
Preface

This book contains papers presented at the International Symposium on Electro-
magnetic Fields in Mechatronics, Electrical and Electronic Engineering ISEF’07
which was held in Prague, the Czech Republic, from September 13 to 15, 2007.
ISEF conferences have been organized since 1985 and from the very beginning it
was a common initiative of Polish and other European researchers who have dealt
with electromagnetic field in electrical engineering. The conference travels through
Europe and is organized in various academic centres. Relatively often, it was held
in some Polish city as the initiative was on the part of Polish scientists. Now ISEF
is much more international and successive events take place in different European
academic centres renowned for electromagnetic research. This time it was Prague,
famous for its beauty and historical background, as it is the place where many cul-
tures mingle. The venue of the conference was the historical building of Charles
University, placed just in the centre of Prague. The Technical University of Prague,
in turn, constituted the logistic centre of the conference.

It is the tradition of the ISEF meetings that they try to tackle quite a vast area of
computational and applied electromagnetics. Moreover, the ISEF symposia aim at
combining theory and practice; therefore the majority of papers are deeply rooted
in engineering problems, being simultaneously of a high theoretical level. The pro-
file of the conference changes, however, year-by-year and one can find more and
more contributions dealing with applied electromagnetics coupled with hardware
and software technologies. That is why, for the first time, the organizers decided
to use the Springer Lecture Notes in Artificial Intelligence as the proper place for
publishing some of the papers. Generally speaking, one can observe the trend of a
decreasing number of papers which deal with classical electrical engineering in pref-
erence to information technology and biomedical applications. This direction seems
to be comprehensible in the light of modern industry. Nevertheless, even beyond
electrical engineering, we do touch the heart of the matter in electromagnetism.

The ISEF’07 Proceedings cover over 240 papers and after a selection process, 24
papers were accepted for publication in this volume, while the others were directed
to COMPEL: The International Journal for Computation and Mathematics in Elec-
trical and Electronic Engineering and to another book to be published by IOS Press.
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The methods of evaluation and control of the electromagnetic field, based on
Artificial Intelligence (AI), constitute the core of the papers presented at the ISEF’07
conference. Indeed, nowadays it would be hard to imagine dealing with electromag-
netic field analysis without computer simulation. The papers which have been se-
lected for this volume have strong links with AI theory and methodology, i.e. they
do not use the numerical method automatically but they attempt to contribute some
new AI tools to computer modelling. We hope that such an approach would be de-
veloped further in future ISEF conferences.

The papers selected for this volume have been grouped into three parts, which
represent the following topics:

• Algorithms and Intelligent Computer Methods
• Computer Methods and Engineering Software
• Applications of Computer Methods

The first part consists of papers dealing with the algorithms which are more gen-
eral and concern the class of more general problems, like the problems of opti-
mization and/or inverse problems. Thus, the first part is focused on information
techniques rather than modelling particular devices. The reader may find here such
problems as multi-agent algorithms, neural networks, genetic algorithms, wavelet
transformation, paralleling of computation problems, monitoring and others.

The second part directs the reader’s attention to similar problems but referring
to more technical aspects. Indeed, one can find here the papers which deal with
numerical modelling of such devices as high voltage power lines, actuators, NMR
and induction tomography, adaptive plasma, electrochemical machining and others.
It is clearly seen that the attention here is focused on the device rather than the
methodology.

The third part consists of papers dealing with the application of advanced al-
gorithms and methods to selected technical engineering problems. The reader can
focus attention on such problems as optimization of a drive system, combined
electromagnetic and thermal analysis by means of approximate methods, com-
bined finite element method (FEM) and finite volume method (FVM), algorithms
based on stochastic methodsand others.

At the end of these remarks let us, the Editors of the volume, be allowed to
express our thanks to our colleagues who have contributed to the book by peer-
reviewing the papers at the conference as well as in the publishing process. We also
convey our thanks to Springer-Verlag Publisher for their effective collaboration in
shaping this editorial enterprise. As ISEF conferences are organised biannually we
do hope to maintain our strong links with Springer-Verlag Publisher in the future.

