
Preface

Computational Intelligence (CI) has emerged as a rapid growing field over the
last decade. CI techniques, e.g., artificial neural networks, genetic algorithms,
fuzzy theory, evolution computing, machine learning, and many others, are
powerful tools for intelligent information processing, decision making and
knowledge management in organizations ranging from manufacturing firms to
medical and healthcare institutions. Some of the recent examples of applying
CI techniques include case-based reasoning in medical diagnosis and clinical
decision support, customer relationship management through data mining,
fault detection and quality improvement using artificial neural networks,
design rationale assessment through semantic modeling of design documents,
and so on.

The editors of this book have been working on data and text mining,
machine learning, information retrieval, digital libraries and related research
fields. Some of them have conducted CI research to address problems in indus-
trial application scenarios, e.g., product design and manufacturing process
control, for a few years. They are fully aware of the demand for advanced
tools to support daily routine tasks like process monitoring as well as to sup-
port decision making in strategic planning. Therefore, it is timely to have a
book that presents the latest advances in CI topics with a strong focus on
industrial applications. This book aims to report and demonstrate how indus-
trial organizations can gain a competitive advantage by applying different CI
techniques. The industrial organizations here refer to a wide range of enter-
prises, bodies from design studios and manufacturing firms to hospitals and
non-profit organizations.

The book includes 17 chapters selected from more than 30 submissions
based on a thorough and strict peer review process. The 17 chapters accepted
were contributed by international researchers from 14 countries and regions.
They present a snapshot of the cutting-edge research in CI and the state-of-
the-art industrial CI applications. These 17 chapters are broadly grouped into
two main sections, namely, Section I: Theory and Foundation, and Section II:
Industrial Applications.

VI Preface

In the Theory and Foundation section, Das et al. give a comprehensive
overview of particle swarm optimization (PSO) and differential evolution (DE)
algorithms. This chapter describes several schemes to control the convergence
behaviors of PSO and DE by carefully selecting and tuning their parameters.
Furthermore, the authors have explored the possibility of a hybrid approach
by combining PSO and DE with other soft computing algorithms which leads
to a powerful global search algorithm. Its application in various engineering
domains has been highlighted.

The chapter by Maamar et al. covers Web services and their integration
with context and policies, a topic not discussed much in CI. In their frame-
work, a three-level approach to compose Web services has been proposed, i.e.,
component, composite and resource level. In their work, context is defined as
the information about the environment within each level, i.e., context of Web
service, context of composite Web service and context of resource, and jump-
ing from one level to another requires policy activation, either engagement
policies or deployment policies.

Qiu focuses on privacy protection when delegating data mining tasks in
industrial systems, one of the prevailing topics in the area. Qiu introduces a
Bloom filter-based approach for privacy preserving in association rule mining.
His findings show that the privacy security level and analysis precision are
positively correlated using the Bloom filter. To increase the privacy security
level, more data storage is needed. The additional storage required is in a linear
relation with respect to the privacy level or the analysis precision. Further
research on other data mining tasks and testing in a distributed database
environment are suggested.

Tsivtsivadze et al. present a comprehensive overview of various kernels
for text analysis, including bag-of-words kernel, string kernel, gappy string
kernel, convolution kernel, and graph kernel. What intrigues us is its unique
feature of incorporating prior domain knowledge into kernels for text anal-
ysis. An evaluation using different features, e.g., grammatical bigram, word
and part-of-speech tag, link type, link length, and random walk features from
graph feature representation, shows the importance and contribution of gram-
matical bigram and link bigram and their merits in embedding prior domain
knowledge in feature representation.

Wang et al. report their work on the discovery of frequent patterns from
long sequences which may contain many events. Different from the existing
approaches in sequential pattern mining that simply count the occurrence
of patterns in disjoint sequences, Wang et al.’s work adopts the concept of
maximum cardinality to describe the number of pattern occurrences in an
individual sequence. The advantages of their approach include not requiring
sliding window sizes and efficient implementation with sound precision.

Lin’s work on gauging image and video quality in industrial applications
highlights an important area which receives little attention in CI. Based on
a unified framework and its computational modules, three perceptual visual
quality metrics and an embedded just-noticeable difference estimator have

Preface VII

been proposed. More applications of perceptual models in industrial scenarios
are expected to further stress the importance of Lin’s study.

Finally, after a nice review on model construction, Stein presents an inter-
esting methodology regarding model construction for knowledge intensive
engineering tasks. Based on the observation that domain experts and knowl-
edge engineers often develop a new and appropriate model by modifying some
existing ones, Stein proposes a means of horizontal modeling construction. A
few real-world case studies are provided to demonstrate its practical value.

In Sect. II, we emphasize the state-of-the-art application of CI techniques
in various industrial scenarios. We start with a few chapters focusing on medi-
cal and healthcare areas. Almeida et al. adopt case based reasoning and genetic
algorithm in the implementation of a virtual medical office for medical diag-
nosis and knowledge transfer and management purpose. In their case study,
promising results are achieved.

Chan et al. address the important issue of using data mining approach
in clinical decision support. They highlight the complicated reality that a
clinical decision is often drawn by synthesizing knowledge from multiple disci-
plines while information needed is presented in a number of different formats,
e.g., magnetic resonance images, somatosensory evoked potentials and radio-
graphs. Hence, Chan et al. propose the DICOM model to form a synergy
platform which aims to extract and present relevant features from multiple
disciplinary knowledge sources for medical knowledge discovery and clinical
decision support purposes. An example is given subsequently.

