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Moiré Interfer1. Moiré Interferometry

The basic concepts and practice of moiré inter-
ferometry are reviewed. Moiré interferometry
provides contour maps of in-plane displacement
fields with high sensitivity and high spatial reso-
lution. It has matured as an invaluable tool for en-
gineering analyses, proved by many industrial and
scientific applications. With the typical reference
grating frequency of 2400 lines/mm, the contour
interval is 0.417 µm displacement per fringe order.
For microscopic moiré interferometry, sensitivity
in the nanometer range has been achieved. Reli-
able normal strains and shear strains are extracted
from the displacement data for bodies under
mechanical, thermal and environmental loading.
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This section introduces basic concepts of moiré inter-
ferometry and their evolution, leading to the current
practice. Moiré interferometry has become an important
tool in industrial, research and academic organiza-
tions. The tool is used to measure tiny deformations
of solid bodies, caused by mechanical forces, tempera-
ture changes, or other environmental changes. It is the
in-plane deformations that are measured, namely the
U and V components of displacement that are parallel
to the surface of the body. These are the displace-
ments from which the induced strains and stresses are
determined.

Moiré interferometry has been applied for studies of
composite materials, polycrystalline materials, layered
materials, piezoelectric materials, fracture mechanics,
biomechanics, structural elements, and structural joints.
It is practiced extensively in the microelectronics in-
dustry to measure thermally induced deformation of
electronic packages.

For in-plane displacement measurements, the tech-
nology has evolved beautifully from low-sensitivity
geometric moiré to the powerful capabilities of moiré
interferometry. Moiré measurements are performed
routinely in the interferometric domain with fringes
representing subwavelength displacements per contour.
Since moiré responds only to geometric changes, it is
equally effective for elastic, viscoelastic, and plastic de-
formations, for isotropic, orthotropic and anisotropic
materials, and for mechanical, thermal, and dynamic
loadings.

The history of moiré interferometry is described
in [1.1]; in that paper, “A Historical Review of Moiré
Interferometry,” Walker recounted the pioneering devel-
opments in Japan, which predated accomplishments in
the Western world by several years, but was not widely
known in the West. He outlined work by Sciamarella and
by Post and their students in the U.S., and by several in-
vestigators in Europe – especially the outstanding work
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Fig. 1.1 Demonstration of moiré interferometry at 97.6% of the theoretical limit of sensitivity. f = 4000 lines/mm. The
patterns are from the shaded regions. Excellent fringe resolution was evident in the full 76 × 51 mm specimen grating area

at Strathclyde University by McKelvie, Walker and their
colleagues. Moiré interferometry has matured through
worldwide efforts.

Work at Virginia Tech began in 1979, where we were
responsible for numerous advances. We felt confidence
in the power of the method in 1981 when Weissman [1.2]
produced the fringe pattern shown in Fig. 1.1. It de-
picts the vertical displacement field surrounding a hole
in a plate loaded in tension. It demonstrated the moiré
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Fig. 1.2 Optical system for Fig. 1.1: Lloyd’s mirror arrangement

effect at 4000 lines/mm. It demonstrated moiré interfer-
ometry at 97.6% of its theoretical limit of sensitivity. It
demonstrated the V deformation field with a huge num-
ber of fringes, or displacement contours, and the fringes
had superb visibility.

The instrumentation was simple, as illustrated in
Fig. 1.2. A phase grating of 2000 lines/mm was formed
on the specimen, and it deformed together with the
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Fig. 1.3 The deformed specimen grating interacts with the
virtual reference grating to form the moiré pattern. The
phenomenon is analogous to geometric moiré
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Moiré Interferometry 3

specimen as the specimen was loaded. A Lloyd’s mir-
ror arrangement created a 4000 lines/mm interference
fringe pattern in the same space, and that pattern acted as
the reference grating. It is called a virtual reference grat-
ing. (It was not a real reference grating of the sort used
in geometric moiré, but instead, it was an interference
pattern formed in space that functioned as a reference
grating.) The specimen grating and the reference grat-
ing interacted to form the moiré fringes of Fig. 1.1. The
scheme is illustrated in Fig. 1.3, where the two coherent
beams from the Lloyd’s mirror arrangement interfere to
form the virtual reference grating of frequency f , which
interacts with the specimen grating of frequency fs to
create the moiré pattern.

Stepping back, the transition from geometric moiré
to moiré interferometry evolved largely in the 1970s.
Whereas only low frequency gratings could be applied
to specimens, high frequency reference gratings could
be used, together with an optical filtering arrangement,
to produce moiré fringe multiplication. The fringe mul-
tiplication factor, β, was the ratio of grating frequencies,
and the sensitivity corresponded to the pitch of the high
frequency reference grating; the sensitivity became β

times that of standard geometric moiré, where spec-
imen and reference gratings of equal frequencies are
used. Multiplication by β = 60 was documented [1.3],
but at a substantial sacrifice of the efficiency of light
utilization.

Then it was realized that light diffracted by a real
reference grating (BB) creates a virtual reference grat-
ing, as illustrated in Fig. 1.4a. It is the virtual grating that
interacts with the specimen grating to create the moiré
pattern. Consequently, it was realized that the interfer-
ence pattern produced by the intersection of any two
mutually coherent beams (Fig. 1.4b) can act as a virtual
reference grating and it can replace the real reference
grating. Thus, in Fig. 1.2 the direct and the reflected
beams, intersecting at angle 2α, provided the virtual
reference grating.

(An important equivalency principle is acting here:
interference of two beams creates a virtual grating of
frequency f ; a real grating of frequency f creates the
same two beams [1.4]. In fact, this equivalency is also
the basis of holography.)

