importance of chains is the fact that a precise knowledge of them
is indispensable for group theoretical investigations referring to the lattice of
connected subgroups. Since the lattices of connected subgroups of the pre-
image and the image of an algebraic or topological epimorphism with finite
kernel are isomorphic (see [71], Lemma 1.3, p. 256), we consider groups related
in this way as equivalent and use for them the term isogenous. More precisely,
we use the notion of isogeny for algebraic and topological groups in the sense
of [77], p. 417 (see also Section 2.1). This aspect motivated us to open, up
to isogeny, the door to the exotic world of algebraic non-commutative chains
which consists of unipotent chains since a reduction of algebraic chains to
unipotent groups can be easily achieved. Even though over fields of positive
characteristic not every connected algebraic group is generated by chains (see
Remark 4.1.5), our work documents that they are the fundamental ingredients
of unipotent groups over fields of positive characteristic.

Already the unipotent chains of nilpotency class two are difficult to
treat. Namely, for a complete classification of them one needs a classifica-
tion of all non-commutative extensions G of n-dimensional Witt groups by
m-dimensional Witt groups such that G has an n-dimensional commuta-
tor subgroup. Despite these great obstacles, using the classification of two-
dimensional unipotent groups given in [18], II, § 3, 4.6, p. 197, we could
concretely determine (through hard and involved computations) all unipo-
tent chains of dimension three over perfect fields of characteristic greater
than two. In particular we obtain that any three-dimensional unipotent non-
commutative chain over a perfect field of characteristic greater than two has
nilpotency class two, its commutator subgroup has dimension one and the
center is two-dimensional. An induction yields that for any unipotent chain
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over a perfect field of characteristic greater than two, the commutator sub-
group has co-dimension at least two and the center has dimension at least two
(cf. Corollary 4.2.10). Moreover, the knowledge of three-dimensional chains al-
lows us to classify, up to isogenies, all three-dimensional unipotent groups over
perfect fields of characteristic greater than two (cf. Section 6). These results
demonstrate the richness of examples in dimension three compared with di-
mension two. The plethora of unipotent k-groups over non-perfect fields and
of dimension less or equal two (see [51]) justifies our restriction to algebraic
groups over perfect fields.

Using the regular factor systems determining Witt groups as extensions of
Witt groups by Witt groups (cf. [18], V, § 1, 1.4, p. 542 or [102]) and [18], II,
§ 3, 4.6, p. 197, we obtain a classification of unipotent chains over perfect fields
of positive characteristic having a one-dimensional commutator subgroup (cf.
Theorem 4.3.1).

As Remark 4.1.6 and Example 4.3.4 show, there are in any dimension
unipotent chains of nilpotency class two having two-dimensional and three-
dimensional commutator subgroup. But the involved structure of these ex-
tensions gives no hope that a complete classification of unipotent chains of
nilpotency class two having a commutator subgroup of dimension greater than
one could be achieved.

The classification of chains having a one-dimensional commutator sub-
group yields a classification of connected algebraic groups G over perfect fields
of characteristic p > 2 such that G has a central subgroup of co-dimension
one. These groups have a representation as an almost direct product of a
commutative group and a group which is a direct group of chains with amal-
gamated factor group (cf. Theorem 4.3.12). Moreover, we prove that in an
algebraic group G having a central maximal connected subgroup the commu-
tator subgroup G′ is a (central) vector group. Conversely, if G′ is a central
vector group and G/zG is isogenous to a Witt group, then the center zG
has co-dimension one in G (cf. Theorem 3.2.8). In contrast to this, a non-
commutative algebraic group over a field of characteristic zero cannot have
its center of co-dimension one.

Our investigations on chains G with one-dimensional commutator sub-
group G′ yield conditions under which an automorphism of the factor group
G/G′ can be extended to an automorphism of G. Using these results we can
illustrate that the non-commutative chains are much more rigid than Witt
groups. Namely, any connected algebraic group of algebraic automorphisms
of a non-commutative unipotent chain of dimension greater than two is unipo-
tent (cf. Corollary 4.3.11).

The lattice of normal connected algebraic subgroups of unipotent algebraic
groups for which the nilpotency class is equal to their dimension n forms a
chain of length n (cf. Proposition 3.1.13). Such unipotent groups occur only
over fields of positive characteristic and play an opposite rôle to the one of
chains which cannot have maximal nilpotency class (see Corollary 4.2.10).
In Section 3.1 we introduce for any n a significant class of unipotent groups
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Jn(α) of dimension n and nilpotency class n, characterise these groups as
linear groups and study their structure. These groups show that a group
with maximal nilpotency class can have a trivial adjoint representation (cf.
Remark 3.1.6). At various places we use the groups Jn(α) as a source of
counter-examples to find the limits of our theorems.

The nilpotency class of n-dimensional algebraic groups over fields of char-
acteristic zero as well as n-dimensional real or complex Lie groups is at most
n− 1. The Lie algebras corresponding to these groups of maximal nilpotency
class are called filiform Lie algebras and form a class thoroughly studied for
thirty years (cf. [36, 37]). The filiform groups, i.e. the groups having filiform
Lie algebras, play in our results on groups in characteristic zero the same rôle
as the unipotent chains in positive characteristic.

The simple structure of the lattice of connected subgroups of an algebraic
or analytic chain motivated us to study to which extent individual properties
of chains restrict the structure of algebraic and analytic groups. Most of these
properties remain invariant under isogenies.

In Section 5.2 we investigate connected algebraic groups and connected
Lie groups having exactly one maximal connected closed subgroup (uni-
maximal groups) as well as connected algebraic groups and connected Lie
groups having exactly one minimal connected closed subgroup (uni-minimal
groups). The description of non-affine algebraic groups, respectively complex
Lie groups, which are uni-minimal or uni-maximal easily reduces to extensions
of affine groups of dimension at most one by abelian varieties, respectively to
toroidal groups (cf. Theorem 5.2.7 and Proposition 5.2.4). Connected affine
algebraic groups which are uni-minimal or uni-maximal and have dimension
greater than one are unipotent algebraic groups over fields of positive charac-
teristic (cf. Proposition 5.2.6).

A non-commutative connected unipotent algebraic group G is uni-maximal
if and only if the commutator subgroup of every proper connected al-
gebraic subgroup of G is smaller than the commutator subgroup of G
(cf. Theorem 5.2.17). Any group in which the commutator subgroup is a
maximal connected subgroup is uni-maximal; in particular the unipotent al-
gebraic groups over fields of positive characteristic having maximal nilpotency
class are of such type (cf. Section 3). But we construct in Remark 3.1.12 also
numerous examples of uni-maximal algebraic groups in which the commutator
subgroup is not maximal. Moreover, any non-commutative connected three-
dimensional unipotent algebraic group over a field of positive characteristic
which is not a product of two non-commutative chains is uni-maximal (see
Theorem 6.4.5).

Uni-minimal non-commutative groups G turn out to be products of chains,
where at most one factor C has dimension greater than two; if C is not com-
mutative then the commutator subgroup of G coincides with the commutator
subgroup of C (cf. Theorem 5.2.34). This result shows that the structure
of uni-minimal groups is less complicated than the structure of uni-maximal
groups.
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In Corollary 5.2.35 we prove that the conditions to be uni-minimal and
uni-maximal are strong enough to characterise the chains over fields of char-
acteristic greater than two. Also the condition that in algebraic groups over
fields of characteristic greater than two every proper algebraic subgroup is a
chain characterises the chains up to two exceptions of small dimension (cf.
Theorem 5.2.30). Moreover, a connected affine algebraic group over a field
of arbitrary prime characteristic, containing a chain M as a maximal con-
nected algebraic subgroup, is either a chain or a product of M with a chain
of dimension at most two (cf. Theorem 5.2.40).

In chains with a one-dimensional commutator subgroup, any connected
algebraic subgroup as well as any proper epimorphic image is commutative.
In general however, for algebraic groups over fields of positive characteris-
tic none of these two conditions is sufficient for a concrete description (cf.
Corollary 5.2.23 and Proposition 5.2.38). In contrast to this, for real or com-
plex Lie groups, for formal groups and for algebraic groups over fields of
characteristic zero the assumption of commutativity of all proper connected
subgroups as well as the dual condition of commutativity of all proper epimor-
phic images is strong enough for a classification. A powerful tool to achieve
this goal is the classification of Lie algebras with one of these two properties.
The Lie algebras in which every subalgebra is commutative have been stud-
ied thoroughly for thirty years (cf. [21, 30–32]). If G is a non-commutative
connected affine algebraic group over a field of characteristic zero such that
any connected algebraic subgroup is commutative, then G is at most three-
dimensional (cf. Proposition 5.3.4). For formal groups we find an analogous
situation (cf. Proposition 5.3.5). In contrast to this there exist real and com-
plex Lie groups of any dimension having only commutative proper connected
subgroups, they are precisely the extra-special real or complex Lie groups
(see Remark 5.3.6). A connected non-simple non-commutative affine alge-
braic group of dimension at least three over a field of characteristic zero such
that every epimorphic image of G is commutative is a Heisenberg group (cf.
Corollary 5.3.9 and Proposition 5.3.11). A connected real or complex non-
simple non-commutative Lie group of dimension greater than three having
only commutative proper epimorphic images is an extra-special complex Lie
group having as center a simple complex torus of dimension at least two.

