
vii Preface

Preface

SMIL 3.0: Multimedia for the Web, Mobile Devices and Daisy Talking Books is a
revised introduction to — and resource guide for — the W3C SMIL language. It
covers all aspects of the SMIL specification and covers all of SMIL’s implemen-
tation profiles, from the desktop through the world of mobile SMIL devices.
Based on the first version of the book, which covered SMIL 2.0, this edition has
been updated with information from the past two releases of the SMIL lan-
guage. We have benefitted from comments and suggestions from many readers
of the first edition, and have produced what we feel is the most comprehensive
guide to SMIL available anywhere.

Motivation for this Book

While we were working on various phases of the SMIL recommendations, it
became clear to us that the richness of the SMIL language could easily over-
whelm many Web authors and designers. In the 500+ pages that the SYMM
working group needed to describe the 30+ SMIL elements and the 150+ SMIL
attributes, there was not much room for background information or extensive
examples. The focus of the specification was on implementation aspects of the
SMIL language, not on the rationale or the potential uses of SMIL’s declarative
power.

In spite of SMIL’s broad acceptance in the mobile and server-side worlds, the
existing literature on SMIL is not extensive. Other books published on aspects
of the SMIL language are neither complete nor always correct in their handling
of SMIL concepts or the various SMIL implementations. The documentation
provided by major vendors of SMIL players is also not geared to the develop-
ment of a complete picture of what SMIL can do — and what it can’t do! The
academic literature, while often containing a thoughtful analysis of SMIL, is
inaccessible to most of SMIL’s users.

We wrote this book to bridge the gap between the theory and practice of cre-
ating SMIL presentations for multiple platforms and multiple profiles. In so
doing, we hope that the use of SMIL’s facilities and features moves beyond the
trivial and enters the mainstream of Web multimedia.

Prefaceviii

Should You Read This Book?

We wrote this book for three communities:
Existing SMIL authors: many existing SMIL users need and want more infor-
mation on the language so that they can create better presentations, for
more profiles, with less effort.
New SMIL authors: SMIL is currently available on millions desktop, mobile
and speciality devices. Designers and authors who want to exploit the
potential of SMIL need to have a solid introduction to the language and to
have a wealth of examples that can help them get started.
Developers and students of multimedia technology: The SMIL standard is a
complex document. For researchers, developers and students of internet
media technology, it is easy to lose sight of the big picture when architect-
ing delivery systems for SMIL technology. We have done our best to
de-mystify SMIL and to make its basic concepts clear and accessible.

This book is intended to augment the documentation provided by individ-
ual SMIL player vendors. We have decided to focus our efforts on explaining
SMIL technology; together with authoring guidelines and documentation pro-
vided and maintained by the W3C, RealNetworks, Microsoft, Oratrix, Apple
and other player vendors, we are confident that you will be able to create,
maintain, and debug a complete range of SMIL presentations, for a complete
range of SMIL players.

Now that a number of open-source SMIL players are available, we also
expect that this book will provide a comprehensive guide for designers and
implementers of new or enhanced SMIL players.

Structure of the Book

This book is divided into four sections. Part One provides a general introduc-
tion to the SMIL language and a reader’s guide to a (complex) SMIL example. It
also contains background information on Web multimedia technology that,
while not limited to SMIL, is useful for users who are new to networked multi-
media. Part Two provides an overview of the basic elements and attributes used
by all implementations of SMIL. It covers each of the functional groups of SMIL
technology, from structure to transitions. Part Three contains a discussion of
advanced SMIL features. These are elements and attributes that are either pro-
file or player specific, or that make use of esoteric SMIL features. Part Four con-
tains reference information on the composition of five of SMIL’s profile
implementations.

We expect that many current SMIL authors will want to jump directly to the
element and attribute definitions in each chapter; these provide detailed infor-
mation that can answer questions quickly and (relatively!) painlessly about the
structure of the language and the permissible attribute values. For new SMIL
users, the example sub-section provides a host of easy-to-digest uses of the
technology; often starting here will give a good idea of what SMIL can do in the

 Preface ix

functional group covered by that chapter. For readers interested in not only the
how of SMIL but also the why, the background information in each chapter pro-
vides the motivations and limitations of SMIL technology.

Each chapter is structured to meet the needs of the three target readership
groups defined above. An XML-like structure of each chapter is given below:

Note that for chapters that explain lots of elements and/or attributes, the exam-
ples are presented in the context of the definition of the constructs. For chapters
covering many concepts, the chapter structure is sometimes repeated as a local
sub-structure instance.Notational Conventions
In order to provide a predictable presentation of SMIL constructs, this book
adopts the following simple notational conventions:

Element definitions: SMIL’s XML elements are displayed in a colored mono-
space font, together with their angle brackets. Examples are: <body>,
<transition>, <switch>. Unless used in the content of an example, a trail-
ing ‘/’ is not used.
Attribute names: SMIL’s XML attributes are displayed in a colored mono-
space font. Examples are: clipBegin, dur, begin.
Attribute values: SMIL’s XML attribute value definitions are displayed in a
non-colored monospace font. Examples are: indefinite, media, auto.
Code examples: The code examples in the book are set in separate areas and
have a colored background. (See the XML-like code above for an example.)
When code fragments are embedded in a sentence, the fragment is set in a
single colored mono-space font. An example: src="snarf.mpg".

In order to facilitate the search for constructs in the text, each first definition
of an element, attribute or special value is highlighted with a separate heading.
These definitions are placed in the Index as the primary reference for the ele-
ment, attribute or value construct.

Element and Attribute Tables

Most chapters in Part Two and Part Three of this book contain element and attri-
bute tables. These tables define either an element structure or a set of values for
complex SMIL attributes.

<chapter>
<BackgroundInformation />
<ElementsAndAttributes>
<ElementDefinitions />
<AttributeDefintions />
<SpecialValuesDefinitions />

</ElementsAndAttributes>
<Examples/>

</chapter>

Prefacex

An example of an element table is given below.

The table gives the name of the element and defines the major attributes, par-
ents and children for that construct. In order to improve readability, each of the
groups of attributes and structure information (such as XML parents and chil-
dren) is colored coded.

Each attribute can take a range of values in SMIL. These values have been
summarized in the attribute table, an example of which is shown below.

In each table, the default values for an attribute are shown in bold. The table
also identifies the names of the elements that use each of the attributes.
Together, the tables provide a quick reference to SMIL features. Each of the ele-

<seq> <par>

at
tr

ib
u

te
s

general timing

endsync

 media description

region

test

core

p
ar

en
ts <body>

<priorityClass>

p
ar

en
ts

 &
ch

ild
re

n
 <seq>, <par>

<excl>

<switch>

<a>

ch
ild

re
n media object

animation

attribute value elements

min

clock value

"
m
e
d
i
a
"

"0" <prefetch>

max

"
i
n
d
e
f
i
n
i
t
e
" <a>, <area>

animation

<body>, <seq>,

endsync

"last",
"first",
"all" ID

R
E

F
to

 c
hi

ld <par>, <excl>

media object,
<brush>

 Preface xi

ments and attributes contain a background color code that defines the func-
tional area to which they belong. When appropriate, a distinction is made
between basic and advanced attributes by giving basic attributes a lighter tint.

The color coding is:

In this edition, we have simplified the structure of these complex tables by
removing associations with specific SMIL profiles. Instead, in the reference
tables in Part Four, we indicate with language feature can be expected to be
supported by a representative media player in one of SMIL target deployment
areas.

Throughout the book, the Ambulant player has been used as the basis for
testing code fragments, unless the functionality described was not available in
the Ambulant SMIL implementation.

Quick Tips

In addition to being a reader’s guide to the SMIL specification, our book is
geared to helping you create SMIL presentations. Each section contains a num-
ber of Quick Tips that can be useful when you first work with SMIL. These tips,
together with the examples, will get you started with multimedia on the Web in
the shortest possible time.

On-Line Information

We maintain a Web site for this book at http://www.XmediaSMIL.net/. This
site contains versions of many of the examples used in our book (unless there
are media redistribution restrictions), plus links to various sites of interest. It
will also contain a corrections and errata section that contains fixes for errors
that inadvertently made their way into this publication.

Functional Area

Structure Meta-Information

Timing Time Manipulation

Linking Content Control

Media Objects Layout

Animation Transitions

SmilText SmilState

Quick Tip

This is the format of a Quick Tip block.

Prefacexii

About the Authors

Dick Bulterman is head of the Distributed Multimedia
Languages and Infrastructures research group at the
Centrum Wiskunde & Informatica (CWI), the Dutch
national center for mathematics and computer science
in Amsterdam. He is also professor of computer science
at the Vrije Universiteit in Amsterdam. From 1998-2001,
he was managing director and CTO of Oratrix Develop-
ment, a CWI spin-off company specializing in full-fea-
tured SMIL authoring systems and SMIL player engines.

Bulterman received a Ph.D. in computer science from Brown University in
1981. Before joining CWI, he was on the faculty of the division of Engineering at
Brown, where he worked on computer architecture and high-speed signal pro-
cessing networks. He holds an undergraduate degree in economics and mathe-
matics from Hope College.

Dick Bulterman joined the W3C’s Structured Multimedia (SYMM) working
group in 1996. He was an active member of the SMIL 1.0 and SMIL 2.0 design
teams, and was chair of the SYMM working group throughout the SMIL 3.0
development effort. He lives in Amsterdam with his wife and two children.