It became clear that phase gratings (ridges and fur-
rows) could be used as well as the amplitude gratings
(bars and spaces) of geometric moiré. Several innova-
tions evolved to link the techniques of the 1970s to the
present. A significant factor was the practical availability
of the laser, which provided very high monochromatic
purity and allowed high contrast two-beam optical in-
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Fig. 1.4a,b Virtual gratings formed (a) by a real grating, and (b) by
two coherent beams

terference even when the beams traveled substantially
unequal path lengths. The laser led to a practical tech-
nique to produce high frequency phase-type specimen
gratings.

For this process, a setup with a beam-splitter and
mirrors formed the two mutually coherent beams of
Fig. 1.4b. A plate with a photosensitive coating – photo-
graphic emulsion or photoresist – was inserted to record
the virtual grating. When developed, the plate exhib-
ited the ridges and furrows of a phase grating, in exact
registration with the bands of constructive and destruc-
tive interference of the virtual grating. Subsequently, the
phase grating was replicated on the specimen by known
techniques, using silicone rubber, epoxy, or various plas-
tics to reproduce the array of ridges and furrows on the
specimen.

Specimen gratings of very high frequency could
be made, so the need for high fringe multiplication
factors vanished. The moiré interferometry technique
described here is actually moiré fringe multiplication
with a multiplication factor of two. It utilizes the
first-order diffractions from the specimen grating in-
stead of high diffraction orders. The choice circumvents

Part
A

1



4 Part A Sample Chapter/Experimental Solid Mechanics

the inefficient light utilization and increased optical
noise associated with higher orders, while maintain-
ing the advantage of viewing the specimen at normal
incidence.

Numerous refinements were introduced in the 1980s.
Cross-line specimen gratings, together with 4-beam
moiré interferometers became standard practice; this
eliminated the classical uncertainty of shear measure-
ments and enabled accurate determination of both shear
and normal strains. The use of carrier fringes be-
came common. Practical techniques for measurement
of thermal strains were developed. Achromatic moiré
interferometers were developed. Microscopic moiré in-
terferometry was introduced.

In the 1990s, CCD cameras became popular for
recording the fringe patterns. This led to phase stepping
and automated full-field strain maps. Phase stepping
proved to be an important asset for cases where fringes
were sparse, because phase stepping increases the quan-
tity of data for analysis. (For typical applications, where

the fringe data is abundant, phase stepping is superfluous
and sometimes counterproductive.)

A very important milestone occurred in the 1990s.
IBM Corporation discovered the value of moiré interfer-
ometry for experimental analysis of thermal deformation
of microelectronic devices. It was used to measure –
sometimes to discover – the deformation behavior of
their small complex structures, and to guide and verify
their numerical analyses. Since then, moiré interfer-
ometry has propagated extensively in the electronic
packaging industry, to become a standard tool for ex-
perimental analysis.

Item 1 in the Bibliography provides comprehensive
coverage of the theory and practice, and diverse ap-
plications of moiré interferometry in one volume. The
present chapter is intended to review the basic concepts
and qualities in lesser detail, but sufficient for under-
standing the practice and for recognizing the power and
place of moiré interferometry as a tool of experimental
solid mechanics.

1.1 Current Practice

Moiré interferometry was developed to measure the
in-plane displacements of essentially flat surfaces. If
demanded, it can cope with curved surfaces, but with
greater effort; Fig. 1.15, to be addressed later, is an
example.

Two displacement fields fully define the state of
engineering strain along the surface. Normally two or-
thogonal displacement fields are recorded: the U and V
fields. They represent x- and y-components of displace-
ment at every point in the field. The data are received as
moiré fringe patterns, where the fringes are contours of
constant U or V displacements. Fringe orders are given
the symbols Nx and Ny, where Nx = fU and Ny = fV .
The fringe orders are proportional to the displacements,
and the constant of proportionality is the frequency, f , of
the (virtual) reference grating. Of course, we can write
the relationships in terms of the pitch g of the reference
grating, since f = 1/g.

1.1.1 Specimen Gratings

Typically, the virtual reference grating frequency is
f = 2400 lines/mm (60 960 lines/in); the moiré inter-
ferometer projects this grating onto the specimen. The
specimen grating is a cross-line phase grating with
1200 lines/mm in both the x- and y-directions. It is

usually formed on the specimen by replication from
a mold, which is itself a cross-line grating. A greatly
enlarged view is shown in Fig. 1.5a, illustrating the
orthogonal array of hills that comprise the cross-line
grating.

The replication method of Fig. 1.5b is used for di-
verse applications that involve larger regions of interest,
e.g., larger than one square cm. The mold is prepared
with a reflective metallic film, usually evaporated alu-
minium. A liquid adhesive, usually an epoxy, is squeezed
into a thin layer between the specimen and mold. They
are separated when the adhesive solidifies. The weakest
interface is between the metallic film and the underly-
ing mold, so the reflective metallic film is transferred
to the specimen together with the hills and valleys of
the grating. The total grating thickness is usually about
25 µm.

The technique of Fig. 1.5c is used for small speci-
mens of complex geometry, like those encountered in
electronic packaging tests. In this case, the specimen is
prepared with a smooth, flat surface. A very thin layer
of low viscosity adhesive is spread on the mold by the
drag method and the specimen is pressed into the adhe-
sive. Surface tension draws the thin adhesive away from
the edges of the specimen; therefore, no cleaning opera-
tion is required to remove the excess adhesive. With this
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Fig. 1.5 (a) 1200 lines/mm cross-line specimen grating. (b) Replication procedure for typical specimen gratings.
(c) Procedure for small specimens of complex geometry

procedure, the grating thickness is usually about 2 µm.
Again, the result is a thin, compliant, reflective cross-
line grating, which deforms together with the underlying
specimen.

