
Preface

In the past decades now a famous class of evolution equations has been
discovered and intensively studied, a class including the nowadays celebrated
Korteweg-de Vries equation, sine-Gordon equation, nonlinear Schrödinger
equation, etc. The equations from this class are known also as the soliton
equations or equations solvable by the so- called Inverse Scattering Trans-
form Method. They possess a number of interesting properties, probably the
most interesting from the geometric point of view of being that most of them
are Liouville integrable Hamiltonian systems. Because of the importance of
the soliton equations, a dozen monographs have been devoted to them. How-
ever, the great variety of approaches to the soliton equations has led to the
paradoxical situation that specialists in the same field sometimes understand
each other with difficulties. We discovered it ourselves several years ago during
a number of discussions the three of us had. Even though by friendship binds
us, we could not collaborate as well as we wanted to, since our individual
approach to the field of integrable systems (finite and infinite dimensional) is
quite different. We have become aware that things natural in one approach
are difficult to understand for people using other approaches, though the ob-
jects are the same, in our case – the Recursion (generating) Operators and
their applications to finite and infinite dimensional (not necessarily integrable)
Hamiltonian systems. Since even between us, in order to overcome our differ-
ences, we needed some serious efforts, we decided that it was time to bring
together the analytic and geometric aspects, if not of the theory of the soli-
ton equations (this would be too ambitious) but at least the analytic and the
geometric aspects of the so-called Recursion Operators, which are among the
powerful tools for the study of soliton equations. We had to do it in such a
way, that a specialist in one of the approaches can read and understand the
value of the other approach. However, the material we started to collect soon
began growing rapidly, and we realized that a book should be written on this
topic. The realization of the book project took longer than we expected –
more than six years. But now we are happy that we are able to present a text
which in our opinion reflects our original ideas.
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The book has two parts, the first is dedicated to the analytic approach
to the Recursion operators, the second, to the geometric nature of these op-
erators, that is, to their interpretation as mixed tensor fields with special
geometric properties over the manifold of potentials.

As we mentioned, we expect that the book will be useful to specialists
in the Recursion Operator approach to the soliton equations. However, with
an intent to target a larger audience, we have included some other important
topics, such as the construction of the soliton solutions, for example. We have
tried to develop the material in such a way that the book proves useful for
graduate students who want to enter this interesting field of research.

The present book is based on some material that has become already
classical, as well as on some of our works. The last few have been written in
collaboration with many other friends and colleagues, namely:

Sergio De Filippo, Giuseppe Marmo, Mario Salerno, Giovanni Landi, Yanus
Grabowski, Andrei Borowiz, Giovanni Sparano, Alexandre Vinogradov,
Patrizia Vitale, Fabrizio Canfora, Luca Parisi, Boris Florko, Ljudmila
Bordag, Peter Kulish, Evgenii Khristov, David Kaup, Evgenii Doktorov,
Mikhail Ivanov, Yordan Vaklev, Marco Boiti, Flora Pempinelli, Nikolay
Kostov, Ivan Uzunov, Evstati Evstatiev, Georgi Diankov, Rossen Ivanov,
Rossen Dandoloff, Georgi Grahovski, Assen Kyuldjiev, Viktor Enol’skii,
Bakhtiyor Baizakov, Vladimir Konotop, Jianke Yang, Adrian Constantin,
Tihomir Valchev, Victor Atanasov.

We would like to extend our thanks to all of them.
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Grahovski, Rossen Ivanov for careful reading of the manuscript and for the
many useful discussions we had with them.

A crucial factor which helped us complete the book was the financial sup-
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The Lax Representation
and the AKNS Approach

In the present Chapter, we outline the famous AKNS approach [1] to the
integrable equations. This approach soon became popular, because it provided
a simple and effective tool for deriving NLEE allowing Lax representation.

In the first three sections of this Chapter, we show how the AKNS method
allows one to derive the family of integrable NLEE related to the Zakharov-
Shabat system L(λ) and their Lax representations [L(λ),M(λ)] = 0. As-
suming M(λ) to be polynomial in λ, we derive the recursion procedure for
calculating the coefficients of M(λ) in terms of q(x) and its derivatives. These
relations are solved in compact form using the recursion (generating) operator
Λ, which plays a fundamental role in the theory of NLEE. Our derivation is
slightly different from that of AKNS in the sense that it is gauge covariant.
The advantage of such formulation will become clear in Chap. 8, where we
treat the gauge-equivalent NLEE. In the last two sections of this Chapter, we
outline two of the natural generalizations of the AKNS approach.

2.1 The Lax Representation in the AKNS Approach

By definition, one can apply the ISM to a given NLEE only if it allows the
so-called Lax representation:

iLt = [L,A] . (2.1)

In his original paper [2] Lax has chosen L to be the Sturm-Liouville operator:

−d
2ψ

dx2
+ (v(x, t)− k2)ψ(x, t, k) = 0 . (2.2)

Taking A as the third-order ordinary differential operator:

Aψ ≡ 4
d3ψ

dx3
− 6v(x, t)

dψ

dx
− 3

d(v(x, t))
dx

ψ(x, t, k) (2.3)
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Lax proved that (2.1) is satisfied if and only if v(x, t) satisfies the KdV
equation:

vt + vxxx + 6vxv(x, t) = 0 . (2.4)

Zakharov and Shabat were the first to realize that it is useful to consider
Lax representations (2.1) with L-operators more general than (2.2). In [3],
they considered as Lax operator the system:

Lχ ≡
(

i
d

dx
+ U(x, t, λ)

)

χ(x, t, λ) = 0 , (2.5a)

U(x, t, λ) = q(x, t)− λσ3 , (2.5b)

q(x, t) =
(

0 q+

q− 0

)

(2.5c)

with q+ = (q−)∗ = u(x, t) which is the ZS system. Then they constructed
explicitly a 2 × 2 matrix operator A such that the Lax representation (2.1)
became equivalent to the NLS equation for u(x, t).

Below, we shall use the AKNS approach [1, 4], which is technically more
convenient. In it, we rewrite (2.1) as the compatibility condition:

[L(λ),M(λ)] = 0 . (2.6)

of two linear operators, whose potentials depend nontrivially on the spectral
parameter λ. The λ-dependence is chosen explicitly, and as a rule it is taken
to be polynomial or rational in λ. Then the M–operator takes the form:

M ≡ i
d

dt
+ V (x, t, λ) , (2.7)

where V (x, t, λ) has a prescribed dependence on λ (say, a polynomial one).
We also require that the condition (2.6) holds identically with respect to λ. As
we shall explain below, this gives us the possibility to express the coefficients
of V (x, t, λ) in terms of the potential q(x, t) of L.

The compatibility condition (2.6) can be understood also as the zero cur-
vature condition for some connection defined on a conveniently chosen fiber
bundle.

