
Preface

Humans have a remarkable capability to perform a wide variety of physical
and mental tasks without any measurements or computations. Computerized
systems mimicking such a human capacity are often referred to as artificial
intelligence and computational intelligent systems. Decision support systems
with such computerized systems that make decisions based on perceptions are
then called intelligent decision support systems.

This edited book is a collection of a number of representative applications
of intelligent decision support systems in society and policy support, includ-
ing general methodologies, case studies, on-going R&D projects, and practical
applications. The volume contains 14 chapters written by 33 authors from
Australia, Belgium, China, India, Italy, Japan, Spain, the UK, and the USA.
These applications cover Intelligent Decision and Policy Making Support Sys-
tems ranging from risk modelling for policy making (“Risk Modeling for Policy
Making” by Yager), consensus modelling in group decision making (“Fuzzy
Logic Approaches to Consensus Modelling in Group Decision Making” by
Fedrizzi and Pasi), fuzzy data envelopment analysis (“Decision Making Based
on Fuzzy Data Envelopment Analysis” by Guo and Tanaka), cognitive orien-
tation in business intelligence (“Cognitive Orientation in Business Intelligence
Systems” by Niu et al.), a personalized pedestrian navigation system (“Person-
alized Pedestrian Navigation System with Subjective Preference Based Route
Selection” by Akasaka and Onisawa), a knowledge-based recommender system
(“A Knowledge Based Recommender System Based on Consistent Preference
Relations” by Mart́ınez et al.), Web resource discovery and selection (“An In-
telligent Recommender System for Web Resource Discovery and Selection” by
Chen and Tao), a machine learning-based intelligent decision support system
(“An Intelligent Decision Support System Based on Machine Learning and
Dynamic Track of Psychological Evaluation Criterion” by Feng), handling
uncertain and qualitative information (“Handling Uncertain and Qualitative
Information in Impact Assessment: Applications of IDS in Policy Making Sup-
port” by Xu et al.), fault diagnosis (“Fuzzy Decision Trees as Intelligent De-
cision Support Systems for Fault Diagnosis” by Zio et al.), safety analysis
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(“Linguistic Assessment Approach for Hierarchical Safety Analysis and Syn-
thesis” by Liu et al.), radioactive waste management policy decision making
(“A Complex Abstraction Approach to Radioactive Waste Management Pol-
icy Decision Making” by Rao), Belgian long-term sustainable energy strategy
(“Fuzzy-set Decision Support for a Belgian Long-Term Sustainable Energy
Strategy” by Laes et al.), to nuclear emergency management (“On the Con-
structive Role of Multi-Criteria Analysis in Nuclear Emergency Management”
by Turcanu et al.).

The major contributions are from the well-established international FLINS
series conferences on applied computational intelligence (1994–2008). We be-
lieve intelligent decision support systems will become essential tools for future
applications of risk analysis, safety, security, counter-terrorism, public option,
and emergency responses in society and policy support.

January 2008 Da Ruan
Frank Hardeman

Klaas van der Meer



Fuzzy Logic Approaches to Consensus
Modelling in Group Decision Making

Mario Fedrizzi1 and Gabriella Pasi2
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Summary. The notion of consensus plays a key role in modelling group decisions,
and for a long time it was meant as a strict and unanimous agreement, however,
since various decision makers have different more or less conflicting opinions the
traditional strict meaning of consensus is unrealistic. The human perception of con-
sensus is much “softer”, and people are willing to accept that a consensus has been
reached when most or the more predominant actors agree on the preferences associ-
ated with the most relevant alternatives. The “soft” meaning of consensus, advocated
as realistic and humanly consistent, can lead to solve in a more constructive way
group decision making situations by using modelling tools based on fuzzy logic.

In this paper we present a review of well known fuzzy logic-based approaches to
model flexible consensus reaching dynamics, which constitute a well defined research
area in the context of fuzzy GDM. First, the problem of modelling consensus under
individual fuzzy preferences is considered, and two different models are synthesized.
The first one is static and is based on the algebraic aggregation of the individual
preferences aiming to find a consensus defined as the degree to which most of the
important individuals agree as to their preferences concerning almost all of the rel-
evant alternatives. The second one is dynamic and it combines a soft measure of
collective disagreement with an inertial mechanism of opinion changing aversion. It
acts on the network of single preference structures by a combination of a collec-
tive process of diffusion and an individual mechanism of inertia. Second, the use
of Ordered Weighted Averaging (OWA) Operators to define a linguistic quantifier
guided aggregation in the context of GDM is introduced and then generalized to
the problem of Multi Expert Multi Criteria Decision Making for which a linguistic
approach to define a consensus reaching strategy is presented.

1 Introduction

The construction of models for making decisions when a group of two or
more decision makers must aggregate their opinions (individual preferences)
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in order to get a group opinion (collective preference) is a very old problem.
The first systematic approaches to the problem were pioneered by Borda [10]
and Condorcet [16], who initiated the formal discipline of Social Choice in
terms of voting. For an extended review see Nurmi [48].