Caldwell et al. tackle the problem of promoter prediction using neural
network for promoter prediction (NNPP) algorithm. They have raised a point
that DNA sequence information, which is released through DNA sequence
quantitative measurements instead of DNA sequence pattern information,
can significantly improve the precision of computational promoter prediction.
Their extended algorithms based on three coding region lengths, e.g., TLS–
TSC length, TSS–TLS length, and TSC–TTS length, have shown their merits.
Future research directions have been outlined.

Das et al. investigate the anomaly detection problem using two successful
negative selection algorithms, i.e., the self-organizing RNS algorithm and the
V-detector algorithm. For the latter, both a single-stage and a multi-stage
proliferating V-detector algorithm are studied to create such vectors.

Braga et al. report their study using a number of pattern classification
algorithms, e.g., multi-layer perceptron, RBF neural network, support vector
machines, and decision tree, to automatically monitor the dressing procedure
in the grinding process of an industrial CNC machine. They also examine the
robustness and effectiveness of different algorithms when the controlled noise
is purposely introduced in simulation.

Clifton et al. provide a nice survey of the existing methods for detect-
ing novelty or something abnormal in the industrial environment. Using an
SVM core, novelty classifiers are set up in a way that their output is calibrated
into probabilities, resulting in a probabilistic novelty threshold being specified

VIII Preface

automatically. This is in contrast to the existing distance-based methods
where heuristics are needed and the models are manually constructed. Their
validation and experiments are conducted based on real-world jet-engine data.

Khosravi et al. explore another important problem – predicting the origin
of power sags in distributed substations using a multiway principal component
analysis (MPCA), and an extension of the classic principal component analysis
(PCA). In their study, MPCA classifiers are able to achieve better performance
in differentiating high-voltage and medium-voltage sags compared to other
possibilities, e.g., multi-layer perceptron, RBF neural network, and decision
tree.

Cheong and Tan report their study of using a multi-objective multi-colony
ant algorithm (MOMCAA) in solving the berth allocation problem, an impor-
tant topic in logistics and supply chain management. In their work, berth
allocation problem has been taken as an optimization of complete shipping
schedules with minimum service time and delay for the departure of ships,
subject to a number of temporal and spatial constraints, and hence a multi-
objective and multi-modal combinational optimization problem. The proposed
MOMCAA framework possesses several features, such as using ant groups in
searching for each candidate group, concurrent optimization, flexibility and
expandability of incorporating other meta-heuristics, e.g., genetic algorithm
and simulated annealing, etc.

Yu’s chapter focuses on the application of neural network on dynamic
system identification and adaptive control. Two examples are given, i.e.,
rotorcraft acoustic data modeling and DC voltage controller.

Hammiche et al. describe their work of query rewriting for semantic
multimedia data retrieval, a domain knowledge based approach to retrieve
multimedia data formatted according to MPEG-7 standard. The basic idea is
to add a semantic layer on top of the MPEG-7 metadata layer. To fulfill the
retrieval task, users’ queries are pre-processed, rewritten and translated into
the XQuery queries using the mapping rules and a set of XQuery functions
defined over the MPEG-7 descriptions.

We are very grateful to all our reviewers: Danilo Avola, Peter Bannister,
Andre Ponce de Leon F. de Carvalho, Kit Yan Chan, Wing Chi Chan,
Tan Kay Chen, David Clifton, Sanjoy Das, Chi Keong Goh, Jason J. Jung,
Dariusz Krol, Wenyuan Li, Weisi Lin, Yan-Xia Lin, Ying Liu, Kok-Leong
Ong, Ling Qiu, Benno Stein, Evgeni Tsivtsivadze, Changzhou Wang, Kevin
Wang, Jianshu Weng, Xiao-Hua (Helen) Yu, Yun-Shuai Yu, and Zhiwen Yu.
Their backgrounds include data and text mining, information retrieval, dig-
ital library, evolution algorithm and agents, image and video processing,
machine learning, neural network and genetic algorithms, applied statistics,
Web services and ontology engineering, control engineering, optimization and
operation research, and knowledge management. Reviewers’ diversified exper-
tise has greatly strengthened our confidence in reviewing the state-of-the-art
of CI applications in various industrial systems. Finally, we express our special
thanks to Springer, in particular, Dr. Thomas Ditzinger – the series editor,

Preface IX

and Heather King, for giving us the opportunity to gather the latest research
findings and for publishing this book. Throughout the year, the editors have
been working very closely with the two Springer editors on this book. Their
quick endorsement on the book proposal and assistance are deeply appreciated
by the book’s editors.

China Ying Liu
Singapore Aixin Sun
2007 Han Tong Loh

Wen Feng Lu
Ee-Peng Lim

Web Services, Policies, and Context:
Concepts and Solutions

Zakaria Maamar1, Quan Z. Sheng2, Djamal Benslimane3,
and Philippe Thiran4

1 Zayed University, U.A.E., zakaria.maamar@zu.ac.ae
2 The University of Adelaide, Australia, qsheng@cs.adelaide.edu.au
3 Claude Bernard Lyon 1 University, France, djamal.benslimane@liris.cnrs.fr
4 Louvain School of Management & University of Namur, Belgium,
pthiran@fundp.ac.be

1 Introduction

Despite the extensive adoption of Web services by IT system developers, they
still lack the capabilities that could enable them to match and eventually sur-
pass the acceptance level of traditional integration middleware (e.g., CORBA,
Java RMI). This lack of capabilities is to a certain extent due to the trigger-
response interaction pattern that frames the exchanges of Web services with
third parties. Adhering to this interaction pattern means that a Web service
only performs the requests it receives without considering its internal execu-
tion state, or even questioning if it would be rewarded for performing these
requests (e.g., to be favored over similar Web services during selection). There
exist, however, several situations that insist on Web services self-management
so that scalability, flexibility, and stability requirements are satisfied.