Let χ(x, t, λ) be a fundamental solution of L, i.e. this is a matrix-valued
function whose determinant does not vanish:

L(λ)χ(x, t, λ) = 0, detχ(x, t, λ) 	= 0 . (2.8)

From the compatibility condition (2.6) there follows:

[L(λ),M(λ)]χ(x, t, λ) ≡ L(λ)M(λ)χ(x, t, λ)−M(λ)L(λ)χ(x, t, λ)
= L(λ)M(λ)χ(x, t, λ) = 0 . (2.9)

i.e. if χ(x, t, λ) is a fundamental solution of L(λ), then M(λ)χ(x, t, λ) is also
a fundamental solution of L(λ). From the general theory of ordinary differ-
ential operators, it is known that every two fundamental solutions of a given
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ODE must be linearly related. Therefore, there exist an x-independent matrix
C(λ, t) such that

M(λ)χ(x, t, λ) = χ(x, t, λ)C(λ, t) . (2.10)

In Sect. 2.3 below, we shall analyze in greater detail the convenient choices
for C(λ, t); as a rule we shall assume it is t-independent. Here, we just remark
that the compatibility condition (2.6) holds true for any C(λ, t).

Thus, as M operator we choose in agreement with (2.7) and (2.10):

Mχ ≡
(

i
d

dt
+ V (x, t, λ)

)

χ(x, t, λ) = χ(x, t, λ)C(λ) (2.11)

where V (x, t, λ) is a polynomial of order N in λ

V (x, t, λ) =
N
∑

k=0

λN−kVk(x, t) . (2.12)

Let us outline the AKNS approach. To this end, we insert the expression (2.11)
into (2.6) and equate to zero the coefficients in front of the positive powers of
λ. This gives:

[V0(x, t), σ3] = 0 , (2.13a)

i
dVk

dx
+ [q, Vk(x, t)]− [σ3, Vk+1(x, t)] = 0 , (2.13b)

for k = 0, 1, . . . , N − 1 and the λ–independent term gives:

−i∂q
∂t

+ i
∂VN

∂x
+ [q(x, t), VN (x, t)] = 0 . (2.13c)

The (2.13) with k = 1 will be treated as the initial condition for the recurrent
relations, which allow one to express subsequently the coefficients Vk(x, t) in
(2.12) through q(x, t) and its x–derivatives. Thus, (2.13c) finally turns into
an NLEE for the off–diagonal matrix q(x, t) or into a system of NLEE for the
coefficient functions q±(x, t).

Let us list some of the specific choices for the M -operator, which lead to
integrable equations.

If we choose:

V (x, t, λ) = −iσ3qx − q+q−σ3 − 2λq(x, t) + 2λ2σ3 , (2.14)

we easily find that

(1) The coefficients in front of the positive powers of λ in the compatibility
condition (2.6) vanish identically;

(2) The term independent of λ in (2.6) leads to:

−iqt + σ3qxx + 2q+q−σ3q(x, t) = 0 . (2.15)

Thus, it becomes obvious that the choice of L (2.5) and M (2.11), (2.14)
in the Lax representation (2.6) is equivalent to the system (2.15), which
generalizes the NLS equation.
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The next example is related to the KdV and mKdV equations. In both
cases V (x, t, λ) is a cubic polynomial of λ:

V0 = −4σ3, V1 = 4q(x, t), V2 = 2q+q−σ3 + 2iσ3qx ,

V3 = −i(q+q−x − q−q+x )σ3 − qxx − 2q+q−q(x, t) , (2.16)

The compatibility condition (2.6) in this case leads to the following system of
NLEE for q±(x, t):

∂q+

∂t
+
∂3q+

∂x3
+ 6q+q−(x, t)

∂q+

∂x
= 0 ,

∂q−

∂t
+
∂3q−

∂x3
+ 6q−q+(x, t)

∂q−

∂x
= 0 , (2.17)

One can obtain two important soliton equations by imposing proper con-
straints (involutions) on q±(x, t). Indeed, choosing q+ = v(x, t), q− = 1, we
see that the system (2.17) reduces to the KdV equation:

∂v

∂t
+
∂3v

∂x3
+ 6

∂v

∂x
v(x, t) = 0 , (2.18)

Similarly, imposing the involution q+ = κq− = p(x, t), where p(x, t) can be
viewed also as a real-valued function, we obtain the modified KdV (mKdV)
equation

∂p

∂t
+
∂3p

∂x3
+ 6

∂p

∂x
p2(x, t) = 0 . (2.19)

The last example is connected with the s-G equation:

wxt + γ sin 2w(x, t) = 0 . (2.20)

In this case V (x, t, λ) has the form:

V (x, t, λ) =
γ

2λ
(cos 2w(x, t)σ3 − sin 2w(x, t)σ1) , (2.21)

where q± are expressed through the real valued-function w(x, t) as follows:

q+(x, t) = −q−(x, t) = −iwx(x, t) . (2.22)

If instead of (2.21) we use:

V (x, t, λ) =
γ

2λ
(cosh 2w(x, t)σ3 + sinh 2w(x, t)σ2) , (2.23)

the compatibility condition (2.6) leads to the so-called sinh–Gordon equation:

∂2w

∂x∂t
+ γ sinh 2w(x, t) = 0 . (2.24)
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2.2 The Recursion Operators and the NLEE

Following the ideas of AKNS, we shall solve the recursion relations (2.13b)
with generic initial conditions, i.e. for arbitrary choice of N and

V0 = c0σ3, c0 = const . (2.25)

The analysis of these relations involves the splitting off of each Vk(x, t) into
diagonal and off-diagonal parts. This corresponds to splitting of the algebra
g = sl(2) into a direct sum g = g(0)⊕g(1) of linear subspaces, corresponding to
the kernel and the image of ad σ3 considered as operator on sl(2). Therefore,
g(0) consists of all diagonal 2 × 2 matrices with vanishing trace, while g(1)

contains all off-diagonal matrices. Such splitting has the grading property:

[X(0), Y (0)] = 0, [X(0), Y (1)] ∈ g(1), [X(1), Y (1)] ∈ g(0) , (2.26)

where X(0), Y (0) and X(1), Y (1) are arbitrary elements of g(0) and g(1), re-
spectively. We shall make use of the projectors onto g(1) defined by the above
splitting:

π0· ≡
1
4
[σ3, [σ3, · ]] . (2.27)

Applied to any traceless 2× 2 matrix X, π0 projects out its diagonal part:

π0X ≡ X −Xd =
(

0 X12

X21 0

)

∈ g(1) , (2.28)

and

(1l− π0)X = Xd = X11σ3 , (2.29)

Each Vk(x, t) can be split into:

Vk(x, t) = wk(x, t)σ3 + V f
k (x, t) , (2.30)

where

V f
k (x, t) = π0Vk(x, t) , (2.31a)

wk(x, t) =
1
2
tr (Vk(x, t)σ3) . (2.31b)

We start by the relation (2.13b) with k = 0:

i
dc0
dx

σ3 + [q(x, t), σ3]− [σ3, V1(x, t)] = 0 . (2.32)

The diagonal term here is the one proportional to dc0/dx. It vanishes with c0
as a constant. The two off-diagonal terms in (2.32) give us:
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V f
1 (x, t) = −c0q(x, t) . (2.33)

For generic k, we extract first the diagonal part by multiplying (2.13b) by
σ3 and taking the trace. Using (2.31) we find:

i
dwk

dx
+

1
2
tr (σ3[q(x, t), Vk(x, t)]) = 0 . (2.34)

