
Preface

The idea of creating a book of this genre came with the realization that there were no
books in the open literature that combined the materials aspect of piezoelectric and
acoustic materials together with the principles of transducer design and recent ad-
vances in piezoelectric transducers, as well as their application. By combining topics
such as Fundamentals of Piezoelectricity (Part I), Piezoelectric and Acoustic Mate-
rials for Transducer Technology (Part II), Transducer Design Principles (Part III),
and Piezoelectric Transducer Fabrication Methods (Part IV), our purpose was to
provide a comprehensive and self-consistent volume whereby the aforementioned
lack of a reference book in the open literature can be remedied.

This book is comprised of four complementary sections. In Part I, a concise
treatment of piezoelectric phenomena in solids is presented. Chapter 1 by Akdoğan
and Safari establishes the solid-state thermodynamic foundation for ferroelectricity
as all piezoelectrics used in today’s transducer technology are ferroelectric. It also
delineates the origin of very important concepts such as spontaneous polariza-
tion, hysteresis loops, and piezostrain coefficients, which are needed to describe
the macroscopic behavior of piezoelectrics. The chapter by Kholkin, Pertsev, and
Goltsev (Chap. 2) deals with the symmetry aspects of the piezoelectric effect in
various materials (single crystals, ceramics, and thin films). It defines the third-rank
tensor of piezoelectric coefficients in reference to the fundamentals of crystallogra-
phy, and then discusses the orientation dependence of the longitudinal piezoelectric
response in ferroelectric single crystals. Also, a concise discussion on the effec-
tive piezoelectric constants of polydomain crystals, ceramics, and thin films and
their dependence on crystal symmetry is provided. The domain-wall contribu-
tion to the piezoelectric properties of ferroelectric ceramics and thin films is also
given. Finally, the crystallographic principles of piezomagnetic, magnetoelectric,
and multiferroic materials are presented. In Chap. 3, Trolier-McKinstry presents
a detailed description of the crystallochemical principles of ferroelectricity and
piezoelectricity in solids. The discussion covers perovskites, tolerance factors, do-
mains and domain walls, the lead zirconate titanate (PZT) system, bismuth-layer
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structure, LiNbO3, tungsten bronze structure, and SbSI, which is the point of depar-
ture in the development of piezoelectric composites. The emphasis is on the atomic
arrangements leading to polarization and its consequences on material properties.

In Part II, three chapters are devoted to the most prominent piezoelectric and
acoustic material systems currently either in use or in development for transducer
applications. Damjanovic (Chap. 4) gives a detailed account on lead-based fer-
roelectrics/piezoelectrics, including PbTiO3, PZT, relaxor ferroelectrics, and sin-
gle crystals. Therein, one could find an in-depth discussion of the morphotrophic
phase boundary in the PZT system as well as the anisotropy in piezoelectric re-
sponse in PbTiO3. Systems with compositional modifications are treated as well,
where hard and soft ferroelectrics are introduced. Kosec et al. (Chap. 5) gives a full
overview of the (K, Na)NbO3 system, which is the most important lead-free ferro-
electric system whose compositional modifications have great promise for applica-
tions in the future. The emphasis is on the processing of ceramics such as KNbO3,
NaNbO3, (K, Na)NbO3, and the recently discovered KNN–LT–LS ternary system,
thereby effectively establishing processing-property relations. Also, a wealth of ma-
terial properties appertaining to the (K, Na)NbO3 and related systems are included
therein. Chap. 6 by Takenaka is on bismuth-based ferroelectric ceramics, which is
another lead-free system of utmost importance. The major focus there is on the
Bi4Ti3O12 and its compositional modifications. Most importantly, Takenaka pro-
vides a very thorough treatment of grain orientation (texturing) of such lead-free
ceramics, and discusses its consequences on piezoelectric properties. Cheng et al.
(Chap. 7) presents a very detailed overview of the advances in electromechanically
active polymers in the context of mechatronics and artificial muscle. After a concise
review of the appertaining phenomenology on electromechanical behavior in solids,
he and his colleagues present systems such as PVDF, P(VDF–TrFE) copolymer,
and terpolymers. A very comprehensive discussion on phase transitions, structure,
and electromechanical response is provided along with sets of material properties.
In Chap. 8, Yamashita et al. introduce the recent advances in acoustic lens materi-
als and provide a systematic account on recent advances in silicon-based technolo-
gies. Therein, the evolution of acoustic properties of silicon lenses are discussed
from the processing vantage point, and the most prominent dopants for composite-
making are identified. Part II ends with another chapter on acoustic lens materials
by Kondo, which summarizes the use of carbon fiber composites and how a wide
range of acoustic impedances can be fashioned for transducer applications.

Part III is devoted to transducer design principles. First, Lethiecq et al. (Chap. 10)
discuss the design principles governing medical ultrasound transducers. The per-
formance metrics of such transducers are introduced, operation principles of sin-
gle element and transducer arrays are elaborated on, and the underlying acoustic
principles are discussed. In Chap. 11, Tressler discusses the design principles of
transducers for sonar applications. Various in-air and under-water calibration tech-
niques are first presented, followed by various projector designs (ring, bender
bar, flexural disks, flextensional, tonpilz) are introduced and appertaining design
methodologies are elaborated on. Also included in that chapter are hydrophone
design principles, including cylinder and sphere configurations. This section ends
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with Chap. 12, where Hladky-Hennion provides a comprehensive overview of finite
element modeling (FEM) principles as applied to piezoelelectric transducers. First,
the mathematical foundations are provided through constitutive equations, the vari-
ational principle, and appertaining functionals. Then, the application of the FEM
method is demonstrated. Analysis methods such as static, harmonic, modal, and
transient are given. The chapter concludes with examples on the analysis of cymbal
transducers and cymbal arrays, and 1–3 composite transducers.