The objective of this chapter is to discuss the value-added of integrating
context and policies into a Web services composition approach.

Web services offer new opportunities to deploy B2B applications, which
tend to crosscut companies’ boundaries. Web services are independent from
specific platforms and computing paradigms, and have the capacity to form
high-level business processes referred to as composite Web services [3].

Policies are considered as external, dynamically modifiable rules and
parameters that are used as input to a system [13]. This permits to the system
to adjust to administrative decisions and changes in the execution environ-
ment. In the field of Web services, policies are intended to specify different
aspects of the behavior of a Web service, so this one can align its capabilities
to users’ requirements and resources’ constraints.

Context “... is not simply the state of a predefined environment with a
fixed set of interaction resources. It is part of a process of interacting with an
ever-changing environment composed of reconfigurable, migratory, distributed,
Z. Maamar et al.: Web Services, Policies, and Context: Concepts and Solutions, Studies in

Computational Intelligence (SCI) 116, 39–55 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

40 Z. Maamar et al.

and multiscale resources” [4]. In the field of Web services, context is used to
facilitate the development and deployment of flexible Web services. Flexibil-
ity refers to a Web service that selects appropriate operations based on the
requirements of the business scenario that this Web service implements.

While context and policies are separately used for different needs of Web
services, this chapter discusses their role in framing the composition process
of Web services. We propose a three-level approach to compose Web ser-
vices. This approach does not only make Web services bind to each other, but
emphasizes the cornerstone of refining this binding at the following levels: com-
ponent level (W-level) to deal with Web services’ definitions and capabilities,
composite level (C-level) to address how Web services are discovered and com-
bined (semantic mediation is discarded), and finally, resource level (R-level)
to focus on the performance of Web services.

The role of policies and context to support the composition of Web services
is depicted as follows:

– Policies manage the transitions between the three levels. Going from one
level to another direct level requires policy activation. Two types of policies
are put forward: engagement policies manage the participations of Web
services in compositions, and deployment policies manage the interactions
of Web services with computing resources.

– Context provides information on the environment wherein the composi-
tion of Web services occurs. Because of the three levels in the approach,
three types of context are defined, namely W/C/R-context standing for
context of Web service, context of Composite Web service, and context of
Resource.

The rest of this chapter is organized as follows. Section 2 presents the
approach to compose Web services. Section 3 discusses the impact of policies
on Web services and specifies the policies for the behavior of Web services.
Section 4 is about exception handling. Section 5 reviews some related works.
Finally, Sect. 5 concludes the chapter.

2 The Proposed Composition Approach

2.1 Presentation

Figure 1 illustrates our approach to compose Web services. The figure reads
as follows: bottom-up during normal progress of composition and top-down
during exception in composition. The underlying idea is that context coupled
to policies handle the specification and execution of a composite Web service.
Three levels form this approach. The component level is concerned with the
definition of Web services and their announcements to composite Web ser-
vices that are located in the composition level. This level is concerned with
the way component Web services are discovered (based on their capabilities)

Web Services, Policies, and Context: Concepts and Solutions 41

Deployment policies

Environment

Composite Web service specification

Exceptions

Policy review

S -Semantic level

R-Resource level

To
 o

ve
rs

ee

C
on

te
xt

Web service instances

Engagement policies

W-Component level

Fig. 1. Approach to compose Web services

and assembled (according to particular collaboration patterns). Finally, the
resource level focuses on the performance of a composite Web service. This
performance is subject to the availability of resources and the commitments
of these resources to other concurrent composite Web services.

In Fig. 1, policies support level transitions. Transiting from one level to
a higher direct-level is subject to policy execution. This execution uses the
information that context provides on different elements like number of Web
services that are currently running, composite Web services that are under
preparation, etc. Two types of policies are shown in Fig. 1: engagement and
deployment. While policies support level transitions (i.e., how a composite
Web service specification progresses), context oversees first, the actions that
occur within and across these levels and second, the elements like Web service,
composite Web service, or resource, that are involved by these actions. Prior to
triggering any policy and executing any action, the information that context
provides is validated.

Any deviation from the specification of a composite Web service like exe-
cution delays, raises exceptions. This leads to reviewing the different actions
of the policies that were carried out within and across the levels. The review
process occurs in a descending way commencing with resource, composite,
and then, component levels (Fig. 1). Transiting to a lower level means that
the current level is not faulty and extra investigations of the exception are
deemed appropriate at this lower level. To keep track of the actions of policies
that happened, are happening, and might happen, hence corrective mea-
sures (e.g., compensation policies) are scheduled and undertaken as part of
the review process, context monitors the whole composition of Web services.
Additional details on exception handling are discussed in Sect. 4.

2.2 Description of the Three Levels

The W-Component level shows the Web services that participate in a com-
posite Web service. This participation is upon approval and happens in
accordance with the Web services instantiation principle that was introduced
in [15]. This principle emphasizes the simultaneous participation of a Web
service in several compositions.

42 Z. Maamar et al.

SCD-BS
(Bus Schedule)SCD-LO

(LOcation)

SCD-TP
(TriP)

SCD-WE
(WEather)

SCD-TA
(TAxi)

SCD-TC
(TraffiC)

ye
s

no

[confirmed (bad weather)]

(SCD: Service Chart Diagram)

Fig. 2. Sample of a composite Web service specification

Before a Web service accepts the invitation to participate in a composite
Web service, it consults its W-context so that it can verify the number of cur-
rent participations vs. the maximum number of participations, the expected
completion time of its other participations, and the features of the newly
received invitation of participation like when the new Web service instance is
required. It happens that a Web service refuses an invitation of participation
for various reasons like risk of overload.