Note that in the second term of (2.34) only the off-diagonal part of Vk con-
tributes. Thus (2.34) relates wk and V f

k . Integrating it we get:

wk(x, t) = ck +
i

2

∫ x

±∞
dy tr (σ3[q(y, t), V f

k (y, t)]) , (2.35)

where ck is an integration constant. Next the off-diagonal part of (2.13b) gives:

i
dV f

k

dx
+ [q(x, t), σ3]wk(x, t) = [σ3, V

f
k+1(x, t)] . (2.36)

It remains to apply 1
4 [σ3, ·] to both sides of (2.36) and to make use of (2.27)

and (2.35) to find:

V f
k+1(x, t) =

i

4

[

σ3,
dV f

k

dx

]

− 1
4

[σ3, [σ3, q(x, t)]]wk(x, t)

=
i

4

[

σ3,
dV f

k

dx

]

− i

2
q(x, t)

∫ x

±∞
dy tr (σ3[q(y, t), V f

k (y, t)])

− ckq(x, t) . (2.37)

Therefore the recurrent relation (2.13) now can be rewritten in the following
compact form:

V f
k+1(x, t) = Λ±V

f
k (x, t)− ckq(x, t) , (2.38a)

V1(x, t) = −c0q(x, t) , (2.38b)

where by Λ± we have denoted the recursion operators:

Λ±X ≡ i

4

[

σ3,
dX

dx

]

− i

2
q(x, t)

∫ x

±∞
dy tr (σ3[q(y, t),X(y, t)]) . (2.39)

As we shall see in the next chapters, these operators play an important role in
the theory of the NLEE. Here, we shall use them to write down the solution
of the recurrent relations in the following compact form:

V f
k (x, t) = −

k−1
∑

p=0

cpΛ
k−p−1
± q(x, t) , (2.40a)
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wk(x, t) = ck −
i

2

k−1
∑

p=0

cp

×
∫ x

±∞
dy tr

(

σ3

[

q(y, t), Λk−p−1
± q(y, t)

])

. (2.40b)

We shall show below that, although the operators Λ± are integro-differential
applying their positive powers to q(x, t), we always get expressions, which are
local in q(x, t), i.e. depend only on q and its x-derivatives.

The explicit solution of the recursion relation (2.13b) allows us now to
describe the class of all NLEE, which can be solved applying the ISM to the
ZS system. To do this, we have to insert the expression for VN (x, t) from (2.40)
into (2.13) and to separate again the diagonal and the off-diagonal parts in it.
The diagonal part gives us the necessary expression for wN (x, t) as an integral
containing q(x, t) and V f

N (x, t), i.e. we get (2.35) with k = N . The off-diagonal
part leads to the following NLEE:

−i∂q
∂t

+ i
∂VN

∂x
+ [q(x, t), σ3]wN (x, t) = 0 . (2.41)

Now, we apply to both sides −1
4 [σ3, ·] and using (2.35) find:

i

4

[

σ3,
∂q

∂t

]

− Λ±V
f
N (x, t) + cNq(x, t) = 0 , (2.42)

or

i

4

[

σ3,
∂q

∂t

]

+ f(Λ±)q(x, t) = 0 , (2.43)

where f(λ) is the polynomial:

f(λ) =
N
∑

p=0

cpλ
N−p . (2.44)

In the form (2.43), the NLEE is quite analogous to the generic partial
differential equation with constant coefficients (1.30) in Chap. 1. Indeed, since
q(x, t) is an off-diagonal matrix, then [σ3, qt] = 2σ3qt and that makes the (1.30)
and (2.43) quite analogous; one just has instead of f(D0), f(Λ±).

Our main aim will be to prove that this analogy is not coincidental, and
its roots are in the spectral decompositions of the recursion operators.

2.3 Evolution of the Scattering Data

We introduced already some NLEE having Lax representation. In this sub-
section, we shall explain the idea of what earlier was called a type of “change
of variables”, which linearizes the NLEE. To this end, we shall use the ZS
system (2.5) with a complex-valued potential q(x, t).
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We shall suppose also that the potential q(x, t) depends on the additional
parameter t in such a way that its coefficients q±(x, t) satisfy one of the above
mentioned NLEE. Another important choice consists in fixing up the class
of functions, to which the potential belongs. Here, and in what follows, we
assume that q(x, t) belongs to the space M of off-diagonal 2 × 2 matrix-
valued complex functions of Schwartz-type; i.e. it is an infinitely differentiable
function tending to 0 for |x| → ∞ faster than any negative power of x. We
also assume that these properties are fulfilled for all values of t.

Note that the ZS system can be viewed formally as a quantum mechan-
ical problem for the scattering of a “plane wave” on the “potential” q(x, t).
This “scattering” will be used, however, as a technical tool and will not be
assigned any real physical meaning. Nevertheless, we shall make use of the
well-developed theory for solving the direct and inverse scattering problems
in quantum mechanics, which can easily be generalized to complex-valued
“potentials.” Thus, we shall omit the quotation marks as we use the standard
terminology.

We recall some well-known facts from the theory of the linear differential
equations. By χ(x, t, λ), we shall denote a matrix-valued solution of (2.5).
Since trU(x, t, λ) = 0, then detχ(x, t, λ) does not depend on x. χ(x, t, λ)
is called a fundamental solution if its determinant does not vanish, i.e.
detχ(x, t, λ) 	= 0.

Any fundamental solution of (2.5) can be fixed up uniquely by specify-
ing its value at a given point x = x0. Another important property of the
linear systems in general and of the ZS system in particular is that any two
fundamental solutions must be linearly related; see (2.47) below.

A special role in the direct and inverse scattering theory for the ZS system
is played by the so-called Jost solutions ψ(x, t, λ) and φ(x, t, λ). They are spe-
cial fundamental solutions of (2.5) introduced by fixing up their asymptotics
for x→∞ (or to x→ −∞) to be plane waves:

lim
x→∞

exp(iλσ3x)ψ(x, t, λ) = 1l, λ ∈ R (2.45a)

lim
x→−∞

exp(iλσ3x)φ(x, t, λ) = 1l, λ ∈ R . (2.45b)

By plane wave above, we mean the matrix-valued function exp(−iλxσ3) for
real values of the spectral parameter λ; obviously it is a solution of (2.5) for
the asymptotic value of the potential q(x, t) = 0.

