
Preface

Mathematical Control Theory is a branch of Mathematics having as one of its
main aims the establishment of a sound mathematical foundation for the con-
trol techniques employed in several different fields of applications, including
engineering, economy, biology and so forth. The systems arising from these ap-
plied Sciences are modeled using different types of mathematical formalism,
primarily involving Ordinary Differential Equations, or Partial Differential
Equations or Functional Differential Equations. These equations depend on
one or more parameters that can be varied, and thus constitute the control as-
pect of the problem. The parameters are to be chosen so as to obtain a desired
behavior for the system. From the many different problems arising in Control
Theory, the C.I.M.E. school focused on some aspects of the control and opti-
mization of nonlinear, not necessarily smooth, dynamical systems. Two points
of view were presented: Geometric Control Theory and Nonlinear Control
Theory. The C.I.M.E. session was arranged in five six-hours courses delivered
by Professors A.A. Agrachev (SISSA-ISAS, Trieste and Steklov Mathematical
Institute, Moscow), A.S. Morse (Yale University, USA), E.D. Sontag (Rutgers
University, NJ, USA), H.J. Sussmann (Rutgers University, NJ, USA) and V.I.
Utkin (Ohio State University Columbus, OH, USA).

We now briefly describe the presentations.
Agrachev’s contribution began with the investigation of second order in-

formation in smooth optimal control problems as a means of explaining the
variational and dynamical nature of powerful concepts and results such as
Jacobi fields, Morse’s index formula, Levi-Civita connection, Riemannian cur-
vature. These are primarily known only within the framework of Riemannian
Geometry. The theory presented is part of a beautiful project aimed at inves-
tigating the connections between Differential Geometry, Dynamical Systems
and Optimal Control Theory.

The main objective of Morse’s lectures was to give an overview of a va-
riety of methods for synthesizing and analyzing logic-based switching con-
trol systems. The term “logic-based switching controller” is used to denote a
controller whose subsystems include not only familiar dynamical components
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(integrators, summers, gains, etc.) but logic-driven elements as well. An im-
portant category of such control systems are those consisting of a process to
be controlled, a family of fixed-gain or variable-gain candidate controllers, and
an “event-drive switching logic” called a supervisor whose job is to determine
in real time which controller should be applied to the process. Examples of
supervisory control systems include re-configurable systems, and certain types
of parameter-adaptive systems.

Sontag’s contribution was devoted to the input to state stability (ISS) par-
adigm which provides a way of formulating questions of stability with respect
to disturbances, as well as a method to conceptually unify detectability, in-
put/output stability, minimum-phase behavior, and other systems properties.
The lectures discussed the main theoretical results concerning ISS and related
notions. The proofs of the results showed in particular connections to relax-
ations for differential inclusions, converse Lyapunov theorems, and nonsmooth
analysis.

Sussmann’s presentation involved the technical background material for a
version of the Pontryagin Maximum Principle with state space constraints and
very weak technical hypotheses. It was based primarily on an approach that
used generalized differentials and packets of needle variations. In particular, a
detailed account of two theories of generalized differentials, the “generalized
differential quotients” (GDQs) and the “approximate generalized differential
quotients” (AGDQs), was presented. Then the resulting version of the Maxi-
mum Principle was stated.

Finally, Utkin’s contribution concerned the Sliding Mode Control concept
that for many years has been recognized as one of the key approaches for the
systematic design of robust controllers for complex nonlinear dynamic sys-
tems operating under uncertainty conditions. The design of feedback control
in systems with sliding modes implies design of manifolds in the state space
where control components undergo discontinuities, and control functions en-
forcing motions along the manifolds. The design methodology was illustrated
by sliding mode control to achieve different objectives: eigenvalue placement,
optimization, disturbance rejection, identification.

The C.I.M.E. course was attended by fifty five participants from several
countries. Both graduate students and senior mathematicians intensively fol-
lowed the lectures, seminars and discussions in a friendly and co-operative
atmosphere.

As Editors of these Lectures Notes we would like to thank the persons and
institutions that contributed to the success of the course. It is our pleasure
to thank the Scientific Committee of C.I.M.E. for supporting our project: the
Director, Prof. Pietro Zecca and the Secretary, Prof. Elvira Mascolo for their
support during the organization. We would like also to thank Carla Dionisi
for her valuable and efficient work in preparing the final manuscript for this
volume.
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Our special thanks go to the lecturers for their early preparation of the
material to be distributed to the participants, for their excellent performance
in teaching the courses and their stimulating scientific contributions.

We dedicate this volume to our teacher Prof. Roberto Conti, one of the
pioneers of Mathematical Control Theory, who contributed in a decisive way
to the development and to the international success of Fondazione C.I.M.E.

Siena and Firenze, May 2006 Paolo Nistri
Gianna Stefani
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Introduction

The subject of logically switched dynamical systems is a large one which
overlaps with many areas including hybrid system theory, adaptive control,
optimal control, cooperative control, etc. Ten years ago we presented a lecture,
documented in [1], which addressed several of the areas of logically switched
dynamical systems which were being studied at the time. Since then there
have been many advances in many directions, far to many too adequately
address in these notes. One of the most up to date and best written books on
the subject is the monograph by Liberzon [2] to which we refer the reader for
a broad but incisive perspective as well an extensive list of references.

In these notes we will deal with two largely disconnected topics, namely
switched adaptive control (sometimes called supervisory control) and “flock-
ing” which is about the dynamics of reaching a consensus in a rapidly changing
environment. In the area of adaptive control we focus mainly on one problem
which we study in depth. Our aim is to give a thorough analysis under realistic
assumptions of the adaptive version of what is perhaps the most important
design objective in all of feedback control, namely set-point control of a single-
input, single output process admitting a linear model. While the non-adaptive
version the set-point control problem is very well understood and has been so
for more than a half century, the adaptive version still is not because there
is no credible counterpart in an adaptive context of the performance theories
which address the non-adaptive version of the problem. In fact, even just the
stabilization question for the adaptive version of the problem did not really
get ironed out until ten years ago, except under unrealistic assumptions which
ignored the effects of noise and/or un-modeled dynamics.

As a first step we briefly discuss the problem of adaptive disturbance re-
jection. Although the switching logic we consider contains no logic or discrete

∗This research was supported by the US Army Research Office, the US National
Science Foundation and by a gift from the Xerox Corporation.



62 A.S. Morse

event sub-system, the problem nonetheless sets the stage for what follows.
One of the things which turns out (in retrospect) to have impeded progress
with adaptive control has been the seemingly benign assumption that the
parameters of the (nominal) model of the process to be controlled are from
a continuum of possible values. In Chap. 4 we briefly discuss the unpleasant
consequences of this assumption and outline some preliminary ideas which
might be used to deal with them.

In Chap. 5 we turn to detailed discussion of a switched adaptive controller
capable of causing the output of an imprecisely modeled process to approach
and track a constant reference signal. The material in this chapter provides a
clear example of what is meant by a logically switched dynamical system. Fi-
nally in Chap. 6 we consider several switched dynamical systems which model
the behavior of a group of mobile autonomous agents moving in a rapidly
changing environment using distributed controls. We begin with what most
would agree is the quintessential problem in the area of switched dynamical
systems.

1 The Quintessential Switched Dynamical System
Problem

The quintessential problem in the area of switched dynamical systems is this:
Given a compact subset P of a finite dimensional space, a parameterized
family of n × n matrices A = {Ap : p ∈ P}, and a family S of piecewise-
constant switching signals σ : [0,∞) → P, determine necessary and sufficient
conditions for Aσ to be exponentially stable for every σ ∈ S. There is a large
literature on this subject. Probably its most comprehensive treatment to date
is in the monograph [2] by Liberzon mentioned before. The most general
version of the problem is known to be undecidable [3]. These notes deal with
two special versions of this problem. Each arises in a specific context and thus
is much more structured than the general problem just formulated.

1.1 Dwell-Time Switching

In the first version of the problem, S consists of all switching signals whose
switching times are separated by τD times unit where τD is a pre-specified
positive number called a dwell time. More precisely, σ ∈ S is said to have
dwell time τD if and only if σ switches values at most once, or if it switches
more that once, the set of time differences between any two successive switches
is bounded below τD. In Sect. 5.1 we will encounter a switching logic which
generates such signals.

Note that the class S just defined contains constant switching signal
σ(t) = p, t ≥ 0 for any value of p ∈ P. A necessary condition for Aσ to
be exponentially stable for every σ ∈ S, is therefore that each Ap ∈ A is ex-
ponentially stable. In other words, if Aσ to be exponentially stable for every
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σ ∈ S, then for each p ∈ P there must exist non-negative numbers tp and
λp, with λp positive such that |eApt| ≤ eλp(tp−t), t ≥ 0. Here and elsewhere
through the end of Chap. 5, the symbol | · | denotes any norm on a finite di-
mensional linear space. It is quite easy to show by example that this condition
is not sufficient unless τD is large. An estimate of how large τD has to be in
order to guarantee exponential stability, is provided by the following lemma.

Lemma 1.1. Let {Ap : p ∈ P} be a set of real, n×n matrices for which there
are non-negative numbers tp and λp with λp positive such that

|eApt| ≤ eλp(tp−t), t ≥ 0 (1.1)

Suppose that τD is a finite number satisfying

τD > tp, p ∈ P (1.2)

For any switching signal σ : [0,∞) → P with dwell time τD, the state transi-
tion matrix of Aσ satisfies

|Φ(t, µ)| ≤ eλ(T−(t−µ)), ∀ t ≥ µ ≥ 0 (1.3)

where λ is a positive number defined by

λ = inf
p∈P

{
λp

(
1 − tp

τD

)}
(1.4)

and
T =

2
λ

sup
p∈P

{λptp} (1.5)

Moreover,
λ ∈ (0, λp], p ∈ P. (1.6)

The estimate given by this lemma can be used to make sure that the “slow
switching assumption” discussed in Sect. 5.2 is satisfied.

Proof of Lemma 1.1: Since P is a closed, bounded set, supp∈P tp < ∞.
Thus a finite τD satisfying (1.2) exists. Clearly λp(1 − tp

τD
) > 0, p ∈ P. From

this and the definition of λ it follows that (1.6) holds and that

eλp(tp−τD) ≤ e−λτD , p ∈ P

This and (1.1) imply that for t ≥ τD

|eApt| ≤ eλp(tp−t) = eλp(tp−τD)e−λp(t−τD) ≤ e−λτDe−λp(t−τD)

≤ e−λτDe−λ(t−τD) ≤ e−λt, t ≥ τD, p ∈ P (1.7)
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It also follows from (1.1) and the definition of T that

|eApt| ≤ eλ( T
2 −t), t ∈ [0, τD), p ∈ P (1.8)

Set t0 = 0 and let t1, t2 . . . denote the times at which σ switches. Write pi

for the value of σ on [ti−1, ti). Note that for tj−1 ≤ µ ≤ tj ≤ ti ≤ t ≤ ti+1,

Φ(t, µ) = eApi+1 (t−ti)

⎛
⎝ i∏

q=j+1

eApq (tq−tq−1)

⎞
⎠ eApj

(tj−µ)

In view of (1.7) and (1.8)

|Φ(t, µ)| ≤ |eApi+1 (t−ti)|

⎛
⎝ i∏

q=j+1

|eApq (tq−tq−1)|

⎞
⎠ |eApj

(tj−µ)|

≤ eλ( T
2 −(t−ti))

⎛
⎝ i∏

q=j+1

e−λ(tq−tq−1)

⎞
⎠ eλ( T

2 −(tj−µ))

= eλ(T−(t−µ))

On the other hand, for i > 0, ti−1 ≤ µ ≤ t ≤ ti, (1.8) implies that

|Φ(t, µ)| ≤ eλ( T
2 −(t−µ)) ≤ eλ(T−(t−µ))

and so (1.3) is true. �

Input–Output Gains of Switched Linear Systems

In deriving stability margins and systems gains for the supervisory control
systems discussed in Sect. 5 we will make use of induced “gains” (i.e. norms)
of certain types of switched linear systems. Quantification of stability margins
and the devising of a much needed performance theory of adaptive control,
thus relies heavily on our ability to characterize these induced gains. In this
section we make precise what types of induced gains we are referring to and
we direct the reader to some recent work aimed at their characterization.

To begin, suppose that {(Ap, Bp, Cp,Dp) : p ∈ P} is a family of coefficient
matrices of m-input, r-output, n-dimensional, exponentially stable linear sys-
tems. Then any σ ∈ S determines a switched linear system of the form

Σσ
∆=
{

ẋ = Aσx + Bσu
y = Cσx + Dσu

}
(1.9)

Thus if x(0) ∆= 0, then y = Yσ ◦ u, where Yσ is the input–output mapping

u �−→
∫ t

0

Cσ(t)Φ(t, τ)Dσ(τ)Bσ(τ)u(τ)dτ + Dσu,
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and Φ is the state transition matrix of Aσ. Let prime denotes transpose and,
for any integrable, vector-valued signal v on [0,∞), let || · || denotes the two-
norm

||v|| ∆=

√∫ ∞

0

v′(t)v(t)dt

The input–output gain of Σσ is then the induced two-norm

γ(σ) ∆= inf{g : ||Y ◦ u|| ≤ g||u||, ∀u ∈ L2}
where L2 is the space of all signals with finite two-norms. Define the gain g

of the multi-system {(Ap, Bp, Cp,Dp), p ∈ P} to be

g
∆= sup

σ∈S
γ(σ)

Thus g is the worst case input–output gain of (1.9) as σ ranges over all switch-
ing signals in S. Two problems arise:

1. Derive conditions in terms of τD and the multi-system {(Ap, Bp, Cp,Dp),
p ∈ P} under which g is a finite number.

2. Assuming these conditions hold, characterize g in terms of {(Ap, Bp, Cp,
Dp), p ∈ P} and τD.

The first of the two problems just posed implicitly contains as a sub-
problem the quintessential switched dynamical system problem posed at the
beginning of this section. A sufficient condition for g to be finite is that τD

satisfies condition (1.2) of Lemma 1.1. For the second problem, what would
be especially useful would be a characterization of g which is coordinate-
independent; that is a characterization which depends only on the transfer
matrices Cp(sI −Ap)−1Bp +Dp, p ∈ P and not on the specific realizations of
these transfer matrices which define {(Ap, Bp, Cp,Dp), p ∈ P}. For example,
it is reasonable to expect that there might be a characterization of g in terms
of the H∞ norms of the Cp(sI − Ap)−1Bp + Dp, p ∈ P, at least for τD

sufficiently large.
The problem of characterizing g turns out to be a good deal more difficult

that one might at first suspect, even if all one wants is a characterization of the
limiting value of g as τD → ∞ [4]. In fact, contrary to intuition, one can show
by example that this limiting value may, in some cases, be strictly greater
than the supremum over P of the H∞ norms of the Cp(sI − Ap)−1Bp + Dp.
We refer the interested reader to [4] for a more detailed discussion of this
subject. It is results along these lines which will eventually lead to a bona fide
performance theory for adaptive control.

1.2 Switching Between Stabilizing Controllers

In many applications, including those discussed in Chap. 5, the matrix Aσ

arises within a linear system which models the closed loop connection con-
sisting of fixed linear system in feedback with a switched linear system. For
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Cσ τ

Fig. 1. A switched control system

κp τ

Fig. 2. A Linear Control System

example, it is possible to associate with a given family of controller transfer
functions {κp : p ∈ P} together with a given process model transfer func-
tion τ , a switched control system of the form shown in Fig. 1 where Cσ is a
switched controller with instantaneous transfer function κσ.

Not always appreciated, but nonetheless true is the fact that the input–
output properties of such a system depends on the specific realizations of
the κp. Said differently, it is really not possible to talk about switched linear
systems from a strictly input–output point of view. A good example, which
makes this point, occurs when for each p ∈ P, the closed loop systems shown
in Fig. 2 is stable. Under these conditions, the system shown in Fig. 1 turns out
to be exponentially stable for every possible piecewise continuous switching
signal, no matter how fast the switching, but only for certain realizations of
the κp [5]. The key idea is to first use a Youla parameterization to represent
the entire class of controller transfer functions and second to realize the family
in such a way so that what is actually being switched within Cσ are suitably
defined realizations of the Youla parameters, one for each κp. We refer the
reader to [5] for a detailed discussion of this idea.

1.3 Switching Between Graphs

The system just discussed is a switched dynamical system because the con-
troller within the system is a switched controller. Switched dynamical systems
can arise for other reasons. An interesting example of this when the overall sys-
tem under consideration models the motions of a group of mobile autonomous
agents whose specific movements are governed by strategies which depend on
the movements of their nearby agents. A switched dynamical model can arise
in this context because each agent’s neighbors may change over time. What
is especially interesting about this type of system is the interplay between the
underlying graphs which characterize neighbor relationships, and the evolu-
tion of the system over time. Chapter 6 discusses in depth several example of
this type of system.
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2 Switching Controls with Memoryless Logics

2.1 Introduction

Classical relay control can be thought of as a form of switching control in which
the logic generating the switching signal is a memoryless system. A good ex-
ample of this is the adaptive disturbance rejector devised by I. M. Lie Ying
at the High Altitude Control Laboratory at the Tibet Institute of Technology
in Lhasa. Ying’s work provides a clear illustration of what the use of switch-
ing can accomplish in a control setting, even if there is no logic or memory
involved.

2.2 The Problem

In [6], Ying gives a definitive solution to the long-standing problem of con-
structing an adaptive feedback control for a one-dimensional siso linear system
with an unmeasurable, bounded, exogenous disturbance input so as to cause
the system’s output to go to zero asymptotically. More specifically he consid-
ered the problem of constructing an adaptive feedback control u = f(y) for
the one-dimensional linear system

ẏ = −y + u + d

so as to cause the system’s output y to go to zero no matter what exogenous
disturbance d : [0,∞) → IR might be, so long as d is bounded and piecewise-
continuous. Up until the time of Ying’s work, solutions to this long standing
problem had been shown to exist only under the unrealistic assumption that
d could be measured [7]. Ying made no such assumption.

2.3 The Solution

The adaptive control he devised is described by the equations

u = −kσ(y)
k̇ = |y|

where

σ(y) =
{

1 y ≥ 0
−1 y < 0 (2.1)

The closed-loop system is thus

ẏ = −y − kσ(y) + d, (2.2)
k̇ = |y| (2.3)
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2.4 Analysis

Concerned that skeptical readers might doubt the practicality of his idea, Ying
carried out a full analysis of the system. Here is his reasoning.

To study this system’s behavior, let b be any positive number for which

|d(t)| ≤ b, t ≥ 0 (2.4)

and let V denote the Lyapunov function

V =
y2

2
+

(k − b)2

2
(2.5)

In view of the definition of σ in (2.1), the rate of change of V along a solution
to (2.2) and (2.3) can be written as

V̇ = ẏy + k̇(k − b) = −y2 − k|y| + dy + |y|(k − b)

Since (2.4) implies that dy ≤ b|y|, V̇ must satisfy

V̇ ≤ −y2 − k|y| + b|y| + |y|(k − b)

Therefore
V̇ ≤ −y2.

From this and (2.5) it follows that y and k are bounded and that y has a
bounded L2 norm. In addition, since (2.2) implies that ẏ is bounded, it must
be true that y → 0 as t → ∞ (cf. [8]) which is what is desired. The practical
significance of this result, has been firmly established by computer simulation
performed be numerous graduate students all over the world.

3 Collaborations

Much of the material covered in these notes has appeared in one form or an-
other in published literature. There are however several notable exceptions
in Chap. 6. Among these are the idea of composing directed graphs and the
interrelationships between rooted graphs, Sarymsakov graphs, and neighbor
shared graphs discussed in Sect. 6.1. The entire section on measurement delays
(Sect. 6.3) is also new. All of the new topics addressed in Chap. 6 were devel-
oped in collaboration with Ming Cao and Brian Anderson. Daniel Spielman
also collaborated with us on most of the convergence results and Jia Fang
helped with the development as well. Most of this material will be published
elsewhere as one or more original research papers.



Lecture Notes on Logically Switched Dynamical Systems 69

4 The Curse of the Continuum

Due to its roots in nonlinear estimation theory, parameter identification the-
ory generally focuses on problems in which unknown model parameters are
assumed to lie within given continuums. Parameter-adaptive control, which is
largely an outgrowth of identification theory, also usually addresses problems
in which unknown process model parameters are assumed to lie within contin-
uums. The continuum assumption comes with a large price tag because a typ-
ical parameter estimation problem over a continuum is generally not tractable
unless the continuum is convex and the dependence on parameters is linear.
These practical limitations have deep implications. For example, a linearly
parameterized transfer matrix on a convex set can easily contain points in
its parameter spaces at which the transfer matrix has an unstable pole and
zero in common. For nonlinear systems, the problem can be even worse – for
those process model parameterizations in which parameters cannot be sepa-
rated from signals, it is usually impossible to construct a finite-dimensional
multi-estimator needed to carry out the parameter estimation process. We
refer to these and other unfortunate consequences of the continuum assump-
tion as the Curse of the Continuum. An obvious way to avoid the curse, is to
formulate problems in such a way so that the parameter space of interest is
finite or perhaps countable. But many problems begin with parameter spaces
which are continuums. How is one to reformulate such a problem using a finite
parameter space, without serious degradation in expected performance? How
should a parameter search be carried out in a finite parameter space so that
one ends up with a provably correct overall adaptive algorithm? It is these
questions to which this brief chapter and Chap. 5 are addressed.

4.1 Process Model Class

Let P be a process to be controlled and suppose for simplicity that P is a
siso system admitting a linear model. Conventional linear feedback theory
typically assumes that P’s transfer function lies in a known open ball

B(ν, r)

of radius r centered at nominal transfer function ν in a metric space T . In
contrast, main-stream adaptive control typically assumes P’s transfer function
lies in a known set of the form

M =
⋃
p∈P

B(νp, rp)

where P is a compact continuum within a finite dimensional space and p�−→rp

is at least bounded.
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κ τ

(a)

C P

(b)

Fig. 3. Non-adaptive control

κp τ

(a)

Cσ P

(b)

Fig. 4. Adaptive control

In a conventional non-adaptive control problem, a controller transfer func-
tion κ is chosen to endow the feedback system shown in Fig. 3a with sta-
bility and other prescribed properties for each candidate transfer function
τ ∈ B(ν, r). Control of P is then carried out by applying to P a controller C

with transfer function κ as shown in Fig. 3b.
In the adaptive control case, for each p ∈ P, controller transfer function

κp is chosen to endow the feedback system shown in Fig. 4a with stability
and other prescribed properties for each τ ∈ B(νp, rp). Adaptive control of
P is then carried, in accordance with the idea of “certainty equivalence by
using a parameter-varying controller or multi-controller Cσ with instantaneous
transfer function κσ where σ is the index in P of the “best” current estimate
of the ball within which P’s transfer function resides.1

Since P is a continuum and κp is to be defined for each p ∈ P, the actual
construction of κp is at best a challenging problem, especially if the construc-
tion is based on LQG or H∞ techniques. Moreover, because of the continuum,
the associated estimation of the index of the ball within which P’s transfer
function resides will be intractable unless demanding conditions are satis-
fied. Roughly speaking, P must be convex and the dependence of candidate

1 Certainty equivalence is a heuristic idea which advocates that the feedback con-
troller applied to an imprecisely modeled process should, at each instant of time,
be designed of the basis of a current estimate of what the process is, with the
understanding that each such estimate is to be viewed as correct even though
it may not be. The term is apparently due to Herbert Simon [9] who used in
a 1956 paper [10] to mean something somewhat different then what’s meant
here and throughout the field of parameter adaptive control. The consequence
of using this idea in an adaptive context is to cause the interconnection of the
controlled process, the multi-controller and the parameter estimator to be de-
tectable through the error between the output of the process and its estimate for
every frozen parameter estimate – and this is true whether the three subsystems
involved are linear or not [11].
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process models on p must be linear. And in the more general case of nonlinear
process models, a certain separability condition [11, 12] would have to hold
which models as simple as

ẏ = sin(py) + u

fail to satisfy. The totality of these implications is rightly called the curse of
the continuum.

Example

The following example illustrates one of the difficulties which arises as a conse-
quence of the continuum assumption. Ignoring un-modeled dynamics, suppose
that M is simply the parameterized family of candidate process model transfer
functions

M =
{

s − 1
6 (p + 2)

s2 + ps − 2
9p(p + 2)

: p ∈ P
}

where P = {p : −1 ≤ p ≤ 1}. Note that there is no transfer function in M
with a common pole and zero because the polynomial function

s2 + ps − 2
9
p(p + 2)|s= 1

6 (p+2)

is nonzero for all p ∈ P. The parameterized transfer function under consider-
ation can be written as

s − 1
6 (p + 2)

s2 + ps + q

where
q = −2

9
p(p + 2). (4.1)

Thus M is also the set of transfer functions

M =
{

s − 1
6 (p + 2)

s2 + ps + q
: (p, q) ∈ Q

}
, (4.2)

where Q is the two-parameter space

Q = {(p, q) : q +
2
9
p(p + 2) = 0, −1 ≤ p ≤ 1}.

The set of points in Q form a parabolic curve segment as shown in Fig. 5.

Although the parameterized transfer function defining M in (4.2) depends
linearly on p and q, the parameter space Q is not convex. Thus devising a
provably parameter estimation algorithm for this parameterization would be
difficult. In a more elaborate example of this type, where more parameters
would be involved, the parameter estimation problem would typically be in-
tractable.
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−1

1

2
9

−2
3

p

q

Fig. 5. Parameter space Q
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Fig. 6. Parameter space Q̄

There is a natural way to get around this problem, if the goal is identi-
fication as opposed to adaptive control. The idea is to embed Q in a larger
parameter space which is convex. The smallest convex space Q̄ containing Q
is the convex hull of Q as shown in Fig. 6.

The corresponding set of transfer functions is

M̄ =
{

s − 1
6 (p + 2)

s2 + ps + q
, (p, q) ∈ Q̄

}

It is easy to see that any linearly parameterized family of transfer functions
containing M which is defined on a convex parameter space, must also contain
M̄. While this procedure certainly makes tractably the problem of estimating
parameters, the procedure introduces a new problem. Note that if the newly
parameterized transfer function is evaluated at the point (0,−1

9 ) ∈ Q̄, what
results is the transfer function

s − 1
6 (p + 2)

s2 + ps + q

∣∣∣∣
(p, q)=(0,− 1

9 )

=
s − 1

3

s2 − 1
9
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This transfer function has a common pole and zero in the right half plane at
s = 1

3 . In summary, the only way to embed M in a larger set which is linearly
parameterized on a convex parameter space, is to introduce candidate process
model transfer functions which have right half plane pole-zero cancellations.
For any such candidate process model transfer function τ , it is impossible
to construct a controller which stabilizes the feedback loop shown in Fig. 4a.
Thus the certainty equivalence based approach we have outlined for defining
Cσ cannot be followed here.

There is a way to deal with this problem if one is willing to use a different
paradigm to construct Cσ [13]; the method relies on an alternative to certainty
equivalence to define Cσ for values of σ which are “close” to points on para-
meter space at which such pole zero cancellations occur. Although the method
is systematic and provably correct, the multi-controller which results is more
complicated than the simple certainty-equivalence based multi-controller de-
scribed above. There is another way to deal with this problem [14] which we
discuss next.

4.2 Controller Covering Problem

As before let P be a siso process to be controlled and suppose that P has a
model in

M =
⋃
p∈P

B(νp, rp)

where B(νp, rp) is a ball of radius rp centered at nominal transfer function νp

in a metric space T with metric µ. Suppose in addition that P is a compact
continuum within a finite dimensional space and p �−→ rp is at least bounded.
Instead of trying re-parameterize as we did in the above example, suppose
instead we try to embed M is a larger class of transfer functions which is
the union of a finite set of balls in T , each ball being small enough so that it
can be adequately controlled with a single conventional linear controller. We
pursue this idea as follows.

Let us agree to say that a finite set of controller transfer functions K is a
control cover of M if for each transfer function τ ∈ M there is at least one
transfer function κ ∈ K which endows the closed-loop system shown in Fig. 7
with at least stability and possible other prescribed properties.

The controller covering problem for a given M is to find a control cover,
if one exists.

κ τ

Fig. 7. Feedback loop
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4.3 A Natural Approach

There is a natural way to try to solve the controller covering problem if each
of the balls B(νi, ri) is small enough so that each transfer function in any
given ball can be adequately controlled by the same fixed linear controller. In
particular, if we could cover M with a finite set of balls – say {B(νp, rp) : p ∈
Q} where Q is a finite subset of P – then we could find controller transfer
functions κp, p ∈ Q, such that for each p ∈ Q and each τ ∈ B(νp, rp), κp

provides the system shown in Fig. 4a with at least stability and possibly other
prescribed properties. The problem with this approach is that M is typically
not compact in which case no such finite cover will exist. It is nevertheless
possible to construct a finite cover of M using enlarged versions of some of
the balls in the set

{B(νp, rp) : p ∈ P}
In fact, M can be covered by any one such ball. For example, for any fixed
q ∈ P, M ⊂ B(νp, sq) where

sq = sup
p∈P

rp + sup
p∈P

µ(νp, νq)

This can be checked by simply applying the triangle inequality. The real prob-
lem then is to construct a cover using balls which are small enough so that all
transfer functions in any one ball can be adequately controlled by the same
linear controller. The following lemma [15] takes a step in this direction.