The subject of Group Decision Making (GDM), traditionally equated with
Social Choice, was revived in the twentieth century by Arrow [1, 2], who in
his book titled Social Choice and Individual Values was concerned with the
difficulties of group decisions and the inconsistencies they can generate leading
to the well-known Impossibility Theorem.

More specifically, Arrow has proved that in the context of ordinal and
symmetric (all decision makers with equal weight) preferences it is not possible
to construct a collective preference structure without this being imposed by a
single individual, the so-called “Arrow’s dictator”. In the following 1950s and
1960s many axiomatic variants to Arrow’s hypothesis have been proposed, see
for instance Fishburn [27, 28] and Kelly [40], but these have not solved the
crucial issues and in any case no natural solution to the collective preference
aggregation problem has emerged.

The various difficulties highlighted by the strong interest on impossibility
theorems have stimulated the development of alternative approaches and, over
the last two decades of twentieth century, a number of authors have extended
the theory of GDM in various ways to encompass fuzziness in individual and
group preferences. Barrett et al. [4, 5] investigated the structure of fuzzy ag-
gregation rules which, for each permissible profile of individual preferences,
specify a fuzzy social ordering. Dutta [19], allowing both individual and social
preferences to be fuzzy, showed that, under weaker transitivity condition, the
fuzzy counterparts of Arrow’s condition result in oligarchic and not dictator-
ial aggregation rules. Montero [47] introduced rationality as a fuzzy property
by suggesting a definition of fuzzy opinion different from the classical fuzzy
preference relation and showed how to escape from impossibility theorems
through the idea of fuzzy rationality. More details and useful references can
be found in Nurmi and Kacprzyk [49] and Barrett and Salles [3].

It was in the context of GDM theory that the traditional models of con-
sensus modeling have been addressed, from De Groot [17] classical consen-
sus model to the ones proposed by Chatterjee and Seneta [13], Kelly [41],
French [29], Lehrer and Wagner [43], Sen [53] and Loewer [44], mostly in the
probabilistic framework.

Almost all of these approaches treat consensus as a strict and unanimous
agreement, however, since various decision makers have different more or less
conflicting opinions the traditional strict meaning of consensus is unrealistic.
The human perception of consensus is much ‘softer’, and people are willing
to accept that a consensus has been reached when most or the more predomi-
nant decision makers agree on the preferences associated to the most relevant
alternatives.

The problem of consensus reaching modelling in a fuzzy environment was
addressed at first in Bezdek et al. (7–9), Ragade [51], Spillman et al. [55],
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Spillman et al. [56, 57] and then developed in Fedrizzi et al. [24], Kacprzyk
and Fedrizzi [34–36], Carlsson et al. [12], Kacprzyk et al. [38], Fedrizzi
et al. [21], Kacprzyk et al. [39]. Some authors addressed the problem intro-
ducing linguistically-based preference relations, see for instance, among others,
Herrera-Viedma et al. [33] and Ben-Arieh and Chen [6].

The ‘soft’ consensus paradigm developed in Kacprzyk and Fedrizzi [34–36]
in the standard framework of numerical fuzzy preferences was extended to a
more dynamical context in Fedrizzi et al. [22,23,25] and Marques Pereira [46].
The new model combines a soft measure of collective disagreement with an in-
ertial mechanism of opinion changing aversion. It acts on the network of single
preference structures by a combination of a collective process of (nonlinear)
diffusion and an individual mechanism of (nonlinear) inertia. The overall ef-
fect of the dynamics is to outline and enhance the natural segmentation of
the decision makers group into homogeneous preference subgroups. Fedrizzi
et al. [26], assuming that the decision makers can express their preferences
in a more flexible way, i.e. by using triangular fuzzy numbers, generalized
the iterative process of opinion transformation towards consensus via the gra-
dient dynamics of a cost function expressed as a linear combination of the
disagreement function and the inertial cost function.

In Chen and Hwang [14] the problem of Multi Expert Multi Criteria
decision making is addressed. In their approach, the group decision mak-
ing strategy requires to each expert to express a performance judgment on
each alternative with respect to a set of predefined criteria. In this context
the definition of a consensus degree and a consensual alternative ranking re-
quires to work on the ‘absolute’ experts’ evaluations and not on preference
relations. More specifically, the reduction of the individual judgments into a
representative value (the majority opinion) is usually performed through an
aggregation process, introducing aggregation operators associated with lin-
guistic quantifiers (such as most). In particular Ordered Weighted Aggrega-
tion Operators [58] have been widely applied to address GDM problems [15].
In Bordogna et al. [11] a linguistic model for Multi Expert Multi Criteria
decision problem is defined, the aim of which is to compute a consensual
judgement and a consensus degree for a fuzzy majority of the experts on each
of the considered alternatives.

