
Preface

The adjective ‘granular’ is attributed to materials when they are made of
sets of unfastened discrete solid particles (granules) of a size larger than one
micron, a length scale above which thermal agitation is negligible. In fact,
the dominant energy scale in granular materials is the one of a single grain
under gravity. Granular matter is common and we meet it everyday. Examples
range from the dust settled on the books of our libraries, to the sand in the
desert, to the meal used in cooking, itself obtained from grain, often stored
in silos. Granular matter displays a variety of peculiarities that distinguish
it from other substances studied by condensed matter physics and renders
its overall mathematical modeling arduous. In a review paper of 1999 [dG]
P.G. de Gennes writes: “granular matter is a new type of condensed matter,
as fundamental as a liquid or a solid and showing in fact two states: one
fluidlike, one solidlike. But there is as yet no consensus on the description of
these two states!”

Almost all preconceptions on which the standard theory of continua is
based seem to fail. The standard concept that the material element is well
identified (even in the statistical conception common in gas dynamics) fails
and, with it, the current mathematical picture assigning to it a precise place-
ment. Even useful results of the standard kinetic theory of gases can be called
upon confidently, in general. The populations of grains are far less profuse than
the molecular ones in gases and far more crowded. The constraints imposed
by grains on one another are generally too conspicuous to rigidify the lot.
Also, boundary conditions are far from the simple classical scheme suggested
by the divergence theorem and need separate critical modeling.

Heaps of granules do not sustain tension unless (at least a small) cohesion
is present. They are, in general, in anisotropic metastable states. Such states
last indefinitely unless external perturbations occur. Contrary to common
solids and fluids, no thermal average among nearby states arises (see [JNB]).
Interactions between granules are exerted through contacts occurring along
graphs with topology depending on the way in which granules are packaged,
on the distribution of the sizes of the granules themselves, on the boundary
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conditions and, above all, on the sources of external disturbances. Subsets of
granules may self-organize in order to sustain and distribute tensions along
arcs: When granules are stored in a silo the pressure at the bottom of the
silo does not increase indefinitely as the height of the stored material grows,
rather it reaches a maximum value if the lateral walls of the silo are sufficiently
tall. If the silo is shaken and grains with different sizes are stored within it,
size segregation occurs instead of mixing. The phenomenon does not fit the
entropic effects that one recognizes in standard liquids. Both traveling and
standing waves accrue in the surface layer of grains, and slip appears along
the walls of the silo. It is not clear yet how inelastic interactions and local
disorder or segregation contribute to the acoustic propagation.

Layer dynamics is present also in ‘avalanches’. The example is the addition
of grains to a heap from the top: the surface layer moves, the core persists.
The description of the connection between the surface flow and the core at
rest forces one to account for the transition between two phases, if one wants
to propose a global picture of the phenomenon. As for the contact stresses
in granular materials at rest, even for rapid flows the stresses induced by the
collisions depend on the local numerosity of granules, in other words on the
‘degree of clustering’. Segregation in dense granular flows also has an influence.
The overall mechanical behavior seems to be history-dependent.

Plastic effects may be prominent in the quasi-static regime: shear bands
appear and inelastic deformations may be accumulated by cyclic loading pro-
cesses. Inelastic collisions usually play a decisive role in dynamics, as in the
fall of avalanches and in the walk of desert dunes. Chaotic agitation of gran-
ules leads them far from thermodynamic equilibrium, so fluctuations may
be prominent. Microscopic slip friction between granules induces relaxation
analogous to that of some solids with complex microstructure. Macroscopic
friction is induced by earthquakes which may induce fluidization of granular
matter.

Critical reviews such as [JNB], [dG], [K], and [AT] provide an adequate
description of phenomena occurring in granular matter. They give a picture
of the scenario.

A typical approach to the dynamics of polydisperse granular systems is
based on the ‘inelastic’ Boltzmann equation which also provides the starting
point for a plethora of hydrodynamic models. Assumptions on the types of
contacts occurring must be chosen carefully: relative rotations may need to
be accounted for, depending on the circumstances. Closures are obtained by
assuming specific forms of the distribution function. A critical review of the
results along these lines can be found in [V].

Even in a disperse state, a granular flow is dissipative as a consequence
of the presence of inelastic collisions. Absence of equilibrium is the source
of difficulties when one applies the Chapman-Enskog perturbative method to
derive a (hydrodynamic) continuum picture from the kinetic description based
on Boltzmann equation. Since collisions are inelastic, a double expansion in
Knudsen numberK and degree of inelasticity ε has to be used. Moreover, since
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ε ∝ K3 in the steady state, the expansion has to be extended up to Burnett or
super-Burnett regimes to assure consistency, the latter regime being of degree
O

(
K3

)
. The appearance of unphysical instabilities under short-wave per-

turbations, typical of Burnett and super-Burnett regimes, requires viscosity
regularizations of the field equations or the use of other possible techniques.

Attempts have been made to construct continuum models of granular
matter from first principles, without resorting to kinetic justifications based
on Boltzmann equation, especially in statics. Non-trivial difficulties arise, as
already mentioned: at a gross scale some standard paradigms of traditional
continuum mechanics need to be modified accurately. We have already men-
tioned for example the loss of the possibility of identifying perfectly a generic
material element (i.e. even to define it). This difficulty is generated by the
occurrence of segregation and also by the general lack of coherence due to
the absence of cohesion between neighboring granules. Each material ele-
ment must be then considered as an open system (as in [M]) from which
granules may migrate from it to neighboring ones. Standard balances of inter-
actions have to be then supplemented by an equation ruling the rate of local
numerosity of granules. Such a rate, which is the rate of migration of granules,
generates loss of information about the local texture of the granular matter,
and increases the configurational entropy, although segregation is opposite to
the entropic mixing (as mentioned above).

The definition of measures of deformation and stresses in terms of granular
geometries and grain-to-grain interactions may be non-trivial. As regards the
standard stress tensor, for example, a typical definition is made by the sum of
the tensor product between the intergranular force and the vector indicating in
a local frame the contact point between neighboring granules, a sum extended
to all granules in contact with a given granule. However, although such a
definition has a physical meaning, one does not know point by point (or better,
element by element) the local distribution of granules, their geometry and
the type of contact which may be inelastic and not even punctual. All these
information characterize each model that can be constructed and have also
constitutive nature.

By looking at deeper details, it is natural to consider a granular material
as a complex body (in the sense of a body in which the material texture
influences strongly the gross behavior). So, multifield descriptions of granular
matter need to be called upon, as explained in some chapters of this book.

In any case, no accepted general consensus about the overall descrip-
tion of granular bodies exists. Such an absence of a unified description of
the mechanics of the granular matter and the lack of preference for one or
another approach, for aesthetic or experimental reasons, has pushed us to col-
lect advances in the various prominent directions of research. Our aim is to
furnish a panorama clarifying the state of current researches, solving problems,
discussing critically points of view and opening new questions. Contributions
range, in fact, from the kinetic approaches to granular flows to the continuum
description of static and quasi-static behaviors. A non-trivial tentative of a
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connection between the kinetic approach and a continuum modeling based on
first principles is also present (see Chap. 4).

At the present state of knowledge and in the absence of a unitary point
of view, one can only say that the variety and the peculiarities of behavior of
granular matter render arduous the task of its overall mathematical modeling.
Mathematical and physical questions of an intricate nature appear and tools
additional to the traditional ones are needed. Some of these questions and
tools are discussed in the subsequent chapters.

Motivated by experimental results on shear bands due to (unstable) plastic
behavior of granular bodies, in Chap. 1, Joe D. Goddard discusses critically
various techniques for the homogenization of granular media in a quasi-static
regime, media that are seen here as multipolar continua in the sense of the
mechanics of complex bodies. An energy-based method of homogenization is
proposed as an improvement on previous approaches.

If one describes granular flows from the point of view of the kinetic the-
ory, inelastic collisions play a role as mentioned above. The Maxwell model of
binary collisions is a typical scheme adopted and is based on the assumption
that the collision frequency is independent of the velocity of colliding parti-
cles. Such a model can be translated from rarefied gases to the description of
granular flows. In Chap. 2, Alexander V. Bobylev, Carlo Cercignani and Irene
Martinez Gamba discuss, from a general point of view, variants of the Maxwell
model of pairwise interactions and establish their key properties that lead to
self-similar asymptotics. Existence and uniqueness issues are also analyzed.

The approach based on the dissipative Boltzmann equation is further ana-
lyzed in Chap. 3 by Giuseppe Toscani. Two paths toward the hydrodynamic
limit are discussed. They account for two different methodologies for the clo-
sure of macroscopic equations: (i) low inelasticity in the system, namely a
perturbation in a precise sense that allows the local resort to Maxwellian func-
tions, (ii) small spatial variations implying the use of a homogeneous cooling
state.

One of the editors (GC) proposes in Chap. 4 (a chapter already mentioned
above) further results on an earlier proposal for fast sparse flows. Complex
bodies with kinetic substructure are considered. They are bodies in which each
material element is a system in continuous agitation and are called pseudoflu-
ids. Granular flows fall naturally in this framework. The maelstrom within
each material element and its influence on the neighboring fellows is gov-
erned by peculiar hydrodynamic balances: they are offspring of the microscopic
interactions between granules.

The recursive analysis of higher momenta of the distribution function, even
beyond Grad’s 13 moments, has been the basic source of Extended Thermody-
namics. The results on monoatomic gases provided by such an approach sug-
gest its use in modeling granular flows. After summarizing the main modeling
issues of Extended Thermodynamics, in Chap. 5 Tommaso Ruggeri analyzes
the resulting hyperbolic system and discusses global existence questions and
stability of constant state on the basis of Kawashima condition.
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The construction of hydrodynamic models from first principles can find
appropriate suggestions from detailed numerical simulations performed by
looking directly at single granules and their contact interactions. The molec-
ular dynamic approach is pursued in Chap. 6 by Ramon Garćıa-Rojo, Sean
McNamara and Hans J. Herrmann who analyze (amid possible choices)
the persistent elastic–plastic strain accumulation in compacted granular soils
under cyclic stress conditions.

Since driven sets of granules (for example confined in a box) are in essence
systems very far from thermodynamic equilibrium, as mentioned above, the
effects of fluctuations are in general significant. Analysis of the injected power
fluctuations is presented by Alain Barrat, Andrea Puglisi, Emmanuel Trizac,
Paolo Visco and Frederic van Wijland in Chap. 7, a chapter divided into
two parts: The first part deals with the way in which the probability density
function of the fluctuations of the total energy is related to the character-
ization of energy correlations for both boundary and homogeneous driving.
The second part contains an interpretation of some numerical and exper-
imental results that seem to invalidate Gallavotti–Cohen symmetry [GC].
Such results appear contradictory to common analyses that seem to satisfy
Gallavotti–Cohen fluctuation relation. By means of Lebowitz–Spohn approach
to Markov processes, an approach applied to the inelastic Boltzmann equation,
a functional satisfying a fluctuation relation is also introduced.

