
Preface

“... It also happens...
that branches which were thought

to be completely disparate
are suddenly seen to be related ...”

Michiel Hazewinkel, 1977

During September 4–9, 2006 the Stefan Banach International Center (BC)
of the Institute of Mathematics of the Polish Academy of Sciences and the
(Italian) International Summer Institute for Mathematics (CIME) jointly
organized at the Mathematical Research and Conference Center (MRCC),
Bȩdlewo, Poland, the School From a Microscopic to Macroscopic Description
of Complex Systems. In addition to the main speakers, whose contributions are
included in this volume, there were a significant number of participants from
11 countries. In parallel with the School, a workshop on Modelling Cellular
Systems with Applications to Tumor Growth was organized in the framework
of the activity of the EU MCRTN “MRTN-CT-2004-503661”. The courses
were targeted at Ph.D. students and young researchers and have had an edu-
cational character, whereas the workshop offered presentations on particular
applications to modelling tumour growth phenomena.

The aim of the School has been to offer a broad presentation of updated
methods suitable to provide a mathematical framework for the development
of a hierarchy of models of complex systems in the natural sciences, with spe-
cial attention to biology and medicine. The mastering of complexity implies
the sharing of different tools which require a much higher level of communica-
tion between different mathematical and scientific schools, for solving classes
of problems of the same nature. Nowadays, more than ever, one of the most
important challenges derives from the bridging of parts of a system evolving
at different time and space scales, especially with respect to computational
affordability. Therefore, the courses have had a rather general character and
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method; the main role is played here by stochastic processes, positive semi-
groups, asymptotic analysis, continuum theory and game theory.

For many biological systems only non-negative states or solutions make
sense. The theory of Banach lattices and positive operators, developed in
the series of lectures Positivity in the Natural Sciences” by Jacek Banasiak,
provides a mathematical framework to address such problems. The lectures
show how the interplay of positivity and compactness yields very strong results
in many fields ranging from well-posedness of the problem at hand, through
long time behaviour of solutions (including emergence of chaos), to asymptotic
analysis of systems displaying multiple scale phenomena. Theoretical results
are applied to a variety of specific problems occurring in natural sciences,
including birth-and-death type models that describe the development of drug
resistance in cancer cells, blood cells’ evolution equation, singularly perturbed
models of sole migration, or diffusion approximation of the Fokker–Planck
equation.

As a paradigmatic microcosm for all of biology, i.e. as an observable sys-
tem where mutation and evolution take place, in the course on Cancer by
Mark Chaplain, the different aspects of the growth phases of a tumour are de-
scribed(raise query?) solid tumours (the most frequent of all cancers) progress
through several key stages of growth from a single transformed/mutated cell,
to a multicell spheroid (avascular growth), vascular growth in connection with
blood vessels, and finally invasive growth of the local tissue and metastasis to
distant sites where secondary tumours occur. Modelling these growth phases
involves a mixture of continuum models (ordinary, delay and partial differ-
ential equations – reaction–diffusion–taxis equations) and individual-based
models (cellular automata, discrete modelling techniques). The lecture notes
present a range of mathematical techniques to examine a family of mod-
els (qualitative analysis of DEs, asymptotic analysis, numerical analysis and
computation) and provide a general framework for developing quantitative
and predictive models.

The mathematical framework for searching for links between solutions re-
lated to equation modelling at the microscopic, mesoscopic and macroscopic
levels is the topic of the course Links between microscopic and macroscopic de-
scription by Miros�law Lachowicz. Usually, the description of biological popula-
tions is carried out on a macroscopic level of interacting sub-populations. The
mathematical structures are deterministic reaction–diffusion equations. They
describe the (deterministic) evolution of densities of subpopulations rather
than the interactions between their individual entities. However, in many cases
the description on a micro-scale of interacting entities (e.g. cells) seems to be
more appropriate. The problem of relationships between the various scales of
description seems to be one of the most important problems of the mathemat-
ical modelling of complex systems, e.g. in the modeling of tumour growth. The
following strategy can be applied. One starts with the deterministic macro-
scopic model for which the identification of parameters by an experiment
is easier. Then one provides the theoretical framework for modelling at the
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microscopic scale in such a way that the corresponding models at the macro-
and micro-scales are asymptotically equivalent, i.e. the solutions are close to
each other in a properly chosen norm. Then, if the microscopic model is cho-
sen suitably, one may hope that it covers not only the macroscopic behaviour
of the system in question, but also some of its microscopic features. The mi-
croscopic model by its nature is richer and it may describe a larger variety
of phenomena. In mathematical terms, we are interested in the links between
the following mathematical structures: at the micro-scale of stochastically
interacting entities (cells, individuals,...), in terms of continuous stochastic
semigroups, the meso-scale of statistical entities, in terms of continuous non-
linear semigroups related to the solutions of Boltzmann-type nonlocal kinetic
equations, and the macroscale of densities of interacting entities in terms of
dynamical systems related to reaction–diffusion equations.

The notes on Rescaling Stochastic Processes: Asymptotics, by Vincenzo
Capasso and Daniela Morale, investigate the links among different scales,
from a more probabilistic point of view. As already mentioned, particular
attention is being paid to the mathematical modelling of the social behav-
iour of interacting individuals in a biological population, on the one hand
because there is an intrinsic interest in the dynamics of population herding,
and on the other hand, as agent-based models are being used in complex op-
timization problems. Among other interesting features, these systems lead to
self-organization phenomena, which exhibit interesting spatial patterns. Here,
we show how properties on the macroscopic level depend on interactions at
the microscopic level; in particular, suitable laws of large numbers are shown
to imply the convergence of the evolution equations for empirical spatial dis-
tributions of interacting individuals to nonlinear reaction–diffusion equations
for a so-called mean field, as the total number of individuals becomes suffi-
ciently large. As a working example, an interacting particle system modelling
social behaviour has been proposed, based on a system of stochastic differen-
tial equations, driven by both aggregating/repelling and external forces. To
support a rigorous derivation of the asymptotic nonlinear integro-differential
equation, compactness criteria for convergence in metric spaces of measures,
and problems of existence of a weak/entropic solution have been analyzed.
Further the temporal asymptotic behaviour of the stochastic system of a fixed
number of interacting particles has been discussed. This leads to the problem
of the existence of nontrivial invariant probability measures.

These microscopic interactions between individuals can often be described
within game-theoretic models. This theme has been discussed in the notes on
Evolutionary Game Theory and Population Dynamics by Jacek Miȩkisz. In
such evolutionary models, individuals adapt to a changing environment and
are subject to selection pressure and mutations. We will present determinis-
tic and stochastic models of adaptive dynamics and discuss the stability of
equilibria in appropriate dynamical systems such as time-delay equations and
Markov chains.
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Summary. In this chapter the authors investigate the links among different scales,
from a probabilistic point of view. Particular attention is being paid to the math-
ematical modelling of the social behavior of interacting individuals in a biological
population, on one hand because there is an intrinsic interest in dynamics of popula-
tion herding, on the other hand since agent based models are being used in complex
optimization problems. Among other interesting features, these systems lead to phe-
nomena of self-organization, which exhibit interesting spatial patterns. Here we show
how properties on the macroscopic level depend on interactions at the microscopic
level; in particular suitable laws of large numbers are shown to imply convergence
of the evolution equations for empirical spatial distributions of interacting individ-
uals to nonlinear reaction–diffusion equations for a so called mean field, as the total
number of individuals becomes sufficiently large. As a working example, an interact-
ing particle system modelling social behavior has been proposed, based on a system
of stochastic differential equations, driven by both aggregating/repelling and exter-
nal “forces”. In order to support a rigorous derivation of the asymptotic nonlinear
integro-differential equation, compactness criteria for convergence in metric spaces
of measures, and problems of existence of a weak/entropic solution have been ana-
lyzed. Further the temporal asymptotic behavior of the stochastic system of a fixed
number of interacting particles has been discussed. This leads to the problem of the
existence of nontrivial invariant probability measure.

1 Introduction

In group-living animals, a wide range of behaviors like resting, foraging or
moving are usually performed collectively. Observational and empirical evi-
dence show that animal groups move across the landscape quite cohesively,
which strongly suggests that a collective decision has been taken. Thus, it
could be assumed that individual decisions lead to a common decision, allow-
ing the group to remain cohesive [38–40]. Such self-organized processes allow
groups to carry out collective actions in various environments without any
lead, external control or central coordination.
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Over the past couple of decades, a large amount of literature has been
devoted to the mathematical modelling of self-organizing populations, based
on the concepts of short-range/long-range “social interaction” among different
individuals of a biological population. The aim of the modelling is to catch
the main features of the interaction at the lower scale of single individuals
that are responsible, at a larger scale, for a more complex behavior that leads
to the formation of aggregating patterns.

A classical widespread approach has been based on either linear or nonlin-
ear PDE’s [24,27]. Such kind of models are often called Eulerian models; they
describe the evolution of population densities by means of typically determin-
istic nonlinear partial differential equations of the advection-reaction-diffusion
type

ρt + ∇ · (vρ) = ∇ · (D∇ρ) + ν(ρ);

ρ is the population density, v is a velocity field and ν(ρ) is a possible additive
reaction term which may include birth and death processes. The advection
term may describe the interaction mechanisms among individuals (via the
velocity v), while the non-convective (diffusive) flux takes into account the
spatial (random) dispersal of the population.

The advantages of the continuum approach are those of ease of analysis;
it is useful in the case of large and dense populations [13]. The disadvantages
of this approach include especially the fact that the identity of individuals
is compromised. In many situations it is more appropriate to use discrete
individual-based models, in which a finite number of individuals is considered
and only a finite sequence of decisions is made by individuals. As pointed out
by Durrett and Levin [13] and by Grünbaum and Okubo [18], an individual-
based approach is also useful in deriving the correct limiting equation, as N
increases to infinity, also in the case when the use of a continuum model can
be justified.

As already mentioned, a fruitful approach suggested since long by various
authors [4,13,25,26,29,30] is based on the modelling of the given population
as a system of interacting individuals; each individual “particle” is embedded
in the total population of N similar particles (the so called individual based
model - IBM). Each of them is treated as a discrete particle subject to sim-
ple rules of movement. This is known as Lagrangian approach: particles are
followed in their individual motion. Possible randomness may be included, so
that the variation in time of the random location of the k-th individual in
the group at time t ≥ 0, Xk

N (t) ∈ R
d, k = 1, . . . , N is described by a system

of stochastic differential equations (SDEs). On the other hand particles are
subject to specific forces of interaction which are included in the advection
term. In other words, from a Lagrangian point of view, the state of a system
of N particles may be described as a stochastic process {Xk

N (t)}t∈R+ defined
on a suitable probability space (Ω,F , P ) and valued in

(
R

d,BRd

)
, where BRd

is the Borel σ-algebra generated by intervals. If the number of particles is kept
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constant, the time evolution of particle locations Xk
N (t), k = 1, . . . , N are sub-

ject to a system of stochastic differential equations (SDEs) of the following
type

dXk
N (t) = Hk

N (X1
N (t), . . . , XN

N (t), t) dt + σ
(
X1

N (t), . . . , XN
N (t), t

)
dW k(t),

where, for k = 1, . . . , N , the function Hk
N defined on R

Nd × R+, describes
the deterministic force acting on the k-th particle, and randomness has been
included via a family of independent Wiener processes. Let us remark that the
choice of an additive noise, described by a Wiener process allows a rigorous
mathematical analysis based on Itô calculus. This will be clarified later in
these lecture notes.

We will show a possible procedure to model interaction among individuals,
how to introduce and distinguish among different scales. Indeed, a mathemat-
ical way to consider different scales, in the above sense, is based on the choice
of a “scaling” parameter, depending upon N ; if we consider a system of N
particles located in R

d, in the macroscopic space-time coordinates the typical
distance between neighboring particles is O(N−1/d) and the order of the size
of the whole space O(1). In this respect, we may distinguish three main types
of interactions:

a. McKean-Vlasov interaction (macroscale): any particle interacts with O(N)
other particles; collective long-range forces are predominant and the par-
ticles are weakly interacting; the range of interaction gets very large in
comparison with the typical distance between neighboring particles, and
its strength decreases fast, like 1/N .

b. hydrodynamic interaction (microscale): any particle interacts with O(1)
other particles in a very small neighborhood with volume O(1/N). The
interaction gets short-ranged and rather strong for large N .

c. moderate interaction (mesoscale) [28]: any particle interacts with many
O
(
N1−β

)
other particles in a small volume O

(
N−β

)
.

By an Eulerian approach, the collective behavior of the discrete (in the
number of particles) system, may be recovered in terms of the spatial distrib-
ution of particles at time t, expressed, in term of an empirical measure in the
space of the probability measures on R

d,

XN (t) =
1
N

N∑

k=1

εXk
N (t) ∈ MP (Rd),

which measures the spatial relative frequency of the particles at time t. Again
by methods of stochastic calculus, we may derive the time evolution for the
empirical measure, and then analyze its asymptotic behavior as the number
of individuals N tends to infinity. This is equivalent to study a “law of large
numbers” for measures. In particular we may look for sufficient conditions for
having a unique limit measure, which is absolutely continuous with respect to
the Lebesgue measure, and determine the evolution equation for the density.
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In conclusion, the Lagrangian and Eulerian approaches describe the sys-
tem at different scales: the microscale, the finer scale description based on the
stochastic behavior of individuals and the macroscale, the larger scale descrip-
tion based on the continuum behavior of population densities. “The central
problem is to determine how information is transferred across scales, and
what detail at fine scales is exactly necessary and sufficient for understanding
patterns on averaged scales” [13].

Nowadays, one of the interesting mathematical field regards the analy-
sis for providing a mathematically rigorous framework for bridging the gap
between the micro and the macro scale.

In these lecture notes the authors discuss some aspects of the asymptotics
of rescaled stochastic processes, in particular paying attention to the deter-
ministic approximation of stochastic systems (see Section 4). In Section 4.1
they discuss a time change technique applied to a jump process, while in
Sections 4.2 and 4.3 a general description is given of a particle systems via a
system of SDEs, and, via an application of Itô’s formula, obtain a weak formu-
lation of a stochastic evolution equation for the empirical measure XN (t), and
investigate the properties of the stochastic component. Then they introduce
and discuss the concept of the weak convergence in the space MP (Rd). The
compactness properties of MP (Rd) and, consequently, the space of the trajec-
tories of the stochastic process XN , i.e. M(C([0, T ],M(Rd))) are presented.
An alternative approach to handle multiple scales, including the analysis at a
mesoscales is presented in [21].

In Section 5 a specific model for a stochastic interacting particle is intro-
duced [25, 26]. It is shown a mathematical way to describe the interaction,
via some interaction kernels which characterize both a McKean-Vlasov and a
moderate interaction. The advection term also includes an external flow. The
asymptotics of a system of N stochastic differential equations is analyzed,
as the population size N increase to infinity. In this way a nonlinear partial
integral differential equation is obtained for the asymptotic mean field. Then,
equations for the path of each individual particle are given, driven by such
mean field.

