
Preface

The fusion of artificial intelligence (AI) with decision support systems (DSSs)
is opening exciting new areas of research and application. The resulting sys-
tems are smarter, more efficient, adaptable, and better able to aid human
decision making. While AI aims to mimic human behaviour in limited ways,
DSSs attempt to help humans make the best choice among a set of possible
choices given explicit or implied criteria. Long a topic of science fiction, AI
today is demonstrating that it can be integrated effectively into real systems
and that it offers the only way possible to capture aspects of human intelli-
gence such as learning. The combination of AI and DSSs provides formidable
new computational assistants to humans that extend their capabilities in
routine and complex stressful environments. Due to the increasing matu-
rity of this interdisciplinary field as evidenced by the recent growth in the
number of research publications and contributors entering the field, a book
that explores the current state and future outlook of intelligent DSSs seems
appropriate.

The book is organized around three themes. The first two chapters provide
a solid foundation by exploring studies and theories of human decision making.
They trace some one hundred years of research including recent work by the
well-known authors and provide a vision of the use of computerized decision
aids. The second section deals with paradigms and methods associated with AI
in DSS. The final section provides sample applications among the many that
are appearing today and gives our perspective on future research directions
needed to advance the field.

This book would not have been possible without the efforts of many people.
We thank the contributors for their inspiring research and the reviewers for
their efforts to create a high-quality book. The publisher’s support, patience
and assistance are gratefully acknowledged. In particular, Srilatha Achuthan’s
unwavering efforts as project manager provided help when we needed it most.
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Summary. This chapter presents some understandings of the human problem-
solving activity that a group of researchers in the Collaborative Agent Design
Research Center at the California Polytechnic State University, San Luis Obispo,
California has gained over the past two decades. Based on the premise that the
human decision-maker should be an integral component of any computer-based
decision-support system, it follows that the elements that appear to be important
to the user should be incorporated in the design of these systems. The complexity
of the human cognitive system is evidenced by the large body of literature that
describes problem-solving behavior and the relatively fewer writings that attempt
to provide comprehensive explanations of this behavior. The contributions of this
chapter are confined to the identification of important elements of the problem-
solving activity and exploration of how these elements might influence the design of
a decision-support system.

2.1 Introduction

One could argue that among all attributes it is the intellectual capabilities
that have allowed human beings to gain superiority over all animal species on
planet Earth. These intellectual capabilities have allowed us humans to adapt
to our environment, protect ourselves from predators, and ensure the avail-
ability of an adequate supply of food and water under all but the most extreme
circumstances. Furthermore, these intellectual capabilities have evolved from
very primitive beginnings into much more sophisticated and specialized skills
(e.g., observation, planning, coordination, and problem solving), over the
relatively short period of a few thousand years.
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In this chapter1 the author will explore the strengths and limitations
of human beings within the context of an evolving information society in
which the ability to analyze problem situations, formulate and evaluate
solution alternatives, and make accurate and timely decisions, are highly
valued attributes. It would appear appropriate that the designers and devel-
opers of intelligent software systems should not only seek to advance the
state-of-the-art of artificial intelligence (AI), but also consider how AI-based
decision-support systems can best compliment human decision-making capa-
bilities. In this respect it is also necessary to explore the problem solving
techniques that we devised before the advent of computer technology, over
many centuries, to suit our human cognitive capabilities. The implication
is that computers may be a necessary component of human evolution by
overcoming some of the limitations of our intellectual assets.

2.2 Will Technology and Biology Merge?

The principal enabling characteristics of the Information Society are revo-
lutionary advances in computer, bio-electronic, and communication technolo-
gies. By utilizing these technological advances a single person is able to achieve
today what entire organizations struggled to accomplish only three decades
ago. However, at the same time, these new opportunities are placing unprece-
dented pressure on the individual to perform at a significantly higher level of
expectation. How will the human intellectual capabilities that have served us
so well in the past measure up in this new era of unprecedented opportunities
and corresponding expectations? To what degree can AI-based software sys-
tems extend our intellectual capabilities and where should this assistance be
best focused?

Kurzweil (1999) argues rather convincingly that technology and biology
will merge over the next millennium to significantly accelerate human evo-
lution. Recent developments in subcutaneous sensors and prosthetics (Finn,
1997), bio-engineered materials (Kelly, 1994), brain scanning (Kiernan, 1998;
Hübener, 1997; Powledge, 1997), and unraveling of the human genome (DOE,
2000), appear to be only the beginning of bio-electronic advances that promise
profound extensions to the quality, productivity and longevity of human life
(Brooks, 2002). In Kurzweil’s words (Brockman, 2002)“. . . We are entering
a new era. I call it the Singularity. It’s a merger between human intelligence
and machine intelligence . . .”

1 Portions of the material included in this chapter have appeared previously in
keynote addresses presented at two InterSymp Conferences (Pohl, 2002, 2006)
and two Technical Reports of the Collaborative Agent Design Research Center
at the California Polytechnic State University, San Luis Obispo, California (Pohl
et al., 1994, 1997)
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2.3 Some Human Problem Solving Characteristics

Human beings are inquisitive creatures by nature who seek explanations for
all that they observe and experience in their living environment. While this
quest for understanding is central to our success in adapting to a changing and
at times unforgiving environment, it is also a major cause for our willingness
to accept partial understandings and superficial explanations when the degree
of complexity of the problem situation confounds our mental capabilities. In
other words, a superficial or partial explanation is considered better than no
explanation at all. As flawed as this approach may be, it has helped us to solve
difficult problems in stages. By first oversimplifying a problem we are able to
develop an initial solution that is later refined as a better understanding of
the nature of the problem evolves. Unfortunately, this requires us to contend
with another innately human characteristic, our inherent resistance to change
and aversion to risk taking. Once we have found an apparently reasonable
and workable explanation or solution we tend to lose interest in pursuing
its intrinsic shortcomings and increasingly believe in its validity. Whether
driven by complacency or lack of confidence, this state of affairs leads to
many surprises. We are continuously discovering that what we believed to
be true is only partly true or not true at all, because the problem is more
complicated than we had previously assumed it to be.

The complexity of the problems faced by human society in areas such as
management, economics, marketing, engineering design, and environmental
preservation, is increasing for several reasons. First, computer-driven informa-
tion systems have expanded these areas from a local to an increasingly global
focus. Even small manufacturers are no longer confined to a regionally local-
ized market for selling their products. The marketing decisions that they have
to make must take into account a wide range of factors and a great deal of
knowledge that is far removed from the local environment. Second, as the
net-centricity of the problem system increases so do the relationships among
the various factors. These relationships are difficult to deal with, because they
require the decision-maker to consider many factors concurrently. Third, as the
scope of problems increases decision-makers suffer simultaneously from two
diametrically opposed but related conditions. They tend to be overwhelmed
by the shear volume of data that they have to consider, and yet they lack
information in many specific areas. To make matters worse, the information
tends to change dynamically in largely unpredictable ways.

It is therefore not surprising that governments, corporations, businesses,
down to the individual person, are increasingly looking to computer-based
decision-support systems for assistance. This has placed a great deal of pres-
sure on software developers to rapidly produce applications that will overcome
the apparent failings of the human decision-maker. While the expectations
have been very high, the delivery has been much more modest. The expecta-
tions were simply unrealistic. It was assumed that advances in technology
would be simultaneously accompanied by an understanding of how these
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advances should be applied optimally to assist human endeavors. History sug-
gests that such an a priori assumption is not justified. There are countless
examples that would suggest the contrary. For example, the invention of new
materials (e.g., plastics) has inevitably been followed by a period of misuse.
Whether based on a misunderstanding or lack of knowledge of its intrinsic
properties, the new material was typically initially applied in a manner that
emulated the material(s) it replaced. In other words, it took some time for the
users of the new material to break away from the existing paradigm. A sim-
ilar situation currently exists in the area of computer-based decision-support
systems.