The last two editors collect their contributions in Chaps. 8 and 9. In par-
ticular, in Chap. 8 PG analyzes in the continuum limit the thermodynamics
of a granular material modeled as a complex body endowed with a microstruc-
ture which is constrained and/or latent in the sense introduced by Capriz [C].
The consequences of grain rotations are described together with effects like
dilatancy.

Finally, in Chap. 9, PMM considers granular matter in slow motion and
describes it as a two-scale complex body for which each material element is
considered as a grand-canonical ensemble of granules. The evolution equation
of the numerosity of grains in each material element is derived in terms of
grain-to-grain interactions.

February, 2008 Gianfranco Capriz
Pasquale Giovine

Paolo Maria Mariano
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Generalized Kinetic Maxwell Type Models
of Granular Gases

A.V. Bobylev, C. Cercignani, and I.M. Gamba

Summary. In this chapter we consider generalizations of kinetic granular gas
models given by Boltzmann equations of Maxwell type. These type of models for non-
linear elastic or inelastic interactions, have many applications in physics, dynamics
of granular gases, economy, etc. We present the problem and develop its form in the
space of characteristic functions, i.e., Fourier transforms of probability measures,
from a very general point of view, including those with arbitrary polynomial non-
linearities and in any dimension space. We find a whole class of generalized Maxwell
models that satisfy properties that characterize the existence and asymptotic of
dynamically scaled or self-similar solutions, often referred as homogeneous cooling
states. Of particular interest is a concept interpreted as an operator generalization of
usual Lipschitz conditions which allows to describe the behavior of solutions to the
corresponding initial value problem. In particular, we present, in the most general
case, existence of self similar solutions and study, in the sense of probability mea-
sures, the convergence of dynamically scaled solutions associated with the Cauchy
problem to those self-similar solutions, as time goes to infinity. In addition we show
that the properties of these self-similar solutions lead to non classical equilibrium
stable states exhibiting power tails. These results apply to different specific problems
related to the Boltzmann equation (with elastic and inelastic interactions) and show
that all physically relevant properties of solutions follow directly from the general
theory developed in this presentation.

1 Introduction

It has been noticed in recent years that a significant non-trivial physical
phenomena in granular gases can be described mathematically by dissipa-
tive Boltzmann type equations, as can be seen in [17] for a review in the
area. As motivated by this particular phenomena of energy dissipation at the
kinetic level, we consider in this chapter the Boltzmann equation for non-linear
interactions of Maxwell type and some generalizations of such models.
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The classical conservative (elastic) Boltzmann equation with the Maxwell-
type interactions is well-studied in the literature (see [5, 14] and references
therein). Roughly speaking, this is a mathematical model of a rarefied gas
with binary collisions such that the collision frequency is independent of the
velocities of colliding particles, and even though the intermolecular potentials
are not of those corresponding to hard sphere interactions, still these models
provide a very rich inside to the understanding of kinetic evolution of gases.

Recently, Boltzmann equations of Maxwell type were introduced for mod-
els of granular gases were introduced in [7] in three dimensions, and a bit
earlier in [3] for in one dimension case. Soon after that, these models became
very popular among the community studying granular gases (see, for exam-
ple, the book [13] and references therein). There are two obvious reasons
for such studies The first one is that the inelastic Maxwell–Boltzmann equa-
tion can be essentially simplified by the Fourier transform similarly as done
for the elastic case, where its study becomes more transparent [6, 7]. The
second reason is motivated by the special phenomena associated with homo-
geneous cooling behavior, i.e., solutions to the spatially homogeneous inelastic
Maxwell–Boltzmann equation have a non-trivial self-similar asymptotics, and
in addition, the corresponding self-similar solution has a power-like tail for
large velocities. The latter property was conjectured in [16] and later proved
in [9, 11]. This is a rather surprising fact, since the Boltzmann equation for
hard spheres inelastic interactions has been shown to have self similar solu-
tions with all moments bounded and large energy tails decaying exponentially.
The conjecture of self-similar (or homogeneous cooling) states for such model
of Maxwell type interactions was initially based on an exact one-dimensional
solution constructed in [1]. It is remarkable that such an asymptotics is absent
in the elastic case (as the elastic Boltzmann equation has too many conserva-
tion laws). Later, the self-similar asymptotics was proved in the elastic case
for initial data with infinite energy [8] by using another mathematical tools
compared to [9] and [12].

Surprisingly, the recently published exact self-similar solutions [12] for
elastic Maxwell type model for a slow down process, derived as a formal
asymptotic limit of a mixture, also is shown to have power-like tails. This fact
definitely suggests that self-similar asymptotics are related to total energy
dissipation rather than local dissipative interactions. As an illustration to
this fact, we mention some recent publications [2, 15], where one-dimensional
Maxwell-type models were introduced for non-standard applications such as
models in economics and social interactions, where also self-similar asymp-
totics and power-like tail asymptotic states were found.

Thus all the above discussed models describe qualitatively different
processes in physics or even in economics, however their solutions have a
lot in common from mathematical point of view. It is also clear that some
further generalizations are possible: one can, for example, include in the
model multiple (not just binary) interactions still assuming the constant
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(Maxwell-type) rate of interactions. Will the multi-linear models have similar
properties? The answer is yes, as we shall see below.

Thus, it becomes clear that there must be some general mathematical
properties of Maxwell models, which, in turn, can explain properties of any
particular model. That is to say there must be just one main theorem, from
which one can deduce all above discussed facts and their possible generaliza-
tions. Our goal is to consider Maxwell models from very general point of view
and to establish their key properties that lead to the self-similar asymptotics.

All the results presented in this chapter are mathematically rigorous. Their
full proofs can be found in [10].

After this introduction, we introduce in Sect. 2 three specific Maxwell
models of the Boltzmann equation: (A) classical (elastic) Boltzmann equation;
(B) the model (A) in the presence of thermostat; (C) inelastic Boltzmann
equation for Maxwell type interactions. Then, in Sect. 3, we perform the
Fourier transform and introduce an equation that includes all the three mod-
els as particular cases. A further generalization is done in Sect. 4, where the
concept of generalized multi-linear Maxwell model (in the Fourier space) is
introduced. Such models and their generalizations are studied in detail in
Sects. 5 and 6. The most important for our approach concept of L-Lipschitz
nonlinear operator is explained in Sect. 4. It is shown (Theorem 4.2) that all
multi-linear Maxwell models satisfy the L-Lipschitz condition. This property
of the models constitutes a basis for the general theory.

The existence and uniqueness of solutions to the initial value problem is
stated in Sect. 5.1 (Theorem 5.2). Then, in Sect. 5.2, we present and study
the large time asymptotics under very general conditions that are fulfilled, in
particular, for all our models. It is shown that L-Lipschitz condition leads to
self-similar asymptotics, provided the corresponding self-similar solution does
exist. The existence and uniqueness of such self-similar solutions is stated in
Sect. 5.3 (Theorem 5.12). This theorem can be considered, to some extent, as
the main theorem for general Maxwell-type models. Then, in Sect. 5.4, we go
back to multi-linear models of Sect. 4 and study more specific properties of
their self-similar solutions.

We explain in Sect. 6 how to use our theory for applications to any specific
model: it is shown that the results can be expressed in terms of just one func-
tion µ(p), p > 0, that depends on spectral properties of the specific model.
General properties (positivity, power-like tails, etc.) self-similar solutions are
studied in Sect. 6.1 and 6.2. It includes also the case of one-dimensional mod-
els, where the Laplace (instead of Fourier) transform is used. In Sect. 6.3, we
formulate, in the unified statement (Theorem 11.1), the main properties of
Maxwell models (A), (B) and (C) of the Boltzmann equation. This result is,
in particular, an essential improvement of earlier results of [7] for the model
(A) and quite new for the model (B).

Applications to one-dimensional models are also briefly discussed at the
end of Sect. 6.3.
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2 Maxwell Models of the Boltzmann Equation

We consider a spatially homogeneous rarefied d-dimensional gas (d = 2, 3, . . .)
of particles having a unit mass. Let f(v, t), where v ∈ R

d and t ∈ R+ denote
respectively the velocity and time variables, be a one-particle distribution
function with usual normalization

∫

Rd

dv f(v, t) = 1. (1)

Then f(v, t) has an obvious meaning of a time-dependent probability density
in R

d. We assume that the collision frequency is independent of the veloc-
ities of the colliding particles (Maxwell-type interactions). We discuss three
different physical models (A), (B) and (C).

(A) Classical Maxwell gas (elastic collisions). In this case f(v, t)
satisfies the usual Boltzmann equation

ft = Q(f, f) =
∫

Rd×Sd−1
dw dω g(

u · ω
|u| )[f(v′)f(w′) − f(v)f(w)], (2)

where the exchange of velocities after a collision are given by

v′ =
1
2
(v + w + |u|ω), and w′ =

1
2
(v + w − |u|ω),

where u = v−w is the relative velocity and Ω ∈ Sd−1. For the sake of brevity
we shall consider below the model non-negative collision kernels g(s) such that
g(s) is integrable on [−1, 1]. The argument t of f(v, t) and similar functions
is often omitted below (as in (2)).

(B) Elastic model with a thermostat. This case corresponds to model
(A) in the presence of a thermostat that consists of Maxwell particles with
mass m > 0 having the Maxwellian distribution

M(v) = (
2πT
m

)−d/2 exp(−m|v|2
2T

) (3)

with a constant temperature T > 0. Then the evolution equation for f(x, t)
becomes

ft = Q(f, f) + θ

∫
dw dω g(

u · ω
|u| )[f(v′)M(w′) − f(v)M(w)], (4)

where θ > 0 is a coupling constant, and the exchange of velocities is now

v′ =
v +m(w + |u|ω)

1 +m
, and w′ =

v +mw − |u|ω
1 +m

,

with u = v − w the relative velocity, and ω ∈ Sd−1.
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Equation (4) was derived in [12] as a certain limiting case of a binary
mixture of weakly interacting Maxwell gases.