The C-Composite level is about the specification of a composite Web ser-
vice in term of business logic. Figure 2 shows a simple specification that
combines service chart diagrams and state chart diagrams [12]. The component
Web services of this specification are: trip (TP), weather (WE), location (LO),
taxi (TA), bus schedule (BS), and traffic (TC). The respective service chart dia-
grams of these components are connected through transitions. Some of these
transitions have constraints to satisfy like [confirmed(bad weather)]. A com-
posite Web service consults its C-context so that it can follow up the execution
progress of its specification. This enables, for example, identifying the next
Web services to be subject to invitation of participation and the status of
each component Web service of the composite Web service (e.g., initiated,
running, suspended, resumed). Figure 3 illustrates the editor we developed
for specifying composite Web services. The editor provides means for directly
manipulating service chart diagrams, states, and transitions using drag and
drop actions.

The R-Resource level represents the computing facilities upon which Web
services operate. Scheduling the execution requests of Web services is prior-
itized when sufficient resources are unavailable to satisfy all these requests
at once. A Web service requires resources for different operations like self-
assessment of current state before accepting/rejecting participations in com-
positions, and satisfying users’ needs upon request. Before a resource accepts
supporting the execution of an additional Web service, it consults its R-
context so that it can verify the number of Web services currently executed vs.
the maximum number of Web services under execution, the approximate com-
pletion time of the ongoing executions of Web services, and the features of
the newly received request like requested time of execution. Like with Web

Web Services, Policies, and Context: Concepts and Solutions 43

Fig. 3. Editor for composite Web service specification

services, similar considerations apply to resources when it comes to turning
down execution requests of Web services.

2.3 Description of the Three Contexts

To comply with the three levels of the composition approach, three types of
context are defined: W-context, C-context, and R-context (Fig. 1).

The W-context of a Web service returns information on the participa-
tions of the Web service in different compositions. These participations are
made possible because of the Web services instantiation principle. W-context
has the following arguments (Table 1): label, maximum number of partic-
ipations, number of active participations, next possibility of participation,
resource&state per active participation, local ontology per active participa-
tion, previous Web services per active participation, current Web services
per active participation, next Web services per active participation, regular
actions, reasons of failure per active participation, corrective actions per fail-
ure type and per active participation, and date. Figure 4a, b shows how context
arguments are instantiated at run-time.

The C-context of a composite Web service is built upon the W-contexts
of its component Web services and permits overseeing the progress of a
composition.

The R-context of a resource oversees the execution of the Web services
that operate on top of this resource prior it accepts additional Web services for
execution. A resource has computation capabilities that continuously change

44 Z. Maamar et al.

Table 1. Arguments of W-context

Label: corresponds to the identifier of the Web service

Maximum number of participations: corresponds to the maximum number of
compositions in which the Web service can participate at a time

Number of active participations: corresponds to the number of active
compositions in which the Web service is now participating

Next possibility of participation: indicates when the Web service can participate
in a new composition. This is subject to the successful termination of the current
active participations

Resource&State per active participation: corresponds to the identifier of the
selected resource and the state of the Web service in each active composition. State
can be of types in-progress, suspended, aborted, or completed, and will be obtained
out of the state argument of R-context of this resource

Ontology of interpretation per active participation: refers to the ontology
that the Web service binds to per active participation for interpreting the values of
its input and output arguments when conversion functions are triggered

Previous Web services per active participation: indicates the Web services
that were successfully completed before the Web service per active composition (null
if there are no predecessors)

Current Web services per active participation: indicates the Web services
that are concurrently being performed with the Web service per active composition
(null if there is no concurrent processing)

Next Web services per active participation: indicates the Web services that
will be executed after the Web service successfully completes its execution per active
composition (null if there are no successors)

Regular actions: illustrates the actions that the Web service normally performs

Reasons of failure per active participation: informs about the reasons that
are behind the failure of the execution of the Web service per active composition

Corrective actions per failure type and per active participation: illustrates
the actions that the Web service has performed due to execution failure per active
composition

Date: identifies the time of updating the arguments above

depending on the number1 of Web services that are now under execution and
the execution duration per Web service. Due to lack of space, the structures
of C-context and R-context are not presented.

1 Number is used for illustration purposes. Additional criteria could be execution
load of Web services.

Web Services, Policies, and Context: Concepts and Solutions 45

(a). W-Context (b). R-Context

(c). Permission Policy (d). Dispensation Permission Policy

(e). Restriction Policy

Fig. 4. Illustration of context and policy specification

2.4 Description of the Two Policies

Policies permit during a normal progress scenario to move a composition from
one level to a higher-direct level (Fig. 1). Policies’ outcomes are also subject
to review in case of exceptions, i.e., abnormal progress.

Engagement policies frame the participation of component Web services
in composite Web services. This highlights the opportunity of a Web service
to take part in several compositions at a time. Since Web services are context-
aware, they assess their participations and use the engagement policies to back
their either acceptance or denial of participation in additional compositions.

Deployment policies frame the interactions between component Web ser-
vices and computing resources. We earlier argued that resources have limited
computation capabilities, and scheduling execution requests of component Web
services is deemed appropriate. Since resources are context-aware, they assess
their commitments and use the deployment policies to back their decisions of
either accepting or denying a component Web service’s execution request.