2.4 Human Limitations and Weaknesses

Deeply embedded in the evolution of the human intellect is the rationalis-
tic approach to problem solving. At face value this approach appears to be
entirely sound. It suggests that problem solving should proceed in a logical
sequence of clearly defined steps. One begins by defining the problem and then
decomposes the defined problem into sub-problems. Decomposition appears
to make a great deal of sense because the parts of a problem are intrinsi-
cally easier to solve than the whole problem. The reason for this is that the
complexity of a problem is normally due to the nature and number of rela-
tionships among the elements of the problem and not due to the elements
themselves. Decomposition allows us to temporarily neglect consideration of
many of these relationships. However, this over-simplification of the problem
is valid only as long as the problem remains in a decomposed state. As soon
as we try to integrate the separate solutions of the parts into a solution of
the whole the relationships that we so conveniently disregarded reappear and
invalidate many if not most of our neatly packaged sub-solutions. We find
to our consternation that the characteristics of a part of a problem situation
considered in isolation are not necessarily similar (let alone the same) as the
behavior of that part within the context of the whole problem.

Why have we human beings come to rely so heavily on this flawed approach
to problem solving? The reasons are related primarily to the biological nature
of our cognitive system. While the biological basis of human cognition is
massively parallel (i.e., millions of neurons and billions of connections) our
conscious reasoning capabilities are largely sequential. The fact is that our
short term memory has a severely limited capacity of only a few chunks of
data at any one time. Therefore, we can differentiate among only a small
number of objects at any one point in time, even though we continuously
move new data chunks from long term memory into short term memory. As
a consequence we have great difficulty dealing with more than three or four
relationships concurrently.

Secondary limitations and tensions that contribute to our human problem
solving difficulties include our tendency to seek a degree of accuracy that is
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often unrealistic and usually unnecessary. Our aversion to risk and instinctive
need to survive drives us to try to predict the future with great accuracy.
In this respect, as mentioned previously, we place a great deal of reliance on
mathematics even though mathematical models often fail due to oversimpli-
fication of the problem situation and incorrect boundary assumptions (Pohl,
1999).

We often seek to produce an optimum solution even though the problem
conditions are continuously changing and, therefore, we have no benchmark
that would allow us to judge whether a particular solution is in fact opti-
mal. In other words, under dynamic conditions there is no static benchmark
available. This creates related difficulties, because our ability to interpret and
judge any situation is necessarily based on comparative analysis. Subject to
the experiential basis of the human cognitive system we normally have no
alternative but to measure new situations with existing metrics based on past
experience. However, the further the new situation deviates from past expe-
rience the more misleading the available metrics are likely to be. As a result,
since we have no effective metrics for assessing new situations, we typically
require a considerable period of time to correctly evaluate such situations.
Accordingly, it is not unreasonable to conclude that human judgments are
more influenced by the past than the present.

More comprehensively stated, the essentially experience-based nature of
human cognition forces us almost always (i.e., at least initially) to apply
existing methods, notions, and concepts to new situations. Therefore, our
most effective problem solving capabilities utilize prototype solutions based
on past experience. While we have become quite skilled in adapting, modify-
ing and combining such prototype solutions, we find it very difficult to create
new prototypes. As a consequence we invariably apply existing solution meth-
ods to new problem situations and develop new methods only through painful
trial and error. This also leads us to generally underestimate the complexity
and impact of new situations.

2.5 Human Strengths

So far the discussion has centered on the apparently numerous limitations and
weaknesses of human beings, particularly in respect to intellectual and emo-
tional capabilities. Surely we human beings also have intellectual strengths.
The answer is yes, of course, but with some qualifications. Certainly human
learning capabilities, supported by a very large associative long-term mem-
ory, are vast. However, our rate of learning is rather slow and appears to
lack efficiency. While some of this inefficiency is undoubtedly due to human
communication inadequacies, the very process of progressively collecting expe-
rience by building onto existing associative knowledge structures would appear
to be cumbersome and rather time consuming. It is not simply a matter of
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adding new knowledge elements or associating existing elements by inserting
linkages, but instead patterns of neural activations (i.e., firings) have to be
repeated many times before they are literally grooved into long-term memory.
It is therefore not surprising that formal education takes up one quarter to one
third of a human life span and involves a great deal of concentration, as well
as assistance from other human beings who have acquired special teaching
skills.

An important part of the human learning capability is the ability to con-
ceptualize experiences into knowledge that we consider to be true in most
cases. In this way we place emphasis on being able to deal with general
conditions and consider the exceptions to the general rules to be much less
important. This again exemplifies the human tendency to oversimplify a sit-
uation for the sake of being able to reach a quick solution to a problem or
an explanation of an observed phenomenon. In fact, as we discover to our
surprise time and again, the exceptions are often more important than the
generalizations (Minsky, 1990).

It must also be noted that much of human learning is involuntary and
therefore virtually effortless. This applies in particular to the acquisition of
low-level, largely involuntary skills such as sensory pattern matching that
allows us to automatically convert data to information. For example, when we
enter a restaurant we immediately recognize the furniture in the room. In fact,
our eyes see only image patterns. However, these are automatically interpreted
as tables and chairs by our cognitive system which has by experience related
these image patterns to the appropriate symbolic entities.

At a higher level, symbolic reasoning allows us to infer knowledge from
information. When our reasoning capabilities are unable to cope in com-
plex situations that include many relationships, conceptual pattern matching
(i.e., intuition) allows us to assess situations without resorting to logical rea-
soning. However, again there is evidence that this process is greatly facilitated
by experience. Klein (1998) found that highly experienced fire captains will
resort to the situation analysis methods employed by novices when they are
confronted with situations outside their sphere of experience.

While the creation of new knowledge is normally the province of indi-
viduals, once such an intellectual leap has been accomplished we collectively
excel in the technological exploitation of this contribution. Typically, this
exploitation proceeds incrementally and involves a large number of persons,
coordinated in a self-organizing fashion but willing to collaborate to leverage
the capabilities of individual contributors.

However, finally, perhaps one of our greatest human strengths is the dis-
covery early on in our evolution of the usefulness of tools. Since then we have
been successful in the development and application of more and more pow-
erful tools. Today, we appear to be on the verge of merging computer-based
tools with the biological fabric of our very existence.
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2.6 The Rationalistic Tradition

To understand current trends in the evolution of progressively more sophisti-
cated decision-support systems it is important to briefly review the founda-
tions of problem solving methodology from an historical perspective.
Epistemology is the study or theory of the origin, nature, methods and limits
of knowledge. The dominant epistemology of Western Society has been tech-
nical rationalism (i.e., the systematic application of scientific principles to the
definition and solution of problems).

The rationalistic approach to a problem situation is to proceed in well
defined and largely sequential steps as shown in Fig. 2.1: define the problem;
establish general rules that describe the relationships that exist in the problem
system; apply the rules to develop a solution; test the validity of the solution;
and, repeat all steps until an acceptable solution has been found. This simple
view of problem solving suggested a model of sequential decision-making that
has retained a dominant position to the present day. With the advent of
computers it was readily embraced by first Wave software (Fig. 2.2) because
of the ease with which it could be translated into decision-support systems
utilizing the procedural computer languages that were available at the time.