Part IV is on transducer fabrication methods. Therefore, it is inherently tied
into applications as well since fabrication methods tend to be application spe-
cific. In Chap. 13, Schoenecker addresses the status of piezoelectric fiber compos-
ite fabrication, and focuses on three topics: the preparation of sol–gel-derived PZT
fiber/polymer composites, the soft-mold method with high achievement potential
for preparing tailor-made composites and understanding the structure–property re-
lationships, and the preparation of powder suspension-derived PZT fiber/polymer
composites as the technologically advanced and commercialized process. Therein,
it is iterated that the use of piezoceramic fibers allows for the fabrication of high-
quality fiber composites, surpassing performance metrics that cannot be achieved by
the conventional dice and fill technique. Beige and Steinhausen (Chap. 14) discuss
different types of composition gradient systems for bending actuators. The com-
bination of hard and soft piezoelectric ceramics and electrostrictive and electrocon-
ductive materials are introduced. Processing strategies are summarized and a mathe-
matical models for modeling of poling in such combined systems are presented. The
results of theoretical analysis are compared with experimental data for lead-free sys-
tems based on barium titanate. In Chap. 15, Smay et al. present the advances made
in the use of robocasting solid freeform fabrication (SFF) technique based on the di-
rect writing of highly concentrated colloidal gels. They show that robocasting offers
facile assembly of complex three-dimensional geometries and a broad pallet of ce-
ramic, metallic, and polymeric materials from which devices can be developed. Ex-
amples of PZT skeletons for direct use or to create epoxy-filled composites suitable
for hydrostatic piezoelectric sensors are given. PZT composites of (3–3, 3–2, 3–1)
connectivity are demonstrated. It is shown that the figure of merit (dhgh) increases
by up to 60-fold compared with bulk PZT in such composites. In Chap. 16, Jantunen
et al. present a comprehensive overview of the general properties and requirements
of piezoelectric micropositioners. Special attention is paid to stiffness related to
other actuator properties, with general rules and examples. Also the control and sen-
sor techniques required to avoid or minimize the nonlinearities of the piezoelectric
device are discussed in detail. And it is shown that in micropositioning a profound
overall know–how about material properties, actuator design, and control, sensor
and driving techniques are required in addition to an in-depth knowledge of ap-
plication requirements. Finally, some commercial applications utilizing piezoelec-
tric micropositioners are given as examples. Dog̃an and Uzgur (Chap. 17) present
a broad review of the application of piezoelectric transducers. Piezoelectric actua-
tors are compared with magnetically active and thermally active actuators, and then
piezoelectric actuators and their design and fabrication, especially traditional piezo-
electric transducers with newly designed flextensional transducers, are compared.
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Finally, application-related issues are discussed on Chap. 18 by Shashank et al.
provides strategies for the selection of the piezoelectric transducers based on the
frequency and amplitude of the mechanical stress in the context of energy harvest-
ing. The figure of merit for the material selection is shown to be directly proportional
to the product (d × g). The criterion for maximization of the product is discussed
in depth, and results are reported on various devices utilizing piezoelectric bimorph
transducers. Or and Chan (Chap. 19) present recent advances in piezocomposite ul-
trasonic transducers for high-frequency wire bonding of semiconductor packages.
The principles of wire-bonding and appertaining challenges are summarized. The
use of 1–3 piezocomposite rings in such applications is shown, and the electro-
mechanical characteristics are presented. The chapter also includes a section on the
evaluation of wire-bonding performance utilizing such transducers. Bassiri-Gharb
(Chap. 20) presents the use of piezoelectrics in MEMS applications. In that chapter,
the properties of AlN, ZnO, PZT, and PMN–PT films are reviewed, and the effect
of substrate clamping is briefly discussed. Then fabrication and integration issues
are addressed. Various applications of piezoelectrics, including AFM probe tips,
RF switches, micromirrors, micropumps, and microvalves are given. In Chap. 21,
Shung et al. discuss high-frequency ultrasonic transducers and arrays. After a thor-
ough overview of the state of the art, LiNbO3 single-crystal transducers, and PMN–
PT single-crystal needle transducers for Doppler flow measurements are presented.
A multitude of transducer designs are shown (annular arrays, linear arrays, and their
derivatives), and underlying processing issues are elaborated on. The last chapter of
the section and the book is on micromachining of piezoelectric transducers by Pap-
palardo et al. (Chap. 22). The basic principles, the fabrication processes, and some
modeling approaches of novel micromachined ultrasonic transducers (MUTs) are
described. It is shown that these transducers utilize the flextensional vibration of an
array of micro-membranes called cMUT (capacitive MUT). It is also shown that
good echographic images of internal organs in the human body have been obtained,
demonstrating the possibilities of this technology to be utilized in commercial 1D
and 2D probes for medical applications.

In conclusion, we thank all the contributing authors for their great zeal and in-
dustry in composing their respective chapters. Were it not for their willingness to
participate in this exciting project, none that was accomplished could have been
possible. A project of this magnitude cannot see the light of day without a constant
source of encouragement and support. To that end, we express our gratefulness to
our families, friends, and colleagues. Last but not the least, we thank Springer for
giving us great flexibility in regard to the size of this volume.

Piscataway, New Jersey A. Safari
E.K. Akdoğan



Chapter 2
Piezoelectricity and Crystal Symmetry

A.L. Kholkin,∗ N.A. Pertsev, and A.V. Goltsev

In this chapter, the symmetry aspects of the piezoelectric effect in various materials
(single crystals, ceramics, and thin films) are briefly overviewed. First, the third-rank
tensor of piezoelectric coefficients defined in the crystallographic reference frame is
discussed. On this basis, the orientation dependence of the longitudinal piezoelectric
response in ferroelectric single crystals is described. This dependence is especially
important for relaxor single crystals, where a giant piezoelectric effect is observed.
Then, the effective piezoelectric constants of polydomain crystals, ceramics, and
thin films and their dependence on crystal symmetry are discussed. The domain-
wall contribution to the piezoelectric properties of ferroelectric ceramics and thin
films is also described. Finally, the crystallographic principles of piezomagnetic,
magnetoelectric, and multiferroic materials are presented.

2.1 Historical Overview

Piezoelectricity (or, following direct translation from Greek word piezein, “pres-
sure electricity”) was discovered by Jacques Curie and Pierre Curie as early as in
1880 (Curie and Curie 1880). By analogy with temperature-induced charges in pyro-
electric crystals, they observed electrification under mechanical pressure of certain
crystals, including tourmaline, quartz, topaz, cane sugar, and Rochelle salt. This ef-
fect was distinguished from other similar phenomena such as “contact electricity”
(friction-generated static charge). Even at this stage, it was clearly understood that
symmetry plays a decisive role in the piezoelectric effect, as it was observed only for
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certain crystal cuts and mostly in pyroelectric materials in the direction normal to
polar axis. However, Curie brothers could not predict a converse piezoelectric effect,
i.e., deformation or stress under applied electric field. This important property was
then mathematically deduced from the fundamental thermodynamic principles by
Lippmann (1881). The existence of the converse effect was immediately confirmed
by Curie brothers in the following publication (Curie and Curie 1881). Since then,
the term piezoelectricity is commonly used for more than a century to describe the
ability of materials to develop electric displacement D that is directly proportional
to an applied mechanical stress σ (Fig. 2.1a). Following this definition, the elec-
tric charge appeared on the electrodes reverses its sign if the stress is changed from
tensile to compressive. As follows from thermodynamics, all piezoelectric materials
are also subject to a converse piezoelectric effect (Fig. 2.1b), i.e., they deform un-
der applied electric field. Again, the sign of the strain S (elongation or contraction)
changes to the opposite one if the direction of electric field E is reversed. Shear
piezoelectric effect (Fig. 2.1c) is also possible, as it linearly couples shear mechan-
ical stress or strain with the electric charge.

Fig. 2.1 Schematic representation of the longitudinal direct (a), converse (b), and shear (c) piezo-
electric effects
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Just after the discovery of piezoelectricity, much more work has been done to
define crystallographic principles of the effect. In 1910, Voigt published the first
textbook on physical crystallography (Voigt 1910), in which the correct description
of the piezoelectric effect in different crystallographic classes was given. However,
at that time the phenomenon of piezoelectricity was obscure because of a compli-
cated description in crystals with low symmetry and no visible applications. Only
after the Second World War the piezoelectric effect evolved from just a laboratory
curiosity to a multimillion dollar industry with applications ranging from underwa-
ter sonars and medical imaging systems to car accelerometers. This was mainly due
to the invention of piezoelectric ceramics (see, e.g., the textbook by Jaffe, Cook,
and Jaffe (Jaffe et al. 1971)), in which the averaging of piezoelectric responses of
individual crystallites (grains) in PbZrO3–PbTiO3 (PZT) solid solutions resulted in
the high-symmetry (∞∞m) macroscopic state with only few independent piezoelec-
tric coefficients of sufficiently high values. This research has resulted in the aston-
ishing performance of piezoelectric materials with industrial applications in many
areas. Currently, there is an immense interest in the materials with giant piezoelec-
tric effect, so-called relaxor single crystals (Park and Shrout 1997), where the high
piezoelectric activity is partly due to their symmetry.