3 Role of Policies

3.1 Behavioral Web Services

In the composition approach of Fig. 1, policies have an impact on first, the
behavior that Web services expose towards composite Web services and sec-
ond, the behavior that composite Web services (through their component Web
services) expose towards computing resources. We identify this behavior with
the following attributes: permission and restriction.

46 Z. Maamar et al.

Engagement policies associate two types of behavior with a Web service:
permission and restriction. Engagement policies satisfy the needs of Web ser-
vices’ providers who have interests and/or obligations in strengthening or
restricting the participation of their Web services in some compositions.

– Permission. A Web service is authorized to accept the invitation of par-
ticipation in a composite Web service once this Web service verifies its
current status.

– Restriction. A Web service cannot connect other peers of a composite Web
service because of non-compliance of some peers with this Web service’s
requirements.

Deployment policies associate two types of behavior with a Web service:
permission and restriction. Deployment policies satisfy the needs of resources’
providers who have interests and/or obligations in strengthening or restricting
the execution of Web services on these resources.

– Permission. A Web service receives an authorization of execution from a
resource once this resource checks its current state.

– Restriction. A Web service is not accepted for execution on a resource
because of non-compliance of this Web service with the resource’s require-
ments.

3.2 Specification of Policies

In what follows, the policies that define the behavior of Web services are
specified. To this end, a policy definition language is required. In this chap-
ter, the Web Services Policy Language (WSPL) is used [1]. The syntax of
WSPL is strictly based on the OASIS eXtensible Access Control Markup Lan-
guage (XACML) standard2. Figure 4c–e shows how policies are instantiated
at run-time.

Engagement Policy

Figure 5 illustrates the way the different behaviors of a Web service are con-
nected together based on the execution outcome of the engagement policy
per type of behavior. For instance, a positive permission (i.e., yes) is not con-
firmed until no restrictions are identified (i.e., no). More details on this figure
are given in the description of each type of behavior. The dashed lines in Fig. 5
represent potential cases of exceptions to be discussed in Sect. 4.

1. An engagement policy for permission consists of authorizing a Web ser-
vice to be part of a composite Web service. The authorization is based

2 www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf.

Web Services, Policies, and Context: Concepts and Solutions 47

Permission

Restriction
yes

no

yes

Participation(ok)

no

Fig. 5. Behaviors of a Web service in an engagement scenario

on the status of the Web service that is known through W-context. The
following illustrates an engagement policy for permission in WSPL. It states
that a Web service participates in a composition subject to evaluating
<Condition> to true. This latter refers to some arguments like the number
of current active participations of the Web service in compositions and the
next possibility of participation of the Web service in additional composi-
tions. These arguments are known as vocabulary items in WSPL. In the
policy, <TrueConclusion> shows the permission of participation, whereas
<FalseConclusion> shows the contrary. In case of positive permission,
yes-permission-participation procedure is executed, which results in
updating the following arguments in W-context of the Web service: number
of active participations, previous Web services, current Web services, and
next Web services. Figure 6 shows the outcome of executing an engagement
policy of type permission. This policy grants a Web service the permission
to take part in a composite Web service.

Policy (Aspect="PermissionParticipation") {
<Rule xmlns="urn:oasis:names:tc:xacml:3.0:permission:policy:schema:wd:01"
xmlns:proc="permission-participation" RuleId="PermissionParticipationWS">
<Condition>
<Apply FunctionId="and">
<Apply FunctionId="integer-less-than" DataType="boolean">
<SubjectAttributeDesignator AttributeId="CurrentNumberOfParticipations"
DataType="integer"/>
<SubjectAttributeDesignator AttributeId="MaximumNumberOfParticipations"
DataType="integer"/>
</Apply>
<SubjectAttributeDesignator AttributeId="Availability" DataType="boolean"/>
</Apply>

</Condition>
<Conclusions>
<TrueConclusion>
<proc:do> yes-permission-participation </proc:do>
</TrueConclusion>
<FalseConclusion>
<proc:do> no-permission-participation </proc:do>
</FalseConclusion>

</Conclusions>
</Rule>}

2. An engagement policy for restriction consists of preventing a Web service
from taking part in a composite Web service. A restriction does not imple-
ment a negative permission of participation. However, it follows a positive
permission of participation (Fig. 5). Restrictions could be geared towards

48 Z. Maamar et al.

Fig. 6. Outcome of policy execution

the quality issue (e.g., time of response, reputation) of the component Web
services with whom a Web service will interact. For example, a Web ser-
vice’s provider has only interest in the Web services that have a “good” QoS
record [16]. The following illustrates a restriction policy in WSPL. It states
that a Web service can be restricted from participation subject to evaluat-
ing <Condition> to true. This latter checks that a positive permission of
participation exists and the assessment level of the QoS of the Web services
is low. These Web services are identified using previous Web services per
active participation argument of W-context of the Web service. In this pol-
icy, QoSAssessment is an integer value that is the result of evaluating the
QoS of a Web service, and QoSThreshold is the minimum QoS assessment
value that is acceptable for composition.