Lloyd Rutledge is an assistant professor with the Open
Universiteit Nederland, where he specializes in Web
technologies. Previously, he was a researcher with the
Semantic Media Interfaces group at CWI. His research
areas are Semantic Web user interaction, recommender
systems and the semi-automatic generation of interac-
tive multimedia presentations. He received his Sc.D in
computer science from the University of Massachusetts

Lowell in 1996. Like Dr. Bulterman, Lloyd Rutledge was part of the SYMM
working group of the W3C, participating the development of SMIL 1.0 and 2.0.
He lives with his wife and two children in Amsterdam.

25Section 2.1: Understanding XML Structure

2
Understanding SMIL Code

This chapter provides a reader’s guide to the structure and contents of a SMIL
presentation. By walking through a complete SMIL example, we’ll introduce
the main concepts and concerns that you will encounter when you first start
making SMIL multimedia documents.

We start with a brief review of basic XML language constructs. We then
describe an example presentation (Flashlight) and give an overview of SMIL
functionality, based on six functional categories:

SMIL structure: the basic framework for encoding SMIL presentations;
media content: the constructs for referencing external media objects;
layout: the facilities for managing rendering resources;
timing: the core control constructs for temporal structuring;
linking: the constructs for link-based navigation and interaction; and
adaptivity: the tools for tailoring presentations to the environment.

Together, these categories form the what, where, when, how and for whom of
SMIL. We end with a description of Flashlight in various SMIL profiles.

After you finish this chapter, you should have a broad reading knowledge of
SMIL. This will get you ready to build your own presentations using the
in-depth information presented in the body of this book.

2.1 Understanding XML Structure
XML, or the eXtensible Markup Language, is the meta-language for SMIL (and
other Web formats, including XHTML). It is a language that describes how
other languages should be structured. An XML definition does not, in and of
itself, tell you anything about the meaning of any part of a language — it is
simply a set of common conventions for language designers.

There are three concepts to be mastered when learning an XML language:
understanding the elements that the language defines,
understanding the attributes that the language defines for those elements,
and
understanding the kind of references within (and outside) the document
that the language supports.

Chapter 2: Understanding SMIL Code26

This section will introduce you to enough of XML to let you understand the
Flashlight SMIL example later in this chapter. It will also give you most of the
details you need to read any SMIL example in our book. If you are hungry for
more information on XML, see the references at the end of this chapter.

2.1.1 XML Elements
The basic unit of XML is the element. An XML document consists of a set of
nested element definitions. The first element in an XML document, at the top of
this tree, is called the root element.

XML elements consist of a case-sensitive name with no embedded spaces;
they are delimited in XML code by angle brackets, the ‘<’ and ‘>’ characters. You
may not have any white space between the left angle bracket and the name of
the element.

The following fragment shows the element .

Here, img is the element’s generic identifier. An element’s generic identifier is
unique: all elements with the same generic identifier refer to the same XML ele-
ment definition. An element will usually have one or more attributes associ-
ated with it; these are discussed later in this section.

Technically, the element shown above is not complete because it only
indicates that the element begins. This is the element’s start-tag. To make
it a complete element, you also need to define an end-tag. XML provides two
types of end tags: one for use with empty elements that have no content, the
other for (nested) elements with content.

Empty Elements

When an XML element is empty, this means that all of the information associ-
ated with that element is specified using only the element’s generic identifier
and its attributes (if any). It doesn’t mean that it has no attributes or that the
element doesn’t reference content! The end-tag for an empty element is repre-
sented by the ‘/’ character just before the right angle bracket in the element’s
definition (with no embedded spaces):

One of the characteristics that separates SMIL from XHTML is that, for the
most part, a SMIL file does not contain media content: it references media con-

Quick Tip

Since SMIL is strict XML, all identifiers are case-sensitive. Thus, all of
the following refer to different elements:
, , , , , , , .
SMIL only allows lower-case generic identifiers for elements: .

Section 2.1: Understanding XML Structure 27

tent. The only exception is the <smilText> element, which was introduced in
SMIL 3.0 to contain text similar to how XHTML does. Media object elements in
SMIL point to a file containing media data, but they do not contain the data
itself. Occasional use of embedded media is allowed, but this content is placed
in an element via one of its attributes. For now, consider all media object refer-
ences to be empty in XML’s sense of the word. The main exception to this con-
vention is embedded timed text, discussed in Chapter 9: Timed Text in SMIL.

Elements with Content (Including Nested Elements)

Many elements in an XML language have content. This content is in the form of
a nested containment of elements. This nested containing of elements allows
the building of a hierarchical structure for a document. In the following exam-
ple, our element is put inside a <body> element:

By placing these tags around the image element, we indicate that <body> con-
tains the content . In all cases of nesting, the nested time container is
closed by repeating the parent element tag, preceded with a ‘/’, as in line 3.

Most of SMIL’s timing and control elements can contain any number of other
elements, and each child element can itself contain child elements, continuing
to any degree of depth. In this manner, the tree-shaped hierarchical containment
structure of XML elements — or the element tree — can become quite large and
complex. Some minimal variants of SMIL BASIC place restrictions on the depth
of nesting to one level, but more recent versions of MOBILE SMIL profiles have
removed this restriction.

2.1.2 XML Attributes
Each element may have zero or more attributes. An attribute assigns a value to a
parameter of the element. All values for attributes must be quoted!

In our growing SMIL example, we add a timing attribute to :

Here, we assign a value of "3s" to the attribute named dur of the ele-
ment. Note that XML doesn’t assign a meaning to the attribute name or the
value — it simply specifies the syntax. It is SMIL that assigns the meaning dura-
tion to the dur attribute.

1 <body>
2
3 </body>

Quick Tip

Since SMIL is strict XML, all start tags must be matched by end tags. If
you don’t do this, a SMIL parser must reject your file.

<body>

</body>

Chapter 2: Understanding SMIL Code28

Attribute names are case sensitive and are not allowed to contain embedded
spaces. Not all attributes will be used in all elements; the XML specification is
used to define which attributes are associated with which elements.

Complex languages like SMIL tend to have many attributes. Some of these
attributes are the same as (or similar to) corresponding attributes in other XML
languages, others are totally new. In the chapters below, we’ll point the major
differences between SMIL and other XML languages as needed.

SMIL has many attributes, so it uses long, descriptive names to help clarify
the SMIL code. Unfortunately, long names — like systemdefaultlanguage — are
hard to read. When SMIL 1.0 was designed, hyphens were used to make long
attribute names more readable: system-default-language. By the time SMIL 2.0
was released, hyphens had fallen from favor and camel casing was used to clar-
ify attribute names: systemDefaultLanguage. It is important to understand that
the user can’t choose between camel casing and hyphens — this is a choice that
was made by SMIL’s language designers.

2.1.3 XML References
This section describes XML’s facilities for specifying internal resources, external
files and portions of external files.

Internal References

XML elements in different parts of the same document can refer to each other
by using ID (unique identifier) and IDREF (unique identifier reference) attributes.
An ID attribute gives its element a unique name. ID attributes typically have
the name “xml:id”, although “id” is allowed. An IDREF attribute allows an ID
defined elsewhere in the document to be used in an element. For example:

In this fragment, a <region> element has the unique identifier attribute
xml:id with a value title. Only one element in the entire document can use
this particular ID attribute value. The element can refer to this region by
using the IDREF attribute region with the value title.

Quick Tip

SMIL 2.0 deprecated most of SMIL 1.0’s hyphenated attribute names
and replaced with camel-case equivalents. You you always use the new
name formats, since SMIL 3.0 and later players may no longer
recognize the SMIL 1.0 encodings.

<region xml:id="title" ... />
...

<body>

</body>

Section 2.1: Understanding XML Structure 29

External Files

Sometimes external files play a role in XML documents. SMIL presentations, for
example, use external files to define the media content that plays within a pre-
sentation. XML documents refer to external files by assigning their locations as
values for certain attributes. For example, assume an image file named Title.png
exists that contains the words “The GRiNS Flashlight”. We would reference this
file from our SMIL presentation as follows:

The src attribute is recognized by SMIL as being an IRI (which is the lan-
guage independent encoding of a URI, which itself was the standardized
encoding of a URL). This attribute’s value can be the name of a file, a pathname
for the file in the local file system, or a location on the Web.

Portions of External/Internal Files

The external and internal references just discussed can be combined to refer to
portions of external files. Such references are usually constructed as attribute
values containing the location of an external XML file, followed by a ‘#’ charac-
ter, then followed by an IDREF of an XML element within that file. The same
technique can be applied to internal references, with the exception that the file
name is not used. If, for example, we wanted to define an internal link anchor
reference to the intro section of the current SMIL file, we’d say:

The behavior of links and the behavior of SMIL are not determined by the
XML syntax. Instead, the XML syntax is used to describe elements and attri-
butes in a clear and unambiguous manner in an external specification that also
specifies behavioral properties.

As we will see, SMIL has a wealth of options for defining temporal attributes
that control the activation of elements and media content.

<region xml:id="title" ... />
...

<body>

</body>

<region xml:id="title"/>
...

<body>

...
<par xml:id="intro">
...

</par>
</body>

Chapter 2: Understanding SMIL Code30

2.2 Flashlight: A SMIL Example Presentation
Now that we’ve discussed the basics of XML, it is time to look at a detailed
SMIL example: Flashlight. Flashlight is based on an interactive multimedia
user’s guide; it touches on all the major areas of SMIL 3.0 functionality.