2.2 Fundamentals of the Piezoelectric Effect in Single Crystals
and Ceramics

Since the piezoelectric coupling is described by a linear relationship between the
first-rank tensor or vector (D or E) and the second-rank tensor (σ or S), the cor-
responding coupling coefficients dki j (also called charge piezoelectric coefficients)
form a third-rank tensor. Hence, the piezoelectric equations may be written in the
following form (i, j, k = 1, 2, 3):

Si j = dki jEk, (2.1)

Dk = dki jσi j, (2.2)

where the Einstein’s summation rule for repeated indices is implied. Both direct
and converse piezoelectric effects are frequently expressed using the reduced matrix
notation dkm, where k denotes the component of electric displacement D or field E
in the Cartesian reference frame (x1, x2, x3), and the index m = 1, . . . ,6 is used to
define the mechanical stress or strain. In this case, m = 1, 2, and 3 correspond to the
normal stresses along the x1, x2, and x3 axes, respectively, whereas m = 4, 5, and 6
denote the shear stresses S23, S13, and S12.

As mentioned earlier, it was understood from the very beginning that the crys-
tallographic symmetry of materials plays a decisive role in the piezoelectric phe-
nomena. According to the definition of the piezoelectric effect, all components of
the piezoelectric tensor should vanish in crystals possessing the center of symmetry.
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In the remaining 21 noncentrosymmetric crystallographic classes, the piezoelec-
tricity may exist, except for the cubic class 432, where the piezoelectric charges
developed along the 〈111〉 polar axes cancel each other. However, the absence of
piezoelectricity in this particular case does not play any significant role, because
there are only few crystals that belong to this class. In this context, it should be
mentioned that statistically about 30% of all materials (from about several millions
known by now) are noncentrosymmetric. However, the piezoelectric properties are
revealed in only few thousands of them, with about several hundreds having piezo-
electric activity valuable for the applications. Therefore, it can be concluded that
the absence of the center of symmetry represents the necessary but not sufficient
requirement for a material to exhibit any sizeable piezoelectric effect. Though the
symmetry does not determine the values of piezoelectric coefficients directly, the
symmetry considerations, as it will be shown in the next sections, are indispensable
for the design and fabrication of piezoelectric and acoustic devices. Table 2.1 lists
the point groups that permit piezoelectricity for all crystallographic systems.

The number N of independent components of a third-rank tensor, in principle,
may be as large as 33 = 27. The piezoelectric tensor, however, can have maximum
of 18 independent components because dki j = dk ji owing to the symmetry of the
stress and strain tensors (σi j = σ ji; Si j = S ji). The case of N = 18 corresponds to
triclinic crystals of class 1. In crystals with higher symmetry, the number N reduces
further. This feature follows from the Neumann’s principle: The symmetry elements
of any physical property of a crystal must include the symmetry elements of the
point group of this crystal. As a result, in tetragonal crystals of the 4mm symmetry,
for example, there are only three independent components, and the piezoelectric
effect is described by the matrix shown in Fig. 2.2.

Among the 20 piezoelectric crystal classes, there are ten pyroelectric point
groups that possess a unique polar axis. Pyroelectric crystals contain a built-in
polarization, which manifests itself in temperature-induced changes of the total

Table 2.1 Centrosymmetric and noncentrosymmetric point groups in crystals with different sym-
metries

Crystal system Symmetry elements Centro-symmetric Noncentro-symmetric

Triclinic Center 1 1
Monoclinic Center, axis, plane 2/m 2, m
Orthorhombic Center, axis, plane mmm 222, mm2
Tetragonal Center, axis, plane 4/m, 4/mmm 4, 4, 422, 4mm, 42m
Trigonal Center, axis, plane 3, 3m 3, 32, 3m
Hexagonal Center, axis, plane 6/m, 6/mmm 6, 6, 622, 6mm, 6m2
Cubic Center, axis, plane m3, m3m 23, 43m, 432

Fig. 2.2 Matrix of the piezo-
electric coefficients for
crystals of the tetragonal
symmetry (point group 4mm) 000

00000

00000

d33d31d31

d15

d15
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dipole moment of the unit cell (in the absence of applied fields). If such sponta-
neous polarization can be reversed by an external (sufficiently high) electric field,
the crystal is called ferroelectric.

Above a certain temperature Tc (often termed the Curie point), the spontaneous
polarization vanishes, and the ferroelectric crystal transforms into the paraelectric
state. Many ferroelectrics lose their piezoelectric properties above Tc completely, be-
cause their paraelectric phase has centrosymmetric crystallographic structure. The
advantage of ferroelectrics, well understood already in the beginning of the last
century (while studying Rochelle salt), is that they have much higher piezoelectric
activity, especially in the vicinity of the Curie point, where the piezoelectric coef-
ficients increase dramatically. In ferroelectrics with a centrosymmetric paraelectric
phase, the piezoelectric coefficients are proportional to the product of polarization
and dielectric permittivity and, therefore, should be high in materials having large
polarizability and spontaneous polarization. For the tetragonal 4mm crystals, the
longitudinal piezoelectric coefficient d33 can be expressed as

d33 = 2Q11ε0ε33P3, (2.3)

where ε33 and P3 are the relative permittivity and polarization along the polar x3
axis, ε0 = 8.854× 10−12 F/m is the permittivity of vacuum, and Q11 is the elec-
trostrictive constant of the paraelectric phase, which couples longitudinal strain S3
and polarization via the equation

S3 = Q11P2
3 . (2.4)

The electrostriction coefficient involved in (2.3) practically does not depend on tem-
perature and typically varies between 0.05 and 0.1m4/C2 for different materials.

The piezoelectric effect was discussed above for the case of single-domain fer-
roelectric crystals in which the spontaneous polarization is constant everywhere.
Another technologically important class of materials is represented by piezoelec-
tric ceramics, which consist of randomly oriented crystallites (grains), separated
by grain boundaries. Ceramics are much less expensive in processing than single
crystals and frequently offer comparable piezoelectric and electrostrictive proper-
ties (Jaffe et al. 1971). It should be emphasized that, in nonferroelectric ceramics,
the piezoelectric responses of individual crystallites are canceled out after averaging
over the entire sample. Hence, on the macroscopic level, the polycrystal has a center
of symmetry and negligible piezoelectric properties.

In contrast, ferroelectric ceramics can be made piezoelectrically active by pol-
ing. This feature is due to the presence of so-called ferroelectric domains (regions
with different orientations of the spontaneous polarization) in as-sintered ferroelec-
tric ceramics. Domains appear in ceramics and single crystals when the material is
cooled down through the Curie point in order to minimize the electric and elastic
energy of the system.

The boundaries between ferroelectric domains (often called domain walls) can
move under the action of applied electric field so that the spontaneous polarization
may be reoriented in the crystallographic direction closest to the field direction. As a
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result of such poling process, an initially macroscopically centrosymmetric ceramic
sample loses the inversion center and becomes piezoelectric. Since it acquires the
∞∞m symmetry, the poled ceramic has only three independent piezoelectric coeffi-
cients d33, d31, and d15, which relate longitudinal, transverse, and shear deforma-
tions to the electric field applied along and perpendicular to the poling direction.

The measured piezoelectric response usually contains not only the intrinsic
contribution (determined by the lattice properties and described by (2.3)), but also
an extrinsic contribution caused by movements of non-180◦ domain walls. This
domain-wall contribution, which will be discussed in detail in Sect. 2.5, depends
on the symmetry of ferroelectric material too.