(C) Maxwell model for inelastic particles. We consider this model
in the form given in [9]. Then the inelastic Boltzmann equation in the weak
form reads

∂

∂t
(f, ψ) =

∫

Rd×Rd×Sd−1
dv dw dω f(v)f(w)

|u · ω|
|u| [ψ(v′) − ψ(v)], (5)

where ψ(v) is a bounded and continuous test function,

(f, ψ) =
∫

Rd

dv f(v, t)ψ(v), u = v −w, ω ∈ Sd−1, v′ = v − 1 + e

2
(u · ω)ω, (6)

the constant parameter 0 < e ≤ 1 denotes the restitution coefficient. Note
that the model (C) with e = 1 is equivalent to the model (A) with some
kernel g(s).

All three models can be simplified (in the mathematical sense) by taking
the Fourier transform.

We denote
f̂(k, t) = F [f ] = (f, e−ik·v), k ∈ R

d, (7)

and obtain (by using the same trick as in [6] for the model (A)) for all three
models the following equations:

(A) f̂t = Q̂(f̂ , f̂) =
∫

Sd−1
dω g(

k · ω
|k| )[f̂(k+)f̂(k−) − f̂(k)f̂(0)],

(8)
where k± = 1

2 (k ± |k|ω), ω ∈ Sd−1, f̂(0) = 1.

(B) f̂t = Q̂(f̂ , f̂) + θ

∫

Sd−1
dω g(

k · ω
|k| )[f̂(k+)M̂(k−) − f̂(k)M̂(0)],

(9)

where M̂(k) = e−
T |k|2
2m , k+ = k+m|k|ω

1+m , k− = k − k+, ω ∈ Sd−1, f̂(0) = 1.

(C) f̂t =
∫

Sd−1
dω

|k · ω|
|k| [f̂(k+)f̂(k−) − f̂(k)f̂(0)], (10)

where f̂(0) = 1, k+ = 1+e
2 (k ·ω)ω, k− = k−k+, with ω ∈ Sd−1 is the direction

containing the two centers of the particles at the time of the interaction.
Equivalently, one may alternative write k− = 1+e

4 (k−|k|nω̃), and k+ = k−k−,
where now ω̃ ∈ Sd−1 is the direction of the post collisional relative velocity,
and the term |k·ω|

|k| dw is replaced by a function g(k·ω̃
|k| )dω̃.

Case (B) can be simplified by the substitution

f̂(k, t) = ˜̂
f(k, t) exp[−T |k|

2

2
], (11)
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leading, omitting tildes, to the equation

(B′) f̂t = Q̂(f̂ , f̂) + θ

∫

Sd−1
dω g(

k · ω
|k| )[f̂(

k +m|k|ω
1 +m

) − f̂(k)], (12)

i.e., the model for (B) with T = 0, or equivalently a linear collisional term the
background singular distribution. Therefore, we shall consider below just the
case (B′), assuming nevertheless that f̂(k, t) in (12) is the Fourier transform
(7) of a probability density f(v, t).

3 Isotropic Maxwell Model in the Fourier
Representation

We shall see that these three models (A), (B) and (C) admit a class of isotropic
solutions with distribution functions f = f(|v|, t). Indeed, according to (7)
we look for solutions f̂ = f̂(|k|, t) to the corresponding isotropic Fourier
transformed problem, given by

x = |k|2, ϕ(x, t) = f̂(|k|, t) = F [f(|v|, t)], (13)

where ϕ(x, t) solves the following initial value problem

ϕt =
∫ 1

0

dsG(s) {ϕ[a(s)x]ϕ[b(s)x] − ϕ(x)}+

+
∫ 1

0

dsH(s) {ϕ[c(s)x] − ϕ(x)} ,
ϕt=0 = ϕ0(x), ϕ(0, t) = 1,

(14)

where a(s), b(s), c(s) are non-negative continuous functions on [0, 1], whereas
G(s) and H(s) are generalized non-negative functions such that

∫ 1

0

dsG(s) <∞,

∫ 1

0

dsH(s) <∞. (15)

Thus, we do not exclude such functions as G = δ(s − s0), 0 < s0 < 1, etc.
We shall see below that, for isotropic solutions (13), each of the three
equations (8), (10), (12) is a particular case of (14).

Let us first consider (8) with f̂(k, t) = ϕ(x, t) in the notation (13). In that
case

|k±|2 = |k|2 1 ± (ω0 · ω)
2

, ω0 =
k

|k| ∈ Sd−1, d = 2, . . . ,

and the integral in (8) reads
∫

Sd−1
dω g(ω0 · ω)ϕ

[
x

1 + ω0 · ω
2

]
ϕ

[
x

1 − ω0 · ω
2

]
. (16)
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It is easy to verify the identity
∫

Sd−1
dω F (ω · ω0) = |Sd−2|

∫ 1

−1

dz F (z)(1 − z2)
d−3
2 , (17)

where |Sd−2| denotes the “area” of the unit sphere in R
d−1 for d ≥ 3 and

|S0| = 2. The identity (17) holds for any function F (z) provided the integral
as defined in the right-hand side of (17) exists.

The integral (16) now reads

|Sd−2|
∫ 1

−1

dz g(z)(1 − z2)
d−3
2 ϕ(x

1 + z

2
)ϕ(x

1 − z

2
) =

=
∫ 1

0

dsG(s)ϕ(sx)ϕ[(1 − s)x],

where

G(s) = 2d−2|Sd−2|g(1 − 2s)[s(1 − s)]
d−3
2 , d = 2, 3, . . . . (18)

Hence, in this case we obtain (14), where

(A) a(s) = s, b(s) = 1−s, H(s) = 0,
(19)

G(s) is given in (18).
Two other models (B′) and (C), described by (12), (10) respectively, can

be considered quite similarly. In both cases we obtain (14), where

(B′) a(s) = s, b(s) = 1 − s, c(s) = 1 − 4m
(1 +m)2

s,

H(s) = θG(s),
(20)

G(s) is given in (18):

(C) a(s) =
(1 + e)2

4
s, b(s) = 1 − (1 + e)(3 − e)

4
s,

H(s) = 0, G(s) = |Sd−2|(1 − s)
d−3
2 .

(21)

Hence, all three models are described by (14) where 0 < a(s), b(s), c(s) ≤ 1
are non-negative linear functions. One can also find in recent publications
some other useful equations that can be reduced after Fourier or Laplace
transformations to (14) (see, for example, [2, 15] that correspond to the case
G = δ(s− s0), H = 0).

Equation (14) with H(s) = 0 first appeared in its general form in [9] in
connection with models (A) and (C). The consideration of the problem of
self-similar asymptotics for (14) in that paper made it quite clear that the
most important properties of “physical” solutions depend very weakly on the
specific functions G(s), a(s) and b(s).
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4 Models with Multiple Interactions

We present now a general framework to study solutions to the type of problems
introduced in the previous section.

We assume, without loss of generality, (scaling transformations t̃ = αt,
α = const.) that ∫ 1

0

ds [G(s) +H(s)] = 1 (22)

in (14). Then (14) can be considered as a particular case of the following
equation for a function u(x, t)

ut + u = Γ (u), x ≥ 0, t ≥ 0, (23)

where

Γ (u) =
N∑

n=1

αnΓ
(n)(u),

N∑

n=1

αn = 1, αn ≥ 0,

Γ (n)(u) =
∫ ∞

0

da1 . . .

∫ ∞

0

danAn(a1, . . . , an)
n∏

k=1

u(akx), n = 1, . . . , N.

(24)

We assume that

An(a) = An(a1, . . . , an) ≥ 0,
∫ ∞

0

da1 . . .

∫ ∞

0

danA(a1, . . . , an) = 1,

(25)
where An(a) = An(a1, . . . , an) is a generalized density of a probability mea-
sure in R

n
+ for any n = 1, . . . , N . We also assume that all An(a) have a

compact support, i.e.,

An(a1, . . . , an) ≡ 0 if
n∑

k=1

a2
k > R2, n = 1, . . . , N, (26)

for sufficiently large 0 < R <∞.
Equation (14) is a particular case of (23) with

N = 2, α1 =
∫ 1

0

dsH(s), α2 =
∫ 1

0

dsG(s)

A1(a1) =
1
α1

∫ 1

0

dsH(s)δ[a1 − c(s)]

A2(a1, a2) =
1
α2

∫ 1

0

dsG(s)δ[a1 − a(s)]δ[a2 − b(s)].

(27)

It is clear that (23) can be considered as a generalized Fourier transformed
isotropic Maxwell model with multiple interactions provided u(0, t) = 1, the
case N = ∞ in (24) can be treated in the same way.
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4.1 Statement of the General Problem

The general problem we consider below can be formulated in the following
way. We study the initial value problem

ut + u = Γ (u), u|t=0 = u0(x), x ≥ 0, t ≥ 0, (28)

in the Banach space B = C(R+) of continuous functions u(x) with the norm

‖u‖ = sup
x≥0

|u(x)|. (29)

It is usually assumed that ‖u0‖ ≤ 1 and that the operator Γ is given by
(24). On the other hand, there are just a few properties of Γ (u) that are essen-
tial for existence, uniqueness and large time asymptotics of the solution u(x, t)
of the problem (28). Therefore, in many cases the results can be applied to
more general classes of operators Γ in (28) and more general functional space,
for example B = C(Rd) (anisotropic models). That is why we study below the
class (24) of operators Γ as the most important example, but simultaneously
indicate which properties of Γ are relevant in each case. In particular, most
of the results of Sects. 4–6 do not use a specific form (24) of Γ and, in fact,
are valid for a more general class of operators.

Following this way of study, we first consider the problem (28) with Γ
given by (24) and point out the most important properties of Γ .

We simplify notations and omit in most of the cases below the argument x
of the function u(x, t). The notation u(t) (instead of u(x, t)) means then the
function of the real variable t ≥ 0 with values in the space B = C(R+).

Remark 1. We shall omit below the argument x ∈ R+ of functions u(x), v(x),
etc., in all cases when this does not cause a misunderstanding. In particular,
inequalities of the kind |u| ≤ |v| should be understood as a point-wise control
in absolute value, i.e., “|u(x)| ≤ |v(x)| for any x ≥ 0” and so on.

We first start by giving the following general definition for operators acting
on a unit ball of a Banach space B denoted by

U = {u ∈ B : ‖u‖ ≤ 1} (30)

Definition 1. The operator Γ = Γ (u) is called an L-Lipschitz operator if
there exists a linear bounded operator L : B → B such that the inequality

|Γ (u1) − Γ (u2)| ≤ L(|u1 − u2|) (31)

holds for any pair of functions u1,2 in U .
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Remark 2. Note that the L-Lipschitz condition (31) holds, by definition, at
any point x ∈ R+ (or x ∈ R

d if B = C(Rd)). Thus, condition (31) is much
stronger than the classical Lipschitz condition

‖Γ (u1) − Γ (u2)‖ < C‖u1 − u2‖ if u1,2 ∈ U (32)

which obviously follows from (31) with the constant C = ‖L‖B, the norm of
the operator L in the space of bounded operators acting in B. In other words,
the terminology “L-Lipschitz condition” means the point-wise Lipschitz con-
dition with respect to an specific linear operator L.

