
Preface

When I started giving talks on regularity theory for degenerate and singu-
lar parabolic equations, a fixed-point in the conversation during the coffee-
break that usually followed the seminar was the apparent contrast between
the beauty of the subject and its technical difficulty. I could not agree more
on the beauty part but, most of the times, overwhelmingly failed to convince
my audience that the technicalities were not all that hard to follow. As in
many other instances, it was the fact that the results in the literature were
eventually stated and proved in their most possible generality that made the
whole subject seem inexpugnable.

So when I had the chance of preparing a short course on the method of
intrinsic scaling, I decided to present the theory from scratch for the simplest
model case of the degenerate p-Laplace equation and to leave aside technical
refinements needed to deal with more general situations. The first part of the
notes you are about to read is the result of that effort: an introductory and
self-contained approach to intrinsic scaling, aiming at bringing to light what is
really essential in this powerful tool in the analysis of degenerate and singular
equations. As another striking feature of the method is its pervasiveness in
terms of the applications, in the second part of the book, intrinsic scaling is
applied to several models arising from flows in porous media, chemotaxis and
phase transitions. The aim is to convince the reader of the strength of the
method as a systematic approach to regularity for an important and relevant
class of nonlinear partial differential equations.

The analysis of degenerate and singular parabolic equations is an extremely
vast and active research topic and in this contribution there is, by no means,
any intention to exhaust the theory. On the contrary, the focus is on a par-
ticular subject – the (Hölder) continuity of solutions – and a unifying set of
ideas. We hope that the careful study of theses notes will enable the reader
to master the essential features of the method of intrinsic scaling, which is
instrumental in dealing with more elaborate aspects of the theory, like the
boundedness of solutions, Harnack inequalities or systems of equations.



VIII Preface

The first four chapters contain material that would fit well in an advanced
graduate course on regularity theory for partial differential equations. Each
chapter corresponds roughly, with the exception of the first one, to two 90
min. classes. Chapters 5–7 are independent from one another and each could
be chosen to complement the course, according to individual preferences. I
would probably suggest choosing chapter 5 for that purpose.

These lecture notes had its origin in a minicourse I delivered at the 2005
Summer Program of IMPA in Rio de Janeiro. Later that year, I taught a
shorter version of the course at the University of Florence. I would like to
thank Marcelo Viana and Vincenzo Vespri for their kind invitations and for
the wonderful hospitality. I am also indebted to all the colleagues and students
who took the course for their interest and input and, in particular, to my
former PhD student Eurica Henriques.

Finally, I warmly thank Emmanuele DiBenedetto for his continuing sup-
port and advice.

Coimbra, November 2007 José Miguel Urbano



2

Weak Solutions and a Priori Estimates

We will concentrate on the parabolic p−Laplace equation

ut − div |∇u|p−2∇u = 0 , p > 1, (2.1)

a quasilinear second-order partial differential equation, with principal part in
divergence form. If p > 2, the equation is degenerate in the space part, due to
the vanishing of its modulus of ellipticity |∇u|p−2 at points where |∇u| = 0.
The singular case corresponds to 1 < p < 2: the modulus of ellipticity becomes
unbounded at points where |∇u| = 0.

In this chapter we place no restriction on the values of p > 1. The theory
is markedly different in the degenerate and singular cases and we will later re-
strict our attention to p > 2. The results extend to a variety of equations and,
in particular, to equations with general principal parts satisfying appropriate
structure assumptions and with lower order terms. We have chosen to present
the results and the proofs for the particular model case (2.1) to bring to light
what we feel are the essential features of the theory. Remarks on generaliza-
tions, which in some way or another correspond to more or less sophisticated
technical improvements, are left to a later section.

2.1 Definition of Weak Solution

Let Ω be a bounded domain in R
d, with smooth boundary ∂Ω. Let

ΩT = Ω × (0, T ] , T > 0,

be the space-time domain, with lateral boundary Σ = ∂Ω × (0, T ) and par-
abolic boundary

∂pΩT = Σ ∪ (Ω × {0}) .