In Section 6 the long time behavior of the system of SDEs s analyzed,
for a fixed N . The interest here is to study mechanisms that are responsible
for stable aggregation. The concept of invariant measure is introduced. Both
the pure interacting particle system and the system with both the interacting
term and a suitable “confining” potential are considered; it is shown how,
in the first case, the system cannot admit a nontrivial invariant distribution;
in the latter, under suitable conditions on the “localizing” potential U , the
system does admit a nontrivial invariant distribution to which the system con-
verges. We notice that, by applying recent results by Veretennikov [35,36], the
requirement on U are less restrictive about its convexity with respect to the
requirements of previous literature [9, 22, 36]. Our interest about these topics
has been addressed by a wide-through-years literature by several authors in-
terested in modelling aggregation behavior, and studying existence and con-
vergence to an invariant distribution [5, 22,36,37].
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In order to make the lecture notes self consistent, in Sections 2 and 3 we
introduce the stochastic processes of our interest, i.e. Markov processes and
in particular diffusion, the Brownian motion and the stochatic Itô calculus.

Now we consider some simple examples of scaling of stochastic process
very well know since the first courses in probability.

1.1 First Examples of Rescaling

In the theory of stochastic processes there are some very well-known rescal-
ings which are useful to describe and introduce the fundamental stochastic
processes, i.e. the Binomial, the Poisson and the Wiener Processes. Here we
introduce the basic ideas.

The Binomial Process

Take T = N. Let (Yj)j∈N\{0} be a sequence of independent and identically
distributed (i.i.d.) Bernoulli random variables, having common distribution
B(1, p), the Binomial distribution with parameters 1 and p ∈ [0, 1]. The
Bernoulli process can be defined as the discrete time process (X(n))n∈N, such
that

1. X(0) = 0;

2. X(n) =
n∑

j=1

Yj , for n ≥ 1.

As a consequence we know that X(n) has a B(n, p) distribution, for any
n ∈ N, and the following properties hold

i) X(0) = 0;
ii) X(n + r)−X(n) is independent of Fn = σ(X(1), . . . , X(n)), the σ-algebra

generated by the process till time n, for any n, r ∈ N; (property of inde-
pendent increments);

iii) X(n + r) − X(n) has a B(r, p) distribution, i.e. a Binomial distribution
with parameters r and p.

Rescaling the Binomial Process: The Poisson Process

Let t ∈ R+, t > 0, and let n ∈ N \ {0}. We may rescale the Binomial process,
B(n, p) by choosing for the probability p the following one

p = λ
t

n
+ o

(
1
n

)
,

with λ > 0.
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Consider the process

1. Y (n)(0) = 0;

2. Y (n)(t) =
n∑

j=1

Yj ,

where now (Yj)j∈N\{0} is a sequence of i.i.d. Bernoulli random variables, hav-

ing common distribution B

(
1, λ

t

n
+ o

(
1
n

))
.

It is well known that, for n tending to infinity, i.e. by considering an infinite
sum of Bernoulli trials during the time interval [0, t], the process (Y (n)(t))t∈R+

“converges” to a Poisson process (Y (t))t∈R+, such that

i) Y (0) = 0;
ii) Y (t + s) − Y (s) is independent of Fs for any s, t ∈ R+; (property of

independent increments);
iii) Y (t+s)−Y (s) has a P (λt) distribution for any s, t ∈ R+, that is a Poisson

distribution with parameter λt.

Rescaling the Poisson Process: The Wiener Process

Take the standard Poisson process (Y (t))t∈R+, (λ = 1), that is let Y (t) have
a P (t) distribution. Let us re-scale both the time and the jump of this process
by N ∈ N \ {0} so to obtain the process

Ỹ (t) =
1
N

Y (Nt), t ∈ R+.

The strong law of large numbers implies that

lim
N→∞

Ỹ (t) − t = lim
N→∞

1
N

[Y (Nt) − Nt] = 0, a.s.

Indeed, thanks to the martingale properties of the Poisson process, and
consequently to Doob’s inequality, we have both a functional law of large
numbers,

lim
N→∞

sup
u≤v

1
N

|Y (Nt) − Nt| = 0, a.s.,

and a functional Central Limit Theorem; i.e. the rescaled process

(
1√
N

[Y (Nt) − Nt]
)

t∈R+

,

for N tending to infinity, “converges” to the standard Wiener process
(W (t))t∈R+, which is defined by the following
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i) W (0) = 0;
ii) W (t + s) − W (s) is independent of Fs for any s, t ∈ R+; (property of

independent increments);
iii) W (t) has a N(0, t) distribution, that is a zero mean normal distribution

with variance t, for any t ∈ R + .

The Wiener process can also be obtained by rescaling another discrete
time process of great interest in applications.

The Simple Random Walk

Let (Yj)j∈N\{0} be a sequence of i.i.d. dichotomic random variables, having
common distribution P (Yj = 1) = P (Yj = −1) = 1/2. The simple random
walk is defined as the discrete time process (Sn)n∈N, such that

1. S0 = 0;

2. Sn =
n∑

j=1

Yj , for n ≥ 1.

Clearly, for each n ∈ N, we have that E[Xn] = 0 and V ar[Xn] = n.

Rescaling the Simple Random Walk

Let t ∈ R+, t > 0, and let n ∈ N − {0}. Let Sn, n ≥ 1 and Yj , j = 1, . . . , n be
defined as above. Define now the following rescaled and linearly interpolated
process

Xn(t) :=
1√
n

S[nt] + (nt − [nt])
1√
n

Y[nt]+1, t ∈ R+.

Donsker’s theorem [33] states that the process (Xn(t))t∈R+ , for n tending
to infinity, “converges” to the standard Wiener process (W (t))t∈R+.

Our aim below is to provide a framework that makes the above statements
mathematically rigorous. In particular the construction of continuous-time
stochastic processes, valued in metric spaces, from their finite dimensional
distributions; and later the convergence of stochastic processes on the relevant
metric spaces.

2 Stochastic Processes

Stochastic processes generalize the notion of (finite-dimensional) vectors of
random variables to the case of any family of random variables indexed in a
general set T . Typically, the latter represents “time” and is an interval of R

(in the continuous case) or N (in the discrete case).

Definition 1. Let (Ω,F , P ) be a probability space, T an index set, and (E,B)
a measurable space. An (E,B)-valued stochastic process on (Ω,F , P ) is a
family (Xt)t∈T of random variables Xt : (Ω,F) → (E,B) for t ∈ T .
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The triple (Ω,F , P ) is called the underlying probability space of the process
(Xt)t∈T , while (E,B) is known as the state space or phase space. For t ∈ T ,
the random variable Xt is the state of the process at “time” t. Moreover, for all
ω ∈ Ω, the mapping X(·, ω) : t ∈ T → Xt(ω) ∈ E is called the trajectory or
path of the process corresponding to ω. Any trajectory X(·, ω) of the process
belongs to the space ET of functions defined in T and valued in E.

In order to introduce a suitable probability space (ET ,BT , PT ) for the
trajectories, we consider the σ-algebra BT on ET defined as the σ-algebra gen-
erated by the algebra of the set of cylinders with finite-dimensional base, i.e.

BT = σ

(

π−1
ST (A) : A ∈ BS =

⊗

t∈S

Bt,S = {S ⊂ T | S is finite}
)

,

where πST is the canonical projection of ET on ES [8, 23].
By the Carathéodory’s extension theorem [33], it is possible to extend

on BT , in a unique way, a probability measure defined on an algebra which
generates BT , i.e. on the family of cylinders with the finite rectangles B1 ×
· · · × Bn ∈ Bn as bases, by

PT (π−1
ST (B1 × · · · ×Bn)) = PS(B1 × · · · ×Bn) = P (Xt1 ∈ B1, . . . , Xtn

∈ Bn).

As a consequence πSS′(PS′
) = PS , S ⊂ S′ and then

(
PS
)
S∈S is a com-

patible system of measures, as defined below.

Definition 2. If, for all (S, S′) ∈ S × S ′, with S ⊂ S′, we have that
πSS′(PS′

) = PS , then (ES ,BS , PS , πSS′)S,S′∈S;S⊂S′) is called a projective
system of measurable spaces and (PS)S∈S is called a compatible system of
measures on the finite products (ES ,BS)S∈S .

We may mention this fundamental result, which characterizes the probability
measures PT [8, 23].

Theorem 1 (Kolmogorov–Bochner). Let (Et,Bt)t∈T be a family of Pol-
ish spaces (i.e., metric, complete, separable) endowed with their respective
Borel σ-algebras, and let S be the collection of finite subsets of T and, for
all S ∈ S with WS =

∏
t∈S Et and BS =

⊗
t∈S Bt, let µS be a finite mea-

sure on (WS ,BS). Under these assumptions the following two statements are
equivalent:

1. there exists a µT measure on (WT ,BT ) such that for all S ∈ S : PS =
πST (PT );

2. the system (WS ,BS , PS , πSS′)S,S′∈S;S⊂S′ is projective.

Moreover, in both cases, PT , as defined in 1, is unique.

The unique measure PT of Theorem 1 is called the projective limit of the
projective system (WS ,BS , PS , πSS′)S,S′∈S;S⊂S′ .
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Example 1. Let (Xt)t∈T be a family of independent random variables defined
on (Ω,F , P ) and valued in (E,B). (In fact, in this case, it is sufficient to
assume that all finite families of (Xt)t∈T are independent.) We know that for
all t ∈ T the probability Pt = Xt(P ) is defined on (E,B). Then

∀S = {t1, . . . , tr} ∈ S : PS =
r⊗

k=1

Ptk
, for some r ∈ N

∗,

and the system (PS)S∈S is compatible with the finite products (ES ,BS)S∈S .
In fact, if B is a rectangle in BS , i.e., B = Bt1 × · · · × Btr

, and if S ⊂ S′,
where S, S′ ∈ S, then

PS(B) = PS(Bt1 × · · · × Btr
) = Pt1(Bt1) · · · · · Ptr

(Btr
)

= Pt1(Bt1) · · · · · Ptr
(Btr

)Ptr+1(E) · · · · · Ptr′ (E)

= PS′
(π−1

SS′(B));

i.e. that PS = πSS′(PS′
).

Definition 3. A real-valued stochastic process (Xt)t∈R+ is continuous in
probability if

P − lim
s→t

Xs = Xt, s, t ∈ R+.

Definition 4. A filtration (Ft)t∈R+ is an increasing family of sub-algebras
of F . The filtration Ft = σ(X(s), 0 ≤ s ≤ t), t ∈ R+ is called the generated
or natural filtration of the process Xt.

We may refer to the natural filtration of the process Xt, also as the history
of the process.

Definition 5. A stochastic process (Xt)t∈R+ is right-(left-)continuous if its
trajectories are right-(left-)continuous almost surely.

Definition 6. A stochastic process (Xt)t∈R+ is said to be right-continuous
with left limits (RCLL) or continu à droite avec limite à gauche (càdlàg)
if, almost surely, it has trajectories that are RCLL. The latter is denoted
Xt− = lims↑t Xs.

Definition 7. A filtered complete probability space (Ω,F , P, (Ft)t∈R+) is said
to satisfy the usual hypotheses if

1. F0 contains all the P -null sets of F ,
2. Ft =

⋂
s>t Fs, for all t ∈ R+; i.e., the filtration (Ft)t∈R+ is right-

continuous.

Henceforth we will always assume that the usual hypotheses hold, unless
specified otherwise.
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Definition 8. The process (Xt)t∈R+ is said to be progressively measurable
with respect to the filtration (Ft)t∈R+ , if, for all t ∈ R+, the mapping (s, ω) ∈
[0, t] × Ω → X(s, ω) ∈ E is (B[0,t] ⊗Ft)-measurable.

Definition 9. A random variable T defined on Ω (endowed with the σ-algebra
F) and valued in R̄+ is called a stopping time (or Markov time) with respect
to the filtration (Ft)t∈R+ , or simply an Ft-stopping time, if

∀t ∈ R+ : {ω ∈ Ω|T (ω) ≤ t} ∈ Ft.

The stopping time is said to be finite if P (T = ∞) = 0.

In the following, we consider some very important stochastic processes,
which will be used in the main part of these lecture notes.

2.1 Processes with Independent Increments

The stochastic process (Ω,F , P, (Xt)t∈R+), with state space (E,B), is called a
process with independent increments if, for all n ∈ N and for all (t1, . . . , tn) ∈
R

n
+, where t1 < · · · < tn, the random variables Xt1 ,Xt2−Xt1 , . . . , Xtn

−Xtn−1

are independent.
Let us call µt,s = PXt−Xs

, the law of the increment Xt −Xs. It is possible
to construct a compatible system of probability laws (PS)S∈S , where S =
{t1, . . . , tn} is a collection of finite subsets of the index set by

PS(B) = P ((Xt1 , . . . , Xtn
) ∈ B) = E[IB(Xt1 , . . . , Xtn

)]

=
∫

IB(y0 + y1, . . . , y0 + · · · + yn)

µ0 ⊗ µ0,t1 ⊗ · · · ⊗ µtn−1,tn
(dy0, . . . , dyn).

A process with independent increments is called time-homogeneous if

µs,t = µs+h,t+h ∀s, t, h ∈ R+, s < t. (1)

If (Ω,F , P, (Xt)t∈R+) is a homogeneous process with independent increments,
then in particular we have

µs,t = µ0,t−s, ∀s, t ∈ R+, s < t.

2.2 Martingales

Let (Xt)t∈R+ be a real-valued family of random variables defined on the prob-
ability space (Ω,F , P ) and let (Ft)t∈R+ be a filtration. The stochastic process
(Xt)t∈R+ is said to be adapted to the family (Ft)t∈R+ if, for all t ∈ R+, Xt is
Ft-measurable.
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The stochastic process (Xt)t∈R+ , adapted to the filtration (Ft)t∈R+ , is
a martingale with respect to this filtration, provided the following condi-
tions hold:

1. Xt is P -integrable, for all t ∈ R+;
2. for all (s, t) ∈ R+ × R+, s < t : E[Xt|Fs] = Xs almost surely.

(Xt)t∈R+ is said to be a submartingale (supermartingale) with respect to
(Ft)t∈R+ if, in addition to condition 1 and instead of condition 2, we have:

2′. for all (s, t) ∈ R+ × R+, s < t : E[Xt|Fs] ≥ Xs (E[Xt|Fs] ≤ Xs) almost
surely.

Remark 1. When the filtration (Ft)t∈R+ is not specified, it is understood
to be the increasing σ-algebra generated by the random variables of the
process (σ(Xs, 0 ≤ s ≤ t))t∈R+ (suitable extended). In this case we can write
E[Xt|Xr, 0 ≤ r ≤ s], instead of E[Xt|Fs].