We assume, without loss of generality, that the kernels An(a1, . . . , an)
in (24) are symmetric with respect to any permutation of the arguments
(a1, . . . , an), n = 2, 3, . . . , N .

The next lemma states that the operator Γ (u) defined in (24), which
satisfies Γ (1) = 1 (mass conservation) and maps U into itself, satisfies an
L-Lipschitz condition, where the linear operator L is the one given by the
linearization of Γ near the unity. See [10] for its proof.

Theorem 1. The operator Γ (u) defined in (24) maps U into itself and
satisfies the L-Lipschitz condition (31), where the linear operator L is given by

Lu =
∫ ∞

0

daK(a)u(ax), (33)

with

K(a) =
N∑

n=1

nαnKn(a),

where Kn(a) =
∫ ∞

0

da2 . . .

∫ ∞

0

danAn(a, a2, . . . , an) and
N∑

n=1

αn = 1.

(34)

for symmetric kernels An(a, a2, . . . , an), n = 2, . . .N .

And the following corollary holds.

Corollary 1. The Lipschitz condition (32) is fulfilled for Γ (u) given in (24)
with the constant

C = ‖L‖ =
N∑

n=1

nαn,

∞∑

n=1

αn = 1, (35)

where ‖L‖ is the norm of L in B.

It can also be shown that the L-Lipschitz condition holds in B = C(Rd)
for “gain-operators” in Fourier transformed Boltzmann equations (8), (9)
and (10).
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5 The General Problem in Fourier Representation

5.1 Existence and Uniqueness of Solutions

It is possible to show, with minimal requirements, the existence and unique-
ness results associated with the initial value problem (28) in the Banach space
(B, ‖ · ‖), where the norm associated to B is defined in (29). In fact, this exis-
tence and uniqueness result is an application of the classical Picard iteration
scheme and holds for any operator Γ which satisfies the usual Lipschitz condi-
tion (32) and transforms the unit ball U into itself. The proof of all statements
below can be found in [10].

Lemma 1 (Picard Iteration scheme). The operator Γ (u) maps U into
itself and satisfies the L-Lipschitz condition (32), then the initial value prob-
lem (28) with arbitrary u0 ∈ U has a unique solution u(t) such that u(t) ∈ U
for any t ≥ 0.

Next, we observe that the L-Lipschitz condition yields an estimate for the
difference of any two solutions of the problems in terms of their initial states.
This is a key fact in the development of the further studies of the self similar
asymptotics.

Theorem 2. Consider the Cauchy problem (28) with ‖u0‖ ≤ 1 and assume
that the operator Γ : B → B

(a) Maps the closed unit ball U ⊂ B to itself, and
(b) Satisfies a L-Lipschitz condition (31) for some positive bounded linear

operator L : B → B.

Then

(i) There exists a unique solution u(t) of the problem (28) such that ‖u(t)‖ ≤ 1
for any t ≥ 0;

(ii) Any two solutions u(t) and w(t) of problem (28) with initial data in the
unit ball U satisfy the inequality

|u(t) − w(t)| ≤ exp{t(L− 1)}(|u0 − w0|). (36)

Note that under the same conditions as in Theorem 1 the operator Γ given
in (24) satisfies necessary conditions for the Theorem 2.

We remind to the reader that the initial value problem (28) appeared as
a generalization of the initial value problem (14) for a characteristic function
ϕ(x, t), i.e., for the Fourier transform of a probability measure (see (13), (1)).
It is important therefore to show that the solution u(x, t) of the problem (28)
is a characteristic function for any t > 0 provided this is so for t = 0, which
is addressed in the following statement.
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Lemma 2. Let U ′ ⊂ U ⊂ B be any closed convex subset of the unit ball U
(i.e., u = (1− θ)u1 + θu2 ∈ U ′ for any u1,2 ∈ U ′ and θ ∈ [0, 1]). If u0 ∈ U ′ in
(28) and U is replaced by U ′ in the condition (1) of Theorem 2, the theorem
holds and u(t) ∈ U ′ for any t ≥ 0.

Remark 3. It is well-known (see, for example, the textbook [18]) that the
set U ′ ⊂ U of Fourier transforms of probability measures in R

d (Laplace
transforms in the case of R+) is convex and closed with respect to uniform
convergence. On the other hand, it is easy to verify that the inclusion Γ (U ′) ⊂
U ′, where Γ is given in (24), holds in both cases of Fourier and Laplace
transforms. Hence, all results obtained for (23), (24) can be interpreted in
terms of “physical” (positive and satisfying the condition (1)) solutions of
corresponding Boltzmann-like equations with multi-linear structure of any
order.

We also point out that all results of this section remain valid for operators
Γ satisfying conditions (24), with a more general condition such as

N∑

n=1

αn ≤ 1, αn ≥ 0, (37)

so that Γ (1) < 1 and so the mass may not be conserved. The only difference
in this case is that the operator L satisfying conditions (33), (34) is not a
linearization of Γ (u) near the unity, but nevertheless Theorem 1 remains true.
The inequality (37) is typical for Fourier (Laplace) transformed Smoluchowski-
type equations where the total number of particles is decreasing in time (see
[21, 22] for related work).

In the next three sections we study in more detail the solutions to the initial
value problem (28)–(29) constructed in Theorem 2 and, in particular, their
long time behavior, existence, uniqueness, and properties of the self-similar
solutions.

5.2 Large Time Asymptotics

The long time asymptotics results are a consequence of some very general
properties of operators Γ , namely, that Γ maps the unit ball U of the Banach
space B = C(R+) into itself, Γ is an L-Lipschitz operator (i.e., satisfies (31))
and that Γ is invariant under dilations.

These three properties are sufficient to study self-similar solutions and
large time asymptotic behavior for the solution to the Cauchy problem (28)
in the unit ball U of the Banach space C(R+).
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Main properties of the operator Γ :

(a) Γ maps the unit ball U of the Banach space B = C(R+) into itself, that is

‖Γ (u)‖ ≤ 1 for any u ∈ C(R+) such that ‖u‖ ≤ 1. (38)

(b) Γ is an L-Lipschitz operator (i.e., satisfies (31)) with L from (33), i.e.,

|Γ (u1)−Γ (u2)|(x) ≤ L(|u1−u2|)(x) =
∫ ∞

0

daK(a)|u1(ax)−u2(ax)|,
(39)

for K(a) ≥ 0, for all x ≥ 0 and for any two functions u1,2 ∈ C(R+) such
that ‖u1,2‖ ≤ 1.

(c) Γ is invariant under dilations:

eτDΓ (u) = Γ (eτDu), D = x
∂

∂x
, eτDu(x) = u(xeτ ), τ ∈ R. (40)

No specific information about Γ beyond these three conditions will be used
in this section.

It was already shown in Theorem 2 that the conditions (a) and (b) guar-
antee existence and uniqueness of the solution u(x, t) to the initial value
problem (28)–(29). The property (b) yields the estimate (36) that is very
important for large time asymptotics, as we shall see below. The property (c)
suggests a special class of self-similar solutions to (28).

We recall the usual meaning of the notation y = O(xp) (often used below):
y = O(xp) if and only if there exists a positive constant C such that

|y(x)| ≤ Cxp for any x ≥ 0. (41)

In order to study long time stability properties to solutions whose initial
data differs in terms of O(xp), we will need some spectral properties of the
linear operator L.

Definition 2. Let L be the positive linear operator given in (33), (34), then

Lxp = λ(p)xp, 0 < λ(p) =
∫ ∞

0

daK(a)ap <∞, p ≥ 0, (42)

and the spectral function µ(p) is defined by

µ(p) =
λ(p) − 1

p
. (43)

An immediate consequence of properties (a) and (b), as stated in (39), is
that one can obtain a criterion for a point-wise in x estimate of the difference
of two solutions to the initial value problem (28) yielding decay properties
depending on the spectrum of L, as the following statement and its corollary
assert.



36 A.V. Bobylev et al.

Lemma 3. Let u1,2(x, t) be any two classical solutions of the problem (28)
with initial data satisfying the conditions

|u1,2(x, 0)| ≤ 1, |u1(x, 0) − u2(x, 0)| ≤ C xp, x ≥ 0 (44)

for some positive constant C and p. Then

|u1(x, t) − u2(x, t)| ≤ Cxp e−t(1−λ(p)), for all t ≥ 0 (45)

Corollary 2. The minimal constant C for which condition (44) is satisfied is

C0 = sup
x≥0

|u1(x, 0) − u2(x, 0)|
xp

=
∥
∥
∥
∥
u1(x, 0) − u2(x, 0)|

xp

∥
∥
∥
∥ , (46)

and the following estimate holds
∥
∥∥
∥
u1(x, t) − u2(x, t)|

xp

∥
∥∥
∥ ≤ e−t(1−λ(p))

∥
∥∥
∥
u1(x, 0) − u2(x, 0)|

xp

∥
∥∥
∥ (47)

for any p > 0.

A result similar to Lemma 3 was first obtained in [9] for the inelastic
Boltzmann equation whose Fourier transform is given in example (C), (10).
Its corollary in the form similar to (47) for (10) was stated later in [11] and
was interpreted there as “the contraction property of the Boltzmann operator”
(note that the left-hand side of (47) can be understood as a distance between
two solutions). Independently of the terminology. the key reason for estimates
(45)–(47) is the Lipschitz property of the operator Γ . It is remarkable that
the large time asymptotics of u(x, t), satisfying the problem (28) with such
Γ , can be explicitly expressed through spectral characteristics of the linear
operator L.

In order to study the large time asymptotics of u(x, t) in more detail we
distinguish two different kinds of asymptotic behavior:

(1) Convergence to stationary solutions
(2) Convergence to self-similar solutions provided the condition (c), of the

main properties on Γ , is satisfied

The case (1) is relatively simple. Any stationary solution ū(x) of the
problem (28) satisfies the equation

Γ (ū) = ū, ū ∈ C(R+), ‖ū‖ ≤ 1. (48)

If the stationary solution ū(x) does exists (note, for example, that Γ (0) = 0
and Γ (1) = 1 for Γ given in (24)) then the large time asymptotics of some
classes of initial data u0(x) in (28) can be studied directly on the basis of
Lemma 3. It is enough to assume that |u0(x) − ū(x)| satisfies (44) with p such
that λ(p) < 1. Then u(x, t) → ū(x) as t→ ∞, for any x ≥ 0.
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This simple consideration, however, does not answer at least two questions:

(A) What happens with u(x, t) if the inequality (44) for |u0(x) − ū(x)| is
satisfied with such p that λ(p) > 1?