It should be noted that much efforts were made to create materials with enhanced
piezoelectric properties. Equation (2.3) suggests that this goal can be achieved by
using crystals approaching phase-transition conditions, where the increase of di-
electric permittivity should result in high piezoelectric coefficients. The observation
of maximum piezoelectric response in PZT solid solutions with compositions close
to the morphotropic phase boundary (MPB) gave strong support to this idea long
time ago.

Recently, it has been shown that the piezoelectric properties can also be improved
by cutting the crystal at some angle to the polarization direction (Park and Shrout
1997). In particular, the solid solutions of Pb(Zn1/3Nb2/3)O3 (relaxor ferroelec-
tric) with PbTiO3 (normal ferroelectric) exhibit the highest piezoelectric coefficients
along the pseudocubic 〈001〉 direction, while the spontaneous polarization is paral-
lel to the 〈111〉 axis in the rhombohedral PZN–PT crystals studied.

The difference between the piezoelectric responses measured in the [001] and
[111] directions is very large in these crystals (see Table 2.2), which may be
explained phenomenologically by the orientation dependence of the piezoelectric
effect (see Sect. 2.3). On the microscopic scale, the origin of ultrahigh piezoelec-
tricity in PZN–PT solid solutions was attributed to the existence of a monoclinic
phase near the MPB separating stability ranges of the rhombohedral and tetragonal
states (Noheda et al. 2001). This intermediate monoclinic phase has the bm axis ori-
ented along the pseudocubic [010] direction and facilitates the polarization rotation
between the 〈111〉 and 〈001〉 directions under the influence of electric field applied
along the [001] crystallographic axis.

Table 2.2 Physical properties of major piezoelectric materials together with their symmetries

Parameter Quartz BaTiO3 PbTiO3 : Sm PZT 5H LF4T PZN–8%PT [001] PZN–8%PT [111]

Symmetry 32 4mm 4mm 3m/4mm mm2/4mm 3m/4mm 3m/4mm
d33(pC/N) 2.3 190 65 593 410 2500 84
d31(pC/N) 0.09 0.38 0 −274 −154 −1400 −20
εT

33/ε0 5 1700 175 3400 2300 7000 1000
Tc(◦C) 120 355 193 253 160 160
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2.3 Orientation Dependence of Piezoelectric Response
in Single Crystals

The piezoelectric coefficients d∗
i jk in an arbitrary coordinate system (x̃1, x̃2, x̃3) can

be calculated from the coefficients dlmn defined in the crystallographic reference
frame (x1,x2,x3) using the general relation (Cady 1964, Nye 1957)

d∗
i jk = AilA jmAkndlmn, (2.5)

where Ail are the elements of the transformation matrix A relating two sets of the co-
ordinate axes. This formula makes it possible to predict the orientation dependence
of the piezoelectric properties for any crystal with known piezoelectric coefficients
dlmn. In particular, the longitudinal piezoelectric coefficient d∗

33 measured in the di-
rection making an angle θ with the polar axis of the tetragonal crystal with 4mm
symmetry can be evaluated as (Nye 1957)

d∗
33 = cosθ [sin2 θ(d15 +d31)+ cos2 θd33]. (2.6)

It can be seen that, when the angle θ increases, the relative contribution of the lon-
gitudinal coefficient d33 decreases, whereas the contribution of the shear coefficient
d15 increases. If the sum d15 + d31 is much larger than d33, the maximum value of
d∗

33(θ) corresponds to a direction different from the polar one (Davis et al. 2007).
This feature is characteristic of BaTiO3 at room temperature [(d15 + d31)/d33 ≈ 6],
where it exhibits maximum longitudinal piezoelectric response close to the [111]
direction (Damjanovic et al. 2002). In contrast, when the ratio (d15 + d31)/d33 is
smaller than some critical value, the maximum response d∗

33 will be observed along
the polar crystallographic axis (θ = 0) (Davis et al. 2007). The aforementioned two
different types of the orientation dependence are illustrated in Fig. 2.3, where d∗

33(θ)
is plotted for BaTiO3 and PbTiO3 [(d15 +d31)/d33 ≈ 0.4] at room temperature.

The orientation dependence of d∗
33 becomes more complex for piezoelectric crys-

tals of other symmetries. In the case of an orthorhombic mm2 crystal, the coefficient
d∗

33 is a function of two Euler angles, θ and φ . Variation of d∗
33 with these angles is

described by the relation (Nye 1957)

d∗
33 = cosθ [sin2 θ sin2 φ(d15 +d31)+ sin2 θ cos2 φ(d24 +d32)+ cos2 θd33]. (2.7)

Again, the maximum piezoelectric response will be observed away from the polar
direction if one of the shear coefficients is large compared with d33. This happens,
for instance, in KNbO3 and PZN–9%PT crystals (Davis et al. 2007).

For the rhombohedral 3m crystal, the longitudinal piezoelectric coefficient mea-
sured in an arbitrary direction can be evaluated as

d∗
33 = cosθ sin2 θ sin2 φ(d31 +d15)+ sin3 θ cosφ(3sin2 φ − cos2 φ)d22 + cos3 θd33.

(2.8)

It can be seen that at φ = 90◦ the contribution of the coefficient d22 becomes
zero, and the orientation dependence of d∗

33 reduces to that discussed above for
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Fig. 2.3 Longitudinal piezoelectric coefficient d∗
33 (pm/V) as a function of the measuring direc-

tion in BaTiO3 (a) and PbTiO3 (b) at room temperature. The spontaneous polarization is oriented
along the (vertical) [001] crystallographic axis. (Reprinted with permission from Davis et al. 2007.
Copyright 2007, American Institute of Physics.)

the tetragonal 4mm crystals. The calculations performed for PMN–33%PT crystals
((d15 +d31)/d33 ≈ 21) indeed showed that the maximum value of d∗

33 corresponds to
a direction rotated by 63◦ away from the polarization direction (Zhang et al. 2003).
The orientation dependence of this type is also expected for several other rhom-
bohedral 3m crystals, including PZN–7%PT and rhombohedral PZT compositions
(Davis et al. 2007).

Remarkably, the giant piezoelectric response of PZN–PT and PMN–PT relaxor-
ferroelectric single crystals is observed along nonpolar directions (Park and Shrout
1997). In rhombohedral PZN–8%PT, for example, extremely large d∗

33 ∼ 2500pC/N
corresponds to the 〈001〉 crystallographic direction, whereas the piezoelectric coef-
ficient measured along the polar 〈111〉 axis is only about 80 pC/N (Park and Shrout
1997). Accordingly, the giant piezoelectric properties of PZN–PT and PMN–PT
may be attributed to the field-induced polarization rotations (Fu and Cohen 2000).
Such rotations are expected to be especially easy in the presence of monoclinic
phases existing at the MPB regions of PZN–PT, PMN–PT, and PZT (Cox et al.
2001; Ye et al. 2001; Noheda et al. 1999). Indeed, the polarization vector in the
MA (MB) and MC monoclinic states can rotate freely in the {101} and {010} mirror
planes (Vanderbilt and Cohen 2001). It is worth noting that the dominant role of
polarization rotations in the high piezoelectric response of PZT ceramics with com-
positions close to MPB was demonstrated by in situ X-ray diffraction measurements
(Guo et al. 2000).