1.1.2 Optical Systems

The generic optical system is illustrated in Fig. 1.6. As
in Fig. 1.3, two coherent, collimated beams marked B1
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Fig. 1.6 Schematic diagram for 4-beam moiré interfero-
metry

and B2 create a virtual reference grating with its
lines perpendicular to the x-direction. They interact
with the corresponding array of lines on the speci-
men grating to create the Nx fringe pattern, depicting
the x-component of displacement. The fringe pattern
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Fig. 1.7 Achromatic moiré interferometer

is recorded by the camera, which is focused on the
specimen. Typically, it is a digital CCD camera. Then
beams B3 and B4 are used to record the Ny pat-
tern. The virtual reference grating frequency is usually
2400 lines/mm. For light in the visible wavelength
range, α is near 45◦. The contour interval for the fringe
pattern is 1/ f , i. e., a displacement of 0.417 µm per
fringe order.

Numerous different optical systems can be designed
to provide the essential elements of Fig. 1.6. A few sys-
tems are illustrated in [1.4]. Two-beam systems have
been used for special applications. For strain and stress
analysis, the 4-beam optical system offers a vital ad-
vantage: shear strains can be extracted with the same
accuracy as normal strains.

Achromatic optical systems have also been devised,
and Fig. 1.7 is an example [1.4]. A temporally incoher-
ent light source can be used. With this arrangement,
the angle of diffraction, α, at the upper grating changes
in exact harmony with the wavelength λ to maintain
a fixed frequency f of the virtual reference grating. The
upper grating is called a compensator grating, since it
compensates for variations of the wavelength. Whereas
monochromatic purity is not needed, spatial coherence
remains a requirement.

1.1.3 The Equations

The pertinent equations are these:

• For optical interference of 2 beams (Fig. 1.4b)

F = 2

λ
sin θ, (1.1)

where F is the fringe frequency (fringes/mm) in the
region of intersection, λ is the wavelength, and θ is
the half-angle of intersection.• For the moiré interferometer

sin α = λ f

2
, f = 2 fs (1.2)

where f and fs is the frequency of the virtual refer-
ence grating and the specimen grating, respectively.• For the displacements at each point in the field

U = 1

f
Nx; V = 1

f
Ny, (1.3)

where U and V are displacements in the x- and
y-directions, respectively.
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Moiré Interferometry 1.1 Current Practice 7

• For the strains at each point

εx = ∂U

∂x
= 1

f

(
∂Nx

∂x

)
,

εy = ∂V

∂y
= 1

f

(
∂Ny

∂y

)
, (1.4)

γxy = ∂U

∂y
+ ∂V

∂x
= 1

f

(
∂Nx

∂y
+ ∂Ny

∂x

)
, (1.5)

where ε and γ are normal and shear strains, respec-
tively. Thus, the strains are determined by the rate of
change of fringe orders in the patterns, or the fringe
gradient surrounding each point.• For fringe gradients

∂Nx

∂x
≈ ∆Nx

∆x
; etc. (1.6)

The derivatives are usually approximated by their
finite increments, i. e., the change of fringe order
that occurs in a finite distance ∆x.• For the stresses
Stresses are determined from the strains, using the
stress-strain relationships (or the constitutive equa-
tions) for the specimen material.

1.1.4 Fringe Counting

The rules of topography of continuous surfaces govern
the order of fringes [1.5]. Fringes of unequal orders
cannot intersect. The fringe order at any point is unique,
independent of the path of the fringe count used to reach
the point.

The location of a zero-order fringe in a moiré pattern
can be selected arbitrarily. Any fringe – black, white or
gray – can be assigned as the zero order fringe. This is
because rigid-body translations are not important in de-
formation analysis. Absolute displacement information
is not required and relative displacements can be de-
termined using an arbitrary datum. In Fig. 1.8, the zero
fringe is assigned in the lower left region of the spec-
imen. Of course, at every point along this continuous
fringe, Ny = 0.

Figure 1.8 shows the deformation of a tensile coupon
cut from a stainless steel plate in the region of a weld.
Cracks appear in the weld, but along the left edge of the
specimen, the material is continuous. Since the strain is
tensile, or positive, the fringe orders along the left edge
increase monotonically in the +y-direction, as shown.
Then the fringe orders can be assigned at every point
in the field by following continuous fringes across the
field. Fringe orders along the right edges were assigned
accordingly.

Where a crack is present, the V displacements are
different along the upper and lower lips of the crack.
This accounts for the crack opening that results from
the tensile load. For example, at the right edge the
fringe order changes from Ny = 3 to Ny = 10, indicat-
ing a crack-opening displacement of 7 fringe orders, or
2.9 µm (115 µin).

Clues derived from known loading conditions and
known specimen geometry are often sufficient to es-
tablish the sign of the fringe gradient at every point,
i. e., to establish whether the fringe order is increas-
ing or decreasing as the count progresses from one
fringe to the neighboring fringe. Occasionally the clues
might not be sufficient, but there is always a simple
experimental way to determine the sign of the fringe
gradient.

If during the experiment, the specimen is moved
gently in the +x-direction, the fringe order Nx at every
point increases. This means that the fringes all move to-
ward the direction of lower-order fringes. Thus, if the
Nx fringes move in the negative x-direction, the gradi-
ent ∂Nx/∂x is positive. The argument is the same for
the y-direction. A convenient alternative is available if
the moiré interferometer is equipped for phase stepping
(fringe shifting). The investigator can watch the pat-
tern while the fringes are shifted. Again, the fringes
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Fig. 1.8 Fringe counting. The fringe pattern shows weld
defects in a stainless steel tension specimen. f =
2400 lines/mm. (Courtesy of S. A. Chavez)
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move toward lower fringe orders when the phase is in-
creased. Thus, the sign of the fringe gradients is readily
determined at any point.