An affine chain of dimension n has exactly one connected algebraic sub-
group for any dimension d ≤ n and any two epimorphic images of the same
dimension are isogenous. Investigating these two properties for connected al-
gebraic groups, respectively for real or complex Lie groups, we call any such
group aligned if any two proper connected closed subgroups of the same di-
mension are isomorphic, respectively co-aligned if all epimorphic images of the
same dimension are isogenous. For algebraic groups over fields of positive char-
acteristic the properties to be aligned and co-aligned are too weak to obtain
a concrete description for such groups (see Section 5.7 and Theorem 6.4.9).
Also for connected algebraic groups over fields k of characteristic zero and for
real or complex Lie groups, the condition to be co-aligned alone is not strong



X Preface

enough to obtain a reasonable description for groups having this property. In
particular there is a rich family of nilpotent co-aligned algebraic k-groups as
well as of nilpotent co-aligned real or complex Lie groups (see Remark 5.5.5).
Only if we assume that these affine groups have nilpotency class two and k is
algebraically closed we obtain Heisenberg groups (cf. Proposition 5.5.4).

In the class of solvable non-nilpotent connected affine algebraic groups G
of dimension greater than three over algebraically closed fields of characteris-
tic zero such that the unipotent radical of G is commutative, the co-aligned
groups are precisely those for which the lattice of connected algebraic sub-
groups forms a projective geometry (see Theorem 5.5.16 and [71], Lemma 4.7,
p. 262). If the unipotent radical U has nilpotency class two and G has dimen-
sion greater than four, then the property to be co-aligned characterises the
semi-direct products of Heisenberg groups H with a one-dimensional torus T
acting on H such that any closed connected subgroup of H is normalized but
not centralised by T (see Theorem 5.5.21). However, the filiform groups admit-
ting a non-trivial action of a one-dimensional torus show that a classification of
co-aligned solvable non-nilpotent affine algebraic groups with unipotent radi-
cal of nilpotency class greater than two is not accessible. The same results hold
for solvable non-nilpotent connected linear complex Lie groups of dimension
grater than three, respectively four (cf. Theorem 5.5.16 and Theorem 5.5.21).

For co-aligned real Lie groups we meet the same difficulties as for algebraic
groups and hence we arrive at a classification only for special subclasses.
A connected non-commutative solvable real Lie group G of dimension greater
than six having commutative commutator subgroup and containing non-trivial
compact elements is co-aligned if and only if G is the direct product of a torus
of dimension at most one and a semi-direct product of an even-dimensional
vector group V with a one-dimensional torus such that any irreducible sub-
space of V has dimension two (see Proposition 5.5.23). A connected solvable
real Lie group G such that the commutator subgroup G′ is not commu-
tative and the factor group G/G′ has a non-trivial compact subgroup of
dimension ≥ 2 is co-aligned if and only if G is a semi-direct product of two
Heisenberg groups with amalgamated centre by a two-dimensional torus (cf.
Proposition 5.5.27).

In contrast to the condition to be co-aligned, the property to be aligned
is strong. This is documented by the fact that a non-commutative connected
affine algebraic group over a field of characteristic zero or a linear complex
Lie group is aligned if and only if it is unipotent and has dimension three
(see Theorem 5.4.4 and Proposition 5.4.9). Moreover, the classification of the
three-dimensional unipotent algebraic groups in Chapter 6 yields that a three-
dimensional non-commutative connected unipotent algebraic group G over
a perfect field of characteristic p > 2 which is aligned is uni-maximal (cf.
Theorem 6.4.7). Furthermore, if G is an aligned uni-minimal group then G is
a chain (cf. Corollary 6.4.8).

For non-linear complex Lie groups the condition to be aligned creates
a situation which is more complicated (cf. Example 5.4.10). However, a
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non-commutative connected real Lie group of dimension n ≥ 4 is aligned
if and only if it is locally isomorphic to one of the following compact Lie
groups: SO2(R) × SO3(R), SO3(R) × SO3(R), SU3(C, 0), SO5(R) and the
14-dimensional exceptional Lie group G2 (cf. Theorem 5.4.8).

In Section 5.7 we characterise chains by the fact that they have only few
non-isogenous factors. Namely a connected unipotent algebraic group is a
chain if and only if it has only finitely many connected algebraic subgroups
(cf. Theorem 5.7.1). This result allows far-reaching generalisations. For in-
stance, a non-commutative unipotent algebraic group G is a chain if and only
if every epimorphic image of G is isogenous to a subgroup of G and any
two connected algebraic subgroups of G of the same dimension are isogenous
(cf. Corollary 5.7.4). The dual conditions also give a characterisation of non-
commutative unipotent chains (cf. Corollary 5.7.8).

In the theory of abstract groups, a group is called hamiltonian or some-
times a Dedekind group if all of its subgroups are normal. For algebraic groups
this condition applied to all algebraic subgroups would not be interesting (see
Theorem 7.2.1). Hence we say that a connected algebraic group is hamiltonian
if all its connected algebraic subgroups are normal. For connected algebraic
groups over a field of characteristic zero also this definition is too strong.
Namely, we show that any connected algebraic k-group over a field k of char-
acteristic zero such that any connected k-subgroup is normal is commuta-
tive (cf. Theorem 7.2.10). But the situation changes drastically if we consider
hamiltonian groups over fields of positive characteristic. Any non-commutative
chain, more generally any uni-minimal connected algebraical group, is hamil-
tonian (see Theorem 7.2.19). Other examples of connected hamiltonian alge-
braic groups are the groups in which the centre has co-dimension one. These
groups in addition are quasi-commutative, i.e. algebraic groups where every
commutative connected algebraic subgroup is central. We remark that non-
commutative, but quasi-commutative algebraic groups exist only over fields
of positive characteristic; they have nilpotency class two (Proposition 3.2.26).

Quite often replacing the condition of normality for certain subgroups by
the condition of quasi-normality one obtains for abstract groups results of the
same significance (see [93]). If G is an algebraic group and Q is a connected
algebraic subgroup of G, then there are two natural possibilities to say that
Q is quasi-normal. The stronger version is to demand that QX = XQ for any
algebraic subgroup of G. But with respect to this definition we can prove a
sharper version of Theorem 1 in [87] : A connected algebraic k-subgroup P
of a connected affine algebraic group G defined over an infinite perfect field
k such that PH = HP for any k-closed subgroup H of G is normal in G
(see Theorem 7.1.1). Because of this result we call a connected algebraic sub-
group Q of an algebraic group G quasi-normal if it is permutable with every
connected algebraic subgroup of G. Quasi-normal, but not normal algebraic
subgroups exist only in algebraic groups G over fields of positive characteristic
(see Corollary 7.1.5). Essentially they are contained in the unipotent radical of
G (see Corollary 7.1.8). Moreover, there are non-commutative algebraic groups
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over fields of positive characteristic in which every algebraic subgroup is quasi-
normal. Among these groups that we call quasi-hamiltonian there are groups
which are not hamiltonian (e.g. Example 7.1.18 and Remark 7.1.20). A con-
sequence of Corollary 7.1.8 is the fact that every connected quasi-hamiltonian
algebraic group is nilpotent (cf. Theorem 7.1.11).

In Sections 7.1 and 7.2 we give many examples of quasi-hamiltonian and
hamiltonian algebraic groups which are neither chains nor uni-minimal (see
e.g. Example 7.2.18 and Remark 7.2.20). A big class of such groups is formed
by the algebraic groups such that the factor group over their centers is a chain
(see Theorem 7.1.12). Moreover, in these sections we describe some product
constructions to obtain hamiltonian groups from given ones, e.g. from chains,
and discuss which limitations occur.

A subclass of the class of hamiltonian algebraic groups are those groups
in which every connected algebraic subgroup is characteristic; we call these
groups super-hamiltonian. A classification of super-hamiltonian algebraic
groups G is easy if G is a direct product of chains (see Corollaries 7.4.2, 7.4.3
and Proposition 7.4.4). However, the decision whether a product of chains is
super-hamiltonian is difficult if the factors do not intersect trivially.

The experience from algebraic groups over fields of characteristic zero,
from abelian varieties and from finite groups makes it surprising that over
fields of prime characteristic there are many examples of three-dimensional
non-commutative connected unipotent algebraic groups which are super-
hamiltonian. In Section 7.4 we use our classification of three-dimensional
connected unipotent groups over perfect fields of characteristic greater than
two to decide which of these groups are super-hamiltonian. Although non-
hamiltonian three-dimensional unipotent groups G exist if and only if the
centre of G is one-dimensional, super-hamiltonian three-dimensional unipo-
tent groups G do not exist only under severe restrictions on the centre, the
commutator subgroup G′ and the factor group G/G′ (see Propositions 7.2.6
and 7.4.6).