(B) What happens with u(x, t) for large x (note that the estimate (45)
becomes trivial if x→ ∞).

In order to address these questions we consider a special class of solutions
of (28), the so-called self-similar solutions. Indeed the property (c) of Γ shows
that (28) admits a class of formal solutions us(x, t) = w(x eµ∗t) with some
real µ∗. It is convenient for our goals to use a terminology that slightly differs
from the usual one.

Definition 3. The function w(x) is called a self-similar solution associated
with the initial value problem (28) if it satisfies the problem

µ∗Dw + w = Γ (w), ‖w‖ ≤ 1, (49)

in the notation of (40), (24).

The convergence of solutions u(x, t) of the initial value problem (28) to a
stationary solution ū(x) can be considered as a special case of the self-similar
asymptotics with µ∗ = 0.

Under the assumption that self-similar solutions exists (the existence is
proved in the next section), we state the fundamental result on the conver-
gence of solutions u(x, t) of the initial value problem (28) to self-similar ones
(sometimes called in the literature self-similar stability).

Lemma 4. We assume that

(i) For some µ∗ ∈ R, there exists a classical (continuously differentiable if
µ∗ 	= 0) solution w(x) of (49) such that ‖w‖ ≤ 1;

(ii) The initial data u(x, 0) = u0 in the problem (28) satisfies

u0 = w +O(xp), ‖u0‖ ≤ 1, for p > 0 such that µ(p) < µ∗, (50)

where µ(p) defined in (43) is the spectral function associated to the
operator L.
Then

|u(xe−µ∗t, t) − w(x)| = O(xp)e−pt(µ∗−µ(p)) (51)

and therefore
lim

t→∞u(xe−µ∗t, t) = w(x), x ≥ 0. (52)

Remark 4. Lemma 4 shows how to find a domain of attraction of any self-
similar solution provided the self-similar solution is itself known. It is remark-
able that the domain of attraction can be expressed in terms of just the
spectral function µ(p), p > 0, defined in (43), associated with the linear
operator L for which the operator Γ satisfies the L-Lipschitz condition.

Generally speaking, the equality (52) can be also fulfilled for some other
values of p with µ(p) > µ∗ in (50), but, at least, it always holds if µ(p) < µ∗.
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We shall need some properties of the spectral function µ(p). Having in
mind further applications, we formulate these properties in terms of the
operator Γ given in (24), though they depend only on K(a) in (42)

Lemma 5. The spectral function µ(p) has the following properties:

(i) It is positive and unbounded as p→ 0+, with asymptotic behavior given by

µ(p) ≈ λ(0) − 1
p

, p→ 0, (53)

where, for Γ from (24)

λ(0) =
∫ ∞

0

daK(a) =
N∑

n=1

αnn ≥ 1,
N∑

n=1

αn = 1, αn ≥ 0, (54)

and therefore λ(0) = 1 if and only if the operator Γ (24) is linear (N = 1);
(ii) In the case of a multi-linear Γ operator, there is not more than one point

0 < p0 <∞, where the spectral function µ(p) achieves its minimum, that
is, µ′(p0) = d µ

d p (p0) = 0, with µ(p0) ≤ µ(p) for any p > 0, provided N ≥ 2
and αN > 0.

Remark 5. From now on, we shall always assume below that the operator Γ
from (24) is multi-linear. Otherwise it is easy to see that the problem (49) has
no solutions (the condition ‖w‖ ≤ 1 is important!) except for the trivial ones
w = 0, 1.

The following corollaries are readily obtained from Lemma 5 part (ii) and
its proof.

Corollary 3. For the case of a non-linear Γ operator, i.e., N ≥ 2, the spectral
function µ(p) is always monotone decreasing in the interval (0, p0), and µ(p) ≥
µ(p0) for 0 < p < p0. This implies that there exists a unique inverse function
p(µ) : (µ(p0),+∞) → (0, p0), monotone decreasing in its domain of definition.

Corollary 4. There are precisely four different kinds of qualitative behavior
of µ(p) shown on Fig. 1.

Proof. There are two options: µ(p) is monotone decreasing function (Fig. 1a)
or µ(p) has a minimum at p = p0 (Fig. 1b–d). In case Fig. 1a µ(p) > 0 for all
p > 0 since µ(p) > 1/p. The asymptotics of λ(p) (42) is clear:

(1) λ(p) −−−→
p→∞ λ∞ ∈ R+ if

∫ ∞

1+
daK(a) = 0; (55)

(2) λ(p) −−−→
p→∞ ∞ if

∫ ∞

1+
daK(a) > 0. (56)
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Fig. 1. Possible profiles of the spectral function µ(p)

In the case (1) when µ(p) → ∞ as p → 0, two possible pictures (with
and without minimum) are shown on Fig. 1b and Fig. 1a, respectively. In case
(2), from (42) it is clear that λ(p) grows exponentially for large p, therefore
µ(p) → ∞ as p→ ∞. Then the minimum always exists and we can distinguish
two cases: µ(p0) < 0 (Fig. 1d) and µ(p0) > 0 (Fig. 1c).

We note that, for Maxwell models (A), (B), (C) of Boltzmann equation
(Sects. 2 and 3), only cases (a) and (b) of Fig. 1 can be possible (actually
this is the case (b)) since the condition (55) holds. Figure 1 gives a clear
graphic representation of the domains of attraction of self-similar solutions
(Lemma 4): it is sufficient to draw the line µ(p) = µ∗ = constant, and to
consider a p such that the graph of µ(p) lies below this line.

Therefore, the following corollary follows directly from the properties of
the spectral function µ(p), as characterized by the behaviors in Fig. 1, where
we assume that µ(p0) = 0 for p0 = ∞, for the case shown on Fig. 1a.

Corollary 5. Any self-similar solution us(x, t) = w(xeµ∗t) with µ(p0) < µ∗ <
∞ has a non-empty domain of attraction, where p0 is the unique (minimum)
critical point of the spectral function µ(p).

Proof. We use Lemma 4 part (ii) on any initial state u0 = w + O(xp) with
p > 0 such that µ(p0) ≤ µ(p) < µ∗. In particular, (51) and (52) show that
the domain of attraction of w(xeµ∗t) contains any solution to the initial value
problem (28) with the initial state as above.
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It is clear that the inequalities of the kind u1 − u2 = O(xp) for any p > 0
such that µ(p) < µ∗, for any fixed µ∗ ≥ µ(p0) play an important role. We can
use specific properties of µ(p) in order to express such inequalities in more
convenient form.

Lemma 6. For any given µ∗ ∈ (µ(p0),∞) and u1,2(x) such that ‖u1,2‖ <∞,
the following two statements are equivalent:

(i) There exists p > 0 such that

u1 − u2 = O(xp), with µ(p) < µ∗. (57)

(ii) There exists ε > 0 such that

u1 − u2 = O(xp(µ∗)+ε), with p(µ∗) < p0, (58)

where p(µ) is the inverse to µ(p) function, as defined in Corollary 3.

Finally, to conclude this section, we show a general property of the initial
value problem (28) for any non-linear Γ operator satisfying conditions (a) and
(b) given in (38) and (39) respectively. This property gives the control to the
point-wise difference of any two rescaled solutions to (28) in the unit sphere
of B , whose initial states differ by O(xp). It is formulated as follows.

Lemma 7. Consider the problem (28), where Γ satisfies the conditions (a)
and (b). Let u1,2(x, t) are two solutions satisfying the initial conditions
u1,2(x, 0) = u1,2

0 (x) such that

‖u1,2
0 ‖ ≤ 1, u1

0 − u2
0 = O(xp), p > 0. (59)

then, for any real µ∗,

∆µ∗(x, t) = u1(xe−µ∗t, t) − u2(xe−µ∗t, t) = O(xp)e−pt[µ∗−µ(p)] (60)

and therefore
lim

t→∞∆µ∗(x, t) = 0, x ≥ 0, (61)

for any µ∗ > µ(p).

Remark 6. There is an important point to understand here. Lemmas 3 and 4
hold for any operator Γ that satisfies just the two properties (a) and (b) stated
in (38) and (39). It says that, in some sense, a distance between any two
solutions with initial conditions satisfying (59) tends to zero as t → ∞. Such
terminology and corresponding distances were introduced for specific forms of
Maxwell–Boltzmann models in [4,19]. It should be pointed out, however, that
this contraction property may not say much about large time asymptotics of
u(x, t), unless the corresponding self-similar solutions are known, for which
the operator Γ must be invariant under dilations (so it satisfies also property
(c) as well, as stated in (40)). In such case one can use estimate (61) to deduce
the convergence in the form (52), (53).

Therefore one must study the problem of existence of self-similar solutions,
which is considered in the next section.
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5.3 Existence of Self-Similar Solutions

We develop now a criteria for existence, uniqueness and self-similar asymp-
totics to the problem (49) for any operator Γ that satisfies conditions (a), (b)
and (c) from Sect. 6, with the corresponding spectral function µ(p) defined
in (43).

Theorem 3 below shows the criteria for existence and uniqueness of self-
similar solutions for any operator Γ that satisfies just conditions (a) and (b).
Then Theorem 4 follows, showing a general criteria to self-similar asymptotics
for the problem (28) for any operator Γ that satisfying conditions (a), (b)
and (c).

We consider (49) written in the form

µxw′(x) + w(x) = g(x), g = Γ (w), µ ∈ R, (62)

and, assuming that ‖w‖ < ∞, transform this equation to the integral form.
It is easy to verify that the resulting integral equation reads

w(x) =
∫ 1

0

dτ g(xτµ). (63)

By means of an iteration scheme, the following result can be proved.

Theorem 3. Consider (62) with arbitrary µ ∈ R and the operator Γ sat-
isfying the conditions (a) and (b) from Sect. 6. Assume that there exists a
continuous function w0(x), x ≥ 0, such that

(i) ‖w0‖ ≤ 1 and

(ii) ∫ 1

0

dτ g0(xτµ) = w0(x) +O(xp), g0 = Γ (w0), (64)

with some p > 0 satisfying the inequality

µ(p) =
1
p
[
∫ ∞

0

daK(a)ap − 1] < µ. (65)

Then there exists a classical solution w(x) of (62). The solution is unique in
the class of continuous functions satisfying conditions

‖w‖ ≤ 1, w(x) = w0(x) +O(xp1 ), (66)

with any p1 such that µ(p1) < µ.