The close correlation between the rationalistic approach and what is com-
monly referred to as the scientific method is readily apparent in the series
of basic steps that are employed in scientific investigations: observe the phe-
nomenon that requires explanation; formulate a possible explanation; develop
a method capable of predicting or generating the observed phenomenon;
interpret the results produced by the method; and, repeat all steps until an
acceptable explanation of the observed phenomenon has been found. Scientific
research typically attempts to establish situations in which observable actions
(or reactions) are governed by a small number of variables that can be sys-
tematically manipulated. Every effort is made to keep the contrived situation

Fig. 2.1. Solution of simple problems
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Fig. 2.2. Sequential decision-support

simple, clear and deterministic, so that the results of the simulation can be
verified.

However, natural phenomena and real world problems are often very com-
plex involving many related variables. Neither the relationships among the
variables nor the variables themselves are normally sufficiently well under-
stood to provide the basis for clear and comprehensive definitions. In other
words, problem situations are often too complex to be amenable to an entirely
logical and predefined solution approach. Under these circumstances the ana-
lytical strategy has been to decompose the whole into component parts, as
follows:

• Decompose the problem system into sub-problems.
• Study each sub-problem in relative isolation, using the rationalistic ap-

proach (Fig. 2.1). If the relationships within the sub-problem domain
cannot be clearly defined then decompose the sub-problem further.

• Combine the solutions of the sub-problems into a solution of the whole.

Underlying this problem-solving strategy is the implicit assumption that
an understanding of parts leads to an understanding of the whole. Under
certain conditions this assumption may be valid. However, in many complex
problem situations the parts are tightly coupled so that the behavior of the
whole depends on the interactions among the parts rather than the internal
characteristics of the parts themselves (Bohm, 1983; Senge, 1993). An analogy
can be drawn with the behavior of ants. Each ant has only primitive skills,
such as the ability to interpret the scent of another ant and the instinctive
drive to search for food, but little if any notion of the purpose or objectives of
the ant colony as a whole. In other words, an understanding of the behavior
of an individual ant does not necessarily lead to an understanding of the
community behavior of the ant colony of which the ant is a part.
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Decomposition is a natural extension of the scientific approach to problem
solving and has become an integral and essential component of rationalistic
methodologies. Nevertheless, it has serious limitations. First, the behavior of
the whole usually depends more on the interactions of its parts and less on
the intrinsic behavior of each part. Second, the whole is typically a part of a
greater whole and to understand the former we have to also understand how
it interacts with the greater whole. Third, the definition of what constitutes a
part is subject to viewpoint and purpose, and not intrinsic in the nature of the
whole. For example, from one perspective a coffee maker may be considered
to comprise a bowl, a hotplate, and a percolator. From another perspective it
consists of electrical and constructional components, and so on.

Rationalism and decomposition are certainly useful decision-making tools
in complex problem situations. However, care must be taken in their appli-
cation. At the outset it must be recognized that the reflective sense (Schön,
1983) and intuition of the decision-maker are at least equally important tools.
Second, decomposition must be practiced with restraint so that the complex-
ity of the interactions among parts is not overshadowed by the much simpler
behavior of each of the individual parts. Third, it must be understood that the
definition of the parts is largely dependent on the objectives and knowledge
about the problem that is currently available to the decision-maker. Even rel-
atively minor discoveries about the greater whole, of which the given problem
situation forms a part, are likely to have significant impact on the purpose
and the objectives of the problem situation itself.

2.7 Decision-Making in Complex Problem Situations

As shown in Fig. 2.3, there are several characteristics that distinguish a com-
plex problem from a simple problem. First, the problem is likely to involve
many related issues or variables. As discussed earlier the relationships among
the variables often have more bearing on the problem situation than the
variables themselves. Under such tightly coupled conditions it is often not
particularly helpful, and may even be misleading, to consider issues in isola-
tion. Second, to confound matters some of the variables may be only partially
defined and some may yet to be discovered. In any case, not all of the informa-
tion that is required for formulating and evaluating alternatives is available.
Decisions have to be made on the basis of incomplete information.

Third, complex problem situations are pervaded with dynamic informa-
tion changes. These changes are related not only to the nature of an individual
issue, but also to the context of the problem situation. For example, a change
in wind direction during a major brushfire may have a profound impact on
the entire nature of the relief operation. Apart from precipitating an imme-
diate re-evaluation of the firefighting strategy, it may require the relocation
of firefighters and their equipment, the re-planning of evacuation routes, and
possibly even the relocation of distribution centers. Certainly, a change in the
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Fig. 2.3. Character of complex problems

single factor of wind direction could, due to its many relationships, call into
question the very feasibility of the existing course of action (i.e., the firefighting
plan). Even under less critical conditions it is not uncommon for the solution
objectives to change several times during the decision-making process. This
fourth characteristic of complex problem situations is of particular interest.
It exemplifies the tight coupling that can exist among certain problem issues,
and the degree to which decision-makers must be willing to accommodate
fundamental changes in the information that drives the problem situation.

Fifth, complex problems typically have more than one solution (Archea,
1987). A solution is found to be acceptable if it satisfies certain performance
requirements and if it has been determined that the search for alternatives is
no longer warranted. Such a determination is often the result of resource con-
straints (e.g., availability of time, penalty of non-action, or financial resources)
rather than a high level of satisfaction with the quality of the proposed
solution.

While human decision-making in complex problem situations has so far
defied rigorous scientific explanation, we do have knowledge of at least some
of the characteristics of the decision-making activity.

• In search of a starting point for assessing the nature of the problem sit-
uation, decision makers will typically look for prominent aspects that are
likely to have significant impact on the solution space. These aspects or
problem features are then used to at least temporarily establish boundaries
within which the initial problem solving efforts can be focused. However,
the qualifying terms temporarily and initial are appropriately chosen since
both the selected features and the early boundaries are likely to change
many times due to the highly dynamic nature of the decision-making
process.
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Fig. 2.4. Parallel decision-support

• The complexity of the decision-making activity does not appear to be due
to a high level of difficulty in any one area but the multiple relationships
that exist among the many issues that impact the desired outcome. Since a
decision in one area will tend to influence several other areas there is a need
to consider many factors at the same time. This places a severe burden on
the human cognitive system. As mentioned previously, although the neuro-
logical mechanisms that support conscious thought processes are massively
parallel, the operation of these reasoning capabilities is largely sequential.
Accordingly, decision-makers tend to apply simplification strategies for
reducing the complexity of the problem-solving activity. In this regard it
becomes readily apparent why second Wave software with multi-tasking
capabilities provides a much more useful architecture for decision-support
systems (Fig. 2.4).

• Observation of decision-makers in action has drawn attention to the impor-
tant role played by experience gained in past similar situations, knowledge
acquired in the general course of decision-making practice, and expertise
contributed by persons who have detailed specialist knowledge in particu-
lar problem areas. The dominant emphasis on experience is confirmation
of another fundamental aspect of the decision-making activity. Problem-
solvers seldom start from first principles. In most cases, the decision-maker
builds on existing solutions from previous situations that are in some
way related to the problem under consideration. From this viewpoint, the
decision-making activity involves the modification, refinement, enhance-
ment and combination of existing solutions into a new hybrid solution
that satisfies the requirements of the given problem system. In other words,
problem-solving can be described as a process in which relevant elements
of past prototype solution models are progressively and collectively molded
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into a new solution model. Very seldom are new prototype solutions created
that do not lean heavily on past prototypes.

Finally, there is a distinctly irrational aspect to decision-making in com-
plex problem situations. Schön refers to a “. . .reflective conversation with the
situation. . .” (Schön, 1983). He argues that decision-makers frequently make
value judgments for which they cannot rationally account. Yet, these intu-
itive judgments often result in conclusions that lead to superior solutions. It
would appear that such intuitive capabilities are based on a conceptual under-
standing of the situation, which allows the problem solver to make knowledge
associations at a highly abstract level.