The Structure of Flashlight

The presentation schematic for the Flashlight presentation is illustrated in Fig-
ure 2-1. Here we see that Flashlight consists of a set of structured segments that
describe how to set up and use the device. The opening segment consists of a
logo and a main image, both of which are shown in parallel with an audio track
and a set of text captions. The entire content of the opening segment is accom-
panied by an image that contains link anchors for navigation.

The battery segment shown in Figure 2-1(b) illustrates how to put batteries
in the flashlight. The segment is structured very much the same as Figure
2-1(a), except that the main image is replaced by a more complex sub-structure.

Figure 2-1. The structure of Flashlight.

(a) opening segment

(b) battery segment

(c) closing segment

Linking and Navigation

captions sequence

Txt Txt Txt

Logo

Main Image

Audio
Linking and Navigation

captions sequence
Txt Txt Txt

Logo

Audio

Logo

Text Image

Audio

Web address

Video

image sequence
img img img

media
object

parallel
container

sequential
container

selection
container

Linking and Navigation

Section 2.2: Flashlight: A SMIL Example Presentation 31

This sub-structure, contained in a red selection box, lets the player decide
whether to show a video object or replace it with a sequence of images. (In this
presentation, the images will be shown instead of the video object if the bitrate
of the network connection is determined by the player to be below approxi-
mately 34Kbps.) As with the opening segment, a logo is shown and a set of text
captions accompany an audio voice track. Once again, a navigation bar is
shown that allows the user to jump to another section.

The closing segment of the presentation shows the logo and contains three
interior media objects: a main image (containing styled text), a Web address
and an audio track. (Since the main image gives all of the important informa-
tion in text form, a separate captions sequence is not required.) The Web
address has an anchor attached to it so that users can click through to the Web
site for extra information (and a chance to purchase the flashlight itself.)

At any time during the presentation, a user may navigate to the section that
is of interest via a set links on the linking menu bar. (Some of the links are
shown in the image) When a link is followed, the presentation context changes
to the new subject material — the old context goes away. This is not always
necessary: sometimes a new context will augment rather than replace content.

The Runtime View of Flashlight

Once the presentation structure is defined and the media assets are created, the
flashlight presentation can be rendered on a SMIL player. One such rendering is
shown in Figure 2-2: this figure shows three snapshots of the presentation, one
for each main segment. If we had played flashlight in another SMIL player, the
outer window will be different (that is, the menu bars and the skin of the player
interface will be customized by the player manufacturer), but the content of the
presentation should be the same. If it is used on a different type of device, some
of the content may be scaled or ignored, depending on device characteristics.

The following sections look at the general structure of the Flashlight example
and then consider the consequences of playing the presentation on different
classes of SMIL players.

Figure 2-2. Display of Flashlight using the Ambulant Player for SMIL 3.0.

(a) opening segment (b) battery segment (c) closing segment

Chapter 2: Understanding SMIL Code32

Flashlight SMIL Code

Example 2-1 shows the SMIL code written for the SMIL 3.0 LANGUAGE profile
for a subset of the Flashlight presentation. If this code seems overwhelming,
look back at the presentation schematic on page 30. (If it doesn’t seem over-
whelming, perhaps you should look at it again!) In order to reduce the com-
plexity of this example, we’ve only included three subsections in the code of
Flashlight. The entire presentation is available on our book’s Web site.

1 <!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 3.0 Language//EN"
"http://www.w3.org/2008/SMIL30/SMIL30Language.dtd">

2 <smil xmlns="http://www.w3.org/ns/SMIL" version="3.0" baseProfile="Language">
3 <head>
4 <meta name="title" content="Flashlight"/>
5 <meta name="generator" content="GRiNS for SMIL 3.0"/>
6 <meta name="author" content="Jack Jansen and Dick Bulterman"/>
7 <layout>
8 <root-layout xml:id="Flashlight" backgroundColor="#ffffcc" width="240"

height="269"/>
9 <region xml:id="Title" left="0" width="240" top="0" height="29"/>

10 <region xml:id="Image" left="0" width="240" top="29" height="180"
z-index="2"/>

11 <region xml:id="Text" left="0" width="240" top="209" height="42"
fit="meet"/>

12 <region xml:id="Buttons" left="0" width="240" top="251" height="15"/>
13 <region xml:id="Logo" left="0" width="240" top="169" height="42"

z-index="3"/>
14 <region xml:id="Sound"/>
15 </layout>
16 <transition xml:id="fade1s" type="fade" dur="1s"/>
17 </head>
18 <body>
19 <par>
20
21 <seq>

<!-- This is the opening segment. -->

22 <par xml:id="Intro">
23
24 <area xml:id="AIB" href="#Bat" sourcePlaystate="stop"

coords="99,0,139,15"/>
25 <area xml:id="AIM" href="#MI" sourcePlaystate="stop"

coords="220,0,237,15"/>
26
27 <par>
28 <img xml:id="I-picture" region="Image" src="M/lamp1.jpg"

transIn="fade1s"/>
29 <img region="Logo" fill="freeze" src="M/FL.gif"

transIn="fade1s"/>
30 <audio xml:id="I-Welcome" region="Sound" src="M/Welcome.mp3"/>
31 <seq xml:id="description" begin="2">
32 <img xml:id="lightweight" region="Text" dur="1s" fill="transition"

src="M/lw.gif" transIn="fade1s"/>
33 <img xml:id="affordable" region="Text" dur="1s" fill="transition"

src="M/af.gif" transIn="fade1s"/>
34 <img xml:id="durable" region="Text" dur="2s" fill="freeze"

src="M/du.gif" transIn="fade1s"/>
35 </seq>
36 </par>
37 </par>

Example 2-1. The SMIL 3.0 Language profile code for Flashlight.

Section 2.2: Flashlight: A SMIL Example Presentation 33

Example 2-1. The SMIL 3.0 Language profile version of Flashlight (continued).

<!-- This is the Batteries segment. -->

38 <par xml:id="Bat">
39
40 <area xml:id="ABI" href="#Intro" sourcePlaystate="stop"

coords="39,0,91,15"/>
41 <area xml:id="ABM" href="#More" sourcePlaystate="stop"

coords="220,0,237,15"/>
42
43 <par>
44 <switch>
45 <video xml:id="B-vid" region="Image" src="M/Bat.avi" transIn="fade1s"

transOut="fade1s" systemBitrate="34400" />
46 <seq>
47 <par>
48
49 <audio xml:id="BA-CCW" region="Sound" src="M/cCW.mp3"/>
50 </par>
51 <par>
52 <img xml:id="BI-insert" region="Image" dur="8s"

src="M/Insert.jpg"/>
53 <audio xml:id="BA-insert" region="Sound" src="M/Insert.mp3"/>
54 </par>
55 <par>
56 <img xml:id="BI-CW" region="Image" src="M/cw.jpg"

transIn="fade1s"/>
57 <audio xml:id="BA-CW" region="Sound" src="M/cw.mp3"/>
58 </par>
59 </seq>
60 </switch>
61 <seq>
62
63 <img xml:id="B-in" region="Text" dur="8s" fill="transition"

src="M/insert.gif" transIn="fade"/>
64 <img xml:id="B-cw" region="Text" src="M/cw-sm.gif"

transIn="fade1s"/>
65 </seq>
66 </par>
67 </par>

<!-- This is the Closing segment. -->

68 <par xml:id="More">
69
70 <area xml:id="AMI" href="#Intro" sourcePlaystate="stop"

coords="39,7,91,26"/>
71 <area xml:id="AMB" href="#Bat" sourcePlaystate="stop"

coords="99,6,139,25"/>
72
73 <par>
74
75 <audio xml:id="Thanks" region="Sound" src="M/Thanks.mp3"/>
76
77
78
79 </par>
80 </par>
81 </seq>
82 </par>
83 </body>
84 </smil>

Chapter 2: Understanding SMIL Code34

2.2.1 The Head and Body Sections
Example 2-2 gives an outline form of the Flashlight document. All SMIL
host-language compliant documents adhere to this general structure, so it can
be used as a standard text template — although you’ll have to include the cor-
rect DOCTYPE and namespaces for particular SMIL versions.

The basic declarations used in a SMIL 3.0 LANGUAGE document are shown in
Example 2-2. Line 1 defines the document type to be used by the XML parser
for the SMIL document. Note that line 1 forms a single XML statement, but that
it ends with a single right angle bracket — not a “/>”! Line 2 identifies the host
language of this document as SMIL. The <smil> element is used in every type
of SMIL document in which SMIL is the host language. In order to differentiate
between current and future versions, SMIL 3.0 introduced the use of the
version and baseProfile attributes. If you specify a DOCTYPE with a refer-
ence to a valid DTD for a given profile, then default values for version and
baseProfile will be defined in the DTD. If these are specified on the <smil>
element, they must match those in the DTD. A DOCTYPE isn’t required; if one
is missing, the two attributes version and baseProfile must be specified to
ensure that the correct version of SMIL is used.

Earlier versions of SMIL did not have a version/baseProfile attribute set.
SMIL 2.0 used a common DOCTYPE for all host-language versions, and identi-
fied the relevant profile by a unique xmlns namespace. A typical declaration for
our example document would be:

This namespace specification is required in SMIL 2.0 host language documents,
whether they are based on the SMIL BASIC profile or the full SMIL 2.0
LANGUAGE profile (or somewhere in between). Some SMIL files may contain
additional namespace declarations; these are used to identify any extensions to
SMIL that are required by the document. If an additional or non-standard
namespace is used in a presentation, then the DOCTYPE declaration must
either be removed or be updated to point to a new DTD that will recognize the
namespace additions. The default DOCTYPE declaration may only be used
with the standard SMIL namespace definition.