It should be emphasized that relative magnitude of the shear piezoelectric co-
efficient d15 is directly related to the dielectric anisotropy of a ferroelectric crystal
(Davis et al. 2007). The ratio d15/d33 can be written as
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d15

d33
= 2

Q1313

Q3333

η11

η33
, (2.9)

where Q1313 and Q3333 represent the electrostrictive coefficients defined in the ref-
erence frame of the ferroelectric phase, and η11 and η33 are the transverse and lon-
gitudinal dielectric susceptibilities of the single-domain ferroelectric crystal. It can
be seen that high dielectric anisotropy of the form η11 � η33 will normally result
in a shear piezoelectric coefficient large compared with d33. The effect of dielec-
tric anisotropy, however, is less pronounced in the tetragonal crystals than in the
orthorhombic and rhombohedral ones since the ratio 2Q1313/Q3333 is only about
0.3–0.4 in common 4mm ferroelectrics, whereas it is about 3 or even larger in the
mm2 and 3m ones (Davis et al. 2007).

The dielectric anisotropy may become very large near structural phase transi-
tions between two different ferroelectric phases (Budimir et al. 2003). This enhance-
ment leads to strong increase of the shear piezoelectric response in the vicinity of
ferroelectric–ferroelectric transformations induced by temperature or composition
variations. Hence, near the morphotropic phase boundaries the longitudinal piezo-
electric response d∗

33 in nonpolar directions should increase strongly as well. The
fundamental reason for such piezoelectric anomalies lies in the flattening of the free
energy profile in close vicinity to a structural phase transition (Fu and Cohen 2000;
Budimir et al. 2006).

2.4 Effective Piezoelectric Constants of Polydomain Crystals,
Ceramics, and Thin Films

Ferroelectric crystals usually consist of many domains differing by the spatial ori-
entation of the spontaneous polarization Ps. Inside dissimilar domains, therefore,
the local piezoelectric responses to a given external field are generally different.
As a result, the piezoelectric properties of polydomain crystals are determined on
the macroscopic scale by the average response of the domain ensemble. These “ag-
gregate” material properties, in general, depend on the relative volume fractions of
various ferroelectric domains formed in a crystal and on the orientation of domain
walls between them.

The set of domain variants permissible in a certain crystal is defined by the crystal
symmetry (Aizu 1969). The energetically most favorable orientations of ferroelas-
tic domain walls are determined by the compatibility of spontaneous lattice strains
at the wall (Fousek and Janovec 1969; Sapriel 1975). In the presence of ferroelec-
tric polarization P, additional electrical condition must be satisfied, ensuring the
absence of polarization charges ρ =−div P on the wall (Fousek and Janovec 1969).
In the case of a tetragonal crystal such as PbTiO3 or BaTiO3 at room temperature,
purely ferroelectric 180◦ walls and ferroelectric–ferroelastic 90◦ walls are only pos-
sible, the latter being oriented, e.g., parallel to the {101} crystallographic planes
of the prototypic cubic lattice. The orthorhombic phase polarized along the 〈110〉
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crystallographic direction may contain 180◦ walls, 90◦ walls parallel to the (100)
crystallographic plane, 120◦ walls having the {110} orientation, and 60◦ domain
walls with an irrational normal. In the rhombohedral crystal such as Pb(Zr1−xTix)O3
with x < 0.48 polarized along the 〈111〉 direction, only the 180◦ walls and the 71◦

or 109◦ walls are possible.
The effective elastic, dielectric, and piezoelectric constants of a polydomain

crystal may be calculated from the material constants of a single-domain single
crystal for the given geometry of the domain structure. For tetragonal BaTiO3 and
PbTiO3 crystals with the laminar 90◦ domain structure, the effective material con-
stants were determined by Turik (1970) with the aid of an averaging procedure tak-
ing into account the mechanical and electrical conditions fulfilled on the domain
walls. Remarkably, it was found that the matrix of these constants corresponds to
the orthorhombic crystal symmetry rather than the tetragonal one. Similar calcu-
lations of the effective piezoelectric coefficients d∗

3 j performed later for polydo-
main PMN–33%PT crystals showed that these coefficients strongly depend on the
domain concentrations (Topolov 2004). The piezoelectric properties of “domain-
engineered” perovskite single crystals were studied in detail by Davis et al. (2005).
The tetragonal (point group 4mm), orthorhombic (mm2), and rhombohedral (3m)
crystal phases poled along various crystallographic directions were considered,
and the effective piezoelectric coefficient d∗

31 has been evaluated for polydomain
BaTiO3, PbTiO3, KNbO3, and PMN–33%PT crystals.

In the case of ferroelectric ceramics, the aggregate material properties are
affected by the elastic, electric, and piezoelectric interactions between individ-
ual crystallites (Aleshin and Pikalev 1990; Nan and Clarke 1996; Pertsev et al.
1998a). Indeed, the piezoelectric crystallite is not free to deform under the action
of an external electric field because of the elastic clamping imposed by surround-
ing grains. Besides, the field-induced polarization charges appear at the grain
boundaries since the dielectric permittivity usually differs in the adjacent crystal-
lites owing to different lattice orientations. As a result, internal electric fields and
mechanical stresses arise (or change) during the piezoelectric measurements, thus
making local responses of crystallites different from those of a stress-free electroded
single crystal.

The effective piezoelectric constants of ferroelectric ceramics can be calcu-
lated theoretically using the so-called effective medium approach or self-consistent
scheme (Nan and Clarke 1996; Pertsev et al. 1998a). This approach is based on the
introduction of a model material system consisting of a representative crystallite (in-
clusion) surrounded by a dissimilar homogeneous piezoelectric medium (matrix). In
the linear theory, the crystallite (usually assumed to be spherical) is characterized
by the small-signal elastic, dielectric, and piezoelectric properties, independent of
the internal stresses and electric fields. These properties are determined by the ma-
terial constants (measured or calculated) of a single-domain or polydomain single
crystal. In turn, the matrix parameters represent the unknown macroscopic elastic,
piezoelectric, and dielectric constants of a polycrystalline sample, which should be
calculated self-consistently by the method of successive approximations.
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The numerical calculations performed for BaTiO3 and PbTiO3 ceramics in-
dicated that the aggregate piezoelectric properties of ferroelectric ceramics may
experience nonmonotonic variations with the increase of the remanent polarization
Pr (Pertsev et al. 1998a). It was found that the piezoelectric constants d∗

33 and d∗
31 of

BaTiO3 ceramics reach their extreme values at Pr/Ps ≈ 0.87 and 0.7, respectively.
In the case of PbTiO3 ceramics, these piezoelectric coefficients vary monotonically
with the remanent polarization, but the constant d∗

15 displays an absolute maximum
at Pr/Ps ≈ 0.95, where it slightly exceeds the single-crystal value of this constant.
Thus, the influence of poling on the piezoelectric properties of ferroelectric ceramics
may be different for dissimilar materials.