In this paper we present some fuzzy approaches to model flexible consensus
reaching strategies, and which constitute a well defined research area in the
context of fuzzy GDM. In Sect. 2 the problem of modelling consensus under
fuzzy preferences is considered, and two different strategies are synthesized.
In Sect. 3, the use of Ordered Weighted Averaging Operators to define a
linguistic quantifier guided aggregation in the context of GDM is introduced.
Finally in Sect. 4 the problem of Multi Expert Multi Criteria Decision Making
is considered and a linguistic approach to define a consensus reaching strategy
in this context is presented.
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2 Consensus Modelling in Group Decision Making
under Fuzzy Preferences: Static and Dynamical
Approaches

2.1 Soft Consensus in a Static Setting

The basic framework within which most of the GDM processes are modelled
can be depicted in the following way. There is a set of decision makers or
experts who present their opinions concerning a set of alternatives and these
alternatives may initially differ to a large extent. If the individuals are ratio-
nally committed to consensus, via some exchange of information, bargaining,
etc. the individuals’ opinions can be modified and the group may get closer to
consensus. Here consensus is not meant as a strict and unanimous agreement,
but as the degree to which most of the individuals agree as to their preferences
concerning almost all of the relevant opinions. This degree of consensus takes
on it values in the unit interval, and it’s more realistic and human consistent
than conventional degrees, mostly developed in the probabilistic framework.

One of the most widely used approaches proposed in the literature is the
one described for first in Kacprzyk and Fedrizzi [34] and then developed in
Kacprzyk and Fedrizzi [35,36]. The point of departure is a set of n individual
fuzzy preference relations defined on a set A = {a1, . . . , am} of alternatives.
The fuzzy preference relation of individual i, Ri, is given by its membership
function µi : A × A → [0, 1] and can be represented by a matrix [ri

kl], ri
kl =

µi (ak, al) which is commonly assumed to be reciprocal, that is ri
kl + ri

lk = 1.
Clearly, this implies ri

kk = 0.5 for all i = 1, . . . , n and k = 1, . . . , m.
Now, a measure of the degree of agreement is introduced, that is derived in

three steps. First, for each pair of individuals we derive a degree of agreement
as to their preferences between a pair of alternatives, next we pool (aggregate)
these degrees to obtain a degree of agreement of each pair of individuals as to
their preferences between Q1 (a linguistic quantifier as, e.g., “most”, “almost
all”, “more than 50%”, . . .) pairs of relevant alternatives, and finally we pool
these degrees to obtain a degree of agreement of Q2 (a linguistic quantifier
similar to Q1) pairs of individuals as to their preferences between Q1 pairs of
relevant alternatives. This is meant to be the degree of agreement sought.

We start with the degree of agreement between individuals i and j as to
their preferences between alternatives ak and al,

Vkl(i, j)=(ri
kl − rj

kl)2 ∈ [0, 1] where i, j =1, . . . , n and k, l=1, . . . , m. (1)

Relevance of the alternatives is assumed to be a fuzzy set defined on the set of
alternatives A, such that µA(ak) ∈ [0, 1] is a degree of relevance of alternative
ak: from 0 standing for “definitely irrelevant” to 1 for “definitely relevant”,
through all intermediate values.

Relevance of a pair of alternatives, (ak, al) ∈ A × A, may be defined in
various ways among which
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pkl = (µA(ak) + µA(al))/2 (2)

is certainly the most straightforward; clearly, pkl = plk and pkk are irrelevant
since they concern the same alternative, for all and k, l = 1, . . . , m.

The degree of agreement between individuals i and j as to their preferences
between all the relevant pairs of alternatives is

VP(i, j) =
m−1∑

k=1

m∑

l=k+1

pkl Vkl (i, j)
/ m−1∑

k=1

m∑

l=k+1

pkl (3)

The degree of agreement between individuals i and j as to their preferences
between Q1 relevant pairs of alternatives is then

VQ1 (i, j) = Q1 (VP (i, j)) (4)

In turn, the degree of agreement of all the pairs of individuals as to their
preferences between Q1 relevant pairs of alternatives is

VQ1 = (2/n(n − 1))
n−1∑

i=1

n∑

j=i+1

VQ1 (i, j), (5)

and, finally, the degree of agreement of Q2 pairs of individuals as to their
preferences between Q1 relevant pairs of alternatives, called the degree of
Q1/Q2-consensus, is

VQ1,Q2 = Q2(VQ1) (6)

As far as the quantifiers Q1 and Q2 are concerned, they are of the general
form Q : [0, 1] → [0, 1] with, for instance,

Q(x) = 0 for x ∈ [0, c],
Q(x) = (1/(d − c))x − (c/(d − c)) for x ∈ (c, d), with 0 ≤ c < d ≤ 1
Q(x) = 1 for x ∈ [d, 1],

(7)

such that x′ ≤ x′′ ⇒ s(x′) ≤ s(x′′) for all x′, x′′ ∈ [0, 1], and Q (0)= 0,
Q (1) = 1. For details on linguistic quantifiers see Zadeh [61].

In Fedrizzi et al. [24] this model was implemented in an interactive user-
friendly microcomputer-based decision support system where the consensus
reaching process is supervised by a moderator. The moderator, in a multistage
session, tries to make the individuals change their preferences by, e.g. rational
argument, bargaining, additional knowledge, etc. to eventually get closer to
consensus.