Combining Lemmas 1 and 4, the following general statement related to
the self-similar asymptotics for the problem (28) is obtained.
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Theorem 4. Let u(x, t) be a solution of the problem (28) with ‖u0‖ ≤ 1
and Γ satisfying the conditions (a), (b), (c) from Sect. 6. Let µ(p) denote the
spectral function (65) having its minimum (infimum) at p = p0 (see Fig. 1),
the case p0 = ∞ is also included. We assume that there exists p ∈ (0, p0) and
0 < ε < p0 − p such that

∫ 1

0

dτ g0(xτµ(p)) = u0(x) + 0(xp+ε), g0 = Γ (u0), ε > 0. (67)

Then

(i) There exists a unique solution w(x) of (62) with µ = µ(p) such that

‖w‖ ≤ 1, w(x) = u0(x) +O(xp+ε), (68)

(ii)
lim

t→∞ u(x e−µ(p)t, t) = w(x), x ≥ 0, (69)

where the convergence is uniform on any bounded interval in R+ and

u(x e−µ(p)t, t) − w(x) = O(xp+εe−β(p,ε)t), (70)

with β(p, ε) = (p+ ε)(µ(p) − µ(p+ ε)) > 0.

Hence, a general criterion (68) is obtained for the self-similar asymptotics
of u(x, t) with a given initial condition u0(x). The criterion can be applied
to the problem (28) with any operator Γ satisfying conditions (a), (b), (c)
from Sect. 5.2. The specific class (24) of operators Γ is studied in Sect. 6. We
shall see below that the condition (68) can be essentially simplified for such
operators.

5.4 Properties of Self-Similar Solutions

We now apply the general theory (in particular, Theorem 4) to the partic-
ular case of the multi-linear operators Γ considered in Sect. 4, where their
corresponding spectral function µ(p) satisfies (65), (34) whose behavior cor-
responds to Fig. 1. We also show that p0 = minp>0 µ(p) > 1 is a necessary
condition for self-similar asymptotics.

In addition, Theorem 5 establish sufficient conditions for which self-similar
solutions of problem (62) will lead to well defined self-similar solutions (dis-
tribution functions) of the original problem after taking the inverse Fourier
transform.

We consider the integral equation (63) written as

w = Γµ(w) =
∫ 1

0

dt g(xtµ), g = Γ (w), µ ∈ R. (71)

The following two properties of w(x) that are independent of the specific form
(24) of Γ .
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Lemma 8.

(i) If there exist a closed subset U ′ ⊂ U of the unit ball U in B, such that
Γµ(U ′) ⊂ U ′ for any µ ∈ R, and for some function w0 ∈ U ′ the conditions
of Theorem 3 are satisfied, then w ∈ U ′.

(ii) If the conditions of Theorem 3 for Γ are satisfied and, in addition,
Γ (1) = 1, then the solution w∗ = 1 of (71) is unique in the class of
functions w(x) satisfying the condition

w(x) = 1 +O(xp), µ(p) < µ. (72)

We observe that the statement (ii) can be interpreted as a necessary con-
dition for existence of non-trivial (w 	= const.) solutions of (71): if there exists
a non-trivial solution w(x) of (71), where Γ (1) = 1, such that

‖w‖ = 1, w = 1 +O(xp), p > 0, then µ ≤ µ(p). (73)

We recall that µ(p) satisfies the inequality µ(p) ≥ µ(p0) (Fig. 1).
If p ≥ p0 (provided p0 <∞) in (73), then there are no non-trivial solutions

with µ > µ(p0).
On the other hand, possible solutions with µ ≤ µ(p0) (even if they exist)

are irrelevant for the problem (28) since they have an empty domain of
attraction (Lemma 4).

Therefore we always assume below that µ > µ(p0) and, consequently,
p ∈ (0, p0) in (73).

Let us consider now the specific class (24)–(25) of operators Γ , with func-
tions u(x) satisfying the condition u(0) = 1. Then, u(0, t) = 1 for the solution
u(x, t) of the problem (28).

In addition, the operators (24) are invariant under dilation transforma-
tions (40) (property (c), Sect. 6). Therefore, the problem (28) with the initial
condition u0(x) satisfying

u(0) = 1, ‖u0‖ = 1; u0(x) = 1 − βxp + · · · , x→ 0, (74)

can be always reduced to the case β = 1 by transformation x′ = xβ1/p.
Moreover, the whole class of operators (24) with different kernels

An(a1, . . . , an), n = 1, 2, . . ., is invariant under transformations x̃ = xp, p > 0.
The result of such transformation of Γ is another operator Γ̃ of the same class
(24) with kernels Ãn(a1, . . . , an).

Therefore we fix the initial condition (74) with β = 1 and transform the
function (74) and the (28) to new variables x̃ = xp. Then we omit the tildes
and reduce the problem (28), with initial condition (74) to the case β = 1,
p = 1. We study this case in detail and formulate afterward the results in
terms of initial variables.
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Next, we assume a bit more about the asymptotics of the initial data u0(x)
for small x, namely

‖u0‖ = 1, u0(x) = 1 − x+O(x1+ε), x→ 0, (75)

with some ε > 0.
Then, our goal now is to apply the general theory (in particular, Theorem 4

and criterion (67)) to this particular case. We assume that the spectral func-
tion µ(p) given by (65), (34), corresponds to one of the four cases shown on
Fig. 1 with p0 > 1.

Let us take a typical function u0 = e−x satisfying (75) and apply the
criterion (67), from Theorem 4 or, equivalently, look for such p > 0 that (67)
is satisfied. That is, find possibles values of p > 0 such that

Γµ(p)(e−x) − e−x = 0(xp+ε), (76)

in the notation of (71).
It is important to observe that now the spectral function µ(p) is closely

connected with the operator Γ (see (65) and (34)), since this was not assumed
in the general theory of Sects. 4–7. This connection leads to much more specific
results, than, for example, the general Theorems 3, and 4.

The properties of self-similar solutions to problem (62) for p0 > 1, and
consequently, for

µ(p) ≥ µ(p0) > − 1
p0

> −1, (77)

can be obtained from the structure of Γµ(e−x) for any µ > −1 using its explicit
formula ((65) and (34)). In particular, for

Γµ(e−x) =
N∑

n=1

αn

∫

R
n
+

da1 . . . danAn(a1, . . . , an)Iµ
[
x

n∑

k=1

ak

]
, (78)

where

Iµ(y) =
∫ 1

0

dt e−ytµ

, µ ∈ R, y > 0,
N∑

n=1

αn = 1. (79)

the following two statements can be proven.

Lemma 9. The condition (76) is fulfilled if and only if p ≤ 1, and therefore
µ(p) ≥ µ(1) whenever p0 > 1 with µ(p0) = minp>0 µ(p).

Theorem 5. The limiting function w(x) constructed by the iteration scheme
to prove existence in the solution w in Theorem 3 satisfies (71) with µ = µ(1),
where Γ is given in (24), µ(p) is defined in (65), (34). Then, the following
conditions are fulfilled for w(x):
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(1) It satisfies

0 ≤< w(x) ≤ 1, with w(0) = 1 and w′(0) = −1, (80)

w′(x) ≤ 0, |w′(x)| ≤ 1, and w(x) = e−x + O(xπ(µ)), (81)

with

π(µ) =

⎧
⎨

⎩

2 if µ > − 1
2 ,

2 − ε for any ε > 0 if µ = 1
2 ,

1
|µ| if −1 < µ < − 1

2 .

(2) Further
e−x ≤ w(x) ≤ 1, lim

x→∞w(x) = 0, and (82)

(3) There exists a generalized non-negative function R(τ), τ ≥ 0, such that

w(x) =
∫ ∞

0

dτ R(τ)e−τx

∫ ∞

0

dτ R(τ) =
∫ ∞

0

dτ R(τ)τ = 1. (83)

The integral representation (83) is important for properties of correspond-
ing distribution functions satisfying Boltzmann-type equations. Now it is easy
to return to initial variables with u0 given in (74) and to describe the complete
picture of the self-similar relaxation for the problem (28).

6 Main Results for Maxwell Models with Multiple
Interactions

6.1 Self-Similar Asymptotics

We apply now the results of Sect. 6 to the specific case when the Cauchy
problem (28) with a fixed operator Γ (24) corresponds to the Fourier transform
problem for Maxwell models with multiple interactions. In particular we study
the time evolution of u0(x) satisfying the conditions

‖u0‖ = 1; u0 = 1 − xp +O(xp+ε), x→ 0, (84)

with some positive p and ε. Then, from Theorems 3 and 4, there exists a
unique classical solution u(x, t) of the problem (28), (84) such that, for all
t ≥ 0,

‖u(·, t)‖ = 1; u(x, t) = 1 +O(xp), x→ 0. (85)

First, consider the linearized operator L given in (33)–(34) and construct
the spectral function µ(p) given in (65) which will be of one of four kinds
described qualitatively on Fig. 1.

Second, find the value p0 > 0 that corresponds to minimum (infimum)
of µ(p). Note that p0 = ∞ just for the case described on Fig. 1a, otherwise
0 < p0 < ∞. Compare p0 with the value p from (84). If p < p0 then the
problem (28), (84) has a self-similar asymptotics (see below).
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In particular, two different cases are possible: (1) p ≥ p0 provided p0 <∞;
(2) 0 < p < p0. In the first case a behavior of u(x, t) for large t may depend
strictly on initial conditions.

Depending on how p compares with p0, we can obtain. We again use
Lemma 7 with u1 = u and u2 = us = ψ(xeµ(p)t) and obtain for the solution
u(x, t) of the problem (28), (84):

lim
t→∞u(xe−µt, t) =

⎧
⎪⎨

⎪⎩

1 if µ > µ(p)
ψ(x) if µ = µ(p)
0 if µ(p) > µ > µ(p+ δ),

(86)

with sufficiently small δ > 0.
We see that ψ(x) = w(xp), where w(x) has all properties described in

Theorem 5. The equalities (86) explain the exact meaning of the approximate
identity,

u(x, t) ≈ ψ(xeµ(p)t), t→ ∞, xeµ(p)t = const., (87)

that we call self-similar asymptotics.
In particular, the following statement holds.

Proposition 1. The solution u(x, t) of the problem (28), (84), with Γ given
in (24), satisfies either one of the following limiting identities:

(1)
lim

t→∞ u(xe−µt, t) = 1, x ≥ 0, (88)

for any µ > µ(p0). if p ≥ p0 for the initial data (84),
(2) Equation (86) provided 0 < p < p0.