Based on these characteristics the solution of complex problems can be
categorized as an information intensive activity that depends for its success
largely on the availability of information resources and, in particular, the
experience and reasoning skills of the decision-makers. It follows that the
quality of the solutions will vary significantly as a function of the problem-
solving skills, knowledge, and information resources that can be brought to
bear on the solution process. This clearly presents an opportunity for the
useful employment of computer-based decision-support systems in which the
capabilities of the human decision-maker are complemented with knowledge
bases, expert agents, and self-activating conflict identification and monitoring
capabilities.

2.8 Principal Elements of Decision-Making

Over the past two decades that our Collaborative Agent Design Research
Center has been developing distributed, collaborative decision-support sys-
tems some insights have been gained into the nature of the decision-making
activity. In particular, we have found it useful to characterize decision-making
in terms of six functional elements (Fig. 2.5): information; representation;
visualization; communication; reasoning; and, intuition.

2.8.1 The Information Element

Decision-making in complex problem situations is a collaborative activity
involving many sources of information that are often widely dispersed. Seldom
is all of the information required for the solution, or even only a component
of the problem, physically located in the immediate vicinity of the decision-
maker. In fact, much of the information is likely to reside in remote repositories
that can be accessed only through electronic means, the telephone, e-mail, or
the temporary relocation of a member of the problem-solving team (Fig. 2.6).
If the desired information requires expert advice the services of a consul-
tant may be required in addition to, or instead of, access to an information
resource.
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The term information is used here in the broadest sense to include not
only factual data and the progressively more comprehensive and detailed
description of the problem system, but also the many knowledge bases that
are part of the local and global environment within which the problem situa-
tion is constituted. In this regard, we are concerned with the knowledge of the
individual members of the problem-solving team, the knowledge of peripheral
players (e.g., colleagues, associates and consultants), the collective knowledge
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of the profession (such as the various engineering professions, the military
establishment, or the management profession) and industry, and beyond that
those aspects of what might be referred to as global knowledge that impact
the problem context.

Typically, the problem specifications (i.e., constraints, criteria, and objec-
tives) evolve with the problem solution as the decision-makers interact with
the problem situation. Accordingly, the information requirements of the
problem solver are not predictable since the information needed to solve
the problem depends largely on the solution strategy adopted (Fischer and
Nakakoji, 1991). In this respect problem solving is a learning process in which
the decision-maker progressively develops a clearer understanding of the prob-
lem that is required to be solved. Much of the information that decision-makers
use in the development of a problem solution is gleaned from experience with
past projects. In fact, it can be argued that solutions commonly evolve out
of the adaptation, refinement and combination of prototypes (Gero, 1988).
This argument suggests that the more expert human decision-makers are the
more they tend to rely on prototypical information in the solution of com-
plex problems. It would appear that the accumulation, categorization and
ability to apply prototype knowledge are the fundamental requirements for
a human decision-maker to reach the level of expert in a particular domain.
Based largely on the work of Gero (1988) and Rosenman and Gero (1993)
the following techniques used by engineering designers to develop solutions
through the manipulation of prototypes can be identified as being universally
applicable to other problem domains:

• Refinement. The prototype can be applied after changes have been made
in the values of parameter variables only (i.e., the instance of the prototype
is reinterpreted within the acceptable range of the parameter variables).

• Adaptation. Application of the prototype requires changes in the param-
eters that constitute the description of the prototype instance, based on
factors that are internal to the prototype (i.e., a new prototype instance
is produced).

• Combination. Application of the prototype requires the importation of
parameter variables of other prototypes, producing a new instance of a
reinterpreted version of the original prototype.

• Mutation. Application of the prototype requires structural changes to
the parameter variables, either through internal manipulations or the
importation of parameter variables from external sources (i.e., either a
reinterpreted version of the original prototype or a new prototype is
produced).

• Analogy. Creation of a new prototype based on a prototype that exists
in another context, but displays behavioral properties that appear to be
analogous to the application context.
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For application purposes in knowledge-based decision-support systems pro-
totypes may be categorized into five main groups based on knowledge content
(Schön, 1988; Pohl and Myers, 1994):

1. Vertical prototype knowledge bases that contain typical object descrip-
tions and relationships for a complete problem situation or component
thereof. Such a knowledge base may include all of the types that exist in
a particular problem setting, for example: an operational template for a
particular kind of humanitarian relief mission; a certain type of propulsion
unit; or, a building type such as a library, sports stadium, or supermarket.

2. Horizontal prototype knowledge bases that contain typical solutions for
sub-problems such as commercial procurement practices, construction of
a temporary shelter, or techniques for repairing equipment. This kind of
knowledge often applies to more than one discipline. For example, the
techniques for repairing a truck apply equally to the military as they
do to auto-repair shops, engineering concerns, and transportation related
organizations.

3. Domain prototype knowledge bases that contain guidelines for developing
solutions within contributing narrow domains. For example, the range of
structural solutions appropriate for the construction of a 30-story office
building in Los Angeles is greatly influenced by the seismic character
of that region. Posed with this design problem structural engineers will
immediately draw upon a set of rules that guide the design activity. Sim-
ilarly, an acoustic consultant engaged to determine the cause of noise
transmission between two adjacent office spaces will diagnose the prob-
lem based on experience with previous situations. The possibility of the
existence of indirect sound transmission paths, such as a false ceiling, is
likely to receive early consideration.

4. Exemplar prototype knowledge bases that describe a specific instance of
an object type or solution to a sub-problem. Exemplary prototypes can be
instances of vertical or horizontal prototypes, such as a particular building
type or a method of welding a certain kind of steel joint that is applied
across several disciplines and industries (e.g., building industry and auto-
mobile industry). Decision-makers often refer to exemplary prototypes in
exploring solution alternatives to sub-problems.

5. Experiential knowledge bases that represent the factual prescriptions,
strategies and solution conventions employed by the decision-maker in
solving similar kinds of problem situations. Such knowledge bases are
typically rich in methods and procedures. For example, a particularly
memorable experience such as the deciding event in a past business nego-
tiation or the experience of seeing for the first time the magnificent sail-like
concrete shell walls of the Sydney Opera House, may provide the basis for
a solution method that is applied later to create a similar experience in a
new problem situation that may be quite different in most other respects.
In other words, experiential prototypes are not bound to a specific type of
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problem situation. Instead, they represent techniques and methods that
can be reproduced in various contexts with similar results. Experiential
knowledge is often applied in very subtle ways to guide the solution of sub-
problems (e.g., a subterfuge in business merger or take-over negotiations
that is designed to mislead a competing party).

The amount of prototypical information is potentially overwhelming. How-
ever, the more astute and experienced decision-maker will insist on taking time
to assimilate as much information as possible into the problem setting before
committing to a solution theme. There is a fear that early committal to a
particular solution concept might overlook characteristics of the problem sit-
uation that could gain in importance in later stages, when the solution has
become too rigid to adapt to desirable changes. This reluctance to come to
closure places a major information management burden on the problem solver.
Much of the information cannot be specifically structured and prepared for
ready access, because the needs of the problem solver cannot be fully antici-
pated. Every step toward a solution generates new problems and information
needs (Simon, 1981).

One of the early targets of ontology-based multi-agent systems is the
integration of existing information sources (i.e., databases and legacy appli-
cations) into comprehensive decision-support systems. The initial focus of
such efforts is the linkage of existing databases. This is not a trivial task
since these existing information resources typically were implemented in many
different ways. Consequently, any integrating system will be required to sup-
port the conceptual integration of a variety of data resource models. This
can be accomplished through the provision of several internal-level database
representations, requiring a number of additional mapping functions to link
the internal and conceptual representation levels. In this way, any externally
linked database can be removed or replaced by another database, simply by
recoding the internal to conceptual level mapping. Since this will not affect
the external data representation, the user-interfaces built at the external level
will also remain unchanged.