Example 2. The evolution of a gambler’s wealth in a game of chance, the latter
specified by the sequence of real-valued random variables (Xn)n∈N, can serve
as a descriptive example of the above definitions. Suppose that two players
flip a coin and the loser pays the winner (who guessed head or tail correctly)
the amount α after every round. If (Xn)n∈N represents the cumulative fortune
of player 1, then after n throws he holds

Xn =
n∑

i=0

∆i.

The random variables ∆i (just like every flip of the coin) are independent and
take values α and −α with probabilities p and q, respectively. Therefore, we
see that

E[Xn+1|X0, . . . , Xn] = E[∆n+1 + Xn|X0, . . . , Xn]

= Xn + E[∆n+1|X0, . . . , Xn].

Since ∆n+1 is independent of every
∑k

i=0 ∆i, k = 0, . . . , n, we obtain

E[Xn+1|X0, . . . , Xn] = Xn + E[∆n+1] = Xn + α(p − q).

• If the game is fair, then p = q and (Xn)n∈N is a martingale.
• If the game is in player 1’s favor, then p > q and (Xn)n∈N is a submartin-

gale.
• If the game is to the disadvantage of player 1, then p < q and (Xn)n∈N is

a supermartingale.
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Example 3. Let (Xt)t∈R+ be (for all t ∈ R+) a P -integrable stochastic process
on (Ω,F , P ) with independent increments. Then (Xt − E[Xt])t∈R+ is a mar-
tingale. In fact:1

E[Xt|Fs] = E[Xt − Xs|Fs] + E[Xs|Fs], s < t,

and recalling that both Xs is Fs-measurable and (Xt −Xs) is independent of
Fs, we obtain that

E[Xt|Fs] = E[Xt − Xs] + Xs = Xs, s < t.

Proposition 1. [8] Let (Xt)t∈R+ be a real-valued martingale. If the function
φ : R → R is both convex and measurable and such that

∀t ∈ R+, E[φ(Xt)] < +∞,

then (φ(Xt))t∈R+ is a submartingale.

Proposition 2. [8] Let (Xn)n∈N\{0} be a sequence of real random variables
defined on the probability space (Ω,F , P ), and X+

n the positive part of Xn.

1. If (Xn)n∈N\{0} is a submartingale, then

P

(
max

1≤k≤n
Xk > λ

)
≤ 1

λ
E[X+

n ], λ > 0, n ∈ N \ {0}.

2. If (Xn)n∈N\{0} is a martingale and if, for all n ∈ N \ {0}, X ∈ Lp(P ),
p > 1, then

E

[(
max

1≤k≤n
|Xk|

)p]
≤
(

p

p − 1

)p

E[|Xn|p], n ∈ N \ {0}.

(Points 1 and 2 are called Doob’s inequalities.)

Corollary 1. [8] If (Xn)n∈N\{0} is a martingale such that Xn ∈ Lp(P ) for
all n ∈ N \ {0}, then

P

(
max

1≤k≤n
|Xk| > λ

)
≤ 1

λp
E[|Xn|p], λ > 0.

1 For simplicity, but without loss of generality, we will assume that E[Xt] = 0, for
all t. In the case where E[Xt] �= 0, we can always define a variable Yt = Xt−E[Xt],
so that E[Yt] = 0. In that case (Yt)t∈R+ will again be a process with independent
increments, so that the analysis is analogous.
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Proposition 3. [8] Let (Xt)t∈R+ be a stochastic process on (Ω,F , P ) valued
in R.

1. If (Xt)t∈R+ is a submartingale, then

P

(
sup

0≤s≤t
Xs > λ

)
≤ 1

λ
E[X+

t ], λ > 0, t ≥ 0.

2. If (Xt)t∈R+ is a martingale such that, for all t ≥ 0, Xt ∈ Lp(P ), p > 1,
then

E

[
sup

0≤s≤t
|Xs|p

]
≤
(

p

p − 1

)p

E[|Xt|p].

Definition 10. A stochastic process X = (Xn,Fn) is a local martingale if
there is a sequence (τk)k≥1 of stopping times such that τk ≤ τk+1 (P − a.s.),
and τk → ∞ (P − a.s.) as k → ∞, and every stopped sequence Xτk =
(Xmin(τk,n)I{τk≥0},Fn) is a martingale.

2.3 Markov Processes

Let (Xt)t∈R+ be a stochastic process on a probability space, valued in (E,B)
and adapted to the increasing family (Ft)t∈R+ of σ-algebras of subsets of F .
(Xt)t∈R+ is a Markov process with respect to (Ft)t∈R+ if for any B ∈ B, and
for any (s, t) ∈ R+ × R+, s < t, the following condition is satisfied:

P (Xt ∈ B|Fs) = P (Xt ∈ B|Xs) a.s. (2)

If, for all t ∈ R+, Ft = σ(Xr, 0 ≤ r ≤ t), then condition (2) becomes

P (Xt ∈ B|Xr, 0 ≤ r ≤ s) = P (Xt ∈ B|Xs) a.s.

for all B ∈ B, for all (s, t) ∈ R+ × R+, and s < t.
Condition (2) states that for a Markov process the future depends only on

the present and not on the past history.

Theorem 2. Every real valued stochastic process (Xt)t∈R+ with independent
increments is a Markov process.

A Markov process (Xt)t∈[t0,T ] on R
d is well-defined by an initial distrib-

ution P0, the distribution of X(t0) and by a Markov transition distribution,
that is a non negative function p(s, x, t, A), defined for 0 ≤ s < t < ∞, x ∈
R, A ∈ BR such that it satisfies the following conditions

1. for all 0 ≤ s < t < ∞, for all A ∈ BR, p(s, ·, t, A) is BR-measurable;
2. for all 0 ≤ s < t < ∞, for all x ∈ R, p(s, x, t, ·) is a probability measure

on BR;
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3. p satisfies the Chapman–Kolmogorov equation (compatibility):

p(s, x, t, A) =
∫

R

p(s, x, r, dy)p(r, y, t, A) ∀x ∈ R, s < r < t. (3)

Indeed, Theorem 3 holds [1, 14], from which we can deduce that

p(s, x, t, A) = P (Xt ∈ A|Xs = x), 0 ≤ s < t < ∞, x ∈ R, A ∈ BR.

Theorem 3. [1, 14] Let E be a Polish space endowed with the σ-algebra BE

of its Borel sets, P0 a probability measure on BE , and p(r, x, s, A), t0 ≤ r <
s ≤ T, x ∈ E,A ∈ BE a Markov transition probability function. Then there
exists a unique (in the sense of equivalence) Markov process (Xt)t∈[t0,T ] valued
in E, with P0 as its initial distribution and p as its transition probability.

A Markov process (Xt)t∈[t0,T ] is homogeneous if the transition probability
functions p(s, x, t, A) depend on t and s only through their difference t − s.
Therefore, for all (s, t) ∈ [t0, T ]2, s < t, for all u ∈ [0, T − t], for all A ∈ BR,
and for all x ∈ R:

p(s, x, t, A) = p(s + u, x, t + u,A) a.s.

Semigroups Associated with Markov Transition Probability Functions.

To a Markov transition probability function p(s, x, t, A) (or with its cor-
responding Markov process), one may associate a semigroup of operators
{Ts,t}0≤s≤t≤T such that for any 0 ≤ s < t ≤ T , Ts,t : Cb(R) → Cb(R), is
defined by assigning, for all f ∈ Cb(R),

(Ts,tf)(x) =
∫

R

f(y)p(s, x, t, dy) = E [f(Xt)|Xs = x] , x ∈ R, (4)

where Cb(R) is the space of all continuous and bounded functions on R, en-
dowed with the norm ‖f‖ = supx∈R

|f(x)|(< ∞). It is clear that (4) is a
semigroup; indeed

i) if s = t, then Tt,t = I (identity), because

p(s, x, s, A) =
{

1 if x ∈ A,
0 if x /∈ A;

ii) moreover, Ts,tTt,u = Ts,u, 0 ≤ s < t < u. In fact, if f ∈ Cb(R) and x ∈ R,

(Ts,t(Tt,uf))(x)

=
∫

R

(Tt,uf)(y)p(s, x, t, dy)

=
∫ ∫

R2
f(z)p(t, y, u, dz)p(s, x, t, dy)

=
∫

R

f(z)
∫

R

p(t, y, u, dz)p(s, x, t, dy) (by Fubini’s theorem)

=
∫

R

f(z)p(s, x, u, dz) (by the Chapman–Kolmogorov equation)

= (Ts,uf)(x).

�
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If (Xt)t∈R+ is a Markov process with transition probability function p and
associated semigroup {Ts,t}, then the operator

Asf = lim
h↓0

Ts,s+hf − f

h
, s ≥ 0, f ∈ Cb(R)

is called the infinitesimal generator of the Markov process (Xt)t≥0. Its domain
DAs

consists of all f ∈ Cb(R) for which the above limit exists uniformly (and
therefore in the norm of Cb(R)) [16]. We may observe that

(Asf)(x) = lim
h↓0

1
h

∫

R

[f(y) − f(x)]p(s, x, s + h, dy).

The above results may be extended to more general, possibly uncountable,
state spaces [2]. In particular, we will assume that E is a subset of R

d for
d ∈ N \ {0}. If we consider the time-homogeneous case, a Markov process
(Xt)t∈R+ on (E,BE) will be defined in terms of a transition kernel p(t, x,B)
for t ∈ R+, x ∈ E, B ∈ BE , such that

p(h,Xt, B) = P (Xt+h ∈ B|Ft) ∀t, h ∈ R+, B ∈ BE ,

given that (Ft)t∈R+ is the natural filtration of the process. Equivalently we
may state

E[g(Xt+h)|Ft] =
∫

E

g(y)p(h,Xt, dy) ∀t, h ∈ R+, g ∈ Cb(E).

In this case the transition semigroup of the process is a one-parameter
contraction semigroup (T (t), t ∈ R+) on Cb(E) defined by

(T (t)g) (x) :=
∫

E

g(y)p(t, x, dy) = E[g(Xt)|X0 = x], x ∈ E,

for any g ∈ Cb(E). The infinitesimal generator will be time independent. It is
defined as

Ag = lim
t→0+

1
t
(T (t)g − g)

for g ∈ D(A), the subset of Cb(E) for which the above limit exists, in Cb(E),
with respect to the sup norm. Given the above definitions, it is obvious that
for all g ∈ D(A),

Ag(x) = lim
t→0+

1
t
E[g(Xt)|X0 = x], x ∈ E.

If (T (t), t ∈ R+) is the contraction semigroup associated with a Markov pro-
cess, it is not difficult to show that the mapping t → T (t)g is right-continuous
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in t ∈ R+ provided that g ∈ Cb(E) is such that the mapping t → T (t)g is
right continuous in t = 0. Then, for all g ∈ D(A) and t ∈ R+,

∫ t

0

T (s)gds ∈ D(A)

and

T (t)g − g = A
∫ t

0

T (s)gds =
∫ t

0

AT (s)gds =
∫ t

0

T (s)Agds

by considering Riemann integrals. The following, so-called Dynkin’s formula,
establishes a fundamental link between Markov processes and martingales
[8, 15].

Theorem 4. Assume (Xt)t∈R+ is a Markov process on (E,BE), with tran-
sition kernel p(t, x,B), t ∈ R+, x ∈ E, B ∈ BE. Let (T (t), t ∈ R+) de-
note its transition semigroup and A its infinitesimal generator. Then, for any
g ∈ D(A), the stochastic process

M(t) := g(Xt) − g(X0) −
∫ t

0

Ag(Xs)ds

is an Ft-martingale.

The next proposition shows that a Markov process is indeed characterized
by its infinitesimal generator via a martingale problem [8,15,32].

Theorem 5. (Martingale problem for Markov processes). If an RCLL
Markov process (Xt)t∈R+ is such that

g(Xt) − g(X0) −
∫ t

0

Ag(Xs)ds

is an Ft-martingale for any function g ∈ D(A), where A is the infinitesimal
generator of a contraction semigroup on E, then Xt is equivalent to a Markov
process having A as its infinitesimal generator.

Example 4. A Poisson process (see the following section for more details) is
an integer-valued Markov process (Nt)t∈R+ , a so called “jump process”. If its
intensity parameter is λ > 0, the process (Xt)t∈R+ , defined by Xt = Nt − λt,
is a stationary Markov process with independent increments. The transition
kernel of Xt is

p(h, x,B) =
∞∑

k=0

(λh)k

k!
e−λhI{x+k−λh∈B} for x ∈ N, h ∈ R+, B ⊂ N.
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Its transition semigroup is then

T (h)g(x) =
∞∑

k=0

(λh)k

k!
e−λhg(x + k − λh) for x ∈ N, g ∈ Cb(R).

The infinitesimal generator is then

Ag(x) = λ(g(x + 1) − g(x)) − λg′(x+).

According to previous theorems,

M(t) = g(Xt) −
∫ t

0

ds(λ(g(Xs + 1) − g(Xs)) − λg′(Xs+)

is a martingale for any g ∈ Cb(R), such that g(0) = 0.

Examples of Markov Processes

Markov Diffusion Processes

A very important class of Markov processes is the one of the diffusion
processes, that are Markov processes on R with transition probability function
p(s, x, t, A) which satisfies the following properties

1. for all ε > 0, for all t ≥ 0, and for all x ∈ R

lim
h↓0

1
h

∫

|x−y|>ε

p(t, x, t + h, dy) = 0;

2. there exist a(t, x) and b(t, x) such that, for all ε > 0, for all t ≥ 0, and for
all x ∈ R,

lim
h↓0

1
h

∫

|x−y|<ε

(y − x)p(t, x, t + h, dy) = a(t, x),

lim
h↓0

1
h

∫

|x−y|<ε

(y − x)2p(t, x, t + h, dy) = b(t, x).

a(t, x) is the drift coefficient and b(t, x) the diffusion coefficient of the process.

Proposition 4. If (Xt)t∈R+ is a diffusion process with transition probability
function p and drift and diffusion coefficients a(x, t) and b(x, t), respectively,
and if As is the infinitesimal generator associated with p, then we have that

(Asf)(x) =
∂f

∂x
a(s, x) +

1
2

∂2f

∂x2
b(s, x), (5)

provided that f is bounded and twice continuously differentiable.
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Markov Jump Processes

Consider a Markov process (Xt)t∈R+ valued in a countable set E (say, N or
Z). In such a case it is sufficient (with respect to Theorem 3) to provide the
so-called one-point transition probability function

pij(s, t) := p(s, i, t, j) := P (Xt = j|Xs = i)

for t0 ≤ s < t, i, j ∈ E. It follows from the general structure of Markov
processes that the one-point transition probabilities satisfy the following re-
lations:

(a) pij(s, t) ≥ 0,
(b)
∑

j∈E pij(s, t) = 1,
(c) pij(s, t) =

∑
k∈E pik(s, r)pkj(r, t),

provided t0 ≤ s ≤ r ≤ t, in R+, and i, j ∈ E. To these three conditions we
need to add

(d)

lim
t→s+

pij(s, t) = pij(s, s) = δij =
{

1 for i = j,
0 for i �= j.