Example 2-2. The basic structure of a SMIL presentation.

1 <!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 3.0 Language//EN"
"http://www.w3.org/2008/SMIL30/SMIL30Language.dtd">

2 <smil xmlns="http://www.w3.org/ns/SMIL" version="3.0" baseProfile="Language">
3 <head>
 ...
17 </head>
18 <body>
 ...
83 </body>
84 </smil>

1 <!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0//EN"
 "http://www.w3.org/TR/REC-smil/SMIL20.dtd">
2 <smil xmlns="http://www.w3.org/2001/SMIL20/Language">

Section 2.2: Flashlight: A SMIL Example Presentation 35

Lines 3 through 17 contain the SMIL <head> section. This section contains
definitions that are not part of the temporal flow of the presentation. Among
the elements you can expect to find in the <head> are: <meta>, <layout> and
<transition>. The <head> section is optional.

Lines 18 through 83 define the SMIL <body> section. This section contains
the media and timing control elements in the SMIL specification. The <body> is
technically optional, but a SMIL presentation without a <body> is seldom use-
ful. While most XML languages contain a <body> section, SMIL’s <body> has an
extra feature: it also defines a sequential timing container, just like a SMIL
<seq> element. This means that all of the top-level contents of the <body> are
evaluated as a temporal sequence by the SMIL player.

The following sections discuss the contents of the <head> and <body> sec-
tions in detail. Since, however, the <transition> element introduced in SMIL
2.0 is difficult to place in our partitioning of concepts, we will consider it here
before moving to the rest of SMIL. Line 16 of our example contains a definition
of a transition resource:

This line defines a named transition (in this case, fade1s) which can be used in
any media object reference in the body of the presentation. The definition on
line 16 does not cause a transition to occur — it simply defines all of the param-
eters associated with a potential transition in one place. The transition can be
applied to a particular media object by adding an attribute for an input or out-
put transition (or both) to an object. For example, line 45 contains the following
video reference:

Line 45 defines both an input (transIn) and an output transition (transOut).
Since both reference the same transition definition on line 16 (fade1s), both
will have the same transition behavior. This form of indirect attribute assign-
ment reduces the complexity of the specification. Indirect attribute assignment
is also used for SMIL layout and for aspects of SMIL content control.

2.2.2 Media Content
The ‘I’ in SMIL stands for “Integration” — SMIL rarely defines media, but
instead integrates multiple media that already exist into a single presentation.
The primary SMIL construct for retrieving media content is the <ref> element.

16 <transition xml:id="fade1s" type="fade" dur="1s"/>

45 <video xml:id="B-vid" region="Image" src="M/Bat.avi" transIn="fade1s"
transOut="fade1s" systemBitrate="34400" />

Quick Tip

SMIL allows you to define transitions on all types of media; keep in mind
that on some platforms, placing transitions on certain types of intensive
media (such as video) can be computationally expensive: it may look
great on the desktop, but it may put off users on mobile devices.

Chapter 2: Understanding SMIL Code36

The <ref> specifies a general object reference. In order to aid reading of a SMIL
document, most profiles allow <ref> to have the synonyms , <video>,
<audio>, <text>, <animation> and <textstream>. The SMIL language does
not enforce that an object referenced via a synonym is of the type suggested by
the tag (for example, that an tag actually references an image) — that’s
why all of these element identifiers are only synonyms to <ref>.1

Line 20 contains a simple reference to a media object:

This line requests that the media file title.gif is shown in the layout region
Title. One interesting aspect of this example — from a timing and synchroni-
zation perspective — is that the display request does not contain any start or
end times, or any duration! Unlike a lot of presentation languages, SMIL can
often compute these times based on other information in the specification. This
makes creating and maintaining a presentation easier than if every object had
its timing explicitly specified.

Note that in this example, we don’t use the SMIL 3.0 <smilText> functional-
ity for defining headlines and captions. We do this to maximize compatibility
with earlier versions of the language. For an example of how <smilText>
might have been used, read Chapter 9: Timed Text in SMIL.

Lines 20, 23-26, 28-30, 32-34, 39-42, 45, 48-49, 52-53, 56-57, 62-64, 69-72 and
74-75 and 77 all define media object references. Most references will have attri-
butes to define the source of the media (src) and a layout region for rendering
the media (region). They may also include attributes for specifying transitions
or alternative content, or explicit timing information when necessary.

It is important to remember that the SMIL file contains no actual media con-
tent — it only contains pointers to content. This makes the SMIL file small and
it allows it to be processed independently of any content.

2.2.3 Layout
Most SMIL host-language players (including MMS and SMIL Daisy) use SMIL
Layout. Players that implement other profiles usually support CSS layout. Both
approaches provide control over object placement and scaling.

1 Versions of MMS require that only the synonyms be used instead of <ref> and that the
type of the element (i.e., img) match the encoding of the media.

20

Quick Tip

When an alt attribute is used in a SMIL document, its content is never
rendered directly in the presentation. Instead, the contents may be used
by some players to identify content in a mouse-over balloon, but this is
optional behavior. SMIL content control elements should be used to
specify alternative content for media objects.

Section 2.2: Flashlight: A SMIL Example Presentation 37

The general layout and positioning model used in the Flashlight example is
shown in Figure 2-3. SMIL supports the notion of a top-level container window
(called either the root-layout or topLayout, which contains one or more regions.
Each region defines a rectangular collection of pixels and a region stacking
order (called the z-index). In profiles supporting hierarchical layout, the layout
section may also support a region hierarchy within parent regions. (This is use-
ful if the parent’s position is animated.) Each region can have default behavior
specified for media object clipping and scaling, and, in most profiles, it is also
possible to specify centering and registration points for media in regions. SMIL
also provides support for audio layout, but this support is not extensive.

SMIL layout is geared to the placement of media objects in a fixed viewing
environment. That is, unlike an HTML page which can be resized without
affecting content, a SMIL presentation layout is usually very media-centric. As
a result, SMIL Layout has only indirect support for specifying window border
widths and text placement options. (CSS has much more extensive support for
these.) While this limitation can sometimes be frustrating, it does help keep
SMIL Layout simple enough to be used on low-power devices.

Figure 2-3. SMIL layout and positioning model.

root-layout

left width right

top

height

bottom

containing block

(flashlight)

Title (z-index is 0)

Image (z-index is 1)

Logo (z-index is 3)

Text (z-index is 0)

Buttons (z-index is 0)

(a) Layout architecture of
Flashlight

(b) Layout architecture mapped
to screen image

(c) Layout positioning model

region

Chapter 2: Understanding SMIL Code38

Example 2-3 shows the layout specification for our sample presentation. The
layout contains the root-layout container window (called Flashlight) and six
media rendering regions. Some of the regions are assigned an explicit stacking
order, others take the default of their parent (in this case, the default for the root
is ‘0’). Each region contains positioning information when screen space is used;
audio regions do not have positioning information in SMIL. Note that the
region Logo is spatially embedded on top of the region Image. Any content ren-
dered in Logo will overlay the content in the overlapping part of Image.

Most of the attributes associated with regions are self-explanatory. (If you
can’t explain them to yourself yet, take a look at Chapter 8: SMIL Basic Layout.)
One attribute that is new is fit: this attribute specifies how over- and
under-size media objects are rendered. (A value of meet means: scale the media
in such a way that it fills the region completely.)

2.2.4 Timing
The timing and synchronization functional group represents the core of SMIL
functionality. The group is divided into 19 modules, each of which defines a
collection of XML elements and attributes that control some aspect of timing.

For any content within a timing element (whether a media object or struc-
ture container), the primary issues to be addressed are:

when does the element begin?
how long is it active?

Example 2-3. Layout section for Flashlight.

7 <layout>
8 <root-layout xml:id="Flashlight" backgroundColor="#ffffcc" width="240"

height="269"/>
9 <region xml:id="Title" left="0" width="240" top="0" height="29"/>

10 <region xml:id="Image" left="0" width="240" top="29" height="180"
z-index="2"/>

11 <region xml:id="Text" left="0" width="240" top="209" height="42"
fit="meet"/>

12 <region xml:id="Buttons" left="0" width="240" top="251" height="15"/>
13 <region xml:id="Logo" left="0" width="240" top="169" height="42"

z-index="3"/>
14 <region xml:id="Sound"/>
15 </layout>

Quick Tip

SMIL supports dynamic resizing of media content to the shape of the
rendering window. This can be very convenient for multi-platform
support, but it can also be computationally expensive for a SMIL
renderer. Use this facility with caution if you plan to target
low-performance devices.

Section 2.2: Flashlight: A SMIL Example Presentation 39

what happens to it when it is no longer active?
are there other non-timing conditions that cause an element to begin/end?

These questions are “answered” by specifying a set of timing attributes and ele-
ments. The timing attribute values are applied to SMIL’s temporal elements or
to other elements and their children.

Timing Attributes

SMIL 2.0 has an extensive set of attributes to control timing, most of which
carry reasonable defaults so that basic timing and synchronization operations
can be accomplished easily. Note that not all of the SMIL profiles support all of
the attributes, and the syntax of defining and setting the attribute values may
vary. This being said, a design objective of SMIL was that each attribute should
have a well defined semantic that remains constant across profiles.