A similar approach to consensus modelling was developed by Herrera-
Viedma et al. [32], where the novelty basically consists in introducing a de-
gree of consensus between the individuals which depends on two consensus
parameters, a consensus measure and a proximity measure. The consensus
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measure evaluates the agreement of all the experts, while the proximity mea-
sure evaluates the agreement between the experts’ individual opinions and the
group opinion. Individual opinions are represented using fuzzy preference rela-
tions derived from preference structures defined on a finite set of alternatives
X = {x1, . . . , xn}.

Two preference structures are considered:

1. Evaluations λi
k associated with each alternative xi, indicating the per-

formance of that alternative according to a point of view of the selected
expert

2. Multiplicative preference relation Ak = (a ij
k) (Saaty’s).

Individual fuzzy preference relations are derived from each preference struc-
ture introducing transformation functions satisfying some consistency prop-
erties.

Then, a consensus support system that emulates the moderator’s behavior
is introduced. The system has a feedback mechanism, based on the proxim-
ity measure, to generate recommendations in the group discussion process
directed to change the individual opinions (preferences), in order to obtain a
higher degree of consensus.

2.2 Soft Consensus in a Dynamical Setting

The soft consensus approach developed by Kacprzyk and Fedrizzi [34] was
extended to a dynamical context in Fedrizzi et al. [22, 23, 25] and Marques
Pereira [46] combining a measure of collective disagreement with an inertial
mechanism of opinion changing aversion. The new model acts on the network
of individual preference relations by a combination of a collective process of
diffusion and an individual mechanism of inertia. The overall effect of the dy-
namics is to outline and enhance the natural segmentation of the group of de-
cision makers into homogeneous preference subgroups, according to Bayesian
priors from which the model derives. The modelling framework here adopted
is essentially that one introduced in the previous section. The only difference
consists in simplifying the shape of the quantifiers by eliminating the quan-
tifier Q2 (i.e. by choosing it as the identity function) and by choosing the
quantifier Q1 = Q as follows,

Q(x) = (f(x) − f(0))/(f(1) − f(0)) (8)

where in our soft consensus model the scaling function f : [0, 1] → � is
defined as,

f(x) = − 1
β

ln
(
1 + e−β(x−α)

)
(9)

and α ∈ (0, 1) is a threshold parameter and β ∈ (0, ∞) is a free parameter
which controls the polarization of the sigmoid function f ′,

f ′(x) = 1
/(

1 + eβ(x−α)
)

= σ(x) (10)
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For large values of the parameter β the sigmoid function f ′ is close to a
step function with respect to the threshold value α : f ′(0) ≈ 1, f ′(1) ≈ 0,
and f ′(α) = 0.5. Otherwise, the function f ′ is smooth and monotonically
decreasing with respect to its argument.

Moreover, for sake of simplicity, let us assume that the alternatives avail-
able are only two, that is m = 2, which means that each (reciprocal) in-
dividual preference relation Ri, has only one degree of freedom, denoted by
xi = ri

12 . Accordingly, the relevance P is trivial. In such case, we have V (i, j) =
(xi − xj)2 ∈ [0, 1] and thus VQ (i, j) = Q (V (i, j)) = Q ((xi − xj)2) ∈ [0, 1].

The starting assumption is that each decision maker i = 1, . . . , n is rep-
resented by a pair of connected nodes, a primary node (dynamic) and a sec-
ondary node (static). The n primary nodes form a fully connected sub network
and each of them encodes the individual opinion of a single decision maker.
The n secondary nodes, on the other hand, encode the individual opinions
originally declared by the decision makers, denoted si = [si ∈ [0, 1]], and
each of them is connected only with the associated primary node.

The iterative process of opinion transformation corresponds to the gradient
dynamics of a cost function W , depending on both the present and the original
network configurations. The value of W combines a measure V of the overall
disagreement in the present network configuration and a measure U of the
overall change from the original network configuration.

The various interactions involving node i are mediated by interaction coef-
ficients whose role is to quantify the strength of the interaction. The diffusive
interaction between primary nodes i and j is mediated by the interaction co-
efficient vij ∈ (0, 1), whereas the inertial interaction between primary node i
and the associated secondary node is mediated by the interaction coefficient
uij ∈ (0, 1). It turns out that the values of these interaction coefficients are
given by the derivative f ′ of the scaling function.

The diffusive component of the network dynamics results from the consen-
sual interaction between each node xi and the remaining n− 1 nodes xj �=i in
the network. The aggregated effect of these n − 1 interactions can be repre-
sented as a single consensual interaction between node xi and a virtual node
x̄i containing a particular weighted average of the remaining opinion values.

The interaction coefficient vi ∈ (0, 1) of this aggregated consensual in-
teraction controls the extent to which decision maker i is influenced by the
remaining experts in the group. In our soft consensus model the value vi, as
well as the weighting coefficients vij ∈ (0, 1) in the definition of x̄i as given
below, depend non-linearly on the standard Euclidean distance between the
opinions xi and xj ,

vij = f ′((xi − xj)2) (11)

vi =
∑

j �=i

vij/(n − 1) (12)
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and the average preference x̄i is given by

x̄i =

∑
j �=i

vijxj

∑
j �=i

vij
(13)

In the context of these definitions, f ′(x) ∈ (0, 1) is the decreasing sigmoid
function introduced in the previous section. This sigmoid function plays a
crucial role in the network dynamics and is obtained as the derivative of the
scaling function f(x) ∈ � which, in turn, enters the construction of the soft
consensus cost function from which the network dynamics derives.