The time-homogeneous case gives transition probabilities (p̃ij(t))t∈R+ , such
that

pij(s, t) = p̃ij(t − s), s ≤ t.

From now on we shall limit our analysis to the time-homogeneous case, whose
transition probabilities will be denoted (pij(t))t∈R+ . We may obtain the fol-
lowing result [8, 17,32]

Theorem 6. The limits

lim
t→0+

pij(t)
t

= p′ij(0) =: qij < +∞

always exist (finite) for any i �= j. The limits

qii = − lim
h→0+

1 − pii(h)
h

≤ +∞

always exists (finite or not).

Consider the family of matrices (P (t))t∈R+ , with entries (pij(t))t∈R+ , for
i, j ∈ E. We may rewrite conditions (c) and (d) in matrix form as follows:

(c′) P (s + t) = P (s)P (t) for any s, t ≥ 0;
(d′) limh→0+ P (h) = P (0) = I.



Rescaling Stochastic Processes: Asymptotics 109

A family of stochastic matrices fulfilling conditions (c′) and (d′) is called a
matrix transition function. The matrix Q = (qij)i,j∈E is called the intensity
matrix . The transition and the intensity matrices satisfy the following system,
which is the matrix form of the Kolmogorov backward equations

P ′(t) = QP (t), t > 0,

subject to
P (0) = I.

If Q is a finite-dimensional matrix, the function exp{tQ} for t > 0 is well
defined.

Theorem 7. [8,20] If E is finite, the matrix transition function can be rep-
resented in terms of its intensity matrix Q via

P (t) = etQ, t ≥ 0.

Consider a time-homogeneous Markov jump process on a countable state
space E with intensity matrix Q = (qij)i,j∈E . The matrix Q can be seen as a
functional operator on E as follows: For any f : E → R+ define

Q : f → Q(f) =
∑

j∈E

qijf(j) =
∑

j �=i

qij(f(j) − f(i)).

From [32] we obtain the following theorem.

Theorem 8. For any function g ∈ C1,0(R+ × E) such that the mapping

t → ∂

∂t
g(t, x)

is continuous for all x ∈ E, the process
(

g(t,X(t)) − g(0,X(0)) −
∫ t

0

(
∂g

∂t
+ Q(g(s, ·))

)
(s,X(s))ds

)

t∈R+

is a local martingale.

2.4 Brownian Motion and the Wiener Process

A real-valued process (Wt)t∈R+ is a Wiener process if it satisfies the following
conditions:

1. W0 = 0 almost surely;
2. (Wt)t∈R+ is a process with independent increments;
3. Wt − Ws is normally distributed with N(0, t − s), (0 ≤ s < t).
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From the definition it turns easily out that the Wiener process is both
a Markov process and, since it has independent increments, a martingale.
Furthermore, by simple calculations, one can easily show that E[Wt] = 0 and
Cov[Wt,Ws] = min{s, t}, s, t ∈ R+.

Now we deal with almost sure properties of the Brownian sample path, in
particular its continuity and nowhere differentiability [8].

Theorem 9. Let (Wt)t∈R+ be a real-valued Wiener process. Then

1. it has continuous trajectories almost surely;
2. P (supt∈R+

Wt = +∞) = 1,and P (inft∈R+ Wt = −∞) = 1.
3. for all h > 0, P (max0≤s≤h Ws > 0) = P (min0≤s≤h Ws < 0) = 1; more-

over, for almost every ω ∈ Ω the process (Wt)t∈R+ has a zero (i.e., crosses
the spatial axis) in ]0, h], for all h > 0;

4. almost every trajectory of (Wt)t∈R+ is differentiable almost nowhere.

The real-valued process (W1(t), . . . ,Wn(t))′t≥0 is said to be an n- dimen-
sional Wiener process (or Brownian motion) if:

1. for all i ∈ {1, . . . , n}, (Wi(t))t≥0 is a Wiener process,
2. the processes (Wi(t))t≥0, i = 1, . . . , n, are independent

(thus the σ-algebras σ(Wi(t), t ≥ 0), i = 1, . . . , n, are independent).

Proposition 5. If (W1(t), . . . , Wn(t))′t≥0 is an n-dimensional Brownian mo-
tion, then it can be shown that:

1. (W1(0), . . . ,Wn(0)) = (0, . . . , 0) almost surely;
2. (W1(t), . . . , Wn(t))′t≥0 has independent increments;
3. (W1(t), . . . , Wn(t))′ − (W1(s), . . . , Wn(s))′, 0 ≤ s < t, has a multivariate

normal distribution N(0, (t − s)I) (where 0 is the null-vector of order n
and I is the n × n identity matrix).

3 Itô Calculus

3.1 The Itô Integral

In classical calculus the primary components were the use of differentiation
to describe rates of change, the use of integration and then the fundamental
theorem of calculus. From them, the concept of ordinary differential equations
came out.

In stochastic calculus, the history turn the other way round: in order to
make meaningful the ordinary differential equations involving continuous sto-
chastic processes and in particular the Brownian motion which is nowhere
differentiable, it was necessary to introduce first the stochastic integral and
later the stochastic differential.
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For example, let us consider the classical exponential growth model

dN(t)
dt

= r(t)N(t)

and perturb the growth rate r(t) by a some stochastic noise θ(t)

dN(t)
dt

= [r0 + r1θ(t)]N(t),

so that the variation follows the following equation

dN(t)
N(t)

= r0dt + r1θ(t)dt.

If we consider a Brownian model, i.e. θ(t)dt 
 dWt, such that ∆Wt ∼
N (0,∆t), we get

dNt = r0Ntdt + r1NtdWt.

More in general

dN(t) = a(t,N(t))dt + b(t,N(t))dWt, (6)

which, however, in the current form does not make sense, because the trajec-
tories of (Wt)t≥0 are not differentiable. Instead, we will try to interpret it in
the form

∀ω ∈ Ω : u(ω, t) − u(ω, 0) =
∫ t

0

a(s, u(ω, s))ds +
∫ t

0

b(s, u(ω, s))dWs,

which requires us to give meaning to an integral
∫ b

a
f(t)dWt that is not of

Lebesgue–Stieltjes neither of Riemann–Stieltjes type [8].

Definition 11. Let (Wt)t≥0 be a Wiener process defined on the probability
space (Ω,F , P ) and C the set of functions f(t, ω) : [a, b] × Ω → R satisfying
the following conditions:

1. f is B[a,b] ⊗F-measurable;
2. for all t ∈ [a, b], f(t, ·) : Ω → R is Ft-measurable, where Ft = σ(Ws, 0 ≤

s ≤ t);
3. for all f ∈ L2([a, b] × Ω) and

∫ b

a

E
[
|f(t)|2

]2
dt < ∞. (7)

.

Condition 2 of Definition 11 stresses the non-anticipatory nature of f
through the fact that it only depends on the present and the past history
of the Brownian motion, but not on its future.
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Let f ∈ C and consider a sequence (πn)n∈N of the partitions πn : a =
t
(n)
0 < t

(n)
1 < · · · < t

(n)
n = b of the interval [a, b] such that

|πn| = sup
k∈{0,...,n}

∣
∣
∣t(n)

k+1 − t
(n)
k

∣
∣
∣

n→ 0.

If for every ω ∈ Ω f(t, ·) is continuous, we define the (stochastic) Itô integral
of the process f as follows

P − lim
n→∞

n−1∑

k=0

f
(
t
(n)
k

)(
W

t
(n)
k+1

− W
t
(n)
k

)
=
∫ b

a

f(t)dWt. (8)

For a more general definition (the case f non continuous everywhere),
please refer to [8].

Note that for the classical Lebesgue integral results in
∫ b

a
tdt = b2−a2

2 . In
the stochastic Itô integral we obtain

∫ b

a
WtdWt = 1

2 (W 2
b −W 2

a )− b−a
2 , i.e. we

have an additional term (− b−a
2 ).

An important property of the stochastic integrals is the martingality. In-
deed one can prove [8] that (Xt =

∫ t

a
f(s)dWs)t∈[a,b] is a zero mean L2-

martingale with respect to Ft = σ(Ws, 0 ≤ s ≤ t).
The martingale representation theorem establishes the relationship be-

tween a martingale and the existence of a process, vice versa. Let (Mt)t∈[0,T ] be
an L2 martingale with respect to the Wiener process (Wt)t∈[0,T ] and (Ft)t∈[0,T ]

its natural filtration. Then there exists a unique process (ft)t∈[0,T ] ∈ C([0, T ])
so that

∀t ∈ [0, T ], M(t) = M(0) +
∫ t

0

f(s)dWs a.s. (9)

holds.
Let C1 be the set of functions f : [a, b] × Ω → R such that the conditions

1 and 2 of the characterization of the class C are satisfied, but, instead of
condition 3, we have

P

(∫ b

a

|f(t)|2dt < ∞
)

= 1. (10)

It is obvious that C ⊂ C1 and thus S ⊂ C1. It is possible to define the
stochastic integral for a function f ∈ C1 as in (8).

3.2 The Stochastic Differential

Let (u(t))0≤t≤T be a process such that for every (t1, t2) ∈ [0, T ]×[0, T ], t1 < t2:

u(t2) − u(t1) =
∫ t2

t1

a(t)dt +
∫ t2

t1

b(t)dWt, (11)
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where a ∈ C1([0, T ]) and b ∈ C1([0, T ]). Then u(t) is said to have the stochastic
differential

du(t) = a(t)dt + b(t)dWt (12)

on [0, T ]. Hence

1. the trajectories of (u(t))0≤t≤T are continuous almost everywhere;
2. for t ∈ [0, T ], u(t) is Ft = σ(Ws, 0 ≤ s ≤ t)-measurable, thus u(t) ∈

C1([0, T ]).

Itô’s Formula

As one of the most important topics on Brownian motion, Itô’s formula rep-
resents the stochastic equivalent of Taylor’s theorem about the expansion of
functions. It is the key concept that connects classical and stochastic theory.

If du(t) = a(t)dt+b(t)dWt and if f(t, x) : [0, T ]×R → R is continuous with
the derivatives fx, fxx, and ft, then the stochastic differential of the process
f(t, u(t)) is given by

df(t, u(t)) =
(

ft(t, u(t)) +
1
2
fxx(t, u(t))b2(t) + fx(t, u(t))a(t)

)
dt

+fx(t, u(t))b(t)dWt. (13)

Examples:

1. dW 2
t = dt + 2WtdWt;

2. d(tWt) = Wtdt + tdWt;
3. If f ∈ C2(R), then df(Wt) = f ′(Wt)dWt + 1

2f ′′(Wt)dt.
4. If u(t, x) : [0, T ] × R → R is continuous with the derivatives ux, uxx, and

ut, then

du(t,Wt) =
(

ut(t,Wt) +
1
2
uxx(t,Wt)

)
dt + ux(t,Wt)dWt. (14)

3.3 Stochastic Differential Equations

Let (Wt)t∈R+ be a Wiener process on the probability space (Ω,F , P ), equipped
with the filtration (Ft)t∈R+ , Ft = σ(Ws, 0 ≤ s ≤ t). Furthermore, let a(t, x),
b(t, x) be measurable functions in [0, T ] × R and (u(t))t∈[0,T ] a stochastic
process. Now u(t) is said to be the solution of the stochastic differential
equation

du(t) = a(t, u(t))dt + b(t, u(t))dWt, (15)

with the initial condition

u(0) = u0 a.s. (u0 a random variable), (16)
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if

1. u(0) is F0-measurable;
2. |a(t, u(t))| 12 , b(t, u(t)) ∈ C1([0, T ]);
3. u(t) is differentiable and du(t) = a(t, u(t))dt + b(t, u(t))dWt,

thus u(t) = u(0) +
∫ t

0
a(s, u(s))ds +

∫ t

0
b(s, u(s))dWs, t ∈]0, T ].

Theorem 10 (Existence and Uniqueness of the Solution). Resorting to
the notation of the preceding definition, if the following conditions are satisfied:

1. for all t ∈ [0, T ] and all (x, y) ∈ R×R: |a(t, x)−a(t, y)|+|b(t, x)−b(t, y)| ≤
K∗|x − y|;

2. for all t ∈ [0, T ] and all x ∈ R: |a(t, x)| ≤ K(1+ |x|), |b(t, x)| ≤ K(1+ |x|)
(K∗,K constants);

3. E[|u0|2] < ∞;
4. u0 is independent of FT (which is equivalent to requiring u0 to be F0-

measurable),

then there exists a unique (u(t))t∈[0,T ], solution of (15), (16), such that

a. (u(t))t∈[0,T ] is continuous almost surely (thus almost every trajectory is
continuous);

b. (u(t))t∈[0,T ] ∈ C([0, T ]).

Remark 2. If (u1(t))t∈[0,T ] and (u2(t))t∈[0,T ] are two solutions of (15), (16),
belonging to C([0, T ]), then the uniqueness of a solution is understood in the
sense that

P

(
sup

0≤t≤T
|u1(t) − u2(t)| = 0

)
= 1.

Examples:

1. {
u0(t) = u0,
du(t) = g(t)u(t)dWt

has the solution

u(t) = u0 exp
{∫ t

0

g(s)dWs −
1
2

∫ t

0

g2(s)ds

}
.

2. geometric Brownian motion
{

u0(t) = u0,
du(t) = au(t)dt + bu(t)dWt;

has the solution

u(t) = u0 exp
{(

a − 1
2
b2

)
(t − t0) + b(Wt − Wt0)

}
.
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3. (mean-reverting) Ornstein–Uhlenbeck process
{

u0(t) = u0,
du(t) = (a − bu(t))dt + cdWt.

has the solution

u(t) =
a

b
exp{bt0} + u0 exp{−b(t − t0)} + c

∫ t

t0

exp{−b(t − s)}dWs.

Property of Solutions

Now, let t0 ≥ 0 and c be a random variable with u(t0) = c almost surely
and, moreover, c be independent of Ft0,T = σ(Wt − Wt0 , t0 ≤ t ≤ T ) as
well as E[c2] < +∞. Under Conditions 1 and 2 of Theorem 10 the following
properties are satisfied by the unique solution (u(t))t∈[t0,T ] of (15)-(16).