Timing Elements

Although SMIL defines a large set of timing attributes, it only introduces three
timing elements: <seq>, <par> and <excl>. All three elements represent timing
containers: they influence how the timing of their children is defined.

A <seq> (sequential) container specifies that its children get processed
sequentially: each child, whether it contains media or hierarchical structure, is
processed when its predecessor ends. The following excerpt from Example 2-1
shows the top-level sequential behavior in our Flashlight presentation:

The <seq> container on line 21 indicates that each of its children (in this case,
three <par> containers) are to be processed sequentially.

A <par> element specifies that its children play in parallel. Actually, this is a
simplification of SMIL behavior: a <par> really says that the default behavior of
its children is that they all share a common parent timeline with a common
default begin at the start of the <par>, but that this default can be changed via
SMIL’s timing attributes. The <par> is the most general SMIL container. The fol-
lowing excerpt from Example 2-1 shows the parallel behavior of one of the
<par> groups in Flashlight. Two images and one audio fragment are rendered
starting at the default time of the beginning of the container. Two seconds later,
an embedded sequential container becomes active. The <par> ends when the
last element in the container ends.

21 <seq>
22 <par xml:id="Intro">

...
37 </par>
38 <par xml:id="Bat">

...
67 </par>
68 <par xml:id="More">

...
80 </par>
81 </seq>

Chapter 2: Understanding SMIL Code40

An <excl> (or exclusive) element is very much like a <par>, with one major
exception: at most one of the children of the <excl> can be active at one time.
The easiest way to think about an exclusive container is that it is a <par> in
which all of the children have conditional begin times. (Usually, this condition
is a mouse-click.) When one child is selected, any other child that was playing
is immediately de-activated. If another child is selected, it replaces its predeces-
sor. When no child is active, the <excl> container ends (unless it has attributes
that extend its life). Since <excl> is advanced SMIL functionality that is not
supported by all SMIL profiles, we defer a discussion until Chapter 15:
Advanced SMIL Timing Behavior and Control.

2.2.5 Linking
The <excl> construct illustrates one form of interactivity in a SMIL presenta-
tion. The <excl> is useful for controlling the activation of a piece of code condi-
tionally, but there are other useful forms of interaction as well. SMIL linking
provides facilities for presentation navigation and branching: users can move
around in the presentation, and they can grab extra information (sometimes
from outside the scope of the document) for conditional inclusion into the pre-
sentation.

SMIL’s primary linking constructs are, as in HTML, the <a> element (and its
href attribute) and the <area> element (which gives linking control within an
object). Both have very similar meanings to their HTML counterparts except for
one major extension: both can add the notion of time to a link.

Links — or more correctly, anchors — can have a duration specified during
which they are active. In this way, an object can have several links associated
with it while the underlying object is active. Timed anchors also control the
state of the entire source presentation: when a link is followed, the original doc-
ument can be paused, replaced, or simply left to keep on running.

Linking is a very powerful feature for adding navigation and conditional
content activation facilities to a presentation. Unfortunately, not all SMIL imple-
mentations support full SMIL linking functionality completely, so make sure
you test your SMIL file carefully on all candidate players.

27 <par>
28 <img xml:id="I-picture" region="Image" src="M/lamp1.jpg"

transIn="fade1s"/>
29 <img region="Logo" fill="freeze" src="M/FL.gif"

transIn="fade1s"/>
30 <audio xml:id="I-Welcome" region="Sound" src="M/Welcome.mp3"/>
31 <seq xml:id="description" begin="2">
32 <img xml:id="lightweight" region="Text" dur="1s" fill="transition"

src="M/lw.gif" transIn="fade1s"/>
33 <img xml:id="affordable" region="Text" dur="1s" fill="transition"

src="M/af.gif" transIn="fade1s"/>
34 <img xml:id="durable" region="Text" dur="2s" fill="freeze"

src="M/du.gif" transIn="fade1s"/>
35 </seq>
36 </par>

Section 2.2: Flashlight: A SMIL Example Presentation 41

Two types of linking are shown in Flashlight. The following fragment shows
internal linking using the <area> element:

Line 23 contains a reference to an image. There is no begin or end attribute
defined for this object, so it lasts as long as other objects in the same <par> ele-
ment.2 Lines 24 and 25 contain <area> anchors that are defined as children of
this object. Each anchor is defined to cover a certain part of the buttons bar at
the bottom of the display area. If an anchor is selected, control is passed to the
named part of the document as if a fast-forward or fast-reverse operation had
taken place. The behavior of area-based links is similar to the equivalent HTML
construct, with the exception that the state of the initial presentation can be
explicitly manipulated via the sourcePlaystate attribute. Following the link
also has a defined temporal behavior and thus influences the presentation
timeline.

A second type of link is shown in the following code fragment:

Line 76 shows an anchor that is wrapped around the entire object rather than
being defined as part of an object’s rendering space. There are no spatial con-
straints and no explicit playstate settings.

Links in SMIL are similar to those in HTML in most respects, except that
SMIL adds a description of the temporal consequences of links. It also provides
a set of timing attributes that can be applied to links. Consider the following
fragment, which extends the behavior of Flashlight:

The anchor named AIB now starts its active period 5 seconds after the image
begins; the anchor is then active for 10 seconds. If someone clicks on the image
anytime before the first 5 seconds, nothing happens. If someone clicks on the
image after 15 seconds (that is, after the 5 second start delay and the 10 second
active period of the anchor), nothing happens. However, if the anchor is
selected during its 10 second active period, the control will flow to the target of
the anchor (in this case, the anchor Bat).

2.2.6 Adaptivity
On the Web, each document is available to the entire world. It is thus available
to users that have special needs. SMIL contains a suite of content control ele-

2 This is a simplification of what really goes on when elements have no timing.

23
24 <area xml:id="AIB" href="#Bat" sourcePlaystate="stop" coords="..."/>
25 <area xml:id="AIM" href="#MI" sourcePlaystate="stop" coords="..."/>
26

76
77
78

<area xml:id="AIB" href="#Bat" begin="5s" dur="10s"
sourcePlaystat="stop" coords="99,0,139,15"/>

Chapter 2: Understanding SMIL Code42

ments that simplify the task of supporting a worldwide, diverse audience by
integrating multiple content streams in a single document.

The <switch> element is the most important SMIL element for adaptivity. At
most one child of each <switch> element may be selected for inclusion in the
presentation. Each child of the <switch> is evaluated by checking the state of a
SMIL test attribute against the value of that variable in the SMIL player. The first
child that is determined appropriate for playing is played. If none of the chil-
dren is appropriate, then none is played.

To see how the <switch> works, consider the following fragment from
Example 2-1:

The <switch> on line 44 contains two top-level children: a <video> element
and a <seq>. The <video> element contains the systemBitrate attribute,
which says: if the system bitrate has been determined (by the player) to be at
least 34Kbps, then consider this switch child to be available. The SMIL player
will use the first <switch> child that it determines is available for activation.
Note that the <seq> does not contain a system test attribute: this means that it is
always an acceptable candidate. In this presentation, the image/audio
sequence will only be played if the bitrate test for video failed.

System test attributes are usually found on children of a <switch>, but SMIL
also supports in-line test attributes. In-line test attributes provide a means for
conditional acceptance of individual elements (or element trees) of SMIL, while
switch-based content control provide a way of specifying alternatives within a
document.

2.2.7 Putting it All Together
Now that we’ve looked at all the major components of the SMIL presentation,
we can take a look at the presentation as a whole. You may want to refer back
to Example 2-1 while we walk through the total presentation.

Lines 3 through 17 define the SMIL head section, in which the layout of the
presentation is defined and in which any transitions are given. This informa-

44 <switch>
45 <video xml:id="B-vid" region="Image" src="M/Bat.avi" transIn="fade1s"

transOut="fade1s" systemBitrate="34400" />
46 <seq>
47 <par>
48
49 <audio xml:id="BA-CCW" region="Sound" src="M/cCW.mp3"/>
50 </par>
51 <par>
52
53 <audio xml:id="BA-insert" region="Sound" src="M/Insert.mp3"/>
54 </par>
55 <par>
56
57 <audio xml:id="BA-CW" region="Sound" src="M/cw.mp3"/>
58 </par>
59 </seq>
60 </switch>

Section 2.2: Flashlight: A SMIL Example Presentation 43

tion is used by reference in the rest of the presentation. The layout consists of
five main windows and one audio region. The transition specifies a one-second
fade.

The body of the presentation starts on line 18. The entire presentation con-
sists of a sequence of three parallel elements. The first parallel element defines
an image that is presented in parallel with two other images, an audio file and
a sequence of three images. This structure is repeated with minor modifications
in the other two parallel components. The structure group on line 38 contains
the linking image, and then either a video sequence or a set of images and
audio. (The choice depends on the evaluation of the switch element.) This is
played in parallel with a sequence of three images on line 61. The final parallel
group contains a linking image in parallel with a combination of an image and
audio on line 73, and an external linking image on line 78.

One interesting way to look at a SMIL presentation is to focus on its struc-
ture. Here, we are interested in the big picture, rather than any of the timing
details of the individual media objects. Figure 2-4 shows a structure-only repre-
sentation of Flashlight, as rendered in the GRiNS Editor. This view uses colors to
show the nested presentation components, but it doesn’t show any of the tim-
ing details. An advantage of the GRiNS approach is that, for example, the red
block in the center of the image can show the state of a <switch> element. In
this case, the video is selected and the image/audio sequence is darkened to
indicate that it is inactive.