The interaction coefficient ui ∈ (0, 1) of this inertial interaction controls
the extent to which the decision maker i resists to opinion changes due to
the collective consensual trend. In analogy with the diffusion coefficients, the
value ui in our soft consensus model depends non-linearly on the standard
Euclidean distance between the opinions xi and si,

ui = f ′((xi − si)2) (14)

where f ′(x) is the sigmoid function mentioned earlier.
The individual disagreement cost V (i) is given by

V (i) =
∑

j �=i

V (i, j)/(n − 1) (15)

where V (i, j) = f((xi−xj)2) and the individual opinion changing cost U(i) is

U(i) = f((xi − si)2) (16)

Summing over the various decision makers we obtain the collective disagree-
ment cost V and inertial cost U ,

V =
1
4

∑

i

V (i) and U =
1
2

∑

i

U(i) (17)

with conventional multiplicative factors of 1/4 and 1/2.
The full cost function W is then W = (1 − λ)V + λU with 0 ≤ λ ≤ 1.
The consensual network dynamics, which can be regarded as an unsuper-

vised learning algorithm, acts on the individual opinion variables xi through
the iterative process

xi → x′
i = xi − ε

∂W

∂xi
(18)

The effect of the two dynamical components V and U can be analysed sepa-
rately and it can be proved (see for details Fedrizzi et al. [25]) that

x′
i = (1 − ε(vi + ui))xi + εvix̄i + εuisi (19)

Accordingly, the decision maker i is in dynamical equilibrium, in the sense
that x′

i = xi, if the following stability equation holds,

xi = (vix̄i + uisi)/(vi + ui) (20)



Fuzzy Logic Approaches to Consensus Modelling in GDM 27

that is, if the present opinion value xi coincides with an appropriate weighted
average of the original opinion si and the average opinion value x̄i.

In Fedrizzi et al. [26] the dynamical model was extended assuming that
the preferences of the decision makers are expressed by means of fuzzy num-
bers, in particular by means of triangular fuzzy numbers. Then, in order to
measure the differences between the preferences of the decision makers, a dis-
tance belonging to a family of distances proposed by Grzegorzewski [31] was
introduced.

3 Aggregation Guided by Linguistic Quantifiers
expressed as Ordered Weighted Averaging Operators

With the approach to GDM introduced in Sect. 2 each expert compares the al-
ternatives and makes relative judgements of preference among couples of them,
thus defining a preference relation. In this section a different approach often
used in the literature is introduced, where the experts express an absolute
judgement on each alternative to evaluate it. By this approach a numeric or
linguistic value (from a set of admissible values) is selected by the expert to
indicate the performance of the alternative with respect to her/his opinion.
It is not infrequent that the experts are asked to express for each alternative
an evaluation with respect to each of a set of predefined criteria. In this case
we are in the framework of Multi Expert Multi Criteria decision making [14].

In this absolute evaluation framework, the ultimate aim of the group de-
cision process is to determine for each alternative a consensual judgement
(consensual opinion) which synthesizes the experts individual opinions. The
consensual judgement is representative of a collective evaluation and is usu-
ally computed by means of an aggregation of the individual experts’ opinions.
Usually also a consensus degree is computed for each alternative, with the
consequent problem of comparing the decision makers’ opinions to verify the
consensus among them. In the case of unanimous consensus, the evaluation
process ends with the selection of the best alternative(s).

As outlined in the previous section, in real situations humans rarely come
to an unanimous agreement: what is often needed is an overall opinion which
synthesizes the opinions of the majority of the decision makers. The reduc-
tion of the individual values into a representative value (the majority opinion)
is usually performed through an aggregation process. As outlined in Sect. 2,
within fuzzy set theory the concept of majority can be expressed by a lin-
guistic quantifier (such as most), which is formally defined as a fuzzy subset
of a numeric domain; the semantics of such a fuzzy subset is described by a
membership function which describes the compatibility of a given absolute or
percentage quantity to the concept expressed by the linguistic quantifier. By
this interpretation a linguistic quantifier is seen as a fuzzy concept referred to
the quantity of elements of a considered reference set. In the fuzzy approaches
synthetically described in Sect. 2 a full consensus is not necessarily the result
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of unanimous agreement, but it can be obtained even in case of agreement
among a fuzzy majority of the decision makers (Fedrizzi et al. [24], Fedrizzi
et al. [21], Kacprzyk and Fedrizzi [35]).

In the fuzzy approaches to group decision making the concept of major-
ity is usually modeled by means of linguistic quantifiers such as at least 80%
and most (monotonic non decreasing linguistic quantifiers). When linguistic
quantifiers are used to indicate a fusion strategy to guide the process of ag-
gregating the members’ opinions, the formal mathematical definition of the
resulting aggregation operator encodes the semantics of the linguistic quan-
tifier. The notion of quantifier guided aggregation has been formally defined
by means of Ordered Weighted Averaging operators [58, 59], and by means
of the concept of fuzzy integrals (Grabish [30]). An example of linguistic ex-
pression which employs a quantifier to guide an aggregation is the following:
Q experts are satisfied by solution a, where Q denotes a linguistic quantifier,
for example most, which expresses a majority. To evaluate the satisfaction of
this proposition the experts’ opinions have to be aggregated using the formal
aggregation operator which captures the semantics of the concept expressed
by the quantifier Q.