Connected quasi-normal subgroups of connected affine algebraic groups
over fields of characteristic zero, respectively of connected Lie groups, are
treated in [87], respectively [86]. A connected closed subgroup Q of a topo-
logical group G is defined to be quasi-normal if it is topologically permutable
with any closed subgroup of G, i.e. if the sets QP and PQ have the same
closure for any closed subgroup P of G (see [52]). This fact motivated us to
seek in Section 7.3 a unified method for the study of quasi-normal subgroups
in topological and algebraic groups G. It turns out that a unified treatment
is possible using a suitable closure operator on the set of subgroups of G (cf.
Definition 7.3.4). This procedure allows to prove that in a connected real or
complex Lie group G, any connected closed subgroup which is topologically
permutable with every closed connected subgroup of G must be normal in G
(see Theorem 7.3.5). In the case of real or complex Lie groups this is a posi-
tive answer to a conjecture in [53]. Moreover, as a consequence we obtain that
every connected real or complex Lie group in which every connected closed
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subgroup is topologically permutable with any other connected closed sub-
group must be commutative (see Corollary 7.3.7). Our point of view has also
the advantage that p-adic Lie groups are included in the considerations, pro-
vided we modify topological permutability to locally topological permutability
(cf. Definition 7.3.10). Using this we can for instance show that any p-adic
Lie group G (over an ultrametric field of characteristic zero) contains an open
commutative subgroup if any family of subgroups which corresponds to some
subalgebra in the Lie algebra of G is locally permutable with every other such
family (cf. Theorem 7.3.14).

In our work we extend all results about affine algebraic groups, respectively
about linear complex Lie groups, to non-affine algebraic groups, respectively to
non-linear complex Lie groups. To do this we use for algebraic groups a series
of well-known results of M. Rosenlicht (cf. Section 1.3) and for complex Lie
groups some theorems on complex tori and toroidal groups (cf. Section 1.1).
Moreover, for algebraic groups we discuss rationality questions and try to
generalize our results to algebraic k-groups.

In Chapter 1 we collect known results on real and complex Lie groups,
formal groups, p-adic groups and algebraic groups as far as they are needed
for our investigations.

The main part of Section 2.1 is devoted to the theory of extensions of alge-
braic groups, in view of our use of regular factor systems. In particular, we need
to know sufficient conditions for an algebraic k-group G, which is an extension
of an algebraic k-group A by an algebraic k-group B, to be k-isomorphic to a
k-group defined on the k-variety B×A. Although such a representation of G is
not always possible (see e.g. Remarks 2.1.4 and 2.1.5), it exists if the normal
subgroup A is k-split and unipotent and B is affine (cf. [82], Theorem 1, p. 99).
Another aim of Section 2.1 is to discuss relations between factor systems and
isogenies. If there exists an isogeny from a connected commutative unipotent
group G1 onto G2, then an isogeny from G2 onto G1 exists as well (see [89],
Proposition 10, p. 176). One could ask if this holds for unipotent connected
non-commutative algebraic groups. Example 2.1.14 answers this question neg-
atively. We establish in Proposition 2.1.12 necessary and sufficient conditions
for the existence of an isogeny between central extensions of A1 by B1 and A2

by B2 which extends two given isogenies between A1 and A2 and between B1

and B2. In Proposition 2.1.13 we give sufficient conditions for central exten-
sions of a Witt group or of a vector group by an algebraic group to be isogenous
in sense of [77], p. 417 (see also Section 2.1). Moreover, for two-dimensional
non-commutative unipotent groups over perfect fields of characteristic p > 2
and of exponent p we give another procedure to obtain, up to a coboundary,
all other factor systems from a suitable one (see Proposition 2.1.9).

In Section 2.2 we deal with commutative extensions of commutative con-
nected complex Lie groups. Since any such group is (holomorphically) iso-
morphic to the direct product of a linear torus (C∗)m, a vector group C

l

and a toroidal group X, the theory of commutative extensions of commuta-
tive connected complex Lie groups reduces to the case of extensions which are
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toroidal groups. The complex n-dimensional toroidal groups X are completely
described by means of period matrices, the columns of which are vectors of the
lattice Λ determining X. If the R-span of the lattice Λ has dimension 2n, then
X is a compact group, namely a complex torus. The description of complex
tori by period matrices given in [7], Chapter 1, suggests to us a generalization
to toroidal groups. Using period matrices, necessary and sufficient conditions
for two toroidal groups to be isogenous, respectively isomorphic, are obtained.
Propositions 2.2.2 and 2.2.3 allow us to recognize suitable closed subgroups
and factor groups of a toroidal group within the corresponding period matrix.
Moreover, a non-compact toroidal group can contain more than one maxi-
mal closed complex linear torus (cf. Example 2.2.4). Using these results we
can concretely decide under which circumstances commutative holomorphic
extensions of toroidal groups by toroidal groups split, and we show that, anal-
ogously to the case of complex tori, Shafarevich extensions of toroidal groups
by toroidal groups exist.

If one considers, as for connected algebraic groups, connected real and
complex Lie groups in which every connected closed subgroup is charac-
teristic, then the Shafarevich extensions are prominent examples of super-
hamiltonian Lie groups. If a super-hamiltonian Lie group has dimension
greater than two, then it is a commutative complex Lie group which is a
closed subgroup of the direct product having as factors a one-dimensional
vector group, a one-dimensional linear torus and a non-trivial toroidal group
which is super-hamiltonian. To settle the question when in a toroidal group X
any connected closed subgroup is characteristic is easy if X is the direct prod-
uct of Shafarevich extensions of a simple torus by a simple torus. In this case
X is super-hamiltonian if and only if there is no non-trivial homomorphism
between two distinct direct factors of X. In general, however, only a thor-
ough analysis of the period matrix determining X allows to decide whether
X is super-hamiltonian or not (see Proposition 7.4.11, Example 7.4.12 and
Proposition 7.4.13).
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Extensions

2.1 Extensions of Unipotent Groups and Isogenies

Let G1 and G2 be connected algebraic k-groups. A k-homomorphism η :
G1 −→ G2 is a k-isogeny if it is an epimorphism with finite kernel. By [77],
Corollary p. 412, any element of the kernel of a separable k-isogeny is defined
over the separable closure ks of k. The groups SL2 and PSL2 give an exam-
ple for the fact that the existence of an isogeny is not a symmetric relation.
But if G1 and G2 are connected commutative unipotent algebraic group and
η : G1 −→ G2 is an isogeny, then there always exists an isogeny θ : G2 −→ G1

(see [89], Proposition 10, p. 176). The equivalence relation generated by isoge-
nies can be defined as follows: G1 and G2 are isogenous if there exists a group
G3 and two isogenies ηi : G3 −→ Gi (i = 1, 2), see [77], section 3, p. 417.

A main result in the context of commutative unipotent algebraic groups,
defined over a perfect field k, states that any such connected k-group is k-
isogenous to a direct product of Witt groups Wn (cf. [18], 6.11 p. 595). The
class of Witt groups Wn is thoroughly described in [18], Chapitre V, or in [89],
VII, 8. The class of unipotent algebraic groups isogenous to a Witt group is
therefore the class of commutative unipotent chains in positive characteristic.

In this section we treat the theory of extensions of algebraic groups, as de-
veloped in a series of papers by Weil [98], Rosenlicht [77,79,82,83], Serre [89].
The purpose is to describe an algebraic group G if a normal connected alge-
braic subgroup A and the factor group G/A are given.

A bit more general than the direct product are the direct product with
amalgamated central subgroup G = G1 �G2 and the direct product with amal-
gamated factor group G = G1 � G2, defined as follows:

2.1.1 Definition. Let G1, G2 be connected algebraic groups, let Zi ∈ Gi be
isogenous connected central algebraic subgroups and let µi : H −→ Zi be two
isogenies. The factor group (G1 × G2)/∆, where

∆ = {(g1, g
−1
2 ) ∈ G1 × G2 : gi = µi(x) for i = 1, 2 with x ∈ H}
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is called the direct product with amalgamated central subgroup and is denoted
by (G1 � G2)H or simply by G1 � G2, if H is understood.

2.1.2 Definition. Let G1, G2 be connected algebraic groups, let Ni ∈ Gi be
connected normal algebraic subgroups such that G1/N1 is isogenous to G2/N2

and let µi : H −→ Gi/Ni be two isogenies. The subgroup

(G1 � G2)H = {(g1, g2) ∈ G1 × G2 : giNi = µi(x) for i = 1, 2 with x ∈ H}

of G1 × G2 is called the direct product with amalgamated factor group and
is denoted by (G1 � G2)H or simply by G1 � G2, if H is understood.