The scope of database query facilities desirable for the kind of multi-agent,
decision-support environment discussed here far exceeds traditional database
management system (DBMS) functions. They presuppose a level of embedded
intelligence that has not been available in the past. Some of these desirable
features include: conceptual searches instead of factual searches; automatically
generated search strategies instead of predetermined search commands; mul-
tiple database access instead of single database access; analyzed search results
instead of direct (i.e., raw) search results; and, automatic query generation
instead of requested searches only.

A traditional DBMS typically supports only factual searches. In other
words, users and applications must be able to define precisely and without
ambiguity what data they require. In complex problem situations users rarely
know exactly what information they require. Often they can define in only
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conceptual terms the kind of information that they are seeking. Also, they
would like to be able to rely on the DBMS to automatically broaden the
search with a view to discovering information.

This suggests, in the first instance, that an intelligent DBMS should be
able to formulate search strategies based on incomplete definitions. It should
be able to infer, from rather vague information requests and its own knowl-
edge of the requester and the problem context, a set of executable query
procedures. To facilitate this process the DBMS should maintain a history of
past information requests, the directed search protocols that it generated in
response to these requests, and at least some measure of the relative success
of the previous search operations.

A traditional DBMS normally provides access to only a single database.
A knowledge-based decision-support environment is likely to involve many
information sources, housed in a heterogeneous mixture of distributed data-
bases. Therefore, through the internal-level database representations discussed
earlier, the DBMS must be able to access multiple databases. Using the map-
ping functions that link these internal representations an intelligent DBMS
should be capable of formulating the mechanisms required to retrieve the
desired data from each source, even though the internal data structures of the
sources may differ widely. Particularly when search results are derived from
multiple sources and the query requests themselves are vague and conceptual
in nature, there is a need for the retrieved information to be reviewed and
evaluated before it is presented to the requester. This type of search response
formulation facility has not been necessary in a traditional DBMS, where users
are required to adhere to predetermined query protocols that are restricted
to a single database.

Finally, all of these capabilities (i.e., conceptual searches, dynamic query
generation, multiple database access, and search response formulation) must
be able to be initiated not only by the user but also by any of the computer-
based agents that are currently participating in the decision-making environ-
ment. These agents may be involved in any number of tasks that require the
import of additional information from external databases into their individual
knowledge domains.

A conceptual model of an intelligent DBMS interface (Fig. 2.7) with the
capabilities described above should be able to support the following typical
information search scenario that might occur in an integrated and distributed,
collaborative, multi-agent, decision-support environment. Queries that are for-
mulated either by the user or generated automatically by a computer-based
agent are channeled to a Search Strategy Generator. The latter will query a
Search Scenario Database to determine whether an appropriate search strat-
egy already exists from a previous search. If not, a new search strategy is
generated, and also stored in the Search Scenarios Database for future use.
The search strategy is sent to the Database Structure Interpreter, which auto-
matically formulates access protocols to all databases that will be involved in
the proposed search. The required access and protocol information, together
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Fig. 2.7. Conceptual model of an intelligent DBMS interface

with the search strategy, are sent to the Directed Search Implementer, which
conducts the required database searches. The results of the search are sent to
a Research Response Formulator, where the raw search results are analyzed,
evaluated and combined into an intelligent response to be returned to the
originator of the query.

The proposition that the DBMS interface should be able to deal with
incomplete search requests warrants further discussion. When searching for
information, partial matching is often better than no response. In traditional
query systems, a database record either matches a query or it does not. A flex-
ible query system, such as the human brain, can handle inexact queries and
provide best guesses and a degree of confidence for how well the available
information matches the query (Pohl et al., 1994). For example, let us assume
that a military commander is searching for a means of trapping a given enemy
force in a particular sector of the battlefield and formulates a something like a
choke point query. In a flexible query system a something like operator would
provide the opportunity to match in a partial sense, such as: terrain conditions
that slow down the movement of troops; unexpected physical obstacles that
require the enemy to abruptly change direction; subterfuge that causes enemy
confusion; and so on. These conditions can all, to varying extent, represent
something like a choke point that would be validated by a degree of match
qualification.

Flexible query processing systems are fairly common. For example, most
automated library systems have some level of subject searching by partial
keyword or words allowing users to browse through a variety of related topics.
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Even word-processing programs include spelling checkers, which by their very
nature search for similar or related spellings. However, even a flexible query
system cannot automatically form hypotheses, since the system does not know
what to ask for.

The ability to search for something like is only a starting point. How can
the system be prompted to search for vaguely or conceptually related infor-
mation? For example, how can the system discover the intuitive connection
between a physical choke point, such as a narrow cross-corridor in a mountain-
ous battlefield, and a precision fire maneuver aimed at concentrating enemy
forces in an exposed area? In other words, how can the system show the com-
mander that the precision fire maneuver option can satisfy the same intent
as the cross-corridor option? In addition, the system must not overwhelm
the commander with an unmanageable number of such intuitive speculations.
To discover knowledge it is necessary to: form a hypothesis; generate some
queries; view and analyze the results; perhaps modify the hypothesis and
generate new queries; and, repeat this cycle until a pattern emerges. This
pattern may then provide insight and advice for intuitive searches. The goal
is to automate this process with a discovery facility that repeatedly queries
the prototype knowledge bases and monitors the reactions and information
utilized by the decision-maker, until the required knowledge is discovered.

2.8.2 The Representation Element

The methods and procedures that decision-makers utilize to solve complex
problems rely heavily on their ability to identify, understand and manipulate
objects (Fig. 2.8). In this respect, objects are complex symbols that convey
meaning by virtue of the explicit and implicit information that they encapsu-
late within their domain. For example, architects develop design solutions by

Fig. 2.8. Symbolic reasoning with objects
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Fig. 2.9. The representation element

reasoning about neighborhoods, site characteristics, buildings, floors, spaces,
walls, windows, doors, and so on. Each of these objects encapsulates knowl-
edge about its own nature, its relationships with other objects, its behavior
within a given environment, what it requires to meet its own performance
objectives, and how it might be manipulated by the decision-maker within a
given problem scenario (Fig. 2.9). This knowledge is contained in the various
representational forms of the object as factual data, relationships, algorithms,
rules, exemplar solutions, and prototypes.

The reliance on object representations in reasoning endeavors is deeply
rooted in the innately associative nature of the human cognitive system. Infor-
mation is stored in long-term memory through an indexing system that relies
heavily on the forging of association paths. These paths relate not only infor-
mation that collectively describes the meaning of symbols such as building,
car, chair, and tree, but also connect one symbol to another. The symbols
themselves are not restricted to the representation of physical objects, but
also serve as concept builders. They provide a means for grouping and associ-
ating large bodies of information under a single conceptual metaphor. In fact,
Lakoff and Johnson (Lakoff and Johnson, 1980) argue that “. . .our ordinary
conceptual system, in terms of which we both think and act, is fundamen-
tally metaphorical in nature.” They refer to the influence of various types of
metaphorical concepts, such as “. . .desirable is up” (i.e., spatial metaphors)
and “. . .fight inflation” (i.e., ontological or human experience metaphors), as
the way human beings select and communicate strategies for dealing with
everyday events.