The elastic clamping of crystallites in a ferroelectric polycrystal not only changes
the small-signal aggregate properties, but also modifies lattice strains and the spon-
taneous polarization. This mechanical effect is expected to be most pronounced in
nanocrystalline ceramics, where the twinning of crystallites (formation of ferroelas-
tic domains), which strongly reduces internal stresses, is energetically unfavorable
because of a very small grain size (Pertsev and Salje 2000). The equilibrium polar-
ization states of BaTiO3 and Pb(Zr1−xTix)O3 ceramics with single-domain grains
were predicted recently using the nonlinear thermodynamic theory combined with
the method of effective medium (Zembilgotov et al. 2005). The calculations showed
that, owing to the elastic clamping of crystallites, the phase states of nanocrystalline
ceramics may differ drastically from those of single crystals and coarse-grained
materials. Remarkably, the theory predicted the coexistence of rhombohedral and
tetragonal crystallites in nanocrystalline Pb(Zr1−xTix)O3 ceramics in a wide range
of compositions and temperatures. For BaTiO3 ceramics, a mixture of rhombohedral
and orthorhombic crystallites was found to be the energetically most favorable state
at room temperature. Thus, the elastic clamping can change the symmetry of ferro-
electric state in a small grain. This result indicates that nanocrystalline ferroelectric
ceramics may have specific piezoelectric properties.

The current trend toward the miniaturization of electromechanical systems re-
quires the use of piezoelectric materials in the thin-film form (Muralt 2000). The
piezoelectric response of a thin film grown on a dissimilar thick substrate may be
very different from that of a bulk material. The most evident reason for such a differ-
ence is the two-dimensional (2D) clamping of the film by the rigid substrate (Lefki
and Dormans 1994). Since the in-plane dimensions of the film are fixed while the
film thickness is free to change under the action of applied electric field E3, the ef-
fective longitudinal piezoelectric coefficient df

33 of a thin film can be evaluated as
(Lefki and Dormans 1994)

df
33 = d33 −

2sE
13

sE
11 − sE

12
d31, (2.10)

where din are the piezoelectric constants of a bulk material, and sE
mn are the bulk

elastic stiffnesses at constant electric field. The effective transverse piezoelectric
coefficient ef

31, which defines the stresses σ1 and σ2 induced in the film plane by the
electric field E3, is defined by a similar relation
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ef
31 = e31 −

cE
13

cE
33

e33, (2.11)

where cE
mn are the bulk elastic compliances (Muralt 2000). It can be seen that ef

31
is always larger than the bulk coefficient e31, whereas df

33 is smaller than d33. In-
deed, it is implied here that the film piezoelectric and elastic constants do not differ
significantly from those of the bulk material, which is a reasonable assumption for
ordinary piezoelectrics, but not necessarily for ferroelectric materials (see below).

In addition to the 2D clamping, the film is usually strained by the substrate to a
certain extent (e.g., because of the difference in the thermal expansion coefficients).
Since in ferroelectrics the polarization is coupled to lattice strains via the elec-
trostriction, the substrate-induced strains may change the piezoelectric properties of
ferroelectric films markedly. In the case of polycrystalline thin films of multiaxial
ferroelectrics, the mechanical substrate effect usually induces preferential orienta-
tions for the polar axes of crystallites, which results in the formation of a crystal
texture below the phase transition temperature Tc (Pertsev et al. 1998a). When the
substrate induces compressive in-plane stresses σ1 and σ2 above Tc, polycrystalline
films of perovskite ferroelectrics such as BaTiO3, PbTiO3, and Pb(Zr1−xTix)O3 ac-
quire the c-texture with the polar axes oriented as close as possible to the substrate
normal. In the films grown on “tensile” substrates (σ1,σ2 > 0), the a-texture is
formed, where directions of the polar axes have minimum possible deviations from
the film plane. Evidently, the c- and a-textured films will behave quite differently
during the poling process and so exhibit different piezoelectric properties.

Owing to the substrate-induced strains, the orientation of the spontaneous polar-
ization in a ferroelectric thin film may also deviate from the polar crystallographic
axis in the bulk material (e.g., from the 〈001〉 direction in the tetragonal crystal, the
〈101〉 direction in the orthorhombic crystal, and the 〈111〉 direction in the rhombo-
hedral one). Such polarization rotations are expected to be especially large in the
single-crystalline films free of ferroelastic domains (twins). Here the mechanical
film–substrate interaction results in the formation of new phases not existing in bulk
crystals (Pertsev et al. 1998b, 2000, 2003; Tagantsev et al. 2002). This phenomenon
originates in the strain-induced lowering of the symmetry of the paraelectric phase.

In the case of (001)-oriented films of perovskite ferroelectrics grown on (001)-
oriented cubic substrates, the strain effect lowers the symmetry of the paraelectric
state from cubic to tetragonal (Pertsev et al. 1998b). As a result, five low-temperature
phases become theoretically possible in the film instead of three in the bulk crys-
tal. Among these five phases, the most important ones are the tetragonal c phase
with the polarization Ps orthogonal to the film surfaces, the orthorhombic aa phase
with the in-plane polarization, and the monoclinic r phase with the vector Ps inclined
to the film surfaces (see Fig. 2.4). The aforementioned three ferroelectric phases
were shown to be stable in single-domain BaTiO3, PbTiO3, and Pb(Zr1−xTix)O3
(x ≥ 0.4) films under certain strain–temperature conditions (Pertsev et al. 1998b,
2003; Diéguez et al. 2004). The stability ranges of various possible polarization
states in ferroelectric films can be conveniently described with the aid of phase di-
agrams, where the temperature T and the misfit strain Sm between the substrate
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Fig. 2.4 Orientation of the spontaneous polarization Ps in stable ferroelectric phases forming in
(001)-oriented single-domain thin films of perovskite ferroelectrics grown on (001)-oriented cubic
substrates: tetragonal c phase (a), monoclinic r phase (b), and orthorhombic aa phase (c). Polar-
ization orientations are shown relative to the prototypic cubic cell
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Fig. 2.5 Misfit strain–temperature phase diagrams of (001)-oriented single-domain PbTiO3 (a)
and Pb(Zr0.5Ti0.5)O3 (b) films epitaxially grown on (001)-oriented cubic substrates The first- and
second-order phase transitions are shown by thick and thin lines, respectively. (Reprinted with
permission from Pertsev et al. 1998b and 2003. Copyright 1998, 2003, American Physical Society.)

and the film prototypic cubic state are used as two independent variables (Pertsev
et al. 1998b). Representative misfit strain–temperature phase diagrams of perovskite
ferroelectric films are shown in Fig. 2.5. It can be seen that the diagrams of single-
domain PbTiO3 and Pb(Zr0.5Ti0.5)O3 films contain large stability ranges of the or-
thorhombic and monoclinic phases, which do not exist in the corresponding bulk
materials.

The small-signal piezoelectric properties of epitaxial ferroelectric films evidently
depend on the film polarization state. Hence the piezoelectric coefficients are func-
tions of the misfit strain Sm in the film–substrate system, which can be determined
using the film (Sm,T ) phase diagram. Figure 2.6a shows a representative strain de-
pendence of the longitudinal piezoelectric coefficient d33, which was calculated for
single-domain Pb(Zr0.4Ti0.6)O3 films using the nonlinear thermodynamic theory
(Pertsev et al. 2003). Remarkably, d33 strongly increases near critical misfit strains
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Fig. 2.6 Longitudinal piezoelectric coefficient d33 of single-domain Pb(Zr0.4Ti0.6)O3 (a) and poly-
domain PbTiO3 (b) thin films as a function of the misfit strain in the epitaxial system. The dashed
line in (b) shows the variation of d33 in PbTiO3 film with pinned domain walls. (Reprinted with
permission from Pertsev et al. 2003 and Koukhar et al. 2001. Copyright 2001, 2003, American
Physical Society.)

at which the monoclinic r phase transforms either into the orthorhombic aa phase or
into the tetragonal c phase. On the other hand, ferroelectric films grown on “strongly
compressive” or “strongly tensile” substrates exhibit only small or zero piezoelectric
response d33.