In the applications related to group decision making the use of OWA oper-
ators has been extensively experienced [15]. We shortly introduce the formal
definition of OWA operators in both cases in which numeric and linguistic
values have to be aggregated. For a more extensive definition see Yager [59].
An OWA operator on unit interval is a mapping OWA: [0, 1]n → [0, 1] with
an associated weighting vector

W = [w1,w2, . . . ,wn] such that wi ∈ [0, 1], and
n∑

i=1

wi = 1, and for any

arguments a1, a2, . . . , an ∈ [0, 1]:

OWA(a1, a2, . . . , an) =
n∑

i=1

bi wi (21)

with bi being the ith largest element of the aj [58]. A number of approaches
have been suggested for determining the weights used in the OWA opera-
tor. Here we present the one that allows to obtain the weights from a func-
tional form of the linguistic quantifier (i.e. from the definition of the linguistic
quantifier as a fuzzy subset). Let Q: [0, 1] → [0, 1] be a function such that
Q(0) = 0, Q(1) = 1 and Q(x) ≥ Q(y) for x > y corresponding to a fuzzy
set representation of a proportional monotone quantifier. For a given value
x ∈ [0, 1], the Q(x) is the degree to which the quantity (relative quantity)
x satisfies the fuzzy concept being represented by the quantifier. Based on
function Q, the OWA vector is determined from Q by defining the weights in
the following way:

wi = Q(i/n) − Q((i − 1)/n). (22)

In this case wi represents the increase of satisfaction in getting i with respect to
i−1 criteria satisfied. Let us consider now a set of linguistic labels S uniformly
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distributed on a scale so that an ordering is defined (sa, sb ∈ S, a < b ⇔ sa <
sb) and s0 , smax are the lower and the upper elements respectively with
max = |S| − 1, where |S| denotes the cardinality of S. An Ordered Weighted
Average operator OWA on the ordinal scale S is a mapping: OWAQ : SM → S
with a weighting vector: W = [w1,w2, . . . ,wM] in which wi ∈ S, wi ≥ wj , for
i > j and MAXi(wi) = smax then:

OWA(a1, a2, . . . , aM ) = Max(wi ∧ bi) (23)

where bi is the i-th highest label ak in S among the a1, a2, . . . , aM . An ordinal
OWA is determined by a relative monotone increasing quantifier Q, by setting
∀i ∈ {1,M}:

wi = Q

(
i

M

)
∈ S (24)

The value Q( i
M ) indicates the degree of satisfaction of getting i of the M

criteria fulfilled.
In Sect. 4 we synthetically present a linguistic approach to Multi Expert

Multi Criteria Decision making entirely based on the use of a majority guided
aggregation formalized by OWA operators.

Recently, in Pasi and Yager [50] it was outlined that when aggregating a
collection of values by means of an OWA associated with a linguistic quantifier
(constructed by applying either formula (22) or formula (24)), the resulting
aggregated value may not be representative of the majority of values. To over-
come this problem in Pasi and Yager [50] two new and distinct strategies have
been proposed aimed at constructing OWA operators which allow to obtain
an aggregated value that better reflects a “true” concept of majority. As pre-
viously outlined, the weights of the weighting vector of an OWA operator
are interpreted as the increase in satisfaction in having i + 1 criteria “fully”
satisfied with respect to having “fully” satisfied i criteria. If for example we
consider the linguistic quantifier at least 80% and we apply the procedure re-
ported in formula (22) to obtain the weights of the OWA weighting vector,
the semantics of the obtained aggregated value is like a degree of satisfaction
(truth) of the proposition “Q of the values are fully satisfied”. This kind of
semantics does not naturally model the meaning of the concept of majority
as typically used in group decision making applications. In fact an operator
aimed at calculating a majority opinion should produce a value which is rep-
resentative of the 80% of the most similar values. In other words what we
want to obtain is an aggregation of the most similar opinions held by a quan-
tity of decision makers specified by the linguistic quantifier Q. This situation
appears to bring us closer in spirit to interpretation of the OWA operator as
averaging operator rather then as a generalized quantifier. In fact what we
want is an average of “most of the similar values”. This means that we need
an aggregation operator that takes an average like aggregation of a majority of
values that are similar. The first approach proposed in Pasi and Yager [50] to
define such an aggregation operator makes use of Induced Ordered Weighted
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Averaging (IOWA) operators (Yager and Filev [60]) to obtain a scalar value
for a majority opinion. By IOWA operators the ordering of the elements to
be aggregated is determined by an inducing ordering variable. In Pasi and
Yager [50] the inducing ordering variable is based on a proximity metric over
the elements to be aggregated. The basic idea is that the most similar values
must have close positions in the induced ordering in order to appropriately
be aggregated. A new strategy for constructing the weighting vector has also
been suggested so as to better model the new “majority-based” semantics of
the aggregation. This strategy has the aim of emphasizing in the aggregation
the most supported values; in other words the values which appear on the
right hand side of the vector of values to be aggregated have more influence
in the aggregation.