Lemma 4.1. If Q is a finite subset of P such that

{νp : p ∈ P} ⊂
⋃

q∈Q
B(νq, rq)

then
M ⊂

⋃
q∈Q

B(νq, rq + sq)

where for q ∈ Q,
sq = sup

p∈Pq

rp

and Pq is the set of all p ∈ P such that νp ∈ B(νq, rq).

In other words, if we can cover the set of nominal process model transfer
functions N = {νp : p ∈ P} with a finite set of balls from the set {B(νp, rp) :
p ∈ P}, then by enlarging these balls as the lemma suggests, we can over M.
Of course for such a cover of N to exist, N must be compact. It is reasonable
to assume that this is so and we henceforth do. But we are not yet out of the
woods because the some of enlarged balls we end up with may still turn out
to be too large to be robust stabilizable with linear controllers, even if each of
the balls in the original set {B(νp, rp) : p ∈ P} is. There is a different way to
proceed which avoids this problem if certain continuity conditions apply. We
discuss this next.
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4.4 A Different Approach

Let us assume that

1. p �−→ rp is continuous on P.
2. For each p ∈ P and each positive number εp there is a number δp for

which
µ(νq, νp) < εp

whenever |q−p| < δp where | · | is the norm in the finite-dimensional space
within which P resides.

The following lemma is from [14].

Lemma 4.2. Let the preceding assumptions hold. For each function p �−→ sp

which is positive on P, there is a finite subset Q ⊂ P such that

M ⊂
⋂

q∈Q
B(νq, rq + sq)

The key point here is that if the continuity assumptions hold, then it is possible
to cover M with a finite set of balls which are arbitrarily close in size to the
originals in the set {B(νp, rp) : p ∈ Q}. Thus if each of the original balls is
robustly stabilizable with a linear controller, then so should be the expanded
balls if they are chosen close enough in size to the originals. Of course small
enlargements may require the use of lots of balls to cover M.

4.5 Which Metric?

In order to make use of the preceding to construct a control cover of M, we
need a metric which at least guarantees that if κ stabilizes ν, {i.e., if 1 + κν
has all its zeros in the open left-half plane}, then κ also stabilizes any transfer
function in the ball B(ν, r) for r sufficiently small. Picking a metric with this
robust stabilization property is not altogether trivial. For example, although
for sufficiently small g the transfer function

τg =
s − 1 + g

(s + 1)(s − 1)

can be made arbitrarily close to the transfer function

ν = τg|g=0 =
1

(s + 1)

in the metric space of normed differences between transfer function coeffi-
cients, for any controller transfer function κ which stabilizes ν one can always
find a non-zero value of g sufficiently small such that κ does not stabilize τg

at this value. This metric clearly does not have the property we seek. Two
metrics which do are the gap metric [16] and the v-metric [17]. Moreover
the v-metric is known to satisfy the continuity assumption stated just above
Lemma 4.2 [14]. Thus we are able to construct a controller cover as follows.
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4.6 Construction of a Control Cover

Suppose that the admissible process model transfer function class

M =
⋃
p∈P

B(νp, rp)

is composed of balls B(νp, rp) which are open neighborhoods in the metric
space of transfer functions with the v-metric µ. Suppose that these balls are
each small enough so that for some sufficiently small continuous, positive
function p �−→ ρp we can construct for each p ∈ P, a controller transfer
function κp which stabilizes each transfer function in B(νp, rp+ρp). By Lemma
4.2, we can then construct a finite subset Q ⊂ P such that

M ⊂
⋃

p∈Q
B(νp, rp + ρp)

By construction, κp stabilizes each transfer function in B(νp, rp+ρp). Thus for
each τ ∈ M there must be at least one value of q ∈ Q such that κq stabilizes
τ . Since Q is a finite set, {κq : q ∈ Q} is a controller cover of M.

5 Supervisory Control

Much has happened in adaptive control in the last 40 years. The solution to
the classical model reference problem is by now very well understood. Provably
correct algorithms exist which, at least in theory, are capable of dealing with
un-modeled dynamics, noise, right-half-plane zeros, and even certain types
of nonlinearities. However despite these impressive gains, there remain many
important, unanswered questions: Why, for example, is it still so difficult to
explain to a novice why a particular algorithm is able to functions correctly in
the face of un-modeled process dynamics and L∞ bounded noise? How much
un-modeled dynamics can a given algorithm tolerate before loop-stability is
lost? How do we choose an adaptive control algorithm’s many design parame-
ters to achieve good disturbance rejection, transient response, etc.?

There is no doubt that there will eventually be satisfactory answers to all
of these questions, that adaptive control will become much more accessible
to non-specialists, that we will be able to much more clearly and concisely
quantify un-modeled dynamics norm bounds, disturbance-to-controlled out-
put gains, and so on and that because of this we will see the emergence of a
bona fide computer-aided adaptive control design methodology which relies
much more on design principals then on trial and error techniques. The aim
of this chapter is to take a step towards these ends.

The intent of the chapter is to provide a relatively uncluttered analysis
of the behavior of a set-point control system consisting of a poorly modeled
process, an integrator and a multi-controller supervised by an estimator-based
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algorithm employing dwell-time switching. The system has been considered
previously in [18, 19] where many of the ideas which follow were first pre-
sented. Similar systems have been analyzed in one form or another in [20–22]
and elsewhere under various assumptions. It has been shown in [19] that the
system’s supervisor can successfully orchestrate the switching of a sequence
of candidate set-point controllers into feedback with the system’s imprecisely
modeled siso process so as (i) to cause the output of the process to approach
and track a constant reference input despite norm-bounded un-modeled dy-
namics, and constant disturbances and (ii) to insure that none of the signals
within the overall system can grow without bound in response to bounded
disturbances, be they constant or not. The objective of this chapter is to de-
rive the same results in a much more straight forward manner. In fact this has
already been done in [23] and [24] for a supervisory control system in which
the switching between candidate controllers is constrained to be “slow.” This
restriction not only greatly simplified the analysis in comparison with that
given in [19], but also made it possible to derive reasonably explicit upper
bounds for the process’s allowable un-modeled dynamics as well as for the
system’s disturbance-to-tracking error gain. In these notes we also constrain
switching to be slow.

Adaptive set-point control systems typically consist of at least a process
to be controlled, an integrator, a parameter tunable controller or “multi-
controller,” a parameter estimator or “multi-estimator,” and a tuner or
“switching logic.” In sharp contrast with non-adaptive linear control sys-
tems where subsystems are typically analyzed together using one overall linear
model, in the adaptive case the sub-systems are not all linear and cannot be
easily analyzed as one big inter-connected non-linear system. As a result, one
needs to keep track of lots of equations, which can be quite daunting. One way
to make things easier is to use carefully defined block diagrams which sum-
marize equations and relations between signals in a way no set of equations
can match. We make extensive use of such diagrams in this chapter.

5.1 The System

This section describes the overall structure of the supervisory control system
to be considered. We begin with a description of the process.

Process = P

The problem of interest is to construct a control system capable of driving to
and holding at a prescribed set-point r, the output of a process modeled by
a dynamical system with “large” uncertainty. The process P is presumed to
admit the model of a siso linear system whose transfer function from control
input u to measured output y is a member of a continuously parameterized
class of admissible transfer functions of the form
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M =
⋃
p∈P

{νp + δ : δ ≤ εp}

where P is a compact subset of a finite dimensional space,

νp
∆=

αp

βp

is a pre-specified, strictly proper, nominal transfer function, εp is a real non-
negative number, δ is a proper stable transfer function whose poles all have
real parts less than the negative of a pre-specified stability margin λ > 0, and
· is the shifted infinity norm

δ = sup
ω∈IR

|δ(jω − λ)|

It is assumed that the coefficients of αp and βp depend continuously on p and
for each p ∈ P, that βp is monic and that αp and βp are co-prime. All transfer
functions in M are thus proper, but not necessarily stable rational functions.
Prompted by the requirements of set-point control, it is further assumed that
the numerator of each transfer function in M is non-zero at s = 0. The specific
model of the process to be controlled is shown in Fig. 8.

Here y is the process’s measured output, d is a disturbance, and p∗ is the
index of the nominal process model transfer function which models P.

We will consider the case when P is a finite set and also the case when
P contains a continuum. Although both cases will be treated more or less
simultaneously, there are two places where the continuum demands special
consideration. The first is when one tries to construct stabilizable and de-
tectable realizations of continuously parameterized transfer functions, which
are continuous functions of p. In particular, unless the transfer functions in
question all have the same McMillan degree, constructing realizations with
all of these properties can be quite a challenge. The second place where
the continuum requires special treatment, is when one seeks to characterize
the key property implied by dwell time switching. Both of these matters will
be addressed later in this chapter.

+ + +

+
u

d

νp∗

δ

y

Fig. 8. Process model
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In the sequel, we define one by one, the component subsystems of the
overall supervisory control system under consideration. We begin with the
“multi-controller.”

Multi-Controller = Cσ

We take as given a continuously parameterized family of “off-the-shelf” loop
controller transfer functions K ∆= {κp : p ∈ P} with at least the following
property:

Stability margin property: For each p ∈ P, −λ is greater than the real
parts of all of the closed-loop poles2 of the feedback interconnection (Fig. 9).

We emphasize that stability margin property is only a minimal requirement on
the κp. Actual design of the κp could be carried out using any one of a number
of techniques, including linear quadratic or H∞ methods, parameter-varying
techniques, pole placement, etc.

We will also take as given an integer nC ≥ 0 and a continuously para-
meterized family of nC-dimensional realizations {AC(p), bC(p), fC(p), gC(p)},
one for each κp ∈ K. These realizations are required to be chosen so that for
each p ∈ P, (fC(p), λI +AC(p)) is detectable and (λI +AC(p), bC(p)) is stabi-
lizable. There are a great many different ways to construct such realizations,
once one has in hand an upper bound nκ on the McMillan Degrees of the κp.
One is the 2nκ-dimensional identifier-based realization

{(
AI 0
0 AI

)
+
(

bI

0

)
fp,

(
gpbI

bI

)
, fp, gp

}
(5.1)

where (AI , bI) is any given parameter-independent, nκ-dimensional siso, con-
trollable pair with AI stable and fp are gp are respectively a parameter-
dependent 1 × 2nκ matrix and a parameter dependent scalar. Another is the
nκ-dimensional observer-based realization

{AO + kpfO, bp, fO, gp}

+

−
κp

1
s νp

Fig. 9. Feedback interconnection

2 By the closed-loop poles are meant the zeros of the polynomial sρpβp + γpαp,
where

αp

βp
and

γp

ρp
are the reduced transfer functions νp and κp respectively.
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+

−
r yCσ

1
s P

uveT

Fig. 10. Supervised sub-system

where (fO, AO) is any given nκ-dimensional, parameter-independent, observ-
able pair with AO stable and kp and gp are respectively a parameter-dependent
nκ×1 matrix and a parameter dependent scalar. Thus for the identifier-based
realization nC = 2nκ whereas for the observer-based realization nC = nκ. In
either case, linear systems theory dictates that for a these realizations to exist,
it is necessary to be able to represent each transfer function in K as a rational
function ρ(s) with a monic denominator of degree nκ. Moreover, ρ(s) must be
defined so that the greatest common divisor of its numerator and denominator
is a factor of the characteristic polynomial of AI or AO depending on which
type of realization is being used. For the case when K is a finite set, this is eas-
ily accomplished by simply multiplying both the numerator and denominator
of each reduced transfer function κp in K by an appropriate monic polynomial
µp of sufficiently high degree so that the rational function ρ(s) which results
has a denominator of degree nκ. Carry out this step for the case when P con-
tains a continuum is more challenging because to obtain a realization which
depends continuously on p, one must choose the coefficients of µp to depend
continuously on p as well. One obvious way to side-step this problem is to
deal only with the case when all of the transfer functions in K have the same
McMillan degree, because in this case µp can always be chosen to be a fixed
polynomial not depending on p. We will not pursue this issue in any greater
depth in these notes. Instead, we will simply assume that such a continuously
parameterized family of realizations of the κp has been constructed.

Given such a family of realizations, the sub-system to be supervised is of
the form shown in Fig. 10 where Cσ is the nC-dimensional switchable dynam-
ical system

ẋC = AC(σ)xC + bC(σ)eT v = fC(σ)xC + gC(σ)eT, (5.2)

called a multi-controller, v is the input to the integrator

u̇ = v, (5.3)

eT is the tracking error
eT

∆= r − y, (5.4)

and σ is a piecewise constant switching signal taking values in P.

Supervisor = E + W + D

Our aim here is to define a “supervisor” which is capable of generating σ in
real time so as to ensure both:
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1. Global boundedness of all system signals in the face of an arbitrary but
bounded disturbance inputs

2. Set-point regulation {i.e., eT → 0} in the event that the disturbance signal
is constant

As we shall see, the kind of supervisor we will define will deliver even more –
a form of exponential stability which will ensure that neither bounded mea-
surement noise nor bounded system noise entering the system at any point
can cause any signal in the system to grow without bound.

Parallel Realization of an Estimator-Based Supervisor

To understand the basic idea behind the type of supervisor we ultimately
intend to discuss, it is helpful to first consider what we shall call a parallel
realized estimator-based supervisor. This type of supervisor is applicable only
when P is a finite set. So for the moment assume that P contains m elements
p1, p2, . . . , pm and consider the system shown in Fig. 11.

Here each yp is a suitably defined estimate of y which would be asymptot-
ically correct if νp were the process model’s transfer function and there were
no noise or disturbances. The system which generates yp would typically be an
observer for estimating the output of a linear realization of nominal process
transfer function νp. For each p ∈ P, ep = yp − y denotes the pth output es-
timation error and µp is a suitably defined norm-squared value of ep called a
monitoring signal which is used by the supervisor to assess the potential per-
formance of controller p. S is a switching logic whose function is to determine
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Fig. 11. Parallel realization of an estimator-based supervisor
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σ on the basis of the current values of the µp. The underlying decision making
strategy used by such a supervisor is basically this: From time to time select
for σ, that candidate control index q whose corresponding monitoring signal
µq is the smallest among the µp, p ∈ P. The justification for this heuristic
idea is that the nominal process model whose associated monitoring signal is
the smallest, “best” approximates what the process is and thus the candidate
controller designed on the basis of this model ought to be able to do the best
job of controlling the process.

Estimator-Based Supervisor

The supervisor shown in Fig. 11 is a hybrid dynamical system whose inputs are
v and y and whose output is σ. One shortcoming of this particular architecture
is that it is only applicable when P is a finite set. The supervisor we will
now define is functionally the same as the supervisor shown in Fig. 11 but
has a different realization, one which can be applied even when P contains
a continuum of points. The supervisor consists of three subsystems: a multi-
estimator E, a weight generator W, and a specific switching logic S

∆= D called
dwell-time switching (Fig. 12).

We now describe each of these subsystems in greater detail.

Multi-Estimator = E

By a multi-estimator E for 1
sN , is meant an nE-dimensional linear system

ẋE = AExE + dEy + bEv (5.5)

where

AE =
(

A 0
0 A

)
, dE =

(
b
0

)
, bE =

(
0
b

)

Here (A, b) is any (nν + 1)-dimensional, single input controllable pair cho-
sen so that (λI + A) is exponentially stable, and nν is an upper bound on
the McMillan degrees of the νp, p ∈ P. Because of this particular choice of
matrices, it is possible to construct for each p ∈ P, a row vector cE(p) for
which

{AE + dEcE(p), bE , cE(p)}
realizes 1

sνp and (λI + AE + dEc(p), bE) is stabilizable. We will assume that
such a cE(p) has been constructed and we will further assume that it depends
continuously on p. We will not explain how to carry out such a construction

y

v

xE W
σE W D

Fig. 12. Estimator-based supervisor
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here, even though the procedure is straight forward if P is a finite set or if all
the transfer functions in N have the same McMillan degree.

The parameter-dependent row vector cE(p) is used in the definition of W

which will be given in Sect. 5.1. With cE(p) in hand it is also possible to define
output estimation errors

ep
∆= cE(p)xE − y, p ∈ P (5.6)

While these error signals are not actually generated by the supervisor, they
play an important role in explaining how the supervisor functions. It should
be mentioned that for the case when P contains a continuum, the same issues
arise in defining the quadruple {AE+dEcE(p), bE , cE(p)} to realize the 1

sνp, as
were raised earlier when we discussed the problem of realizing the κp using the
identifier-based quadruple in (5.1). Like before, we will sidestep these issues
by assuming for the case when P is not finite, that all nominal process model
transfer functions have the same McMillan degree.

Weight Generator = W

The supervisor’s second subsystem, W, is a causal dynamical system whose
inputs are xE and y and whose state and output W is a symmetric “weight-
ing matrix” which takes values in a linear space W of symmetric matrices.
W together with a suitably defined monitoring function M : W × P → IR
determine a scalar-valued monitoring signal of the form

µp
∆= M(W,p) (5.7)

which is viewed by the supervisor as a measure of the expected performance
of controller p. W and M are defined by

Ẇ = −2λW +
(

xE

y

)(
xE

y

)
,′ (5.8)

and
M(W,p) =

(
cE(p) −1

)
W
(
cE(p) −1

)′ (5.9)

respectively, where W (0) may be chosen to be any matrix in W. The defin-
itions of W and M are prompted by the observation that if µp are given by
(5.7), then

µ̇p = −2λµp + e2
p, p ∈ P

because of (5.6), (5.8) and (5.9). Note that this implies that

µp(T ) = e−2λT ||ep||2T + e−2λT M(W (0), p), T ≥ 0, p ∈ P

where, for any piecewise-continuous signal z : [0,∞) → IRn, and any time
T > 0, ||z||T is the exponentially weighted 2-norm
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||z||T ∆=

√∫ T

0

e2λt|z(t)|2dt

Thus if W (0) = 0, µp(t) is simply a scaled version of the square of the expo-
nentially weighted 2-norm of ep.

Dwell-time Switching Logic = D

The supervisor’s third subsystem, called a dwell-time switching logic D, is a
hybrid dynamical system whose input and output are W and σ respectively,
and whose state is the ordered triple {X, τ, σ}. Here X is a discrete-time ma-
trix which takes on sampled values of W , and τ is a continuous-time variable
called a timing signal. τ takes values in the closed interval [0, τD], where τD is
a pre-specified positive number called a dwell time. Also assumed pre-specified
is a computation time τC ≤ τD which bounds from above for any X ∈ W, the
time it would take a supervisor to compute a value p ∈ P which minimizes
M(X, p). Between “event times,” τ is generated by a reset integrator accord-
ing to the rule τ̇ = 1. Event times occur when the value of τ reaches either
τD − τC or τD; at such times τ is reset to either 0 or τD − τC depending on
the value of D’s state. D’s internal logic is defined by the flow diagram shown
in Fig. 13 where px denotes a value of p ∈ P which minimizes M(X, p).

Note that implementation of the supervisor just described can be accom-
plished when P contains either finitely or infinitely many points. However
when P is a continuum, for the required minimization of M(X, p) to be
tractable, it will typically be necessary to make assumptions about both cE(p)
and P. For example, if cE(p) is an affine linear function and P is a finite union
of convex sets, the minimization of M(X, p) will be a finite family of finite-
dimensional convex programming problems.

In the sequel we call a piecewise-constant signal σ̄ : [0,∞) → P admissible
if it either switches values at most once, or if it switches more than once
and the set of time differences between each two successive switching times
is bounded below by τD. We write S for the set of all admissible switching
signals. Because of the definition of D, it is clear its output σ will be admissible.
This means that switching cannot occur infinitely fast and thus that existence
and uniqueness of solutions to the differential equations involved is not an
issue.

Closed-Loop Supervisory Control System

The overall system just described, admits a block diagram description of the
form shown in Fig. 14. The basic properties of this system are summarized by
the following theorem.

Theorem 5.1. Let τC ≥ 0 be fixed. Let τD be any positive number no smaller
than τC . There are positive numbers εp, p ∈ P, for which the following state-
ments are true provided the process P has a transfer function in M.
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Initialize

σ

τ = 0

τ = τD − τC

X = W

M(X, px) < M(X, σ)

τ = τD − τC τ = τD

σ = px

y n

n y

y n

Fig. 13. Dwell-time switching logic D
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Fig. 14. Supervisory control system
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+

−

AC(p) bC(p)

fC(p) gC(p)

AE + dEcE(p) bE

cE(p) 0

Fig. 15. Feedback interconnection

1. Global Boundedness: For each constant set-point value r, each bounded
piecewise-continuous disturbance input d, and each system initialization,
u, xC , xE ,W, and X are bounded responses.

2. Tracking and Disturbance Rejection: For each constant set-point
value r, each constant disturbance d, and each system initialization, y
tends to r and u, xC , xE ,W, and X tend to finite limits, all as fast as
e−λt.

The theorem implies that the overall supervisory control system shown in
Fig. 14 has the basic properties one would expect of a non-adaptive linear
set-point control system. It will soon become clear if it is not already that the
induced L2 gain from d to eT is finite as is the induced L∞ gain from d to
any state variable of the system.

5.2 Slow Switching

Although it is possible to establish correctness of the supervisory control sys-
tem just described without any further qualification [19], in these notes we
will only consider the case when the switching between candidate controllers
is constrained to be “slow” in a sense to be made precise below. This assump-
tion not only greatly simplifies the analysis, but also make it possible to derive
reasonably explicit bounds for the process’s allowable un-modeled dynamics
as well as for the system’s disturbance-to-tracking-error gain.

Consider the system shown in Fig. 15 which represents the feedback con-
nection of linear systems with coefficient matrices {AC(p), bC(p), fC(p), gC(p)}
and {AE + dEcE(p), bE , cE(p)}.

With an appropriate ordering of substates, the “A” matrix for this sys-
tem is

Ap =

⎛
⎝AE + dE(p)cE(p) − bEgC(p)cE(p) bEfC(p)

−bC(p)cE(p) AC(p)

⎞
⎠ . (5.10)

Observe that the two subsystems shown in the figure are realizations of κp

and 1
sνp respectively. Thus because of the stability margin property discussed

earlier, that factor of the characteristic polynomial of Ap determined by κ
and 1

sν must have all its roots to the left of the vertical line s = −λ in the
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complex plane. Any remaining eigenvalues of Ap must also line to the left of
the line s = −λ because {λI + AC(p), bC(p), fC(p), gC(p)} and {λI + AE +
dEcE(p), bE , cE(p)} are stabilizable and detectable systems. In other words,
λI +Ap is an exponentially stable matrix and this is true for all p ∈ P. In the
sequel we assume the following.
Slow switching assumption: Dwell time τD is large enough so that for
each admissible switching signal σ : [0,∞) → P, λI + Aσ is an exponentially
stable matrix.

Using Lemma 1.1 from Sect. 1.1, it is possible to compute an explicit lower
bound for τD for which this assumption holds. Here’s how. Since each λI +Ap

is exponentially stable and p �−→ Ap is continuous, it is possible to com-
pute continuous, non-negative and positive functions p �−→ tp and p �−→ λp

respectively, such that

|e(λI+Apt)| ≤ eλp(tp−t), t ≥ 0

It follows from Lemma 1.1 that if τD is chosen to satisfy

τD > sup
p∈P

{tp}

then for each admissible switching signal σ, λI + Aσ will be exponentially
stable.

5.3 Analysis

Our aim here is to establish a number of basic properties of the supervisory
control system under consideration. We assume that r is an arbitrary but
constant set-point value. In addition we invariably ignore initial condition
dependent terms which decay to zero as fast as e−λt, as this will make things
much easier to follow. A more thorough analysis which would take these terms
into account can carried out in essentially the same manner.

Output Estimation Error ep∗

Assume that the diagram in Fig. 8 correctly models the process and conse-
quently that p∗ is the index of the correct nominal model transfer function
νp∗ . In this section we develop a useful formula for ep∗ where for p ∈ P, ep is
the output estimation error

ep = CExE − y (5.11)

defined previously by (5.6). In the sequel, for any signal w and polynomial
α(s), we use the notation α(s)w to denote the action of the differential op-
erator polynomial α(s)|s= d

dt
on w. For the sake of conciseness, we proceed

formally, ignoring questions of differentiability of w. We will need the follow-
ing easily verifiable fact.
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Lemma 5.1. For any triple of real matrices {An×n, bn×1, ci×n}

c(sI − A)−1b =
π(s) − π̄(s)

π(s)

where π(s) and π̄(s) are the characteristic polynomials of A and A + bc
respectively.

A proof will not be given.
The process model depicted in Fig. 8 implies that

βp∗y = (αp∗ + βp∗δ)u + αp∗d

This and the fact that u̇ = v enable us to write

sβp∗y = (αp∗ + βp∗δ)v + sαp∗d (5.12)

In view of (5.11)
ep∗ = cE(p∗)xE − y (5.13)

Using this, is possible to re-write estimator equation ẋE = AExE +dEy + bEv
defined by (5.5), as

ẋE = (AE + dEcE(p∗))xE − dEep∗ + bEv (5.14)

Since {AE + dEcE(p∗), bE , cE(p∗)} realizes 1
sνp∗ and νp∗ = αp∗ (s)

βp∗ (s) it must
be true that

cE(p∗)(sI − AE − dEcE(p∗))−1bE =
αp∗θ(s)

sβp∗(s)θ(s)

where sβp∗(s)θ(s) is the characteristic polynomial of AE + dEcE(p∗) and θ is
a polynomial of unobservable-uncontrollable eigenvalues of {AE + dEcE(p∗),
bE , cE(p∗)}. By assumption, (s + λ)θ is thus a stable polynomial. By Lemma
5.1,

cE(p∗)(sI − AE − dEcE(p∗))−1dE =
ωE(s)θ(s) − sβp∗(s)θ(s)

sβp∗(s)θ(s)

where ωE(s)θ(s) is the characteristic polynomial of AE . These formulas and
(5.14) imply that

sβp∗θcE(p∗)xE = −(ωEθ − sβp∗θ)ep∗ + αp∗θv

Therefore
sβp∗cE(p∗)xE = −(ωE − sβp∗)ep∗ + αp∗v

This, (5.12) and (5.13) thus imply that

sβp∗ep∗ = −(ωE − sβp∗)ep∗ − βp∗δv − sαp∗d
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−
−

sαp∗

ωE

βp∗

ωE
δ

d

v

ep∗

Fig. 16. Output estimation error ep∗

and consequently that

ωEep∗ = −βp∗δv − sαp∗d

In summary, the assumption that P is modeled by the system shown in Fig. 8,
implies that the relationship between v, and ep∗ is as shown in Fig. 16.

Note that because of what has been assumed about δ and about the spec-
trum of AE , the poles of all three transfer functions shown in this diagram lie
to the left of the line s = −λ in the complex plane.