The substrate-induced lattice strains may partially relax via the formation of elas-
tic domains (twins) in the film (Roitburd 1976). Such relaxation modifies the (Sm,T )
phase diagram and hence may change the film piezoelectric response (Koukhar
et al. 2001). In PbTiO3 films, the twinning removes the r and aa phases from
the equilibrium diagram (see Fig. 2.7a), because the pseudo-tetragonal c/a/c/a and
a1/a2/a1/a2 polydomain states appear to be energetically more favorable. As a re-
sult, the misfit-strain dependence of d33 weakens in a polydomain film, as shown in
Fig. 2.7b. In contrast, the monoclinic phase survives in the case of Pb(Zr0.5Ti0.5)O3
films (Kukhar et al. 2006), where the monoclinic r1/r2/r1/r2 and ca1/ca2/ca1/ca2
polydomain states are stable at small misfit strains in a wide range of temperatures
(see Fig. 2.7b).

2.5 Domain-Wall Contribution to Piezoelectric Coefficients
of Ferroelectric Ceramics and Thin Films

The measuring electric field E generally exerts a driving force on the domain walls
in a ferroelectric material. The field-induced displacements of these walls from
their initial positions may change the average lattice strains, thus giving an extrin-
sic contribution to the piezoelectric response. The domain-wall contribution can be
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evaluated theoretically by calculating the average wall displacement δl as a function
of the field intensity Ei and determining the strain change δSn in the volume swept
by the moving walls. We shall consider below the domain-wall contribution ∆din to
the small-signal piezoelectric constants din only, assuming that the measuring field
is weak (E → 0).

Since the magnitude δl of domain-wall displacements is directly proportional
to the field intensity (see below), a nonnegligible contribution ∆din appears only
when the strain change δSn is independent of the applied field. This requirement
demonstrates that displacements of purely ferroelectric domain walls (e.g., 180◦

walls in tetragonal crystals) do not affect the small-signal piezoelectric response
(since δS3 ∼ E3). In contrast, the ferroelectric–ferroelastic 90◦ walls create sig-
nificant contribution to the piezoelectric coefficients of tetragonal ferroelectric ce-
ramics and thin films (Bondarenko et al. 1990; Arlt and Pertsev 1991; Pertsev and
Emelyanov 1997; Koukhar et al. 2001). This contribution results from the collective
antiparallel motion of 90◦ walls forming periodic laminar patterns in these material
systems (Arlt 1990; DeVeirman et al. 1993; Ramesh et al. 1993; Kwak et al. 1994).
Remarkably, the shift of a 90◦ wall produces a local strain change proportional to
the square of spontaneous polarization Ps.

The magnitude of cooperative displacements of the 90◦ walls is mainly restricted
by the restoring forces associated with the changes of long-range elastic and elec-
tric internal fields caused by these displacements. When δl is much smaller than
the domain width w, the restoring force acting per unit wall area can be written as
fres = −k δl, where k is the force constant. For tetragonal ferroelectric ceramics,
the domain-wall contributions to the low-frequency piezoelectric constants can be
evaluated as (Arlt and Pertsev 1991)
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∆d33 =
(Q11 −Q12)P3

s

kcerw
Jd33 , ∆d31 = −1

2
∆d33, ∆d15 =

(Q11 −Q12)P3
s

kcerw
Jd15 ,

(2.12)

where Qmn are the electrostrictive constants of the paraelectric phase, and Jdin are
the parameters depending on distribution of the grain polarizations among various
spatial orientations in a ferroelectric ceramic. The force constant kcer involved in
the above relations can be calculated in an analytical form (Arlt and Pertsev 1991).
Since kcer is inversely proportional to the domain width w, the contributions ∆din
are predicted to be independent of the domain-wall density in the first approxi-
mation. The numerical calculations show that ∆d33 and ∆d15 are considerable in
poled BaTiO3 and PZT ceramics, amounting to about 100 pC/N in BaTiO3 and
about 50 pC/N in PZT at the remanent polarization Pr = 0.35Ps (Arlt and Pertsev
1991).

In the case of epitaxial ferroelectric thin films, significant domain-wall contri-
bution to the coefficient d33 appears when the pseudo-tetragonal c/a/c/a domain
structure forms in the film (Pertsev and Emelyanov 1997; Koukhar et al. 2001).
Since the electric field E3 induced between the top and bottom electrodes cover-
ing the film surfaces interacts with the out-of-plane polarization P3, the c domains
change their size periodically during the piezoelectric measurements at the expense
of the a domains having the in-plane spontaneous polarization. The force constant
kfilm determining the mechanical restoring force acting on displaced 90◦ c/a walls
can be calculated analytically in the linear elastic approximation, which make it
possible to evaluate the domain-wall contribution ∆d33 (Pertsev and Emelyanov
1997). For relatively thick films (thickness > 100nm), where the widths of c and a
domains become much smaller than the film thickness (“dense” domain structure),
∆d33 is given by a simple relation

∆d33 =
(s11 +2s12)(s11 − s12)

s11(Q11 −Q12)Ps
, (2.13)

where snm are the elastic compliances at constant polarization. This relation shows
that ∆d33 is expected to be significant in poled thin films of conventional perovskite
ferroelectrics (∆d33 ≈ 100pm/V in BaTiO3 films and about 50 pm/V in PbTiO3
films). The accurate numerical calculations performed with the aid of the nonlin-
ear thermodynamic theory (Koukhar et al. 2001) demonstrated that actually the
domain-wall contribution depends on the misfit strain in the film–substrate system
(see Fig. 2.7b). Moreover, they confirmed that ∆d33 is comparable with the intrinsic
contribution to the film piezoelectric response.

Since the calculations discussed above ignore the interactions of domain walls
with crystal defects and the lattice periodic potential (Peierls potential relief), they
give only the upper bound for the domain-wall contribution to the piezoelectric re-
sponse. Although the Peierls barriers for ferroelastic domain walls should be rel-
atively small (because the thickness of such walls is usually much larger than the
lattice period; see Chrosch and Salje 1999), at low temperatures they could reduce
∆d33 considerably (Kukhar et al. 2006). Nevertheless, the domain-wall contribution
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to the piezoelectric coefficients of multiaxial polydomain ferroelectrics in general
cannot be ignored. It should be noted that the field-induced displacements of the
c/a domain walls were confirmed experimentally for Pb(Zr0.32Ti0.68)O3 thin films
grown on MgO (Lee et al. 2001).

2.6 Piezoelectric Effect and Magnetism

Recent years witnessed the advent of novel materials that combine piezoelectric (lin-
ear in external stimulus) response with other attractive functionalities such as mag-
netic activity. Remarkably, the coupling between electric and magnetic variables is
permitted only in crystals of certain symmetries. Such coupling is not only of high
fundamental interest, but also of practical importance since it could be used to cre-
ate new types of nonvolatile memories, where the data are written electrically and
read magnetically (Eerenstein et al. 2006). It should be emphasized that piezoelec-
tricity may also lead to the magnetoelectric coupling if the material simultaneously
exhibits piezomagnetism. Indeed, the application of an electric field to such material
induces strain via the converse piezoelectric effect, which, in turn, changes the mag-
netization because of the direct piezomagnetic effect. Similarly, the magnetic field
creates lattice strains via the converse piezomagnetic effect so that the polarization
also changes because of the direct piezoelectric effect.