The following characterisation of the above products follows by standard ar-
guments.

2.1.3 Proposition. The connected algebraic group G contains two connected
algebraic subgroups G1, G2 such that G = G1G2, [G1, G2] = 1 and (G1 ∩
G2)◦ = H if and only if G is isogenous to the direct product with amalgamated
central subgroup (G1 �G2)H , where Gi is isogenous to Gi and H is isogenous
to H.

The connected algebraic group G contains two connected normal algebraic
subgroups N1, N2 such that the homomorphism π : G −→ G/N1 × G/N2,
π(x) = (xN1, xN2) is an isogeny if and only if G is isogenous to the direct
product with amalgamated factor group (G1 � G2)H , where Gi is isogenous to
G/Ni and H is isogenous to G/(N1N2). �

Now we summarize some results concerning the theory of extensions of
algebraic groups. These are slightly different from the ones in the general
case of abstract groups, especially in the matter of the field of definition
and in the non-affine case. One of the purposes is to show that the descrip-
tion of an algebraic group by means of coordinate functions cries for ques-
tions of separability of the field of definition. At the end of this section we
will therefore abandon the attempt of describing algebraic chains in the con-
text of algebraic k-groups for a general field k and we will assume (mainly)
that k is perfect. The principal reference are the papers [82] and [77] of
Rosenlicht.

Let A and B be two connected algebraic k-groups, with A commutative
and affine, and let φ : B ×B −→ A be a k-rational regular factor system, i.e.
an everywhere defined k-rational map satisfying the equation δ2φ = 0, where
one defines

δ2φ : (x, y, z) 
→ φ(x, y) + φ(xy, z) − φ(y, z) − φ(x, yz). (2.1)

The following multiplication

(b1, a1)(b2, a2) = (b1b2, a1 + a2 + φ(b1, b2)) (2.2)
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makes B × A an algebraic k-group Gφ, where 1 × A is a central algebraic
k-subgroup of Gφ, the factor group Gφ/(1×A) is k-isomorphic to B and it is
possible to establish an exact sequence

1 −→ A
ı−→ Gφ

π−→ B −→ 1 (2.3)

of separable k-homomorphisms (cf. [77], Theorem 4, p. 413), where ı(a) =
(1, a − φ(1, 1)) and π(b, a) = b. Since ı and π are separable, it is possible to
identify A with the k-subgroup 1 × A of Gφ and B with the factor group
Gφ/(1 × A). We say that Gφ is an explicit central extension of A by B, em-
phasizing that A is, up to a separable k-isomorphism, a central k-subgroup
of Gφ. The set C2

k(B,A) of all k-rational regular factor systems from B × B
to A is a commutative group with respect to the addition of maps. For any
k-rational regular map ψ : B −→ A, the map

δ1ψ : (x, y) 
→ −ψ(y) + ψ(xy) − ψ(x)

is a k-rational regular factor system, usually called trivial. The trivial
k-rational regular factor systems form a subgroup B2

k(B,A) of C2
k(B,A)

and the factor group C2
k(B,A)/B2

k(B,A) is usually denoted by H2
k(B,A).

Two explicit central extensions Gφ1 , Gφ2 of A by B, given by φ1, φ2, respec-
tively, are k-equivalent if there exists a rational k-isomorphism γ : Gφ1 −→ Gφ2

such that the diagram

1 −→ A −→ Gφ1 −→ B −→ 1
idA↓ γ↓ idB↓

1 −→ A −→ Gφ2 −→ B −→ 1

is commutative (see [50], 6.10, p. 363ff). This happens if and only if (φ1−φ2) ∈
B2

k(B,A), hence two extensions Gφ1 and Gφ2 are equivalent if and only if φ1

and φ2 differ by a trivial factor system. In particular, the extension defined
by a trivial factor system φ ∈ B2

k(B,A) is equivalent to the direct product
Gϕ = A × B, which corresponds to the factor system ϕ(x, y) = 0 for all
x, y ∈ B. In this case we say that the extension splits.

Thus we have a bijection between the classes of equivalent explicit central
extensions and the classes of H2

k(B,A). (This bijection is indeed an isomor-
phism of groups, if one defines a group multiplication on the set of extensions
Gφ, as described by the well-known methods of Baer [5]).

Now we turn to the problem of describing a connected algebraic k-group
G by means of factor systems, once we know a connected central affine k-
subgroup A and the corresponding factor group B = G/A.
Let G be a connected algebraic k-group and let A be a connected central affine
algebraic k-subgroup of G. Then the embedding of A in G and the canonical
projection π of G onto B = G/A give an exact sequence

1 −→ A −→ G
π−→ B −→ 1
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of separable rational k-homomorphisms (see [77], Theorem 4, p. 413). The
question whether the group G is birationally k-isomorphic to an explicit cen-
tral extension Gφ for a suitable k-rational regular factor system φ is answered
by the existence of a k-rational regular cross section. A rational cross section
is a rational map from B into G such that πσ = id. Note that a rational cross
section is not necessarily a regular one, indeed it could be defined only on an
open dense subset of B.

Let σ be a k-rational regular cross section. Since πσ = id, one has that δ1σ
is a k-rational regular function from B × B to A. As A is a central subgroup
of G, writing the multiplication in G additively we have

[σ(y) − σ(xy) + σ(x)] + [σ(z) − σ(xyz) + σ(xy)]+

−[σ(z) − σ(yz) + σ(y)] − [σ(yz) − σ(xyz) + σ(x)] =

[σ(y) − σ(xy) + σ(x)] + [σ(z) − σ(xyz) + σ(xy)]+

[−σ(y) + σ(yz) − σ(z)] + [−σ(x) + σ(xyz) − σ(yz)] =

[σ(y) − σ(xy) + σ(x)] + [−σ(x) + σ(xyz) − σ(yz)]+

[σ(z) − σ(xyz) + σ(xy)] + [−σ(y) + σ(yz) − σ(z)] =

σ(y) − σ(xy) + σ(xyz) − σ(yz)+

[σ(z) − σ(xyz) + σ(xy)] + [−σ(y) + σ(yz) − σ(z)] =

σ(y)+[σ(z)−σ(xyz)+σ(xy)]−σ(xy)+σ(xyz)−σ(yz)+[−σ(y)+σ(yz)−σ(z)] =

σ(y) + σ(z) − σ(yz) + [−σ(y) + σ(yz) − σ(z)] =

σ(y) + [−σ(y) + σ(yz) − σ(z)] + σ(z) − σ(yz) = 0.

Therefore φ = −δ1σ is a k-rational regular factor system which makes G
birationally k-isomorphic to the explicit central extension Gφ defined by (2.3).
In fact, define a k-rational regular map ρ : Gφ −→ G by ρ(b, a) = σ(b)a. This
turns out to be a birational isomorphism, the inverse of which is ρ−1(g) =
(π(g), g(σπ(g))−1).

For any other k-rational regular cross section τ we have, by definition,
πσ = πτ = id. This forces (σ − τ)(B) ⊆ ker π, hence σ − τ : B −→ A and
δ1(σ−τ) is a trivial factor system. Thus the factor systems δ1σ and δ1τ defined
by two cross sections give equivalent extensions, and, up to exchanging σ with
σ′ : x 
→ σ(x)σ(1)−1, we can always assume that σ(1) = 1. Moreover, a group
G having a k-rational regular cross section σ characterises a unique class of



2.1 Extensions of Unipotent Groups and Isogenies 15

equivalent factor systems of H2
k(B,A), and G is birationally k-isomorphic to

the direct product A×B if and only if there exists a k-rational regular section
σ : B −→ G which is a homomorphism (injective since πσ = id).

2.1.4 Remark. As shown, the possibility that G is birationally k-isomorphic
to a suitable explicit central extension Gφ depends on the existence of a k-
rational regular cross section. In [77], Theorem 10, p. 426 (see also [83]), it is
proved that, if A is k-split, then a k-rational cross section σ exists. In general,
however, σ is not a regular map. In this case φ = −δ1σ is a k-rational, but
not regular, factor system, defining, according to Weil’s construction in [98],
a pre-group G(φ) which is not a group, the law of composition being not
defined everywhere. However, a birational map exists which transforms the
law of composition of G(φ) into the one of G. (cf. [98], Théorème p. 375
or [101], Théorème 15, p. 136, [89], Lemme 8, p. 89). The group G is therefore
not explicitly described, since the factor system giving G(φ) is not defined
everywhere. A natural candidate to describe this situation is a toroidal group
in the sense of Rosenlicht [80], i.e. a connected algebraic group containing no
unipotent element. Tori, abelian varieties and algebraic groups with a torus as
the maximal connected affine subgroup are all toroidal. By [80], Theorem 2,
p. 986, any regular map φ : V ×W −→ A, where V and W are varieties and A
is a toroidal group, has the shape φ(v, w) = φ1(v)+φ2(w) for suitable regular
mappings φ1 : V −→ A and φ2 : W −→ A. If φ is a k-rational regular factor
system from B × B to A, where B is an algebraic group, then

0 = φ(v, w) + φ(vw, z) − φ(w, z) − φ(v, wz) =

φ1(v) + φ2(w) + φ1(vw) + φ2(z) − φ1(w) − φ2(z) − φ1(v) − φ2(wz)

for all v, w, z ∈ B, and from this it follows that φ1 and φ2 are constant maps.
This shows that there exist no regular non-trivial factor systems into a toroidal
group.