The second approach proposed in Pasi and Yager [50] is based upon the
calculation of the concept of the majority opinion as an imprecise value. Under
this interpretation a formalization has been proposed of the idea of a fuzzy
majority as a fuzzy subset. This approach provides in addition to a value for
a majority opinion an indication of the strength of that value as the majority
opinion. The goal here is to obtain a value which can be considered as the
opinion of a majority, that is, some value that is similar for any large group of
people. Both methods require to have both information about the similarity
between the experts opinions, and some information about what quantity
constitutes the idea of a majority.

4 Consensus Modelling in Linguistic Approaches
to Multi Expert Multi Criteria Decision Making

In addressing a decision making problem it is not infrequent that the ratings
or performance scores cannot be assessed precisely but in a linguistic form
(Herrera-Viedma et al. [33]). The imprecision may come from different sources
as pointed out in Chen and Hwang [14]: information may be unquantifiable
when the evaluation of a criterion, due to its nature, can be stated only in
linguistic terms such as in the case of the evaluation of the comfort or design
of a car, terms like good, fair, poor can be used. Sometimes precise testimonies
cannot be stated because they are unavailable or the cost for their computation
is too high and an “approximated estimates” can be tolerated; for example,
for the evaluation of a car’s speed linguistic terms like fast, very fast, slow can
be used instead of numeric values.

As an approach representative of consensus modelling in the context of
Multi Expert Multi Criteria Decision Making in a linguistic setting, in this
section we give a synthesis of the linguistic model proposed by Bordogna
et al. [11], as it offers a general approach to group decision making, which
is entirely based on the management of information expressed linguistically.
A Multi Expert Multi Criteria decision problem is considered, the aim of
which is to compute a consensual judgment and a consensus degree for a
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fuzzy majority of the experts on each of the considered alternatives. The
group of experts judges each alternative according to the evaluation of a finite
set of predefined criteria. Each expert is asked to linguistically evaluate each
alternative in terms of its performance with respect to each criterion. The
experts are also allowed to associate a distinct importance to the criteria in a
linguistic form as well. This procedure adopts an absolute evaluation of each
alternative and is based on the assumption of alternatives’ independency. To
enable the experts to formulate their judgments in a natural way, a limited
set S of linguistic labels is supplied. For example, S can be defined so as its
elements are uniformly distributed on a scale on which a total order is defined:
S = [s0 = none, s1 = very low, s2 = low, s3 = medium, s4 = high, s5 =
very high, s6 = perfect] in which sa < sb iff a < b. The cardinality of S must
be small enough so as not to impose useless precision to the experts and it
must be rich enough in order to allow a discrimination of the performances of
each criterion in a limited number of grades.

By allowing the experts to express in a linguistic form the evaluations
of both performance and importance of criteria, the burden of quantifying
a qualitative concept is eliminated and thus the system-expert interaction is
simplified. In Sect. 4.1 the process of reducing, for each expert, the M evalua-
tions expressed for a given alternative (where M is the number of considered
criteria) to an overall judgment for the alternative is presented. In Sect. 4.2
the process aimed at computing a consensus degree and a consensual choice
among the experts is presented.

4.1 An Overall Performance Judgment for each Alternative
and each Expert

Once each expert has expressed a linguistic judgment for each criterion with
respect to each alternative, the first phase towards the evaluation of a degree
of consensus is aimed at synthesizing an overall performance judgment for
each alternative and for each expert. This is done through an aggregation of
the linguistic judgments for each alternative with respect to each criterion. To
this aim in Bordogna et al. [11] an aggregation function has been proposed
which works directly on linguistic labels on an ordinal scale and produces a
global linguistic performance label by applying OWA operators.

Formally, the set of alternatives is denoted by: A = {A1, A2, . . . , AN}, the
set of experts is denoted by: E = {E1, E2, . . . , EK}, and the set of criteria
is denoted by: C = {C1, C2, . . . , CM}. The input to the aggregation phase is
represented by a set of K matrixes of dimension N × M , in which K, N and
M are the numbers of experts, alternatives and criteria respectively; there is
one matrix for each expert, in which each element is a linguistic label Pij ∈ S
drawn from an ordinal scale and expressing the performance judgment on
criterion Ci with respect to the alternative Aj . For each matrix a vector of
dimension M is defined in which an element Ii ∈ S drawn from the same scale
is the importance value associated with criterion Ci by the expert. We omit
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the index j as the aggregation is performed for a given expert and a given
alternative: Pij ≡ Pi. The functions aggregating the linguistic performance la-
bels of each alternative have been defined by the relative monotone increasing
quantifiers averagely all, most of and more than k%. For defining these ag-
gregation functions two different formalizations of OWA operators have been
proposed. The first approach is more straightforward, as it consists in apply-
ing the OWA operators defined on an ordinal scale [59]; in this case, for each
quantifier Q the correspondent OWA is defined by specifying the linguistic
values of the weighting vector W . These linguistic weights can be defined
either by specifying their values directly or by applying formula (24).