Policy (Aspect="RestrictionPermission") {
<Rule xmlns="urn:oasis:names:tc:xacml:3.0:generalization:policy:schema:wd:01"
RuleId="RestrictionParticipationWS">
<Condition>

<Apply FunctionId="and">
<SubjectAttributeDesignator AttributeId="YesPermissionParticipation">
DataType="boolean"/>
<Apply FunctionId="integer-great-than-or-equal">
<SubjectAttributeDesignator AttributeId="QoSAssessment" DataType="integer"/>
<SubjectAttributeDesignator AttributeId="QoSThreshold" DataType="integer"/>
</Apply>
</Apply>

</Condition>
<Conclusions>

<TrueConclusion RestrictionParticipation = "No"/>
<FalseConclusion RestrictionParticipation = "Yes"/>

</Conclusions>
</Rule>}

Deployment Policy

Figure 7 illustrates the way the different behaviors of a Web service are con-
nected together based on the execution outcome of the deployment policy per
type of behavior. For instance, a positive permission for execution (i.e., yes)
is confirmed if there are no restrictions that could deny this permission at run
time. More details about this figure are given in the description of each type

Web Services, Policies, and Context: Concepts and Solutions 49

Permission

yes

no

Execution(ok) run time Restriction

no

yes

Execution(ok)

Fig. 7. Behaviors of a Web service in a deployment scenario

of behavior. The dashed lines in Fig. 7 represent potential cases of exceptions
and are discussed in Sect. 4.

1. A deployment policy for permission is about a Web service that receives the
necessary execution authorizations from a resource. These authorizations
are based on the state of the resource, which is reflected through R-context.
The following illustrates a deployment policy for permission in WSPL.
It states that a resource accepts the execution request of a Web service
subject to evaluating <Condition> to true. This latter refers to some argu-
ments like the number of active component Web services that the resource
supports their execution and the next acceptance of the resource for addi-
tional component Web services. In the policy, <TrueConclusion> shows the
permission of execution, whereas <FalseConclusion> shows the contrary.
In case of positive permission of execution, yes-permission-deployment
procedure is executed, which results in updating the following arguments:
resource&state per active participation of W-context of the Web service and
number of active component Web services of R-context of the resource.

Policy (Aspect="PermissionDeployment") {
<Rule xmlns="urn:oasis:names:tc:xacml:3.0:permission:policy:schema:wd:01"
xmlns:proc="permission-deployment" RuleId="PermissionDeploymentWS">
<Condition>
<Apply FunctionId="and">
<Apply FunctionId="integer-less-than" DataType="boolean">
<SubjectAttributeDesignator AttributeId="NumberofActiveComponentWebServices"
DataType="integer"/>
<SubjectAttributeDesignator AttributeId="MaximumNumberofComponentWebServices"
DataType="integer"/>
</Apply>
<SubjectAttributeDesignator AttributeId="NextAcceptanceofComponentWebServices"
DataType="boolean"/>
</Apply>

</Condition>
<Conclusions>
<TrueConclusion>
<proc:do> yes-permission-deployment </proc:do>
</TrueConclusion>
<FalseConclusion>
<proc:do> no-permission-deployment </proc:do>
</FalseConclusion>

</Conclusions>
</Rule>}

2. A deployment policy for restriction consists of preventing a Web service
form being engaged in an execution over a resource. A restriction does not

50 Z. Maamar et al.

implement a negative permission of deployment, rather it follows a positive
permission of deployment (Fig. 5). Besides the example of resource failure,
restrictions could be geared towards the reinforcement of the execution
features that were agreed on between a Web service and a resource. For
example a Web service binds a resource for execution prior to the sched-
uled time. The following illustrates a deployment policy for restriction in
WSPL. It states that a Web service can be restricted from execution sub-
ject to evaluating <Condition> to true. This latter checks that a positive
permission of execution has been issued and the agreed execution time is
valid. The execution time of a Web service is identified using next compo-
nent Web services per active participation argument of R-context of the
resource.

Policy (Aspect="RestrictionDeployment") {
<Rule xmlns="urn:oasis:names:tc:xacml:3.0:generalization:policy:schema:wd:01"
RuleId="RestrictionDeploymentWS">
<Condition>
<Apply FunctionId="and">
<SubjectAttributeDesignator AttributeId="YesPermissionDeployment"
DataType="boolean"/>
<Apply FunctionId="equal" DataType="boolean">
<SubjectAttributeDesignator AttributeId="ExecutionTime" DataType="String"/>
</Apply>
</Apply>

</Condition>
<Conclusions>
<TrueConclusion RestrictionDeployment = "No"/>
<FalseConclusion RestrictionDeployment = "Yes"/>

</Conclusions>
</Rule>}

4 Exception Handling

4.1 Rationale

In [22], Yu et al. adopt the example of a programmer who writes a BPEL
business process. The complexity of some business domains results sometimes
in processes with errors. When a process is put into operation, exception han-
dling is to occur otherwise, angry customers and loss of revenues arise. In [19],
Russell et al. looked into the range of issues that may result in exceptions dur-
ing workflow execution and the various ways these issues can be addressed.
This work classifies exceptions using patterns. Some of the exception types
that are inline with what is handled in the proposed composition approach
include work item failure, deadline expiry, and resource unavailability. In the
composition approach, exception handling means reviewing policies’ outcomes
and taking appropriate actions in a top-down manner by consulting the three
levels shown in Fig. 1. An exception could take place at one of the following
levels:

Web Services, Policies, and Context: Concepts and Solutions 51

– Resource level. There is no guarantee that a particular resource is up at
the execution time of a Web service. A resource could be down due to
power failure.

– Composite level. There is no guarantee that the specification of a composite
Web service is error-free. Conflicting actions like concurrent accept and
reject and deadlocks may occur during this specification execution.

– Component level. There is no guarantee that a particular Web service is
still available at execution-time. A provider could withdraw its Web service
from a composition without prior notice.