Let for instance E be a smooth elliptic curve defined over a finite field and
let Jm be the generalized Jacobian of E defined, according to [76], Theorem 7,
p. 518 in § 3, by the modulus m = (M)+(N), where M,N are two distinct non-
zero points of E. This means that Jm is a connected commutative algebraic
group having no non-trivial affine image and containing a one-dimensional
torus T as maximal affine subgroup such that Jm/T is isomorphic to E. By
Proposition 1.3.3 the group Jm cannot be defined over a finite field.

According to [17], Theorem 5, one can define on the set T ×E a pre-group
operation by

(k1, P1) + (k2, P2) = (k1 · k2 · φ(P1, P2), P1 + P2)

putting

φ(P1, P2) =
�P1,P2(M)

�P1+P2,O(M)
· �P1+P2,O(N)

�P1,P2(N)
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where �P,Q(X) = 0 is the equation of the line through P and Q (tangent at E
if P = Q) and O is the zero of E. A birational map exists which transforms
the law of composition of the pre-group T × E into the one of Jm, but we
observe that φ is defined only if P1, P2,±(P1 + P2) /∈ {M,N}. Therefore this
is an example of an extension of the one-dimensional torus T by the elliptic
curve E defined by a rational factor system, which cannot be defined by a
regular factor system. �

2.1.5 Remark. In [82], Theorem 1, p. 99 or Corollary 1, p. 100, Rosenlicht
shows that sufficient conditions for the existence of k-rational regular cross
sections are that A is k-split and unipotent and that B is affine. In contrast
to this, let G be a connected nilpotent linear algebraic group defined over a
separably algebraically closed non-perfect field k such that its unipotent part
Gu is not defined over k. The maximal torus T of G is defined over k and G
is a T -principal fiber space over G/T . Then there is no regular cross section
σ : G/T → G that is defined over k (see [82], p. 100).

Now we give a concrete example for the situation taking for T = Gm a
one-dimensional torus defined over a non-perfect field k of characteristic p > 0.
Let E be a purely inseparable extension of k of degree [E : k] = n = pt. We
consider the connected commutative k-group ΠT of [91], Section 12.4, that
we recalled in Remark 1.3.9. The group ΠT has dimension n and contains T
up to a birational k-isomorphism. There exists a surjective E-homomorphism
ρ : ΠT −→ T , the kernel ker ρ of which is the unipotent radical of ΠT , is
connected, has dimension n − 1 and does not contain non-trivial algebraic
k-subgroups of ΠT . In particular, ker π is not defined over k. As a connected
commutative algebraic group, over E the group ΠT is isomorphic to the direct
sum of its unipotent radical ΠTu with its maximal torus T (see [8] Theorem
10.6, p. 137). Assume by contradiction that the exact sequence

1 −→ T −→ ΠT
π−→ ΠT/T −→ 1

has a k-rational regular cross section. Then there exists also a k-regular cross
section σ with 0 = σπ(0), and the map ψ : g 
→ g(σπ(g))−1 is a morphism
ΠT → T sending 0 into 0. Hence ψ is a rational homomorphism, which is sep-
arable since ψ is the identity on T (cf. [45], Theorem, p. 44) and defined over k.
This implies that its kernel ΠTu is defined over k, which is a contradiction.

�

Before leaving the questions of rationality and turning to the connections
between factor systems and isogenies, we want to remark once more that the
existence of a k-rational regular factor system is guaranteed if A is a unipotent
group defined over a perfect field k and B is affine.

For any factor system φ ∈ C2(B,A) there is precisely one factor system
φ0, equivalent to φ, satisfying φ0(1, 1) = 0. In the group Gφ0 , equivalent
to Gφ, we have the useful identity (b, a) = (b, 0)(1, a). Given a factor system
φ ∈ C2(B,A), one can construct others in the following way. If f : A −→ A and
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g : B −→ B are rational epimorphisms we define fφ by fφ (x, y) = f(φ(x, y))
and we define φg by φg (x, y) = φ(g(x), g(y)). The maps fφ and φg are factor
systems and we have:

f(φ + ψ) = fφ + fψ, (φ + ψ)g = φg + ψg, (fφ)g = f(φg).

Moreover, we get an induced epimorphism f̂ from Gφ onto Gfφ and an induced
epimorphism ĝ from Gφg onto Gφ by:

f̂(b, a) = (b, f(a)) and ĝ(b, a) = (g(b), a).

We note that f (respectively g) is an isogeny if and only if f̂ (respectively ĝ)
is one.

One has fB2(B,A) ⊆ B2(B,A) and B2(B,A)g ⊆ B2(B,A). Thus we ob-
tain actions of the rational endomorphisms of A, respectively B, on H2(B,A).
We denote by [φ] the coset φ + B2(B,A) and by G[φ] the set of extensions
equivalent to Gφ. For rational endomorphisms f : A −→ A, g : B −→ B and
[φ] ∈ H2(A,B), one has the actions given by f · [φ] = [fφ], [φ] · g = [φg].

As the group A is commutative, the set End(A) of rational endomorphisms
of A is a ring and the action of End(A) on H2(B,A) just defined makes
H2(B,A) an End(A)-module. It must be observed, however, that in general
H2(B,A) is not an End(B)-module, even if B is commutative, because in gen-
eral the element φ(g1 + g2) − φg1 − φg2 does not belong to B2(B,A), as the
following Remark shows.

2.1.6 Remark. To see concretely that the right action of End(B) on H2(B,A)
does not define a module structure, let A = B = Ga be the connected unipo-
tent one-dimensional additive group, over a perfect field of characteristic p. It
is shown in [18], II, § 3, 4.6, that H2(Ga,Ga) is a free left End(Ga)-module,
having the following family of polynomials as a basis (modulo B2(Ga,Ga)):

Φ1(x, y) =
∑

i
(p−1)!
i!(p−i)! xiyp−i;

ηj(x, y) = xypj

(j = 1, 2, · · · ).

Put g1(t) = t and g2(t) = tp and consider the factor system θ = η1(g1 + g2)−
(η1g1 + η1g2). Then we have

θ(x, y) = (x + xp)(y + yp)p − xyp − xpyp2
= xpyp + xyp2

.

Since θ(x, y) �= θ(y, x), we infer that θ /∈ B2(B,A), i.e. H2(Ga,Ga) is not a
right End(Ga)-module. Moreover, if p > 2 then we have xpyp = 1

2 [(x + y)2p −
x2p −y2p] ∈ B2(B,A), thus θ is equivalent to η2. On the other hand, for p = 2
we have x2y2 = Φ1(x, y)2, thus θ is equivalent to Φ2

1 + η2. �

2.1.7 Remark. The above computation shows that in characteristic 2 it can
happen that the factor set ηkg does not belong to the left End(A)-submodule
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M generated by the set {ηj : j = 1, 2, · · · }. In odd characteristic this is not
possible, because any group Gηj

has exponent p, whereas for φ /∈ M the group
Gφ has exponent p2. More details on the right action of End(B) on H2(Ga,Ga)
can be found in Proposition 2.1.9. �

2.1.8 Remark. For the basis element Φ1 and an arbitrary p-polynomial
g(t) =

∑
i ait

pi

it is easy to check that

[Φ1g] = [g̃Φ1],

where g̃(t) =
∑

i ap
i t

pi

. Therefore the submodule of H2(Ga,Ga) consisting
of symmetric factor systems is a two-sided module over the ring End(Ga),
and this is basic for the fact that, given an isogeny γ1 : G1 −→ G2 of two-
dimensional commutative unipotent algebraic groups, one finds an isogeny
γ2 : G2 −→ G1 (see Proposition 2.1.12 (i) or [89], § VII, n. 10). More generally
this is possible by the same reason for n-dimensional commutative unipotent
algebraic groups. But it is by no means possible for non-commutative factor
systems, as Example 2.1.14 shows.

If however we restrict our attention to the subspace generated a monomial
g(t) = atp

k

we obtain

ηjg(x, y) = axpk · (aypk

)pj

= a1+pj

(xypj

)pk

= a1+pj

(ηj(x, y))pk

.

Putting g̃j(t) = a1+pj

tp
k

we get ηjg = g̃jηj . �

In the following proposition we give a general formula for the factor
systems ηj ∈ H2(Ga,Ga), a special case of which has been used in the
above Remark 2.1.6. We recall that the ring Endk(Ga) of k-endomorphisms
of the additive group Ga is isomorphic to the non-commutative ring k[F] of
p-polynomials, where F is the Frobenius homomorphism and

∑

i

αiFi : x 
→
∑

i

αix
pi

.