We start with the precise definition of local weak solution for (2.1).
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Definition 2.1. A local weak solution of (2.1) is a measurable function

u ∈ Cloc

(
0, T ;L2

loc(Ω)
)
∩ Lp

loc

(
0, T ;W 1,p

loc (Ω)
)

such that, for every compact K ⊂ Ω and for every subinterval [t1, t2] of (0, T ],

∫
K

uϕdx

∣∣∣∣
t2

t1

+
∫ t2

t1

∫
K

{
−uϕt + |∇u|p−2∇u · ∇ϕ

}
dx dt = 0, (2.2)

for all ϕ ∈ H1
loc

(
0, T ;L2(K)

)
∩ Lp

loc

(
0, T ;W 1,p

0 (K)
)
.

It would be technically convenient to have at hand a formulation of weak
solution involving the time derivative ut. Unfortunately, solutions of (2.1),
whenever they exist, possess a modest degree of time-regularity and, in gen-
eral, ut has a meaning only in the sense of distributions. To overcome this
limitation, we introduce the Steklov average of a function v ∈ L1(ΩT ), de-
fined, for 0 < h < T , by

vh :=

⎧⎪⎪⎨
⎪⎪⎩

1
h

∫ t+h

t

v(·, τ) dτ if t ∈ (0, T − h]

0 if t ∈ (T − h, T ].

(2.3)

The proof of the following lemma follows from the general theory of Lp spaces.

Lemma 2.2. If v ∈ Lq,r(ΩT ) then, as h → 0, the Steklov average vh converges
to v in Lq,r(ΩT−ε), for every ε ∈ (0, T ). If v ∈ C (0, T ;Lq(Ω)) then, as h → 0,
the Steklov average vh(·, t) converges to v(·, t) in Lq(Ω), for every t ∈ (0, T−ε)
and every ε ∈ (0, T ).

It is a simple exercise to show that the definition of local weak solution
previously introduced is equivalent to the following one.

Definition 2.3. A local weak solution of (2.1) is a measurable function

u ∈ Cloc

(
0, T ;L2

loc(Ω)
)
∩ Lp

loc

(
0, T ;W 1,p

loc (Ω)
)

such that, for every compact K ⊂ Ω and for every 0 < t < T − h,
∫

K×{t}

{
(uh)t ϕ +

(
|∇u|p−2∇u

)
h
· ∇ϕ

}
dx = 0, (2.4)

for all ϕ ∈ W 1,p
0 (K).

We will show that locally bounded solutions of (2.1) are locally Hölder
continuous within their domain of definition. No specific boundary or initial
values need to be prescribed for u. A theory of boundedness of weak solutions
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of (2.1) is quite different from the linear theory (cf. [14]): weak solutions are
locally bounded only if d(p − 2) + p > 0. It can be shown by counterexample
that this condition is sharp. Although the arguments below are of local nature,
to simplify the presentation we assume that u is a.e. defined and bounded in
ΩT and set

M := ‖u‖L∞(ΩT ).

2.2 Local Energy Estimates: The Building Blocks
of the Theory

The building blocks of the method of intrinsic scaling are a priori estimates
for weak solutions. Once these estimates are obtained, we can forget the equa-
tion and the problem becomes, purely, a problem in analysis: showing that
functions that satisfy certain integral inequalities belong to a certain regu-
larity class (e.g., are locally Hölder continuous). These estimates are integral
inequalities on level sets that measure the behaviour of the function near its
infimum and its supremum in the interior of an appropriate cylinder.

Given a point x0 ∈ R
d, denote by Kρ(x0) the d-dimensional cube with

centre at x0 and wedge 2ρ:

Kρ(x0) :=
{

x ∈ R
d : max

1≤i≤d
|xi − x0i| < ρ

}

and put Kρ := Kρ(0); given a point (x0, t0) ∈ R
d+1, the cylinder of radius ρ

and height τ > 0 with vertex at (x0, t0) is

(x0, t0) + Q(τ, ρ) := Kρ(x0) × (t0 − τ, t0).

•
(x0, t0) ρ

τ
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We write Q(τ, ρ) to denote (0, 0)+Q(τ, ρ). We use the usual notations for the
positive and negative parts of a function:

v+ = max(v, 0) and v− = (−v)+.