4.2 Exception Types per Policy Type

Deployment policy. Permission and restriction show the behaviors of a Web
service following deployment-policy triggering. Potential origins of excep-
tion are as follows. First, an execution permission for a Web service over
a resource was not issued but there was tentative of execution over this
resource. Second, an execution restriction on a Web service was detected
but that was not properly reported.
Exceptions in case of permission could arise because of the inaccu-
rate assessment of some arguments in R-context of a resource. These
arguments are as follows:
– Number of active component Web services argument. A resource did

not correctly assess the exact number of Web services that currently
run on top of it. This number should not exceed the maximum number
of authorized Web services for execution.

– Next acceptance of component Web services argument. The execu-
tion of a Web service got disrupted, which has negatively affected the
execution scheduling of the forthcoming Web services over a resource.

Exceptions in case of restriction could arise because of the inaccurate
assessment of some arguments in a resource’s R-context like next com-
ponent Web services per active participation. The execution of a Web
service should not occur prior to the time that was agreed upon between
the resource and the Web service.

Engagement policy. Permission and restriction show the behaviors of a Web
service following the triggering of an engagement policy. The dashed lines
in Fig. 5 represent the potential origins of exceptions. First, a participation
permission for a Web service was not issued, but there was tentative of
participation. Second, a participation restriction on a Web service was
detected, but the restriction has not been taken effectively.
Exceptions in case of permission could arise because of the inaccurate
assessment of some arguments in a Web service’s W-context:
– Number of active participations argument. The Web service did not

exactly assess its current participations in compositions. This number
should not exceed the maximum number of authorized compositions.

52 Z. Maamar et al.

In the engagement policy for permission given in Sect. 3.2, the condi-
tion of participation is shown with the following statements.

<Apply FunctionId="integer-less-than" ... >
<SubjectAttributeDesignatorAttributeId="CurrentNumberOfParticipations" .../>
<SubjectAttributeDesignator AttributeId="MaximumNumberOfParticipations" .../>
</Apply>

Since there is no permission of participation the invocation of the Web
service fails due to unavailability. A policy needs to be triggered so,
actions are taken such as reviewing the current number of active par-
ticipations of the Web service and notifying the relevant composite
Web service about the disengagement of this Web service.

– Next possibility of participation argument. The execution of a Web
service got delayed, which has negatively affected the participation
scheduling of the Web service in forthcoming compositions.

Exceptions in case of restriction could arise because of the inaccurate
assessment of some arguments in a Web service’s W-context like next Web
services per active participation. A Web service cannot connect other peers
if they are not listed in this argument.

5 Related Work

This related work is presented from two perspectives: context for Web services
and policies for Web services.

In literature the first time “context-aware” appeared was in [21]. Schilit
and Theimer describe context as location, identities of nearby people, objects
and changes in those objects. Dey defines context as the user’s emotional state,
focus of attention, location and orientation, date and time, as well as objects
and people in the user’s environment [7]. These kinds of definitions are often
too wide. One of the most accurate definitions is given by Dey and Abowd [6].
They refer to context as “any information that can be used to characterize the
situation of entities (i.e., whether a person, place or object) that are considered
relevant to the interaction between a user and an application, including the
user and the application themselves”.

Making Web services context-aware is not straightforward; many issues
are to be addressed (adapted from [20]): how is context structured, how
does a Web service bind context, how are changes detected and assessed
for context update purposes, and what is the overload on a Web service
of taking context into account? Responses to some of these questions have
guided Maamar et al. to organize a Web service’s context along three inter-
connected perspectives [14]. The participation perspective is about overseeing
the multiple composition scenarios in which a Web service concurrently takes
part. The execution perspective is about looking for the computing resources
upon which a Web service operates, and monitoring the capabilities of these

Web Services, Policies, and Context: Concepts and Solutions 53

computing resources so that the Web service’s requirements are constantly
satisfied. Finally, the preference perspective is about ensuring that user pref-
erences (e.g., execution time at 2 pm) are integrated into the specification of
a composite Web service.

Some research projects have focused on how to facilitate the develop-
ment and deployment of context-aware and adaptable Web services. Standard
Web services descriptions are augmented with context information (e.g., loca-
tion, time, user profile) and new frameworks are developed to support this.
The approach proposed in [17] is intended to provide an enhancement of
WSDL language with context aware features. The proposed Context-based
Web Service Description Language (CWSDL) adds to WSDL a new part
called Context Function which is used in order to select the best service
among several ones. This function represents the sensitivity of the service
to context information. Another interesting approach was proposed in [11] to
deal with context in Web services. The approach consists of two parts: a con-
text infrastructure and a context type set. The context infrastructure allows
context information to be transmitted as a SOAP header-block within the
SOAP messages.

Kagal et al. argue that policies should be part of the representation of Web
services, and in particular of semantic Web services [10]. Policies provide the
specification of who can use a service under what conditions, how information
should be provided to the service, and how provided information will be used
later. In [2], Baresi et al. proposed a policy-based approach to monitor Web
services’ functional (e.g., constraints on exchanged data) and non-functional
(e.g., security, reliability) requirements. In this approach Baresi et al. report
on the different types of policies that can be defined along the life cycle of a
Web service [18]. These types are service policies, server policies, supported
policies, and requested policies.

Desai et al. have recognized the importance of separation of concerns from
a software engineering perspective [5]. Indeed, they split a business process
into two parts: protocol and policy. The protocol part is a modular, public
specification of an interaction among different roles that collaborate towards
achieving a desired goal. The policy part is a private description of a par-
ticipant’s business logic that controls how this participant takes part in a
protocol.