The following proposition shows that in odd characteristic any factor sys-
tem can be derived by Φ1 and η1 only.

2.1.9 Proposition. If the characteristic of the ground field is greater than 2,
then in the free left End(Ga)-module H2(Ga,Ga) we have

[η2k] =
k−1∑

i=0

Fi[η1(1 + F2(k−i)−1)] −
(

2k−1∑

i=0

Fi

)

[η1]

[η2k+1] =
k∑

i=0

Fi[η1(1 + F2(k−i))] + Fk[η1] −
k−1∑

i=1

Fi[η1] −
k∑

i=1

Fk+i[η1].



2.1 Extensions of Unipotent Groups and Isogenies 19

Proof. Put α(x) = 1
2x2p, hence δ1α(x, y) = 1

2 ((x + y)2p − x2p − y2p) = xpyp.
The assertion follows from the fact that

η2 = η1(1 + F) − (1 + F)η1 + δ1α

whereas, for any k > 1, we have

ηk(1 + F) = (1 + F)ηk + ηk+1 + Fηk−1.

�

2.1.10 Corollary. If the characteristic of the ground field is greater than 2,
for any ϕ ∈ H2(Ga,Ga) there exist f0, f1, · · · fn, g1, · · · , gn ∈ k[F] such that

ϕ = f0Φ1 +
n∑

k=1

fkη1gk.

�

The following Remark 2.1.11, which makes Propositions 2.1.12 and 2.1.13
particularly meaningful, plays a certain rôle in Section 4.2.

2.1.11 Remark. We illustrate here the fact that the functor H2(B,A) is
contra-variant in B and co-variant in A in the special case of isogenies. The
arguments and the notations are essentially those of [89], VII, 1. p. 164-165.

1) For any explicit central extension Gφ1

1 −→ A1 −→ Gφ1 −→ B −→ 1

of A1 by B, defined by the factor system φ1 : B × B −→ A1, and any
isogeny α : A1 −→ A2 there exists a unique (up to equivalence) explicit
central extension Gφ2

1 −→ A2 −→ Gφ2 −→ B −→ 1

and an isogeny α∗ : Gφ1 −→ Gφ2 , such that the following diagram
commutes

1 −→ A1 −→ Gφ1 −→ B −→ 1
α↓ α∗↓ idB↓

1 −→ A2 −→ Gφ2 −→ B −→ 1.

Explicitly we have [φ2] = α[φ1] and α∗ is defined by α∗(x, y) = (x, α(y)).
Moreover, the group Gφ2 is the factor group of Gφ1 × A2 modulo the
algebraic subgroup ∆ = {(−a, α(a)) : a ∈ A1}.
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2) For any explicit central extension Gφ1

1 −→ A −→ Gφ1

π−→ B1 −→ 1

of A by B1, defined by the factor system φ1 : B1 × B1 −→ A, and any
isogeny β : B2 −→ B1 there exists a unique explicit central extension Gφ2

1 −→ A −→ Gφ2

π−→ B2 −→ 1

and an isogeny β∗ : Gφ2 −→ Gφ1 , such that the following diagram com-
mutes

1 −→ A −→ Gφ2

π−→ B2 −→ 1
idA↓ β∗↓ β↓

1 −→ A −→ Gφ1

π−→ B1 −→ 1.

Explicitly we have [φ2] = [φ1]β and the isogeny β∗ is defined by β∗(x, y) =
(β(x), y). Moreover, the group Gφ2 is the algebraic subgroup of the direct
product B2 × Gφ1 defined by

Gφ2 = {(b, g) ∈ B2 × Gφ1 : β(b) = π(g)}.
�

In the case where Gφ1 and Gφ2 are two central extensions

1 −→ A1 −→ Gφ1 −→ B1 −→ 1

1 −→ A2 −→ Gφ2 −→ B2 −→ 1

we have:

2.1.12 Proposition. Let Gφ1 (respectively Gφ2) be a central extension of the
algebraic affine group A1 (respectively A2) by the (not necessarily commuta-
tive) algebraic group B1 (respectively B2).

(i) There is an isogeny i : Gφ1 −→ Gφ2 such that i(A1) = A2 if and only if
there exist isogenies f : A1 −→ A2 and g : B1 −→ B2 with f [φ1] = [φ2]g.

(ii)If there are isogenies f : A1 −→ A2 and g : B2 −→ B1 such that

[φ2] = f [φ1]g (2.4)

then the groups Gφ1 and Gφ2 are isogenous.

Proof. (i) Let i : Gφ1 −→ Gφ2 be an isogeny such that i(A1) = A2. Then i is
given by

i(x0, x1) = (g(x0), f(x1) + h(x0)),

where f : A1 −→ A2, g : B1 −→ B2 are isogenies and h : B1 −→ A2 is a
rational regular map satisfying the equation fφ1 = φ2g + δ1h.

Conversely, given isogenies g, f as above and a rational regular map h :
B1 −→ A2 satisfying fφ1 = φ2g + δ1h, the mapping i : Gφ1 −→ Gφ2

(x0, x1) 
→ (g(x0), f(x1) + h(x0))
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is an isogeny, since

ker(i) = {(b, a) : b ∈ ker(g), f(a) + h(b) = 0}
is finite, and i(A1) is clearly equal to A2.

(ii) By (i) we find that Gφ1 is isogenous to Gf1φ1 which in turn is isogenous
to Gf1φ1g1 = Gφ2 . �

The next proposition shows the crucial rôle played by the Ore condition
in the context of extensions of algebraic groups and isogenies.

2.1.13 Proposition. Let A (respectively A1, A2) be either the Witt group
Wm or the vector group (Ga)m. Let Gψ (respectively Gφ1 , Gφ2) be a central
extension of A (respectively A1, A2) by the (not necessarily commutative) al-
gebraic group B (respectively B1, B2). If ηi : Gψ −→ Gφi

are isogenies with
ηi(A) = Ai, then there exist hi : Ai −→ A and gi : B −→ Bi such that
h2[φ2]g2 = h1[φ1]g1.

Proof. By (i) there exist isogenies fi : A −→ Ai and gi : B −→ Bi, (i = 1, 2),
such that f1[ψ] = [φ1]g1 and f2[ψ] = [φ2]g2. It is shown in [18], V, § 3, 6.9,
p. 593, that in the semigroup of isogenies of a Witt group the Ore condition
holds. For a vector group this follows from [54], § 10, p. 313. Hence can find
two isogenies hi : Ai −→ A such that h1f1 = h2f2 and we obtain h2[φ2]g2 =
h1[φ1]g1. �

We have already mentioned that the groups SL2 and PSL2 show that the
existence of an isogeny is not a symmetric relation. However, if there exists
an isogeny from a connected commutative unipotent group G1 onto G2 then
an isogeny from G2 onto G1 exists as well (see [89], Proposition 10, p. 176).
Already for unipotent connected non-commutative algebraic groups this is not
any more the case as the following example shows.

2.1.14 Example. In Remark 2.1.6 we denoted by η1 : Ga × Ga −→ Ga

the factor system defined by η1(x, y) = xyp. As soon as the p-polynomial
g is not monomial, the factor system η1g is no longer contained in the left
End(Ga)-submodule generated by η1. Therefore a necessary condition to have
the equality f [η1] = [η1]g, for some p-polynomial f , is that g is monomial,
that is g = aFk (see Remark 2.1.8). But in this case we have η1g = g̃η1,
where g̃ = a1+pFk. This shows that, if f is a p-polynomial which is not a
monomial, it cannot happen that f [η1] = [η1]g, because the left End(Ga)-
submodule generated by η1 is free. By Proposition 2.1.12 (i), there cannot
exist an isogeny from Gf [η1] to G[η1] whereas by the same Proposition we
have an isogeny from G[η1] to Gf [η1].

�
2.1.15 Remark. Non-central extensions of a group A by a group B are in
general described by an action of B as a non-trivial group of automorphisms
of A

a 
→ ab (a ∈ A, b ∈ B),
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and a mapping F : B × B −→ A, satisfying

F (b1b2, b3) · F (b1, b2)b3 = F (b1, b2b3) · F (b2, b3). (2.5)

For the trivial action of B on a commutative group A, the equation (2.5)
just reduces to the functional equation of a factor system describing a central
extension, as in Section 2.1. With a slight abuse, we call a mapping F satisfying
(2.5) a factor system. If A and B are algebraic groups, it is necessary to assume
that the factor system F and all the automorphisms a 
→ ab for all b ∈ B are
rational maps, in order to have the extension of A by B as an algebraic group.