We now deduce the energy estimates. Without loss of generality, we restrict
to cylinders with vertex at the origin (0, 0), the changes being obvious for
cylinders with vertex at a generic (x0, t0). Consider a cylinder Q(τ, ρ) ⊂ ΩT

and let 0 ≤ ζ ≤ 1 be a piecewise smooth cutoff function in Q(τ, ρ) such that

|∇ζ| < ∞ and ζ(x, t) = 0 , x �∈ Kρ. (2.5)

Proposition 2.4. Let u be a local weak solution of (2.1) and k ∈ R. There
exists a constant C ≡ C(p) > 0 such that, for every cylinder Q(τ, ρ) ⊂ ΩT ,

sup
−τ<t<0

∫
Kρ×{t}

(u − k)2± ζp dx +
∫ 0

−τ

∫
Kρ

|∇(u − k)±ζ|p dx dt

≤
∫

Kρ×{−τ}
(u − k)2± ζp dx + C

∫ 0

−τ

∫
Kρ

(u − k)p
± |∇ζ|p dx dt

+p

∫ 0

−τ

∫
Kρ

(u − k)2± ζp−1 ζt dx dt. (2.6)

Proof. Let ϕ = ±(uh − k)±ζp in (2.4) and integrate in time over (−τ, t) for
t ∈ (−τ, 0). The first term gives

∫ t

−τ

∫
Kρ

(uh)t ϕdx dθ =
1
2

∫ t

−τ

∫
Kρ

[
(uh − k)2±

]
t

ζp dx dθ

−→ 1
2

∫
Kρ×{t}

(u − k)2± ζp dx − 1
2

∫
Kρ×{−τ}

(u − k)2± ζp dx

−p

2

∫ t

−τ

∫
Kρ

(u − k)2± ζp−1 ζt dx dθ,

after integrating by parts and passing to the limit in h → 0 (using Lemma
2.2). Concerning the other term, letting first h → 0, we obtain

∫ t

−τ

∫
Kρ

[
|∇u|p−2∇u

]
h
· ∇ϕdx dθ

−→
∫ t

−τ

∫
Kρ

|∇u|p−2∇u ·
[
±∇(u − k)±ζp ± p(u − k)±ζp−1∇ζ

]
dx dθ

≥
∫ t

−τ

∫
Kρ

|∇(u − k)±|p ζp dx dθ
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−p

∫ t

−τ

∫
Kρ

|∇(u − k)±|p−1(u − k)± ζp−1 |∇ζ| dx dθ

≥ 1
2

∫ t

−τ

∫
Kρ

|∇(u − k)± ζ|p dx dθ

−C(p)
∫ t

−τ

∫
Kρ

(u − k)p
± |∇ζ|p dx dθ,

using the inequality of Young

ab ≤ εp

p
ap +

1
p′εp′ b

p′
,

with the choices

a = (u − k)± |∇ζ| , b = |∇(u − k)± ζ|p−1
, and ε = [2(p − 1)]

1
p′ .

Since t ∈ (−τ, 0) is arbitrary, we can combine both estimates to obtain (2.6).
��

Remark 2.5. In (2.6), there is an intentional ambiguity in the way we wrote
|∇(u − k)±ζ|p. The gradient can either affect only (u−k)± (as follows directly
from the estimates in the proof) or the product (u− k)±ζ (as the extra term
can clearly be absorbed into the right hand side of the estimate).

2.3 Local Logarithmic Estimates

We now introduce a logarithmic function for which we obtain further local
estimates. These are the subsidiary building blocks of the theory but never-
theless play a crucial role in the proof, allowing for the expansion in time to
a full cylinder Q(τ, ρ) of certain results obtained for sub-cylinders of Q(τ, ρ).

Given constants a, b, c, with 0 < c < a, define the nonnegative function

ψ±
{a,b,c}(s) :=

(
ln

{
a

(a + c) − (s − b)±

})
+

=

⎧⎪⎪⎨
⎪⎪⎩

ln
{

a
(a+c)±(b−s)

}
if b ± c

<
> s

<
> b ± (a + c)

0 if s
≤
≥ b ± c

whose first derivative is

(
ψ±
{a,b,c}

)′
(s) =

⎧⎪⎪⎨
⎪⎪⎩

1
(b − s) ± (a + c)

if b ± c
<
> s

<
> b ± (a + c)

0 if s
<
> b ± c

≥
≤ 0,
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and second derivative, off s = b ± c, is

(
ψ±
{a,b,c}

)′′
=

{(
ψ±
{a,b,c}

)′}2

≥ 0.