The convergence in (88), (86) is uniform on any bounded interval 0 ≤ x ≤ R,
and

u(xeµ(p)t, t)−ψ(x) = O(xp+ε)e−β(p,ε)t, β(p, ε) = (p+ε) (µ(p)−µ(p+ε)),

for 0 < p < p0 and 0 < ε < p0 − p.

Remark 7. There is a connection between self-similar asymptotics and non-
linear wave propagation. It is easy to see that self-similar asymptotics becomes
more transparent in logaritheoremic variables

y = lnx, u(x, t) = û(y, t), ψ(x, t) = ψ̂(y, t)

Thus, (87) becomes

û(y, t) ≈ ψ̂(y + µ(p)t), t→ ∞, y + µ(p)t = const., (89)

hence, the self-similar solutions are simply nonlinear waves (note that
ψ(−∞) = 1, ψ(+∞) = 0) propagating with constant velocities cp = −µ(p) to
the right if cp > 0 or to the left if cp < 0. If cp > 0 then the value u(−∞, t) = 1
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is transported to any given point y ∈ R when t→ ∞. If cp < 0 then the profile
of the wave looks more naturally for the functions ũ = 1 − û, ψ̃ = 1 − ψ.

We conclude that (28) can be considered in some sense as the equation for
nonlinear waves. The self-similar asymptotics (89) means a formation of the
traveling wave with a universal profile for a broad class of initial conditions.
This is a purely non-linear phenomenon, it is easy to see that such asymptotics
cannot occur in the particular case (N = 1 in (24)) of the linear operator Γ .

6.2 Distribution Functions, Moments and Power-Like Tails

We have described above the general picture of behavior of the solutions u(x, t)
to the problem (28), (84). On the other hand, (28) (in particular, its special
case (14)) was obtained as the Fourier transform of the kinetic equation.
Therefore we need to study in more detail the corresponding distribution
functions.

Set u0(x) in the problem (28) to be an isotropic characteristic function of
a probability measure in R

d, i.e.,

u0(x) = F [f0] =
∫

Rd

dv f0(|v|)e−ik·v , k ∈ R
d, x = |k|2, (90)

where f0 is a generalized positive function normalized such that u0(0) = 1
(distribution function). Let U be a closed unit ball in the B = C(R+) as
defined in (30).

Then, we can apply all results of Sect. 5, and conclude that there exists a
distribution function f(v, t), v ∈ R

d, satisfying (1), such that

u(x, t) = F [f(·, t)], x = |k|2, (91)

for any t ≥ 0, and a similar conclusion can be obtain if we assume the Laplace
(instead of Fourier) transform in (90).

Then there exists a distribution function f(v, t), v > 0, such that

u(x, t) = L[f(·, t)] =
∫ ∞

0

dv f(v, t)e−xv, u(0, t) = 1, x ≥ 0 , t ≥ 0, (92)

where u(x, t) is the solution of the problem (28) constructed in Theorem 2
and Lemma 2.

The approximate equation (87) in terms of distribution functions (91)
reads

f(|v|, t) � e−
d
2 µ(p) tFp(|v|e− 1

2µ(p) t), t→ ∞, |v|e− 1
2µ(p) t = const., (93)

where Fp(|v|) is a distribution function such that

ψp(x) = F [Fp], x = |k|2, (94)
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with ψp given by
us(x, t) = ψ(xeµ(p)t) (95)

(the notation ψp is used in order to stress that ψ defined in (95), depends
on p). The factor 1/2 in (93) is due to the notation x = |k|2. Similarly, for
the Laplace transform, we obtain

f(v, t) � e−µ(p)tΦp(ve−µ(p)t), t→ ∞, ve−µ(p)t = const., (96)

where
ψp(x) = L[Φp]. (97)

The positivity and some other properties of Fp(|v|) follow from the fact
that ψp(x) = wp(xp), where wp(x) satisfies Theorem 5. Hence

ψp(x) =
∫ ∞

0

dτ Rp(τ)e−τxp

,

∫ ∞

0

dτ Rp(τ) =
∫ ∞

0

dτ Rp(τ)τ = 1, (98)

where Rp(τ), τ ≥ 0, is a non-negative generalized function (of course, both
ψp and Rp depend on p).

In particular we can conclude that the self-similar asymptotics (93) for any
initial data f0 ≥ 0 occurs if p0 > 1, otherwise it occurs for p ∈ (0, p0) ⊂ (0, 1).
Therefore, for any spectral function µ(p) (Fig. 1), the approximate equality
(93) holds for sufficiently small 0 < p ≤ 1. In addition,

m2 =
∫

Rd

dv f0(|v|)|v|2 <∞ if p = 1

and m2 = ∞ if p < 1. Similar conclusions can be made for the Laplace
transforms.

The positivity of F (|v|) in (94)–(97) follows from the integral representa-
tion (98) with p ≤ 1, since it is well-known that

F−1(e−|k|2p

) > 0, L−1(e−x2p

) > 0

for any 0 < p ≤ 1 (the so-called infinitely divisible distributions [18]).
Thus, (98) explains the connection of the self-similar solutions of generalized
Maxwell models with infinitely divisible distributions.

Using standard formulas for the inverse Fourier (Laplace) transforms,
denote by (d = 1, 2, . . . is fixed)

Mp(|v|) =
1

(2π)d

∫

Rd

dke−|k|2p+ik·v,

Np(v) =
1

2πi

∫ a+i∞

a−i∞
dx e−xp+xv, 0 < p ≤ 1,

(99)
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we obtain the self-similar solutions (distribution functions) are given in (96),
(98) (right-hand sides), by

Fp(|v|) =
∫ ∞

0

dτ Rp(τ)τ−
d
2pMp(|v|τ− 1

2p ),

Φp(v) =
∫ ∞

0

dτ Rp(τ)τ−
1
pNp(vτ−

1
p ), v ≥ 0, 0 < p ≤ 1.

(100)

Note that M1(|v|) is the standard Maxwellian in R
d. The functions Np(v) (99)

are studied in detail in the literature [18, 20]. Thus, for given 0 < p ≤ 1, the
kernel R(τ), τ ≥ 0, is the only unknown function that is needed to describe
the distribution functions F (|v|) and Φ(v). See [10] for a study of R(τ) in
more detail.

Now, from (34), (42), and recalling µ = µ(1), we can show the moments
equation can be written in the form

(sµ(1) − λ(s) + 1)ms =
N∑

n=2

αnIn(s), (101)

where

In(s) =
∫

R
n
+

da1 . . . danA(a1, . . . , an)
∫

R
n
+

dτ1 . . . , dτn g
(s)
n (a1τ1, . . . , anτn)

n∏

j=1

R(τj)

(102)

g(s)
n (y1, . . . , yn) =

( n∑

k=1

yk

)s

−
n∑

k=1

ys
k, n = 1, 2, . . . .

and, due to the properties of R(τ), one gets g(s)
1 = 0 for any s ≥ 0 and

m0 = m1 = 1.
Our aim is to study the moments ms defined in (92), for s > 1, on the

basis of (101). The approach is similar to the one used in [15] for a simplified
version of (101) with N = 2. The main results are formulated below in terms
of the spectral function µ(p) (see Fig. 1) under assumption that p0 > 1.

Proposition 2.

(i) If the equation µ(s) = µ(1) has the only solution s = 1, then ms <∞ for
any s > 0.

(ii) If this equation has two solutions s = 1 and s = s∗ > 1, then ms < ∞
for s < s∗ and ms = ∞ for s > s∗.

(iii) ms∗ <∞ only if In(s∗) = 0 in (101) for all n = 2, . . . , N .
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Now we can draw some conclusions concerning the moments of the
distribution functions (100) as follows. Denote by

ms(Φp) =
∫ ∞

0

dv Φp(v)vs, ms(Rp) =
∫ ∞

0

dτ Rp(τ)τs,

m2s(Fp) =
∫

Rd

dv Fp(|v|)|v|2s, s > 0, 0 < p ≤ 1,

and use similar notations for Np(v) and Mp(|v|) in (100). Then, by formal
integration of (100), we obtain

ms(Φp) = ms(Np)ms/p(Rp)

m2s(Fp) = m2s(Mp)ms/p(Rp),

where Mp and Np are given in (99) and we show that finite only for s < p < 1.
In the remaining case p = 1 all moments of functions

M1(|v|) = (4π)−d/2 exp
[
− |v|2

4

]
, v ∈ R

d;

N1(v) = δ(v − 1), v ∈ R+,

are finite. Therefore, everything depends on moments of R1 in with p = 1, so
it only needs to apply Proposition 2.

In particular, the following statement holds for the moments of the
distribution functions (93), (96).

Proposition 3.

(i) If 0 < p < 1, then m2s(Fp) and ms(Φp) are finite if and only if 0 < s < p.
(ii) If p = 1, then Proposition 2 holds for ms = m2s(F1) and for ms = ms(Φ1).

Remark 8. Proposition 3 can be interpreted in other words: the distribution
functions Fp(|v|) and Φp(v), 0 < p ≤ 1, can have finite moments of all orders
in the only case when two conditions are satisfied

(1) p = 1, and
(2) The equation µ(s) = µ(1) (see Fig. 1) has the unique solution s = 1.

In all other cases, the maximal order s of finite moments m2s(Fp) and ms(Φp)
is bounded.

This fact means that the distribution functions Fp and Φp have power-like
tails.
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6.3 Applications to the Conservative or Dissipative
Boltzmann Equation

We recall the three specific Maxwell models (A), (B), (C) of the Boltzmann
equation from Sect. 2. Our goal in this section is to study isotropic solutions
f(|v|, t), v ∈ R

d, of (2), (4), and (5) respectively. All three cases are considered
below from a unified point of view. First we perform the Fourier transform
and denote

u(x, t) = F [f(|v|, t)] =
∫

Rd

dv f(|v|, t)e−ik·v, x = |k|2, u(0, t) = 1. (103)

It was already said at the beginning of Sect. 4 that u(x, t) satisfies (in all three
cases) (23), where N = 2 and all notations are given in (27), (14), (18)–(21).
Hence, all results of our general theory are applicable to these specific models.
In all three cases (A), (B), (C) we assume that the initial distribution function

f(|v|, 0) = f0(|v|) ≥ 0,
∫

Rd

dv f0(|v|) = 1, (104)

and the corresponding characteristic function

u(0, t) = u0(x) = F [f0(|v|)], x = |k|2, (105)

are given. Moreover, let u0(x) be such that

u0(x) = 1 − αxp +O(xp+ε), x→ 0, 0 < p ≤ 1, (106)

with some α > 0 and ε > 0. We distinguish below the initial data with finite
energy (second moment)

E0 =
∫

Rd

dv |v|2f0(|v|) <∞ (107)

implies p = 1 in (106) and the in-data with infinite energy E0 = ∞. If p < 1
in (106) then

m(0)
q =

∫

Rd

dv f0(|v|)|v|2q <∞ (108)

only for q ≤ p < 1 (see [18, 20]).
Also, the case p > 1 in (106) is not possible for f0(|v|) ≥ 0.
In addition, note that the coefficient α > 0 in (106) can always be changed

to α = 1 by the scaling transformation x̃ = α1/px. Then, without loss of
generality, we set α = 1 in (106).