Figure 2-4. Structure View of Flashlight from the GRiNS Editor for SMIL.

<seq>

<par> <switch>

<excl>

media object element

shaded nodes are those

link source (href=)
link destination (id=)
begin event (begin=)
end event (end=)
syncbase (id=)

not selected for playback
nested elements

Chapter 2: Understanding SMIL Code44

You should compare the structured view provided by the GRiNS Editor with
the presentation schematic diagram presented in Figure 2-1 on page 30. Both
use an encapsulated view of the structured presentation as a collection of
nested time containers and media objects.

Time can also be integrated into a structured representation. Figure 2-5
shows the GRiNS structured timeline: here, objects are scaled to their duration
(when known), but it is still possible to focus on the presentation structure.
Note that the status of the <switch> element has changed between Figure 2-4
and Figure 2-5: now the image/audio sequence is active and the video is inac-
tive.

2.3 Encoding Flashlight in Different Profiles
The examples of Flashlight in the previous section focused on the SMIL 3.0 Lan-
guage profile. In this section, we look at transformations of Flashlight for use
with other profiles.

2.3.1 SMIL 3.0 Extensions
While the DOCTYPE, xmlns and the version/baseProfile attributes all iden-
tified the Flashlight example as a SMIL 3.0 presentation, the SMIL code does not
make use of any extensions introduced in SMIL 3.0 (or even SMIL 2.1). This has
been done to keep a relative complex example as simple as possible.

2.3.2 SMIL 2.0/2.1 Language Profiles
Since no SMIL 3.0 extensions were used in Flashlight, the only change required
to make the presentation compatible with SMIL 2.1 or SMIL 2.0 is to use the cor-
rect namespace and DOCTYPE for these versions. Everything else will work
without alteration.

Figure 2-5. StructureTimeline View of Flashlight from the GRiNS Editor

Section 2.3: Encoding Flashlight in Different Profiles 45

2.3.3 SMIL Mobile Versions
There are several SMIL profiles developed for use on mobile telephones. While
these provide general guidance to manufacturer and industry standardization
groups, most handset vendors do not directly implement SMIL. Instead, the
embed SMIL functionality in layered standards that include signally, packaging
and transport protocols that are optimized for mobile handsets. One such layer
set of protocols is developed by 3GPP: the third-generation partnership plat-
form. One common packaging of SMIL in this environment is via MMS, the
multimedia messaging system.

Many early multimedia telephones support the MMS language, version 2.
This language restricts a presentation to containing a sequence of media
objects, with each object containing a single image, a single text caption and a
single audio file. (Not all media objects are required.) This is too restrictive for
our Flashlight example, but it does work for less complex applications.

The entire Flashlight example of Example 2-1 can be viewed without major
modification on an MMS player using a 3GPP SMIL compliant version (version
5 or later). 3GPP SMIL version 4 and earlier imposes substantial restrictions on
SMIL structure and should probably be avoided. Note that 3GPP used to label
their SMIL support with an explicit version number (such as 3GPP PSS5 SMIL),
but the version number has been removed in current 3GPP nomenclature. We
refer to these more modern versions generically as MMS.

The MMS client is essentially a SMIL 2.0 MOBILE engine with several restric-
tions. (The differences among profiles are given in Appendix A: SMIL Profile
Architecture Reference.) The changes that would need to be made to Flashlight in
order to be fully MMS compliant are discussed in the following sections.

Head and Body Sections

All MMS documents require the SMIL 2.0 namespace declaration shown below:

If a specific document needs a particular feature from SMIL 2.0 (such as tran-
sitions, which may not be implemented in all versions of mobile clients), the
following expanded namespace definition could be used:

This definition defines a namespace variable (pss5) that is shorthand for the
entire 3GPP/PSS5 namespace string. The systemRequired attribute informs the
SMIL player that it must understand all of the definitions of the 3GPP SMIL
namespace to process the document correctly. This can be handy if your SMIL
document may be used on a variety of clients (not all of which comply with the
full standard). In general, however, it is not necessary to include a specific 3GPP
namespace declaration.

<smil xmlns="http://www.w3.org/2001/SMIL20/Language" >

<smil xmlns="http://www.w3.org/2001/SMIL20/Language"
xmlns:pss5="http://www.3gpp.org/SMIL20/PSS5/"
systemRequired="pss5" >

Chapter 2: Understanding SMIL Code46

The body section includes a transition definition. MMS supports a limited set
of transition types: only barWipe, irisWipe, clockWipe, snakeWipe, pushWipe,
slideWipe and fade. Full-screen transitions are also supported. (Flashlight only
uses fade.)

The rest of the body section of Example 2-1 conforms to MMS. Keep in mind,
however, that mobile terminals benefit from small file sizes: the smaller the
size, the faster the setup within the handheld device. The only place to really be
able to save on SMIL file size is in the use of SMIL’s meta-data. Flashlight only
uses three lines of meta-data — for a total of about 150 characters — but since
this meta-data is typically not used by a MMS, other files with lots of meta-data
could be stripped before being published. (This is true for PC players, too, but
the setup time on desktop systems is rarely a factor.)

Media Content

MMS supports audio, video, images and text, but it does not support all types
of media within these types. All MMS players should support AMR audio,
H.263 Video, MIDI, GIF, JPEG and plain text. Flashlight uses GIF and JPEG
images, so these present no problems. For the most restrictive implementa-
tions, the AVI video and MP3 audio would need to be converted to the MMS
corresponding formats.

Layout

Flashlight uses layout facilities that are compatible with MMS. The outer win-
dow size in the original presentation is 269 pixels high and 240 wide. This is
acceptable for many modern devices, but it may be too large for the smaller res-
olutions of older mobile telephones.

There are several alternatives available for making the presentation compat-
ible with all devices:

Resize the base presentation: you could survey all mobile devices and create a
layout that is no bigger than the most restrictive presentation environment.
This is very safe, but it can lead to frustration among users who have pur-
chased fancier devices (or users of desktop SMIL players).
Use device default layout: if no layout section is defined in a presentation, the
SMIL player can place objects where it thinks they fit best. While this
sounds attractive, it usually results in all content being stacked on top of all
other content. The result is rarely pleasing (or useful).
Explicitly allow objects to be scaled: SMIL provides values for object placement
that allow media to be scaled. While this is potentially useful, small devices
will often have trouble when scaling images and (especially) video. (With
lots of video, the presentation will probably last longer than the battery!)
Define multiple layouts using SMIL content control: this is the most useful way
of handling multiple devices. SMIL provides a wealth of facilities for pro-
viding alternative layouts within one presentation.

Section 2.3: Encoding Flashlight in Different Profiles 47

While a complete discussion of using multiple layouts within a presentation
will have to wait until Chapter 17: Advanced Layout Topics, the code fragment
in Example 2-4, provides an overview of how SMIL handles layout diversity.
This example contains two layout sections within a common switch statement.
The first section contains the standard layout, which has been designed for a
display area of 269 pixels high and 240 pixels wide (or greater). If this room is
available, then the base layout will always be used. If a smaller display is avail-
able, a second layout is used. This layout is defined for a 4::3 display and uses
relative values instead of absolute positioning. It also allows certain media to
be scaled. Note that rather than using the id attribute to define region names,
the regionName attribute is used. This allows multiple layouts to be defined
that create regions with the same name.

In the body section, a reference to a region is made. The player will select the
appropriate layout for the device used during playback.

Timing

Flashlight is fully MMS compatible: it only uses the <par> and <seq> timing ele-
ments (and not the unsupported <excl>) and it makes use of only standard
timing attributes.

Example 2-4. Mobile layout section for Flashlight.

<switch>
<layout systemScreenSize="269X240">
<root-layout xml:id="Flashlight" backgroundColor="#ffffcc"

width="240" height="269"/>
<region regionName="Title" left="0" width="240" top="0" height="29"/>
<region regionName="Image" left="0" width="240" top="29"

height="180" z-index="1"/>
<region regionName="Text" left="0" width="240" top="209"

height="42"fit="meet"/>
<region regionName="Buttons" left="0" width="240" top="251"

height="15"/>
<region regionName="Logo" left="0" width="240" top="169"

height="42" z-index="3"/>
<region regionName="Sound"/>

</layout>
<layout systemScreenSize="200X175">
<root-layout xml:id="Flashlight-A" backgroundColor="#ffffcc"

 width="175" height="200"/>
<region regionName="Title" left="0" width="100%" top="0"

height="15%"/>
<region regionName="Image" left="0" width="100%" top="15%"

 height="60%" z-index="1"/>
<region regionName="Text" left="0" width="100%" top="75%"

height="20%" fit="meet"/>
<region regionName="Buttons" left="0" width="100%" top="95%"

height="5%"/>
<region regionName="Logo" left="0" width="100%" top="70%"

height="20%" z-index="3"/>
<region regionName="Sound"/>

</layout>
</switch>

...

Chapter 2: Understanding SMIL Code48

Linking

MMS supports the internal and external linking used in Flashlight. The only
modification necessary might be to the content displayed in the external Web
page:

Not all MMS players will have full HTML support, and not all will have screens
that are large enough to handle generic Web content.

One other potential problem for supporting Flashlight is the use of multiple
linking targets within <area> elements:

The problem is not a lack of MMS support for <area>, but rather a (potential)
problem with the mobile device’s UI: it may not have a pointer device that can
easily be navigated over items. In general, use of the <a> element is safest, but
this does introduce extra overhead in handling (and positioning) multiple
images for linking use.