Now, given a bounded function u in a cylinder (x0, t0) + Q(τ, ρ) and a
number k, define the constant

H±
u,k := ess sup

(x0,t0)+Q(τ,ρ)

|(u − k)±| .

The following function was introduced in [11] and since then has been used
as a recurrent tool in the proof of results concerning the local behaviour of
solutions of degenerate and singular equations:

Ψ±
(
H±

u,k, (u − k)±, c
)
≡ ψ±

{H±
u,k,k,c}(u) , 0 < c < H±

u,k. (2.7)

From now on, when referring to this function we will write it as ψ±(u), omit-
ting the subscripts, whose meaning will be clear from the context.

Let x �→ ζ(x) be a time-independent cutoff function in Kρ(x0) satisfying
(2.5). The logarithmic estimates in cylinders Q(τ, ρ) with vertex at the origin
read as follows.

Proposition 2.6. Let u be a local weak solution of (2.1) and k ∈ R. There
exists a constant C ≡ C(p) > 0 such that, for every cylinder Q(τ, ρ) ⊂ ΩT ,

sup
−τ<t<0

∫
Kρ×{t}

[
ψ±(u)

]2
ζp dx ≤

∫
Kρ×{−τ}

[
ψ±(u)

]2
ζp dx

+ C

∫ 0

−τ

∫
Kρ

ψ±(u)
∣∣∣(ψ±)′(u)

∣∣∣2−p

|∇ζ|p dx dt. (2.8)

Proof. Take ϕ = 2 ψ±(uh)
[
(ψ±)′(uh)

]
ζp as a testing function in (2.4) and

integrate in time over (−τ, t) for t ∈ (−τ, 0). Since ζt ≡ 0,

∫ t

−τ

∫
Kρ

(uh)t

{
2 ψ±(uh)

[
(ψ±)′(uh)

]
ζp

}
dx dθ

=
∫ t

−τ

∫
Kρ

([
ψ±(uh)

]2)
t

ζp dx dθ

=
∫

Kρ×{t}

[
ψ±(uh)

]2
ζp dx −

∫
Kρ×{−τ}

[
ψ±(uh)

]2
ζp dx.
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From this, letting h → 0,
∫ t

−τ

∫
Kρ

(uh)t

{
2 ψ±(uh)

[
(ψ±)′(uh)

]
ζp

}
dx dθ

−→
∫

Kρ×{t}

[
ψ±(u)

]2
ζp dx −

∫
Kρ×{−τ}

[
ψ±(u)

]2
ζp dx.

As for the remaining term, we first let h → 0, to obtain
∫ t

−τ

∫
Kρ

|∇u|p−2∇u · ∇
{

2 ψ±(u)
[
(ψ±)′(u)

]
ζp

}
dx dθ

=
∫ t

−τ

∫
Kρ

|∇u|p
{

2
(
1 + ψ±(u)

) [
(ψ±)′(u)

]2

ζp

}
dx dθ

+ p

∫ t

−τ

∫
Kρ

|∇u|p−2∇u · ∇ζ
{

2 ψ±(u)
[
(ψ±)′(u)

]
ζp−1

}
dx dθ

≥
∫ t

−τ

∫
Kρ

|∇u|p
{

2
(
1 + ψ±(u) − ψ±(u)

) [
(ψ±)′(u)

]2

ζp

}
dx dθ

− 2(p − 1)p−1

∫ t

−τ

∫
Kρ

ψ±(u)
∣∣∣(ψ±)′(u)

∣∣∣2−p

|∇ζ|p dx dθ

≥ − C

∫ t

−τ

∫
Kρ

ψ±(u)
∣∣∣(ψ±)′(u)

∣∣∣2−p

|∇ζ|p dx dθ.