Let Bα be the central extension

1 −→ B1 −→ Bα −→ B2 −→ 1

defined on B2 × B1 by the product

(b0, b1)(b′0, b
′
1) = (b0 · b′0, b1 + b′1 + α(b0, b

′
0))

and let Gφ be the central extension

1 −→ A −→ Gφ −→ Bα −→ 1

defined on B × A by the product

((b0, b1), a)·((b′0, b′1), a′)=((b0 · b′0, b1 + b′1+α(b0, b
′
0)!), a + a′+φ(b0, b1, b

′
0, b

′
1)).
(2.6)

Let H = {(b0, b1, a) ∈ Gφ : b0 = 1}. Under the assumption that [G,H] ≤ A we
want to find the factor system γ corresponding to the section τ : B2 −→ Gφ,
τ(b0) = (b0, 0, 0) of the non-central extension

1 −→ H −→ Gφ −→ B2 −→ 1

and we want to compare this factor system with φ. With the same argument
mentioned in Section 2.1 for central extension, one can easily see that such a
factor system γ = (γ1, γ2) : B2×B2 −→ H is γ = −δ1τ . (It is remarkable that
the effects of changing the section for a non-central extension are not those
of adding a trivial factor system, because in this case δ1(τ − τ ′) �= δ1τ − δ1τ ′.
For a concrete example see the proof of Theorem 6.4.7). A direct computation
shows now that

γ(b0, b
′
0) = (b0 · b′0, 0, 0)−1 · (b0, 0, 0) · (b′0, 0, 0) = (1, α(b0, b

′
0), β(b0, b

′
0))

where α is the map appearing in (2.6) and

β(b0, b
′
0) = −φ

(
b0b

′
0, 0; (b0b

′
0)

−1,−α(b0b
′
0, (b0b

′
0)

−1)
)
+

φ(b0, 0; b′0, 0) + φ
(
(b0b

′
0)

−1,−α(b0b
′
0, (b0b

′
0)

−1); b0b
′
0, α(b0, b

′
0)

)
.
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Therefore the group Gφ is isomorphic to the group defined on B2 × H by
the multiplication

((b0, b1), a) · ((b′0, b′1), a′) = (b0, 0, 0) · (1, b1, a) · (b′0, 0, 0) · (1, b′1, a
′) =

(b0, 0, 0) · (b′0, 0, 0) · (1, b1, a)(b0,0,0) · (1, b′1, a
′) =

(b0b
′
0, 0, 0) · (1, α(b0, b

′
0), β(b0, b

′
0)) · (1, b1, a + σb0(b1)) · (1, b′1, a

′) =

(b0b
′
0, b1 + b′1 + α(b0, b

′
0), a + a′ + ρ(b0, b1, b

′
0, b

′
1))

where

ρ(b0, b1, b
′
0, b

′
1) = σb0(b1) + β(b0, b

′
0) + φ(1, b1, 1, b′1) + φ(1, α(b0, b

′
0), 1, b1 + b′1)

whereas for any b0 ∈ B2 and for any (1, b1, a) ∈ H the map σb0 : B1 −→ A is
a homomorphism such that (1, b1, a)b0 = (1, b1, a + σb0(b1)).

Comparing the representation given by γ with the one given by φ we find
the remarkable fact that γ1 = α whereas ρ is in general different from φ. �

The universal covering C
n of an arbitrary connected commutative complex

Lie group G is a decisive tool for the description of homomorphisms and
extensions of connected commutative complex Lie groups. It plays a similar
rôle as the Witt group Wn for connected commutative unipotent groups. For
non-commutative unipotent groups unfortunately no similar tool is available.

2.2 Extensions of Commutative Lie Groups

Since any commutative connected complex Lie group is (holomorphically)
isomorphic to the direct product of a linear torus (C∗)m, a vector group C

l

and a toroidal group X, the theory of commutative extensions of such Lie
groups reduces to the case of extensions which are toroidal groups. These
groups play a similar rôle as the connected algebraic group G = D(G) with
no non-trivial affine epimorphic image.

Homomorphisms and extensions of complex tori X are completely de-
scribed in [7], Ch. 1, Section 5, by means of period matrices, the columns
of which are the vectors of the lattice Λ of a suitable representation of
X = C

n/Λ. This method works also for connected commutative complex
Lie groups G = C

n/Λ such that the complex rank of Λ is n, which we will
treat now.

Let X = C
n/Λ be a connected commutative complex Lie group. If the

complex rank of Λ is m < n, then Λ is contained in a complex subspace V of
dimension m of C

n. Up to a change of basis and a canonical identification of
V with C

m, we can see then that X is isomorphic to C
n−m ⊕ C

m/Λ. From
now on we assume therefore that the complex rank of Λ is n, and we say that
such groups have maximal complex rank. Let the real rank of Λ be n+q, where
0 ≤ q ≤ n.
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Up to a change of basis we can assume that Λ = Z
n⊕Γ. The corresponding

column matrix is

P = (In, G) =

(
Iq 0 T̂

0 In−q T̃

)

∈ Mn,n+q(C)

where the columns of G =

(
T̂

T̃

)

are R-independent generators of Γ.

In accordance to [7], p. 2, we call P the period matrix of X. The imaginary
part of G has real rank q, because the columns of P are R-independent. Up to
a permutation of the vectors of the basis we can assume that the imaginary
part of T̂ is invertible.

For q = 0 we have Λ = Z
n, hence the group X = C

n/Z
n ∼= (C∗)n is a

linear torus, whereas for q = n the group X is a complex torus by definition
( [7], p. 1). According to [1], 1.1.11, p. 9, if P = (In G) is the matrix of a
R-basis of the lattice Λ, the group C

n/Λ is toroidal if and only the following
irrationality condition holds:

for any non-zero v ∈ Z
n the vector vG is never contained in Z

q. (2.7)

Homomorphisms of connected commutative complex Lie groups of maximal
complex rank can be described in terms of period matrices. In fact, a homo-
morphism f : X1 = C

n1/Λ1 −→ X2 = C
n2/Λ2 lifts to a unique homomor-

phism f̂ : C
n1 −→ C

n2 of C-vector spaces such that f̂(Λ1) ≤ Λ2. This lifting
defines therefore two homomorphisms

ρa : Hom(X1,X2) −→ Hom(Cn1 , Cn2) ∼= Mn2,n1(C)

ρr : Hom(X1,X2) −→ Hom(Λ1,Λ2) ∼= Mn2+q2,n1+q1(Z)

such that
ρa(f)P1 = P2ρr(f), (2.8)

where Pi is a period matrix of Xi (i = 1, 2) and where we have identified ρa(f)
and ρr(f) with the matrices corresponding to the chosen basis of C

ni . The
homomorphisms ρa and ρr are called the analytic and the rational represen-
tation of Hom(X1,X2) and the equations in (2.8) are called Hurwitz relations
(cf. [1], p. 8).

2.2.1 Proposition. A homomorphism f : X1 −→ X2 is an isogeny if and
only if ρa(f) and ρr(f) are square matrices with non-zero determinant. In this
case there exists an isogeny g : X2 −→ X1 with fg = l idX2 and gf = l idX1

where l = |ρr(f)|. In particular, the isogeny f is an isomorphism if and only
if |ρr(f)| = ±1.

Proof. If f is an isogeny, then f̂ = ρa(f) is bijective for dimensional reasons,
hence |ρa(f)| �= 0. If we put Γ = f̂−1(Λ2), then Λ1 ≤ Γ and Γ/Λ1 is the kernel
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of the isogeny f . If the real rank of Λ2 were greater than the real rank of Λ1,
then Γ/Λ1 would be infinite. As ρa(f)P1 = P2ρr(f) we find Λ1 = Γρr(f).
Hence we have: 1) the real rank of Λ1 is not greater than the real rank of
Λ2, since Λ2 has the same real rank as Γ, 2) ρr(f) is a square matrix with
non-zero determinant.

Conversely, if ρa(f) and ρr(f) are square matrices with non-zero determi-
nant, then f is surjective, its kernel is discrete and Λ1 and Γ = f̂−1(Λ2) have
the same real rank. As the factor group Γ/Λ1 is the kernel of f , it has to be
finite, proving that f is an isogeny.

Finally, let l = |ρr(f)| and let R = lρr(f)−1, hence R has integral entries.
Since lρa(f)−1P2 = P1R we can define a homomorphism g : X2 −→ X1

such that ρa(g) = lρa(f)−1 and ρr(g) = R. Since ρa(g) and ρr(g) are square
matrices with non-zero determinant, the homomorphism g is an isogeny and
it is easy to see that fg = l idX2 and gf = l idX1 .

In particular, if l = ±1 the isogeny f is an isomorphism. Conversely, if f
is an isomorphism, then the rational representation ρr(f) : Λ1 −→ Λ2 is an
isomorphism of lattices having ρr(f−1) as the inverse, hence |ρr(f)| = ±1. �

Now we want to study closed subgroups and factor groups of toroidal
groups as well as holomorphic commutative extensions of toroidal groups by
toroidal groups.