Multi-Estimator/Multi-Controller Equations

Our next objective is to combine into a single model, the equations which
describe Cσ and E. As a first step, write x̄E for the shifted state

x̄E = xE + A−1
E bEr (5.15)

Note that because of Lemma 5.1

cE(p)(sI − AE)−1dE =
ω(s) − sβp(s)θp(s)

ω(s)
, p ∈ P

where ω is the characteristic polynomial of AE and for p ∈ P, sβpθp is the
characteristic polynomial of AE + dEcE(p). Evaluation of this expression at
s = 0 shows that

cE(p)A−1
E dE = −1, p ∈ P

Therefore the pth output estimation error ep = cE(p)xE − y can be written
as ep = cE(p)x̄E + r − y. But by definition, the tracking error is eT = r − y,
so

ep = cE(p)x̄E + eT, p ∈ P (5.16)

By evaluating this expression at p = σ, then solving for eT, one obtains

eT = eσ − cE(σ)x̄E (5.17)

Substituting this expression for eT into the multi-controller equations

ẋC = AC(σ)xC + bC(σ)eT v = fC(σ)xC + gC(σ)eT
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defined by (5.2), yields

ẋC = AC(σ)xC−bC(σ)cE(σ)x̄E+bC(σ)eσ v = fC(σ)xC−gC(σ)cE(σ)x̄E+gC(σ)eσ

(5.18)

Note next that multi-estimator equation ẋE = AExE + dEy + bEv defined by
(5.5) can be re-written using the shifted state x̄E defined by (5.15) as

˙̄xE = AE x̄E − dE(r − y) + bEv

Therefore
˙̄xE = AE x̄E − dEeT + bEv

Substituting in the expression for eT in (5.17) and the formula for v in (5.18)
one gets

˙̄xE = (AE + dEcE(σ) − bEgC(σ)cE(σ))x̄E + bEfC(σ)xC + (bEgC(σ) − dE)eσ

(5.19)

Finally if we define the composite state

x =
(

x̄E

xC

)
(5.20)

then it is possible to combine (5.18) and (5.19) into a single model

ẋ = Aσx + bσeσ (5.21)

where for p ∈ P, Ap is the matrix defined previously by (5.10) and

bp =

⎛
⎝bEgC(p) − dE

bC(p)

⎞
⎠

The expressions for eT and v in (5.17) and (5.18) can also be written in terms
of x as

eT = eσ + cσx (5.22)

and
v = fσx + gσeσ (5.23)

respectively, where for p ∈ P

cp = −
(
cE(p) 0

)
fp =

(
−gC(p)cE(p) fC(p)

)
gp = gC(p)

Moreover, in view of (5.16),

ep = eq + cpqx, p, q ∈ P (5.24)

where
cpq =

(
cE(p) − cE(q) 0

)
, p, q ∈ P (5.25)

Equations (5.20)–(5.24) can be thought of as an alternative description of Cσ

and E. We will make use of these equations a little later.
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Exponentially Weighted 2-Norm

In Sect. 5.1 we noted that each monitoring signal µp(t) could be written as

µp(t) = e−2λt||ep||2t + e−2λtM(W (0), p), t ≥ 0, p ∈ P

where, for any piecewise-continuous signal z : [0,∞) → IRn, and any time
t > 0, ||z||t is the exponentially weighted 2-norm

||z||t ∆=

√∫ t

0

e2λτ |z(τ)|2dτ

Since we are considering the case when W (0) = 0, the expression for µ sim-
plifies to

µp(t) = e−2λt||ep||2t
Thus

||ep||2t = e2λtµp(t), p ∈ P (5.26)

The analysis which follows will be carried out using this exponentially
weighted norm. In addition, for any time-varying siso linear system Σ of
the form y = c(t)x + d(t)u, ẋ = A(t)x + b(t)u we write

∥∥∥∥A b
c d

∥∥∥∥
for the induced norm

sup{||yu||∞ : u ∈ U}
where yu is Σ’s zero initial state, output response to u and U is the space of
all piecewise continuous signals u such that ||u||∞ = 1. The induced norm of
Σ is finite whenever λI + A(t) is {uniformly} exponentially stable.

We note the following easily verifiable facts about the norm we are using.
If e−λt||u||t is bounded on [0,∞) {in the L∞ sense}, then so is yu provided
d = 0 and λI − A(t) is exponentially stable. If u is bounded on [0,∞) in the
L∞ sense, then so is e−λt||u||{0,t}. If u → 0 as t → ∞, then so does e−λt||u||t.

P Is a Finite Set

It turns out that at this point the analysis for the case when P is a finite set,
proceeds along a different path that the path to be followed in the case when
P contains infinitely many points. In this section we focus exclusively on the
case when P is finite.

As a first step, let us note that the relationships between eT, v and eσ given
by (5.22)–(5.24) can be conveniently represented by block diagrams which, in
turn, can be added to the block diagram shown in Fig. 16. What results in the
block diagram shown in Fig. 17.
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sαp∗

ωE

Aσ bσ

fσ gσ

Aσ bσ

cσ 1

βp∗

ωE
δ

d
w

ep∗ eσ eT

−
−

v

Fig. 17. A representation of P, Cσ, E and 1
s

In drawing this diagram we have set p = σ and q = p∗ in (5.24) and
we have represented the system defined by (5.21), (5.22) and (5.23) as two
separate exponentially stable subsystems, namely

ẋ1 = Aσx1 + bσeσ ẋ2 = Aσx2 + bσeσ

v = fσx1 + gσeσ eT = cσx2 + eσ

where x1 = x2 = x. Note that the signal in the block diagram labeled w, will
tend to zero if d is constant because of the zero at s = 0 in the numerator of
the transfer function in the block driven by d.

To proceed beyond this point, we will need to “close the loop” in the sense
that we will need to relate eσ to ep∗ . To accomplish this we need to address
the consequences of dwell time switching, which up until now we have not
considered.

Dwell-Time Switching

Note that each of the five blocks in Fig. 17 represents an exponentially stable
linear system with stability margin λ. Thus if it happened to be true that
eσ = gep∗ for some sufficiently small constant gain g then we would be able
to deduce stability in the sense that the induced norm from d to eT would be
finite. Although no such gain exists, it nonetheless turns out to be true that
there is a constant gain for which ||eσ||t ≤ g||ep∗ ||t for all t ≥ 0. To explain
why this is so we will need the following proposition.

Proposition 5.1. Suppose that P contains m > 0 elements that W is gen-
erated by (5.8), that the µp, p ∈ P, are defined by (5.7) and (5.9), that
W (0) = 0, and that σ is the response of D to W . Then for each time T > 0,
there exists a piecewise constant function ψ : [0,∞) → {0, 1} such that for all
q ∈ P, ∫ ∞

0

ψ(t)dt ≤ m(τD + τC) (5.27)

and
||(1 − ψ)eσ + ψeq||T ≤

√
m||eq||T (5.28)

Proposition 5.1 highlights the essential consequences of dwell time switching
needed to analyze the system under consideration for the case when P is finite.
The proposition is proved in Sect. 5.4.
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A Snapshot at Time T

Fix T > 0 and let ψ be as in Proposition 5.1. In order to make use of (5.28),
it is convenient to introduce the signal

z = (1 − ψ)eσ + ψep∗ (5.29)

since, with q
∆= p∗, (5.28) then becomes

||z||T ≤
√

m||ep∗ ||T (5.30)

Note that (5.24) implies that eσ = ep∗ +cσp∗x. Because of this, the expression
for z in (5.29) can be written as

z = (1 − ψ)eσ + ψ(eσ − cσp∗x)

Therefore after cancellation

z = eσ − ψcσp∗x

or
eσ = ψcσp∗x + z (5.31)

Recall that
ẋ = Aσx + bσeσ (5.32)

The point here is that (5.31) and (5.32) define a linear system with input z
and output eσ. We refer to this system as the injected sub-system of the over-
all supervisory control system under consideration. Adding a block diagram
representation of this sub-system to the block diagram in Fig. 17 results is
the block diagram shown in Fig. 18 which can be though of as a snapshot of
the entire supervisory control system at time T . Of course the dashed block
shown in the diagram is not really a block in the usual sense of signal flow.
Nonetheless its inclusion in the diagram is handy for deriving norm bound
inequalities, since in the sense of norms, the dashed block does provide the
correct inequality, namely (5.30).

sαp∗

ωE

Aσ bσ

fσ gσ

Aσ bσ

cσ 1
Aσ bσ

cσp∗ 0

βp∗

ωE
δ

d
zep∗ eσ

eT
−

−

v

ψ

+
+

√
m

Fig. 18. A snapshot of the complete system at time T
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System Gains

Let us note that for any given admissible switching signal σ, each of the six
blocks in Fig. 18, excluding the dashed block and the block for ψ, represents
an exponentially stable linear system with stability margin λ. It is convenient
at this point to introduce certain worst case “system gains” associated with
these blocks. In particular, let us define for p ∈ P

ap
∆=

√
2

sαp

ωE
, bp

∆=
√

2
βp

ωE
sup
σ∈S

∥∥∥∥∥∥
Aσ bσ

fσ gσ

∥∥∥∥∥∥ , c
∆= sup

σ∈S

∥∥∥∥∥∥
Aσ bσ

cσ 1

∥∥∥∥∥∥
where, as defined earlier, · is the shifted infinity norm and S is the set of
all admissible switching signals. In the light of Fig. 18, it is easy to see that

||eT||t ≤ c||eσ||t, t ≥ 0 (5.33)

and that
||ep∗ ||t ≤ εp∗

bp∗√
2
|||eσ||t +

ap∗√
2
||d||t, t ≥ 0, (5.34)

where εp∗ is the norm bound on δ.
To proceed we need an inequality which relates the norm of eσ to the norm

of z. For this purpose we introduce one more system gain, namely

vp
∆= sup

σ∈S
sup
t≥0

∫ t

0

|cσ(t)pΦ(t, τ)bσ(τ)e
λ(t−τ)|2dτ, p ∈ P

where Φ(t, τ) is the state transition matrix of Aσ. Note that each vp is finite
because of the Slow Switching Assumption.

Analysis of the injected sub-system in Fig. 18 can now be carried out as
follows. Set

wp(t, τ) = cσ(t)pΦ(t, τ)bσ(τ)

Using Cauchy-Schwartz

||ψ(wp∗ ◦ eσ)||t ≤

√
vp∗

∫ t

0

ψ2||eσ||2µdµ, t ≥ 0 (5.35)

where wp∗ ◦ eσ is the zero initial state output response to eσ of a system with
weighting pattern wp∗ . From Fig. 18 it is it is clear that eσ = z + ψ(wp∗ ◦ eσ).
Thus taking norms

||eσ||t ≤ ||z||t + ||ψ(wp∗ ◦ eσ||t

Therefore
||eσ||2t ≤ 2||z||2t + 2||ψ(wp∗ ◦ eσ||2t
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Thus using (5.35)

||eσ||2t ≤ 2||z||2t + 2vp∗

∫ t

0

ψ2||eσ||2µdµ, 0 ≤ t ≤ T

Hence by the Bellman–Gronwall Lemma

||eσ||2T ≤
(
2e2vp∗

∫ T
0 ψ2dt

)
||z||2T

so
||eσ||T ≤

(√
2evp∗

∫ T
0 ψ2dt

)
||z||T

From this, (5.27), and the fact that ψ2 = ψ, we arrive at

||eσ||T ≤
(√

2evp∗m(τD+τC)
)
||z||T (5.36)

Thus the induced gain from z to eσ of the injected sub-system shown in
Fig. 18 is bounded above by

√
2evp∗m(τD+τC). We emphasize that this is a

finite number, not depending on T .

Stability Margin

We have developed four key inequalities, namely (5.30), (5.33), (5.34) and
(5.36) which we repeat below for ease of reference.

||z||T ≤
√

m||ep∗ ||T (5.37)
||eT||T ≤ c||eσ||T (5.38)

||ep∗ ||T ≤ εp∗
bp∗√

2
|||eσ||T +

ap∗√
2
||d||T (5.39)

||eσ||T ≤
(√

2evp∗m(τD+τC)
)
||z||T (5.40)

Inequalities (5.37), (5.39) and (5.40) imply that

||eσ||T ≤
√

mevp∗m(τD+τC))(εp∗bp∗ ||eσ||T + ap∗ ||d||T ).

Thus if εp∗ satisfies the small gain condition

εp∗ <
e−vp∗m(τD+τC)

bp∗
√

m
(5.41)

then
||eσ||T ≤ ap∗

e
−vp∗m(τD+τC )

)√
m

− εp∗bp∗

||d||T . (5.42)

The inequality in (5.41) provides an explicit upper bound for the norm of
allowable un-modeled process dynamics, namely δ .
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A Bound on the Disturbance-to-Tracking-Error Gain

Note that (5.38) and (5.42) can be combined to provide an inequality of the
form

||eT||T ≤ gp∗ ||d||T , T ≥ 0 (5.43)

where

gp∗ =
cap∗

e
−vp∗m(τD+τC )

√
m

− εp∗bp∗

(5.44)

The key point here is that gp∗ does not depend on T even though the block
diagram in Fig. 18 does. Because of this, (5.43) must hold for all T . In other
words, even though we have carried out an analysis at a fixed time T and in
the process have had to define a several signals {e.g., ψ} which depended on
T , in the end we have obtained an inequality namely (5.43), which is valid for
all T . Because of this we can conclude that

||eT||∞ ≤ gp∗ ||d||∞ (5.45)

Thus gp∗ bounds from above the overall disturbance-to-tracking-error gain of
the system we have been studying.

Global Boundedness

The global boundedness condition of Theorem 5.1 can now easily be justified
as follows. Suppose d is bounded on [0, ∞) in the L∞ sense. Then so must
be e−λt||d||t. Hence by (5.42), e−λt||eσ||t must be bounded on [0, ∞) as well.
This, the differential equation for x in (5.32), and the exponential stability
of λI + Aσ then imply that x is also bounded on [0, ∞). In view of (5.20)
and (5.15), xE and xC must also be bounded. Next recall that the zeros
of ωE {i.e., the eigenvalues of AE} have negative real parts less than −λ,
and that the transfer function βp∗

ωE
δ in Fig. 17 is strictly proper. From these

observations, the fact that e−λt||eσ||t is bounded on [0,∞), and the block
diagram in Fig. 17 one readily concludes that ep∗ is bounded on [0,∞). From
(5.24), eσ = ep∗ + cσp∗x. Therefore eσ is bounded on [0,∞). Boundedness of
eT and v follow at once from (5.22) and (5.23) respectively. In view of (5.4),
y must be bounded. Thus W must be bounded because of (5.8). Finally note
that u must be bounded because of the boundedness of y and v and because of
our standing assumption that the transfer function of P is non-zero at s = 0.
This, in essence, proves Claim 1 of Theorem 5.1.

Convergence

Now suppose that d is a constant. Examination of Fig. 17 reveals that w must
tend to zero as fast as e−λt because of the zero at s = 0 in the numerator of
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the transfer function from d to w. Thus ||w||∞ < ∞. Figure 17 also implies
that

||ep∗ ||T ≤ ||w||T + εp∗
bp∗√

2
||eσ||T

This (5.37), (5.40) and (5.41) implies that

||eσ||T ≤
√

2
e
−vp∗m(τD+τC )

)√
m

− εp∗bp∗

||w||T

Since this inequality holds for all T ≥ 0, it must be true that ||eσ||∞ < ∞.
Hence eσ must tend to zero as fast as e−λt. So therefore must x because of the
differential equation for x in (5.21). In view of (5.20) x̄E and xC must tend
to zero. Thus xE must tend to A−1

E bEr because of (5.15). Moreover ep∗ must
tend to zero as can be plainly seen from Fig. 17. Hence from the formulas
(5.22) and(5.23) for eT and v respectively one concludes that these signals
must tend to zero as well. In view of (5.4), y must tent to r. Thus W must
approach a finite limit because of (5.8). Finally note that u tend to a finite
limit because y and v do and because of our standing assumption that the
transfer function of P is non-zero at s = 0. This, in essence, proves Claim 2 of
Theorem 5.1.

P Is Not a Finite Set

We now consider the more general case when P is a compact but not neces-
sarily finite subset of a finite dimensional linear space. The following proposi-
tion replaces Proposition 5.1 which is clearly not applicable to this case. The
proposition relies on the fact that every nominal transfer function in N can
be modeled by a linear system of dimension at most nE .

Dwell-Time Switching

Proposition 5.2. Suppose that P is a compact subset of a finite dimensional
space, that p �−→ cE(p) is a continuous function taking values in IR1×nE , that
cpq =

(
cE(p) − cE(q) 0

)
as in (5.25), that W is generated by (5.8), that the

µp, p ∈ P, are defined by (5.7) and (5.9), that W (0) = 0, and that σ is the
response of D to W . For each q ∈ P, each real number ρ > 0 and each fixed
time T > 0, there exists piecewise-constant signals h : [0,∞) → IR1×(nE+nC)

and ψ : [0,∞) → {0, 1} such that

|h(t)| ≤ ρ, t ≥ 0, (5.46)∫ ∞

0

ψ(t)dt ≤ nE(τD + τC), (5.47)

and

||(1 − ψ)(eσ − hx) + ψeq||T ≤
{

1 + 2nE

(
1 + supp∈P |cpq|

ρ

)nE}
||eq||T

(5.48)
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This Proposition is proved in Sect. 5.4. Proposition 5.2 summarizes the key
consequences of dwell time switching which are needed to analyze the sys-
tem under consideration. The term involving h in (5.48) present some minor
difficulties which we will deal with next.

Let us note that for any piece-wise continuous matrix-valued signal h :
[0,∞) → IR1×(nE+nC), it is possible to re-write (5.21)–(5.22) as

ẋ = (Aσ + bσh)x + bσ ē (5.49)

eT = ē + (cσ + h)x (5.50)

and
v = (fσ + gσh)x + gσ ē (5.51)

respectively where
ē = eσ − hx. (5.52)

Note also that the matrix λI + Aσ + bσh will be exponentially stable for any
σ ∈ S if |h| ≤ ρ, t ≥ 0, where ρ is a sufficiently small positive number. Such a
value of ρ exists because p �−→ Ap and p �−→ bp are continuous and bounded
functions on P and because λI+Aσ is exponentially stable for every admissible
switching signal. In the sequel we will assume that ρ is such a number and
that H is the set of all piece-wise continuous signals h satisfying |h| ≤ ρ, t ≥ 0.

A Snapshot at Time T

Now fix T > 0 and let ψ and h be signals for which (5.46)–(5.48) hold with
q = p∗. To account for any given h in (5.49)–(5.51), we will use in place of the
diagram in Fig. 17, the diagram shown in Fig. 19. As with the representation
in Fig. 17, we are representing the system defined by (5.49)–(5.51) as two
separate subsystems, namely

ẋ1 = (Aσ + bσh)x1 + bσ ē ẋ2 = (Aσ + bσh)x2 + bσ ē
v = (fσ + gσh)x1 + gσ ē eT = (cσ + h)x2 + ē

where x1 = x2 = x.

sαp∗

ωE

Aσ + bσh bσ

fσ + bσh gσ

Aσ + bσh bσ

cσ + h 1

βp∗

ωE
δ

d
w

z2

ep∗ ē eT

−
−

v

Fig. 19. A Representation of P, Cσ, E and 1
s
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Note that each of the five blocks in Fig. 19 represents an exponentially stable
linear system with stability margin λ.

In order to make use of (5.48), it is helpful to introduce the signal

z̄ = (1 − ψ)(eσ − hx) + ψep∗ (5.53)

since (5.48) then becomes

||z̄||T ≤ γp∗ ||ep∗ ||T (5.54)

where

γp∗
∆=
{

1 + 2nE

(
1 + supp∈P |cpp∗ |

ρ

)nE}

Note that
eσ = ep∗ + cσp∗x

because of (5.24). Solving for ep∗ in substituting the result into (5.53) gives

z̄ = (1 − ψ)(eσ − hx) + ψ(eσ − cσp∗x)

Thus
z̄ = eσ − hx − ψ(cσp∗ − h)x

In view of (5.52) we can therefore write

z̄ = ē − ψ(cσp∗ − h)x

or
ē = z̄ + ψ(cσp∗ − h)x (5.55)

Recall that (5.49) states that

ẋ = (Aσ + bσh)x + bσ ē. (5.56)

Observe that (5.55) and (5.56) define a linear system with input z̄ and output
ē which we refer to as the injected system for the problem under considera-
tion. Adding a block diagram representation of this sub-system to the block
diagram in Fig. 19 results in the block diagram shown in Fig. 20. Just as in
the case when P is finite, the dashed block is not really a block in the sense
of signal flow.

System Gains

Let us note that for any given admissible switching signal σ, each of the six
blocks in Fig. 20, excluding the dashed block and the block for ψ, represents
an exponentially stable linear system with stability margin λ. It is convenient
at this point to introduce certain worst case “system gains” associated with
these blocks. In particular, let us define for p ∈ P
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sαp∗

ωE

Aσ + bσh bσ

fσ + gσh gσ

Aσ + bσh bσ

cσ 1

Aσ + bσh bσ

cσp∗ − h 0

βp∗

ωE
δ

d
z̄ep∗ ē

eT
−

−

v

ψ

+
+

γp∗

Fig. 20. A Snapshot of the complete system at time T

b̄p
∆=

√
2

βp

ωE

⎧⎨
⎩sup

h∈H
sup
σ∈S

∥∥∥∥∥∥
Aσ + bσh bσ

fσ + gσh gσ

∥∥∥∥∥∥

⎫⎬
⎭ c̄

∆= sup
h∈H

sup
σ∈S

∥∥∥∥∥∥
Aσ + bσh bσ

cσ + h 1

∥∥∥∥∥∥
In the light of Fig. 20, it is easy to see that

||eT||t ≤ c̄||ē||t t ≥ 0, (5.57)

and that

||ep∗ ||t ≤ εp∗
¯bp∗√
2
||ē||t +

ap∗√
2
||d||t, t ≥ 0 (5.58)

where εp∗ is the norm bound on δ and ap is as defined in Sect. 5.3.
To proceed we need an inequality which related the norm of ē to the norm

of z̄. For this purpose we introduce the additional system gain

v̄q
∆= sup

h∈H
sup
σ∈S

sup
t≥0

∫ t

0

|(cσ(t)q − h(t))Φ(t, τ)bσ(τ)e
λ(t−τ)|2dτ

where Φ(t, τ) is the state transition matrix of Aσ + bσh. Note that each v̄q is
finite because of the Slow Switching Assumption.

Analysis of the injected sub-system shown in Fig. 20 is the same as in the
case when P is finite. Instead of (5.36), what one obtains in this case is the
inequality

||ē||T ≤
(√

2ev̄p∗nE(τD+τC)
)
||z̄||T (5.59)

Stability Margin

We have developed four key inequalities for the problem at hand, namely
(5.54), (5.57), (5.58) and (5.59) which we repeat for ease of reference.
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||z̄||T ≤ γp∗ ||ep∗ ||T (5.60)
||eT||T ≤ c̄||ē||T (5.61)

||ep∗ ||T ≤ εp∗
b̄p∗√

2
|||ē||T +

ap∗√
2
||d||T (5.62)

||ē||T ≤
(√

2ev̄p∗m(τD+τC)
)
||z̄||T (5.63)

Observe that except for different symbols, these inequalities are exactly the
same as those in (5.37)–(5.40) respectively. Because of this, we can state at
once that if εp∗ satisfies the small gain condition

εp∗ <
e−v̄p∗nE(τD+τC)

b̄p∗γp∗
(5.64)

then
||ē||T ≤ ap∗

e
−v̄p∗nE(τD+τC )

γP∗ − εp∗ b̄p∗

||d||T , (5.65)

As in the case when P is finite, inequality in (5.64) provides an explicit bound
for the norm of allowable process dynamics.

A Bound on the Disturbance-to-Tracking-Error Gain

Note that (5.61) and (5.65) can be combined to provide an inequality of the
form

||eT||T ≤ ḡp∗ ||d||T , T ≥ 0

where

ḡp∗ =
c̄ap∗

e
−v̄p∗nE(τD+τC )

γP∗ − εp∗ b̄p∗

(5.66)

Moreover, because the preceding inequality holds for all T > 0 and gp∗ is
independent of T , it must be true that

||eT||∞ ≤ ḡp∗ ||d||∞
Thus for the case when P contains infinitely many points, ḡp∗ bounds from
above the overall system’s disturbance-to-tracking-error gain.

Global Boundedness and Convergence

It is clear from the preceding that the reasoning for the case when P contains
infinitely many points parallels more or less exactly the reasoning used for the
case when P contains only finitely many points. Thus for example, the claims
of Theorem 5.1 regarding global boundedness and exponential convergence
for the case when P contains infinitely many points, can be established in
essentially the same way as which they were established earlier in these notes
for the case when P is a finite set. For this reason, global boundedness and
convergence arguments will not be given here.
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5.4 Analysis of the Dwell Time Switching Logic

We now turn to the analysis of dwell time switching. In the sequel, T > 0 is
fixed, σ is a given switching signal, t0

∆= 0, ti denotes the ith time at which
σ switches and pi is the value of σ on [ti−1, ti); if σ switches at most n < ∞
times then tn+1

∆= ∞ and pn+1 denotes σ’s value on [tn,∞). Any time X
takes on the current value of W is called a sample time. We use the notation
�t� to denote the sample time just preceding time t, if t > τD − τC , and the
number zero otherwise. Thus, for example, �t0� = 0 and �ti� = ti − τC , i > 0.
We write k for that integer for which T ∈ [tk−1, tk). For each j ∈ {1, 2, . . . , k}
define

t̄j =

{
tj if j < k

T if j = k
,

and let φj : [0,∞) → {0, 1} be that piecewise-constant signal which is zero
everywhere except on the interval

[�tj�, t̄j), if t̄j − tj−1 ≤ τD

or
[�t̄j� − τC , t̄j), if t̄j − tj−1 > τD

In either case φj has support no greater than τD + τC and is idempotent {i.e.,
φ2

j = φj}. The following lemma describes the crucial consequence of dwell
time switching upon which the proofs of Proposition 5.1 and 5.2 depend.

Lemma 5.2. For each j ∈ {1, 2, . . . , k}

||(1 − φj)epj
||t̄j

≤ ||(1 − φj)eq||T , ∀q ∈ P

Proof of Lemma 5.2: The definition of dwell time switching implies that

µpj
(�tj−1�) ≤ µq(�tj−1�), ∀q ∈ P,

µpj
(�t̄j� − τC) ≤ µq(�t̄j� − τC),∀q ∈ P if t̄j − tj−1 > τD

As noted earlier, for all t ≥ 0

µp(t) = e−2λt||ep||2t , p ∈ P

Therefore

||epj
||2�tj−1� ≤ ||eq||2�tj−1�, ∀q ∈ P

||epj
||2(�t̄j�−τC) ≤ ||eq||2(�t̄j�−τC), ∀q ∈ P, if t̄j − tj > τD

⎫⎬
⎭ (5.67)

The definitions of φj implies that for l ∈ P
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||(1 − φj)el||2t̄j
=

{
||(1 − φj)el||2�tj−1� if t̄j − tj−1 ≤ τD,

||(1 − φj)el||2(�t̄j�−τC) if t̄j − tj−1 > τD

From this and (5.67) we obtain for all q ∈ P

||(1 − φj)epj
||2t̄j

= ||epj
||2�tj−1� ≤ ||eq||2�tj−1� ≤ ||eq||2t̄j

= ||(1 − φj)eq||2t̄j

if t̄j − tj−1 ≤ τD and

||(1 − φj)epj
||2t̄j

= ||epj
||2�t̄j−τC� ≤ ||eq||2�t̄j−τC� ≤ ||eq||2t̄j

= ||(1 − φj)eq||2t̄j

if t̄j − tj−1 > τD. From this and the fact that

||(1 − φj)eq||2t̄j
≤ ||(1 − φj)eq||2T , q ∈ P,

there follows

||(1 − φj)epj
||t̄j

≤ ||(1 − φj)eq||T , ∀ q ∈ P

�

Implication of Dwell-Time Switching When P Is a Finite Set

The proof of Proposition 5.1 makes use of the following lemma.

Lemma 5.3. For all µi ∈ [0, 1], i ∈ {1, 2, . . . ,m}
m∑

i=1

(1 − µi) ≤ (m − 1) +
m∏

i=1

(1 − µi) (5.68)

Proof of Lemma 5.3: Set xi = 1− µi, i ∈ {1, 2, . . . , }. It is enough to show
that for xi ∈ [0, 1], i ∈ {1, 2, . . . , }

j∑
i=1

xi ≤ (j − 1) +
j∏

i=1

xj (5.69)

for j ∈ {1, 2, . . . ,m}. Clearly (5.69) is true if j = 1. Suppose therefore that
for some k > 0, (5.69) holds for j ∈ {1, 2, . . . , k}. Then

k+1∑
i=1

xi = xk+1 +
k∑

i=1

xi ≤ xk+1 + (k − 1) +
k∏

i=1

xi

≤ (1 − xk+1)

(
1 −

k∏
i=1

xi

)
+ xk+1 + (k − 1) +

k∏
i=1

xi

= k +
k+1∏
i=1

xi
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By induction, (5.69) thus holds for j ∈ {1, 2, . . . ,m}. �

Proof of Proposition 5.1: For each distinct p ∈ {p1, p2, . . . , pk}, let Ip

denote the set of nonnegative integers i such that pi = p and write jp for the
largest integer in Ip. Note that jpk

= k. Let J denote the set of all such j.
since P contains m elements, m bounds from above the number of elements
in J . For each j ∈ J , define

ψ
∆= 1 −

∏
j∈J

(1 − φj) (5.70)

Since each φp has co-domain {0, 1}, support no greater than τD + τC and is
idempotent, it must be true that ψ has co-domain {0, 1}, support no greater
than m(τD + τC) and is idempotent as well. Therefore, (5.27) holds.