In the special cases in (2.45), x0 is taken to be∞ and −∞ correspondingly.
Both solutions have determinants equal to 1:

detψ(x, t, λ) = detφ(x, t, λ) = 1, λ ∈ R . (2.46)

so they are fundamental, and they must be linearly related. This means that
there exist the so-called scattering matrix T (t, λ) such that

φ(x, t, λ) = ψ(x, t, λ)T (t, λ), λ ∈ R . (2.47)
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Let us denote the entries of the scattering matrix T (t, λ) by:

T (t, λ) =
(

a+(λ) −b−(t, λ)
b+(t, λ) a−(λ)

)

. (2.48)

From (2.46) and (2.47) it follows that

detT (t, λ) ≡ a+(λ)a−(λ) + b+(t, λ)b−(t, λ) = 1, λ ∈ R . (2.49)

This is known as the “unitarity” condition for the scattering matrix T (t, λ).
Next, we derive the corresponding evolution of the scattering matrix

T (t, λ). To this end, we make use of the explicit form of the M -operator (2.11)
derived in the previous section with conveniently chosen C(λ). Consider (2.11)
with χ = φ(x, t, λ):

Mφ ≡
(

i
d

dt
+ VN (x, t, λ)

)

φ(x, t, λ) = φ(x, t, λ)C(λ) , (2.50)

multiply it on the left by exp(iλσ3x) and take the limit x→ −∞. Assuming
that the asymptotics of the Jost solution φ(x, t, λ) for x → −∞ in (2.45a) is
valid for all t, we get:

lim
x→−∞

eiλσ3xV−(x, t, λ)φ(x, t, λ) ≡ lim
x→−∞

VN (x, t, λ)

= f(λ)σ3

= C(λ) (2.51)

Thus, we find that C(λ) can be directly related to the dispersion law of the
NLEE:

C(λ) = f(λ)σ3 . (2.52)

In the limit x→∞, in view of (2.47) we get:
(

i
dT

dt
+ lim

x→∞
VN (x, t, λ)T (t, λ)

)

= T (t, λ)C(λ) . (2.53)

With (2.52), (2.56), we find that the scattering matrix T (t, λ) satisfies the
following linear evolution equation:

i
dT

dt
+ f(λ)[σ3, T (t, λ)] = 0 . (2.54)

Written in terms of the entries of T (λ) (2.54), the evolution takes the form of
linear equations:

i
da±

dt
= 0, i

db±

dt
∓ 2f(λ)b±(t, λ) = 0 (2.55)

that can be easily solved for any choice of the dispersion law f(λ).
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The same results can be derived by taking χ = ψ(x, t, λ) and considering
the limits x± →∞. Thus we established that

V+(λ) = V−(λ) = C(λ) = f(λ)σ3, V±(λ) = lim
x→±∞

VN (x, t, λ) (2.56)

But (2.6) means also that q(x, t) satisfies the NLEE (2.43). Therefore, we
outlined the proof of the following

Theorem 2.1 ([1]). If q(x, t) ∈ M and satisfies the NLEE (2.43), then the
scattering matrix T (t, λ) satisfies the linear evolution equation (2.54).

Thus the dispersion law f(λ) of the corresponding NLEE determines both
the NLEE itself through (2.43) and the evolution of the scattering data
through (2.54) or (2.55).

Calculating the limits V±(λ) from the explicit expressions for V (x, t, λ)
corresponding to the NLS, KdV and s-G equations we get:

fNLS(λ) = −2λ2, fKdV(λ) = −4λ3, fs-G(λ) =
γ

2λ
. (2.57)

The two functions a±(λ) are in fact t–independent. This means that if we
expand them in asymptotic series in λ their expansion coefficients also will
be t–independent, i.e. they will be integrals of motion for the correspond-
ing NLEE. In what follows, we treat a±(λ) as generating functionals of the
integrals of motion of the NLEE.

2.4 Generalizations of the AKNS Method I

The AKNS method can be applied also to special multicomponent general-
izations of the NLS type equations. One way to do this is to apply it to the
block-matrix generalization of the Zakharov-Shabat system.

Lχ ≡
(

i
d

dx
+ U(x, t, λ)

)

χ(x, t, λ) = 0 , (2.58a)

U(x, t, λ) = q(x, t)− λσ , (2.58b)

q(x, t) =

(

0 q+

q− 0

)

, σ =
2

s+ p

(

p11s 0
0 −s11p

)

, (2.58c)

where q+(x, t) and (q−)T (x, t) are rectangular s× p matrix-valued functions,
11s and 11p are the unit matrices of dimension s and p, s+ p = n.

As M operator we choose:

Mχ ≡
(

i
d

dt
+ V (x, t, λ)

)

χ(x, t, λ) = χ(x, t, λ)C(λ) (2.59)
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where V (x, t, λ) is a polynomial of order N in λ

V (x, t, λ) =
N
∑

k=0

λN−kV k(x, t) , (2.60)

C(λ) = lim
x→∞

V (x, t, λ) = lim
x→−∞

V (x, t, λ) . (2.61)

The compatibility condition [L,M ] = 0 holds true for any choice of the
matrix C(λ). Now U(x, t, λ) and V (x, t, λ) are elements (of special form) of
the algebra sl(n). Since this condition must hold identically with respect to
λ, we equate to zero the coefficients in front of all powers of λ with the result:

[V 0(x, t),σ] = 0 , (2.62a)

i
dV k

dx
+ [q(x, t),V k(x, t)]− [σ,V k+1(x, t)] = 0 , (2.62b)

for k = 0, 1, . . . , N − 1. The λ–independent term provides the corresponding
multicomponent NLEE:

−i∂q

∂t
+ i

∂V N

∂x
+ [q(x, t),V N (x, t)] = 0 . (2.62c)

These relations again can be viewed as recursion relations, allowing to deter-
mine V k(x, t) in terms of q(x, t) and its derivatives. Generalizing the AKNS
approach, we split each V k(x, t) into block-diagonal and block-off-diagonal
parts. This corresponds to splitting of the algebra g = sl(n) into a direct sum
g = g(0) ⊕ g(1) of linear subspaces, corresponding to the kernel and the image
of the operator ad σ on sl(n). Since the nonvanishing eigenvalues of ad σ are
equal to ±2, the projector π0 onto g(1) takes the form:

π0· ≡
1
4
[σ, [σ, · ]] . (2.63)

Applied to any n× n matrix X it projects out its block-diagonal part:

π0X = X −X(0) =
(

0 X12

X21 0

)

, (2.64)

The projector onto g(0) is given by:

(1l− π0)X = X(0) =
(

X11 0
0 X22

)

, tr X(0) = 0 . (2.65)

Therefore, g(0) consists of all block-diagonal matrices (2.65) with vanishing
trace tr X11 + tr X22 = 0, while g(1) contains all block-off-diagonal matrices.
Such splitting also has the grading property:

[X(0),Y (0)] = 0, [X(0),Y (1)] ∈ g(1), [X(1),Y (1)] ∈ g(0) , (2.66)
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where X(i), Y (i) are arbitrary elements of g(i), i = 1, 2. Each V k(x, t) can be
split into:

V k(x, t) = wk(x, t) + V f
k(x, t) , (2.67)

where

V f
k(x, t) = π0V k(x, t) , (2.68a)

wk(x, t) = (11n − π0)V k(x, t) . (2.68b)

Then (2.62a) means that V f
0(x, t) = 0, i.e. V 0(x, t) = w0(x, t). From the

block-diagonal part of (2.62b) with k = 1 we conclude that

dw0

dx
= 0 , (2.69)

i.e. we assume that w0 = const ∈ g(0). The block-off-diagonal part of (2.62b)
with k = 1 is equivalent to:

V f
1(x, t) = ad−1

σ [q(x, t),w0] . (2.70)

For k > 1, we again use the same splitting with the results:

i
dwk

dx
+ [q(x, t),V f

k(x, t)] = 0 . (2.71)

Thus, (2.71) establishes a relation between wk and V f
k. Integrating it we get:

wk(x, t) = w0
k + i

∫ x

±∞
dy [q(y, t),V f

k(y, t)] , (2.72)

where w0
k ∈ g(0) is a matrix-valued integration constant.