Since t ∈ (−τ, 0) is arbitrary, we can combine both estimates to obtain (2.8).
��

2.4 Some Technical Tools

We gather in this section a few technical facts that, although marginal to the
theory, are essential in establishing its main results.

1. A Lemma of De Giorgi

Given a continuous function v : Ω → R and two real numbers k1 < k2, we
define

[v > k2] := {x ∈ Ω : v(x) > k2} ,

[v < k1] := {x ∈ Ω : v(x) < k1} , (2.9)
[k1 < v < k2] := {x ∈ Ω : k1 < v(x) < k2} .
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Lemma 2.7 (De Giorgi, [10]). Let v ∈ W 1,1 (Bρ(x0)) ∩ C (Bρ(x0)),
with ρ > 0 and x0 ∈ R

d, and let k1 < k2 ∈ R. There exists a constant
C, depending only on d (and thus independent of ρ, x0, v, k1 and k2),
such that

(k2 − k1) |[v > k2]| ≤ C
ρd+1

|[v < k1]|

∫
[k1<v<k2]

|∇v| dx.

Remark 2.8. The conclusion of the lemma remains valid, provided Ω is
convex, for functions v ∈ W 1,1(Ω) ∩ C(Ω). We will use it in the case Ω
is a cube. In fact, the continuity is not essential for the result to hold.
For a function merely in W 1,1(Ω), we define the sets in (2.9) through any
representative in the equivalence class. It can be shown that the conclusion
of the lemma is independent of that choice.

2. Geometric Convergence of Sequences

The following lemmas concern the geometric convergence of sequences and
are instrumental in the iterative schemes that will be derived along the
proofs.

Lemma 2.9. Let (Xn), n = 0, 1, 2, . . . , be a sequence of positive real num-
bers satisfying the recurrence relation

Xn+1 ≤ C bn X1+α
n

where C, b > 1 and α > 0 are given. If

X0 ≤ C−1/α b−1/α2

then Xn → 0 as n → ∞.

Lemma 2.10. Let (Xn) and (Zn), n = 0, 1, 2, . . ., be sequences of positive
real numbers satisfying the recurrence relations

⎧⎨
⎩

Xn+1 ≤ C bn
(
X1+α

n + Xα
n Z1+κ

n

)

Zn+1 ≤ C bn
(
Xn + Z1+κ

n

)

where C, b > 1 and α, κ > 0 are given. If

X0 + Z1+κ
0 ≤ (2C)−

1+κ
σ b−

1+κ

σ2 , with σ = min{α, κ},

then Xn, Zn → 0 as n → ∞.
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3. An Embedding Theorem

Let V p
0 (ΩT ) denote the space

V p
0 (ΩT ) = L∞ (0, T ;Lp(Ω)) ∩ Lp

(
0, T ;W 1,p

0 (Ω)
)

endowed with the norm

‖u‖p
V p(ΩT ) = ess sup

0≤t≤T
‖u(·, t)‖p

p,Ω + ‖∇u‖p
p,ΩT

.

The following embedding theorem holds (cf. [14, page 9]).

Theorem 2.11. Let p > 1. There exists a constant γ, depending only on
d and p, such that for every v ∈ V p

0 (ΩT ),

‖v‖p
p,ΩT

≤ γ | |v| > 0 |
p

d+p ‖v‖p
V p(ΩT ).

4. A Poincaré-type Inequality

Let Ω ⊂ R
d be a bounded and convex set. Consider a function ϕ ∈ C(Ω),

0 ≤ ϕ ≤ 1, such that the sets

[ϕ > k], 0 < k < 1

are all convex.
The following theorem holds (cf. [14, page 5]).

Theorem 2.12. Let v ∈ W 1,p(Ω), p ≥ 1 and assume that the set

Ξ := [v = 0] ∩ [ϕ = 1]

has positive measure. There exists a constant C, depending only on d and
p, and independent of v and ϕ, such that

∫
Ω

|v|p ϕdx ≤ C
|diam Ω|dp

|Ξ|
(d−1)p

d

∫
Ω

|∇v|p ϕdx.

5. Constants

With C we denote constants that depend only on d and p; these constants
may be different if they appear in different lines.