Now

||(1−ψ)eσ||2T =
∑
j∈J

∑
i∈Ipj

(||(1−ψ)epj
||2t̄i

−||(1−ψ)epj
||2ti−1

) ≤
∑
j∈J

||(1−ψ)epj
||2t̄j

(5.71)
In view of (5.70) we can write

∑
j∈J

||(1 − ψ)epj
||2t̄j

=
∑
j∈J

∥∥∥∥∥
{∏

l∈J
(1 − φl)

}
epj

∥∥∥∥∥
2

t̄j

(5.72)

But ∑
j∈J

∥∥∥∥∥
{∏

l∈J
(1 − φl)

}
epj

∥∥∥∥∥
2

t̄j

≤
∑
j∈J

∥∥(1 − φj)epj

∥∥2
t̄j

From this, Lemma 5.2, (5.71), and (5.72) it follows that

||(1 − ψ)eσ||2T ≤
∑
j∈J

||(1 − φj)eq||2T , ∀ q ∈ P

Thus for q ∈ P

||(1 − ψ)eσ||2T ≤
∑
j∈J

∫ T

0

{eqe
λt}2(1 − φj)2dt

=
∫ T

0

{eqe
λt}2

⎧⎨
⎩
∑
j∈J

(1 − φj)2

⎫⎬
⎭ dt

=
∫ T

0

{eqe
λt}2

⎧⎨
⎩
∑
j∈J

(1 − φj)

⎫⎬
⎭ dt
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This, Lemma 5.3 and (5.70) imply that

||(1 − ψ)eσ||2T ≤
∫ T

0

{eqe
λt}2

⎧⎨
⎩m − 1 +

∏
p∈PT

(1 − φp)

⎫⎬
⎭ dt

=
∫ T

0

{eqe
λt}2{m − ψ}dt

=
∫ T

0

{eqe
λt}2{m − ψ2}dt

Hence
||(1 − ψ)eσ||2T ≤ m||eq||2T − ||ψeq||2T (5.73)

Now
||(1 − ψ)eσ||2T + ||ψeq||2T = ||(1 − ψ)eσ + ψeq||2T

because ψ(1 − ψ) = 0. From this and (5.73) it follows that

||(1 − ψ)eσ + ψeq||2T ≤ m||eq||2T

and thus that (5.28) is true �

Implication of Dwell-Time Switching When P Is Not a Finite Set

To prove Proposition 5.2 we will need the following result which can be easily
deduced from the discussion about strong bases in Sect. 5.4.

Lemma 5.4. Let ε be a positive number and suppose that X = {x1, x2, . . . xm}
is any finite set of vectors in a real n-dimensional space such that |xm| > ε.
There exists a subset of m̄ ≤ n positive integers N = {i1, i2, . . . , im̄}, each no
larger than m, and a set of real numbers aij , i ∈ M = {1, 2, . . . m}, j ∈ N
such that ∣∣∣∣∣∣xi −

∑
j∈N

aijxj

∣∣∣∣∣∣ ≤ ε, i ∈ M

where

aij = 0, i ∈ M, j ∈ N , i > j,

|aij | ≤
(1 + supX )n

ε
, i ∈ M, j ∈ N

Proof of Proposition 5.2: There are two cases to consider:
Case I: Suppose that |cpiq| ≤ ρ for i ∈ {1, 2, . . . , k}. In this case set ψ(t) =
0, t ≥ 0, h(t) = cσ(t)q for t ∈ [0, tk), and h(t) = 0 for t > tk. Then (5.47) and
(5.46) hold and eσ = hx + eq for t ∈ [0, T ). Therefore ||eσ − hx||T = ||eq||T
and (5.48) follows.
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Case II: Suppose the assumption of Case I is not true in which case there is a
largest integer m ∈ {1, 2, . . . , k} such that |cpmq| > ρ. We claim that there is a
non-negative integer m̄ ≤ nE , a set of m̄ positive integers J = {i1, i2, . . . , im̄},
each no greater than k, and a set of piecewise constant signals γj : [0,∞) →
IR, j ∈ J , such that

∣∣∣∣∣∣cσ(t)q −
∑
j∈J

γj(t)cpjq

∣∣∣∣∣∣ ≤ ρ, 0 ≤ t ≤ T (5.74)

where for all j ∈ J

γj(t) = 0, t ∈ (tj ,∞), (5.75)

|γj(t)| ≤
(

1 + supp∈P |cpq|
ρ

)nE

, t ∈ [0, tj) (5.76)

To establish this claim, we first note that {cp1q, cp2q, . . . , cpmq} ⊂ {cpq : p ∈ P}
and that {cpq : p ∈ P} is a bounded subset of an nE dimensional space.
By Lemma 5.4 we thus know that there must exist a subset of m̄ ≤ nE

integers J = {i1, i2, . . . , im̄}, each no greater than m, and a set of real numbers
gij , i ∈ M = {1, 2, . . . ,m}, j ∈ J such that

∣∣∣∣∣∣cpiq −
∑
j∈J

gijcpjq

∣∣∣∣∣∣ ≤ ρ, i ∈ M (5.77)

where

gij = 0, i ∈ M, j ∈ J , i > j, (5.78)

|gij | ≤
(1 + supp∈P |cpq|)nE

ρ
, i ∈ M, j ∈ N (5.79)

Thus if for each j ∈ J , we define γj(t) = gij , t ∈ [ti−1, ti), i ∈ M, and
γj(t) = 0, t > tm then (5.74)–(5.76) will all hold.

To proceed, define h(t) for t ∈ [0, tm) so that

h(t) = cpiq −
∑
j∈J

gijcpjq, t ∈ [ti−1, ti), i ∈ M

and for t > tm so that

h(t) =

⎧⎨
⎩

cpiq t ∈ [ti−1, ti) i ∈ {m + 1, . . . , k}

0 t > tk

Then (5.46) holds because of (5.74) and the assumption that |cpiq| ≤ ρ for
i ∈ {m + 1, . . . , k}. The definition of h implies that
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cσ(t)q − h(t) =
∑
j∈J

γj(t)cpjq, t ∈ [0, T )

and thus that

eσ(t)(t) − eq(t) − h(t)x(t) =
∑
j∈J

γj(t)(epj
(t) − eq(t)), t ∈ [0, T ) (5.80)

For each j ∈ J , let
ψ

∆= 1 −
∏
j∈J

(1 − φj) (5.81)

Since each φj has co-domain {0, 1}, support no greater than τD + τC and is
idempotent, it must be true that ψ also has co-domain {0, 1}, is idempotent,
and has support no greater than m̄(τD + τC). In view of the latter property
and the fact that m̄ ≤ nE , (5.47) must be true.

By Lemma 5.2

||(1 − φj)epj
||t̄j

≤ ||eq||T , ∀j ∈ J , q ∈ P

From this and the triangle inequality

||(1 − φj)(epj
− eq)||t̄j

≤ 2||eq||T , ∀j ∈ J , q ∈ P. (5.82)

From (5.80)

||(1 − ψ)(eσ − eq − f̄x)||T =
∥∥∥∑j∈N (1 − ψ)γj(epj

− eq)
∥∥∥

T

≤
∑

j∈N ||(1 − ψ)γj(epj
− eq)||T

(5.83)

But
||(1 − ψ)γj(epj

− eq)||T = ||(1 − ψ)γj(epj
− eq)||tj

because of (5.75). In view of (5.76)

||(1 − ψ)γj(epj
− eq)||{0,T} ≤ γ̄||(1 − ψ)(epj

− eq)||tj
(5.84)

where

γ̄
∆=

(1 + supp∈P |cpq|)nE

ρ

Now ||(1 − ψ)(epj
− eq)||tj

≤ ||(1 − φj)(epj
− eq)||tj

because of (5.70). From
this, (5.82) and (5.84) it follows that

||(1 − ψ)γj(epj
− eq)||T ≤ 2γ̄||eq||T

In view of (5.83) and the fact that m̄ ≤ nE , it follows that

||(1 − ψ)(eσ − eq − hx)||T ≤ 2nE γ̄||eq||T
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But
(1 − ψ)(eσ − hx)) + ψeq = (1 − ψ)(eσ − eq − hx) − eq

so by the triangle inequality

||(1 − ψ)(eσ − hx)) + ψeq||T ≤ ||(1 − ψ)(eσ − eq − hx)||T + ||eq||T

Therefore
||(1 − ψ)(eσ − hx) + ψeq||T ≤ (1 + 2nE γ̄)||eq||T

and (5.48) is true. �

Strong Bases

Let X be a subset of a real, finite dimensional linear space with norm | · | and
let ε be a positive number. A nonempty list of vectors {x1, x2, . . . , xn̄} in X
is ε-independent if

|xn̄| ≥ ε, (5.85)

and, for k ∈ {1, 2, . . . , n̄ − 1},
∣∣∣∣∣∣xk +

n̄∑
j=k+1

µjxj

∣∣∣∣∣∣ ≥ ε, ∀µj ∈ IR (5.86)

{x1, x2, ldots, xn̄} ε-spans X if for each x ∈ X there is a set of real numbers
{b1, b2, . . . , bn̄}, called ε-coordinates, such that

∣∣∣∣∣x −
n̄∑

i=1

bixi

∣∣∣∣∣ ≤ ε (5.87)

The following lemma gives an estimate on how large these ε-coordinates can
be assuming X is abounded subset.

Lemma 5.5. Let X be a bounded subset which is ε-spanned by an
ε-independent list {x1, x2, . . . , xn̄}. Suppose that x is a vector in X and that
b1, b2, . . . bn̄ is a set of ε-coordinates of x with respect to {x1, x2, . . . , xn̄}.
Then

|bi| ≤
(

1 +
supX

ε

)n̄

, i ∈ {1, 2, . . . , n̄} (5.88)

This lemma will be proved in a moment.
Now suppose that X is an finite list of vectors x1, x2, . . . , xm in a real

n-dimensional vector space. Suppose, in addition, that |xm| ≥ ε. It is possible
to extract from X an ordered subset {xi1 , xi2 , . . . , xin̄

}, with n̄ ≤ n, which is
ε-independent and which ε-spans X . Moreover the ij can always be chosen so
that
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i1 < i2 < i3 < · · · < in̄ = m (5.89)

and also so that for suitably defined bij ∈ IR
∣∣∣xi −

∑n̄
j=k+1 bijxij

∣∣∣ ≤ ε, i ∈ {ik + 1, ik + 2, . . . , ik+1}, k ∈ {1, 2, . . . , n̄ − 1},
(5.90)∣∣∣xi −

∑n̄
j=1 bijxij

∣∣∣ ≤ ε, i ∈ {1, 2, . . . , k1} (5.91)

In fact, the procedure for doing this is almost identical to the familiar
procedure for extracting from {x1, x2, . . . , xm}, an ordered subset which
is linearly independent {in the usual sense} and which spans the span of
{x1, x2, . . . , xm}. The construction of interest here begins by defining an
integer j1

∆= m. j2 is then defined to be the greatest integer j < j1 such that

|xj − µxj1 | ≥ ε ∀µ ∈ IR,

if such an integer exists. If not, one defines n̄
∆= 1 and i1

∆= j1 and the
construction is complete. If j2 exists, j3 is then defined to be the greatest
integer j < j2 such that

|xj − µ1xj1 − µ2xj2 | ≥ ε ∀µi ∈ IR,

if such an integer exists. If not, one defines n̄
∆= 2 and ik

∆= jm̄+1−k, k ∈
{1, 2}.... and so on. By this process one thus obtains an ε-independent,
ε-spanning subset of X for which there exist numbers aij such that
(5.89)–(5.91) hold. Since such bij , j ∈ {1, 2, . . . , n̄}, are ε-coordinates of
xi, i ∈ {1, 2, . . . , n̄}, each coordinate must satisfy the same bound inequality
as the bi in (5.88). Moreover, because n̄ cannot be larger than the dimension
of the smallest linear space containing X , n̄ ≤ n.

Proof of Lemma 5.5: For k ∈ {1, 2, . . . , n̄} let

yk
∆=

n̄∑
i=k

bixi (5.92)

We claim that

|bk| ≤
|yk|
ε

, k ∈ {1, 2, . . . , n̄} (5.93)

Now (5.93) surely holds for k = n̄, because of (5.85) and the formula |yn̄| =
|bn̄||xn̄| which, in turn, is a consequence of (5.92). Next fix k ∈ {1, 2, , . . . , n̄−
1}. Now (5.93) is clearly true if bk = 0. Suppose bk = 0 in which case

yk = bk

⎛
⎝xk +

n̄∑
j=k+1

µjxj

⎞
⎠
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where µj
∆= bj

bk
. From this and (5.86) it follows that |yk| ≥ |bk|ε, k ∈

{1, 2, . . . , n̄}, so (5.93) is true.
Next write y1 = (y1 − x) + x. Then |y1| ≤ |y1 − x| + |x|. But |x| ≤ supX

because x ∈ X and |y1 − x| ≤ ε because of (5.87) and the definition of y1 in
(5.92). Therefore

|y1|
ε

≤
(

1 +
supX

ε

)
(5.94)

From (5.92) we have that yk+1 = yk − bkxk, k ∈ {1, 2, . . . , n̄ − 1}. Thus
|yk+1| ≤ |yk| + |bk||xk|, k ∈ {1, 2, . . . , n̄ − 1}. Dividing both sides of this in-
equality by ε and then using (5.93) and |xk| ≤ supX , we obtain the inequality

|yk+1|
ε

≤
(

1 +
supX

ε

)
|yk|
ε

, k ∈ {1, 2, . . . , n̄ − 1}

This and (5.94) imply that

|yk|
ε

≤
(

1 +
supX

ε

)k

, k ∈ {1, 2, . . . , n̄}

In view of (5.93), it follows that (5.88) is true. �

6 Flocking

Current interest in cooperative control of groups of mobile autonomous agents
has led to the rapid increase in the application of graph theoretic ideas to-
gether with more familiar dynamical systems concepts to problems of analyz-
ing and synthesizing a variety of desired group behaviors such as maintaining
a formation, swarming, rendezvousing, or reaching a consensus. While this
in-depth assault on group coordination using a combination of graph theory
and system theory is in its early stages, it is likely to significantly expand
in the years to come. One line of research which “graphically” illustrates the
combined use of these concepts, is the recent theoretical work by a number of
individuals which successfully explains the heading synchronization phenom-
enon observed in simulation by Vicsek [25], Reynolds [26] and others more
than a decade ago. Vicsek and co-authors consider a simple discrete-time
model consisting of n autonomous agents or particles all moving in the plane
with the same speed but with different headings. Each agent’s heading is up-
dated using a local rule based on the average of its own heading plus the
current headings of its “neighbors.” Agent i’s neighbors at time t, are those
agents which are either in or on a circle of pre-specified radius ri centered
at agent i’s current position. In their paper, Vicsek et al. provide a variety
of interesting simulation results which demonstrate that the nearest neighbor
rule they are studying can cause all agents to eventually move in the same
direction despite the absence of centralized coordination and despite the fact
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that each agent’s set of nearest neighbors can change with time. A theoret-
ical explanation for this observed behavior has recently been given in [27].
The explanation exploits ideas from graph theory [28] and from the theory of
non-homogeneous Markov chains [29–31]. With the benefit of hind-sight it is
now reasonably clear that it is more the graph theory than the Markov chains
which will prove key as this line of research advances. An illustration of this
is the recent extension of the findings of [27] which explain the behavior of
Reynolds’ full nonlinear “boid” system [32]. By appealing to the concept of
graph composition, we side-step most issues involving products of stochastic
matrices and present in this chapter a variety of graph theoretic results which
explain how convergence to a common heading is achieved.

Since the writing of [27] many important papers have appeared which ex-
tend the Vicsek problem in many directions and expand the results obtained
[33–37]. Especially noteworthy among these are recent papers by Moreau [33]
and Beard [34] which address the modified versions of the Vicsek problem in
which different agents use different sensing radii ri. The asymmetric neigh-
bor relationships which result necessitate the use of directed graphs rather
than undirected graphs to represent neighbor relation. We will use directed
graphs in this chapter, not only because we want to deal with different sens-
ing radii, but also because working with directed graphs enables us to give
convergence conditions for the symmetric version of Vicsek’s problem which
are less restrictive than those originally presented in [27].

Vicsek’s problem is what in computer science is called a “consensus prob-
lem” or an “agreement problem.” Roughly speaking, one has a group of agents
which are all trying to agree on a specific value of some quantity. Each agent
initially has only limited information available. The agents then try to reach a
consensus by passing what they know between them either just once or repeat-
edly, depending on the specific problem of interest. For the Vicsek problem,
each agent always knows only its own heading and the headings of its neigh-
bors. One feature of the Vicsek problem which sharply distinguishes it from
other consensus problems, is that each agent’s neighbors change with time,
because all agents are in motion for the problems considered in these notes.
The theoretical consequence of this is profound: it renders essentially useless
a large body of literature appropriate to the convergence analysis of “near-
est neighbor” algorithms with fixed neighbor relationships. Said differently,
for the linear heading update rules considered in this chapter, understand-
ing the difference between fixed neighbor relationships and changing neighbor
relationships is much the same as understanding the difference between the
stability of time – invariant linear systems and time – varying linear systems.

6.1 Leaderless Coordination

The system to be studied consists of n autonomous agents, labeled 1 through
n, all moving in the plane with the same speed but with different headings.
Each agent’s heading is updated using a simple local rule based on the average
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of its own heading plus the headings of its “neighbors.” Agent i’s neighbors
at time t, are those agents, including itself, which are either in or on a circle
of pre-specified radius ri centered at agent i’s current position. In the sequel
Ni(t) denotes the set of labels of those agents which are neighbors of agent i
at time t. Agent i’s heading, written θi, evolves in discrete-time in accordance
with a model of the form

θi(t + 1) =
1

ni(t)

⎛
⎝ ∑

j∈Ni(t)

θj(t)

⎞
⎠ (6.1)

where t is a discrete-time index taking values in the non-negative integers
{0, 1, 2, . . .}, and ni(t) is the number of neighbors of agent i at time t.

The explicit form of the update equations determined by (6.1) depends on
the relationships between neighbors which exist at time t. These relationships
can be conveniently described by a directed graph G with vertex set V =
{1, 2, . . . n} and “arc set” A(G) ⊂ V × V which is defined in such a way so
that (i, j) is an arc or directed edge from i to j just in case agent i is a neighbor
of agent j. Thus G is a directed graph on n vertices with at most one arc from
any vertex to another and with exactly one self-arc at each vertex. We write
G for the set of all such graphs and Ḡ for the set of all directed graphs with
vertex set V. We use the symbol P̄ to denote a suitably defined set indexing Ḡ
and we write P for the subset of P̄ which indexes G. Thus G = {Gp : p ∈ P}
where for p ∈ P̄, Gp denotes the pth graph in Ḡ. It is natural to call to a
vertex i a neighbor of vertex j in G if (i, j) is and arc in G. In addition we
sometimes refer to a vertex k as a observer of vertex j in G if (j, k) is and
arc in G. Thus every vertex of G can observe its neighbors, which with the
interpretation of vertices as agents, is precisely the kind of relationship G is
suppose to represent.

The set of agent heading update rules defined by (6.1) can be written in
state form. Toward this end, for each p ∈ P, define flocking matrix

Fp = D−1
p A′

p (6.2)

where A′
p is the transpose of the “adjacency matrix” of the graph Gp and Dp

the diagonal matrix whose jth diagonal element is the “in-degree” of vertex
j within the graph.3 Then

θ(t + 1) = Fσ(t)θ(t), t ∈ {0, 1, 2, . . .} (6.3)

where θ is the heading vector θ =
(
θ1 θ2 . . . θn

)′ and σ : {0, 1, . . .} → P is a
switching signal whose value at time t, is the index of the graph representing
3 By the adjacency matrix of a directed graph G ∈ Ḡ is meant an n × n matrix

whose ijth entry is a 1 if (i, j) is an arc in A(G) and 0 if it is not. The in-degree of
vertex j in G is the number of arcs in A(G) of the form (i, j); thus j’s in-degree
is the number of incoming arcs to vertex j.
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the agents’ neighbor relationships at time t. A complete description of this
system would have to include a model which explains how σ changes over
time as a function of the positions of the n agents in the plane. While such a
model is easy to derive and is essential for simulation purposes, it would be
difficult to take into account in a convergence analysis. To avoid this difficulty,
we shall adopt a more conservative approach which ignores how σ depends
on the agent positions in the plane and assumes instead that σ might be any
switching signal in some suitably defined set of interest.

Our ultimate goal is to show for a large class of switching signals and
for any initial set of agent headings that the headings of all n agents will
converge to the same steady state value θss. Convergence of the θi to θss

is equivalent to the state vector θ converging to a vector of the form θss1
where 1 ∆=

(
1 1 . . . 1

)′
n×1

. Naturally there are situations where convergence
to a common heading cannot occur. The most obvious of these is when one
agent – say the ith – starts so far away from the rest that it never acquires
any neighbors. Mathematically this would mean not only that Gσ(t) is never
strongly connected4 at any time t, but also that vertex i remains an isolated
vertex of Gσ(t) for all t in the sense that within each Gσ(t), vertex i has
no incoming arcs other than its own self-arc. This situation is likely to be
encountered if the ri are very small. At the other extreme, which is likely
if the ri are very large, all agents might remain neighbors of all others for
all time. In this case, σ would remain fixed along such a trajectory at that
value in p ∈ P for which Gp is a complete graph. Convergence of θ to θss1
can easily be established in this special case because with σ so fixed, (6.3)
is a linear, time-invariant, discrete-time system. The situation of perhaps the
greatest interest is between these two extremes when Gσ(t) is not necessarily
complete or even strongly connected for any t ≥ 0, but when no strictly proper
subset of Gσ(t)’s vertices is isolated from the rest for all time. Establishing
convergence in this case is challenging because σ changes with time and (6.3)
is not time-invariant. It is this case which we intend to study.

Strongly Rooted Graphs

In the sequel we will call a vertex i of a directed graph G ∈ Ḡ, a root of G if
for each other vertex j of G, there is a path from i to j. Thus i is a root of G,
if it is the root of a directed spanning tree of G. We will say that G is rooted
at i if i is in fact a root. Thus G is rooted at i just in case each other vertex
of G is reachable from vertex i along a path within the graph. G is strongly
rooted at i if each other vertex of G is reachable from vertex i along a path of

4 A directed graph G ∈ Ḡ with arc set A is strongly connected if has a “path” be-
tween each distinct pair of its vertices i and j; by a path {of length m} between ver-
tices i and j is meant a sequence of arcs in A of the form (i, k1), (k1, k2), . . . (km, j)
where i, k1, . . . , km, and j are distinct vertices. G is complete if has a path of length
one {i.e., an arc} between each distinct pair of its vertices.
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length 1. Thus G is strongly rooted at i if i is a neighbor of every other vertex
in the graph. By a rooted graph G ∈ Ḡ is meant a graph which possesses at
least one root. Finally, a strongly rooted graph is a graph which at least one
vertex at which it is strongly rooted. It is now possible to state the following
elementary convergence result.

Theorem 6.1. Let Q denote the subset of P consisting of those indices q for
which Gq ∈ G is strongly rooted. Let θ(0) be fixed and let σ : {0, 1, 2, . . .} → P
be a switching signal satisfying σ(t) ∈ Q, t ∈ {0, 1, . . .}. Then there is a
constant steady state heading θss depending only on θ(0) and σ for which

lim
t→∞

θ(t) = θss1 (6.4)

where the limit is approached exponentially fast.

In order to explain why this theorem is true, we will make use of certain
structural properties of the Fp. As defined, each Fp is square and non-negative,
where by a non-negative matrix is meant a matrix whose entries are all non-
negative. Each Fp also has the property that its row sums all equal 1 {i.e.,
Fp1 = 1}. Matrices with these two properties are called {row} stochastic [38].
Because each vertex of each graph in G has a self-arc, the Fp have the ad-
ditional property that their diagonal elements are all non-zero. Let S denote
the set of all n × n row stochastic matrices whose diagonal elements are all
positive. S is closed under multiplication because the class of all n × n sto-
chastic matrices is closed under multiplication and because the class of n× n
non-negative matrices with positive diagonals is also.

In the sequel we write M ≥ N whenever M −N is a non-negative matrix.
We also write M > N whenever M−N is a positive matrix where by a positive
matrix is meant a matrix with all positive entries.

Products of Stochastic Matrices

Stochastic matrices have been extensively studied in the literature for a long
time largely because of their connection with Markov chains [29–31]. One
problem studied which is of particular relevance here, is to describe the as-
ymptotic behavior of products of n × n stochastic matrices of the form

SjSj−1 · · ·S1

as j tends to infinity. This is equivalent to looking at the asymptotic behavior
of all solutions to the recursion equation

x(j + 1) = Sjx(j) (6.5)

since any solution x(j) can be written as

x(j) = (SjSj−1 · · ·S1) x(1), j ≥ 1
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One especially useful idea, which goes back at least to [39] and more recently
to [40], is to consider the behavior of the scalar-valued non-negative function
V (x) = �x� − �x� along solutions to (6.5) where x =

(
x1 x2 · · · xn

)′ is a
non-negative n vector and �x� and �x� are its largest and smallest elements
respectively. The key observation is that for any n × n stochastic matrix S,
the ith entry of Sx satisfies

n∑
j=1

sijxj ≥
n∑

j=1

sij�x� = �x�

and
n∑

j=1

sijxj ≤
n∑

j=1

sij�x� = �x�

Since these inequalities hold for all rows of Sx, it must be true that �Sx� ≥
�x�, �Sx� ≤ �x� and, as a consequence, that V (Sx) ≤ V (x). These inequalities
and (6.5) imply that the sequences

�x(1)�, �x(2)�, . . . �x(1)�, �x(2)�, . . . V (x(1)), V (x(2)), . . .

are each monotone. Thus because each of these sequences is also bounded, the
limits

lim
j→∞

�x(j)�, lim
j→∞

�x(j)�, lim
j→∞

V (x(j))

each exist. Note that whenever the limit of V (x(j)) is zero, all components of
x(j) must tend to the same value and moreover this value must be a constant
equal to the limiting value of �x(j)�.

There are various different ways one might approach the problem of devel-
oping conditions under which SjSj−1 · · ·S1 converges to a constant matrix of
the form 1c or equivalently x(j) converges to some scalar multiple of 1. For
example, since for any n×n stochastic matrix S, S1 = 1, it must be true that
span {1} is an S-invariant subspace for any such S. From this and standard
existence conditions for solutions to linear algebraic equations, it follows that
for any (n−1)×n matrix P with kernel spanned by 1, the equations PS = S̃P
has unique solutions S̃, and moreover that

spectrum S = {1} ∪ spectrum S̃ (6.6)

As a consequence of the equations PSj = S̃jP, j ≥ 1, it can easily be seen
that

S̃jS̃j−1 · · · S̃1P = PSjSj−1 · · ·S1

Since P has full row rank and P1 = 0, the convergence of a product of the form
SjSj−1 · · ·S1 to 1c for some constant row vector c, is equivalent to convergence
of the corresponding product S̃jS̃j−1 · · · S̃1 to the zero matrix. There are two
problems with this approach. First, since P is not unique, neither are the
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S̃i. Second it is not so clear how to going about picking P to make tractable
the problem of proving that the resulting product S̃jS̃j−1 · · · S̃1 tends to zero.
Tractability of the latter problem generally boils down to choosing a norm
for which the S̃i are all contractive. For example, one might seek to choose
a suitably weighted 2-norm. This is in essence the same thing choosing a
common quadratic Lyapunov function. Although each S̃i can easily be shown
to be discrete-time stable, it is known that there are classes of Si which give
rise to S̃i for which no such common Lyapunov matrix exists [41] regardless
of the choice of P . Of course there are many other possible norms to choose
from other than two norms. In the end, success with this approach requires
one to simultaneously choose both a suitable P and an appropriate norm with
respect to which the S̃i are all contractive. In the sequel we adopt a slightly
different, but closely related approach which ensures that we can work with
what is perhaps the most natural norm for this type of convergence problem,
the infinity norm.

To proceed, we need a few more ideas concerned with non-negative matri-
ces. For any non-negative matrix R of any size, we write ||R|| for the largest
of the row sums of R. Note that ||R|| is the induced infinity norm of R and
consequently is sub-multiplicative. Note in addition that ||x|| = �x� for any
non-negative n vector x. Moreover, ||M1|| ≤ ||M2|| if M1 ≤ M2. Observe
that for any n × n stochastic matrix S, ||S|| = 1 because the row sums of
a stochastic matrix all equal 1. We extend the domain of definitions of �·�
and �·� to the class of all non-negative n × m matrix M , by letting �M� and
�M� now denote the 1 × m row vectors whose jth entries are the smallest
and largest elements respectively, of the jth column of M . Note that �M� is
the largest 1×m non-negative row vector c for which M − 1c is non-negative
and that �M� is the smallest non-negative row vector c for which 1c − M is
non-negative. Note in addition that for any n × n stochastic matrix S,

S = 1�S� + �|S|� and S = 1�S� − �|S|� (6.7)

where �|S|� and �|S|�are the non-negative matrices

�|S|� = S − 1�S� and �|S|� = 1�S� − S (6.8)

respectively. Moreover the row sums of �|S|� are all equal to 1 − �S�1 and the
row sums of �|S|� are all equal to �S�1 − 1 so

||�|S|�|| = 1 − �S�1 and ||�|S|�|| = �S�1 − 1 (6.9)

In the sequel we will also be interested in the matrix

��|S|�� = �|S|� + �|S|� (6.10)

This matrix satisfies
��|S|�� = 1(�S� − �S�) (6.11)
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because of (6.7).
For any infinite sequence of n×n stochastic matrices S1, S2, . . ., we hence-

forth use the symbol �· · ·Sj · · ·S1� to denote the limit

�· · ·Sj · · ·S2S1� = lim
j→∞

�Sj · · ·S2S1� (6.12)

From the preceding discussion it is clear that this limit exists whether or not
the product Sj · · ·S2S1 itself has a limit. Two situations can occur. Either the
product Sj · · ·S2S1 converges to a rank one matrix or it does not. It is quite
possible for such a product to converge to a matrix which is not rank one.
An example of this would be a sequence in which S1 is any stochastic matric
of rank greater than 1 and for all i > 1, Si = In×n. In the sequel we will
develop necessary conditions for Sj · · ·S2S1 to converge to a rank one matrix
as j → ∞. Note that if this occurs, then the limit must be of the form 1c
where c1 = 1 because stochastic matrices are closed under multiplication.