Problem-solvers typically intertwine the factually based aspects of objects
with the less precise, but implicitly richer language of metaphorical concepts.
This leads to the spontaneous linkage of essentially different objects through



2 Cognitive Elements of Human Decision Making 61

the process of analogy. In other words, the decision-maker recognizes simi-
larities between two or more sub-components of apparently unrelated objects
and embarks upon an exploration of the discovered object seeking analogies
where they may or may not exist. At times these seemingly frivolous pursuits
lead to surprising and useful solutions of the problem at hand.

The need for a high level representation is fundamental to all computer-
based decision-support systems. It is an essential prerequisite for embedding
AI in such systems, and forms the basis of any meaningful communication
between user and computer. Without a high level representation facility the
abilities of the computer to assist the human decision maker are confined to
the performance of menial tasks, such as the automatic retrieval and storage
of data or the computation of mathematically defined quantities. While even
those tasks may be highly productive they cannot support a partnership in
which human users and computer-based systems collaborate in a meaningful
and intelligent manner in the solution of complex problems.

The term high level representation refers to the ability of computer soft-
ware to process and interpret changes in data within an appropriate context. It
is fundamental to the distinction between data-centric and information-centric
software. Strictly speaking data are numbers and words without relation-
ships.2 Software that incorporates an internal representation of data only is
often referred to as data-centric software. Although the data may be repre-
sented as objects the absence of relationships to define the functional purpose
of the data inhibits the inclusion of meaningful and reliable automatic rea-
soning capabilities. Data-centric software, therefore, must largely rely on
predefined solutions to predetermined problems, and has little (if any) scope
for adapting to real world problems in near real-time.

Information, on the other hand, refers to the combination of data with rela-
tionships to provide adequate context for the interpretation of the data. The
richer the relationships the more context and the greater the opportunity for
automatic reasoning by software agents. Software that incorporates an internal
information model (i.e., ontology) consisting of objects, their characteristics,
and the relationships among those objects is often referred to as information-
centric software (Pohl et al., 2005). The information model provides a virtual
representation of the real world domain under consideration.

For example, let us assume that we wish to represent a component of a
building such as a conference room in the computer. Until recently, in a data-
centric software environment, we would have treated the conference room as
a three-dimensional geometric entity that can be described in terms of points
(i.e., x-y-z coordinates), lines, or surfaces. While this may be satisfactory for

2 Even though data are often stored in a relational database management system,
the relationships that are stored with the data in such a database are structural in
nature and do not provide any information on how the data will be used (i.e., the
context of the data)
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displaying different internal views of the building space and even generating
animated walk-through sequences, it does not provide a basis for the com-
puter to reason about any aspect of the space, such as that a conference
room must have a door for it to be usable. To provide the computer with
such a reasoning capability the particular entity, in this case the conference
room must be represented in the computer as an information structure that
constitutes the context of a building. This can be achieved quite easily by stor-
ing in the computer the word building and associating this word with some
characteristics such as: physical object; made of material; has height, width
and length; consists of one or more floors; has spaces on floors; and so on.
Then further defining spaces with characteristics such as: enclosed by walls,
floor and ceiling; with wall having at least one opening referred to as a door;
and so on.

In such an information-centric software environment the same conference
room would be presented to and stored in the computer as part of the build-
ing information structure (i.e., ontology) to support the following kind of
interaction with the user:

Computer user: I would like to represent a component of a building.
Computer software: Loads its stored building ontology into memory.

Asks user: “What kind of a building component?”
Computer user: A space of type conference.

Computer software: For how many persons?
Computer user: Up to 16 persons.

Computer software: Suggested space size is: 16 ft (length), 14 ft
(width), 8 ft (height).
Suggested furniture: 6 ft by 3 ft table, 16 chairs,
screen, white board.
Other features: There must be at least one door.

As can be seen from the interaction between the user and the computer
software, by virtue of the information structure the computer has some under-
standing of the meaning of a building within the context of its characteristics
and the relationships of its components (i.e., floors, spaces, walls, openings,
and furniture). This endows the computer software with the ability to col-
laborate and assist the user by reasoning about the relationships between the
data entered by the user and the context contained in the simple information
representation provided by the building ontology. Accordingly, driven by the
context provided in the ontology, software agents are able to spontaneously
reason about the characteristics of a conference room for 16 persons. Beyond
establishing the need for at least one exit and the kind of furniture normally
required, this could easily extend to the evaluation of the impact on equipment
and functionality of an external window.
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Fig. 2.10. The visualization element

2.8.3 The Visualization Element

Problem solvers use various visualization media, such as visual imagina-
tion, drawings and physical models, to communicate the current state of the
evolving solution to themselves and to others (Fig. 2.10). Drawings, in par-
ticular, have become intrinsically associated with problem solving. Although
the decision-maker can reason about complex problems solely through mental
processes, drawings and related physical images are useful and convenient for
extending those processes. The failings of the drawing as a vehicle for commu-
nicating the full intent of the decision-maker do not apply to the creator of the
drawing. To the latter the drawing serves not only as an extension of short-
term memory, but also as a visual bridge to the associative indexing structure
of long-term memory. In this way, every meaningful part of the drawing is
linked to related data and deliberation sequences that together provide an
effectively integrated and comprehensive representation of the artifact.

From a technical point of view a great deal of headway has been made over
the past two decades in the area of computer-based visualization. However,
without high-level representation capabilities even the most sophisticated
computer generated images are nothing but hollow shells. If the computer
system does not have even the simplest understanding of the nature of the
objects that are contained in the image then it cannot contribute in any way
to the analysis of those objects. On the other hand, visualization in combi-
nation with high-level representation becomes the most powerful element of
the user-interface of a decision-support system. Under these circumstances,
visualization promotes the required level of understanding between the user
and the computer as they collaborate in the solution of a problem.
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2.8.4 The Communication Element

The solution of complex problems is typically undertaken by a team of
decision-makers. Each team member contributes within a collaborative
decision-making environment that relies heavily on the normal modes of
social interaction, such as conversation, critique, negotiation, and persuasion
(Fig. 2.11). Two aspects of such an interactive environment are particularly
well catered for in computer-based systems. The first aspect relates to the abil-
ity of computer-driven communication networks to link together electronically
based resources located anywhere on Earth or in space. Technical advances in
the communication industry have greatly enhanced the ability of individuals
to gain access to remotely distributed information sources, and to interact with
each other over vast distances. In fact, connectivity rather than geographical
distance has become the principal determinant of communication.

In this respect, the notion of presence is being decisively redefined in an
information society. In recent years we have seen the gradual acceptance of
a new concept of presence that does not require the physical relocation of
persons. Major sporting events and entertainment shows are more conve-
niently viewed on television from the home. Typically, in the case of sporting
events, the quality of the televised presentation of the competition is greatly
improved by technical enhancements such as instant replays and close-up
shots of particularly skillful maneuvers, explanations and analyses by informed
commentators, and short profile films of the best competitors.

Electronic mail, Internet chat groups, telephone and video conferencing
facilities, and facsimile (FAX) transmissions, have reduced the need for face-
to-face meetings. Commercial companies are gradually being forced to reassess
the need for a centralized workplace. Why pay the considerable overhead
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costs associated with maintaining office space for employees, if the employees
could equally well perform their work at home? Computer-based messaging
services and global connectivity have already reached a level of reliability and
convenience that is more than adequate for business communications.

The second aspect is interwoven with the first by a major advance in
the telecommunication industry that occurred some 20 years ago and allowed
all types of data to be converted into digital form. Through the use of digital
switching facilities modern communication networks are able to transmit tele-
phone conversations and graphical images in the same way as data streams
have been sent from one computer to another over the past 40 years.