1.1.5 Strain Analysis

Strains are determined from the two displacement
fields by the relationships for engineering strain, (1.4)
and (1.5). In principle, the exact differential can be
extracted at any point by plotting a curve of fringe
orders along a line through the point and measuring
the slope of the curve at the point. Often, how-
ever, the finite increment approximation is sufficient,

whereby (as an example) ∂Nx/∂x is taken to be
equal to ∆Nx/∆x. In that case, strain is determined
by measuring ∆x, the distance between neighboring
fringes, in the immediate neighborhood of the point of
interest.

Shear strains are determined as readily as normal
strains. Numerous examples of fringe counting and
strain analysis are given in [1.4]. In nearly all cases
of strain analysis, the strains are sought at specific
points (e.g., where the fringes are most closely spaced,
indicating strain maxima), or along specific lines. Man-
ual methods, and computer-assisted methods are most
practical for such cases.

1.2 Important Concepts

1.2.1 Physical Description

The description offered with Fig. 1.3 is a casual ex-
planation based upon the analogy to geometric moiré.
Nevertheless, it is effective. The rigorous analysis
of moiré interferometry [1.4], based on diffraction
and optical interference, shows that the fringe or-
der/displacement relationship is identical for moiré
interferometry and geometric moiré. The simple, intu-
itive procedures to extract data from geometric moiré
patterns apply also to moiré interferometry patterns.
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Fig. 1.9 Diffraction by the specimen grating produces beams with
plane wave fronts for the no-load condition. Warped wave fronts
result from inhomogeneous deformation of the specimen

This is important for our colleagues who might practice
moiré interferometry, but specialize in diverse aspects
of engineering and materials science, as distinct from
specialists in optical techniques.

For our colleagues in photomechanics, the physical
description illustrated in Fig. 1.9 is more satisfying. Be-
fore loads are applied to the specimen, the grating on
its surface has a uniform frequency of fs. The incident
beam 1 is diffracted such that its first order emerges nor-
mal to the specimen, with wave front w′

1. This requires
that sin α = λ fs. Similarly, beam 2 is diffracted to form
emergent wave front w′

2. For these initial conditions, the
emergent beams have parallel wave fronts and they in-
terfere to create a null field, i. e., a uniform intensity or
the infinite fringe.

Incidentally, we note from (1.1) that when two beams
intersect with this half-angle α, they generate interfer-
ence fringes of frequency f , where f ≡ 2 fs. Thus, the
frequency of the virtual reference grating of Fig. 1.3 is
twice the initial frequency of the specimen grating. This
is the condition that provides normal viewing, without
distortion of the image.

For a complex specimen, the specimen grating de-
forms nonuniformly when loads are applied. The grating
pitch and orientation vary as continuous functions along
the specimen. Consequently the directions of diffracted
rays change continuously, and the two beams emerge
as warped wave fronts w′′

1 and w′′
2. They interfere to

generate contours of their separation S, and this in-
terference pattern is recorded by the camera. With the
camera focused on the plane of the specimen, the image
is the moiré pattern – the map that depicts the in-
plane deformation of the specimen. Summing up, moiré
interferometry is a case of two-beam interferometry.
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Moiré Interferometry 1.2 Important Concepts 9

It is important to focus the camera on the plane of
the specimen. Since wave front warpage changes as
the wave travels away from the specimen, it is espe-
cially important for cases of strong strain gradients and
the concomitant strong warpage of the emerging wave
fronts. The issue is addressed in [1.4].

1.2.2 Theoretical Limit

From (1.2), we see that the theoretical upper limit for the
reference grating frequency is approached as α (Fig. 1.6)
approaches 90◦. The theoretical limit is f = 2/λ. The
corresponding theoretical upper limit of sensitivity is
2/λ fringes per unit displacement, which corresponds
to a contour interval of λ/2 displacement per fringe
order.

In the experiment of Fig. 1.1, α was 77.4◦ and λ was
488.0 nm. This produced a virtual reference grating of
4000 lines/mm (101 600 lines/in). For this wavelength,
the theoretical limit is f = 4098 lines/mm, which means
that the experiment was conducted at 97.6% of the
theoretical limit of sensitivity.

The theoretical limit pertains to virtual reference
gratings formed in air. In the experimental arrangement
described later for microscopic moiré interferometry, the
grating is formed in a refractive medium.

1.2.3 Black Holes

Referring to Fig. 1.9, we can visualize that the angles
of diffraction from any region of the specimen stems
from two effects: (1) the load-induced strain and (2) the
load-induced surface slope. If the angles of diffraction
become large enough, light from that region can miss
the lens and never enter the camera. The region appears
black in the image – it is called a black hole.

In such cases, the main cause is usually the surface
slope. It is rare that a homogeneous body would exhibit
large slopes. A composite body, fabricated by joining
two dissimilar materials, can exhibit large slopes near
the interface as a result of a Poisson’s ratio mismatch.
Experience indicates that the slopes are seldom severe
enough to cause black regions until very high strain
levels are reached.

The camera lens can be translated laterally to cap-
ture the light of the moiré pattern that is otherwise
lost. In doing so, it is possible that other regions will
become black. An alternative is to replace the cam-
era lens with a lens of larger numerical aperture, and
this might necessitate viewing the specimen at higher
magnification.

1.2.4 Insensitive
to Out-of-Plane Deformation

This is largely a pedagogical issue, inasmuch as the
literature may not be sufficiently clear. Various pub-
lications show sensitivity to out-of-plane rotations.
However, the rigorous mathematical analysis of [1.4]
proves that moiré interferometry is insensitive to all
out-of-plane motions, including rotations. Where do the
publications deviate?