In the sequel we will say that a matrix product SjSj−1 · · ·S1 converges
to 1�· · ·Sj · · ·S1� exponentially fast at a rate no slower than λ if there are
non-negative constants b and λ with λ < 1, such that

||(Sj · · ·S1) − 1�· · ·Sj · · ·S2S1�|| ≤ bλj , j ≥ 1 (6.13)

The following proposition implies that such a stochastic matrix product will
so converge if the matrix product �|Sj · · ·S1|� converges to 0.

Proposition 6.1. Let b̄ and λ be non-negative numbers with λ < 1. Suppose
that S1, S2, . . . , is an infinite sequence of n × n stochastic matrices for which

||�|Sj · · ·S1|�|| ≤ b̄λj , j ≥ 0 (6.14)

Then the matrix product Sj · · ·S2S1 converges to 1�· · ·Sj · · ·S1� exponentially
fast at a rate no slower than λ.

The proof of Proposition 6.1 makes use of the first of the two inequalities
which follow.

Lemma 6.1. For any two n × n stochastic matrices S1 and S2,

�S2S1� − �S1� ≤ �S2��|S1|� (6.15)
�|S2S1|� ≤ �|S2|� �|S1|� (6.16)

Proof of Lemma 6.1: Since S2S1 = S2(1�S1�+ �|S1|�) = 1�S1�+S2�|S1|� and
S2 = 1�S2�−�|S2|�, it must be true that S2S1 = 1(�S1�+�S2��|S1|�)−�|S2|� �|S1|�.
But �S2S1� is the smallest non-negative row vector c for which 1c − S2S1 is
non-negative. Therefore

�S2S1� ≤ �S1� + �S2��|S1|� (6.17)
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Moreover �S2S1� ≤ �S2S1� because of (6.11). This and (6.17) imply �S2S1� ≤
�S1� + �S2��|S1|� and thus that (6.15) is true.

Since S2S1 = S2(1�S1�+ �|S1|�) = 1�S1�+ S2�|S1|� and S2 = �S2�+ �|S2|�, it
must be true that S2S1 = 1(�S1� + �S2��|S1|�) + �|S2|� �|S1|�. But �S2S1� is the
largest non-negative row vector c for which S2S1 − 1c is non-negative so

S2S1 ≤ 1�S2S1� + �|S2|� �|S1|� (6.18)

Now it is also true that S2S1 = 1�S2S1� + �|S2S1|�. From this and (6.18) it
follows that (6.16) is true. �

Proof of Proposition 6.1: Set Xj = Sj · · ·S1, j ≥ 1 and note that each
Xj is a stochastic matrix. In view of (6.15),

�Xj+1� − �Xj� ≤ �Sj+1��|Xj |�, j ≥ 1

By hypothesis, ||�|Xj |�|| ≤ b̄λj , j ≥ 1. Moreover ||�Sj+1�|| ≤ n because all
entries in Sj+1 are bounded above by 1. Therefore

||�Xj+1� − �Xj�|| ≤ nb̄λj , j ≥ 1 (6.19)

Clearly

�Xj+i� − �Xj� =
i∑

k=1

(�Xi+j+1−k� − �Xi+j−k�), i, j ≥ 1

Thus, by the triangle inequality

||�Xj+i� − �Xj�|| ≤
i∑

k=1

||�Xi+j+1−k� − �Xi+j−k�||, i, j ≥ 1

This and (6.19) imply that

||�Xj+i� − �Xj�|| ≤ nb̄

i∑
k=1

λ(i+j−k), i, j ≥ 1

Now
i∑

k=1

λ(i+j−k) = λj
i∑

k=1

λ(i−k) = λj
i∑

q=1

λq−1 ≤ λj
∞∑

q=1

λq−1

But λ < 1 so
∞∑

q=1

λq−1 =
1

(1 − λ)
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Therefore

||�Xi+j� − �Xj�|| ≤ nb̄
λj

(1 − λ)
, i, j ≥ 1. (6.20)

Set c = �· · ·Sj · · ·S1� and note that

||�Xj� − c|| = ||�Xj� − �Xi+j� + �Xi+j� − c||
≤ ||�Xj� − �Xi+j�|| + ||�Xi+j� − c||, i, j ≥ 1

In view of (6.20)

||�Xj� − c|| ≤ nb̄
λj

(1 − λ)
+ ||�Xi+j� − c||, i, j ≥ 1

Since
lim

i→∞
||�Xi+j� − c|| = 0

it must be true that

||�Xj� − c|| ≤ nb̄
λj

(1 − λ)
, j ≥ 1

But ||1(�Xj� − c)|| = ||�Xj� − c|| and Xj = Sj · · ·S1. Therefore

||1(�Sj · · ·S1� − c)|| ≤ nb̄
λj

(1 − λ)
, j ≥ 1 (6.21)

In view of (6.7)

Sj · · ·S1 = 1�Sj · · ·S1� + �|Sj · · ·S1|�, j ≥ 1

Therefore

||(Sj · · ·S1) − 1c|| = ||1�Sj · · ·S1� + �|Sj · · ·S1|� − 1c||

≤ ||1�Sj · · ·S1� − 1c|| + ||�|Sj · · ·S1|�||, j ≥ 1

From this, (6.14) and (6.21) it follows that

||Sj · · ·S1 − 1c|| ≤ b̄

(
1 +

n

(1 − λ)

)
λj , j ≥ 1

and thus that (6.13) holds with b = b̄
(
1 + n

(1−λ)

)
. �

Convergence

We are now in a position to make some statements about the asymptotic
behavior of a product of n×n stochastic matrices of the form SjSj−1 · · ·S1 as
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j tends to infinity. Note first that (6.16) generalizes to sequences of stochastic
matrices of any length. Thus

�|SjSj−1 · · ·S2S1|� ≤ �|Sj |� �|Sj−1|� · · · �|S1|� (6.22)

It is therefore clear that condition (6.14) of Proposition 6.1 will hold with
b̄ = 1 if

||�|Sj |� · · · �|S1|�|| ≤ λj (6.23)

for some nonnegative number λ < 1. Because || · || is sub-multiplicative, this
means that a product of stochastic matrices Sj · · ·S1 will converge to a limit
of the form 1c for some constant row-vector c if for each of the matrices
Si in the sequence S1, S2, . . . satisfies the norm bound ||�|Si|�|| < λ. We now
develop a condition, tailored to our application, for this to be so. For any n×n
stochastic matrix, let γ(S) denote that graph G ∈ Ḡ whose adjacency matrix
is the transpose of the matrix obtained by replacing all of S’s non-zero entries
with 1s.

Lemma 6.2. For each n×n stochastic matrix S whose graph γ(S) is strongly
rooted

||�|S|�|| < 1 (6.24)

Proof: Let A be the adjacency matrix of γ(S). Since γ(S) is strongly rooted,
its adjacency matrix A must have a positive row i for every i which is the
label of a root of γ(S). Since the positions of the non-zero entries of S and A′

are the same, this means that S’s ith column si will be positive if i is a root.
Clearly �S� will have its ith entry non-zero if vertex i is a root of γ(S). Since
γ(S) is strongly rooted, at least one such root exists which implies that �S�
is non-zero, and thus that 1 − �S�1 < 1. From this and (6.9) it follows that
(6.24) is true. �

It can be shown very easily that if (6.24) holds, then γ(S) must be strongly
rooted. We will not need this fact so the proof is omitted.

Proposition 6.2. Let Ssr be any closed set of n×n stochastic matrices whose
graphs γ(S), S ∈ Ssr are all strongly rooted. Then any product Sj · · ·S1 of
matrices from Ssr converges to 1�· · ·Sj · · ·S1� exponentially fast as j → ∞
at a rate no slower than λ, where λ is a non-negative constant depending on
Ssr and satisfying λ < 1.

Proof of Proposition 6.2: In view of Lemma 6.2, ||�|S|�|| < 1, S ∈ Ssr. Let

λ = max
S∈Ssr

||�|S|�||

Because Ssr is closed and bounded and ||�| · |�|| is continuous, λ < 1. Clearly
||�|S|�|| ≤ λ, i ≥ 1 so (6.23) must hold for any sequence of matrices S1, S2, . . .
from Ssr. Therefore for any such sequence ||�|Sj · · ·S1|�|| ≤ λj , j ≥ 0. Thus by
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Proposition 6.1, the product Π(j) = SjSj−1 · · ·S1 converges to 1�· · ·Sj · S1�
exponentially fast at a rate no slower than λ. �

Proof of Theorem 6.1: By definition, the graph Gp of each matrix Fp in the
finite set {Fp : p ∈ Q} is strongly rooted. By assumption, Fσ(t) ∈ {Fp : p ∈
Q}, t ≥ 0. In view of Proposition 6.2, the product Fσ(t) · · ·Fσ(0) converges
to 1�· · ·Fσ(t) · · ·Fσ(0)� exponentially fast at a rate no slower than

λ = max
p∈Q

||�|Fp|�||

But it is clear from (6.3) that

θ(t) = Fσ(t−1) · · ·Fσ(1)Fσ(0)θ(0), t ≥ 1

Therefore (6.4) holds with θss = �· · ·Fσ(t) · · ·Fσ(0)�θ(0) and the convergence
is exponential. �

Convergence Rate

Using (6.9) it is possible to calculate a worst case value for the convergence
rate λ used in the proof of Theorem 6.1. Fix p ∈ Q and consider the flocking
matrix Fp and its associated graph Gp. Because Gp is strongly rooted, at least
one vertex – say the kth – must be a root with arcs to each other vertex. In the
context of (6.1), this means that agent k must be a neighbor of every agent.
Thus θk must be in each sum in (6.1). Since each ni in (6.1) is bounded above
by n, this means that the smallest element in column k of Fp, is bounded
below by 1

n . Since (6.9) asserts that ||�|Fp|�|| = 1 − �Fp�1, it must be true
that ||�|Fp|�|| ≤ 1 − 1

n . This holds for all p ∈ Q. Moreover in the worst case
when Gp is strongly rooted at just one vertex and all vertices are neighbors
of at least one common vertex, ||�|Fp|�|| = 1− 1

n . It follows that the worst case
convergence rate is

max
p∈Q

||�|Fp|�|| = 1 − 1
n

(6.25)

Rooted Graphs

The proof of Theorem 6.1 depends crucially on the fact that the graphs en-
countered along a trajectory of (6.3) are all strongly rooted. It is natural to ask
if this requirement can be relaxed and still have all agents’ headings converge
to a common value. The aim of this section is to show that this can indeed be
accomplished. To do this we need to have a meaningful way of “combining”
sequences of graphs so that only the combined graph need be strongly rooted,
but not necessarily the individual graphs making up the combination. One
possible notion of combination of a sequence Gp1 , Gp2 , . . . , Gpk

would be that
graph in G whose arc set is the union of the arc sets of the graphs in the
sequence. It turns out that because we are interested in sequences of graphs
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rather than mere sets of graphs, a simple union is not quite the appropriate
notion for our purposes because a union does not take into account the order
in which the graphs are encountered along a trajectory. What is appropriate
is a slightly more general notion which we now define.

Composition of Graphs

Let us agree to say that the composition of a directed graph Gp1 ∈ Ḡ with a
directed graph Gp2 ∈ Ḡ, written Gp2 ◦ Gp1 , is the directed graph with vertex
set {1, . . . , n} and arc set defined in such a way so that (i, j) is an arc of the
composition just in case there is a vertex q such that (i, q) is an arc of Gp1

and (q, j) is an arc of Gp2 . Thus (i, j) is an arc of Gp2 ◦Gp1 if and only if i has
an observer in Gp1 which is also a neighbor of j in Gp2 . Note that Ḡ is closed
under composition and that composition is an associative binary operation;
because of this, the definition extend unambiguously to any finite sequence of
directed graphs Gp1 , Gp2 , . . . , Gpk

.
If we focus exclusively on graphs in G, more can be said. In this case the

definition of composition implies that the arcs of Gp1 and Gp2 are arcs of
Gp2 ◦ Gp1 . The definition also implies in this case that if Gp1 has a directed
path from i to k and Gp2 has a directed path from k to j, then Gp2 ◦Gp1 has
a directed path from i to j. Both of these implications are consequences of
the requirement that the vertices of the graphs in G all have self arcs. Note
in addition that G is closed under composition. It is worth emphasizing that
the union of the arc sets of a sequence of graphs Gp1 , Gp2 , . . . , Gpk

in G must
be contained in the arc set of their composition. However the converse is not
true in general and it is for this reason that composition rather than union
proves to be the more useful concept for our purposes.

Suppose that Ap =
(
aij(p)

)
and Aq =

(
aij(q)

)
are the adjacency matrices

of Gp ∈ Ḡ and Gq ∈ Ḡ respectively. Then the adjacency matrix of the compo-
sition Gq ◦Gp must be the matrix obtained by replacing all non-zero elements
in ApAq with ones. This is because the ijth entry of ApAq, namely

n∑
k=1

aik(p)akj(q),

will be non-zero just in case there is at least one value of k for which both
aik(p) and akj(q) are non-zero. This of course is exactly the condition for
the ijth element of the adjacency matrix of the composition Gq ◦ Gp to be
non-zero. Note that if S1 and S2 are n × n stochastic matrices for which
γ(S1) = Gp and γ(S2) = Gq, then the matrix which results by replacing
by ones, all non-zero entries in the stochastic matrix S2S1, must be the
transpose of the adjacency matrix of Gq ◦ Gp. In view of the definition of
γ(·), it therefore must be true that γ(S2S1) = γ(S2) ◦ γ(S1). This obviously
generalizes to finite products of stochastic matrices.
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Lemma 6.3. For any sequence of n × n stochastic matrices S1, S2, . . . , Sj,

γ(Sj · · ·S1) = γ(Sj) ◦ · · · ◦ γ(S1)

Compositions of Rooted Graphs

We now give several different conditions under which the composition of a
sequence of graphs is strongly rooted.

Proposition 6.3. Suppose n > 1 and let Gp1 , Gp2 , . . . , Gpm
be a finite

sequence of rooted graphs in G.

1. If m ≥ n2, then Gpm
◦ Gpm−1 ◦ · · · ◦ Gp1 is strongly rooted.

2. If Gp1 , Gp2 , . . . , Gpm
are all rooted at v and m ≥ n−1, then Gpm

◦Gpm−1 ◦
· · · ◦ Gp1 is strongly rooted at v.

The requirement that all the graphs in the sequence be rooted at a single
vertex v is obviously more restrictive than the requirement that all the graphs
be rooted, but not necessarily at the same vertex. The price for the less re-
strictive assumption, is that the bound on the number of graphs needed in the
more general case is much higher than the bound given in the case which all
the graphs are rooted at v. It is undoubtedly true that the bound n2 for the
more general case is too conservative. The more special case when all graphs
share a common root is relevant to the leader follower version of the problem
which will be discussed later in these notes. Proposition 6.3 will be proved in
a moment.

Note that a strongly connected graph is the same as a graph which is
rooted at every vertex and that a complete graph is the same as a graph
which is strongly rooted at every vertex. In view of these observations and
Proposition 6.3 we can state the following

Proposition 6.4. Suppose n > 1 and let Gp1 , Gp2 , . . . , Gpm
be a finite se-

quence of strongly connected graphs in G. If m ≥ n − 1, then Gpm
◦ Gpm−1 ◦

· · · ◦ Gp1 is complete.

To prove Proposition 6.3 we will need some more ideas. We say that a
vertex v ∈ V is a observer of a subset S ⊂ V in a graph G ∈ Ḡ, if v is
an observer of at least one vertex in S. By the observer function of a graph
G ∈ Ḡ, written α(G, · ) we mean the function α(G, · ) : 2V → 2V which assigns
to each subset S ⊂ V, the subset of vertices in V which are observers of S in
G. Thus j ∈ α(G, i) just in case (i, j) ∈ A(G). Note that if Gp ∈ Ḡ and Gq in
G, then

α(Gp,S) ⊂ α(Gq ◦ Gp,S), S ∈ 2V (6.26)

because Gq ∈ G implies that the arcs in Gp are all arcs in Gq ◦ Gp. Observer
functions have the following important property.
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Lemma 6.4. For all Gp, Gq ∈ Ḡ and any non-empty subset S ⊂ V,

α(Gq, α(Gp,S)) = α(Gq ◦ Gp,S) (6.27)

Proof: Suppose first that i ∈ α(Gq, α(Gp,S)). Then (j, i) is an arc in Gq for
some j ∈ α(Gp,S). Hence (k, j) is an arc in Gp for some k ∈ S. In view of
the definition of composition, (k, i) is an arc in Gq ◦ Gp so i ∈ α(Gq ◦ Gp,S).
Since this holds for all i ∈ V, α(Gq, α(Gp,S)) ⊂ α(Gq ◦ Gp,S).

For the reverse inclusion, fix i ∈ α(Gq ◦ Gp,S) in which case (k, i) is an
arc in Gq ◦ Gp for some k ∈ S. By definition of composition, there exists
an j ∈ V such that (k, j) is an arc in Gp and (j, i) is an arc in Gq. Thus
j ∈ α(Gp,S). Therefore i ∈ α(Gq, α(Gp,S)). Since this holds for all i ∈ V,
α(Gq, α(Gp,S)) ⊃ α(Gq ◦ Gp,S). Therefore (6.27) is true. �

To proceed, let us note that each subset S ⊂ V induces a unique subgraph
of G with vertex set S and arc set A consisting of those arcs (i, j) of G for
which both i and j are vertices of S. This together with the natural partial
ordering of V by inclusion provides a corresponding partial ordering of Ḡ.
Thus if S1 and S2 are subsets of V and S1 ⊂ S2, then G1 ⊂ G2 where for
i ∈ {1, 2}, Gi is the subgraph of G induced by Si. For any v ∈ V, there is
a unique largest subgraph rooted at v, namely the graph induced by the
vertex set V(v) = {v} ∪ α(G, v) ∪ · · · ∪ αn−1(G, v) where αi(G, ·) denotes the
composition of α(G, ·) with itself i times. We call this graph, the rooted graph
generated by v. It is clear that V(v) is the smallest α(G, ·)-invariant subset of
V which contains v.

The proof of Propositions 6.3 depends on the following lemma.

Lemma 6.5. Let Gp and Gq be graphs in G. If Gq is rooted at v and α(Gp, v)
is a strictly proper subset of V, then α(Gp, v) is also a strictly proper subset
of α(Gq ◦ Gp, v)

Proof of Lemma 6.5: In general α(Gp, v) ⊂ α(Gq ◦ Gp, v) because of
(6.26). Thus if α(Gp, v) is not a strictly proper subset of α(Gq ◦ Gp, v), then
α(Gp, v) = α(Gq ◦ Gp, v) so α(Gq ◦ Gp, v) ⊂ α(Gp, v). In view of (6.27),
α(Gq ◦Gp, v) = α(Gq, α(Gp, v)). Therefore α(Gq, α(Gp, v)) ⊂ α(Gp, v). More-
over, v ∈ α(Gp, v) because v has a self-arc in Gp. Thus α(Gp, v) is a strictly
proper subset of V which contains v and is α(Gq, ·)-invariant. But this is
impossible because Gq is rooted at v. �

Proof of Proposition 6.3: Suppose m ≥ n2. In view of (6.26), A(Gpk
◦

Gpk−1 ◦ · · · ◦Gp1) ⊂ A(Gpm
◦Gpm−1 ◦ · · · ◦Gp1) for any positive integer k ≤ m.

Thus Gpm
◦Gpm−1 ◦ · · · ◦Gp1 will be strongly rooted if there exists an integer

k ≤ n2 such that Gpk
◦ Gpk−1 ◦ · · · ◦ Gp1 is strongly rooted. It will now be

shown that such an integer exists.
If Gp1 is strongly rooted, set k = 1. If Gp1 is not strongly rooted, then let

i > 1 be the least positive integer not exceeding n2 for which Gpi−1 ◦· · ·◦Gp1 is
not strongly rooted. If i < n2, set k = i in which case Gpk

◦· · ·◦Gp1 is strongly
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rooted. Therefore suppose i = n2 in which case Gpj−1 ◦· · ·◦Gp1 is not strongly
rooted for j ∈ {2, 3, . . . , n2}. Fix j ∈ {2, 3, . . . , n2} and let vj be any root of
Gpj

. Since Gpj−1 ◦ · · · ◦ Gp1 is not strongly rooted, α(Gpj−1 ◦ · · · ◦ Gp1 , vj) is
a strictly proper subset of V. Hence by Lemma 6.5, α(Gpj−1 ◦ · · · ◦ Gp1 , vj) is
also a strictly proper subset of α(Gpj

◦ · · · ◦Gp1 , vj). Thus A(Gpj−1 ◦ · · · ◦Gp1)
is a strictly proper subset of A(Gpj

◦ · · · ◦ Gp1). Since this holds for all j ∈
{2, 3, . . . , n2} each containment in the ascending chain

A(Gp1) ⊂ A(Gp2 ◦ Gp1) ⊂ · · · ⊂ A(Gpn2 ◦ · · · ◦ Gp1)

is strict. Since A(Gp1) must contain at least one arc, and there are at most
n2 arcs in any graph in G, Gpk

◦ Gpk−1 ◦ · · · ◦ Gp1 must be strongly rooted if
k = n2.

Now suppose that m ≥ n−1 and Gp1 , Gp2 , . . . , Gpm
are all rooted at v. In

view of (6.26), A(Gpk
◦Gpk−1 ◦ · · · ◦Gp1) ⊂ A(Gpm

◦Gpm−1 ◦ · · · ◦Gp1) for any
positive integer k ≤ m. Thus Gpm

◦ Gpm−1 ◦ · · · ◦ Gp1 will be strongly rooted
at v if there exists an integer k ≤ n − 1 such that

α(Gpk
◦ Gpk−1 ◦ · · · ◦ Gp1 , v) = V (6.28)

It will now be shown that such an integer exists.
If α(Gp1 , v) = V, set k = 1 in which case (6.28) clearly holds. If α(Gp1 , v) =

V, then let i > 1 be the least positive integer not exceeding n − 1 for which
α(Gpi−1 ◦ · · · ◦ Gp1 , v) is a strictly proper subset of V. If i < n − 1, set k = i
in which case (6.28) is clearly true. Therefore suppose i = n− 1 in which case
α(Gpj−1 ◦ · · · ◦Gp1 , v) is a strictly proper subset of V for j ∈ {2, 3, . . . , n− 1}.
Hence by Lemma 6.5, α(Gpj−1 ◦ · · · ◦Gp1 , v) is also a strictly proper subset of
α(Gpj

◦ · · · ◦ Gp1 , v) for j ∈ {2, 3, . . . , n − 1}. In view of this and (6.26), each
containment in the ascending chain

α(Gp1 , v) ⊂ α(Gp2 ◦ Gp1 , v) ⊂ · · · ⊂ α(Gpn−1 ◦ · · · ◦ Gp1 , v)

is strict. Since α(Gp1 , v) has at least two vertices in it, and there are n vertices
in V, (6.28) must hold with k = n − 1. �

Proposition 6.3 implies that every sufficiently long composition of graphs
from a given subset Ĝ ⊂ G will be strongly rooted if each graph in Ĝ is rooted.
The converse is also true. To understand why, suppose that it is not in which
case there would have to be a graph G ∈ Ĝ, which is not rooted but for
which G

m is strongly rooted for m sufficiently large where G
m is the m-fold

composition of G with itself. Thus α(Gm, v) = V where v is a root of G
m. But

via repeated application of (6.27), α(Gm, v) = αm(G, v) where αm(G, ·) is the
m-fold composition of α(G, ·) with itself. Thus αm(G, v) = V. But this can
only occur if G is rooted at v because αm(G, v) is the set of vertices reachable
from v along paths of length m. Since this is a contradiction, G cannot be
rooted. We summarize.

Proposition 6.5. Every possible sufficiently long composition of graphs from
a given subset Ĝ ⊂ G is strongly rooted, if and only if every graph in Ĝ is
rooted.
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Sarymsakov Graphs

In the sequel we say that a vertex v ∈ V is a neighbor of a subset S ⊂ V in a
graph G ∈ Ḡ, if v is a neighbor of at least one vertex in S. By a Sarymsakov
Graph is meant a graph G ∈ Ḡ with the property that for each pair of non-
empty subsets S1 and S2 in V which have no neighbors in common, S1 ∪ S2

contains a smaller number of vertices than does the set of neighbors of S1∪S2.
Such seemingly obscure graphs are so named because they are the graphs of
an important class of non-negative matrices studied by Sarymsakov in [29].
In the sequel we will prove that Sarymsakov graphs are in fact rooted graphs.
We will also prove that the class of rooted graphs we are primarily interested
in, namely those in G, are Sarymsakov graphs.

It is possible to characterize Sarymsakov graph a little more concisely using
the following concept. By the neighbor function of a graph G ∈ Ḡ, written
β(G, · ), we mean the function β(G, · ) : 2V → 2V which assigns to each subset
S ⊂ V, the subset of vertices in V which are neighbors of S in G. Thus in
terms of β, a Sarymsakov graph is a graph G ∈ Ḡ with the property that
for each pair of non-empty subsets S1 and S2 in V which have no neighbors
in common, S1 ∪ S2 contains less vertices than does the set β(G,S1 ∪ S2).
Note that if G ∈ G, the requirement that S1 ∪ S2 contain less vertices than
β(G,S1∪S2) simplifies to the equivalent requirement that S1∪S2 be a strictly
proper subset of β(G,S1∪S2). This is because every vertex in G is a neighbor
of itself if G ∈ G.

Proposition 6.6.
1. Each Sarymsakov graph in Ḡ is rooted
2. Each rooted graph in G is a Sarymsakov graph

It follows that if we restrict attention exclusively to graphs in G, then rooted
graphs and Sarymsakov graphs are one and the same.

In the sequel βm(G, ·) denotes the m-fold composition of β(G, ·) with itself.
The proof of Proposition 6.6 depends on the following ideas.

Lemma 6.6. Let G ∈ Ḡ be a Sarymsakov graph. Let S be a non-empty subset
of V such that β(G,S) ⊂ S. Let v be any vertex in V. Then there exists a
non-negative integer m ≤ n such that βm(G, v) ∩ S is non-empty.

Proof: If v ∈ S, set m = 0. Suppose next that v ∈ S. Set T = {v} ∪
β(G, v) ∪ · · · ∪ βn−1(G, v) and note that βn(G, v) ⊂ T . Since β(G, T ) =
β(G, v)∪β2(G, v)∪· · ·∪βn(G, v), it must be true that β(G, T ) ⊂ T . Therefore

β(G, T ∪ S) ⊂ T ∪ S. (6.29)

Suppose β(G, T )∩ β(G,S) is empty. Then because G is a Sarymsakov graph,
T ∪ S contains fewer vertices than β(G, T ∪ S). This contradicts (6.29) so
β(G, T ) ∩ β(G,S) is not empty. In view of the fact that β(G, T ) = β(G, v) ∪
β2(G, v) ∪ · · · ∪ βn(G, v) it must therefore be true for some positive integer
m ≤ n, that βm(G, v) ∩ S is non-empty. �
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Lemma 6.7. Let G ∈ Ḡ be rooted at r. Each non-empty subset S ⊂ V not
containing r is a strictly proper subset of S ∪ β(G,S).

Proof of Lemma 6.7: Let S ⊂ V be non-empty and not containing r. Pick
v ∈ S. Since G is rooted at r, there must be a path in G from r to v. Since
r ∈ S there must be a vertex x ∈ S which has a neighbor which is not in S.
Thus there is a vertex y ∈ β(G,S) which is not in S. This implies that S is a
strictly proper subset of S ∪ β(G,S). �

By a maximal rooted subgraph of G we mean a subgraph G
∗ of G which

is rooted and which is not contained in any rooted subgraph of G other than
itself. Graphs in Ḡ may have one or more maximal rooted subgraphs. Clearly
G

∗ = G just in case G is rooted. Note that if R̂ is the set of all roots of a
maximal rooted subgraph Ĝ, then β(G, R̂) ⊂ R̂. For if this were not so, then
it would be possible to find a vertex x ∈ β(G, R̂) which is not in R̂. This
would imply the existence of a path from x to some root v̂ ∈ R̂; consequently
the graph induced by the set of vertices along this path together with R̂ would
be rooted at x ∈ R̂ and would contain Ĝ as a strictly proper subgraph. But
this contradicts the hypothesis that Ĝ is maximal. Therefore β(G, R̂) ⊂ R̂.
Now suppose that Ĝ is any rooted subgraph in G. Suppose that Ĝ’s set of
roots R̂ satisfies β(G, R̂) ⊂ R̂. We claim that Ĝ must then be maximal. For if
this were not so, there would have to be a rooted graph G

∗ containing Ĝ as a
strictly proper subset. This in turn would imply the existence of a path from
a root x∗ of G

∗ to a root v of Ĝ; consequently x∗ ∈ βi(G, R̂) for some i ≥ 1.
But this is impossible because R̂ is β(G, · ) invariant. Thus Ĝ is maximal. We
summarize.