Piezomagnetism is a linear effect relating strain and magnetic field or stress and
magnetization. A strain Sik produces a magnetic field Hi = −λi jkS jk, where λi jk is
the third-rank tensor. In turn, a magnetic field may produce strain (converse piezo-
magnetic effect). Similar to all magnetic tensors (see, e.g., Nye 1957), λi jk vanishes
in all crystals symmetric with respect to the time inversion. Also, it is symmetric
with respect to the last two indices, analogously to the piezoelectric tensor. The
piezomagnetic effect is absent in the magnetic classes m3m, 43m, and 432. De-
spite the piezomagnetic effect is typically small, it is used, for example, to register
earthquakes. Strong coupling between piezoelectric and magnetic phenomena is ex-
pected in the materials called multiferroics that recently attracted a lot of interest in
both magnetic and ferroelectric communities (Eerenstein et al. 2006; Cheong and
Mostovoy 2007; Ramesh and Spaldin 2007).

Multiferroic crystals are distinguished by the simultaneous presence of two dif-
ferent order parameters such as polarization and magnetization (see, for example, a
recent review (Fiebig 2005)). The crystal symmetry imposes a strict limitation on
this class of materials (Aizu 1970, Schmid 1994). There are four major crystallo-
graphic types of multiferroics:

1. Compounds with perovskite structure. They have the chemical formula ABO3
or A2B′B′′O6. For example, the well-known compound BiFeO3 is ferroelectric,
ferroelastic, and weakly ferromagnetic at room temperature. It is rhombohedrally
distorted with the crystallographic point symmetry 3m.

2. Compounds with hexagonal structure. These compounds also have the chemical
formula ABO3 or A2B′B′′O6. The hexagonal structure is due to relatively small
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cationic radii. Ferroelectric–antiferromagnetic manganites RMnO3, with R = Sc,
Y, In, Ho, Er, Yb, or Lu, form a large group of hexagonal multiferroics. They
have the crystallographic point symmetry 6mm.

3. Boracites. They have the general formula M3B7O13X . These crystals are
ferroelectric–ferroelastic antiferromagnets (in some cases with a small ferro-
magnetic moment). Here M = Cr, Mn, Fe, Co, Cu, or Ni and X = Cl or I.
Boracites are cubic with the point symmetry 43m at high temperatures and the
3m point group in the ferroelectric phase.

4. Compounds with BaMF4 structure. M = Mg, Mn, Fe, Co, Ni, or Zn. These com-
pounds are orthorhombic with the 2mm point symmetry at high temperatures. At
low temperatures, they are ferroelastic ferroelectrics with a small ferromagnetic
moment.

In addition, there is a large number of multiferroics with other structures
(Eerenstein et al. 2006; Cheong and Mostovoy 2007). Basic symmetries of ferro-
electrics, ferromagnets, ferroelastics, and multiferroics are compared in Table 2.3.

Appearance of spontaneous polarization and spontaneous magnetization breaks
the spatial-inversion and time-reversal symmetries in multiferroics at low tempera-
tures. This results in a linear magnetoelectric effect that involves both magnetic and
electric fields: A magnetic field H induces an electric polarization P with compo-
nents Pi = αi jHj, and, in turn, an electric field E induces a magnetization M with
components Mi = α jiE j. Table 2.3 shows that the tensor αi j can be nonzero only in
materials that are noncentrosymmetric and time-asymmetric. There is a strict upper
bound for the coefficients αi j : α2

i j < ηiiµ j j (Brown et al. 1968). The linear magne-
toelectric effect is small in most of the materials because either the dielectric (ηii)
or magnetic (µ j j) susceptibility has a small value.

In the perovskite multiferroics, the crystal symmetry permits the linear magne-
toelectric effect (αi j �= 0) and the existence of a spontaneous polarization P and a
spontaneous magnetization M. For example, let us consider BiFeO3. The free en-
ergy of this compound must be invariant with respect to the spatial inversion and
rotations by the angle of 120◦ around the z axis. Therefore, the free energy F can
be expressed through the corresponding invariants. The invariant Ez(MyLx −MxLy),
where L is the vector of the antiferromagnetic order, permits a spontaneous polar-
ization along the z axis:

P = −∂F
∂E

∝ (0,0,MyLx −MxLy). (2.14)

Table 2.3 Symmetry requirements for ferroics

Ferroic Spatial-inversion symmetry? Time-reversal symmetry?

Ferroelastic Yes Yes
Ferroelectric No Yes
Ferromagnetic Yes No
Multiferroic No No

Reprinted with permission from Eerenstein et al. 2006. Copyright 2006, Nature Publishing Group
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The invariant Pz(HyLx −HxLy) permits a spontaneous magnetization

M = − ∂F
∂H

∝ (PzLy,−PzLx,0). (2.15)

Using these invariants, one can also show that the magnetoelectric effect is nonzero
(αi j �= 0). However, the disadvantage of these compounds is that they may have an
incommensurate magnetic structure. In BiFeO3, the spins of Fe ions form a long-
wavelength (λ = 62nm) spiral structure. Averaging over the whole sample leads to
zero magnetoelectric effect. This effect may be restored by applying strong magnetic
field (H ∼ 20T) or by chemical substitution.

In contrast to perovskite multiferroics, the crystal symmetry of hexagonal man-
ganites RMnO3 forbids the linear magnetoelectric effect. In these compounds, the
interaction between electric and magnetic moments may arise via the piezomagnetic
effect, which couples magnetization with the strain induced by electric polariza-
tion (Fiebig et al. 2002). Introduction of the strain coupling represents an attractive
method for engineering an enhanced magnetoelectric effect.

In boracite Ni3B7O13I, weak magnetic and electric orders emerge simultaneously
below 60 K. The magnetoelectric effect is permitted. Applying a magnetic field, one
can induce reversal of the magnetization, which, in turn, flips the polarization. In
BaMnF4, a spontaneous magnetoelectric effect is permitted owing to the presence
of a weak permanent magnetization. Unfortunately, high magnitude of the electric
coercive field renders the manipulation of the polarization difficult because this re-
quires the application of a very strong magnetic field.

Recent findings showed that magnetoelectric, piezomagnetic, magnetoelastic,
and other cross-coupling effects relating electrical, mechanical, and magnetic phe-
nomena are typically weak in single-phase materials. In composites, however, they
may be much stronger (Dong et al. 2002; Zheng et al. 2004; Eerenstein et al. 2006),
especially near the phase-transition temperatures. The symmetry considerations
can be very useful for finding a good combination of piezoelectric–ferroelectric
and magnetostrictive–ferromagnetic materials. Another interesting opportunity is
offered by the large coupling effects found within antiferromagnetic–ferroelectric
domain walls (Fiebig et al. 2002).

2.7 Conclusion

Based on the above discussion, we can conclude that the piezoelectric effect in crys-
talline materials to a large extent is defined by the crystal symmetry. The symmetry
considerations are indispensable for understanding the piezoelectric properties of
single crystals, ceramics, and thin films. By varying the orientation of the applied
field with respect to the crystallographic axes, it is possible to enhance the piezoelec-
tric response of some crystals drastically. This orientation dependence of the piezo-
electric properties is especially strong in crystals of the relaxor ferroelectrics. The
effective piezoelectric coefficients of ferroelectric ceramics and thin films strongly
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depend on the spatial orientations of polar axes in crystallites and domains as well.
Finally, it should be emphasized that crystallographic symmetry imposes strict lim-
itations on the piezoelectric crystals, which could be simultaneously magnetically
active.
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