As a direct result of these advances in communication systems the con-
venient and timely interaction of all of the members of a widely dispersed
problem-solving team is technically assured. It is now incumbent on soft-
ware developers to produce computer-based decision-support systems that
can fully support collaborative teamwork, which is neither geographically nor
operationally limited. Such systems will integrate not only computer-based
information resources and software agents, but also multiple human agents
(i.e., the users) who will collaborate with the computer-based resources in a
near real-time, interactive, distributed environment.

2.8.5 The Reasoning Element

Reasoning is central to any decision-making activity. It is the ability to draw
deductions and inferences from information within a problem-solving context.
The ability of the problem solver to reason effectively depends as much on
the availability of information, as it does on an appropriately high level form
of object representation (Fig. 2.12). Decision-makers typically define complex
problems in terms of issues that are known to impact the desired outcome. The
relative importance of these issues and their relationships to each other change
dynamically during the decision-making process. So also do the boundaries
of the problem space and the goals and objectives of the desired outcome.
In other words, the solution of complex problems is an altogether dynamic
process in which both the rules that govern the process and the required
properties of the end-result are subject to continuous review, refinement and
amendment (Reitman, 1964; Reitman, 1965; Rittel and Webber, 1984).

As discussed previously, the complexity of a problem is normally not due
to a high degree of difficulty in any one area but the multiple relationships
that exist among the many issues that impact the desired outcome. Since
a decision in one area will tend to influence several other areas there is a
critical need for concurrency. However, the reasoning capabilities of the human
problem solver are sequential in nature. Accordingly, decision-makers find it
exceedingly difficult to consider more than three or four issues at any one time.
In an attempt to deal with the concurrency requirement several strategies are
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commonly employed to reduce the complexity of the reasoning process to a
manageable level.3

• Constraint identification. By sifting through the available information the
problem-solver hopes to find overriding restrictions and limitations that
will eliminate knowledge areas from immediate consideration.

• Decision factor weighting. By comparing and evaluating important prob-
lem issues in logical groupings, relative to a set of predetermined solution
objectives, the decision-maker hopes to identify a smaller number of
issues or factors that appear to have greater impact on the final solu-
tion. Again, the strategy is to reduce the size of the information base by
early elimination of apparently less important considerations.

• Solution conceptualization. By adopting early in the decision-making pro-
cess a conceptual solution, the problem-solver is able to pursue a selective
evaluation of the available information. Typically, the problem-solver pro-
ceeds to subdivide the decision factors into two groups, those that are
compatible with the conceptual solution and those that are in conflict.
By a process of trial and error, often at a superficial level, the problem-
solver develops, adapts, modifies, re-conceives, rejects and, often, forces
the preconceived concept into a final solution.

In complex problem situations reasoning proceeds in an iterative fash-
ion through a cycle of analysis, synthesis and evaluation (Fig. 2.13). During

3 Reasoning is a logical process that proceeds in a step-by-step manner. In this
respect reasoning is quite different from intuition, which allows humans to
spontaneously come to conclusions that are neither consciously formulated nor
explainable at the time of their first appearance
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the analysis stage (Fig. 2.14) the problem-solver interprets and categorizes
information to establish the relative importance of issues and to identify
compatibilities and incompatibilities among the factors that drive these issues.

During synthesis (Fig. 2.15) solution boundaries and objectives are con-
tinuously reexamined as the decision-maker develops narrow solutions to
sub-problems and combines these narrow solutions into broader solutions.
Initially, these solution attempts are nothing more than trial balloons. Or,
stated in more technical terms, explorations based on the development of
the relationships among the principal issues and compatible factors identified
during the analysis stage. Later, as the problem-solving activity progresses,
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Fig. 2.15. Synthesis stage of reasoning
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firmer conceptual solution strategies with broader implications emerge. How-
ever, even during later cycles the solution strategies tend to be based on a
limited number of issues or factors.

During the evaluation stage (Fig. 2.16) the decision-makers are forced to
test the current solution strategy with all of the known problem issues, some
of which may have been considered only superficially or not at all during the
formulation of the current solution proposal. This may require the current
solution concepts to be modified, extended or altogether replaced. Typically,
several solution strategies are possible and none are completely satisfactory.
Archea (1987), in his description of the architectural design activity refers
to this activity as “. . .puzzle-making”, suggesting by implication that the
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decision-maker utilizes the reasoning cycle more as a method for exploring the
problem space than as a decision-making tool for forcing an early solution.

2.8.6 The Intuition Element

Schön (1983, 1988), has written extensively about the intuitive aspects of
decision-making. Although he focused primarily on engineering design as an
application area, his views provide valuable insight into the solution of com-
plex problems in general. Design has all of the common characteristics of
complex problem situations, and some additional ones such as the desire for
solution uniqueness in architectural design, that make it a prime candidate
for computer-based assistance (Pohl et al., 1994).

In Schön’s (1988) view designers enter into “. . . design worlds” in which
they find the objects, rules and prototype knowledge that they apply to the
design problem under consideration. The implication is that the designer con-
tinuously moves in and out of design worlds that are triggered by internal
and external stimuli. While the reasoning process employed by the designer
in any particular design world is typically sequential and explicitly logical,
the transitions from state to state are governed by deeper physiological and
psychological causes. Some of these causes can be explained in terms of associ-
ations that the designer perceives between an aspect or element of the current
state of the design solution and prototype knowledge that the designer has
accumulated through experience. Others may be related to emotional states
or environmental stimuli, or interactions of both (Fig. 2.17).

For example, applying Schön’s view to the broader area of complex prob-
lem solving, a particular aspect of a problem situation may lead to associations
in the decision-maker’s mind that are logically unrelated to the problem under
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Fig. 2.17. The intuition element
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consideration. However, when the decision-maker pursues and further devel-
ops these associations they sometimes lead to unexpected solutions. Typically,
the validity of these solutions becomes apparent only after the fact and not
while they are being developed. In popular terms we often refer to these solu-
tions as creative leaps and label the author as a brilliant strategist. What we
easily forget is that many of these intuitions remain unrelated associations
and do not lead to any worthwhile result. Nevertheless, the intuitive aspect
of decision-making is most important. Even if only a very small percentage of
these intuitive associations lead to a useful solution, they still constitute one
of the most highly valued decision-making resources.

The reasons for this are twofold. First, the time at which the decision-
maker is most willing to entertain intuitive associations normally coincides
with the most difficult stage in the problem solving process. Typically, it
occurs when an impasse has been reached and no acceptable solution strategy
can be found. Under these circumstances intuition may be the only remaining
course of action open to the decision-maker. The second reason is particularly
relevant if there is a strong competitive element present in the problem situ-
ation, for example, during a chess game or during the execution of military
operations. Under these circumstances, strategies and solutions triggered by
intuitive associations will inevitably introduce an element of surprise that is
likely to disadvantage the adversary.

The importance of the intuition element itself in decision-making would be
sufficient reason to insist on the inclusion of the human decision-maker as an
active participant in any computer-based decision system. In designing and
developing such systems in our Center over the past two decades we have come
to appreciate the importance of the human–computer partnership concept, as
opposed to automation. Whereas in some of our early systems (e.g., ICADS
(Pohl et al., 1998) and AEDOT (Pohl et al., 1992)) we included agents that
automatically resolve conflicts, today we are increasingly moving away from
automatic conflict resolution to conflict detection and explanation. We believe
that even apparently mundane conflict situations should be brought to the
attention of the human agent. Although the latter may do nothing more than
agree with the solution proposed by the computer-based agents, he or she has
the opportunity to bring other knowledge to bear on the situation and thereby
influence the final determination.