Next, the block-off-diagonal part of (2.62b) gives:

i
dV f

k

dx
+ [q(x, t),wk(x, t)] = [σ,V f

k+1(x, t)] . (2.73)

It remains to apply [σ, ·] to both sides of (2.73) and to make use of (2.63) and
(2.72) to find:

V f
k+1(x, t) =

i

4

[

σ,
dV f

k

dx

]

− 1
4

[σ, [wk(x, t), q(x, t)]] ,

=
i

4

[

σ,
dV f

k

dx

]

+
i

4

[

σ,

[

q(x, t)
∫ x

±∞
dy [q(y, t),V f

k(y, t)]
]]

− 1
4
[

σ, [w0
k, q(x, t)]

]

. (2.74)
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Thus, the recurrent relation (2.62) acquires the following compact form:

V f
k+1(x, t) = Λ±V f

k(x, t)− 1
4
[

σ, [w0
k, q(x, t)]

]

, (2.75a)

V 1(x, t) = −ad−1
σ [w0

k, q(x, t)] , (2.75b)

where by Λ± we have denoted the recursion operators:

Λ±X ≡ i

4

[

σ,
dX

dx

]

+
i

4

[

σ,

[

q(x, t),
∫ x

±∞
dy [q(y, t),X(y, t)]

]]

. (2.76)

The formal solution to this recurrent relations is given by:

V f
k+1(x, t) = −1

4

k
∑

p=0

Λk−p
±

[

σ,
[

w0
p, q(x, t)

]]

. (2.77)

Applying the same reasoning to the λ-independent term in the compati-
bility condition, we get the explicit form for the multicomponent NLS-type
(MNLS-type) equations:

i

4

[

σ,
∂q

∂t

]

−Λ±V f
N (x, t) +

1
4
[

σ,
[

w0
N , q(x, t)

]]

= 0 . (2.78)

It remains to insert the solution (2.77) for V f
N (x, t) into (2.78) to get these

NLEE in terms of the recursion operators Λ±:

i

4

[

σ,
∂q

∂t

]

+
1
4

N
∑

p=0

ΛN−p
±

[

σ,
[

w0
p, q(x, t)

]]

= 0 . (2.79)

Obviously the multicomponent analog of the dispersion law for the NLEE
(2.79) is provided by the matrix-valued polynomial f(λ):

f(λ) =
N
∑

p=0

λN−pw0
p ∈ g(0) . (2.80)

Let us list several important examples of MNLS-type equations.

The Manakov model [5] originally was obtained by takingN = 2, fMan(λ)
= −2λ2σ with s = 1, p = 2; then q+ = (q−)† is a two-component vector
u(x, t) satisfying:

iut + uxx + (u†,u)u(x, t) = 0, u =
(

u1(x, t)
u2(x, t)

)

. (2.81)

It became famous due to its numerous applications in nonlinear optics
[6, 7, 8, 9, 10].
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Of course, one can consider a generalization of the Manakov model with
p-component vectors, p > 2. Also the use of an involution of the form
q+ = B0(q−)†, where B0 = diag (ε1, . . . , εp) with εj = ±1 leads to another
version of the Manakov model:

iut + uxx + (u†, B0u)u(x, t) = 0, u =

⎛

⎜

⎝

u1(x, t)
...

up(x, t)

⎞

⎟

⎠
. (2.82)

Matrix NLS models. The above two models and all other multicomponent
generalizations of the MNLS equation are particular cases of the system:

i
∂q+

∂t
+
∂2q+

∂x2
+ 2q+q−q+(x, t) = 0 , (2.83a)

−i∂q−

∂t
+
∂2q−

∂x2
+ 2q−q+q−(x, t) = 0 , (2.83b)

or in matrix form:

i

2

[

σ,
∂q

∂t

]

+
∂2q

∂x2
+ 2q3(x, t) = 0 . (2.84)

The dispersion law of this equation is

fMNLS(λ) = −2λ2σ . (2.85)

Let us impose on q(x, t) the condition:

q(x, t) = Bq†(x, t)B−1, B =
(

B0 0
0 B1

)

∈ g(0) , (2.86)

B0 = diag (ε1, . . . , εs), B1 = diag (η1, . . . , ηp) ,

where εj = ±1 and ηs = ±1. Each specific choice of the sets of εj and ηs

provides an allowed involution of the system (2.83). The involution (2.86)
means that the block matrices q±(x, t) are related by:

q+(x, t) = r(x, t), q−(x, t) = B0r
†(x, t)B1 (2.87)

Inserting (2.87) into (2.83), we easily find that the second equation (2.83b)
can be obtained from the first one (2.83a) with hermitian conjugation. As
a result, we get the following matrix NLS equation:

i
∂r

∂t
+
∂2r

∂x2
+ 2rB0r

†r(x, t) = 0 . (2.88)

Vector and matrix mKdV models. The well-known mKdV equation
(2.18) is characterized by dispersion law, which is cubic in λ; see (2.16).
We also choose here s = p, i.e. n = 2p.
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Choosing in (2.79) fmKdV = −4λ3σ, we obtain the following multicom-
ponent generalization of the system (2.17):

∂q+

∂t
+
∂3q+

∂x3
+ 3q+q−(x, t)

∂q+

∂x
+ 3

∂q+

∂x
q−q+(x, t) = 0 , (2.89a)

∂q−

∂t
+
∂3q−

∂x3
+ 3q−q+(x, t)

∂q−

∂x
+ 3

∂q−

∂x
q+q−(x, t) = 0 , (2.89b)

The multicomponent mKdV equation is obtained from the system (2.89)
imposing the involution:

Bq∗(x, t)B−1 = −q(x, t), B =
(

0 B2

B−1
2 0

)

, (2.90)

This choice of B satisfies B2 = 11, i.e. the constraint (2.90) is an involution.
If we denote q+(x, t) = r(x, t) then we have:

q+(x, t) = r(x, t), q−(x, t) = −B−1
2 r∗(x, t)B−1

2 . (2.91)

Then the system (2.89) becomes equivalent to:

∂r

∂t
+
∂3r

∂x3
− 3rB2r

∗B2
∂r

∂x
− 3

∂r

∂x
B2r

∗B2r(x, t) = 0 , (2.92)

for the complex-valued p×p-matrix function r(x, t). If we choose B2 = 11p,
we get another version of the multicomponent mKdV equation:

∂r

∂t
+
∂3r

∂x3
− 3

∂r

∂x
r∗r(x, t)− 3rr∗(x, t)

∂r

∂x
= 0 . (2.93)

Imposing additional involution, we can make r(x, t) either real-valued p×p
matrix or purely imaginary one.