1. Markov Property: The solution (u(t))t∈[t0,T ] is a Markov Process. Moreover
its transition probability p is such that, for all B ∈ BR and all t0 ≤ s <
t ≤ T and all x ∈ R

p(s, x, t, B) = P (u(t) ∈ B|u(s) = x) = P (u(t, s, x) ∈ B),

where {u(t, s, x), t ≥ s} is the unique solution of (15) subject to the initial
condition u(s) = x.
So what we know is that every stochastic differential equation generates
Markov processes in the sense that every solution is a Markov process.

2. Diffusion Property: If a(t, x) and b(t, x) are continuous functions in (t, x) ∈
[0,∞]×R, then the solution u(t) is a diffusion process with drift coefficient
a(t, x) and diffusion coefficient b2(t, x).

3.4 Kolmogorov and Fokker-Planck Equations

Let u(s, t, x), t < s be the solution of the following stochastic differential
equation

du(t) = a(t, u(t))dt + b(t, u(t))dWt (17)
u(s, s, x) = x a.s. (x ∈ R) (18)

and suppose that the coefficients a and b satisfy the assumptions of existence
and uniqueness of Theorem 10. If f : R → R is a twice continuously differen-
tiable function and if there exist C > 0 and m > 0 such that

|f(x)| + |f ′(x)| + |f ′′(x)| ≤ C(1 + |x|m), x ∈ R,

then the function

q(t, x) ≡ E[f(u(s, t, x))], 0 < t < s, x ∈ R, s ∈ (0, T ), (19)
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satisfies the equation

∂

∂t
q(t, x) + a(t, x)

∂

∂x
q(t, x) +

1
2
b2(t, x)

∂2

∂x2
q(t, x) = 0, (20)

with the boundary condition

lim
t↑s

q(t, x) = f(x). (21)

Equation (20) is called backward Kolmogorov’s differential equation.
From the above we can give the solution of a Cauchy problem via an

average of realizations of a Markov process.

Proposition 6. Consider the Cauchy problem:
{

L0[q] + ∂q
∂t = 0 in [0, T ) × R,

lim
t↑T

q(t, x) = φ(x) in R, (22)

where L0[·] = 1
2b2(t, x) ∂2

∂x2 + a(t, x) ∂
∂x , and suppose that

(A1) a(t, x) is strictly positive for all (t, x) ∈ [0, T ] × R;
(B1) φ(x) is continuous in R, and A > 0, a > 0 exist such that |φ(x)| ≤
A(1 + |x|a);
(B2) a and b are bounded in [0, T ] × R and uniformly Lipschitz in (t, x) on
compact subsets of [0, T ] × R;
(B3) b is Hölder continuous in x and uniform with respect to (t, x) on [0, T ]×R;
then the Cauchy problem (22) admits a unique solution q(t, x) in [0, T ] × R

such that
q(t, x) = E[φ(u(T, t, x))], (23)

where u(T, t, x) is a solution of (17) at time T , with initial location in x at
time t.

Something interesting is that under the conditions (A1) and (B1), the
transition probability p(s, x, t, A) = P (u(t, s, x) ∈ A) of the Markov process
u(t, s, x) (the solution of the differential equation (17)) is endowed with density
f(x, s; y, t), i.e.

p(s, x, t, A) =
∫

A

f(x, s; y, t)dy (s < t), for all A ∈ BR. (24)

The density, called transition density of the solution u(t) is the solution of the
backward Kolmogorov’s equation

{
L0[f ] + ∂

∂tf = 0,
lim
t→T

f(x, s; y, T ) = δ(x − y). (25)
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If one requests further regularity on the transition density, i.e. there exist
continuous derivatives

∂f

∂t
(s, x, t, y),

∂

∂y
(a(t, y)f(s, x, t, y)),

∂2

∂y2
(b(t, y)f(s, x, t, y)),

then f(s, x, t, y), as a function of t and y, satisfies the equation

∂f

∂t
(s, x, t, y) +

∂

∂y
(a(t, y)f(s, x, t, y)) − ∂2

∂y2
(b(t, y)f(s, x, t, y)) = 0 (26)

in the region t ∈ (s, T ], y ∈ R. Equation (26) is known as the forward Kol-
mogorov’s equation or Fokker–Planck equation. It is worth pointing out that
while the forward equation has a more intuitive interpretation than the back-
ward equation, the regularity conditions on the functions a and b are more
stringent than those needed in the backward case. The problem of existence
and uniqueness of the solution of the Fokker–Planck equation is not of an ele-
mentary nature, especially in presence of boundary conditions. This suggests
that the backward approach is more convenient than the forward approach
from the viewpoint of analysis.

3.5 The Multidimensional Case

If we have n independent Wiener Processes (Wj)1≤j≤n, we may define the Itô
integral for an f : [a, b] × Ω → R

m×n, with each component fij ∈ C1,Wj
, as

follows
∫ b

a

f(t)dWt =

⎡

⎣
n∑

j=1

∫ b

a

fij(t)dWj(t)

⎤

⎦

1≤i≤m

.

In this case the stochastic differential for an m-dimensional process (ut)0≤t≤T

is

dui(t) = ai(t)dt +
n∑

j=1

(bij(t)dWj(t)), i = 1, . . . ,m,

or in vector form
du(t) = a(t)dt + b(t)dW(t), (27)

with

a : [0, T ] × Ω → R
m,a ∈ C1W([0, T ]),

b : [0, T ] × Ω → R
mn, b ∈ C1W([0, T ]).

If f(t,x) : R+ × R
m → R is a continuous function with the derivatives

fxi
, fxixj

, and u(t) is an m-dimensional process, endowed with the stochastic
differential (27), then f(t,u(t)) has the stochastic differential

df(t,u(t)) = Lf(t,u(t))dt + ∇xf(t,u(t)) · b(t)dW(t), (28)
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where ∇xf(t,u(t)) · b(t)dW(t) is the scalar product of two m-dimensional
vectors, aij = (bb′)ij , i, j = 1, . . . ,m:

L =
1
2

m∑

i,j=1

aij
∂2

∂xi∂xj
+

m∑

i=1

ai
∂

∂xi
+

∂

∂t

and ∇x is the gradient operator. Furthermore let a(t,x) = (a1(t,x), . . . ,
am(t,x))′ and b(t,x) = (bij(t,x))i=1,...,m,j=1,...,n be measurable functions with
respect to (t,x) ∈ [0, T ] × R

n. An m-dimensional stochastic differential equa-
tion is of the form

du(t) = a(t,u(t))dt + b(t,u(t))dW(t), (29)

with the initial condition
u(0) = u0 a.s., (30)

where u0 is a fixed m-dimensional random vector. The entire theory of the
one-dimensional case translates to the multidimensional case.

4 Deterministic Approximation of Stochastic Systems

4.1 Continuous Approximation of Jump Population Processes

In Section 2.3 we have shown that a jump Markov process can be described in
terms of an intensity matrix Q, made of the rates of the relevant transitions.

For a wide class of epidemic models the total population (Nt)t∈R+ includes
three subclasses: the class of susceptibles (St)t∈R+ , the infectives (It)t∈R+ ,
and the class of removals (Rt)t∈R+ . For a constant total population size N it
is sufficient to provide a model only for the bivariate jump Markov process
(St, It)t∈R+ , which is valued in E = N

2.
For a typical model (general stochastic epidemic) the relevant elements of

the intensity matrix Q are given by

• q(s,i),(s,i−1) = δi = δN
i

N
, removal rate of infectives;

• q(s,i),(s−1,i+1) =
κ

N
si = Nκ

s

N

i

N
, infection rate of susceptibles,

thus taking into account a rescaling with respect to the size of the total pop-
ulation [7].

Both transition rates are of the form q
(N)
k,k+l = Nβl

(
k

N

)
, for k = (s, i),

and k + l = (s, i − 1), or (s − 1, i + 1).
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It can be shown [8,15] that we can write the evolution equation for X̂(N) =
(s(t), i(t))′ as follows

X̂(N)(t) = X̂(N)(0) +
∑

l∈Zd

lYl

(

N

∫ t

0

βl

(
X̂(N)(s)

N

)

ds

)

,

where the Yl are independent standard Poisson processes.
We may rescale the process itself X̂(N)(t) by setting

XN =
1
N

X̂(N),

for which we have

XN (t) = XN (0) +
1
N

∑

l∈Zd

lYl

(
N

∫ t

0

βl (XN (s)) ds

)
,

Let now

Ỹl(u) = Yl(u) − u

F (x) =
∑

l∈Zd

lβl(x), x ∈ R
d,

so that

XN (t) = XN (0) +
∫ t

0

F (XN (s))ds

+
1
N

∑

l∈Zd

l Ỹl

(
N

∫ t

0

βl (XN (s)) ds

)
. (31)

By Doob’s inequality for martingales, we get a uniform strong law of large
numbers, i.e.

lim
N→∞

sup
u≤v

∣
∣
∣
∣
1
N

Ỹl(Nu)
∣
∣
∣
∣ = 0, a.s.

for any v ≥ 0. This is the fundamental reason why the limit evolution for large
N tends to a deterministic one. Indeed, the following theorem holds ([15] page
456).

Theorem 11. Suppose that for each compact K ⊂ E,
∑

l∈Zd

|l| sup
x∈K

βl(x) < +∞,

and there exists an MK > 0 such that

|F (x) − F (y)| ≤ MK |x − y|, x, y ∈ K;

suppose XN satisfies equation (31) above, with limN→∞ X(N)(0) = x0 ∈ R
d.
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Then, for every t ≥ 0,

lim
N→∞

sup
s≤t

|XN (s) − x(s)| = 0 a.s.,

where x(t), t ∈ R+ is the unique solution of

x(t) = x0 +
∫ t

0

F (x(s))ds, t ≥ 0,

wherever it exists.
In differential form

dx

dt
(t) = F (x(t)),

subject to the initial condition

x(0) = x0.

4.2 Continuous Approximation of Stochastic Interacting Particle
Systems

Suppose a population is composed of N ∈ N \ {0} individuals; the random
location of the k-th individual out of N be described by a stochastic process
{Xk

N (t)}t∈R+ defined on a suitable probability space (Ω,F , P ) and valued in(
R

d,BRd

)
. In another way, it may be modelled as a random Dirac-measure

εXk
N (t) ∈ MP (Rd), defined as follows

εXk
N (t)(B) =

⎧
⎨

⎩

1 if Xk
N (t) ∈ B

0 if Xk
N (t) /∈ B

∀B ∈ BRd .

For any sufficiently smooth f : R
d → R the Dirac measure is such that

∫

Rd

f(y)εXk
N (t)(dy) = f

(
Xk

N (t)
)
.

Correspondingly, a global description of the spatial distribution of the
system of N particles at time t may be given in terms of the random measure
on R

d

XN (t) =
1
N

N∑

k=1

εXk
N (t) ∈ M(Rd), (32)

which is known as the empirical measure, while the process XN = {XN (t)}t∈R+

is called the empirical process.
The social evolution of the system of N individuals may be expressed via

the evolution equation of each individual k = 1, . . . , N ,

dXk
N (t) = FN [XN (t)](Xk

N (t)) dt + σN (XN (t)) dW k(t). (33)
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This is an Itô type SDE in which both the drift FN and the diffusion coefficient
σ2

N may depend upon the empirical measure XN (t), i.e. upon the spatial
distribution of the N particles. In this way the individual behavior depends
upon the distribution of the system. We suppose that W k, k = 1, . . . , N, is
a family of independent standard Wiener processes which are responsible of
the stochastic fluctuations in the motion of each individual. The modeller will
express the specific case by introducing a suitable mathematical model for FN

and σ2
N in terms of XN . In order to avoid further technical difficulties, we will

consider σ2
N (XN (t)) = σ2

N , constant in time.
An evolution equation for the empirical process (XN (t))t∈R+ can be ob-

tained thanks to a nice application of the Itô’s formula. Given a regular func-
tion f ∈ C2,1

b (Rd × R+), we have

f
(
Xk

N (t), t
)

= f
(
Xk

N (0), 0
)

+
∫ t

0

FN [XN (s)]
(
Xk

N (s)
)
∇f

(
Xk

N (s), s
)
ds

+
∫ t

0

[
∂

∂s
f
(
Xk

N (s), s
)

+
σ2

N

2
�f

(
Xk

N (s), s
)
]

ds

+σN

∫ t

0

∇f
(
Xk

N (s), s
)
dW k(s). (34)

Correspondingly, for the empirical process (XN (t))t∈R+ , we get the following
weak formulation of its evolution equation. For any f ∈ C2,1

b (Rd × R+) we
have

〈XN (t), f(·, t)〉 = 〈XN (0), f(·, 0)〉 +
∫ t

0

〈XN (s), FN [XN (s)](·)∇f(·, s)〉 ds

+
∫ t

0

〈
XN (s),

σ2
N

2
�f(·, s) +

∂

∂s
f(·, s)

〉
ds

+
σN

N

∫ t

0

∑

k

∇f
(
Xk

N (s), s
)
dW k(s). (35)

In the previous expressions, we have used the notation 〈µ, f〉 =
∫

f(x)µ(dx),
for any measure µ on (Rd,BRd) and any (sufficiently smooth) function f :
R

d → R. The last term

MN (f, t) =
σN

N

∫ t

0

∑

k

∇f(Xk
N (s), s)dW k(s);

is the only explicit source of stochasticity in the equation. It is a martingale
with respect to the natural filtration of the process {XN (t), t ∈ R +}.

Equation (35) shows how, when the number of particles N is large but
still finite, also from the Eulerian point of view the system keeps the stochas-
ticity which characterizes each individual. This is not true anymore when the
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size of the system tends to infinity. The main reason is that the martingale
term MN (f, t) vanishes in probability. Indeed we may apply Doob’s inequality
to obtain

E

[
sup
t≤T

|MN (f, t)|
]2

≤ E

[
sup
t≤T

|MN (f, t)|2
]
≤ 4E

[
|MN (f, T )|2

]

≤ 4σ2
N

N2

N∑

k=1

E

[∫ T

0

|∇f(Xk
N (s), s)|2ds

]

≤ 4σ2
N‖∇f‖2

∞T

N
. (36)

Hence for the zero-mean martingale MN (f, t), the quadratic variation (36)
vanishes in the limit N → ∞. This implies convergence to zero in probability.
This is the substantial reason of the deterministic limiting behavior of the
process, as N → ∞, since in this limit the evolution equation of the process
will not contain the Brownian noise anymore.

4.3 Convergence of the Empirical Measure

The problem we want to deal with now is the convergence, for N tending
to infinity, of the empirical process XN (t) ∈ MP (Rd), t ≥ 0. So we need to
introduce a concept of convergence in suitable spaces of probability measures.

Weak Convergence on a Metric Space (S, d)

Let (S, d) be a metric space, and let S be the σ-algebra of Borel subsets gener-
ated by the topology induced by d. Let P,P1, P2, . . . be probability measures
on (S,S).