Figure 1.10 should help clarify the issue. It repre-
sents the planes, or walls of interference of the virtual
reference grating, and it also represents the plane of
the undeformed specimen grating as plane abcd. Let
P be a point fixed on the specimen grating, and let P
move to another point in space, P′, when the specimen
is deformed. The deformed surface surrounding P′ might
have any slope, as indicated by the dashed box. As the
point moves in the x-direction, it cuts through walls of
interference and therefore causes a change of fringe or-
der in the moiré pattern. Expressed in other words, the
point crosses lines of the (virtual) reference grating. For
displacement components V and W , the point does not
cross any wall, and therefore these components have no
effect on the fringe order. The moiré pattern remains in-
sensitive to V and W regardless of the surface slope. This
corroborates the proof that moiré interferometry senses
only the component of displacement perpendicular to
the walls of the virtual reference grating.
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Fig. 1.10 Walls of interference of the virtual reference grat-
ing. Only the U component of displacement crosses the
walls of the reference grating
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Engineering strain is the ratio of the local change of
length to the original length, when both are projected
onto the original specimen surface abcd. Thus, engi-
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Fig. 1.11 Dis-
placement fields
for a compact
shear specimen.
Carrier fringes
of rotation trans-
form the V field.
Local irregulari-
ties in the fringes
are caused by
local variations
in the composite
material. (Cour-
tesy of P. G. Ifju)

neering strains are correctly determined by (1.4) and
(1.5), regardless of surface slopes. Note that out-of-plane
displacements are referenced to the original surface, too.
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Moiré Interferometry 1.2 Important Concepts 11

For exceptional studies in which the surface slope
is large enough, the investigator might be interested
in these lengths measured on the specimen surface in-
stead of plane abcd. This is where the publications
deviate. In such cases, a mathematical transformation
is required which involves additional variables, specifi-
cally the components of the surface slopes. These slopes
must be measured (or otherwise determined) to aug-
ment the moiré data at each point where the strain is
to be calculated. Thus, if the investigator feels the out-
of-plane slopes are significant enough to degrade the
accuracy that is sought for a specific analysis, then a La-
grangian strain or other three-dimensional strain should
be calculated. Otherwise, the investigator accepts that
the influence of the slope is negligible for calculating
the strain.

Note, too, that special apparatus and procedures may
be required to record an image of the moiré fringes when
surface slopes become large. Otherwise, the moiré pat-
tern may display black holes in regions of large slopes.
In general, it is the engineering strain that is sought by
moiré interferometry, not a transformed strain, and (1.4)
and (1.5) are fully effective.

1.2.5 Accidental Rigid Body Rotation

The previous paragraph refers to out of-plane deforma-
tions induced by the loads – not rigid-body motions. In
practice, the specimen is observed in its no-load condi-
tion and the moiré interferometer is adjusted to produce
a null field, i. e., a uniform fringe order throughout the
field. Then the load is applied and the displacement fields
are recorded.

Sometimes, an out-of-plane rigid-body rotation is
introduced accidentally in the loading process. Rota-
tion about an axis that is perpendicular to the lines of
the reference grating has no effect on the fringe pat-
tern. Rotation by Ψ about an axis parallel to the grating
lines is seen as an apparent foreshortening of the speci-
men grating. It introduces an extraneous fringe gradient
that corresponds to an apparent compressive strain εapp,
where

εapp = −Ψ 2

2
(1.7)

provided the rotation Ψ is not large. The superscript
signifies an extraneous strain, or error. The extraneous
fringe gradient is a second-order effect and it can be ne-
glected in the usual case where it is small compared to the
strain-induced fringe gradient. Otherwise, a correction
can be applied [1.4].

1.2.6 Carrier Fringes

An array of uniformly spaced fringes can be produced
by adjustment of the moiré interferometer and these are
called carrier fringes. With the specimen in the no-
load condition, a carrier of extension is produced by
changing angle α (Fig. 1.6). These fringes are parallel
to the lines of the reference grating, just like the fringes
of a pure tensile (or compression) specimen. Carrier
fringes of rotation are produced by a rigid-body rota-
tion of the specimen or the interferometer, and these are
perpendicular to the lines of the reference grating.

It is frequently valuable to modify the load-induced
fringe patterns with carrier fringes [1.6]. Figure 1.11
is an example [1.7], where the load-induced fringes
are shown in a and b. The specimen is cut from
a graphite/epoxy composite material and it is loaded
in a compact shear fixture c. In d, the fringes in the
test section between notches are subtracted off by car-
rier fringes of rotation. The carrier fringes are vertical
and uniformly spaced, and their gradient is opposite to
that of the shear-induced fringes. What is the benefit? It
shows that the normal strain εy is zero along the vertical
center line of the specimen, that εy is extremely small
throughout the test zone, and that the shear deformation
is nearly uniform over a wide test region.

Carrier fringes can be introduced easily, typically by
turning an adjusting screw in the moiré interferometer.
They are used, as needed, for a variety of purposes, espe-
cially to remove ambiguities and enhance the accuracy
of data reduction.

For in-plane rigid-body rotation

∂Nx

∂y
≡ −∂Ny

∂x
. (1.8)

Substitution into (1.5) shows that shear strains calcu-
lated from the moiré fringes are not affected by carrier
fringes of rotation (when a 4-beam moiré interferom-
eter is used). Also, the calculated shear strains are
not affected by carrier fringes of extension. The cal-
culated normal strains are (essentially) unaffected by
carrier fringes of rotation. These conditions allow bene-
ficial changes in the fringe patterns without altering the
reliability of strain calculations.

1.2.7 Loading: Mechanical, Thermal, etc.

Experimental arrangements for mechanical loading are
very diverse; they depend upon the size and nature of
the specimen and the magnitude of the loads. In some
cases it is necessary to mount the moiré interferometer
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Fig. 1.12 Arrangement for real-time thermal deformation
tests

on the structure of the testing machine, or to attach it to
the assembly being investigated. In others, the specimen
can be loaded in a fixture that rests on an optical table
together with the moiré interferometer.