In order to solve these multicomponent generalizations of the NLS and
mKdV equations, we need to develop the direct and inverse scattering theory
for the block-matrix Zakharov-Shabat system (2.58a). Its Jost solutions are
also introduced by fixing up their asymptotics for x→∞ (or to x→ −∞) to
be plane waves, that is, we require that ψ(x, t, λ) and φ(x, t, λ) be fundamental
solution of L satisfying:

lim
x→∞

exp(iλσx)ψ(x, t, λ) = 1l, λ ∈ R (2.94a)

lim
x→−∞

exp(iλσx)φ(x, t, λ) = 1l, λ ∈ R . (2.94b)

Note that these definitions of the Jost solutions are compatible with the M -
operator in the form (2.59) with the special choice (2.58a) for C(λ).

One can check that

detψ(x, t, λ) = detφ(x, t, λ) = 1, λ ∈ R . (2.95)
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so they are fundamental, and they must be linearly related by the scattering
matrix T (t, λ):

φ(x, t, λ) = ψ(x, t, λ)T (t, λ), λ ∈ R . (2.96)

It is natural that the scattering matrix T (t, λ) will have the same type of
block-matrix structure as U(x, t, λ):

T (t, λ) =
(

a+(t, λ) −b−(t, λ)
b+(t, λ) a−(t, λ)

)

. (2.97)

From (2.95) and (2.96), it follows that the generalization of the “unitarity”
condition (2.49) is:

det T (t, λ) = 1, λ ∈ R . (2.98)

Next we conclude that

V +(λ) = V −(λ) = C(λ) = f(λ), V±(λ) = lim
x→±∞

V (x, t, λ) (2.99)

so T (t, λ) must satisfy the following linear evolution equation:

i
dT

dt
+ [f(λ),T (t, λ)] = 0 . (2.100)

In the special case, when f(λ) = f(λ)σ from (2.97) and (2.100) we find:

i
da±

dt
= 0, i

db±

dt
∓ 2f(λ)b±(t, λ) = 0 (2.101)

that can be easily solved for any f(λ).
Thus, we outlined the proof of the following generalization of Theorem 2.1:

Theorem 2.2 ([11, 12]). If q(x, t) satisfies the NLEE (2.78), then the scat-
tering matrix T (t, λ) satisfies the linear evolution equation (2.100).

Remark 2.3. Not all MNLS equations are local. Only equations, whose Hamil-
tonians are from the principal series, i.e. ones whose dispersion laws are of the
form f(λ) = f(λ)σ are local. Such equations are superintegrable: They have
more generating functionals of integrals of motion than are necessary for inte-
grability. These functionals are not all in involutions. Due to this, boomerons
and trappons are possible [13, 14].

2.5 Generalizations of the AKNS Method II

The AKNS method can be applied also to Lax operators generalizing the
Zakharov-Shabat system to the following first-order n× n system:
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Lgχg ≡
(

i
d

dx
+ Ug(x, t, λ)

)

χg(x, t, λ) = 0 , (2.102a)

Ug(x, t, λ) = q(x, t)− λJ , (2.102b)

q(x, t) =

⎛

⎜

⎜

⎜

⎝

0 q12 . . . q1n−1 q1n

q12 0 . . . q2n−1 q2n

...
...

. . .
...

...
qn1 qn2 . . . qn−1n 0

⎞

⎟

⎟

⎟

⎠

, (2.102c)

J = diag (a1, a2, . . . , an−1, an), tr J = 0 . (2.102d)

The second operator in the Lax representation is also a first-order n × n
matrix-valued operator:

Mgχg ≡
(

i
d

dt
+ Vg(x, t, λ)

)

χg(x, t, λ) = χg(x, t, λ)Cg(λ) (2.103)

where Vg(x, t, λ) is a polynomial of order N in λ

Vg(x, t, λ) =
N
∑

k=0

λN−kVk(x, t) . (2.104)

Here and below, we shall use the same letter for the potential q(x, t) and for
the coefficients Vk(x, t), remembering that now they are n× n matrices.

The recurrent relations (2.13) now are modified into:

[V0(x, t), J ] = 0 , (2.105a)

i
dVk

dx
+ [q, Vk(x, t)]− [J, Vk+1(x, t)] = 0 , (2.105b)

for k = 0, 1, . . . , N − 1 and the λ–independent term gives the corresponding
NLEEs:

−i∂q
∂t

+ i
∂VN

∂x
+ [q(x, t), VN (x, t)] = 0 . (2.105c)

Before proceeding with solving the recurrent relations (2.105), we shall
fix up the gauge of the Lax operator Lg, taking J to be a constant diagonal
matrix. We assume that J has n different real eigenvalues. Without loss of
generality we can consider them ordered:

J = diag (a1, a2, . . . , an), a1 > a2 > · · · > an , (2.106)

and trJ = 0. Applying a convenient gauge transformation commuting with J
we can always achieve that

q(x, t) = [J, q̃(x, t)], i.e. qjj = 0 . (2.107)
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In analogy with the analysis of the previous sections, we again will need
to split off each Vk(x, t) into diagonal and off-diagonal parts. Now the corre-
sponding algebra g = sl(n) is split into a direct sum g = g(0) ⊕ g(f) of linear
subspaces, corresponding to the kernel and the image of ad J .

Obviously, if the eigenvalues of J are all different then the kernel g(0) of
ad J will consist of the diagonal matrices, or more precisely, of the Cartan
subalgebra of sl(n). In contrast, with the sl(2)-case such splitting satisfies
only two of the properties in (2.26), namely,

[X(0), Y (0)] = 0, [X(0), Y (1)] ∈ g(1) , (2.108)

whereas [X(1), Y (1)] 	∈ g(0); such commutators contain both diagonal and off-
diagonal parts. The operator ad J is well defined on the whole algebra g, while
its inverse is well defined only on g(1). In components we have:

([J,X])jk = (aj − ak)Xjk,
(

ad−1
J Y (f)

)

jk
=

Y
(f)
jk

aj − ak
, (2.109)

where by definition Y (f) is off-diagonal, Y (f)
jj = 0. The analog of the projector

πJ is given by:

πJ · ≡ ad−1
J [J, · ] . (2.110)

Applied to any n× n matrix X, it projects it out onto its off-diagonal part:

πJX = X −X(0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 X12 . . . X1n−1 X1n

X21 0 . . . X2n−1 X2n

...
...

. . .
...

...
Xn−1,1 Xn−1,2 . . . 0 Xn−1,n

Xn,1 Xn,2 . . . Xn,n−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (2.111)

Then the projector onto g(0) is:

(1l− πJ)X = X(0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

X11 0 . . . 0 0
0 X22 . . . 0 0
...

...
. . .

...
...