Adaptivity

MMS supports the <switch> element as used in Flashlight (and in the enhanced
layout section just discussed). No further modifications are necessary. One con-
sideration that may be worthwhile is to add additional content control to
address the needs of small devices. For example, the presentation could be
modified to augment the bandwidth related <switch> statement with one that
considers display size as well:

Here, the <video> will only be activated if the bitrate is 34400 (or greater) and
the screen size is at least 269x240.

Other Considerations

The use of MMS can definitely be classified as emerging. It is likely that there
will be a high degree of non-uniformity across devices until the market settles
on various devices and screen sizes. You should experiment carefully or use
authoring tools that explicitly support a diverse set of devices.

<area xml:id="AIB" href="#Bat" sourcePlaystate="stop" coords="..."/>
<area xml:id="AIM" href="#MI" sourcePlaystate="stop" coords="..."/>

<switch>
<video xml:id="B-vid" region="Image" src="M/Bat.avi" transIn="fade1s"

transOut="fade1s" systemBitrate="34400" systemScreenSize="269X240"/>
<seq>
...

</seq>
</switch>

Section 2.3: Encoding Flashlight in Different Profiles 49

2.3.4 XHTML+SMIL Profile
In order to make a version of Flashlight in the XHTML+SMIL profile, we need to
change the basic encoding of the document and to replace SMIL layout with
CSS layout functions. Example 2-5 (placed on the following two pages) shows
one transformation from the SMIL 2.0 LANGUAGE profile to HTML+TIME.3

At first glance, the contents and structure look very different from that
shown in Example 2-1, but on closer inspection, the similarities are much
greater than the differences. The elements and attributes share essentially the
same names and the method of defining and manipulating temporal objects
within the presentation is also very similar.

The following paragraphs provide an overview of the modifications and
limitations of XHTML+SMIL for Flashlight.

Head and Body Sections

As with most XML languages, the head section contains general declarations
that are used for file parsing and processing, while the body section contains
the ‘meat’ of the content. The new host language for the document will become
HTML, since the only implementation of this profile is Microsoft’s HTML+TIME.
The <html> element contains a reference to Microsoft’s time namespace; this
namespace (which is given the shorthand definition ‘t’) contains all of the
information required to parse the HTML+TIME structure.

In order to make Flashlight HTML+TIME compliant, several fundamental
declarations need to be made in the <head> section. The most important ones
are the CSS declaration of the time behavior on line 5 and the association of the
time2 implementation of HTML+TIME with the t namespace on line 13. (The
time2 behavior is the second implementation of HTML+TIME; this implemen-
tation supports the bulk of SMIL 2.0 functionality, but not the SMIL 2.1 or 3.0
extensions.) The <head> section also contains a number of CSS definitions that
are used for layout — more on this in the Layout section below. Note that
HTML+TIME does not place transition definitions in the head section.

The structure of the body section is a mix of standard HTML and
HTML+TIME extensions. Each of the elements in the body that are to be inter-
preted as HTML+TIME have the prefix <t:>. This lets the parser (and the
browser) know that SMIL 2.0 functionality should be associated with the ele-
ment rather than HTML behavior. In order to understand the distinction

3 The bulk of this version was generated by the GRiNS/SMIL 2.0 Pro editor. Hand-editing
may yield a different structure.

2 <html xmlns:t="urn:schemas-microsoft-com:time">
3 <head>
4 <style>
5 .time {behavior: url(#default#time2)}
...

12 </style>
13 <?IMPORT namespace="t" implementation="#default#time2">
14 </head>

Chapter 2: Understanding SMIL Code50

between HTML and SMIL (HTML+TIME) code, consider the following frag-
ment:

All of these statements are preceded with the t namespace qualifier. The
<t:par> and <t:seq> elements are obviously SMIL related; they have no
HTML equivalents. The <t:img> element on line 19 is an example of an element
which has an HTML equivalent type (that is, HTML also has its own ele-
ment, with an HTML-defined structure and behavior). The <t:img> specifica-
tion says that the SMIL definition should be used instead of the HTML one.

Example 2-5. Excerpt from Flashlight as an HTML+TIME presentation.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
2 <html xmlns:t="urn:schemas-microsoft-com:time">
3 <head>
4 <style>
5 .time {behavior: url(#default#time2)}
6 .R-root-layout {position:absolute;overflow:hidden;

left:0;top:0;width:240;height:269;background-color:#ffffcc}
7 .R-Title {position:absolute;overflow:hidden;

left:0;top:0;width:240;height:29;}
8 .R-Image {position:absolute;overflow:hidden;

left:0;top:29;width:240;height:180}
9 .R-Buttons {position:absolute;overflow:hidden;

left:0;top:251;width:240;height:15}
10 .R-Text {position:absolute;overflow:hidden;

left:0;top:209;width:240;height:42}
11 .R-Sound {}
12 </style>
13 <?IMPORT namespace="t" implementation="#default#time2">
14 </head>
15 <body>
16 <div id="Flashlight" class="R-root-layout">
17 <t:seq>
18 <t:par>
19 <t:img src="M-HT/title.gif" class="R-Title"/>
20 <t:seq >
21 <t:par id="Intro" >
22 ...
45 <t:/par>
46 <t:par id="Bat">
47 <t:par>
48 <t:switch>
49 <div class="time" timeContainer="par">
50 <t:video id="B_vid" src="M-HT/Bat.avi"

systemBitrate="56120" class="R-image"/>
51 <t:transitionFilter type="fade" subtype="crossfade"

dur="1" targetElement="B_vid" begin="B_vid.begin"
mode="in" from="0" to="1"/>

52 <t:transitionFilter type="fade" subtype="crossfade"
dur="1" targetElement="B_vid" begin="B_vid.end-1"
mode="out" from="0" to="1"/>

53 </div>

17 <t:seq>
18 <t:par>
19 <t:img src="M-HT/title.gif" class="R-Title"/>
20 <t:seq >
21 ...
130 <t:seq >
131 <t:par >
132 <t:seq >

Section 2.3: Encoding Flashlight in Different Profiles 51

Example 2-4. Excerpt from Flashlight as an HTML+TIME presentation (Continued).

54 <t:seq>
55 <t:par>
56 <t:img id="BI_ccw_m" src="M-HT/cCW.jpg" class="R-image"/>
57 <t:audio id="BA_CCW" src="M-HT/cCW1.mp3" class="R-Sound"/>
58 </t:par>
59 <t:par>
60 <t:img id="BI_insert_m" fill="transition"

src="M-HT/Insert.jpg" class="R-Image"/>
61 <t:audio id="BA_insrt" src="M-HT/Insert1.mp3" class="R-Sound"/>
62 </t:par>
63 <t:par id="m31">
64 <div class="time" timeContainer="par">
65 <t:img id="BI_CW" src="M-HT/cw.jpg" class="R-Image"/>
66 <t:transitionFilter type="fade" subtype="crossfade"

targetElement="BI_CW" dur="1" begin="BI_CW.begin" ... />
67 </div>
68 <t:audio id="BA_CW" src="M-HT/cw1.mp3" class="R-Sound"/>
69 </t:par>
70 </t:seq>
71 </t:switch>
72 <t:seq>
73 <t:img id="B_ccw" dur="6s" src="M-HT/ccw.gif" class="R-text"/>
74 <div class="time" timeContainer="par">
75 <t:img id="B_in" src="M-HT/insert.gif" dur="8s"

fill="transition" class="R-text"/>
76 <t:transitionFilter type="fade" subtype="crossfade"

targetElement="B_in_m" dur="1" begin="B_in.begin" .../>
77 <t:par id="m31">
78 <div class="time" timeContainer="par">
79 <t:img id="BI_CW" src="M-HT/cw.jpg" class="R-Image"/>
80 <t:transitionFilter type="fade" subtype="crossfade"

targetElement="BI_CW" dur="1" begin="BI_CW.begin" ... />
81 </div>
82 <t:audio id="BA_CW" src="M-HT/cw1.mp3" class="R-Sound"/>
83 </t:par>
84 </t:div>
85 </t:seq>
86 <t:seq>
87 <t:img id="B_ccw" dur="6s" src="M-HT/ccw.gif" class="R-text"/>
88 <div class="time" timeContainer="par">
89 <t:img id="B_in" src="M-HT/insert.gif" dur="8s"

fill="transition" class="R-text"/>
90 <t:transitionFilter type="fade" subtype="crossfade"

targetElement="B_in_m" dur="1" begin="B_in.begin" ... />
91 </div>
92 <div class="time" timeContainer="par">
93 <t:img id="B_cw" src="M-HT/cw-sm.gif" dur="3s"

fill="transition" class="R-text"/>
94 <t:transitionFilter type="fade" subtype="crossfade"

targetElement="B_cw" dur="1" begin="B_CW.begin" ... />
95 </div>
96 </t:seq>
97 </t:par>
98 </t:par>
99 <t:par id="More">

...
130 </t:par>
131 </t:seq>
132 </t:par>
133 </t:seq>
134 </div>
135 </body>
136</html>

Chapter 2: Understanding SMIL Code52

One of the challenges of constructing a hybrid HTML/SMIL implementation
is the definition of overall temporal control of a presentation. In documents
written for the SMIL LANGUAGE profile, it is clear that a single temporal scope
governs the entire document. HTML has no corresponding single temporal
scope — each cluster of HTML+TIME specification defines an independent
local timeline. Various parts of the HTML code are delineated by the HTML
<div> element. This element is used to define the scope of an encapsulated
timeline with the HTML file.