Poland Sławomir Wiak
Poland Andrzej Krawczyk
Czech Republic Ivo Dolezel
May, 2008



Generalized RBF Neural Network and FEM
for Material Characterization Through
Inverse Analysis

Tarik Hacib, Mohammed Rachid Mekideche, Fouzia Moussouni,
Nassira Ferkha, and Stéphane Brisset

Abstract This paper describes a new methodology for using artificial neural net-
works (ANN) and finite element method (FEM) in an electromagnetic inverse prob-
lem (IP) of parameters identification. The approach is used to identify unknown
parameters of ferromagnetic materials. The methodology used in this study consists
in the simulation of a large number of parameters in a material under test, using
the FEM. Both variations in relative magnetic permeability and electric conductiv-
ity of the material under test are considered. Then, the obtained results are used to
generate a set of vectors for the training of generalized radial basis function neural
networks (RBFNN). Finally, the obtained neural network (NN) is used to evaluate
a group of new materials, simulated by the FEM, but not belonging to the original
dataset. The reached results demonstrate the efficiency of the proposed approach.

1 Introduction

IPs in electromagnetic are usually formulated and solved as optimization prob-
lems, so iterative methods are commonly used approaches to solve this kind of
problems [1]. These methods involve solving well behaved forward problem in
a feedback loop. The numerical models such as FE model are used to represent
the forward process. However, iterative methods using the numerical based forward
models are computationally expensive. Parameters identification using NNs can be
recast as a problem in multidimensional interpolation, which consists of finding
the unknown nonlinear relationship between inputs and outputs in a space spanned
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by the activation functions associated with the NN nodes [2, 3]. The input space
corresponds to the signal generated by sensors and the output corresponds to the
electromagnetic parameters such as relative magnetic permeability and electrical
conductivity.

In this paper, we propose a new method for the robust identification of elec-
tromagnetic properties. The method is based on the FEM and a RBFNN scheme.
We present a comparison of the results obtained using the proposed method with
those obtained from a multilayer perceptron (MLP). It is shown that the generalized
RBFNN is faster both in training as well as identification of parameters.

2 Neural Networks

NNs are connectionist models proposed in an attempt to mimic the function of the
human brain. A NN consists of a large number of simple processing elements called
neurons [1]. Neurons implement simple functions on their inputs and are massively
interconnected by means of weighted interconnections. These weights, estimated
by means of a training process, determine the functionality of the NN. The train-
ing process uses a training database to determine the network parameters (weights).
NNs have been widely used for function approximation and multidimensional inter-
polation [4]. Given a set of p ordered pairs (xi, di) , i = 1,2, . . . , p with xi ∈ RN and
di ∈ R, the problem of interpolation is to find a function F : RN → R1 that satisfies
the interpolation condition

F (xi) = di, i = 1, . . . , p. (1)

For strict interpolation, the function F is constrained to pass through all the p data
points. The definition can be easily extended to the case where the output is M-
dimensional. The desired function is then F : RN → RM . In practice, the function
F is unknown and must be determined from the given data (xi,di) , i = 1,2, . . . , p.
A typical NN implementation of this problem is a two step process: training, where
the NN learns the function F given the training data {xi,di}, and generalization,
where the NN predicts the output for a test input. Networks using two different
types of basis functions (BFs) are described in the following sections.

2.1 Radial Basis Function Neural Networks

An RBFNN consists of an input and output layer of nodes and a single hidden layer
(Fig. 1). Each node in the hidden layer implements a BF G(x,xi) and the number
of hidden nodes is equal to the number of data points in the training database. The
RBFNN approximates the unknown function that maps the input to the output in
terms of a BF expansion, with the functions G(x,xi) as the BFs. The I/O relation for
RBFNN is given by
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Fig. 1 Three layer feed-forward network

yl =
N

∑
j=1

wl jG(x,x j), l = 1,2 . . . ,M. (2)

Where N is the number of BFs used, y = (y1, y2, . . . , yM)T is the output of the
RBFNN, x is the test input, x j is the center of the BF, and wl j are the expansion
coefficients or weights. Each training data sample is selected as the center of a BF.
BFs G(x,xi) that are radially symmetric are called radial BFs. Commonly used ra-
dial BFs include the Gaussian and inverse multiquadrics [2].