0 0 . . . Xn−1,n−1 0
0 0 . . . 0 Xn,n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (2.112)

Below, in this and the next subsections, we shall use the following gen-
eralization of the Condition C1 (see page 71 below): q(x, t) belongs to the
space MJ of n× n if q(x, t) ≡ πJq(x, t), and its matrix elements are complex
Schwartz–type functions. Each Vk(x, t) can be split into:

Vk(x, t) = V
(0)
k (x, t) + V f

k (x, t) , (2.113)
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where

V
(0)
k (x, t, ≡ (11− πJ)Vk(x, t) = wk(x, t) ∈ g(0) , (2.114a)

V f
k (x, t) = πJVk(x, t) . (2.114b)

From (2.105a), we immediately get that V f
0 = 0, i.e.:

V0(x, t) = w0(x, t) ∈ g(0) . (2.115a)

Next, we consider (2.105b) with k = 0. Projecting it onto g(0) we obtain:

∂w0

∂x
= 0 . (2.115b)

Therefore, in what follows we can assume that

V0(x, t) ≡ w0
0 ∈ g(0) (2.115c)

is a constant diagonal matrix. The off-diagonal part of (2.105b) with k = 0

[q(x, t), w0
0]− [J, V1(x, t)] = 0 , (2.116a)

allows one to determine only the off-diagonal part of V1(x, t):

V f
1 (x, t) = −ad−1

J

[

w0
0, q(x, t)

]

. (2.116b)

Analogously, for k = 1 (2.105b) gives:

i
∂w1

∂x
+ (11− πJ)[q(x, t), V f

1 (x, t)] = 0 , (2.117a)

i
∂V f

1

∂x
+ πJ

(

[q(x, t), V f
1 (x, t)]

)

= [J, V f
2 (x, t)] . (2.117b)

Inserting (2.116b) into (2.117a), we find

∂w1

∂x
= 0 , (2.118)

i.e. we can assume that w1 = w0
1 = const. Equation (2.117b) leads to:

V f
2 (x, t) = ad−1

J

(

i
∂vf

1

∂x
+ πJ

(

[q(x, t), V f
1 ]
)

)

. (2.119)

For k > 1 we get in a similar way:

i
∂wk

∂x
+ (11− πJ)[q(x, t), V f

k (x, t)] = 0 , (2.120a)

i
∂V f

k

∂x
+ πJ

(

[q(x, t), V f
k (x, t)]

)

+ [q(x, t), wk(x, t)] = [J, V f
k+1(x, t)] . (2.120b)
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Formally integrating (2.120a), we can express wk(x, t) through V f
k (x, t) by:

wk(x, t) = w0
k + i

∫ x

±∞
dy (11− πJ)[q(y, t), V f

k (y, t)] , (2.121)

where w0
k ∈ g(0) are constant diagonal matrices. We insert it into (2.120b)

with the result:

i
∂V f

k

∂x
+ πJ [q(x, t), V f

k ] + [q(x, t), w0
k] (2.122)

+ iπJ

[

q(x, t),
∫ x

±∞
dy (11− πJ)[q(y, t), V f

k (y, t)]
]

= [J, V f
k+1].

Here, and below, we shall use the fact that πJ [q(x, t), w0
k] ≡ [q(x, t), w0

k].
Applying to both sides of (2.122) ad−1

J we get:

V f
k+1 = Λ±V

f
k + ad−1

J [q(x, t), w0
k] , (2.123)

where the recursion operators Λ± are defined by:

Λ±X ≡ ad−1
J

{

i
∂X

∂x
+ πJ [q(x),X(x)]

+iπJ

[

q(x),
∫ x

±∞
dy (11− πJ)[q(y),X(y)]

]}

. (2.124)

Note that the structure of Λ± ensures that if X ∈ g(1) then also Λ±X ∈ g(1).
Thus, we have cast the recursion relations (2.105) in the form (2.123);

(2.116b) must be viewed as the initial condition for them. Its formal solution
can be written down in compact form as:

V f
k+1 = −

k
∑

s=0

Λs
±ad−1

J [w0
k−s, q(x)] . (2.125)

It remains to repeat the “splitting” procedure also to the NLEEs (2.105c):

i
∂wN

∂x
+ (11− πJ)[q(x, t), V f

N (x, t)] = 0 , (2.126a)

−i∂q
∂t

+ i
∂V f

N

∂x
+ πJ

(

[q(x, t), V f
N (x, t)]

)

+ [q(x, t), wN (x, t)] = 0 , (2.126b)

with the result

wN (x, t) = w0
N + i

∫ x

±∞
dy (11− πJ)[q(y, t), V f

N (y, t)] , (2.127)

and applying the operator ad−1
J to both sides of (2.127) we get:
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−iad−1
J

∂q

∂t
+ Λ±V

f
N − ad−1

J [w0
N , q(x, t)] = 0 . (2.128)

This is the generic form of the NLEE solvable by the ISM applied to Lg

(2.102). Using (2.125), we can write it down in compact form:

iad−1
J

∂q

∂t
+

N
∑

s=0

Λs
±ad−1

J [w0
N−s, q(x, t)] = 0 . (2.129)

Note that in solving the recurrent relations we obtained N + 1 in-
tegration constants w0

k. These constant diagonal matrices determine the
function:

fg(λ) =
N
∑

s=0

w0
N−sλ

s , (2.130)

which is the proper generalization of the dispersion law f(λ). Indeed, one can
check that fg(λ) determine the evolution of the scattering matrix of Lg.

The simplest of these NLEE is obtained already for N = 1. This is the
famous N -wave equation:

i

[

J,
∂Q

∂t

]

− i

[

I,
∂Q

∂x

]

+ [[I,Q(x, t)], [J,Q(x, t)]] = 0 , (2.131)

Q(x, t) = ad−1
J q(x, t) ∈ g(1),

where I = w0
0 ∈ g(0). Its dispersion law is linear in λ:

fNw(λ) = λI . (2.132)

The scattering matrix Tg(λ, t) and the Jost solutions of Lg are natu-
ral generalizations of the ones for the Zakharov-Shabat system L. They are
defined by:

lim
x→∞

ψg(x, t, λ)eiλJx = 11, lim
x→−∞

φg(x, t, λ)eiλJx = 11 , (2.133a)

Tg(λ, t) = ψ̂g(x, t, λ)φg(x, t, λ) . (2.133b)

The detailed investigation of the direct and inverse scattering problems for
Lg comes out of the scope of the present Chapter. Here, we shall just derive
the t-dependence of Tg(λ, t) using the Lax representation (2.102). We fix up
Cg(λ) in the right hand-side of (2.103) in such a way that the definitions of
the Jost solutions (2.133a) are valid for all time t, i.e.:

Cg(λ) ≡ lim
x→±∞

Vg(x, t, λ)

=
N
∑

s=0

w0
N−sλ

s = fg(λ) . (2.134)
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Then, we recall that the Jost solution φg(x, tλ) must satisfy (2.103) and con-
sider its limits for x → −∞ and x → ∞. In view of our choice for Cg(λ)
(2.134), the first limit becomes the identity 0 = 0. Doing the second limit, we
make use of (2.133b): φg(x, tλ) = ψg(x, tλ)Tg(t, λ) and get:

i
dTg

dt
+ [fg(λ), Tg(t, λ)] = 0 . (2.135)

This result can be formulated as the following generalization of theorem

Theorem 2.3 ([15]). Let q(x, t) ∈ MJ and satisfies the NLEE (2.129) then
the scattering matrix Tg(t, λ) satisfies the linear evolution equation (2.135).