Since it is known that the operator Γ (u) in all three cases belongs to the
class (24), we can apply Theorem 5 and state that self-similar solutions of
(23) are given by

us(x, t) = Ψ(x eµ(p)t), Ψ(x) = w(xp), (109)
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where w(x) is given in Theorem 5 and 0 < p < p0 (the spectral function µ(p),
defined in (43), and its critical point p0 depends on the specific model.)

According to Sects. 6.1–6.2, we just need to find the spectral function µ(p).
In order to do this we first define the linearized operator L = Γ ′(1) for Γ (u)
given in (24), (27). One should be careful at this point since A2(a1, a2) in
(27) is not symmetric and therefore (32) cannot be used. A straight-forward
computation leads to

Lu(x) =
∫ 1

0

dsG(s)(u(a(s)x) + u(b(s)x)) +
∫ 1

0

dsH(s)u(c(s)x), (110)

in the notation (18)–(21). Then, the eigenvalue λ(p) is given by

Lxp = λ(p)xp which implies

λ(p) =
∫ 1

0

dsG(s) {(a(s))p + (b(s))p} +
∫ 1

0

dsH(s)(c(s))p,
(111)

and the spectral function (43) reads

µ(p) =
λ(p) − 1

p
. (112)

Note that the normalization (22) is assumed.
At that point we consider the three models (A), (B), (C) separately and

apply (111) and (112) to each case.
(A) Elastic Boltzmann Equation (2) in R

d, d ≥ 2. By using (18), (19), and
(22) we obtain

λ(p) =
∫ 1

0

dsG(s)(sp + (1 − s)p), G(s) = Ad g(1 − 2s)[s(1 − s)]
d−3
2 ,

(113)

where the normalization constant Ad is such that (22) is satisfied with H = 0.
Then

µ(p) =
1
p

∫ 1

0

dsG(s)(sp + (1 − s)p − 1), p > 0. (114)

It is easy to verify that p µ(p) → 1 as p→ 0, µ(p) → 0 as p→ ∞, and

µ(p) > 0 if p < 1; µ(p) < 0 if p > 1;

µ(1) = 0, µ(2) = µ(3) = −
∫ 1

0

dsG(s) s(1 − s).
(115)

Hence, µ(p) in this case is similar to the function shown on Fig. 1b with
2 < p0 < 3 and such that µ(1) = 0. Then the self-similar asymptotics hold all
0 < p < 1.
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(B) Elastic Boltzmann Equation in the presence of a thermostat (4) in R
d,

d ≥ 2. We consider just the case of a cold thermostat with T = 0 in (14),
since the general case T > 0 can be considered after that with the help of
(11). Again, by using (18), (19), and (22) we obtain

λ(p) =
∫ 1

0

dsG(s)(sp + (1 − s)p) + θ

∫ 1

0

dsG(s)(1 − 4m
(1 +m)2

)p,

G(s) =
1

1 + θ
Ad g(1 − 2s)[s(1 − s)]

d−3
2 ,

(116)

with the same constant Ad as in (113). Then

µ(p) =
1
p

∫ 1

0

dsG(s)( sp + (1 − s)p − θ(1 − βs)p − (1 + θ)),

β =
4m

(1 +m)2
, p > 0,

(117)

and therefore, as in the previous case (A), p µ(p) → 1 as p → 0, µ(p) → 0 as
p→ ∞, with

µ(1) = −θ β
∫ 1

0

dsG(s) s. (118)

which again verifies that µ(p) is of the same kind as in the elastic case (A) and
shown on Fig. 1b. A position of the critical point p0 such that µ′(p0) = 0 (see
Fig. 1b) depends on θ. It is important to distinguish two cases: (1) p0 > 1 and
(2) p0 < 1. In case (1) any non-negative initial data (104) has the self-similar
asymptotics. In case (2) such asymptotics holds just for in-data with infinity
energy satisfying (106) with some p < p0 < 1. A simple criterion to separate
the two cases follows directly from Fig. 1b: it is enough to check the sign of
µ′(1). If

µ′(1) = λ′(1) − λ(1) + 1 < 0 (119)

in the notation of (116), then p0 > 1 and the self-similar asymptotics hold for
any non-negative initial data.

The inequality (119) is equivalent to the following condition on the positive
coupling constant θ

0 < θ < θ∗ = −
∫ 1

0
dsG(s) ( s log s+ (1 − s) log(1 − s))

∫ 1

0
dsG(s) (β s+ (1 − βs) log(1 − βs))

. (120)

The right-hand side of this inequality is positive and independent on the nor-
malization of G(s), therefore it does not depend on θ (see (117). We note that
a new class of exact self-similar solutions to (4) with finite energy was recently
found in [12] for β = 1, θ = 4/3 and G(s) = const. A simple calculation of the
integrals in (120) shows that θ∗ = 2 in that case, therefore the criterion (119)
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is fulfilled for the exact solutions from [12] and they are asymptotic for a wide
class of initial data with finite energy. Similar conclusions can be made in the
same way about exact positive self-similar solutions with infinite energy con-
structed in [12]. Note that the inequality (119) shows the non-linear character
of the self-similar asymptotics: it holds unless the linear term in (4) is “too
large”.

(C) Inelastic Boltzmann Equation (5) in R
d. Equations (21) and (22) lead

to

λ(p) =
∫ 1

0

dsG(s)((a s)p + (1 − b s)p),

where

G(s) = Cd (1 − s)
d−3
2 , a =

(1 + e)2

4
, b =

(1 + e)(3 − e)
4

,

with such constant Cd that (22) with H = 0 is fulfilled. Hence

µ(p) =
1
p

∫ 1

0

dsG(s)((a s)p + (1 − b s)p − 1), p > 0, (121)

and once more as in the previous two cases, p µ(p) → 1 as p → 0, µ(p) → 0
as p→ ∞, with now

µ(1) = −1 − e2

4

∫ 1

0

dsG(s) s.

Thus, the same considerations lead to the shape of µ(p) shown in Fig. 1b. The
inequality (119) with λ(p) given in (121) was proved in [11] (see (4.26) of [11],
where the notation is slightly different from ours). Hence, the inelastic Boltz-
mann equation (5) has self-similar asymptotics for any restitution coefficient
0 < e < 1 and any non-negative initial data.

Hence, the spectral function µ(p) in all three cases above is such that
p0 > 1 provided the inequality (120) holds for the model (B).

Therefore, according to our general theory, all “physical” initial conditions
(104) satisfying (106) with any 0 < p ≤ 1 lead to self-similar asymptotics.
Hence, the main properties of the solutions f(v, t) are qualitatively similar
for all three models (A), (B) and (C), and can be described in one unified
statement: Theorem 6 below.

Before we formulate such general statement, it is worth to clarify one point
related to a special value 0 < p1 ≤ 1 such that µ(p1) = 0. The reader can see
that on Fig. 1b that the unique root of this equation exits for all models (A),
(B), (C) since µ(1) = 0 in the case (A) (energy conservation), and µ(1) < 0
in cases (B) and (C) (energy dissipation). If p = p1 in (106) then the self-
similar solution (109) is simply a stationary solution of (23). Thus, the time
relaxation to the non-trivial (u 	= 0, 1) stationary solution is automatically
included in Theorem 6 as a particular case of self-similar asymptotics.
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Thus we consider simultaneously (2), (4), (5), with the initial condition
(104) such that (106) is satisfied with some 0 < p ≤ 1, ε > 0 and α = 1. We
also assume that T = 0 in (4) and the coupling parameter θ > 0 satisfies the
condition (120).

In the following Theorem 6, the solution f(|v|, t) is understood in each
case as a generalized density of probability measure in R

d and the convergence
fn → f in the sense of weak convergence of probability measures.

Theorem 6. The following two statements hold

(i) There exists a unique (in the class of probability measures) solution
f(|v|, t) to each of (2), (4), (5) satisfying the initial condition (104). The
solution f(|v|, t) has self-similar asymptotics in the following sense:
For any given 0 < p ≤ 1 in (106) there exits a unique non-negative
self-similar solution

f (p)
s (|v|, t) = e−

d
2 µ(p) tFp(|v|e− 1

2µ(p) t), (122)

such that

e
d
2 µ(p) tf(|v|e− 1

2 µ(p) t, t) →t→∞ Fp(|v|), (123)

where µ(p) is given in (114), (117), (121), respectively, for each of the
three models.

(ii) Except for the special case of the Maxwellian

F1(|v|) = M(|v|) = (4π)−d/2e−
|v|2
4 (124)

for (2) with p = 1 in (106) (note that µ(1) = 0 in this case), the function
Fp(|v|) does not have finite moments of all orders. If 0 < p < 1, then

mq =
∫

Rd

dv Fp(|v|)|v|2q <∞ only for 0 < q < p. (125)

If p = 1 in the case of (4), (5), then mq <∞ only for 0 < q < p∗, where
p∗ > 1 is the unique maximal root of the equation µ(p∗) = µ(1), with µ(p)
given in (106), (121) respectively.

In addition, we also we obtain the following corollary.

Corollary 6. Under the same conditions of Theorem 6, the following two
statements hold.

(i) The rate of convergence in (123) is characterized in terms of the corre-
sponding characteristic functions in Proposition 1.

(ii) The function Fp(|v|) admits the integral representation (100) through
infinitely divisible distributions (99).
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Proof. It is enough to note that all results of Sects. 6.1 and 6.2 are valid, in
particular, for (2), (4), (5).

Finally, we mention that the statement similar to Theorem 6, can be easily
derived from general results of Sect. 6.1 in the case of one-dimensional Maxwell
models introduced in [2,15] for applications to economy models (Pareto tails,
etc.). The only difference is that the “kinetic” equation can be transformed to
its canonical form (23)–(24) by the Laplace transform and that the spectral
function µ(p) can have in this case any of the four kind of behaviors shown in
Fig. 1. The only remaining problem for any such one-dimensional models is to
study them for their specific function µ(p), and then to apply Propositions 1,
2 and 3.

Thus, the general theory developed in this chapter is applicable to all
existing multi-dimensional isotropic Maxwell models and to one-dimensional
models as well.
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