Lemma 6.8. A rooted subgraph of a graph G generated by any vertex v ∈ V
is maximal if and only if its set of roots is β(G, · ) invariant.

Proof of Proposition 6.6: Write β(·) for β(G, ·). To prove the assertion 1,
pick G ∈ Ḡ. Let G

∗ be any maximal rooted subgraph of G and write R for
its root set; in view of Lemma 6.8, β(R) ⊂ R. Pick any v ∈ V. Then by
Lemma 6.6, for some positive integer m ≤ n, βm(v) ∩ R is non-empty. Pick
z ∈ βm(v) ∩ R. Then there is a path from z to v and z is a root of G

∗. But
G

∗ is maximal so v must be a vertex of G
∗. Therefore every vertex of G is a

vertex of G
∗ which implies that G is rooted.

To prove assertion 2, let G ∈ G be rooted at r. Pick any two non-empty
subsets S1,S2 of V which have no neighbors in common. If r ∈ S1 ∪ S2, then
S1 ∪ S2 must be a strictly proper subset of S1 ∪ S2 ∪ β(S1 ∪ S2) because of
Lemma 6.7.

Suppose next that r ∈ S1 ∪ S2. Since G ∈ G, Si ⊂ β(Si), i ∈ {1, 2}. Thus
S1 and S2 must be disjoint because β(S1) and β(S2) are. Therefore r must
be in either S1 or S2 but not both. Suppose that r ∈ S1. Then S1 must be a
strictly proper subset of β(S1) because of Lemma 6.7. Since β(S1) and β(S2)
are disjoint, S1∪S2 must be a strictly proper subset of β(S1∪S2). By the same
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reasoning, S1 ∪ S2 must be a strictly proper subset of β(S1 ∪ S2) if r ∈ S2.
Thus in conclusion S1 ∪ S2 must be a strictly proper subset of β(S1 ∪ S2)
whether r is in S1 ∪ S2 or not. Since this conclusion holds for all such S1 and
S2 and G ∈ G, G must be a Sarymsakov graph. �

Neighbor-Shared Graphs

There is a different assumption which one can make about a sequence of
graphs from Ḡ which also insures that the sequence’s composition is strongly
rooted. For this we need the concept of a “neighbor-shared graph.” Let us call
G ∈ Ḡ neighbor shared if each set of two distinct vertices share a common
neighbor. Suppose that G is neighbor shared. Then each pair of vertices is
clearly reachable from a single vertex. Similarly each three vertices are reach-
able from paths starting at one of two vertices. Continuing this reasoning it
is clear that each of the graph’s n vertices is reachable from paths starting
at vertices in some set Vn−1 of n − 1 vertices. By the same reasoning, each
vertex in Vn−1 is reachable from paths starting at vertices in some set Vn−2

of n − 2 vertices. Thus each of the graph’s n vertices is reachable from paths
starting at vertices in a set of n− 2 vertices, namely the set Vn−2. Continuing
this argument we eventually arrive at the conclusion that each of the graph’s
n vertices is reachable from paths starting at a single vertex, namely the one
vertex in the set V1. We have proved the following.

Lemma 6.9. Each neighbor-shared graph in Ḡ is rooted.

It is worth noting that although shared neighbor graphs are rooted, the con-
verse is not necessarily true. The reader may wish to construct a three vertex
example which illustrates this. Although rooted graphs in G need not be neigh-
bor shared, it turns out that the composition of any n − 1 rooted graphs in
G is.

Proposition 6.7. The composition of any set of m ≥ n − 1 rooted graphs in
G is neighbor shared.

To prove Proposition 6.7 we need some more ideas. By the reverse graph of
G ∈ Ḡ, written G

′ is meant the graph in Ḡ which results when the directions
of all arcs in G are reversed. It is clear that G is closed under the reverse
operation and that if A is the adjacency matrix of G, then A′ is the adjacency
matrix of G

′. It is also clear that (Gp ◦ Gq)′ = G
′
q ◦ G

′
p, p, q ∈ P̄, and that

α(G′,S) = β(G,S), S ∈ 2V (6.30)

Lemma 6.10. For all Gp, Gq ∈ Ḡ and any non-empty subset S ⊂ V,

β(Gq, β(Gp,S)) = β(Gp ◦ Gq,S) (6.31)
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Proof of Lemma 6.10: In view of (6.27), α(G′
p, α(G′

q,S)) = α(G′
p ◦ G

′
q,S).

But G
′
p ◦ G

′
q = (Gq ◦ Gp)′ so α(G′

p, α(G′
q,S)) = α((Gq ◦ Gp)′,S). Therefore

β(Gp, β(Gq,S)) = β(Gq ◦ Gp),S) because of (6.30). �

Lemma 6.11. Let G1 and G2 be rooted graphs in G. If u and v are distinct
vertices in V for which

β(G2, {u, v}) = β(G2 ◦ G1, {u, v}) (6.32)

then u and v have a common neighbor in G2 ◦ G1

Proof: β(G2, u) and β(G2, v) are non-empty because u and v are neigh-
bors of themselves. Suppose u and v do not have a common neigh-
bor in G2 ◦ G1. Then β(G2 ◦ G1, u) and β(G2 ◦ G1, v) are disjoint. But
β(G2 ◦ G1, u) = β(G1, β(G2, u)) and β(G2 ◦ G1, v) = β(G1, β(G2, v)) because
of (6.31). Therefore β(G1, β(G2, u)) and β(G1, β(G2, v)) are disjoint. But G1

is rooted and thus a Sarymsakov graph because of Proposition 6.6. Thus
β(G2, {u, v}) is a strictly proper subset of β(G2, {u, v})∪ β(G1, β(G2, {u, v}).
But β(G2, {u, v}) ⊂ β(G1, β(G2, {u, v}) because all vertices in G2 are neigh-
bors of themselves and β(G1, β(G2, {u, v}) = β(G2 ◦ G1, {u, v}) because of
(6.31). Therefore β(G2, {u, v}) is a strictly proper subset of β(G2 ◦G1, {u, v}).
This contradicts (6.32) so u and v have a common neighbor in G2 ◦ G1. �

Proof of Proposition 6.7: Let u and v be distinct vertices in V. Let
G1, G2, . . . , Gn−1 be a sequence of rooted graphs in G. Since A(Gn−1 ◦
· · ·Gn−i) ⊂ A(Gn−1 ◦ · · ·Gn−(i+1)) for i ∈ {1, 2, . . . , n − 2}, it must be true
that the Gi yield the ascending chain

β(Gn−1, {u, v}) ⊂ β(Gn−1◦Gn−2, {u, v}) ⊂ · · · ⊂ β(Gn−1◦· · ·◦G2◦G1, {u, v})

Because there are n vertices in V, this chain must converge for some i < n−1
which means that

β(Gn−1 ◦ · · · ◦ Gn−i, {u, v}) = β(Gn−1 ◦ · · · ◦ Gn−i ◦ Gn−(i+1), {u, v})

This and Lemma 6.11 imply that u and v have a common neighbor in Gn−1 ◦
· · · ◦ Gn−i and thus in Gn−1 ◦ · · · ◦ G2 ◦ G1. Since this is true for all distinct
u and v, Gn−1 ◦ · · · ◦ G2 ◦ G1 is a neighbor shared graph. �

If we restrict attention to those rooted graphs in G which are strongly
connected, we can obtain a neighbor-shared graph by composing a smaller
number of rooted graphs that claimed in Proposition 6.7.

Proposition 6.8. Let k be the integer quotient of n divided by 2. The compo-
sition of any set of m ≥ k strongly connected graphs in G is neighbor shared.

Proof of Proposition 6.8: Let k < n be a positive integer and let v
be any vertex in V. Let G1, G2, . . . , Gk be a sequence of strongly connected
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graphs in G. Since k < n and A(Gk ◦ · · ·Gk−i) ⊂ A(Gk−1 ◦ · · ·Gk−(i+1)) for
i ∈ {1, 2, . . . , k − 1}, it must be true that the Gi yield the ascending chain

{v} ⊂ β(Gk, {v}) ⊂ β(Gk ◦ Gk−1, {v}) ⊂ · · · ⊂ β(Gk ◦ · · · ◦ G2 ◦ G1, {v})

Moreover, since any strongly connected graph is one in which every vertex is
a root, it must also be true that the subsequence

{v} ⊂ β(Gk, {v}) ⊂ β(Gk ◦ Gk−1, {v}) ⊂ · · · ⊂ β(Gk ◦ · · · ◦ G(i+1) ◦ Gi, {v})

is strictly increasing where either i = 1 or i > 1 and β(Gk ◦ · · · ◦ G(i+1) ◦
Gi, {v}) = V. In either case this implies that β(Gk ◦· · ·◦G2 ◦G1, {v}) contains
at least k+1 vertices. Fix k as the integer quotient of n+1 divided by 2 in which
case 2k ≥ n−1. Let v1 and v2 be any pair of distinct vertices in V. Then there
must be at least k +1 vertices in β(Gk ◦ · · · ◦G2 ◦G1, {v1}) and k +1 vertices
in β(Gk ◦ · · · ◦ G2 ◦ G1, {v2}). But 2(k + 1) > n so β(Gk ◦ · · · ◦ G2 ◦ G1, {v1})
and β(Gk ◦ · · · ◦G2 ◦G1, {v2}) must have at least one vertex in common. Since
this is true for each pair of distinct vertices v1, v2 ∈ V,

Gk ◦ · · · ◦ G2 ◦ G1 must be neighbor-shared. �
Lemma 6.9 and Proposition 6.3 imply that any composition of n2 neighbor-

shared graphs in G is strongly rooted. The following proposition asserts that
the composition need only consist of n− 1 neighbor-shared graphs and more-
over that the graphs need only be in Ḡ and not necessarily in G.

Proposition 6.9. The composition of any set of m ≥ n − 1 neighbor-shared
graphs in Ḡ is strongly rooted.

To prove this proposition we need a few more ideas. For any integer 1 < k ≤ n,
we say that a graph G ∈ Ḡ is k-neighbor shared if each set of k distinct vertices
share a common neighbor. Thus a neighbor-shared graph and a two neighbor
shared graph are one and the same. Clearly a n neighbor shared graph is
strongly rooted at the common neighbor of all n vertices.

Lemma 6.12. If Gp ∈ Ḡ is a neighbor-shared graph and Gq ∈ Ḡ is a k neigh-
bor shared graph with k < n, then Gq ◦Gp is a (k + 1) neighbor shared graph.

Proof: Let v1, v2, . . . , vk+1 be any distinct vertices in V. Since Gq is a k
neighbor shared graph, the vertices v1, v2, . . . , vk share a common neighbor
u1 in Gq and the vertices v2, v2, . . . , vk+1 share a common neighbor u2 in Gq

as well. Moreover, since Gp is a neighbor shared graph, u1 and u2 share a
common neighbor w in Gp. It follows from the definition of composition that
v1, v2, . . . , vk have w as a neighbor in Gq ◦Gp as do v2, v3, . . . , vk+1. Therefore
v1, v2, . . . , vk+1 have w as a neighbor in Gq ◦ Gp. Since this must be true for
any set of k + 1 vertices in Gq ◦Gp, Gq ◦Gp must be a k + 1 neighbor shared
graph as claimed. �

Proof of Proposition 6.9: The preceding lemma implies that the compo-
sition of any two neighbor shared graphs is three neighbor shared. From this



Lecture Notes on Logically Switched Dynamical Systems 131

and induction it follows that for m < n, the composition of m neighbor shared
graphs is m+1 neighbor shared. Thus the composition of n−1 neighbor shared
graphs is n neighbor shared and consequently strongly rooted. �

In view of Proposition 6.9, we have the following slight improvement on
Proposition 6.3.

Proposition 6.10. The composition of any set of m ≥ (n−1)2 rooted graphs
in G is strongly rooted.

Convergence

We are now in a position to significantly relax the conditions under which the
conclusion of Theorem 6.1 holds.

Theorem 6.2. Let Q denote the subset of P consisting of those indices q for
which Gq ∈ G is rooted. Let θ(0) be fixed and let σ : {0, 1, 2, . . .} → P be a
switching signal satisfying σ(t) ∈ Q, t ∈ {0, 1, . . .}. Then there is a constant
steady state heading θss depending only on θ(0) and σ for which

lim
t→∞

θ(t) = θss1 (6.33)

where the limit is approached exponentially fast.

The theorem says that a unique heading is achieved asymptotically along any
trajectory on which all neighbor graphs are rooted. The proof of Theorem 6.2
relies on the following generalization of Proposition 6.2.

Proposition 6.11. Let Sr be any closed set of stochastic matrices in S whose
graphs are all rooted. Then any product Sj . . . S1 of matrices from Ssr con-
verges to 1�· · ·Sj · · ·S1� exponentially fast as j → ∞ at a rate no slower than
λ, where λ is a non-negative constant depending on Sr and satisfying λ < 1.

Proof of Proposition 6.11: Set m = n2 and write Sm
r for the closed set of all

products of stochastic matrices of the form SmSm−1 · · ·S1 where each Si ∈ Sr.
By assumption, γ(S) is rooted for S ∈ S. In view of Proposition 6.3, γ(Sm) ◦
· · · γ(S1) is strongly rooted for every list of m matrices {S1, S2, . . . , Sm} from
Sr. But γ(Sm) ◦ · · · ◦ γ(S1) = γ(Sm · · ·S1) because of Lemma 6.3. Therefore
γ(Sm · · ·S1) is strongly rooted for all products Sm · · ·S1 ∈ Sm

r .
Now any product Sj · · ·S1 of matrices in Sr can be written as

Sj · · ·S1 = S̄(j)S̄k · · · S̄1

where
S̄i = Sim · · ·S(i−1)m+1, 1 ≤ i ≤ k

is a product in Sm
r ,

S̄(j) = Sj · · ·S(km+1),
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and k is the integer quotient of j divided by m. In view of Proposition 6.2,
S̄k · · · S̄1 must converge to 1�· · · S̄k · · · S̄1� exponentially fast as k → ∞ at a
rate no slower than λ̄, where

λ̄ = max
S̄∈Sm

r

||�|S̄|�||

But S̄(j) is a product of at most m stochastic matrices, so it is a bounded
function of j. It follows that the product SjSj−1 · · ·S1 must converge to
1�· · ·Sj · S1� exponentially fast at a rate no slower than λ = λ̄

1
m . �

The proof of Proposition 6.11 can be applied to any closed subset Sns ⊂ S
of stochastic matrices with neighbor shared graphs. In this case, one would
define m = n − 1 because of Proposition 6.9.

Proof of Theorem 6.2: By definition, the graph Gp of each matrix Fp in
the finite set {Fp : p ∈ Q} is rooted. By assumption, Fσ(t) ∈ {Fp : p ∈
Q}, t ≥ 0. In view of Proposition 6.11, the product Fσ(t) · · ·Fσ(0) converges
to 1�· · ·Fσ(t) · · ·Fσ(0)� exponentially fast at a rate no slower than

λ = { max
F∈Fm

r

||�|F |�||} 1
m

where m = n2 and Fm
r is the finite set of all m-term flocking matrix products

of the form Fpm
· · ·Fp1 , pi ∈ Q. But it is clear from (6.3) that

θ(t) = Fσ(t−1) · · ·Fσ(1)Fσ(0)θ(0), t ≥ 1

Therefore (6.33) holds with θss = �· · ·Fσ(t) · · ·Fσ(0)�θ(0) and the convergence
is exponential. �

The proof of Theorem 6.2 also applies to the case when all of the Gσ(t), t ≥
0 are neighbor shared. In this case, one would define m = n − 1 because of
Proposition 6.9.

Convergence Rates

It is possible to deduce an explicit convergence rate for the situation addressed
in Theorem 6.2 [42]. To do this we need a few more ideas.

Scrambling Constants
Let S be an n × n stochastic matrix. Observe that for any non-negative
n-vector x, the ith minus the jth entries of Sx can be written as

n∑
k=1

(sik − sjk)xk =
∑
k∈K

(sik − sjk)xk +
∑
k∈K̄

(sik − sjk)xk

where
K = {k : sik − sjk ≥ 0, k ∈ {1, 2, . . . , n}} and
K̄ = {k : sik − sjk < 0, k ∈ {1, 2, . . . , n}}
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Therefore

n∑
k=1

(sik − sjk)xk ≤
(∑

k∈K
(sik − sjk)

)
�x� +

⎛
⎝∑

k∈K̄

(sik − sjk)

⎞
⎠ �x�

But ∑
k∈K∪K̄

(sik − sjk) = 0

so ∑
k∈K̄

(sik − sjk) = −
∑
k∈K

(sik − sjk)

Thus
n∑

k=1

(sik − sjk)xk ≤
(∑

k∈K
(sik − sjk)

)
(�x� − �x�)

Now ∑
k∈K

(sik − sjk) = 1 −
∑
k∈K̄

sik −
∑
k∈K

sjk

because the row sums of S are all one. Moreover

sik = min{sik, sjk}, ∈ K̄
sjk = min{sik, sjk}, ∈ K

so ∑
k∈K

(sik − sjk) = 1 −
n∑

k=1

min{sik, sjk}

It follows that

n∑
k=1

(sik − sjk)xk ≤
(

1 −
n∑

k=1

min{sik, sjk}
)

(�x� − �x�)

Hence if we define

µ(S) = max
i,j

(
1 −

n∑
k=1

min{sik, sjk}
)

(6.34)

then
n∑

k=1

(sik − sjk)xk ≤ µ(S)(�x� − �x�)

Since this holds for all i, j, it must hold for that i and j for which

n∑
k=1

sikxk = �Sx� and
n∑

k=1

sjkxk = �Sx�
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Therefore
�Sx� − �Sx� ≤ µ(S)(�x� − �x�) (6.35)

Now let S1 and S2 be any two n× n stochastic matrices and let ei be the
ith unit n-vector. Then from (6.35),

�S2S1ei� − �S2S1ei� ≤ µ(S2)(�S1ei� − �S1e1�) (6.36)

Meanwhile, from (6.11),

��|S2S1|��ei = 1(�S2S1� − �S2S1�)ei

and
��|S1|��ei = 1(�S1� − �S1�)ei

But for any non-negative matrix M , �M�ei = �Mei� and �M�ei = �Mei� so

��|S2S1|��ei = 1(�S2S1ei� − �S2S1ei�)

and
��|S1|��ei = 1(�S1ei� − �S1ei�)

From these expressions and (6.36) it follows that

��|S2S1|��ei ≤ µ(s2)��|S1|��ei

Since this is true for all i, we arrive at the following fact.

Lemma 6.13. For any two stochastic matrices in S,

��|S2S1|�� ≤ µ(S2)��|S1|�� (6.37)

where for any n × n stochastic matrix S,

µ(S) = max
i,j

(
1 −

n∑
k=1

min{sik, sjk}
)

(6.38)

The quantity µ(S) has been widely studied before [29] and is know as the
scrambling constant of the stochastic matrix S. Note that since the row sums
of S all equal 1, µ(S) is non-negative. It is easy to see that µ(S) = 0 just in
case all the rows of S are equal. Let us note that for fixed i and j, the kth
term in the sum appearing in (6.38) will be positive just in case both sik and
sjk are positive. It follows that the sum will be positive if and only if for at
least one k, sik and sjk are both positive. Thus µ(S) < 1 if and only if for
each distinct i and j, there is at least one k for which sik and sjk are both
positive. Matrices with this property have been widely studied and are called
scrambling matrices. Thus a stochastic matrix S is a scrambling matrix if and
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only if µ(S) < 1. It is easy to see that the definition of a scrambling matrix also
implies that S is scrambling if and only if its graph γ(S) is neighbor-shared.

The statement of Proposition 6.11 applies to the situation when instead
of Sr, one considers a closed subset Sns ⊂ Sr of stochastic matrices with
neighbor shared graphs. In this case, the proof of Proposition 6.11 gives a
worst case convergence rate bound of

λ =
{

max
S̄∈Sm

ns

||�|S̄|�||
} 1

n−1

where m = n − 1 and Sm
ns is the set of m term matrix products of the form

Sm · · ·S1, Si ∈ Sns. Armed with Lemma 6.13, one can do better.
Let Sns ⊂ S be a closed subset consisting of matrices whose graphs are all

neighbor shared. Then the scrambling constant µ(S) defined in (6.38) satisfies
µ(S) < 1, S ∈ Sns because each such S is a scrambling matrix. Let

λ = max
S∈Sns

µ(S)

The λ < 1 because Sns is closed and bounded and because µ(·) is continuous.
In view of Lemma 6.13,

||��|S2S1|��|| ≤ λ||��|S1|��||, S1, S2 ∈ Sns

Hence by induction, for any sequence of matrices S1, S2, . . . in Sns

||��|Sj · · ·S1|��|| ≤ λj−1||��|S1|��||, Si ∈ Sns

But from (6.10), �|S|� ≤ ��|S|��, S ∈ S, so ||�|S|�|| ≤ ||��|S|��||, S ∈ S Therefore for
any sequence of stochastic matrices S1, S2, . . . with neighbor shared graphs

||�|Sj · · ·S1|�|| ≤ λj−1||��|S1|��|| (6.39)

Therefore from Proposition 6.1, any such product Sj · · ·S1 converges expo-
nentially at a rate no slower than λ as j → ∞.

Note that because of (6.22) and (6.10), the inequality in (6.39) applies to
any sequence of stochastic matrices S1, S2, . . . for which ||�|Si|�|| ≤ λ. Thus
for example (6.39) applies to any sequence of stochastic matrices S1, S2, . . .
whose graphs are strongly rooted provided the graphs in the sequence come
from a compact set; in this case λ would be the maximum value of ||�|S|�|| as
S ranges over the set. Of course any such sequence is far more special then
a sequence of stochastic matrices with neighbor-shared graphs since every
strongly rooted graph is neighbor shared but the converse is generally not true.

Convergence Rates for Neighbor-Shared Graphs
Suppose that Fp is a flocking matrix for which Gp is neighbor shared. In

view of the definition of a flocking matrix, any non-zero entry in Fp must be



136 A.S. Morse

bounded below by 1
n . Fix distinct i and j and suppose that k is a neighbor that

i and j share. Then fik and fjk are both non-zero so min{fik, fjk} ≥ 1
n . This

implies that the sum in (6.38) must be bounded below by 1
n and consequently

that µ(Fp) ≤ 1 − 1
n .

Now let Fp be that flocking matrix whose graph Gp ∈ G is such that vertex
1 has no neighbors other than itself, vertex 2 has every vertex as a neighbor,
and vertices 3 through n have only themselves and agent 1 as neighbors. Since
vertex 1 has no neighbors other than itself, fi,k = 0 for all i and for k > 1.
Thus for all i, j, it must be true that

∑n
k=1 min{fik, fjk} = min{fi1, fj1}.

Now vertex 2 has n neighbors, so f2,1 = 1
n . Thus min{fi1, fj1} attains its

lower bound of 1
n when either i = 2 or j = 2. It thus follows that with this

Fp, µ(Fp) attains its upper bound of 1 − 1
n . We summarize.

Lemma 6.14. Let Q be the set of indices in P for which Gp is neighbor
shared. Then

max
q∈Q

µ(Fq) = 1 − 1
n

(6.40)

Lemma 6.14 can be used as follows. Let Q denote the set of p ∈ P for which Gp

is neighbor shared. It is clear from the discussion at the end of the last section,
that any product of flocking matrices Fpj

· · ·Fp1 , pi ∈ Q must converge at a
rate no slower than

λ = max
q∈Q

µ(Fq)

Thus, in view of Lemma 6.14, 1 − 1
n is a worst case bound on the rate of

convergence of products of flocking matrices whose graphs are all neighbor
shared. By way of comparison, 1 − 1

n is a worst case bound if the flocking
matrices in the product all have strongly rooted graphs (cf. (6.25)). Of course
the latter situation is far more special than the former, since strongly rooted
graph are neighbor shared but not conversely.

Convergence Rates for Rooted Graphs
It is also possible to derive a worst case convergence rate for products of

flocking matrices which have rooted rather than neighbor-shared graphs. As
a first step towards this end we exploit the fact that for any n × n stochastic
scrambling matrix S, the scrambling constant of µ(S) satisfies the inequality

µ(S) ≤ 1 − φ(S), (6.41)

where for any non-negative matrix M , φ(M) denote the smallest non-zero
element of M . Assume that S is any scrambling matrix. Note that for any
distinct i and j, there must be a k for which min{sik, sjk} is non-zero and
bounded above by φ(S). Thus

n∑
k=1

min{sik, sjk} ≥ φ(S)
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so

1 −
n∑

k=1

min{sik, sjk} ≤ 1 − φ(S)

But this holds for all distinct i and j. In view of the definition of µ(S) in
(6.38), (6.41) must therefore be true.

We will also make use of the fact that for any two n×n stochastic matrices
S1 and S2,

φ(S2S1) ≥ φ(S2)φ(S1). (6.42)

To prove that this is so note first that any stochastic matrix S can be written
at S = φ(S)S̄ where S̄ is a non-zero matrix whose non-zero entries are all
bounded below by 1; moreover if S = ŜŜ where φ̂(S) is a number and Ŝ is
also a non-zero matrix whose non-zero entries are all bounded below by 1,
then φ(S) ≥ φ̂(S). Accordingly, write Si = φ(Si)S̄i, i ∈ {1, 2} where each S̄i

is a non-zero matrix whose non-zero entries are all bounded below by 1. Since
S2S1 = φ(S2)φ(S1)S̄2S̄1 and S2S1 is non-zero, S̄2S̄1 must be non-zero as well.
Moreover the nonzero entries of S̄2S̄1 must be bounded below by 1 because the
product of any two n×n matrices with all non-zero entries bounded below by
1 must be a matrix with the same property. Therefore φ(S2S1) ≥ φ(S2)φ(S1)
as claimed.

Suppose next that Sr is the set of all n × n stochastic matrices S which
have rooted graphs γ(S) ∈ G and which satisfy φ(S) ≥ b where b is a positive
number smaller than 1. Thus for any set of m = n − 1 Si ∈ Sr,

φ(Sm · · ·S1) ≥ bm (6.43)

because of (6.42). Now γ(Sm · · ·S1) = γ(Sm) · · · γ(S1). Moreover γ(Sm · · ·S1)
will be neighbor shared if m ≥ n − 1 because of Proposition 6.7. Therefore if
m ≥ n − 1, Sm · · ·S1 is a scrambling matrix and

µ(Sm · · ·S1) ≤ 1 − bm (6.44)

It turns out that this bound is actually attained if all the Si = S, where S is
a stochastic matrix of the form

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0
b 1 − b 0 0 · · · 0
0 b 1 − b 0 · · · 0
...

...
...

...
...

...
...

...
...

... 1 − b 0
0 0 0 0 b 1 − b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.45)

with a graph which has no closed cycles other than the self-arcs at each of
its vertices. To understand why this is so, note that the first row of Sm is(
1 0 · · · 0

)
and the first element in the last row is bm. This implies that

min{s11, sn1} = bm, that
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1 −
n∑

k=1

min{s1k, snk} ≥ bm,

and consequently that µ(S) ≥ bm. We summarize.

Lemma 6.15. Let b be a positive number less than 1 and let m = n − 1. Let
Sm

r denote the set of all m-term matrix products S = SmSm−1 · · ·S1 where
each Si is an n × n stochastic matrix with rooted graph γ(Si) ∈ G and all-
nonzero entries bounded below by b. Then

max
S∈Sm

r

µ(S) = 1 − b(n−1)

It is possible to apply at least part of the preceding to the case when
the Si are flocking matrices. Towards this end, let m = n − 1 and let
Gp1 , Gp2 , . . . , Gpm

be any sequence of m rooted graphs in G and let Fp1 , . . . ,
Fpm

be the sequence of flocking matrices associated with these graphs. Since
each Fp is a flocking matrix, it must be true that φ(Fpi

) ≥ 1
n , i ∈ {1, 2, . . . ,m}.