The network described above is called an exact RBFNN, since each training
data point is used as a basis center. The storage costs of an exact RBFNN can be
enormous, especially when the training database is large. An alternative to an exact
RBFNN is a generalized RBFNN, where the number of BFs is less than the number
of training data points. The problem then changes from strict interpolation (in an ex-
act RBFNN) to an approximation, where certain error constraints are to be satisfied.
The operation of the generalized RBFNN is summarized in the following steps.

2.2 Center Selection

This is achieved by using either the k-means clustering algorithm [5] or other op-
timization techniques that select the BF locations by minimizing the error in the
approximation. The I/O relation for a generalized RBFNN using Gaussian BFs is
given by

yl =
H

∑
j=1

wl j exp

(
−

∥∥x− c j
∥∥2

2σ2
j

)
, (3)

where H is the total number of BFs used, c j is the center of the Gaussian BF, and
σ j is the width of the Gaussian. The NN architecture is then selected by setting the
number of input nodes equal to the input dimension, the number of hidden nodes to
the number of centers obtained in this step, and the number of output nodes equal to
the output dimension.
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2.3 Training of Generalised RBF Neural Network

Training of the NN involves determining the weights wl j, in addition to the centers
and widths of the BFs. Writing (2) in matrix-vector form as

Y = GW, (4)

Equation (4) can be solved for W as:

W = G+Y, (5)

where G+ is the pseudo-inverse.

2.4 Generalization

In the test phase, the unknown pattern x is mapped using the relation

F (x) =
H

∑
j=1

wl j exp

(
−

∥∥x− c j
∥∥2

2σ2
j

)
. (6)

3 Electromagnetic Field Computation

In this study, the magnetic field is calculated using the FEM. This method is based
on the A representation of the magnetic field. The calculations are performed in two
steps. First, the magnetic field intensity is calculated by solving the equation:

rot
(

1
µ

rot(A)
)

+ jωσA = J, (7)

where µ is the magnetic permeability, σ the electric conductivity and J the electric
current density.

Equation (7) is discretized using the Galerkin FEM, which leads to the following
algebraic matrix equation:

([K]+ jω[C]) [A] = [F]. (8)

In the second step, the field solution is used to calculate the magnetic induction B.
More details about the FE theory can be found in [6].
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4 Methodology for Parameters Identification

First of all, an electromagnetic device was idealized to be used as an electromagnetic
field exciter (Fig. 2). In this paper, we have considered direct current in the coils.
To increase the sensitivity of the electromagnetic device a magnetic core with a
high permeability is used and the air gap between the core and the metallic wall is
reduced to a minimum. Deviations of the magnetic induction (difference in magnetic
induction without and with material under test) at equally stepped points in the
external surface of the material under test are taken.

Figure 3 show the steps of the methodology used in this work. Steps 1–4 corre-
spond to the FE analysis.

The simulations were done for a hypothetic metallic wall with 1 mm height and
15 mm width. The material of the metallic wall is 1006 Steel (a magnetic material).
The relative magnetic permeability of the core is supposed to be 2,500 and the air
gap is 0.1 mm.