For real-time thermal loading, or for deformation
caused by changes of moisture content, chemical activity
or radioactivity, the environmental chamber must be po-
sitioned adjacent to the moiré interferometer. Figure 1.12
illustrates a scheme used for thermal deformation mea-
surements in the electronic packaging industry. As an
important factor, the specimen is connected rigidly to
the interferometer. The connecting rods do not contact
the chamber (only loose insulation or compliant baffles
fill the air gap at the chamber wall), so vibrations in
the forced air convection chamber are not transmitted to
the specimen. The arrangement has proved to be very
effective. It enables the recording of fringe patterns dur-
ing the transition between temperature changes, during
moisture ingress and egress, during chemical activity,
etc. Hence, it enables real-time measurements.

Figure 1.13 is an example of real-time thermo-
mechanical analysis of an electronic package during
a thermal cycle with temperature extremes from −20 ◦C
to 125 ◦C [1.8, 9]. The device is an assembly of diverse
materials with different coefficients of thermal expan-
sion, so thermal stresses, strains and deformation result
from any change of temperature.

The fringes are remarkably clear at this magnifi-
cation, except for those in the printed circuit board
(PCB) at 125 ◦C; the PCB is a heterogeneous mater-
ial – a composite of woven glass fibers in an epoxy

matrix – and because of the weave its displacement
contours are very complicated. Higher magnification is
indicated. Visual inspection of the V field shows oppo-
site directions of curvature in the chip region before and
after the 125 ◦C temperature; this behavior results from
creep of the solder and molding compound. Whereas
extensive computational analysis is undertaken for the
mechanical design of electronic packages, the complex-
ities of geometry and materials necessitate experimental
guidance and verification.

1.2.8 Bithermal Loading

Thermal deformations can also be analyzed by room
temperature observations. In this technique, the speci-
men grating is applied at an elevated temperature, and
then the specimen is allowed to cool to room tempera-
ture before it is observed in the moiré interferometer.
Thus, the deformation incurred by the temperature in-
crement is locked into the grating and recorded at room
temperature.

An adhesive that cures slowly at elevated tempera-
ture is used, usually an epoxy. The specimen and mold
are preheated to the application temperature; then the
adhesive is applied, the mold is installed, the adhesive
is allowed to cure, and the mold is removed – all at the
elevated temperature. The mold is a grating on a zero-
expansion substrate, so its frequency is the same at
elevated and room temperatures. Otherwise, a correction
is required for the thermal expansion of the mold.

These measurements can also be performed at cryo-
genic temperatures. In one test, the specimen grating
was applied at −40 ◦C using an adhesive that cured in
ultraviolet light.

The example shown in Fig. 1.14 is taken from
an investigation of thermal stresses in a bimaterial
joint [1.10]. The specimen grating was applied and cured
at 157 ◦C and subsequently observed at 24 ◦C room
temperature. The two materials restrained the natural
contraction of each other, causing large thermal stresses
and strains. The V displacement field for the 133 ◦C
temperature increment is shown here; carrier fringes of
extension were applied to portray the abrupt transition
near the interface. Clearly, the fringe gradient ∆Ny/∆y
is negative in the brass and positive in the steel. Strains
were extracted, and since the elastic constants were
known, stresses were calculated. A remarkable condition
was found near the interface, namely a peak compres-
sive stress in the brass and a peak tensile stress in the
steel. Subsequent analysis by microscopic moiré inter-
ferometry documented a severe stress gradient in the
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Fig. 1.13 U and V displacement fields for an electronic package subjected to a thermal cycle in an environmental chamber.
f = 2400 lines/mm
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Fig. 1.14 Thermal deformation for a bimaterial joint. The Ny pat-
tern, with carrier fringes of extension, shows the abrupt transition
near the interface. ∆T = 133 ◦C; a = 55.9 mm; f = 2400 lines/mm.
(Courtesy of J. D. Wood)

50 µm zone surrounding the interface. The peak stresses
were elastic and the peaks were connected by the severe
gradient in the transition zone.

1.2.9 Curved Surfaces

Moiré interferometry has been developed for routine
analysis of flat surfaces. However, certain accommoda-
tions can be made for curved surfaces when the problem
is important enough to invest extra effort. The most
straightforward approach is to treat any local region as
a flat surface. A small grating mold (cut from a larger
mold) could be used to replicate the grating on the
curved surface of the specimen. Other innovative tech-
niques can be employed for cylindrical surfaces, or other
developable surfaces.

Results shown in Fig. 1.15 are from an impor-
tant investigation. It is from a study of the ply-by-ply

deformation at a central hole in multi-ply compos-
ite plates [1.11]. The specimens were thick laminated
composite plates, each with a 25.4 mm diameter cen-
tral hole. The grating was applied to the cylindrical
surface of the hole and successive replicas of the
deformed grating were made with the specimen at dif-
ferent tensile load levels. First, a cross-line grating
was formed on the cylindrical surface of a disk and
it was used as a mold to apply the grating to the
specimen. Then, with the specimen under load, the de-
formed grating was replicated (or copied) on another
disk. The replica was inserted in a moiré interferom-
eter and deformation data were recorded by a moiré
interferometer as a series of narrow strips, each approx-
imating a flat surface. Figure 1.15 shows a mosaic of
such strips for a 90◦ portion of the hole in a cross-ply
[04/904]3S laminate of IM7/5250-4 (graphite fibers in
a bismalimide-cyanate ester matrix). An enlarged view
of the Nθ fringe pattern at the θ = 75◦ location is shown
in Fig. 1.15d, together with a graph of the ply-by-ply
distribution of shear strains. This is the location of
greatest fringe density, and yet the data are revealed
with excellent fidelity, enabling dependable determi-
nation of strain distributions. The interlaminar shear
strains at the 0/90 interfaces are about five times greater
than the tensile strain at θ = 90◦. A primary purpose
of the work was to provide experimental data for the
evaluation of computational techniques for composite
structures.