Since the hypotheses leading up to (6.44) are satisfied,

µ(Fpm
· · ·Fp1) ≤ 1 −

(
1
n

)(n−1)

(6.46)

Unfortunately, we cannot use the preceding reasoning to show that (6.46)
holds with equality for some sequence of rooted graphs. This is because the
matrix S in (6.45) is not a flocking matrix when b = 1

n , except in the special
case when n = 2. Nonetheless (6.46) can be used as follows to develop a
convergence rate for products of flocking matrices whose graphs are all rooted.
The development is very similar to that used in the proof of Proposition 6.11.
Let Q denote the set of p ∈ P for which Gp is rooted and write Fm

r for the
closed set of all products of flocking matrices of the form Fpm

Fpm−1 · · ·Fp1

where each pi ∈ Q. In view of Proposition 6.7, Gpm
◦Gpm−1◦· · ·Gp1 is neighbor

shared for every list of m indices matrices {p1, p2, . . . , pm} from Q. Therefore
(6.46) holds for every such list. Now for any sequence p(1), p(2), . . . , p(j) of
indices in Q, the corresponding product Fp(j) · · ·Fp(1) of flocking matrices can
be written as

Fp(j) · · ·Fp(1) = S̄(j)S̄k · · · S̄1

where
S̄i = Fp(im) · · ·Fp((i−1)m+1), 1 ≤ i ≤ k,

S̄(j) = Fp(j) · · ·Fp(km+1),

and k is the integer quotient of j divided by m. In view of (6.46)

µ(S̄i) ≤ λ̄, i ∈ {1, 2, . . . , k},



Lecture Notes on Logically Switched Dynamical Systems 139

where

λ̄ = 1 −
(

1
n

)(n−1)

From this and the discussion at the end of the section on scrambling constants
it is clear that S̄k · · · S̄1 must converge to 1�· · · S̄k · · · S̄1� exponentially fast
as k → ∞ at a rate no slower than λ̄, But S̄(j) is a product of at most
m stochastic matrices, so it is a bounded function of j. It follows that the
product Fp(j) · · ·Fp(1) must converge to 1�Fp(j) · · ·Fp(1)� exponentially fast
at a rate no slower than λ = λ̄

1
m . We have proved the following corollary to

Theorem 6.2.

Corollary 6.1. Under the hypotheses of Theorem 6.2, convergence of θ(t) to
θss1 is exponential at a rate no slower than

λ =

{
1 −
(

1
n

)(n−1)
} 1

n−1

Convergence Rates for Strongly Connected Graphs

It is possible to develop results analogous to those in the last section for
strongly connected graphs. Consider next the case when the Gp are all strongly
connected. Suppose that Ssc is the set of all n×n stochastic matrices S which
have strongly connected graphs γ(S) ∈ G and which satisfy φ(S) ≥ b where b
is a positive number smaller than 1. Let m denote the integer quotient of n
divided by 2. Thus for any set of m stochastic matrices Si ∈ Ssc,

φ(Sm · · ·S1) ≥ bm (6.47)

because of (6.42). Now γ(Sm · · ·S1) = γ(Sm) · · · γ(S1). Moreover γ(Sm · · ·S1)
will be neighbor shared because of Proposition 6.8. Therefore Sm · · ·S1 is a
scrambling matrix and

µ(Sm · · ·S1) ≤ 1 − bm (6.48)

Just as in the case of rooted graphs, it turns out that this bound is actually
attained if all the Si = S, where S is a stochastic matrix of the form

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − b 0 0 0 · · · b
b 1 − b 0 0 · · · 0
0 b 1 − b 0 · · · 0
...

...
...

...
...

...
...

...
...

... 1 − b 0
0 0 0 0 b 1 − b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.49)

with a graph consisting of one closed cycle containing all vertices plus self-
arcs at each of its vertices. The reader may wish to verify that this is so by
exploiting the structure of Sm.
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Just as in the case of rooted graphs, it is possible to apply at least part of
the preceding to the case when the Si are flocking matrices. The development
exactly parallels the rooted graph case and one obtains in the end the following
corollary to Theorem 6.2.

Corollary 6.2. Under the hypotheses of Theorem 6.2, and the additional as-
sumption that σ takes values only in the subset of Q composed of those indices
for which Gp is strongly connected, convergence of θ(t) to θss1 is exponential
at a rate no slower than

λ =
{

1 −
(

1
n

)m} 1
m

where m is the integer quotient of n divided by 2.

Jointly Rooted Graphs

It is possible to relax still further the conditions under which the conclusion of
Theorem 6.1 holds. Towards this end, let us agree to say that a finite sequence
of directed graphs Gp1 , Gp2 , . . . , Gpk

in G is jointly rooted if the composition
Gpk

◦ Gpk−1 ◦ · · · ◦ Gp1 is rooted.
Note that since the arc set of any graph Gp, Gq ∈ G are contained

in the arc set of any composed graph Gq ◦ G ◦ Gp, G ∈∈ G, it must
be true that if Gp1 , Gp2 , . . . , Gpk

is a jointly rooted sequence, then so is
Gq◦Gp1 , Gp2 , . . . , Gpk

, Gp. In other words, a jointly rooted sequence of graphs
in G remain jointly rooted if additional graphs from G are added to either end
of the sequence.

There is an analogous concept for neighbor-shared graphs. We say that a
finite sequence of directed graphs Gp1 , Gp2 , . . . , Gpk

from G is jointly neighbor-
shared if the composition Gpk

◦ Gpk−1 ◦ · · · ◦ Gp1 is a neighbor-shared graph.
Jointly neighbor shared sequences of graphs remains jointly neighbor shared if
additional graphs from G are added to either end of the sequence. The reason
for this is the same as for the case of jointly rooted sequences. Although
the discussion which follows is just for the case of jointly rooted graphs, the
material covered extends in the obvious way to the case of jointly neighbor
shared graphs.

In the sequel we will say that an infinite sequence of graphs Gp1 , Gp2 , . . . ,
in G is repeatedly jointly rooted if there is a positive integer m for which each
finite sequence Gpm(k−1)+1 , . . . , Gpmk

, k ≥ 1 is jointly rooted. We are now
in a position to generalize Proposition 6.11.

Proposition 6.12. Let S̄ be any closed set of stochastic matrices in S. Sup-
pose that S1, S2, . . . is an infinite sequence of matrices from S̄ whose corre-
sponding sequence of graphs γ(S1), γ(S2), . . . is repeatedly jointly rooted. Then
the product Sj . . . S1 converges to 1�· · ·Sj · · ·S1� exponentially fast as j → ∞
at a rate no slower than λ, where λ < 1 is a non-negative constant depending
on the sequence.
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Proof of Proposition 6.12: Since γ(S1), γ(S2), . . . is repeatedly jointly
rooted, there is a finite integer m such that γ(Sm(k−1)+1), . . . , γ(Smk), k ≥ 1
is jointly rooted. For k ≥ 1 define S̄k = Smk · · ·Sm(k−1)+1. By Lemma 6.3,
γ(Smk · · ·Sm(k−1)+1) = γ(Smk) ◦ · · · γ(Sm(k−1)+1), k ≥ 1. Therefore γ(S̄k) is
rooted for k ≥ 1. Note in addition that {S̄k, k ≥ 1} is a closed set because
S̄ is closed and m is finite. Thus by Proposition 6.11, the product S̄k · · · S̄1

converges to 1�· · · S̄k · · · S̄1� exponentially fast as k → ∞ at a rate no slower
than λ̄, where λ̄ is a non-negative constant depending on {S̄k, k ≥ 1} and
satisfying λ̄ < 1.

Now the product Sj · · ·S1 can be written as

Sj · · ·S1 = Ŝ(j)S̄i · · · S̄1

where
Ŝ(j) = Sj · · ·S(im+1),

and i is the integer quotient of j divided by m. But Ŝ(j) is a product of at
most m stochastic matrices, so it is a bounded function of j. It follows that
the product SjSj−1 · · ·S1 must converge to 1�· · ·Sj · S1� exponentially fast
at a rate no slower than λ = λ̄

1
m . �

We are now in a position to state our main result on leaderless coordina-
tion.

Theorem 6.3. Let θ(0) be fixed and let σ : [0, 1, 2, . . .) → P̄ be a switching
signal for which the infinite sequence of graphs Gσ(0), Gσ(1), . . . is repeatedly
jointly rooted. Then there is a constant steady state heading θss, depending
only on θ(0) and σ, for which

lim
t→∞

θ(t) = θss1, (6.50)

where the limit is approached exponentially fast.

Proof of Theorem 6.3: The set of flocking matrices F = {Fp : p ∈
P} is finite and γ(Fp) = Gp, p ∈ P. Therefore the infinite sequence
of matrices Fσ(0), Fσ(1), . . . come from a closed set and the infinite se-
quence of graphs γ(Fσ(0)), γ(Fσ(1)), . . . is repeatedly jointly rooted. It fol-
lows from Proposition 6.12 that the product Fσ(t) · · ·Fσ(1)Fσ(0) converges to
1�· · ·Fσ(t) · · ·Fσ(1)Fσ(0)� exponentially fast as t → ∞ at a rate no slower than
λ, where λ < 1 is a non-negative constant depending on the sequence. But it
is clear from (6.3) that

θ(t) = Fσ(t−1) · · ·Fσ(1)Fσ(0)θ(0), t ≥ 1

Therefore (6.50) holds with θss = �· · ·Fσ(t) · · ·Fσ(0)�θ(0) and the convergence
is exponential. �
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6.2 Symmetric Neighbor Relations

It is natural to call a graph in Ḡ symmetric if for each pair of vertices i and
j for which j is a neighbor of i, i is also a neighbor of j. Note that G is
symmetric if and only if its adjacency matrix is symmetric. It is worth noting
that for symmetric graphs, the properties of rooted and rooted at v are both
equivalent to the property that the graph is strongly connected. Within the
class of symmetric graphs, neighbor-shared graphs and strongly rooted graphs
are also strongly connected graphs but in neither case is the converse true. It
is possible to represent a symmetric directed graph G with a simple undirected
graph G

s in which each self-arc is replaced with an undirected edge and each
pair of directed arcs (i, j) and (j, i) for distinct vertices is replaced with an
undirected edge between i and j. Notions of strongly rooted and neighbor
shared extend in the obvious way to unconnected graphs. An undirected graph
is said to be connected if there is an undirected path between each pair of
vertices. Thus a strongly connected, directed graph which is symmetric is in
essence the same as a connected, undirected graph. Undirected graphs are
applicable when the sensing radii ri of all agents are the same. It was the
symmetric version of the flocking problem which Vicsek addressed [25] and
which was analyzed in [27] using undirected graphs.

Let Ḡs and Gs denote the subsets of symmetric graphs in Ḡ and G respec-
tively. Simple examples show that neither Ḡs nor Gs is closed under composi-
tion. In particular, composition of two symmetric directed graphs in Ḡ is not
typically symmetric. On the other hand the “union” is where by the union of
Gp ∈ Ḡ and Gq ∈ Ḡ is meant that graph in Ḡ whose arc set is the union of
the arc sets of Gp and Gq. It is clear that both Ḡs and Gs are closed under
the union operation. The union operation extends to undirected graphs in the
obvious way. Specifically, the union of two undirected graphs with the same
vertex set V, is that graph whose vertex set is V and whose edge set is the
union of the edge sets of the two graphs comprising the union. It is worth
emphasizing that union and composition are really quite different operations.
For example, as we have already seen with Proposition 6.4, the composition of
any n− 1 strongly connected graphs is complete, symmetric or not, is always
complete. On the other hand, the union of n − 1 n − 1 strongly connected
graphs is not necessarily complete. In terms of undirected graphs, it is simply
not true that the union of n − 1 undirected graphs with vertex set V is com-
plete, even if each graph in the union has self-loops at each vertex. The root
cause of the difference between union and composition stems from the fact
that the union and composition of two graphs in Ḡ have different arc sets –
and in the case of graphs from G, the arc set of the union is always contained
in the arc set of the composition, but not conversely.

The development in [27] make use of the notion of a “jointly connected set
of graphs.” Specifically, a set of undirected graphs with vertex set V is jointly
connected if the union of the graphs in the collection is a connected graph. The
notion of jointly connected also applies to directed graphs in which case the
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collection is jointly connected if the union is strongly connected. In the sequel
we will say that an infinite sequence of graphs Gp1 , Gp2 , . . . , in G is repeatedly
jointly connected if there is a positive integer m for which each finite sequence
Gpm(k−1)+1 , . . . , Gpmk

, k ≥ 1 is jointly connected. The main result of [27] is in
essence as follows.

Theorem 6.4. Let θ(0) be fixed and let σ : [0, 1, 2, . . .) → P̄ be a switching
signal for which the infinite sequence of symmetric graphs Gσ(0), Gσ(1), . . . in
G is repeatedly jointly connected. Then there is a constant steady state heading
θss, depending only on θ(0) and σ, for which

lim
t→∞

θ(t) = θss1 (6.51)

where the limit is approached exponentially fast.

In view of Theorem 6.3, Theorem 6.4 also holds if the word “connected”
is replaced with the word “rooted.” The latter supposes that composition
replaces union and that jointly rooted replaces jointly connected. Examples
show that these modifications lead to a more general result because a jointly
rooted sequence of graphs is always jointly connected but the converse is not
necessarily true.

Generalization

It is possible to interpret the system we have been studying (6.3) as the closed-
loop system which results when a suitably defined decentralized feedback law
is applied to the n-agent heading model

θ(t + 1) = θ(t) + u(t) (6.52)

with open-loop control u. To end up with (6.3), u would have to be defined
as

u(t) = −D−1
σ(t)e(t) (6.53)

where e is the average heading error vector

e(t) ∆= Lσ(t)θ(t) (6.54)

and, for each p ∈ P, Lp is the matrix

Lp = Dp − Ap (6.55)

known in graph theory as the Laplacian of Gp [28,43]. It is easily verified that
(6.52) to (6.55) do indeed define the system modeled by (6.3). We have elected
to call e the average heading error because if e(t) = 0 at some time t, then
the heading of each agent with neighbors at that time will equal the average
of the headings of its neighbors.
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In the present context, (6.53) can be viewed as a special case of a more
general decentralized feedback control of the form

u(t) = −G−1
σ(t)Lσ(t)θ(t) (6.56)

where for each p ∈ P, Gp is a suitably defined, nonsingular diagonal matrix
with ith diagonal element gi

p. This, in turn, is an abbreviated description of
a system of n individual agent control laws of the form

ui(t) = − 1
gi(t)

⎛
⎝ ∑

j∈Ni(t)

θj(t)

⎞
⎠ , i ∈ {1, 2, . . . , n} (6.57)

where for i ∈ {1, 2, . . . , n}, ui(t) is the ith entry of u(t) and gi(t)
∆= gi

σ(t).
Application of this control to (6.52) would result in the closed-loop system

θ(t + 1) = θ(t) − G−1
σ(t)Lσ(t)θ(t) (6.58)

Note that the form of (6.58) implies that if θ and σ were to converge to
a constant values θ̄, and σ̄ respectively, then θ̄ would automatically satisfy
Lσ̄ θ̄ = 0. This means that control (6.56) automatically forces each agent’s
heading to converge to the average of its neighbors, if agent headings were
to converge at all. In other words, the choice of the Gp does not affect the
requirement that each agent’s heading equal the average of the headings of its
neighbors, if there is convergence at all. In the sequel we will deal only with
the case when the graphs Gp are all symmetric in which case Lp is symmetric
as well.

The preceding suggests that there might be useful choices for the Gp al-
ternative to those we have considered so far, which also lead to convergence.
One such choice turns out to be

Gp = gI, p ∈ P (6.59)

where g is any number greater than n. Our aim is to show that with the Gp so
defined, Theorem 6.2 continues to be valid. In sharp contrast with the proof
technique used in the last section, convergence will be established here using
a common quadratic Lyapunov function.

As before, we will use the model

θ(t + 1) = Fσ(t)θ(t) (6.60)

where, in view of the definition of the Gp in (6.59), the Fp are now symmetric
matrices of the form

Fp = I − 1
g
Lp, p ∈ P (6.61)

To proceed we need to review a number of well known and easily verified
properties of graph Laplacians relevant to the problem at hand. For this, let
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G be any given symmetric directed graph in G. Let D be a diagonal matrix
whose diagonal elements are the in-degrees of G’s vertices and write A for G’s
adjacency matrix. Then, as noted before, the Laplacian of G is the symmetric
matrix L = D − A. The definition of L clearly implies that L1 = 0. Thus
L must have an eigenvalue at zero and 1 must be an eigenvector for this
eigenvalue. Surprisingly L is always a positive semidefinite matrix [28]. Thus
L must have a real spectrum consisting of non-negative numbers and at least
one of these numbers must be 0. It turns out that the number of connected
components of G is exactly the same as the multiplicity of L’s eigenvalue
at 0 [28]. Thus G is a rooted or strongly connected graph just in case L has
exactly one eigenvalue at 0. Note that the trace of L is the sum of the in-
degrees of all vertices of G. This number can never exceed (n − 1)n and can
attain this high value only for a complete graph. In any event, this property
implies that the maximum eigenvalue of L is never larger than n(n − 1).
Actually the largest eigenvalue of L can never be larger than n [28]. This
means that the eigenvalues of 1

g L must be smaller than 1 since g > n. From
these properties it clearly follows that the eigenvalues of (I − 1

g L) must all be
between 0 and 1, and that if G is strongly connected, then all will be strictly
less than 1 except for one eigenvalue at 1 with eigenvector 1. Since each Fp is
of the form (I − 1

g L), each Fp possesses all of these properties.
Let σ be a fixed switching signal with value pt ∈ Q at time t ≥ 0. What

we’d like to do is to prove that as i → ∞, the matrix product Fpi
Fpi−1 · · ·Fp0

converges to 1c for some row vector c. As noted near the beginning of Sect. 6.1,
this matrix product will so converge just in case

lim
i→∞

F̃pi
F̃pi−1 · · · F̃p0 = 0 (6.62)

where as in Sect. 6.1, F̃p is the unique solution to PFp = F̃pP, p ∈ P and P is
any full rank (n−1)×n matrix satisfying P1 = 0. For simplicity and without
loss of generality we shall henceforth assume that the rows of P form a basis
for the orthogonal complement of the span of e. This means that PP ′ equals
the (n − 1) × (n − 1) identity Ĩ, that F̃p = PFpP

′, p ∈ P, and thus that
each F̃p is symmetric. Moreover, in view of (6.6) and the spectral properties
of the Fp, p ∈ Q, it is clear that each F̃p, p ∈ Q must have a real spectrum
lying strictly inside of the unit circle. This plus symmetry means that for each
p ∈ Q, F̃p − Ĩ is negative definite, that F̃ ′

pF̃p − Ĩ is negative definite and thus
that Ĩ is a common discrete-time Lyapunov matrix for all such F̃p. Using this
fact it is straight forward to prove that Theorem 6.2 holds for system (6.58)
provided the Gp are defined as in (6.59) with g > n.

In general, each F̃p is a discrete-time stability matrix for which F̃ ′
pF̃p − Ĩ

is negative definite only if p ∈ Q. To craft a proof of Theorem 6.3 for the
system described by (6.58) and (6.59), one needs to show that for each interval
[ti, ti+1) on which {Gσ(ti+1−1), . . . Gσ(ti+1), Gσ(ti)} is a jointly rooted sequence



146 A.S. Morse

of graphs, the product F̃σ(ti+1−1) · · · F̃σ(ti+1)F̃σ(ti) is a discrete-time stability
matrix and

(F̃σ(ti+1−1) · · · F̃σ(ti+1)F̃σ(ti))
′(F̃σ(ti+1−1) · · · F̃σ(ti+1)F̃σ(ti)) − Ĩ

is negative definite. This is a direct consequence of the following proposition.

Proposition 6.13. If {Gp1 , Gp2 , . . . , Gpm
} is a jointly rooted sequence of

symmetric graphs, then

(F̃p1 F̃p2 · · · F̃pm
)′(F̃p1 F̃p2 · · · F̃pm

) − Ĩ

is a negative definite matrix.

In the light of Proposition 6.13, it is clear that the conclusion Theorem 6.3
is also valid for the system described by (6.58) and (6.59). A proof of this
version of Theorem 6.3 will not be given.

To summarize, both the control defined by u = −D−1
σ(t)e(t) and the simpli-

fied control given by u = − 1
g e(t) achieve the same emergent behavior. While

the latter is much easier to analyze than the former, it has the disadvantage
of not being a true decentralized control because each agent must know an
upper bound (i.e., g) on the total number of agents within the group. Whether
or not this is really a disadvantage, of course depends on what the models are
to be used for.

The proof of Proposition 6.13 depends on two lemmas. In the sequel, we
state the lemmas, use them to prove Proposition 6.13, and then conclude this
section with proofs of the lemmas themselves.

Lemma 6.16. If Gp1 , Gp2 , . . . , Gpm
is a jointly rooted sequence of symmetric

graphs in G with Laplacians Lp1 , Lp2 , . . . , Lpm
, then

m⋂
i=1

kernel Lpi
= span {1} (6.63)

Lemma 6.17. Let M1,M2, . . . ,Mm be a set of n×n real symmetric, matrices
whose induced 2-norms are all less than or equal to 1. If

m⋂
i=1

kernel (I − Mi) = 0 (6.64)

then the induced 2-norm of M1M2 · · ·Mm is less than 1.

Proof of Proposition 6.13: The definition of the Fp in (6.61) implies that
I − Fp = 1

g Lp. Hence by Lemma 6.16 and the hypothesis that {Gp1 , Gp2 , . . . ,

Gpm
} is a jointly rooted sequence,
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m⋂
i=1

kernel (I − Fpi
) = span {1} (6.65)

We claim that
m⋂

i=1

kernel (Ĩ − F̃pi
) = 0 (6.66)

To establish this fact, let x̄ be any vector such that (Ĩ − F̃pi
)x̄ = 0, i ∈

{1, 2, . . . ,m}. Since P has independent rows, there is a vector x such that
x̄ = Px. But P (I−Fpi

) = (Ĩ− F̃pi
)P , so P (I−Fpi

)x = 0. Hence (I−Fpi
)x =

ai1 for some number ai. But 1′(I − Fpi
) = 1

g1
′Lpi

= 0, so ai1′1 = 0. This
implies that ai = 0 and thus that (I −Fpi

)x = 0. But this must be true for all
i ∈ {1, 2, . . . ,m}. It follows from (6.65) that x ∈ span {1} and, since x̄ = Px,
that x̄ = 0. Therefore (6.66) is true.

As defined, the F̃p are all symmetric, positive semi-definite matrices with
induced 2-norms not exceeding 1. This and (6.66) imply that the family of
matrices F̃p1 , F̃p2 , . . . , F̃pm

satisfy the hypotheses of Lemma 6.17. It follows
that Proposition 6.13 is true. �

Proof of Lemma 6.16: In the sequel we write L(G) for the Laplacian of a
simple graph G. By the intersection of a collection of graphs {Gp1 , Gp2 , . . . ,
Gpm

} in G, is meant that graph G ∈ G with edge set equaling the intersection
of the edge sets of all of the graphs in the collection. It follows at once from
the definition of a Laplacian that

L(Gp) + L(Gq) = L(Gp ∩ Gq) + L(Gp ∪ Gq)

for all p, q ∈ P. Repeated application of this identity to the set {Gp1 , Gp2 , . . . ,
Gpm

} yields the relation

m∑
i=1

L(Gpi
) = L

(
m⋃

i=1

Gpi

)
+

m−1∑
i=1

L

⎛
⎝Gpi+1

⋂⎧⎨
⎩

i⋃
j=1

Gpj

⎫⎬
⎭
⎞
⎠ (6.67)

which is valid for m > 1. Since all matrices in (6.67) are positive semi-definite,
any vector x which makes the quadratic form x′{L(Gp1) + L(Gp2) + · · · +
L(Gpm

)}x vanish, must also make the quadratic form x′L(Gp1 ∪ Gp2 ∪ · · · ∪
Gpm

)x vanish. Since any vector in the kernel of each matrix L(Gpi
) has this

property, we can draw the following conclusion.

m⋂
i=1

kernel L(Gpi
) ⊂ kernel L

(
m⋃

i=1

Gpi

)

Suppose now that {Gp1 , Gp2 , . . . , Gpm
} is a jointly rooted collection. Then

the union Gp1 ∪ Gp2 ∪ · · · ∪ Gpm
is rooted so its Laplacian must have exactly

span {1} for its kernel. Hence the intersection of the kernels of the L(Gpi
)



148 A.S. Morse

must be contained in span {1}. But span {1} is contained in the kernel of
each matrix L(Gpi

) in the intersection and therefore in the intersection of the
kernels of these matrices as well. It follows that (6.63) is true. �

Proof of Lemma 6.17: In the sequel we write |x| for the 2-norm of a real
n-vector x and |M | for the induced 2-norm of a real n×n matrix. Let x ∈ IRn

be any real, non-zero n-vector. It is enough to show that

|M1M2 · · ·Mmx| < |x| (6.68)

In view of (6.64) and the assumption that x = 0, there must be a largest
integer k ∈ {1, 2, . . . ,m} such that x ∈ kernel (Mk − I). We claim that

|Mkx| < |x| (6.69)

To show that this is so we exploit the symmetry of Mk to write x as x = α1y1+
α2y2+ · · ·+αnyn where α1, α2, . . . , αn are real numbers and {y1, y2, . . . , yn} is
an orthonormal set of eigenvectors of Mk with real eigenvalues λ1, λ2, . . . λn.
Note that |λi| ≤ 1, i ∈ {1, 2, . . . , n}, because |Mk| ≤ 1. Next observe that
since Mkx = α1λ1y1 + α2λ2y2 + · · · + αnλnyn and Mkx = x, there must be
at least one integer j such that αjλj = αj . Hence |αjλjyj | < |αjyj |. But
|Mkx|2 = |α1λ1y1|2 + · · · + |αjλjyj |2 + · · · + |αnλnyn|2 so

|Mkx|2 < |α1λ1y1|2 + · · · + |αjyj |2 + · · · + |αnλnyn|2

Moreover

|α1λ1y1|2+· · ·+|αjyj |2+· · ·+|αnλnyn|2 ≤ |α1y1|2+· · ·+|αjyj |2+· · ·+|αnyn|2 = |x|2

so |Mkx|2 < |x|2; therefore (6.69) is true.
In view of the definition of k, Mjx = x, j ∈ {k + 1, . . . ,m}. From this and

(6.69) it follows that |M1 · · ·Mmx| = |M1 · · ·Mkx| ≤ |M1 · · ·Mk−1||Mkx| <
|M1 · · ·Mk−1||x|. But |M1 · · ·Mk−1| ≤ 1 because each Mi has an induced 2
norm not exceeding 1. Therefore (6.68) is true. �

6.3 Measurement Delays

In this section we consider a modified version of the flocking problem in which
integer valued delays occur in sensing the values of headings which are avail-
able to agents. More precisely we suppose that at each time t ∈ {0, 1, 2, . . .},
the value of neighboring agent j’s headings which agent i may sense is
θj(t − dij(t)) where dij(t) is a delay whose value at t is some integer be-
tween 0 and mj − 1; here mj is a pres-specified positive integer. While well
established principles of feedback control would suggest that delays should be
dealt with using dynamic compensation, in these notes we will consider the
situation in which the delayed value of agent j’s heading sensed by agent i at
time t is the value which will be used in the heading update law for agent i.
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Thus

θi(t + 1) =
1

ni(t)

⎛
⎝ ∑

j∈Ni(t)

θj(t − dij(t))

⎞
⎠ (6.70)

where dij(t) ∈ {0, 1, . . . , (mj − 1)} if j = i and dij(t) = 0 if i = j.
It is possible to represent this agent system using a state space model

similar to the model discussed earlier for the delay-free case. Towards this end,
let D̄ denote the set of all directed graphs with vertex set V̄ = V1∪V2∪· · ·∪Vn

where Vi = {vi1 . . . , vimi
}. Here vertex vi1 represents agent i and Vi is the

set of vertices associated with agent i. We sometimes write i for vi1, i ∈
{1, 2, . . . , n}, and V for the subset of agent vertices {v11, v21, . . . , vn1}. Let Q̄
be an index set parameterizing D̄ ; i.e, D̄ = {Gq : q ∈ Q̄}

To represent the fact that each agent can use its own current heading in
its update formula (6.70), we will utilize those graphs in D̄ which have self
arcs at each vertex in V. We will also require the arc set of each such graph to
have, for i ∈ {1, 2, . . . , n}, an arc from each vertex vij ∈ Vi except the last, to
its successor vi(j+1) ∈ Vi. Finally we stipulate that for each i ∈ {1, 2, . . . , n},
each vertex vij with j > 1 has in-degree of exactly 1. In the sequel we write D
for the subset of all such graphs. Thus unlike the class of graphs G considered
before, there are graphs in D possessing vertices without self-arcs. Nonetheless
each vertex of each graph in D has positive in-degree. In the sequel we use
the symbol Q to denote that subset of Q̄ for which D = {Gq : q ∈ Q}.