2.9 The Human–Computer Partnership

To look upon decision-support systems as partnerships between users and
computers, in preference to automation, appears to be a sound approach for
at least two reasons. First, the ability of the computer-based components
to interact with the user overcomes many of the difficulties, such as repre-
sentation and the validation of knowledge, that continue to plague the field
of machine learning (Forsyth, 1989; Thornton, 1992; Johnson-Laird, 1993).
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Fig. 2.18. Human abilities and limitations

Fig. 2.19. Computer abilities and limitations

Second, human and computer capabilities are in many respects complemen-
tary (Figs. 2.18 and 2.19). Human capabilities are particularly strong in areas
such as communication, symbolic reasoning, conceptualization, learning, and
intuition (Fig. 2.18). We are able to store and adapt experience and quickly
grasp the overall picture of even fairly chaotic situations. Our ability to match
patterns is applicable not only to visual stimuli but also to abstract concepts
and intuitive notions. However, as powerful as these capabilities may appear
to be they are nevertheless flawed by those innately human tendencies that
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were discussed at the beginning of this chapter under the rubric of human
limitations and weaknesses.

Decision-making based on analysis requires not only a great deal of rather
tedious and time consuming work, but also the unbiased and unemotional
evaluation of past experience and possible future outcomes. This is indeed a
tall order since emotions are a driving force in virtually all human activities.
Pomerol and Adam (2008), in Sect. 2.5 of Chap. 1, discuss in some detail
the critical role that emotions play in decision-making. Due to the influence
of emotions, coupled with our aversion to hard work, our experience-based
cognitive facilities, and our desire for instant gratification, we easily fall prey
to over-reliance on intuition. In contrast to the painstaking sequential logic
that must be applied in an analytical process, intuition is almost entirely sub-
conscious and produces almost immediate results rather effortlessly. However,
intuition can easily lead to false conclusions (Bonabeau, 2003). Unfortunately,
we often see patterns that do not exist in reality. The greater the complexity
of a situation the more likely that our intuitive assessments may be incorrect,
since we are so easily misled by our almost uncontrollable desire to main-
tain the status quo. As a result we tend to judge new circumstances in the
context of past conditions, particularly when these judgments are made intu-
itively. Examples of such human failings have been provided by Hammond
et al. (2002) and include the following types of deceptions:

The anchoring deception. We tend to use the first information received as
a reference point for comparing all subsequent information. For example, pos-
ing a question in the form of “Is the distance between Chicago and New York
greater than 2,000 kilometers?” is likely to produce an answer that is biased
toward a distance of 2,000km. Clearly, intelligent software that operates in
partnership with its human user would not only serve as a convenient source
of factual data, but also assist the user in viewing a problem from several per-
spectives by providing access to information sources and reference points. The
intelligence of the software is then related to its ability to automatically detect
the need for such assistance, rather than the assistance functions themselves.

The status quo deception. We feel most comfortable with current conditions
and practices unless compelled to change by threatening events. The tendency
to delay decisions is fundamental to common expressions such as “. . . let’s
wait until things settle down” or “. . . I’ll rethink this later”. In this case, an
intelligent decision-support system should be able to not only alert the user to
threatening events, but also assist in tracing the historical path that has led
to the status quo conditions and undertake a detailed analysis of alternative
courses of action.

The confirming evidence deception. We often favor a particular course
of action without adequate justification. In such situations we tend to rely
heavily on ad hoc confirming evidence, instead of undertaking the neces-
sary analysis. The factual analysis and evaluation capabilities of an intelligent
decision-support system are particularly useful as a counterpoint to the bias
and relative laziness of the human decision-maker.
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The sunken costs deception. We have difficulty admitting to past errors
in judgment and may stubbornly insist on the perpetuation of a decision
path that is fundamentally flawed. Under these circumstances the evidence
generated through the analysis, evaluation and consequence determination
capabilities of an intelligent software partner may be the only effective method
of exposing the deception.

The forecasting deception. We can easily become overconfident without
corroborating experience or too prudent by relying on a worst case scenario.
In this case intelligent decision-support software can assist through the very
nature of its disciplined approach to problem solving. It is in this area that
the human decision-maker is particularly vulnerable because the absence of
experience with future events will force reliance on past experience that may
only partially, or not at all, apply.

The framing trap. A poorly framed problem can easily bias our decisions
since we tend to be unduly influenced by risks associated with potential losses,
even if these risks are remote. The absence of emotions in intelligent decision-
support systems for the foreseeable future should be helpful in this regard.
They allow the decision-maker to consider a problem from several different
reference points. However, care must be taken by the designers of the software
to ensure that the results of the computer-based analysis are presented to the
human user in a neutral manner, so that potential gains and losses are more
likely to be considered on an equal basis.

As these examples indicate, intelligent software systems can be particu-
larly helpful in complementing human capabilities by providing a tireless, fast
and emotionless problem analysis and solution evaluation capability. Large
volumes of information and multi-faceted decision contexts tend to easily
overwhelm human decision-makers. When such an overload occurs we tend to
switch from an analysis mode to an intuitive mode in which we have to rely
almost entirely on our ability to develop situation awareness through abstrac-
tion and conceptualization. While this is perhaps our greatest strength it is
also potentially our greatest weakness, because at this intuitive meta-level we
become increasingly vulnerable to emotional influences.

The capabilities of the computer are strongest in the areas of parallelism,
speed and accuracy (Fig. 2.19). Whereas the human being tends to limit the
amount of detailed knowledge by continuously abstracting information to a
higher level of understanding, the computer excels in its almost unlimited
capacity for storing data. While the human being is prone to impatience, loss
of concentration and panic under overwhelming or threatening circumstances,
the computer is totally oblivious to such emotional influences. The most effec-
tive implementation of these complementing human and machine capabilities
is in a tightly coupled partnership environment that encourages and supports
seamless interaction.

In conclusion, it is certainly appropriate to revisit Kurzweil’s hypothesis
mentioned early on in this chapter that computing devices are a natural ingre-
dient and necessary requirement for accelerating the intellectual evolution of
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human beings. For this hypothesis to hold true, intelligent software systems
would need to be able to compensate for at least three recognized limitations
of the human cognitive system; namely: poor performance in the absence of
experience; emotional interference with logical processes; and, a distinct lack of
motivation for proactive endeavors. Existing computer capabilities that show
promise in this regard include: information storage in context building onto-
logical structures; symbolic reasoning; pattern matching; computation speed;
virtually unlimited parallelism; low level learning; analogy detection; and, tire-
less unemotional task performance. However, several additional capabilities
would appear to be required. These include at least the following three capa-
bilities that are likely to challenge the developers of AI-based decision-support
systems for the next several decades.

First, there is a need for automatic context generation to form the basis
of higher level learning capabilities. While much headway has been made
during the past two decades in the representation of context using rich infor-
mation structures such as ontologies, these are still largely static, predefined
virtual models of real world knowledge domains. What are needed are methods
for extending and merging ontologies dynamically during software execution
(i.e., extensible information representation models). Current industry research
efforts in this area such as the WebFountainTM project (IBM, 2002; Chase,
2002), are interesting but have not yet led to breakthrough advances in AI.

Second, there is a need for an interface to seamlessly link intelligent soft-
ware with the human nervous system. Currently available interface devices
and virtual reality capabilities are still very primitive. While some very
promising advances have been made in the bio-engineering field in recent
years with implanted sensors for artificial limbs, artificial hearing devices,
and the invasive monitoring of bodily functions, much more progress needs
to be made before we can contemplate the feasibility of a practical implanted
user-interface.

Third, there is a need for new methodologies that will allow the devel-
opment of software that can support the creation of knowledge through
analogous reasoning or other as yet unknown processes. The notion of a con-
ceptual database search, discussed previously in the context of the information
element of the decision-making process (Fig. 2.6), is an example of such a capa-
bility. The realization of this kind of AI capability is likely to be the furthest
goal to reach.
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