By definition, a sequence of probability measures {Pn}n∈N converges
weakly to the probability measure P (notation Pn

W→ P ) if
∫

E

fdPn →
∫

E

fdP

for every function f ∈ Cb(S).
With respect to random variables we may state the following: a sequence

(Xn) of random variables with values in the common measurable space (S,S)
converges in distribution to the random variable X,

Xn
D→ X

if the probability laws Pn = L(Xn) of the Xn’s weakly converge to the prob-
ability law P = L(X) of X

L(Xn) W→ L(X).
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From the weak convergence of probability measures one can deduce also
the almost sure convergence of particular random variables, as stated in the
following important theorem [3].

Theorem 12 ( Skorohod representation theorem). Consider a sequence
(Pn)n∈N of probability measures and a probability measure P on a separa-
ble metric space (S,S), such that Pn

W−→
n→∞

P. Then there exists a sequence of

S−valued random variables (Yn)n∈N and an S−valued random variable Y de-
fined on a common (suitably extended) measurable space (Ω,F), such that Yn

has probability law Pn, Y has probability law P, and

Yn
a.s.−→

n→∞
Y.

Metrics on MP (S) induced by d

Let us define the following distance on MP (S)

dP (Q,P ) = inf{ε > 0 : Q(A) ≤ P (Aε) + ε, P (A) ≤ Q(Aε) + ε,∀A ∈ S}, (37)

where Aε = {d(x,A) < ε}. The function dP is a metric on MP (S) (induced
by d), called Prokhorov’s metric.

Instead of Prokhorov’s metric, in the next sections we consider the bounded
Lipschitz metric proposed by Dudley [11], as it is easier to work with.

Denote by Lipb(S) the set of bounded and Lipschitz real function on S.
For any P,Q ∈ M(S), define the bounded Lipschitz metric as follows

dBL(Q,P ) = sup
{∣∣
∣
∣

∫
fdP −

∫
f dQ

∣
∣
∣
∣ : f ∈ Lipb(S), ‖f‖Lip ≤ 1

}
, (38)

where

‖f‖Lip = ‖f‖∞ + sup
x�=

f(x) − f(y)
d(x, y)

, f ∈ Lipb(S).

Recall that the metric space (S, d) is called separable if it has a countable
dense subset, that is, there are {x1, x2, . . . , } in S such that its closure is equal
to S, {x1, x2, . . . , } = S.

Both dP -convergence and dBL-convergence imply weak convergence of
probability measures [12, 34]. In the case the metric space is separable one
can get an equivalence.

Furthermore, if (S, d) is a separable (and complete) metric space, then so
is MP (S) with the induced either Prokhorov metric and bounded Lipschitz
metric. Moreover in the case of S separable, a sequence in MP (S) converges
in the Prokhorov metric (BL-metric) if and only if it converges weakly and
then in both senses to the same limit [12,34].
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Compactness Properties

In the study of the limit behavior of stochastic processes one often needs to
know when a sequence of random variables is convergent in distribution or,
at least, admits a subsequence that converges in distribution. This requires a
good description of the sequences in MP (S) that admit a convergent subse-
quence, i.e. of the relatively compact sets of MP (S). Recall that a subset A
of a metric space is called relatively compact if its closure Ā is compact.

First let us recall some important definitions.
A probability measure P ∈ MP (S) is called tight if for every ε > 0 there

exists a compact set K ⊂ S such that P (X \ K) < ε. Of course, if (S, d) is a
compact metric space, then every measure on S is tight. If (S, d) is a complete
separable metric space (usually called a Polish space), then every probability
measure on S is tight.

We may extend the property of tightness to a family of probability mea-
sures. A family Π of probability measures on the general metric space (S,S)
is said to be (uniformly) tight if, for all ε > 0, there exists a compact set K
such that

P (K) > 1 − ε ∀P ∈ Π.

Π is said to be relatively compact if every sequence of elements of Π
contains a weakly convergent subsequence; i.e., for every sequence {Pn} in Π
there exists a subsequence {Pnk

} and a probability measure P (defined on
(S,S), but not necessarily an element of Π) such that Pnk

W→ P .
The following theorem by Prokhorov offers a useful equivalence of the

relatively compactness in MP (S), in case S is separable and complete.

Theorem 13. (Prohorov) [3] Let Π be a family of probability measures on
the probability space (S,S). Then

1. if Π is tight, then it is relatively compact;
2. let S be separable and complete; if Π is relatively compact, then it is tight.

One can characterize the weak convergence of a relatively compact se-
quence of probability measures [3, 15].

Theorem 14. In a metric space (S,S), let {Pn} be a relatively compact se-
quence of probability measures, and P an additional probability measure on S.
Then the following propositions are equivalent

a) Pn ⇒ P ;
b) all weakly converging subsequences of {Pn} weakly converge to P.

Corollary 2. In a Polish (complete and separable) space (S,S), let {Pn} be
a relatively compact (tight) sequence of probability measures, and P an addi-
tional probability measure on S. Then the following propositions are equivalent

a) Pn ⇒ P ;
b) all finite dimensional subsequences of {Pn} weakly converge to P.
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The Space of Trajectories of the Empirical Process XN

Let (S,S) = (Rd,BRd); given XN (t) ∈ MP (Rd) by (32), the empirical process
XN = {XN (t)}t∈[0,T ] ∈ C([0, T ],MP (Rd)).

In MP (Rd), we consider the Prokhorov metric or the BL-metric, while
in the space C([0, T ],MP (Rd)) we take the uniform metric with respect to
t ∈ [0, T ], so that the distance between f, g ∈ C([0, T ],MP (Rd)) is given by

d1(f, g) := sup
0≤t≤T

ρ(f(t), g(t)), (39)

where ρ is either the Prokhorov or the BL metric.
From the separability and completeness of R

d, we can deduce the same
properties for the space of probability measures MP (C([0, T ],MP (Rd)).
Indeed,

Theorem 15. Since R
d is a Polish space, then MP (Rd) is a Polish space,

so that C([0, T ],MP (Rd)) is a Polish space, and consequently MP (C([0, T ],
M(Rd))) is a Polish space .

The measure-valued process XN lives in C = C([0, T ],MP (Rd)). Al-
though, in general, weak convergence in C does not follow from weak con-
vergence of the finite-dimensional distributions, it does in presence of relative
compactness thanks to Corollary 2 [3]. We have the following result.

Theorem 16. Let Pn, P be probability measures on C([0, T ],MP (Rd). If the
finite-dimensional distributions of Pn weakly converge to those of P , and if
{Pn} is tight, then Pn

W→ P .

To use this theorem we have to characterize the relative compactness on the
space C([0, T ],MP (Rd). Let us consider first MP (Rd).

Lemma 1. [15] A subset K ⊂ MP (Rd) is relatively compact if and only if

1. sup{‖µ‖0 : µ ∈ K}<∞, with ‖µ‖0 =sup{〈µ, f〉, f ∈Cb(Rd),‖f‖≤1};
2. limn→∞ sup{‖IBc

n
µ‖0 : µ ∈ K} = 0, with Bc

n := {x ∈ R
d : ‖x‖ ≤ n}c.

The condition of compactness may be stated in terms of the following
modulus of continuity

wf (δ) = w(f, δ) = sup
|s−t|<δ

|f(s) − f(t)|, 0 < δ ≤ 1,

thanks to a generalization of the Ascoli-Arzelá characterization. Indeed the
Ascoli-Arzelá theorem states that a sequence of continuous functions on a
metric space is tight if and only it is uniformly bounded and equicontinuous;
uniform boundedness and equicontinuity are equivalent to (40) and (41) below.
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Theorem 17 (Ascoli-Arzelà). [3] A subset A ∈ C is relative compact if and
only if

sup
f∈A

|f(0)| < ∞ (40)

e
lim
δ→0

sup
f∈A

wf (δ) = 0. (41)

From the previous theorem it is possible to characterize the tightness on
MP (C), where C is the space of continuous function on [0, T ].

Theorem 18. [3] A sequence {Pn} on C is tight if and only if these two
conditions hold:

i) for each positive η, there exists an a such that

Pn{f : |f(0)| > a} ≤ η, n ≥ 1;

ii) for each positive ε and η, there exists a δ, with 0 < δ < 1, and an integer
n0 such that

Pn{f : wf (δ) ≥ ε} ≤ η, n ≥ n0.

A useful sufficient condition for tightness is offered by the following
theorem.

Theorem 19. [3] A sequence {Pn} is tight if these two conditions are satis-
fied:

i) for each positive η, there exists an a such that

Pn{x : |x(0)| > a} ≤ η n ≥ 1.

ii) for each positive ε and η, there exists a δ, with 0 < δ < 1, and an integer
n0 such that

1
δ
Pn{x : sup

t≤s≤t+δ
|x(s) − x(t)| ≥ ε} ≤ η, n ≥ n0,

for all t.

Let us now specialize the previous sufficient condition on the space of
probability measures on C([0, T ],M(Rd)), on which we consider the distance
d1, defined by (39).

Theorem 20. Consider a sequence (XN )N∈N of measure-valued stochastic
processes in C([0, T ],M(Rd)). Suppose that

(i) the initial sequence (XN (0))N∈N is tight in M(Rd);



Rescaling Stochastic Processes: Asymptotics 127

(ii) for any real positive ε and η there exists a δ ∈ (0, 1), and a positive integer
n0 such that

1
δ
P

(
sup

t≤s≤t+δ
d1(XN (s),XN (t)) ≥ ε

)
≤ η

for N ≥ n0 and 0 ≤ t ≤ T.

Then the sequence of laws (L(XN ))N∈N in M
(
C([0, T ],M(Rd))

)
is tight.

Condition i) states the initial tightness of the process, while condition ii)
states the small variation of the process during small time intervals.

A convenient, though stronger, sufficient condition for compactness is given
by Ethier-Kurtz [15].

Theorem 21. Consider a sequence (XN )N∈N of measure-valued stochastic
processes in C([0, T ],M(Rd)), and let FN

t := σ{XN (s)|s ≤ t} be the nat-
ural filtration associated with {XN (t), t ∈ [0, T ]}. Suppose that

(i) for any real positive ε and for any nonnegative rational t, a compact Γt,ε

exists such that
inf
N

P (XN (t) ∈ Γt,ε) > 1 − ε;

(ii) let α > 0; for any real δ ∈ (0, 1) a sequence (γT
N (δ))N∈N of nonnegative

real random variables exists such that

lim
δ→0

lim sup
N→∞

E[γT
N (δ)] = 0

and, for any t ∈ [0, T ],

E[d1(XN (t + δ),XN (t)))α|FN
t ] ≤ E[γT

N (δ)|FN
t ].

Then (L(XN ))N∈N is tight.

Condition (i) implies a pointwise control of compactness , while condition
(ii) is again a control of the variation of the process during small time intervals.
Indeed, it states that the mean distance of the process at two close times t
and t+∆t is small, and asymptotically in N, it converges to zero as the length
∆t of the time interval tends to zero.

Existence and Uniqueness of a Limit Measure

The compactness properties of the laws of the process {X(t)}t∈R+ allow us
to prove the existence of limit measures of subsequences. In order to prove
the existence of a unique limit, by the characterization given by Theorem 14,
we need to prove that all the limits are equal. Usually this can be shown by
characterizing the limit measure as the unique solution of a measure-valued
differential equation.
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As a consequence the main steps for proving the existence and uniqueness
of a limit of a sequence of the laws of XN are the following

a) prove relative compactness of the sequences (L(XN ))N∈N, so to prove the
existence of a limiting measure-valued process {X∞(t), t ∈ R +}.

b) identify any possible limit {X∞(t), t ∈ R +} as the solution of a determin-
istic measure-valued differential equation;

c) possibly prove its absolute continuity with respect to the usual Lebesgue
measure on R

d, and identify the density ρ(x, t) of X∞(t) as a solution of
a deterministic partial differential equation;

d) show uniqueness by proving the uniqueness of the solution of the deter-
ministic partial differential equation.

In the next section we carry on the programme for a particularly interest-
ing case.

5 A Specific Model for Interacting Particles

Here we want to present a possible model for the drift FN in the system of
stochastic differential equations (33). In particular we consider each individual
subject to both an individual motion and an interaction with other individ-
uals. Interaction is due to long range aggregation and short range repulsion
forces [4, 26].

Modelling interaction at different ranges may be obtained in terms of an
appropriate rescaling of a given reference kernel K. A mathematical way to
distinguish among different scales is based on the choice of a “scaling” para-
meter in the kernel describing the interaction among individuals. As already
mentioned in the introduction, if we consider a system of N particles located
in R

d, in the macroscopic space-time coordinates the typical distance between
neighboring particles is O(N−1/d), while the order of the size of the whole
space is O(1).

Let K be a sufficiently regular function, and assume that the interaction
between two particles, out of N , located in x and y respectively, is modelled by

1
N

KN (x − y), where KN (z) = NβK(Nβ/dz), (42)

which expresses the rescaling of K with respect to the total number N of
individuals, in terms of the scaling parameter β ∈ [0, 1]. The force exerted on
the k-th single particle located at Xk

N (t), due to its interaction with all the
others in the population, is given by

Ik ≡ (XN (t) ∗ VN )(Xk
N (t)) =

N∑

i=1

1
N

VN

(
Xk

N (t) − Xi
N (t)

)

=
N∑

i=1

Nβ−1 V1

(
Nβ/d

(
Xk

N (t) − Xi
N (t)

))
. (43)
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We have a McKean-Vlasov (long range) interaction if β = 0, i.e. the range
and the strength of the interaction do not depend on the scaling parameter
N , and a moderate (short range) interaction if β ∈ (0, 1). In the latter case,
as N tends to infinity, the range of the interaction kernel tends to zero, while
its strength tends to infinity. For the long range aggregation we consider a
symmetric kernel G : R

d −→ R+, such that G(x) = G̃(|x|), x ∈ R
d, where

G̃ is an increasing real valued function defined on R+; for the short range
repulsion we consider a symmetric function VN rescaled by N via a symmetric
(with respect to zero) probability density V1, i.e.

VN (z) = NβV1(Nβ/dz), β ∈ (0, 1). (44)

So the system of SDE’s becomes

dXk
N (t) = −

[
γ1∇U(Xk

N (t)) + γ2 (∇ (VN − G) ∗ XN ) (Xk
N (t))

]
dt

+σdW k(t), k = 1, . . . , N, (45)

where U : R
d → R+ ∈ C2(Rd) is a non negative smooth even potential

and γ1, γ2 ∈ R+ are suitable weights. From the modelling point of view, a
transport term including U may represent some external information from the
environment, which drives any individual along the gradient of U . Figures 1, 2
and 3 show the behavior of the system for different choices of the parameters
and the kernels.