Thus, we demonstrated the analogy between the NLEE related to the ZS
system (2.43), and their generalizations (2.79) and (2.129), and the generic
partial differential equation with constant coefficients (1.30) in Chap. 1.
The polynomials f(λ) determine the dispersion laws of these equations.
In the case of the NLEE, the derivative operator 1

i
∂
∂x has been replaced

by the corresponding recursion operator Λ±. This analogy is not coinci-
dental, and its roots are in the spectral decompositions of the recursion
operators.

2.6 Comments and Bibliographical Review

1. The KdV, NLS, MKdV, s-G, N -wave equations are only several of the
NLEE that are integrable and have a wide range of applications in physics.
In fact, they describe different regimes of wave-wave interactions, which
do not depend on the physical origin of the waves. This explains their
universality [16, 17]. Here, we give a short list of monographs and review
papers [4, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37] in which these problems are analyzed and which contain the
necessary references.

2. The fact that to each Lax operator L, one can relate a hierarchy of solvable
NLEE became obvious in 1974 after the AKNS Chapter [1]. In it, they
proposed a modification of the Lax approach, which simplified substan-
tially the derivation of the relevant NLEE. The AKNS scheme, formulated
initially for the ZS system, substantially simplified finding new “higher”
NLEE related to a given Lax operator L and reduced it to the solving of
a set of recurrent relations. They constructed also the recursion operators
Λ±, which solves the recurrent relations and plays fundamental role in de-
riving the properties of the NLEE. Another important fact discovered by
AKNS [1] was the importance of the Wronskian relations and the squared
solutions of L in studying the mapping between the potential q(x, t) of
L and the scattering data of L. They revealed that the squared solutions
are eigenfunctions of the recursion operators Λ± and may be viewed as
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natural generalizations of the usual exponentials. As a consequence, the
ISM can be viewed as a generalized Fourier transform. In order to es-
tablish this fact rigorously, one needs to prove that the squared solutions
are complete sets of functions in the space of allowed potentials M of L.
In 1976, Kaup [38] formulated the completeness relation for the squared
solutions of the ZS system. Later in 1979, Kaup and Newell [39] derived
the fundamental properties of the NLS hierarchy through the recursion
operators Λ± using the completeness property of its eigenfunctions – the
squared solutions.
At about the same time, Khristov and one of the authors of the present
monograph (VSG) [40, 41], independently of Kaup and Newell, proposed
a rigorous proof of Kaup’s compeleteness relation and applied it to the
theory of the NLS-type equations. It was shown also that the completeness
relation of the squared solutions can be viewed as the spectral decompo-
sition of the recursion operator Λ.
Besides, in [40, 41] it was proved that the “products” of solutions of two
different ZS systems also satisfy a completeness relation. These products
of solutions are eigenfunctions of the operators Λ± generalizing Λ± and
generating the Bäcklund transformations of the NLEE. These results ex-
tend the results of Calogero and Degasperis [11, 12, 42]. The same type of
results have been derived also for the Sturm-Liouville problem [43, 44, 45],
for the ZS system with periodic boundary conditions [45, 46, 47, 48] and
for the Sturm-Liouville problem on the semiaxis [49, 50].

3. The AKNS paper stimulated a number of other scientists [11, 12, 13, 14,
27, 39, 40, 41, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118]. In
1976, Calogero and Degasperis [11, 12] proposed generalized Wronskian
identities to describe the class of Bäcklund transformations for the NLS-
type NLEE.

4. The necessity to consider Lax operators generalizing the ZS system natu-
rally called for generalizations of the AKNS approach and for the explicit
derivation of the corresponding recursion operators Λ. Here, we list some
of the best known ones:
• the ZS system in the pole gauge [71, 81, 82, 118];
• n× n ZS system [27, 119, 120, 121];
• ZS system related to symmetric spaces [7, 9, 72, 122, 123];
• The natural generalizations of the Zakharov-Shabat system to simple

Lie algebras of rank higher than one:

i
dψ

dx
+ (Q(x, t)− λJ)ψ(x, t, λ) = 0, Q(x, t) = [J,Q′(x, t)] ,

(2.136)
where Q′(x, t) takes values in the simple Lie algebra g, and J is a con-
stant element of some fixed Cartan subalgebra h ⊂ g see [9, 124, 125]
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and [51, 74, 75, 84, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151];

• Polynomial generalizations of the Zakharov-Shabat system to simple
Lie algebras of higher rank:

i
dψ

dx
+

(

n
∑

k=1

λn−kQk(x, t)− λnJ

)

ψ(x, t, λ) = 0 , (2.137)

where Qn−1(x, t) = [J,Q′(x, t)] and Qk(x, t) take values in the simple
Lie algebra g, and J is a constant element of some fixed Cartan subal-
gebra h ⊂ g. The best known examples of this form are related to the
sl(2) algebra [70, 78, 114, 115, 121, 152, 153, 154, 155, 156, 157, 158];
for the bundles (pencils) with qubic and higher powers in λ see
[70, 152, 156, 157, 159, 160]). They can be extended also to alge-
bras of higher ranks, as well as to nonvanishing boundary conditions
case [161];

• Gelfand–Dickey–Zakharov–Shabat problem [162];
• to the difference version of ZS system known as the Ablowitz-Ladik

system [79, 163, 164, 165], their gauge equivalent ones [166], and their
multicomponent generalizations [37, 76];

• for ZS system with periodic boundary conditions, see [47, 167, 168, 169,
170] and the numerous references therein. Another important class of
boundary conditions, whose treatment requires a number of additional
constructions are the constant boundary conditions; see [161, 171, 172].

• for ZS system with elliptic dependence on λ see [107, 173].
5. For a number of important choices of L(λ), to the best of our knowledge,

the derivation of the AKNS scheme has not yet been done, and the cor-
responding recursion operators Λ are not yet known. This refers to the
cases in which L(λ) is rational function of λ [174, 175].

6. The formal approach to the recursion operators and NLEE is outlined in
a series of papers [127, 176]; see also [177];

7. The so-called U -V -systems were introduced by Zakharov and Mikhailov
[174, 175] where

L(λ) = i
d

dx
+ U(x, t, λ), M(λ) = i

d

dt
+ V (x, t, λ) , (2.138)

and U(x, t, λ) and V (x, t, λ) are rational functions of λ taking values
in g. Such Lax pairs allow to solve the principal chiral field equation
in 1 + 1 dimensions, as well as a number of fermionic models in field
theory;

8. U -V -systems with elliptic λ-dependence were used to solve the Landau-
Lifshitz equations and its generalizations related to the sl(n)-algebras
[173, 178].
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For the last two items, the recursion operator is known only for the sim-
plest case of rational U -V -system relevant for the principal chiral field [61]
and for the sl(2)-Landau-Lifshitz equation [179, 180].

9. Quite different from the operators in [179, 180] is the recursion operator
found for the Landau-Lifshitz equation with Lax pairs using some defor-
mations of the algebra so(4), see [181].

10. Discrete systems such as the Ablowitz-Ladik system [182] and its mul-
ticomponent generalizations have been treated along the same lines in
[76, 79, 183, 166].
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