2.2.2 Proposition. Let X ∼= C
n/Λ be a connected commutative complex Lie

group of maximal rank n. For any k-dimensional connected closed commuta-
tive complex subgroup X1 = C

k/Λ1 of maximal rank k of X there exists a
period matrix P such that

P =
(

P1 Σ
0 P2

)

where P1 is a period matrix of X1 and P2 is a period matrix of the factor
group X/X1.

Proof. Let P1 be a period matrix of the closed subgroup X1
∼= C

k/Λ1 of X.
As X1 is a closed subgroup of X we can construct an exact sequence

0 −→ C
k/Λ1

ı−→ C
n/Λ π−→ C

n−k/Λ2 −→ 0,

where Λ2 is a lattice corresponding to the connected complex commutative
Lie group X/X1

∼= C
n−k/Λ2. Consider the linear maps ı̂ = ρa(ı) and π̂ =

ρa(π). As ker ı = ı̂−1(Λ)/Λ1 and ı is injective we have ı̂−1(Λ) = Λ1 from
which it follows that also ı̂ is injective. Furthermore by the relation ker π =
π̂−1(Λ2)/Λ = ı(Ck/Λ1) = (̂ı(Ck) + Λ)/Λ we have π̂−1(Λ2) = ı̂(Ck) + Λ, which
yields ker π̂ = ı̂(Ck). Consequently ı̂ and π̂ define an exact sequence

0 −→ C
k ı̂−→ C

n π̂−→ C
n−k −→ 0.
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By the relation π̂−1(Λ2) = ı̂(Ck) + Λ we have that the homomorphism
π̂|Λ : Λ −→ Λ2 is surjective and ker π̂|Λ = ı̂(Λ1). This defines an exact sequence

0 −→ Λ1
ı̂−→ Λ π̂−→ Λ2 −→ 0.

Since Λ2 is a free commutative group we get Λ = ı(Λ1) ⊕ Γ where Γ ∼= Λ2.
Up to a change of basis of the spaces C

k, C
n and C

n−k we can assume that

ı̂ = ρa(ı) =
(
Ik

0

)

, π̂ = ρa(π) = (0 In−k), and we can choose a period ma-

trix P of X such that P =
(

P1 Σ
0 A

)

, where the columns of the matrix
(
Σ
A

)

are R-independent Z-generators of Γ. Furthermore, fixing a period ma-

trix P2 of X/X1, up to a change of generators of Γ we can assume that
ρr(π) = (0 In+q−k−q1), where n + q (respectively n1 + q1) is the real rank of
X (respectively of X1). Now, by the Hurwitz relations we have

(0 In−k)
(

P1 Σ
0 A

)

= P2(0 In+q−k−q1)

from which it follows that A = P2. �

Now we look for closed linear subtori of a connected commutative complex Lie
group X ∼= C

n/Λ of maximal rank n with period matrix P = (In G). Denote
by H = H(l1, · · · , ln−m) the m-dimensional subspace of C

n defined by

H =
{
(z1, · · · , zn) ∈ C

n : zlk = 0 for lk ∈ {1, · · · , n} and k = 1, · · · , n − m
}

and let CH(P ) be the matrix obtained from P in the following way: we cancel
in P any row with exception of those labeled by l1, · · · , ln−m as well as any
of the first n columns with exception of those labeled by l1, · · · , ln−m. Clearly
CH(P ) = (In−m G′), with G′ ∈ Mn−m,q(C).

2.2.3 Proposition. Let X ∼= C
n/Λ be a connected commutative complex Lie

group of maximal rank n and let P = (In G) be a period matrix of X. If the
columns of CH(P ) are R-independent, then X1 = (H +Λ)/Λ is a closed linear
subtorus of X.

Proof. Let X2
∼= C

n−m/Λ2 be the connected commutative complex Lie group
of maximal rank n − m having CH(P ) as a period matrix and let f̂ : C

n −→
C

n−m be the homomorphism defined by f̂(z1, · · · , zn) = (zl1 , · · · , zln−m
).

Since f̂(Λ) ≤ Λ2, a homomorphism f : X −→ X2 is induced such that X1 is
the kernel. This proves that X1 is a closed subgroup. In order to prove that
X1 is a linear torus we show that H ∩ Λ has real rank m. This follows from
the fact that the columns of CH(P ) are R-independent, hence no non-trivial
linear combination of the columns l1, · · · , ln−m of the matrix P with integral
(or even real) coefficients enters in H. �
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2.2.4 Remark. The above proposition shows that a toroidal group X with
period matrix

P = (In G) =

(
Iq 0 T̂

0 In−q T̃

)

∈ Mn,n+q(C)

(such that the imaginary part of T̂ is invertible) contains a closed linear
subtorus L of dimension n − q corresponding to the submatrix P1 = In−q,
because the submatrix CH(P ) = (Iq T̂ ) is the period matrix of a complex
torus. Hence L is a maximal closed linear subtorus of X. For instance, in the
three-dimensional toroidal group X having

P =

⎛

⎝
1 0 0 i i

0 1 0 i
√

2 0
0 0 1 0 i

√
2

⎞

⎠

as a period matrix, the three subgroups H(2, 3), H(1, 3) and H(1, 2) are one-
dimensional maximal closed linear subtori. Thus X is a C

∗-fiber bundle over
the complex tori defined by the period matrices

CH(2,3) =
(

1 0 i
√

2 0
0 1 0 i

√
2

)

, CH(1,3) =
(

1 0 i i

0 1 0 i
√

2

)

,

CH(1,2) =
(

1 0 i i

0 1 i
√

2 0

)

. �

Let X1 = C
n1/Λ1,X2 = C

n2/Λ2 be connected commutative complex Lie
groups of maximal ranks n1, n2 and let P1, P2 be the corresponding period
matrices. Let

0 −→ X1 −→ X −→ X2 −→ 0

be an exact sequence of connected commutative complex Lie groups. By
Proposition 2.2.2 we find a basis such that the corresponding period matrix is

P =
(
P1 Σ
0 P2

)

∈ Mn,n+q1+q2(C).

Conversely to each matrix of this form there corresponds a toroidal group X
containing a closed subgroup X1 having P1 as a period matrix and such that
X/X1 is isomorphic to a toroidal group X2 having P2 as a period matrix.
In fact, X1 is the kernel of the homomorphism f : X −→ X2 which lifts to
f̂(z1, · · · , zn) = (zn1+1, · · · , zn).

As a consequence of Hurwitz relations we find that P =
(
P1 Σ
0 P2

)

and Q =
(
P1 Σ′

0 P2

)

define equivalent extensions if and only if a matrix A ∈ Mn1,n2(C)

and a matrix M ∈ Mn1+q1,n2+q2(Z) exists such that
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(
In1 A
0 In2

)(
P1 Σ
0 P2

)

=
(
P1 Σ′

0 P2

) (
In1+q1 M

0 In2+q2

)

.

The period matrix P =
(
P1 Σ
0 P2

)

defines therefore a split extension of X1 by X2

if and only if Σ = P1M−AP2 with A ∈ Mn1,n2(C) and M ∈ Mn1+q1,n2+q2(Z).

Moreover, if the period matrix P =
(
P1 Σ
0 P2

)

is such that Σ = P1M − AP2

with M ∈ Mn1+q1,n2+q2(Q), then P defines an extension of X1 by X2 which
is isogenous to a split one. An isogeny f : X1 → X2 is given by ρa(f) =(
lIn1 0
0 In2

)

and ρr(f) =
(
lIn1+q1 0

0 In2+q2

)

, where l ∈ Z is such that lM has

integral entries.
Hence we have the following

2.2.5 Proposition. Let X1,X2 be connected commutative complex Lie groups
of maximal rank n1, n2 and let P1, P2 be the corresponding period matrices.
The period matrix

P =
(
P1 Σ
0 P2

)

∈ Mn,n+q1+q2(C) (n = n1 + n2)

defines an extension of X1 by X2 which is isogenous to a split one, via an

isogeny f such that ρa(f) =
(
lIn1 0
0 In2

)

and ρr(f) =
(
lIn1+q1 0

0 In2+q2

)

, if and

only if Σ = P1M − AP2 with A ∈ Mn1,n2(C) and M ∈ Mn1+q1,n2+q2(Q),
where l ∈ Z is such that lM has integral entries. �

Extensions of complex tori X1 and X2 which are not isogenous to a split
analytic extension X1 ⊕ X2 are called Shafarevich extensions in [7], Ch. 1,
§ 6, p. 23. Hence it seems for us to be natural to call also non-split analytic
extensions of a toroidal group by a toroidal group Shafarevich extensions.

If X1 and X2 are abelian varieties, Shafarevich extensions of X1 by X2 are
not abelian varieties and hence provide a wide class of non-projective complex
tori, since an abelian variety is a complex torus admitting a holomorphic
embedding into some projective space (cf. [7], p. xiii).