Let us consider the following assumptions about the regularity of the ker-
nels involved in system (45)

G,V1 ∈ C2
b (Rd, R+) ∩ L1(Rd, R+) (46)

U ∈ C2(Rd, R+) (47)

|∇U(x) −∇U(y)|2 ≤ k| x − y|2, ∀(x,y) ∈ R
d × R

d (48)

|∇U(x)|2 ≤ k∗(| x|2 + 1), ∀x ∈ R
d (49)

where k and k∗ are positive constants. As a consequence, System (45) admits
a unique solution.

By (35), the evolution equation of the empirical measure (32), is, for any
f ∈ C2,1

b (Rd × R+)

〈XN (t), f(·, t)〉 = 〈XN (0), f(·, 0)〉

−
∫ t

0

〈XN (s), [γ1∇U + γ2 (∇ (VN − G) ∗ XN )] (·)∇f(·, s)〉 ds

+
∫ t

0

〈
XN (s),

σ2
N

2
�f(·, s) +

∂

∂s
f(·, s)

〉
ds

+ σN

∫ t

0

〈XN (s),∇f (·, s)〉 dW k(s). (50)
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Fig. 1: Configuration of 100 particles for parameters values γ1 = 0, γ2 = 1, σ = 0.02,
β = 0.5: (up left) T = 0, (up right) T = 500, (down left) T = 1000, (down right)
T = 2000

5.1 Asymptotic Behavior of the System for Large Populations:
A Heuristic Derivation

Suppose that indeed the empirical process {XN (t), t ∈ R+} tends, as N → ∞,
to a deterministic process {X(t), t ∈ R+}, and further that it admits for any
t ∈ R+, a density ρ(x, t) with respect to the Lebesgue measure on R

d, so that

lim
N→+∞

〈XN (t), f(·, t)〉 = 〈X(t), f(·, t)〉 =
∫

Rd

f(x, t)ρ(x, t)dx.

As a formal consequence, we get

lim
N→+∞

(XN (t) ∗ VN )(x) = gN (x) = ρ(x, t),

lim
N→+∞

(XN (t) ∗ ∇VN )(x) = ∇gN (x) = ∇ρ(x, t),

lim
N→+∞

(XN (t) ∗ ∇Ga(·, t))(x) = (X(t) ∗ ∇Ga(·, t))(x) = (ρ ∗ ∇Ga(·, t))(x).
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Fig. 2: Configuration of 100 particles for parameters values γ1 = 1, γ2 = 1, σ = 0.02,
β = 0.5 with potential U such that ∇U(x) = x/(1 + |x|): (up left) T = 0, (up right)
T = 200, (down left) T = 2000, (down right) T = 4000

Hence, by applying the above limits, from (36) and (50) we get
∫

Rd

f(x, t)ρ(x, t)dx =
∫

Rd

f(x, 0)ρ(x, 0)dx (51)

+
∫ t

0

ds

∫

Rd

dx [−γ1∇U(x) + γ2(∇Ga ∗ ρ(·, s))(x)

−∇ρ(x, s)] · ∇f(x, s)ρ(x, s)

+
∫ t

0

ds

∫

Rd

dx

[
∂

∂s
f(x, s)ρ(x, s) +

σ2
∞
2

�f(x, s)ρ(x, s)
]
,

where
lim

N→∞
σN = σ∞.

We recognize that (51) is the weak version of the following equation for
the spatial density ρ(x, t), for x ∈ R

d, t ≥ 0
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Fig. 3: Configuration of 100 particles for parameters values γ1 = 1, γ2 = 1, σ = 0.02,
β = 0.5 with potential U such that ∇U(x) = |x|2: (up left) T = 0, (up right) T = 5,
(down left) T = 50, (down right) T = 100

∂

∂t
ρ(x, t) =

σ2
∞
2

�ρ(x, t) + γ1∇ · (ρ(x, t)∇U(x))

+ γ2∇ · (ρ(x, t) [∇ρ(x, t)) − (∇Ga ∗ ρ(·, t))(x)] , (52)

ρ(x, 0) = ρ0(x), x ∈ R
d. (53)

From (52), if σ∞ > 0 the dynamics of the density is smoothed by the
diffusive term. This is due to the memory of the fluctuations existing when
the number N of particles is finite. This also means that the dynamics of each
individual particle is still stochastic. Indeed, it can be shown that for any k,
we have Xk(t) ∼ Y k(t), this last one satisfying the following SDE,

dY k(t) = −
[
∇Ga ∗ ρ(·, t)(Y k(t)) −∇ρ(Y k(t)) −∇U(Y k(t))

]
dt

+σ∞dW k(t),

subject to the initial condition Y k(0) = Xk
N (0). The Brownian stochasticity

of the movement of each particle is preserved.
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When σ∞ = 0 all stochasticity disappears; this leads to a degenerate
equation, for x ∈ R

d, t ≥ 0

∂

∂t
ρ(x, t) = ∇ · (ρ(x, t) [γ1∇U(x)) + γ2(∇ρ(x, t) − (∇Ga ∗ ρ(·, t))(x))] .

For the individuals, for any k we have Xk(t) ∼ Y (t) subject to

dY (t) = − [∇Ga ∗ ρ(·, t)(Y (t)) −∇ρ(Y (t)) −∇U(Y (t))] dt,

and the initial condition Y (0) = Xk
N (0), so that also the dynamics of an

individual particle becomes fully deterministic; there is no memory of the
existing fluctuations, when the number N of particles is finite.

Existence and Uniqueness of a Solution of the Limit Equation

In the viscous case, i.e. when σ∞ > 0, a large literature is available showing
existence and uniqueness of a sufficient regular solution satisfying Equation
(52). On the other hand, in the non viscous case, i.e. when σ∞ = 0, unique-
ness is not a trivial problem, the lack of uniqueness being mainly due to the
nonlocal transport term [10].

A major issue is to find the right notion of solution for equations like (54).
It is well-known that classical solutions do not exist in general for degenerate
equations, in particular for equations like (54) one has to expect that the
solution is not differentiable at the boundary of the (compact) support. A
usual way to overcome such difficulties for parabolic equations is to use weak
solutions. However, for degenerate equations of the general form

∂v

∂t
+ div f(x, t, v) − ∆a(v) = 0, (54)

the weak solution may not be unique, and a different concept of solutions,
so-called entropy solutions, has to be used in order to obtain uniqueness [9].
Another example of non uniqueness has been found for transport equations
with nonlocal nonlinearity [10] corresponding to (54) without the diffusion
term. To our knowledge the only available uniqueness result for an equation
like (54) is due to [27], but it holds only in 1D for a very special convex
long-range interaction kernel.

The above issues concerning uniqueness motivate the study of weak and
entropy solutions for (54). In conservation laws, entropy solutions are usually
obtained as vanishing viscosity limits and well motivated from a physical point
of view. In the case of biological models, entropy solutions are hardly used and
not well motivated so far. In [6] we have adapted this notion to our system,
closely following this approach with a simple modification enforced by the
nonlocal convolution operator.
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5.2 Asymptotic Behavior of the System for Large Populations:
A Rigorous Derivation

In this section we present a rigorous derivation of the limit measure X(t),
following Section 4.3. From now on we consider the case when the individual
randomness does not vanish at infinity, that is

lim
N→∞

σN = σ∞ > 0. (55)

Let us consider the following additional assumptions on the kernels involved
in the model; for x ∈ R

d

VN (x) = (WN ∗ WN )(x) (56)
WN (x) = χd

NW1(χNx), χN = Nβ/d, β ∈ (0, d/(d + 2)) (57)
W1 ∈ W 1

2 (Rd) ∩ C0(Rd), U ∈ C1
b (Rd) (58)

〈
−∇U(x),

x

|x|

〉
≤ − r

|x| , |x| ≥ M0, (59)

where W1 is a symmetric probability density, and define a mollified measure,
i.e. a regular version of the empirical measure XN (t)

hN (x, t) = (WN ∗ XN (t)) (x), x ∈ R
d.

Furthermore, we consider also the following properties for the initial state

sup
N∈N

E

[∫

Rd

|x|XN (0)(dx)
]

< ∞ (60)

sup
N∈N

E

[∫

Rd

|hN (x, 0)|2dx

]
< ∞, (61)

The first step for the analysis is to study the relative compactness of the
stochastic process {XN}N∈N. The main problem in the derivation of the com-
pactness properties is due to the unboundedness of the drift term; so we have
to take care of the possible explosion of the system. In order to deal with this
problem, we define the following stopping time

τk
N = inf{t ≥ 0 : SN (t) = ||hN (·, t)||22 + AN (t)

−
∫ t

0

〈XN (u), 2| − ∇U(·) + (∇Ga ∗ XN (u))(·)|2〉du > k},

where

AN (t) =
∫ t

0

〈XN (s), 2(|∇gN (·, u)|2 −∇gN (·, u)(−∇U(·) + (∇Ga ∗ XN (u))(·))

+| − ∇U(·) + (∇Ga ∗ XN (u))(·)|2)〉 + σ2
N ||∇hN (·, u)||22du.
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Following [28,31] one can prove that the process

MN (t) = ||hN (·, t)||22 −
∫ t

0

〈XN (u), 2| − ∇U(·) + (∇Ga ∗ XN (u))(·)|2〉du

+AN (t) − c1σ
2
N tNβ(d+2)/d−1

is a martingale.

Nonexplosion in Finite Time

It is possible to prove the nonexplosion in a finite time, i.e. for any τ such
that 0 < τ < ∞,

lim
k→∞

inf
N∈N

P{τk
N > τ} = 1. (62)

Proof.
From the martingale property of the process MN (t), it derives that the

process

t �→ SN (t)= ||hN (·, t)||22+AN (t)−
∫ t

0

〈XN (u), 2|−∇U(·)+(∇Ga∗XN (u))(·)|2〉du

is a submartingale. By Doob’s inequality

P

{
sup
t≤τ

SN (t) > k

}
≤ 1

k
E[SN (τ)] =

1
k

E[MN (τ) + τσ2
NNβ(d+2)/d−1c1]

=
1
k

E

[
E[MN (τ)|F0] + Cτσ2

NNβ(d+2)/d−1
]

=
1
k

E[MN (0) + Cτσ2
NNβ(d+2)/d−1]

=
1
k

(
E[||hN (·, 0)||22] + Cτσ2

NNβ(d+2)/d−1
)

≤ C(τ)/k; (63)

the last inequality comes from by (55),(58) and (61).
�

First we study the stopped process

XN,k(t) = XN (t ∧ τk
N ); (64)

indeed the relative compactness of the stopped process (64) and condition
(62) imply the relative compactness of the full process [28].

Relative Compactness for the Stopped Process XN,k(t)

In order to prove the relative compactness of the laws of XN,k(t), we use
the characterization of Theorem 21. By using the martingale property of the
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process (62) and Doob’s inequality, one can prove that, for any ε > 0, there
exists a compact Kk

ε in (MP(Rd), dBL) such that

inf
N∈N

P{XN,k(t) ∈ Kk
ε , ∀t ∈ [0, T ]} ≥ 1 − ε,

i.e. the first sufficient condition of Theorem 21 is satisfied. Then, by the
properties of the dynamics of the system, one can prove the property of
small fluctuations during small time intervals, and in particular that for any
0 < δ < 1, there exists a sequence {γT

n (δ)}n∈N of non negative random vari-
ables such that

E
[
dBL(XN,k(t + δ),XN,k(t))4

]
≤ E

[
γT

n (δ)
]

0 ≤ t ≤ T,

and lim
δ→0

lim sup
n→∞

E[γT
n (δ)] = 0.

From the previous analysis we may then state that the sequence of laws
{L(XN (· ∧ τk

N ))}N∈N is relatively compact in MP(C([0, T ],MP(Rd))).
As already mentioned, the relative compactness of the sequence

{L(XN )}N∈N in MP(C([0, T ],MP(Rd))) follows from the non explosion of
the stopping time τk

N ,.
Finally from Skorokhod’s Theorem we may assert that for the possible

unique limit law we can get also an almost sure convergence, i.e.

lim
N→∞

sup
t≤T

dBL(XN (t),X(t)) = 0 P − a.s. (65)

Regularity of the Limit Measure

The next step is to study the regularity properties of the limit measure.
It is possible to show that the mollified measure hN , given by (60) is an
L2([0, T ],MP (Rd)) Cauchy sequence [28, 31]. As a consequence the sequence
admits a limit ρ ∈ L2(Rd, R+)

lim
N→∞

E

[∫ T

0

∫

Rd

|hN (x, t) − ρ(x, t)|2dxdt

]

= 0. (66)

From (66) and lim
N→∞

WN (·) = δ0 (in the sense of distributions), we have

lim
N→∞

∫

Rd

f(x, t)XN (t)(dx) =
∫

Rd

f(x, t)ρ(x, t)dx f ∈ Cb(Rd × [0, T ]) P−a.s.

As a consequence, because of the limit property (65), we get
∫

Rd

f(x, t)X(t)(dx) =
∫

Rd

f(x, t)ρ(x, t)dx f ∈ Cb(Rd × [0, T ]), P − a.s.

Therefore the measure X(t) is absolutely continuous with respect to the
Lebesgue measure with density ρ(x, t), i.e. for any f ∈ Cb(Rd), t ∈ [0, T ]

lim
N→∞

〈XN (t), f(·)〉 = 〈X(t), f(·)〉 =
∫

Rd

f(x)ρ(x, t)dx. (67)
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Uniqueness of the Limit

Uniqueness of the limit measure X is shown, by proving that the density ρ
is the solution of the system (52)-(53), which admits a unique solution. We
further assume that a law of large numbers applies to the initial condition, i.e.

lim
N→∞

L(XN (0)) = δX0 in MP(MP(Rd)), (68)

where X0 has density ρ(x, 0) with respect to the Lebesgue measure. As a
consequence

lim
N→∞

L(XN (t)) = δXN (t) in MP(MP(Rd)),

for any f ∈ C2,1
b (Rd, R+), uniformly in t ∈ [0, T ], where ρ is the unique

solution of (52)-(53), as proven in the Section A.

6 Long Time Behavior: Invariant Measure

Here we wish to analyze the long time behavior of the system (51) for a
fixed N . Our interest is to analyze mechanisms that are responsible for stable
aggregation. From the mathematical point of view this is equivalent to the
study of the joint distribution law of the vector X = (X1

N , . . . , XN
N ) ∈ R

n,
where n = Nd. Let now P x0

N (t) denote the joint distribution of the N particles
at time t, conditional upon a non random initial condition x0.

Invariant Measure

Since X is a homogeneous Markov process, one can associate a homogeneous
transition probability p(x, t − s, dy) such that, with B ∈ BRn , for all 0 ≤ s <
t < +∞,

P {X(t) ∈ B|X(s) = x} =
∫

B

p(x, t − s, dy).

If there exists a probability measure PN on R
n independent of time t, as

a solution of the integral equation

∀t > 0, PN (dy) =
∫

x∈Rn

PN (dx)p(x; t, dy),

then, PN (dx) is called an invariant measure associated with the Markov
process X.