Media Objects

Media objects are referenced using the standard SMIL media elements. As
expected, the use of each media reference (such as audio or video) is prefaced
with the “t:“ namespace qualifier. (See lines 19 and 57 for examples.) If transi-
tions are used on media items, these are implemented using XHTML+SMIL’s
transition filters. Each transition (input or output) gets its own transition filter
specification, which are bundled together with the associated media object in a
parallel element.

In this fragment, a video object (on line 50) is given an input transition (on line
51) and an output transition (on line 52). All three of these statements are bun-
dled into a separate timeline defined by the <div> on line 49. (This <div>
defines a <par> time container; while it is valid to use a <t:par> element
instead, this does not work in HTML+TIME’s implementation.)

Layout

HTML+TIME does not use SMIL Layout. Instead, it uses CSS to position objects.
The use of CSS is especially handy for text, but CSS absolute positioning can
also be applied to emulate SMIL’s Basic Layout functionality. In CSS terms, each
of these definitions defines a class that can be used when positioning a media
item. The class is referenced in a manner similar to the SMIL region attribute:

In our example, several CSS definitions are grouped in the style section;
these define areas that correspond to SMIL’s layout regions. This is shown in
the fragment at the top of the following page.

Matters of syntax aside, there are no fundamental differences in layout capa-
bilities for the translation of Flashlight into XHTML+SMIL.

49 <div class="time" timeContainer="par">
50 <t:video id="B_vid" src="M-HT/Bat.avi"

systemBitrate="56120" class="R-image"/>
51 <t:transitionFilter type="fade" subtype="crossfade"

dur="1" targetElement="B_vid" begin="B_vid.begin"
mode="in" from="0" to="1"/>

52 <t:transitionFilter type="fade" subtype="crossfade"
dur="1" targetElement="B_vid" begin="B_vid.end-1"
mode="out" from="0" to="1"/>

53 </div>

19 <t:img src="M-HT/title.gif" class="R-Title"/>

Section 2.3: Encoding Flashlight in Different Profiles 53

Timing

XHTML+SMIL provides full support for SMIL 2.0 timing elements. This means
that the <par>, <seq> and <excl> elements and their attributes are all sup-
ported. XHTML+SMIL supports interactive, event-based timing and also all
other major aspects of SMIL time functionality.

This being said, HTML+TIME’s implementation of XHTML+SMIL does not
always manage the functionality within time containers in a predictable man-
ner. Very often, local timelines need to be defined (using the <div> element to
define a <par>, <seq> or <excl> time container) instead of being able to use the
<t:par>, <t:seq> or <t:excl> elements. If you experience timing problems in
implementing an HTML+TIME document, we suggest you experiment with
both forms until you get the desired behavior.

Linking

The XHTML+SMIL specification provides full support for SMIL’s temporal link-
ing capabilities. Unfortunately, the HTML+TIME implementation provides no
support for temporal linking. This means that all linking within a document to
‘t:’ qualified elements will not work. Only the HTML <area> element (not the
<t:area> element) are supported in HTML+TIME, but even these elements can-
not be used to jump inside a time container. The reasons for this are complex:
SMIL linking requires that substantial state information gets saved (or gener-
ated) regarding the state of the target element at the time the link is activated.
Without having some notion of global time, it is very difficult to construct the
appropriate state description.

The following fragment gives a description of how linking could be handled
within an XHTML+SMIL application. (We use the ‘xs:’ namespace qualifier in
order not to confuse the fragment with the HTML+TIME implementation.)

13 <style>
14 ...
15 .R-root-layout {position:absolute;overflow:hidden;

left:0;top:0;width:240;height:269;background-color:#ffffcc}
16 .R-Title {position:absolute;overflow:hidden;

left:0;top:0;width:240;height:29;}
17 .R-Image {position:absolute;overflow:hidden;

left:0;top:29;width:240;height:180}
18 .R-Buttons {position:absolute;overflow:hidden;

left:0;top:251;width:240;height:15}
19 .R-Text {position:absolute;overflow:hidden;

left:0;top:209;width:240;height:42}
20 .R-Sound {}
21 </style>

<xs:img id="buttons_battery_m" src="M-HT/b-batteries.gif"
class="R-Buttons" dur="20s"/>

<xs:area id="ABI" href="#Intro" sourcePlaystate="stop"
shape="rect" coords="39,0,91,15">

<xs:area id="ABM" href="#More" sourcePlaystate="stop"
shape="rect" coords="220,0,237,15">

<xs:/img>

Chapter 2: Understanding SMIL Code54

(Note that SMIL does not require a map element definition, since all of the
information needed is contained in the area elements that are children of the
<t:img> element.)

The lack of linking support in HTML+TIME can, in part, be compensated by
structuring the presentation as multiple children of an <t:excl> element and
then applying event-based timing. We discuss this further in Chapter 15:
Advanced SMIL Timing Behavior and Control.

Adaptivity

As XHTML+SMIL (and HTML+TIME) provide support for SMIL’s basic content
control functionality, no substantial changes need to be made to the Flashlight
application. (See line 48 for an example of the use of the <switch> element.)
In-line use of text attributes on individual HTML elements is not allowed
because HTML has no notion of the <switch> element.

One area where SMIL and HTML layout differ is the ability to provide aliases
for layout region/class names using the regionName attribute. This has a con-
sequence for supporting multiple layouts within a single HTML+TIME docu-
ment: since the name of the CSS class definition is fixed, it is not possible to
define alternative layouts in a style section that use the same class names in
each definition. As a result, it is not possible to have the document select a lay-
out at parse time that is then applied to the document at execution time. This
means that if multiple layouts need to be supported, multiple specifications of
media objects need to be made each time a variable class would be referenced,
all of which would have to be wrapped inside of a SMIL <switch> element.

Other Considerations

Microsoft’s HTML+TIME implementation (using the time2 behavior) is a solid
attempt at integrating SMIL functionality within an existing HTML framework.
Our impression is that while the implementation is not fully debugged, the
general XHTML+SMIL approach is very useful. The fact that it is integrated into
the world’s most wide distributed browser means that it is certainly worth-
while to investigate SMIL support within HTML using HTML+TIME. One
potential pitfall: at the time this book was written, we could not get clarification
of Microsoft’s intentions of supporting HTML+TIME in versions of Internet
Explorer beyond IE7. You should check Microsoft’s pages and documentation.

Quick Tip

Example 2-5 focuses on the overall specification of the presentation
and zooms in on the detailed specification of the Battery section; if you
want to see the complete presentation, visit
http://www.XmediaSMIL.net.

Section 2.4: Summary and Conclusions 55

2.4 Summary and Conclusions
The purpose of this chapter has been to introduce the structure of SMIL by
walking though a complete SMIL example. The application we selected repre-
sents a non-trivial collection of elements and attributes. It supports complex
SMIL layout structures and it makes use of a variety of SMIL time containers.

The chapter also presented a translation of this example in to various SMIL
profiles, including the full SMIL LANGUAGE profile and its SMIL TINY, mobile
SMIL and SMIL 1.0 versions. We also looked at creating an XHTML+SMIL ver-
sion of the demonstration by looking at an implementation using Microsoft’s
HTML+TIME language.

The first SMIL applications you will write will probably only use a small
subset of the features and concepts presented in this chapter. Still, by looking at
a large SMIL presentation, we expect that you will have a better idea of how the
various pieces of the SMIL language fit together.

Parts Two and Three of this book review each of the elements and attributes
provided in this section — plus several constructs that we didn’t cover here.
Now that you have a general idea of how SMIL works, you can work through
the various chapters in this book to get a complete idea on how you can work
with SMIL.

Before jumping into the details of the language, we provide an additional
background chapter next. This chapter reviews the essential elements of the
Web architecture that are relevant to most SMIL presentations. If you are famil-
iar with the Web, you can start with Chapter 4, but a review of common termi-
nology and architecture can be helpful if you aren’t exactly sure of the
differences between language and protocols, or the distinctions among servers,
networks and clients.

2.5 Further Resources

HTML

XHTML 1.0: The Extensible HyperText Markup Language (Second Edition), Steven
Pemberton, (ed. chair), W3C Recommendation, 1 August 2002,
http://www.w3.org/TR/xhtml1.

IRI

RFC 3987: Internationalized Resource Identifiers (IRIs), M. Duerst, M. Suignard,
IETF (Internet Engineering Task Force), January 2005.
http://www.ietf.org/rfc/rfc3987.txt.

Namespaces in XML

Namespaces in XML, W3C Recommendation,
http://www.w3.org/TR/REC-xml-names/.

Chapter 2: Understanding SMIL Code56

SVG

Scalable Vector Graphics (SVG) 1.0 Specification, Jon Ferraiolo (ed.), W3C Recom-
mendation, 4 September 2001, http://www.w3.org/TR/SVG.

XML

Extensible Markup Language (XML) 1.1, Tim Bray, Jean Paoli, C.M.
Sperberg-McQueen, Eve Maler, François Yergeau and John Cowan (Eds.), W3C
Recommendation, 04 February 2004.
http://www.w3.org/TR/2004/REC-xml11-20040204/.

XML Base

XML Base, Jonathan Marsh (ed.), W3C Recommendation, 27 June 2001,
http://www.w3.org/TR/xmlbase/.