When the criteria C1, . . . , CM have the same importance, the OWAQ op-
erator associated with the quantifier Q is directly applied to the satisfaction
values P1, . . . , PM of the criteria. For the l-th expert and the i-th alternative
OWAQ(Pi1, . . . , PiM ) will be then evaluated as defined in formula (23).

When differing importance values I1, . . . , IM ∈ S are associated with the
criteria, one of two possible procedures can be applied to compute the overall
performance of an alternative. The procedures are extensively explained in
Bordogna et al. [11].

The output of this phase can be summarized in a matrix of dimension
N ×K, in which an element Pij is the overall performance label of expert Ei

with respect to alternative Aj .

4.2 How to Determine a Consensual Opinion

The second phase of a group decision activity is aimed at evaluating the
degree of consensus among the experts’ overall performance judgments on the
alternatives. It is worthwhile to point out that the phase of computation of
the consensus degree should be followed by the evaluation of a consensual
ranking of alternatives for the specified consensual majority. In other words,
the consensual degree refers to a ranking of alternatives which in some way
synthesizes the ranking of the considered experts’ majority.

In the approach adopted in Bordogna et al. [11] a consensus degree is com-
puted for each alternative, under the assumption of alternative independency
on each expert. The novelty of the proposed procedure consists in the direct
computation of “soft” linguistic degrees of consensus based on a topological
approach [12]; this procedure supported a new definition of consensus referred
to a fuzzy majority: the statement “most of the experts agree of alternative
Ai” is interpreted as “most of the experts agree with most of the other experts
on alternative Ai”.

The starting point is constituted by the matrix of N rows (one for each
alternative) and K columns (one for each expert) produced by the phase de-
scribed in Sect. 4.1. An element on row i and column j of this matrix is a
linguistic value in S, which expresses the overall performance judgment of
expert j with respect to alternative i. A linguistic degree of consensus among
the experts’ overall performances is then computed for each alternative. The
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procedure proposed in Bordogna et al. [11] is aimed at evaluating the consen-
sus degree among Q experts for each alternative, in which Q is a quantifier
identifying a fuzzy majority. This procedure is structured in the following
phases:

• For each alternative, pair wise comparisons of experts’ overall performance
labels are made to establish the degree of agreement between all pairs
of experts (full agreement = perfect, null agreement = none). A matrix
K × K is then constructed for each alternative. An element Ag(Ei, Ej)
is the linguistic label, which expresses the similarity between the overall
performance labels of experts Ei and Ej ;

• For each expert Ei (a row of the matrix K × K) the K − 1 degrees
Ag(Ei, Ej), i = j are pooled to obtain an indication of the agreement
Ag(Ei) of expert Ei with respect to Q of the other experts.

• The values Ag(Ei) are finally aggregated to compute the truth of the
sentence “Q Ei agree on alternative Ax”.

For each alternative Ax, the degrees of agreement between all pairs of
experts are first computed, as the complement of a distance between the
overall performance labels:

Ag(Ei, Ej) = ¬(d(Pix, Pjx)) (25)

in which Pix denotes the linguistic overall performance label of expert Ei on
alternative Ax. Provided that the elements in S are uniformly distributed,
function d is defined on S × S and takes values in S; it is applied to the
overall performance labels of experts Ei and Ej , and produces a linguistic label
indicating the distance between the two arguments. The d function is defined
as a difference operator of linguistic labels in the same scale [18]; the labels
belong to the totally ordered term set S = {si

∣∣i ∈ {0 · · ·max}} : d(si, sj) = sr
with r = |i − j|.

The complement operation ¬ is defined as: ¬(si) = smax−i. The evaluation
of the complement of the distance between two linguistic labels is a measure
of the degree of agreement between the opinions of two experts. The results
produced by this phase can be synthesized in N matrixes K×K, one for each
alternative.

Once the degrees of agreement between pairs of experts have been com-
puted, they must be pooled to obtain the degree of consensus among Q experts,
in which Q is a quantifier such as most of, all, more than k%. This is done
in two subsequent steps. First of all for each expert an overall indication of
his/her agreement with respect to Q of the others experts is computed; we
indicate this overall degree as AgQ(Ei).

Formally, this aggregation is performed by applying to the Ag(Ei, Ej)
(with i = j, i, j = 1 · · ·K) on the i-th row of the matrix, the ordinal OWAQ

operator associated with the linguistic quantifier Q, as defined in Sect. 3. At
this point it is possible to identify the expert with the highest disagreements
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versus most of the other experts: this information can be useful in consensus
reaching to address the experts who should revise their opinions in order to
increase the degree of consensus.

The last step is the determination of consensus among Q experts; to obtain
this final consensus degree also the K values AgQ(Ei), one for each expert, are
aggregated with the OWAQ operator. The consensual performance judgment
of each alternative, defined as the label on which the identified majority of
the experts agree, is finally computed. It is obtained by applying the same
OWAQ operator to the overall performance judgments of all the experts on
the given alternative.
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