Let us consider some sufficient conditions for the existence of an invariant
measure. In particular we consider the results the reader may find in [19],
p. 118, that stipulate that a process X(t) has finite mean recurrence time
for some bounded domain U , and within this domain all sample paths “mix
sufficiently well”. More precisely we consider the following assumption (H):
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There exists a bounded domain D ⊂ R
n with regular boundary, having

the following properties:

H1: in the domain D and some neighborhood thereof, the smallest eingen-
value of the diffusion matrix is bounded away from zero.

H2: if x ∈ Dc, the mean time τUc at which a path issuing from x reaches
the set D is finite, i.e. E[τDc |X(0) = x] < ∞, and supx∈K E[τK |X(0) =
x] < ∞, for every compact K ⊂ R

n.

Theorem 22. [19] If condition (H) holds, then the Markov process X(t) has
a unique invariant measure PN .

The Purely Interacting Case

First of all we consider the case of the drift due only to interaction among
particles, that is γ1 = 0.

In Figure 4 we consider some simulation results with V1 = α1N (0, 1)
and G = α2N (0, 1), for different values of α1 and α2. We notice that, as
t increases, the mean distance between two particles and consequently the
radius of clusters fluctuates around an asymptotic value which is finite, but
in the case of pure repulsion.

Following [22], for the position of the center of mass of the N particles,

X̄N (t) =
1
N

N∑

k=1

Xk
N (t),

we have

dX̄N (t) = − 1
N2

N∑

k,j=1

∇ (VN − G) (Xk
N (t) − Xj

N (t))dt + σdW̄ (t), (69)

0 500 1000 1500 2000
0

1

2

3

4

5

6
AVERAGE DISTANCE AMONG TWO PARTICLES

(a)
(b)
(c)
(d)

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

8
Radius of the cluster

(a)
(b)
(c)
(d)

Fig. 4: Comparison among the evolution of the radius of the cluster and the average
distance among particles for different values of parameters: (a) α1 = α2 = 1; (b)
α1 = 1; α2 = 2; (c) α1 = 1; α2 = 0; (d) α1 = 0; α2 = 1
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where W̄ (t) = 1
N

∑N
k=1 W k(t); by the symmetry properties of V1 and G, the

first term on the right hand side vanishes and we get

dX̄N (t) = σdW̄ (t), (70)

i.e. X̄N (t) is a Brownian motion. Hence, its distribution is

L
(
X̄N (t)|X̄N (0)

)
= L

(
X̄N (0), σ2W̄ (t)

)
= N

(
X̄N (0),

σ2

N
t

)
;

with variance σ2

N t, which, for any fixed N , increases as t tends to infinity.
Consequently we may claim that the probability law of the system does not

converge to any probability measure, since otherwise the same would happen
for the law of the center of mass.

In other models [22] in addition to symmetry, strictly convexity of the
interaction kernel K is added. In spite of that, once again because of the
symmetry of K, the system

dXN (t) = −∇ · (K ∗ XN (t))(XN (t))dt + σdW(t), XN (t) ∈ R
n,∀t,

with
∃λ > 0,∀x, v ∈ R

d, 〈HessK(x)v, v〉 ≥ λ〈v, v〉; (71)

does not admit an invariant distribution.
The interesting feature is that, in this case, one may show stationary prop-

erties for the reduced system for the relative coordinates, the distances of the
particle position with respect to the center of mass X̄N (t),

Y j
N (t) = Xj

N (t) − X̄N .

Indeed, under the assumption (71), it has been shown [22] that the system

Y k
N (t) = Y k

N (0) − 1
N

N∑

l=1

∫ t

0

∇K(Y k
N (s) − Y l

N (s))ds

+ σW k(t) − σ

N

N∑

l=1

W l(t) k = 1, . . . , N,

is still a diffusion on the manifold

M =

{

(x1, . . . , xn) :
∑

i

xi = 0

}

, (72)

and does admit an invariant measure. Roughly speaking, adding the strictly
convexity, each particle, and in particular the center of mass, attracts any
other one in the whole space.

Hence, if we consider the system under study, (35), with γ1 = 0, since the
kernels G and VN are symmetric, does not admit an invariant measure. In the
next section we see a way to overcome this problem and which properties to
require to the added kernel U in (35) in order to get an invariant measure for
the system.
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The Complete System

Consider now the potential P associated with a measure on R
d, µ ∈ M(Rd)

P (µ)(x) = γ1U(x) − γ2 ((VN − G) ∗ µ) (x), x ∈ R
d, (73)

so that system (45) can be rewritten as

dXk
N (t) = −∇P (XN (t))(Xk

N (t)) + σdW k(t), k = 1, . . . , N. (74)

System (74) has been thoroughly analyzed in literature under the sufficient
condition (71) of strict convexity on U ; it has been shown [9, 22] that if this
condition applies, system (74) does admit a nontrivial invariant distribution.
From a biological point of view a strictly convex confining potential is difficult
to explain; it would mean an infinite range of attraction, with an at least
constant drift, even far from origin.

A weaker sufficient condition for the existence of a unique invariant
measure has been more recently suggested by Veretennikov [36], following
Has’minski [19],

V: there exist constants M0 ≥ 0 and r > 0 such that for |x| ≥ M0

(
−∇P (µ)(x),

x

|x|

)
≤ − r

|x| . (75)

Since the diffusion matrix is σI, where I is the identity matrix, then as-
sumption (H1) for the existence of an invariant measure is satisfied. Assump-
tion (75), is needed to show that X(t) has finite mean recurrence time for
some bounded domain U , i.e. assumption (H2) is satisfied [36].

Without any further condition on the interaction kernels VN and G, for
(75) to hold it is sufficient to assume that there exist constants M0 ≥ 0 and
r > 1

Nγ1
(Nd

2 + 1) such that for |x| ≥ M0, equation (59) hold. We wish to
remark that condition (59) means that ∇D may decay to zero as |x| tends to
infinity, provided that its tails are sufficiently “fat”.

Proposition 7. If the confining potential U satisfies condition (59), then (74)
admits a unique invariant measure.

Proof.

Let πi(x) = xi, i = 1, . . . , N be the i-th projection of x ∈ (Rd)N , Ũ(x) and
K̃(x) the vector function defined by

Ũ(x) = (U ◦πi(x))1≤i≤N , K̃(x) =

(

(G − VN ) ∗ 1
N

∑

i

επi(x) ◦ πi(x)

)

1≤i≤N

In order to apply Theorem 2 in [35], we have to prove that there exist
constants M ≥ 0 and r̃ > (Nd

2 + 1) such that for all x ∈ (Rd)N : |x| ≥ M
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(
−γ1∇Ũ(x) + γ2∇K̃(x),

x
|x|

)
≤ − r̃

|x| . (76)

We have
(
−γ1∇Ũ(x) + γ2∇K̃(x),

x
|x|

)
= − γ1

N∑

k=1

∇U(xk)
xk

|x|

+ γ2
1
N

N∑

k=1

N∑

i=1

∇(G − VN )(xi − xk)
xk

|x|

≤ −γ1

N∑

k=1

∇U(xk)
xk

|x|

+ γ2
1
N

N∑

k=1

N∑

i=1

∇(G − VN )(xi − xk)

= −γ1

N∑

k=1

∇U(xk)
xk

|x| ≤ −γ1rN

|x|

The last two inequalities derive from the symmetry of G and VN , together
with (59). So if for r̃ = γ1rN and condition on r in (59), we have condition
(76).

�
Following [35] we may also provide an estimate of the rate of convergence.

Indeed, as far as the convergence of P x0
N (t), for t tending to infinity, is con-

cerned, we may state that

Theorem 23. Under assumption (59), for any k, 0 < k < r̃ − Nd
2 − 1 with

m ∈ (2k + 2, 2r̃ − Nd) and r̃ = γ1Nr, a positive constant c exists such that
∣
∣P x0

N (t) − PS
N

∣
∣ ≤ c(1 + |x0|m)(1 + t)−(k+1),

where
∣
∣P x0

N (t) − PS
N

∣
∣ denotes the total variation distance of the two measures,

i.e.

∣
∣P x0

N (t) − PS
N

∣
∣ = sup

A∈B
Rd

[
P x0

N (t)(A) − PS
N (A)

]
.

and x0 the initial data.

A Proof of the Identification of the Limit ρ

Since (51) is the weak form of (52), it is sufficient to show that for any f ∈
C2,1

b (Rd, R+),
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E

[∣∣
∣
∣〈X(t), f(·, t)〉 − 〈µ0, f(·, 0)〉 −

∫ t

0

〈ρ(·, s), 1
2
σ2
∞∆f(·, s) +

∂

∂s
f(·, s)

+[(∇Ga ∗ ρ(·, s))(·) −∇U(·) −∇ρ(·, s)] · ∇f(·, s)〉ds

∣
∣
∣
∣

]
= 0.

For fixed f ∈ C2,1
b (Rd, R+)

E

[∣∣
∣
∣〈X(t), f(·, t)〉 − 〈µ0, f(·, 0)〉 −

∫ t

0

〈ρ(·, s), 1
2
σ2
∞∆f(·, s) +

∂

∂s
f(·, s)

+ [(∇Ga ∗ ρ(·, s))(·) −∇U(·) −∇ρ(·, s)] · ∇f(·, s)〉ds |]
≤ E [|〈X(t), f(·, t)〉 − 〈XN (t), f(·, t)〉|]
+ E [|〈µ0, f(·, 0)〉 − 〈XN (0), f(·, 0)〉|]

+
σ2
∞
2

E

[∫ t

0

|〈−ρ(·, s),∆f(·, s)〉 + 〈XN (s),∆f(·, s)〉|ds

]

+ E

[∫ t

0

| − 〈ρ(·, s), ∂

∂s
f(·, s)〉 + 〈XN (s),

∂

∂s
f(·, s)〉|ds

]

+ E

[∫ t

0

|〈ρ(·, s),∇ρ(·, s) · ∇f(·, s)〉 − 〈hN (·, s),∇hN (·, s) · ∇f(·, s)〉|ds

]

+ E

[∣∣
∣
∣

∫ t

0

〈hN (·, s),∇hN (·, s) · ∇f(·, s)〉 − 〈XN (s),∇gN · ∇f(·, s)〉ds

∣
∣
∣
∣

]

+ E

[∫ t

0

|−〈ρ(·, s), [(∇Ga ∗ ρ(·, s))(·) −∇U(·)] · ∇f(·, s)〉

+ 〈XN (s), [(∇Ga ∗ XN (s))(·) −∇U(·)] · ∇f(·, s)〉| ds]

+ E

[∣∣
∣
∣
∣
σN

N

∫ t

0

N∑

k=1

∇f(Xk
N (s), s)dWk(s)

∣
∣
∣
∣
∣

]

+ E

[ ∣∣
∣
∣
∣
〈XN (t), f(·, t)〉 − 〈XN (0), f(·, 0)〉

−
∫ t

0

〈XN (s), (∇Ga∗XN (s)) · ∇f(·, s)〉ds+
∫ t

0

〈XN (s),∇gN (·, s) · ∇f(·, s)〉ds

+
∫ t

0

〈XN (s),∇U(·) · ∇f(·, s)〉ds −
∫ t

0

〈XN (s),
1
2
σ2

N∆f(·, s) +
∂

∂s
f(·, s)〉ds

− σN

N

∫ t

0

N∑

k=1

∇f(Xk
N (s), s)dWk(s)

∣
∣
∣
∣
∣

]

:=
9∑

i=1

Ii
N (t). (77)

Clearly
By (67) and hypothesis (68)

∑4
i=1 Ii

N (t) = 0, by (50) I9
N (t) = 0 and by

(36) I8
N (t) = 0. It remains to estimate the terms I5

N (t), I6
N (t) and I7

N (t).
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I5
N (t) = E

[∫ t

0

|〈ρ(·, s), ρ(·, s)∆f(·, s)〉 − 〈hN (·, s), hN (·, s)∆f(·, s)〉|ds

]

≤ ||∆f ||∞
∫ T

0

E

[∫

Rd

|hN (x, t) − ρ(x, t)||hN (x, t) + ρ(x, t)|dx

]
dt

≤ ||∆f ||∞

(

E

[∫ T

0

∫

Rd

|hN (x, t) − ρ(x, t)|2dxdt

])1/2

·
(

E

[∫ T

0

∫

Rd

|hN (x, t) + ρ(x, t)|2dxdt

])1/2

;

by (63) and (66) we obtain

lim
N→∞

I5
N (t) = 0. (78)

By the symmetry of W1,

I6
N (t) = E

[∣∣
∣
∣

∫ t

0

〈XN (s),WN ∗ (∇hN (·, s) · ∇f(·, s))

−(WN ∗ ∇hN (·, s)) · ∇f(·, s)〉ds

∣
∣
∣
∣

]

= E

[∣∣
∣
∣

∫ t

0

(∫

Rd

XN (s)(dx)
∫

Rd

WN (x − y)∇hN (y, s)

·(∇f(y) −∇f(x))dy

)
ds

∣
∣
∣
∣

]
.

(79)

By the definition of WN and since W1 has compact support, with c =
diam(suppW1(·)) and ||D2f ||∞ = supi,j≤d ||∂2

ij ||∞, (79) is less than or equal
to

cχ−1
N ||D2f ||∞E

[∫ t

0

〈XN (s) ∗ WN , |∇hN (·, s)|〉ds

]

≤ cχ−1
N ||D2f ||∞

(

E

[∫ T

0

||hN (·, s)||22ds

])1/2(

E

[∫ T

0

||∇hN (·, s)||22ds

])1/2

≤ cχ−1
N ||D2f ||∞.

It follows that
lim

N→∞
I6
N (t) = 0 (80)

.
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I7
N (t) = E

[ ∫ t

0

|−〈ρ(·, s), [(∇Ga ∗ ρ(·, s))(·) −∇U(·)] · ∇f(·, s)〉

+ 〈XN (s), [(∇Ga ∗ XN (s))(·) −∇U(·)] · ∇f(·, s)〉
+ 〈XN (s), [(∇Ga ∗ ρ(·, s))(·) −∇U(·)] · ∇f(·, s)〉

− 〈XN (s), [(∇Ga ∗ ρ(·, s))(·) −∇U(·)] · ∇f(·, s)〉| ds

]

≤ E

[∫ t

0

|〈XN (s) − ρ(·, s), [(∇Ga ∗ ρ(·, s))(·) −∇U(·)] · ∇f(·, s)〉|

+ |〈XN (s), [(∇Ga ∗ ρ(·, s))(·) − (∇Ga ∗ XN (s))(·)] · ∇f(·, s)〉| ds

]
.

By (65)
lim

N→∞
I7
N (t) = 0.

As a consequence

lim
N→∞

9∑

i=1

Ii
N (t) = 0

uniformly in t ∈ [0.T ].
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