1.2.10 Data Enhancement/Phase Stepping

An abundance of load-induced fringes is typical for
most applications, sufficient for reliable analyses. For
small specimens, however, or within a small field of
view for larger specimens, the displacement accumu-
lated across the field will be small (even if the strains are
not small); then, the number of fringes is not sufficient
and additional data are desired.

Phase stepping, also called fringe shifting, provides
additional data. Referring to Fig. 1.9, we recall that the
fringe pattern is a contour map of the separation S of
wave fronts that emerge from the specimen. In phase
stepping, the separation S is increased (or decreased) by
a fraction of a wavelength, uniformly across the field.
The result is a uniform change of fringe order through-
out the field of view; the intensity at every pixel, as
measured by the digital camera, is changed. Usually, the
phase change is accomplished by translating a mirror,
or other optical element in the moiré interferometer, us-
ing a piezo-electric actuator to displace the element by
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Fig. 1.15a–d
Ply-by-ply dis-
placements at the
cylindrical sur-
face of a hole
in a cross-ply
composite plate.
(d) shows an en-
larged view of
the Uθpattern at
the 75◦ location,
and the shear
strains at that
location. (Cour-
tesy of D. H.
Mollenhauer)
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Fig. 1.16 Steps in the optical/digital fringe multiplication
(O/DFM) algorithm

a tiny increment. For an achromatic system like that of
Fig. 1.7, the phase change can be executed by in-plane
translation of the compensator grating.

A common procedure for full-field data enhance-
ment is the quasi-heterodyne method [1.12, 13]. In the
simplest implementation, three shifted images of the
fringe pattern are recorded, with phase steps of 0, 2π/3
and 4π/3 (fringe shifts of 0, 1/3 and 2/3 of a fringe
order). The CCD camera, frame grabber and computer
gather the data from the three images, recording the in-
tensity at each pixel as I1, I2, I3. With these data, the
quasi-heterodyne algorithm calculates the fractional part
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Fig. 1.17 Optical paths in an immersion interferometer and
arrangement for U and V fields

of the fringe order N ′ at each pixel by

N ′ = 1

2π
arctan

√
3 (I2 − I3)

2I1 − I2 − I3
. (1.9)

Then the fringe order of each pixel is determined by an
unwrapping algorithm, whereby neighboring pixels are
compared to determine whether an integral fringe order
should be added (or subtracted) to the fractional part.
Thus, fringe orders are established throughout the field
of view. Various other implementations of the quasi-
heterodyne method provide flexibility and redundancy
by using more than three phase steps.

A lesser known algorithm, called the optical/digital
fringe multiplication (O/DFM) method, has also been
used for moiré interferometry [1.4]. It shares numerous
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Fig. 1.19 Microscopic moiré fringe contours for a solder ball interconnection in an electronic package. ∆T = 60 ◦C;
f = 4800 lines/mm; β = 4; 52 nm/contour

Fig. 1.18 Boron/aluminium composite subjected to a change
of temperature of 110 ◦C. Microscopic moiré interfer-
ometry was used with f = 4800 lines/mm and β = 6;
35 nm/contour

features with the quasi-heterodyne method, including in-
sensitivity to nonuniform illumination and optical noise.
It offers a unique feature, however, because the data that
is used comes exclusively from the points in the fringe
pattern where the intensity is changing most rapidly.
Compared to data taken at (or near) the maximum and
minimum intensity points in the fringe pattern, the phase
increment per grey level of the CCD camera is many
times smaller (approx. 1 : 50), so the data of greatest
accuracy is used exclusively.

The algorithm is portrayed in Fig. 1.16 for multi-
plication by 2. Two fringe patterns are used, patterns
stepped by 0 and by π (i. e., two complementary pat-
terns). Their intensities at each pixel are subtracted,
truncated and binarized. The result is a contour map
of the fringe orders, with two contours per fringe.
Multiplication by 4 is obtained using data stepped by
0, π/2, π and 3π/2. Multiplication by β requires β

stepped fringe patterns. Multiplication by β = 12 has
been demonstrated.
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1.2.11 Microscopic Moiré Interferometry

Within a tiny field of view, the relative displacements
are small and few fringes appear across the field. In-
creased sensitivity is desired. Two techniques have been
implemented to progressively increase the number of
load-induced fringes. The basic sensitivity is increased
by a factor of two by means of an immersion interferom-
eter, and then phase-stepping and the O/DFM algorithm
are used to produce a suitably dense fringe pattern.

Figure 1.17 illustrates an immersion interferome-
ter [1.4]; many alternative designs are possible. This one
was implemented, with λ = 514 nm (in air), α = 54.3◦
and n = 1.52 (where n is the index of refraction of the
interferometer block). Within the refractive medium the
wavelength was reduced to 338 nm, providing a virtual
reference grating frequency of 4800 lines/mm. This is
twice the frequency used (without immersion) for most
macroscopic applications, and it exceeded the theoreti-
cal limit for virtual reference gratings produced in air.
By (1.3), twice as many fringes are obtained for a given

displacement, compared to designs without immersion.
For phase stepping, the element labeled immersion inter-
ferometer is moved laterally by a piezoelectric actuator.
Movement of 1/ f causes a phase change of 2π, so β

steps of 1/β f each are used to implement the fringe
multiplication.

Figure 1.18 is an example. The specimen was a uni-
directional boron/aluminium composite subjected to
thermal loading. The bithermal method was used, where
∆T was 110 ◦C. Here, f = 4800 lines/mm; β = 6; and
the contour interval is 35 nm per contour. The pattern
shows the combined effects of thermal strains plus free
thermal expansion (α∆T ). When the uniform α∆T is
subtracted off for each material, the substantial range of
stress-induced strains in the aluminium matrix becomes
evident.