Policies have also been used to access and use resources in other fields.
In grid computing, Dumitrescu et al. describe two strategies that a virtual
organization must deploy to ensure grid-wide resource policy enforcement in
a decentralized manner [8]. In the semantic Web, Gavriloaie et al. present
an approach to manage access to sensitive resources using PeerTrust, a lan-
guage for expressing access control policies [9]. PeerTrust is based on guarded
distributed logic programs and has been demonstrated for automated trust
negotiation.

54 Z. Maamar et al.

6 Conclusion

In this chapter we proposed an approach to compose Web services. The role
of policies and context in this composition has been depicted as follows.

– Policies manage the transitions between component, composite, and re-
source levels. Transiting from one level to another requires activating
policies. Two types of policies were developed: engagement policies assess a
Web service participation in a given composition, and deployment policies
manage the interactions between component Web services and computing
resources.

– Context provides useful information concerning the environment wherein
the composition of Web services occurs. Context caters the necessary infor-
mation that enables tracking the whole composition process by enabling for
instance to trigger the appropriate policies and to regulate the interactions
between Web services according to the current status of the environment.
Three types of context were defined, namely W/C/R-context standing for
context of Web service, context of composite Web service, and context of
resource.

References

1. A. H. Anderson. Predicates for Boolean Web Service Policy Language (SWPL).
In Proceedings of the International Workshop on Policy Management for the
Web (PM4W’2005) Held in Conjunction with The Fourteenth International
World Wide Web Conference (WWW’2005), Chiba, Japan, 2005.

2. L. Baresi, S. Guinea, and P. Plebani. WS-Policy for Service Monitoring.
In Proceedings of the Sixth VLDB Workshop on Technologies for E-Services
(TES’2005) Held in Conjunction with the 31st International Conference on Very
Large Data Bases (VLDB’2005), Trondheim, Norway, 2005.

3. I. Budak Arpinar, B. Aleman-Meza, R. Zhang, and A. Maduko. Ontology-driven
Web services composition platform. In Proceedings of the IEEE International
Conference on E-Commerce Technology (CEC’2004), San-Diego, USA, 2004.

4. J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. Context is Key. Com-
munications of the ACM, 48(3), March 2005.

5. N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh. Processes = Protocols
+ Policies: A Methodology for Business Process Development. In Proceedings
of the 14th International World Wide Web Conference (WWW’2005), Chiba,
Japan, 2005.

6. A. K. Dey and G. D. Abowd. Towards a Better Understanding of Context and
Context-Awareness. In Proceedings of the Workshop on the What, Who, Where,
When, and How of Context-Awareness Held in Conjuction with CHI’2000, The
Hague, The Netherlands, 2000.

7. Anind K. Dey. Context-Aware Computing: The CyberDesk Project. In Pro-
ceedings of the AAAI’98 Spring Symposium on Intelligent Environments
(AAAI’1998), Menlo Park, CA, USA, 1998.

Web Services, Policies, and Context: Concepts and Solutions 55

8. C. Dumitrescu, M. Wilde, and I. T. Foster. A model for usage policy-based
resource allocation in grids. In Proceedings of the Sixth IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY’05),
New-York, USA, 2005.

9. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M. Winslett. No
registration needed: how to use declarative policies and negotiation to
access sensitive resources on the semantic Web. In Proceedings of The First
European Semantic Web Symposium on The Semantic Web: Research and
Applications (ESWS’2004), Heraklion, Crete, Greece, 2004.

10. L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, and K. Finin, T. Sycara.
Authorization and privacy for semantic Web services. IEEE Intelligent Systems,
19(4), July/August 2004.

11. M. Keidl and A. Kemper. A framework for context-aware adaptable web
services. In EDBT, pages 826–829, 2004.

12. Z. Maamar, B. Benatallah, and W. Mansoor. Service chart diagrams –
description & application. In Proceedings of the Alternate Tracks of The 12th
International World Wide Web Conference (WWW’2003), Budapest, Hungary,
2003.

13. Z. Maamar, D. Benslimane, and A. Anderson. Using policies to manage
Composite Web Services? IEEE IT Professional, 8(5), Sept./Oct. 2006.

14. Z. Maamar, D. Benslimane, and Nanjangud C. Narendra. What Can Context
do for Web Services? Communications of the ACM, Volume 49(12), December
2006.

15. Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui. Towards an agent-based
and context-oriented approach for Web services composition. IEEE Transactions
on Knowledge and Data Engineering, 17(5), May 2005.

16. D. A. Menascé. QoS Issues in Web Services. IEEE Internet Computing, 6(6),
November/December 2002.

17. S. Kouadri Mostéfaoui and B. Hirsbrunner. Towards a context-based service
composition framework. In ICWS, pages 42–45, 2003.

18. N. Mukhi and P. Plebani. Supporting policy-driven behaviors in web services:
experiences and issues. In Proceedings of the Second International Conference
on Service-Oriented Computing (ICSOC’2004), New York City, NY, USA, 2004.

19. N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Exception
handling patterns in process-aware information systems. Technical Report, BPM
Center Report BPM-06-04, BPMcenter.org, 2006.

20. M. Satyanarayanan. Pervasive computing: vision and challenges. IEEE Personal
Communications, 8(4), August 2001.

21. B. Schilit and M. Theimer. Disseminating active map information to mobile
hosts. IEEE Network, 8(5), 1994.

22. X. Yu, L. Zhang, Y. Li, and Y. Chen. WSCE: A flexible web service composition
environment. In Proceedings of The IEEE International Conference on Web
Services (ICWS’2004), San-Diego, California, USA, 2004.