The specific graph representing the sensed headings the agents use at time
t to update their own headings according to (6.70), is that graph Gq ∈ D whose
arc set contains an arc from vik ∈ Vi to j ∈ V if agent j uses θi(t + 1 − k)
to update. The set of agent heading update rules defined by (6.70) can now
be written in state form. Towards this end define θ(t) to be that (m1 + m2 +
· · · + mi) vector whose first m1 elements are θ1(t) to θ1(t + 1 − m1), whose
next m2 elements are θ2(t) to θ2(t + 1 − m2) and so on. Order the vertices
of V̄ as v11, . . . , v1m1 , v21, . . . , v2m2 , . . . , vn1, . . . , vnmn

and with respect to this
ordering define

Fq = D−1
q A′

q, q ∈ Q (6.71)

where A′
q is the transpose of the adjacency matrix the of Gq ∈ D and Dq

the diagonal matrix whose ijth diagonal element is the in-degree of vertex vij

within the graph. Then

θ(t + 1) = Fσ(t)θ(t), t ∈ {0, 1, 2, . . .} (6.72)

where σ : {0, 1, . . .} → Q is a switching signal whose value at time t, is
the index of the graph representing which headings the agents use at time
t to update their own headings according to (6.70). As before our goal is
to characterize switching signals for which all entries of θ(t) converge to a
common steady state value.

There are a number of similarities and a number of differences between
the situation under consideration here and the delay-free situation considered
earlier. For example, the notion of graph composition defined earlier can be
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defined in the obvious way for graphs in D̄. On the other hand, unlike the
situation in the delay-free case, the set of graphs used to model the system
under consideration, namely D, is not closed under composition except in the
special case when all of the delays are at most 1; i.e., when all of the mi ≤ 2.
In order to characterize the smallest subset of D̄ containing D which is closed
under composition, we will need several new concepts.

Hierarchical Graphs

As before, let Ḡ be the set of all directed graphs with vertex set V =
{1, 2, . . . n}. Let us agree to say that a rooted graph G ∈ Ḡ is a hierarchi-
cal graph with hierarchy {v1, v2, . . . , vn} if it is possible to re-label the vertices
in V as v1, v2, . . . vn in such a way so that v1 is a root of G with a self-arc and
for i > 1, vi has a neighbor vj “lower ” in the hierarchy where by lower we
mean j < i. It is clear that any graph in Ḡ with a root possessing a self-arc
is hierarchial. Note that a graph may have more than one hierarchy and two
graphs with the same hierarchy need not be equal. Note also that even though
rooted graphs with the same hierarchy share a common root, examples show
that the composition of hierarchial graphs in Ḡ need not be hierarchial or even
rooted. On the other hand the composition of two rooted graphs in Ḡ with
the same hierarchy is always a graph with the same hierarchy. To understand
why this is so, consider two graphs G1 and G2 in Ḡ with the same hierarchy
{v1, v2, . . . , vn}. Note first that v1 has a self-arc in G2 ◦G1 because v1 has self
arcs in G1 and G2. Next pick any vertex vi in V other than v1. By definition,
there must exist vertex vj lower in the hierarchy than vi such that (vj , vi) is
an arc of G2. If vj = v1, then (v1, vi) is an arc in G2 ◦ G1 because v1 has a
self-arc in G1. On the other hand, if vj = v1, then there must exist a vertex
vk lower in the hierarchy than vj such that (vk, vj) is an arc of G1. It follows
from the definition of composition that in this case (vk, vi) is an arc in G2◦G1.
Thus vi has a neighbor in G2 ◦ G1 which is lower in the hierarchy than vi.
Since this is true for all vi, G2 ◦ G1 must have the same hierarchy as G1 and
G2. This proves the claim that composition of two rooted graphs with the
same hierarchy is a graph with the same hierarchy.

Our objective is to show that the composition of a sufficiently large number
of graphs in Ḡ with the same hierarchy is strongly rooted. Note that Proposi-
tion 6.3 cannot be used to reach this conclusion, because the vi in the graphs
under consideration here do not all necessarily have self-arcs.

As before, let G1 and G2 be two graphs in Ḡ with the same hierarchy
{v1, v2, . . . , vn}. Let vi be any vertex in the hierarchy and suppose that vj is
a neighbor vertex of vi in G2. If vj = v1, then vi retains v1 as a neighbor in
the composition G2 ◦ G1 because v1 has a self-arc in G1. On the other hand,
if vj = v1, then vj has a neighboring vertex vk in G1 which is lower in the
hierarchy than vj . Since vk is a neighbor of vi in the composition G2 ◦ G1,
we see that in this case vi has acquired a neighbor in G2 ◦ G1 lower in the
hierarchy than a neighbor it had in G2. In summary, any vertex vi ∈ V either
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has v1 as neighbor in G2 ◦G1 or has a neighbor in G2 ◦G1 which is one vertex
lower in the hierarchy than any neighbor it had in G2.

Now consider three graphs G1, G2, G3 in Ḡ with the same hierarchy. By
the same reasoning as above, any vertex vi ∈ V either has v1 as neighbor in
G3 ◦G2 ◦G1 or has a neighbor in G3 ◦G2 ◦G1 which is one vertex lower in the
hierarchy than any neighbor it had in G3 ◦ G2. Similarly vi either has v1 as
neighbor in G3◦G2 or has a neighbor in G3◦G2 which is one vertex lower in the
hierarchy than any neighbor it had in G3. Combining these two observations
we see that any vertex vi ∈ V either has v1 as neighbor in G3◦G2◦G1 or has a
neighbor in G3 ◦G2 ◦G1 which is two vertices lower in the hierarchy than any
neighbor it had in G3. This clearly generalizes and so after the composition of
m such graphs G1, G2, . . . Gm, vi either has v1 as neighbor in Gm ◦ · · ·G2 ◦G1

or has a neighbor in Gm ◦ · · ·G2 ◦ G1 which is m − 1 vertices lower in the
hierarchy than any neighbor it had in Gm. It follows that if m ≥ n, then vi

must be a neighbor of v1. Since this is true for all vertices, we have proved
the following.

Proposition 6.14. Let G1, G2, . . . Gm denote a set of rooted graphs in Ḡ
which all have the same hierarchy. If m ≥ n − 1 then Gm ◦ · · ·G2 ◦ G1 is
strongly rooted.

As we have already pointed out, Proposition 6.14 is not a consequence
of Proposition 6.3 because Proposition 6.3 requires all vertices of all graphs
in the composition to have self-arcs whereas Proposition 6.14 does not. On
the other hand, Proposition 6.3 is not a consequence of Proposition 6.14 be-
cause Proposition 6.14 only applies to graphs with the same hierarchy whereas
Proposition 6.3 does not.

Delay Graphs

We now return to the study of the graphs in D. As before D is the subset of
D̄ consisting of those graphs which (i) have self arcs at each vertex in V =
{1, 2, . . . , }, (ii) for each i ∈ {1, 2, . . . , n}, have an arc from each vertex vij ∈ Vi

except the last, to its successor vi(j+1) ∈ Vi, and (iii) for each i ∈ {1, 2, . . . , n},
each vertex vij with j > 1 has in-degree of exactly 1. It can easily be shown by
example that D is not closed under composition. We deal with this problem as
follows. A graph G ∈ D̄ is said to be a delay graph if for each i ∈ {1, 2, . . . , n},
(i) every neighbor of Vi which is not in Vi is a neighbor of vi1 and (ii) the
subgraph of G induced by Vi has {vi1 . . . , vimi

} as a hierarchy. It is easy to
see that every graph in D is a delay graph. More is true.

Proposition 6.15. The set of delay graphs in D̄ is closed under composition.

To prove this proposition, we will need the following fact.

Lemma 6.18. Let G1, G2, . . . , Gq be any sequence of q > 1 directed graphs in
Ḡ. For i ∈ {1, 2, . . . , q}, let Ḡi be the subgraph of Gi induced by S ⊂ V. Then
Ḡq ◦· · ·◦Ḡ2 ◦Ḡ1 is contained in the subgraph of Gq ◦· · ·◦G2 ◦G1 induced by S.
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Proof of Lemma 6.18: It will be enough to prove the lemma for q = 2,
since the proof for q > 2 would then directly follow by induction. Suppose
q = 2. Let (i, j) be in A(Ḡ2 ◦ Ḡ1). Then i, j ∈ S and there exists an integer
k ∈ S such that (i, k) ∈ A(Ḡ1) and (k, j) ∈ A(Ḡ2). Therefore (i, k) ∈ A(G1)
and (k, j) ∈ A(G2). Thus (i, j) ∈ A(G2 ◦ G1). But i, j ∈ S so (i, j) must be
an arc in the subgraph of G2 ◦ G1 induced by S. Since this clearly is true for
all arcs in A(Ḡ2 ◦ Ḡ1), the proof is complete. �

Proof of Proposition 6.15: Let G1 and G2 be two delay graphs in D̄. It
will first be shown that for each i ∈ {1, 2, . . . , n}, every neighbor of Vi which
is not in Vi is a neighbor of vi1 in G2 ◦G1. Fix i ∈ {1, 2, . . . , n} and let v be a
neighbor of Vi in G2◦G1 which is not in Vi. Then (v, k) ∈ A(G2◦G1) for some
k ∈ Vi. Thus there is a s ∈ V̄ such that (v, s) ∈ A(G1) and (s, k) ∈ A(G2). If
s ∈ Vi, then (s, vi1) ∈ A(G2) because G2 is a delay graph. Thus in this case
(v, vi1) ∈ A(G2 ◦G1) because of the definition of composition. If, on the other
hand, s ∈ Vi, then (v, vi1) ∈ A(G1) because G1 is a delay graph. Thus in this
case (v, vi1) ∈ A(G2 ◦ G1) because vi1 has a self-arc in G2. This proves that
every neighbor of Vi which is not in Vi is a neighbor of vi1 in G2 ◦ G1. Since
this must be true for each i ∈ {1, 2, . . . , n}, G2 ◦ G1 has the first property
defining delay graphs in D̄.

To establish the second property, we exploit the fact that the composition
of two graphs with the same hierarchy is a graph with the same hierarchy. Thus
for any integer i ∈ {1, 2, . . . , n}, the composition of the subgraphs of G1 and
G2 respectively induced by Vi must have the hierarchy {vi1, vi2, . . . , vimi

}.
But by Lemma 6.18, for any integer i ∈ {1, 2, . . . , n}, the composition of
the subgraphs of G1 and G2 respectively induced by Vi, is contained in the
subgraph of the composition of G1 and G2 induced by Vi. This implies that
for i ∈ {1, 2, . . . , n}, the subgraph of the composition of G1 and G2 induced
by Vi has {vi1, vi2, . . . , vimi

} as a hierarchy. �
In the sequel we will state and prove conditions under which the composi-

tion of a sequence of delay graphs is strongly rooted. To do this, we will need
to introduce several concepts. By the quotient graph of G ∈ D̄, is meant that
directed graph with vertex set V whose arc set consists of those arcs (i, j)
for which G has an arc from some vertex in Vi to some vertex in Vj . The
quotient graph of G models which headings are being used by each agent in
updates without describing the specific delayed headings actually being used.
Our main result regarding delay graphs is as follows.

Proposition 6.16. Let m be the largest integer in the set {m1,m2, . . . ,mn}.
The composition of any set of at least m(n− 1)2 + m− 1 delay graphs will be
strongly rooted if the quotient graph of each of the graphs in the composition
is rooted.

To prove this proposition we will need several more concepts. Let us agree
to say that a delay graph G ∈ D̄ has strongly rooted hierarchies if for each
i ∈ V, the subgraph of G induced by Vi is strongly rooted. Proposition 6.14
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states that a hierarchial graph on mi vertices will be strongly rooted if it is
the composition of at least mi − 1 rooted graphs with the same hierarchy.
This and Lemma 6.18 imply that the subgraph of the composition of at least
mi − 1 delay graphs induced by Vi will be strongly rooted. We are led to the
following lemma.

Lemma 6.19. Any composition of at least m − 1 delay graphs in D̄ has
strongly rooted hierarchies.

To proceed we will need one more type of graph which is uniquely de-
termined by a given graph in D̄. By the agent subgraph of G ∈ D̄ is meant
the subgraph of G induced by V. Note that while the quotient graph of G

describes relations between distinct agent hierarchies, the agent subgraph of
G only captures the relationships between the roots of the hierarchies.

Lemma 6.20. Let Gp and Gq be delay graphs in D̄. If Gp has a strongly rooted
agent subgraph and Gq has strongly rooted hierarchies, then the composition
Gq ◦ Gp is strongly rooted.

Proof of Lemma 6.20: Let vi1 be a root of the agent subgraph of Gp and let
vjk be any vertex in V̄. Then (vi1, vj1) ∈ A(Gp) because the agent subgraph of
Gp is strongly rooted. Moreover, (vj1, vjk) ∈ A(Gq) because Gq has strongly
rooted hierarchies. Therefore, in view of the definition of graph composition
(vi1, vjk) ∈ A(Gq ◦Gp). Since this must be true for every vertex in V̄, Gq ◦Gp

is strongly rooted. �

Lemma 6.21. The agent subgraph of any composition of at least (n − 1)2

delay graphs in D̄ will be strongly rooted if the agent subgraph of each of the
graphs in the composition is rooted.

Proof of Lemma 6.21: Let G1, G2, . . . , Gq be any sequence of q ≥ (n − 1)2

delay graphs in D̄ whose agent subgraphs, Ḡi i ∈ {1, 2, . . . , q}, are all rooted.
By Proposition 6.10, Ḡq ◦· · ·◦Ḡ2 ◦Ḡ1 is strongly rooted. But Ḡq ◦· · ·◦Ḡ2 ◦Ḡ1

is contained in the agent subgraph of Gq ◦ · · · ◦ G2 ◦ G1 because of Lemma
6.18. Therefore the agent subgraph of Gq ◦ · · · ◦G2 ◦G1 is strongly rooted. �

Lemma 6.22. Let Gp and Gq be delay graphs in D̄. If Gp has a strongly rooted
hierarchies and Gq has a rooted quotient graph, then the agent subgraph of the
composition Gq ◦ Gp is rooted.

Proof of Lemma 6.22: Let (i, j) be any arc in the quotient graph of Gq

with i = j. This means that (vik, vjs)∈A(Gq) for some vik ∈ Vi and vjs ∈ Vj .
Clearly (vi1, vik) ∈ A(Gp) because Gp has strongly rooted hierarchies. More-
over since i = j, vik is a neighbor of Vj which is not in Vj . From this and the
definition of a delay graph, it follows that vik is a neighbor of vj1. Therefore
(vik, vj1) ∈ A(Gq). Thus (vi1, vj1) ∈ A(Gq ◦ Gp). We have therefore proved
that for any path of length one between any two distinct vertices i, j in the



154 A.S. Morse

quotient graph of Gq, there is a corresponding path between vertices vi1 and
vj1 in the agent subgraph of Gq ◦ Gp. This implies that for any path of any
length between any two distinct vertices i, j in the quotient graph of Gq, there
is a corresponding path between vertices vi1 and vj1 in the agent subgraph of
Gq ◦ Gp. Since by assumption, the quotient graph of Gq is rooted, the agent
subgraph of Gq ◦ Gp must be rooted as well. �

Proof of Proposition 6.16: Let G1, G2, . . . Gs be a sequence of at least
m(n−1)2+m−1 delay graphs with strongly rooted quotient graphs. The graph
Gs ◦ · · ·G(m(n−1)2+1) is composed of at least m − 1 delay graphs. Therefore
Gs◦· · ·G(m(n−1)2+1) must have strongly rooted hierarchies because of Lemma
6.19. In view of Lemma 6.20, to complete the proof it is enough to show that
G(m(n−1)2 ◦· · ·◦G1 has a strongly rooted agent subgraph. But G(m(n−1)2 ◦· · ·◦
G1 is the composition of (n− 1)2 graphs, each itself a composition of m delay
graphs with rooted quotient graphs. In view of Lemma 6.21, to complete the
proof it is enough to show that the agent subgraph of any composition of m
delay graphs is rooted if each of the quotient graph of each delay graph in the
composition is rooted. Let H1, H2, . . . , Hm be such a family of delay graphs.
By assumption, Hm has a rooted quotient graph. In view of Lemma 6.22, the
agent subgraph of Hm ◦ Hm−1 ◦ · · · ◦ H1 will be rooted if Hm−1 ◦ · · · ◦ H1 has
strongly rooted hierarchies. But Hm−1 ◦ · · · ◦ H1 has this property because of
Lemma 6.19. �

Convergence

Using the results from the previous section, it is possible to state results
for the flocking problem with measurement delays similar to those discussed
earlier for the delay free case. Towards this end let us agree to say that a
finite sequence of graphs Gp1 , Gp2 , . . . , Gpk

in D is jointly quotient rooted if
the quotient of the composition Gpk

◦ Gp(k−1) ◦ · · · ◦ Gp1 is rooted.
In the sequel we will say that an infinite sequence of graphs Gp1 , Gp2 , . . . , in

D is repeatedly jointly quotient rooted if there is a positive integer m for which
each finite sequence Gpm(k−1)+1 , . . . , Gpmk

, k ≥ 1 is jointly quotient rooted.
We are now in a position to state our main result on leaderless coordination
with measurement delays.

Theorem 6.5. Let θ(0) be fixed and with respect to (6.72), let
σ : [0, 1, 2, . . .) → Q̄ be a switching signal for which the infinite sequence
of graphs Gσ(0), Gσ(1), . . . in D is repeatedly jointly rooted. Then there is a
constant steady state heading θss, depending only on θ(0) and σ, for which

lim
t→∞

θ(t) = θss1 (6.73)

where the limit is approached exponentially fast.

The proof of this theorem exploits Proposition 6.16 and parallels exactly the
proof of Theorem 6.3. A proof of Theorem 6.5 therefore will not be given.
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6.4 Asynchronous Flocking

In this section we consider a modified version of the flocking problem in which
each agent independently updates its heading at times determined by its own
clock [44]. We do not assume that the groups’ clocks are synchronized to-
gether or that the times any one agent updates its heading are evenly spaced.
Updating of agent i’s heading is done as follows. At its kth sensing event time
tik, agent i senses the headings θj(tik), j ∈ Ni(tik) of its current neighbors
and from this data computes its kth way-point wi(tik). In the sequel we will
consider way point rules based on averaging. In particular

wi(tik) =
1

ni(tik)

⎛
⎝ ∑

i∈Ni(tik)

θj(tik)

⎞
⎠ , i{1, 2, . . . , n} (6.74)

where ni(tik) is the number of neighbor of elements in neighbor index set
Ni(tik). Agent i then changes its heading from θi(tik) to wi(tik) on the interval
[tik, ti(k+1)). In these notes we will consider the case each agent updates its
headings instantaneously at its own even times, and that it maintains fixed
headings between its event times. More precisely, we will assume that agent i
reaches its kth way-point at its (k +1)st event time and that θi(t) is constant
on each continuous-time interval (ti(k−1), tik], k ≥ 1, where ti0 = 0 is agent
i’s zeroth event time. In other words for k ≥ 0, agent i’s heading satisfies is

θi(ti(k+1)) =
1

ni(tik)

⎛
⎝ ∑

j∈Ni(tik)

θj(tik)

⎞
⎠ (6.75)

θi(t) = θi(tik), ti(k−1) < t ≤ tik (6.76)

To ensure that each agent’s neighbors are unambiguously defined at each of
its event times, we will further assume that agents move continuously.

Analytic Synchronization

To develop conditions under which all agents eventually move with the same
heading requires the analysis of the asymptotic behavior of the asynchronous
process which the 2n heading equations of the form (6.75), (6.76) define. De-
spite the apparent complexity of this process, it is possible to capture its
salient features using a suitably defined synchronous discrete-time, hybrid dy-
namical system S. We call the sequence of steps involved in defining S analytic
synchronization. Analytic synchronization is applicable to any finite family of
continuous or discrete time dynamical processes {P1, P2, . . . , . . . , Pn} under
the following conditions. First, each process Pi must be a dynamical sys-
tem whose inputs consist of functions of the states of the other processes
as well as signals which are exogenous to the entire family. Second, each
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process Pi must have associated with it an ordered sequence of event times
{ti1, ti2, . . .} defined in such a way so that the state of Pi at event time ti(ki+1)

is uniquely determined by values of the exogenous signals and states of the
Pj , j ∈ {1, 2, . . . , n} at event times tjkj

which occur prior to ti(ki+1) but
in the finite past. Event time sequences for different processes need not be
synchronized. Analytic synchronization is a procedure for creating a single
synchronous process for purposes of analysis which captures the salient fea-
tures of the original n asynchronously functioning processes. As a first step,
all n event time sequences are merged into a single ordered sequence of even
times T . The “synchronized” state of Pi is then defined to be the original of
Pi at Pi’s event times {ti1, ti2, . . .} plus possibly some additional variables; at
values of t ∈ T between event times tiki

and ti(ki+1), the synchronized state
of Pi is taken to be the same at the value of its original state at time ti(k+1).
Although it is not always possible to carry out all of these steps, when it is
what ultimately results is a synchronous dynamical system S evolving on the
index set of T , with state composed of the synchronized states of the n indi-
vidual processes under consideration. We now use these ideas to develop such
a synchronous system S for the asynchronous process we have been studying.

Definition of S

As a first step, let T denote the set of all event times of all n agents. Relabel the
elements of T as t0, t1, t2, · · · in such a way so that tj < tj+1, j ∈ {1, 2, . . .}.
Next define

θ̄i(τ) = θi(tτ ), τ ≥ 0, i ∈ {1, 2, . . . , n}. (6.77)

In view of (6.75), it must be true that if tτ is an event time of agent i, then

θ̄i(τ ′) =
1

n̄i(tτ )

⎛
⎝ ∑

j∈N̄i(τ)

θ̄j(τ)

⎞
⎠

where N̄i(τ) = Ni(tτ ), n̄i(τ) = ni(tτ ) and tτ ′ is the next event time of agent
i after tτ . But θ̄i(τ ′) = θ̄i(τ +1) because θi(t) is constant for tτ < t ≤ tτ ′ {cf.,
(6.76)}. Therefore

θ̄i(τ + 1) =
1

n̄i(tτ )

⎛
⎝ ∑

j∈N̄i(τ)

θ̄j(τ)

⎞
⎠ (6.78)

if tτ is an event time of agent i. Meanwhile if tτ is not an event time of agent
i, then

θ̄i(τ + 1) = θ̄i(τ), (6.79)

again because θi(t) is constant between event times. Note that if we define
N̄i(τ) = {i} and n̄i(τ) = 1 for every value of τ for which tτ is not an event
time of agent i, then (6.79) can be written as
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θ̄i(τ + 1) =
1

n̄i(tτ )

⎛
⎝ ∑

j∈N̄i(τ)

θ̄j(τ)

⎞
⎠ (6.80)

Doing this enables us to combine (6.78) and (6.80) into a single formula valid
for all τ ≥ 0. In other words, agent i’s heading satisfies

θ̄i(τ + 1) =
1

n̄i(tτ )

⎛
⎝ ∑

j∈N̄i(τ)

θ̄j(τ)

⎞
⎠ , τ ≥ 0 (6.81)

where

N̄i(τ) =

⎧⎨
⎩

Ni(tτ ) if tτ is an event time of agent i

{i} if tτ is not an event time of agent i

⎫⎬
⎭ (6.82)

and n̄i(τ) is the number of indices in N̄i(τ). For purposes of analysis, it is
useful to interpret (6.82) as meaning that between agent i’s event times, its
only neighbor is itself. There are n equations of the form in (6.81) and together
they define a synchronous system S which models the evolutions of the n
agents’ headings at event times.

State Space Model

As before, we can represent the neighbor relationships associated with (6.82)
using a directed graph G with vertex set V = {1, 2, . . . n} and arc A(G) ⊂ V×V
which is defined in such a way so that (i, j) is an arc from i to j just in case
agent i is a neighbor of agent j. Thus as before, G is a directed graph on n
vertices with at most one arc from any vertex to another and with exactly one
self-arc at each vertex. We continue to write G for the set of all such graphs
and we also continue to use the symbol P to denote a set indexing G.

For each p ∈ P, let Fp = D−1
p A′

p, where A′
p is the transpose of the ad-

jacency matrix the of graph Gp ∈ G and Dp the diagonal matrix whose jth
diagonal element is the in-degree of vertex j within the graph. The set of
agent heading update rules defined by (6.82) can be written in state form as

θ̄(τ + 1) = Fσ(τ)θ̄(τ), τ ∈ {0, 1, 2, . . .} (6.83)

where θ̄ is the heading vector θ̄ =
(
θ̄1 θ̄2 . . . θ̄n

)′, and σ : {0, 1, . . .} → P is a
switching signal whose value at time τ , is the index of the graph representing
the agents’ neighbor relationships at time τ .

Up to this point things are essentially the same as in the basic flocking
problem treated in Sect. 6.1. But when one considers the type of graphs in G
which are likely to be encountered along a given trajectory, things are quite
different. Note for example, that the only vertices of Gσ(τ) which can have
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more than one incoming arc, are those of agents for whom τ is an event time.
Thus in the most likely situation when distinct agents have only distinct event
times, there will be at most one vertex in each graph Gσ(τ) which has more
than one incoming arc. It is this situation we want to explore further. Toward
this end, let G∗ ⊂ G denote the subclass of all graphs which have at most
one vertex with more than one incoming arc. Note that for n > 2, there is
no rooted graph in G∗. Nonetheless, in the light of Theorem 6.3 it is clear
that convergence to a common steady state heading will occur if the infinite
sequence of graphs Gσ(0), Gσ(1), . . . is repeatedly jointly rooted. This of course
would require that there exist a jointly rooted sequence of graphs from G∗.
We will now explain why such sequences do in fact exist.

Let us agree to call a graph G ∈ G an all neighbor graph centered at v if
every vertex of G is a neighbor of v. Thus G is an all neighbor graph centered
at v if and only if its reverse G

′ is strongly rooted at v. Note that every
all neighbor graph in G is also in G∗. Note also that all neighbor graphs are
maximal in G∗ with respect to the partial ordering of G∗ by inclusion. Note
also the composition of any all neighbor graph with itself is itself. On the
other hand, because of the union of two graphs in G is always contained in
the composition of the two graphs, the composition of n all neighbor graphs
with distinct centers must be a graph in which each vertex is a neighbor of
every other; i.e., the complete graph. Thus the composition of n all neighbor
graphs with distinct centers is strongly rooted. In summary, the hypothesis of
Theorem 6.3 is not vacuous for the asynchronous problem under consideration.
When that hypothesis is satisfied, convergence to a common steady state
heading will occur.

6.5 Leader Following

In this section we consider two modified versions of the flocking problem for
the same group n agents as before, but now with one of the group’s members
(say agent 1) acting as the group’s leader. In the first version of the problem,
the remaining agents, henceforth called followers and labeled 2 through n,
do not know who the leader is or even if there is a leader. Accordingly they
continue to use the same heading update rule (6.1) as before. The leader on
the other hand, acting on its own, ignores update rule (6.1) and moves with
a constant heading θ1(0). Thus

θ1(t + 1) = θ1(t) (6.84)

The situation just described can be modeled as a state space system

θ(t + 1) = Fσ(t)θ(t), t ≥ 0 (6.85)

just as before, except now agent 1 is constrained to have no neighbors other
than itself. The graphs Gp which model neighbor relations accordingly all have
a distinguished leader vertex which has no incoming arcs other than its own.
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Much like before, our goal here is to show for a large class of switching sig-
nals and for any initial set of follower agent headings, that the headings of all n
followers converge to the heading of the leader. Convergence in the leaderless
case under the most general, required the sequence of graphs Gσ(0), Gσ(1), . . .
encountered along a trajectory to be repeatedly jointly rooted. For the leader
follower case now under consideration, what is required is exactly the same.
However, since the leader vertex has only one incoming arc, the only way
Gσ(0), Gσ(1), . . . can be repeatedly jointly rooted, is that the sequence be
“rooted at the leader vertex v = 1.” More precisely, an infinite sequence
of graphs Gp1 , Gp2 , in G is repeatedly jointly rooted at v if there is a positive
integer m for which each finite sequence Gpm(k−1)+1 , . . . , Gpmk

, k ≥ 1 is
“jointly rooted at v”; a finite sequence of directed graphs Gp1 , Gp2 , . . . , Gpk

is jointly rooted at v if the composition Gpk
◦ Gpk−1 ◦ · · · ◦ Gp1 is rooted at v.

Our main result on discrete-time leader following is next.

Theorem 6.6. Let θ(0) be fixed and let σ : [0, 1, 2, . . .) → P be a switching
signal for which the infinite sequence of graphs Gσ(0), Gσ(1), . . . is repeatedly
jointly rooted. Then

lim
t→∞

θ(t) = θ1(0)1 (6.86)

where the limit is approached exponentially fast.

Proof of Theorem 6.6: Since any sequence which is repeatedly jointly rooted
at v is repeatedly jointly rooted, Theorem 6.3 is applicable. Therefore the
headings of all n agents converge exponentially fast to a single common steady
state heading θss. But since the heading of the leader is fixed, θss must be
the leader’s heading. �
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