Figure 1.19 is an example from electronic packag-
ing, showing the displacement fields for a single solder
interconnect. Here, ∆T = 60 ◦C; f = 4800 lines/mm;
β = 4; and the contour interval is 52 nm/contour. De-
tails of the small deformation are clearly documented.

1.3 Challenges

The authors visualize two developments that would
be important contributions to the experimental me-
chanics community. We propose that members of the
community, worldwide, start modest endeavors to de-
velop these capabilities. The first would enhance the
ease and accuracy of strain determinations. The sec-
ond would further enhance the versatility of moiré
interferometry.

1.3.1 Strain Analysis

For most macromechanics analyses, moiré interferom-
etry provides a great number of stress-induced fringes,
sufficient for a detailed analysis. Yet, in current prac-
tice, there is a tendency to use phase-stepping schemes
to reduce these data to graphs of displacements and
strain distributions. The phase-stepping algorithms en-
joy popularity mostly because they enable automatic
data reduction. However, there are many pitfalls. Auto-
mated analyses do not recognize extraneous input like
those from scratches or other imperfections of the speci-
men grating. Automated analyses do not cope well with
rapidly changing displacement fields, for example, those
that can be encountered in composite structures; particu-
larly, automated analyses must not be allowed to extend
across regions of dissimilar materials.

Thus, for the majority of applications, interactive
schemes should be developed in which the investigator
controls the process and makes the decisions. The moiré
pattern is itself a map of deformation. The investigator
should choose the regions of interest – usually the re-
gions where the fringes are closest together and strains
are highest. Techniques should be developed to extract
these strains with the highest accuracy. The investiga-
tor should deal with possible imperfections in the fringe
patterns. He/she should decide whether carrier fringes
would aid the analysis.

The authors have proposed ideas on methods to ex-
plore and perfect. The challenge is published by the
Society for Experimental Mechanics in Experimental
Techniques [1.14], where the worldwide community is
invited to participate. The objective is to devise and share
a superior technique for extracting strains, and in an on-
going evolution to improve and refine the technique into
an easy, accurate and efficient algorithm. The Society
will maintain an open website to share the contributions
and make them available to everyone.

1.3.2 Replication of Deformed Gratings

In a classical paper by McKelvie and Walker [1.15],
replication was advocated for remote sites and harsh en-
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vironments, followed by analysis of the replicas in the
laboratory. Now, replication is envisioned as a routine
practice. In this practice, a grating is applied to the speci-
men or workpiece in the usual way. Then, the workpiece
is subjected to its working loads, for example in a me-
chanical testing machine, which deforms the specimen
and the specimen grating. Replicas of the deformed grat-
ing are made at desired intervals in the loading process,
and subsequently the replicas are analyzed in a moiré
interferometer.

Replication provides numerous advantages for typi-
cal applications. No limits are applied to the size of the
workpiece. Familiar equipment can be used for loading,
including large or special purpose machines. Vibrations
and air currents become inconsequential. The technique
can be applied in the field, far from the laboratory,
and in difficult environments. In many applications,
replicas can be made for cases where the loading is
not mechanical, but stems from changes of tempera-
ture, humidity, chemical or radiation environments, etc.

The replicas can be made on transparent substrates,
enabling use of transmission systems of moiré interfer-
ometry instead of the current reflection systems. When
transmission systems are used, the camera lens can be
located very close to the replica and, therefore, high
magnifications and high spatial resolution become con-
venient. Additionally, the replicas become permanent
records of the deformation, so there is easy recourse
to checking and extending an analysis after an initial
investigation.

Thus, replication is extremely attractive for routine
use as well as special applications. What developments
are required? Although the replication method can be
practiced with current technology (Fig. 1.15 is a com-
pelling example) it would be advantageous to find
materials and techniques for quick and routine replica-
tion of deformed gratings. We believe these techniques
will be optimized and broadly implemented; the experi-
mental mechanics community is invited and encouraged
to participate in their development.

1.4 Characterization of Moiré Interferometry
The preceding description and examples lead to these
conclusions. Moiré interferometry combines the sim-
plicity of geometrical moiré with the high sensitivity
of optical interferometry. It measures in-plane displace-
ments with very high sensitivity. Because of the great
abundance of displacement data, reliable strain distri-
butions – normal strains and shear strains – can be
extracted from the patterns. With knowledge of the
material properties, local and global stresses can be
determined.

Moiré interferometry is characterized by a list of
excellent qualities, including these:

• full-field technique – quantitative measurements can
be made throughout the field• high sensitivity to in-plane displacements U and
V – typically 0.417 µm per fringe order, but ex-
tended into the nanometer range by microscopic
moiré interferometry• insensitive to out-of-plane displacements W – out-
of-plane deformation does not affect the accuracy of
in-plane displacement measurements• high spatial resolution – measurements can be made
in tiny zones• high contrast – the fringe patterns have excellent
visibility

• large dynamic range – the method is compatible
with large and small displacements, large and small
strains, and large and small strain gradients; there
are no correlation requirements• shear strains are determined as accurately as normal
strains• real-time technique – the displacement fields can be
viewed as the loads are applied.

Moiré interferometry differs from classical interferom-
etry and holographic interferometry, which are most
effective for measuring out-of-plane displacements. It
is distinguished from the various methods of speckle
interferometry for measuring in-plane displacements,
which cannot exhibit the fringe visibility and exten-
sive dynamic range of moiré interferometry. Moiré
interferometry has a proven record of applications in
engineering and science.

Bibliography

• Comprehensive treatment of moiré interferometry
for strain and stress analysis; theory, practice and
applications: [1.4] Note: Excerpts are included in
this chapter with the kind permission of Springer-
Verlag, Berlin, New York.
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• Background literature on moiré phenomena; math-
ematical treatments; not directed to strain analysis:
[1.16–18]

• Review article; historic references until 1980s:
[1.19]
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