Fig. 2 Arrangement for the
measurements
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Fig. 3 Flowchart of the used methodology
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During the phase of FEs simulations, errors can appear, due to it’s massively na-
ture. So, the results of the simulations must be carefully analyzed. This can be done,
for instance, plotting in the same graphic the magnetic induction deviations for a set
of parameters. Figure 4 shows the magnetic induction deviation at the sensor posi-
tion for three materials having the same electrical conductivity (103 [S m−1]), and
relative magnetic permeability ranging from 50 to 300. Figure 5 shows the graphics
for a fixed magnetic relative permeability (240), and three different electrical con-
ductivity ranging from 6×105 [S m−1] to 108 [S m−1].
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Fig. 4 Magnetic induction deviation for three values of magnetic relative. Permeability and elec-
trical conductivity equal to 103 (S m−1)
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Fig. 5 Magnetic induction deviation for three values of electrical conductivity and magnetic rela-
tive permeability equal to 240
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5 Formulation of Network Models for Parameters Identifications

In the step 5, we generate the training vectors for NNs. In this work, we gener-
ated 300 vectors for NNs training. Each of the vectors consists of 11 input values,
which represent the deviation of magnetic induction, and two output values, which
represent the relative magnetic permeability and electrical conductivity. Of the 300
vectors, a random sample of 225 cases (75%) was used as training, 75 (25%) for
validation.

To show stability of the proposed approach, the measured values, which intrinsi-
cally contains errors in the real word, is obtained by adding a random perturbation
to the exact inputs values

Ĩn = Inexact +δλ , (9)

where δ is the standard deviation and λ is a random variable taken from a Gaussian
distribution.

MLP network architecture considered for this application was a single hidden
layer with sigmoid activation function. A back-propagation algorithm based on
Levenberg–Marquardt optimization technique [7] was used to train the MLP net-
work for the above data. The MLP architecture had 11 input variables, one hid-
den layer with 24 hidden nodes and two output nodes. Total number of weights
present in the model was 338. The best MLP was obtained at lowest mean square
error (MSE) of 10−6. Percentage correct prediction of the MLP model was 95.6%.
Generalized RBFNN performed best at 140 centres and Gaussian BFs. MSE using
the best centres and Gaussian BFs was 5× 10−6. Percentage correct prediction of
the generalized RBFNN model was 98.2%. Figure 6 shows the performance of the
generalized RBFNN during a training session. Table 1 shows some results for the
validation of the network by using 5% of noise (δ = 0.05), for this session.

As we can see, the results obtained in the validation are very close to the expected
ones. The worse identification parameter was obtained with MLP network.
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Fig. 6 Performance of the generalized RBFNN during a training session
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Table 1 Expected and obtained values during a training session

Relative magnetic permeability, µr Electric conductivity, σ (S m−1)

Expected Generalized RBF MLP Expected Generalized RBF MLP

83.34 83.329 83.321 7.020 e006 7.018 e006 7.017 e006
287.55 287.54 287.53 17.99 e003 18.01 e003 18.02 e003
311.34 311.35 311.35 4.500 e002 4.506 e002 4.519 e002
446.21 446.21 446.24 22.50 e006 22.49 e006 22.46 e006
527.07 527.04 527.33 3.010 e005 3.011 e005 3.014 e005

Table 2 Simulation results, for new parameters

Material
no.

Relative magnetic permeability, µr Electric conductivity, σ (S m−1)

Expected Obtained Expected Obtained

Generalized RBF MLP Generalized RBF MLP

1 89 89.001 88.933 65.00 65.02 65.03
2 212 211.99 211.98 2.500 e002 2.501 e002 2.502 e002
3 360 360.02 359.95 2.200 e006 2.199 e006 2.201 e006
4 472 472.01 472.03 4.100 e005 4.099 e005 4.101 e005

6 New Parameter Identification

After the NNs training and respective validations, new electromagnetic parameters
were simulated by the FEM, for posteriori identification by the networks. Table 2
shows the parameters values of material under test, and the obtained values, by
the NNs.

As we can see, the results obtained in the identification of new parameters, ob-
tained by the NNs agree very well with the expected ones.

7 Conclusion

In this paper we presented an investigation on the use of the FEM and General-
ized RBFNN for the identification of metallic walls parameters, present in industrial
plants. The obtained weights of the network can be embedded in electronic devices
in order to identify electromagnetic parameters of real metallic walls. The proposed
approach was found to be highly effective in identification of parameters in elec-
tromagnetic devices. Comparison of the result indicates that Generalized RBF is
trained and identifies the electromagnetic parameters faster than MLP.
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