
Preface

Three Institutes of the CoreGRID Network of Excellence organized a com-
mon workshop to present and discuss the latest results on Grid and P2P Tech-
nologies achieved by the Institute partners as well as the latest developments
by researchers outside the CoreGRID community. The three institutes involved
are:

The Institute on Programming Model,

The Institute on Architectural Issues: Scalability, Dependability, Adapt-

ability, and

The Institute on Grid Systems, Tools, and Environments.

The aforementioned institutes have a history in organizing joint events – the
most recent one being the workshop in Krakow, Poland in June 2006.

The 2007 joint workshop took place at the premises of the Institute of
Computer Science, Foundation for Research and Technology-Hellas (FORTH-
ICS), Heraklion-Crete, Greece on June 12-13, 2007. The event was organized
in two plenary sessions hosting a presentation from the CoreGRID scientific
coordinator and three invited speakers, followed by 12 technical sessions hosting
the accepted contributions. A total of 42 papers were accepted for presentation
among those submitted to the workshop.

The workshop invited speakers presented some of the latest developments
in Grid Technology, Semantic Grid, and P2P technology respectively. Their
talks focused on ongoing work including some open problems and stimulated
interesting discussion among the participants.

The invited speakers and their respective talk titles were the following:

Dennis Gannon, Indiana University, “Programming Gateways to the

Teragrid”

David De Roure, University of Southampton, “Re- evaluating the Grid”

Ann Chervenak, University of Southern California “Peer-to-peer

Approaches to Grid Resource Discovery”.

x MAKING GRIDS WORK

All the contributions presented to the workshop have been included in a
CoreGRID technical report – TR-00801. The papers presented at the workshop
have been submitted to a further formal refereeing process. This volume hosts
the selected contributions resulting from this review process.

We wish to thank our hosts from FORTH-ICS for their kind hospitality,
the local organization team for providing such superb support, the CoreGRID
administrative structure for allowing us to organize the workshop and, in partic-
ular, to support the invited speakers, and the entire CoreGRID community for
submitting such a large number of interesting and high quality papers and for
their enthusiastic participation in the workshop.

Our thanks also go to the European Commission for sponsoring this volume
of selected articles from the workshop via the CoreGRID NoE project, grant
number 004265.

Marco Danelutto, Paraskevi Fragopoulou, Vladimir Getov

1Available at http://www.coregrid.net/mambo/content/view/152/292/

TOWARDS GCM RE-CONFIGURATION -

EXTENDING SPECIFICATION BY NORMS

Alessandro Basso, Alexander Bolotov
University of Westminster

Harrow School of Computer Science

University of Westminster

Watford Road

Harrow HA1 3TP

[bassoa.bolotoa]@wmin.ac.uk

Abstract We continue investigation of formal specification of Grid Component systems by
temporal logics and subsequent application of temporal resolution as a verification
technique. This time we enrich the specification language by the ability to capture
norms which enables us to formally define a concept of a re-configuration. We aim
at integrating a software tool for automated specification as well as verification to
ensure a reliable and dynamically re-configurable model.

Keywords: formal specification, formal verification, verification tool, GIDE, deductive rea-
soning, model checking, deontic logic, re-configuration

18 MAKING GRIDS WORK

1. Introduction.

Component models enable modular design of software applications that can
be easily reused and combined, ensuring greater reliability. This is important
in distributed systems where asynchronous components must be taken into
consideration, especially when there is need for a dynamic re-configuration.
The Grid Component Model (GCM) [12]based on Fractal is the one chosen
for our research. In these models, components interact together by being
bound through interfaces. However, there is a further need for a method which
ensures correct composition and behaviour of components. For the specification
of behaviour we can use a rich temporal framework [11] with subsequent
application of either model checking or deductive reasoning as a verification
technique. Model checking [7], which verifies the properties of the components
against the specification, has already been tested in various circumstances, one
particular application of this method been tested in [2]. Model checking is
a powerful and well established technique allowing to incorporate a number
of algorithms and tools to deal even with the famous state explosion problem.
However, if applied to a component system, it has one indicative drawback, due
to its explorative nature, namely, it cannot consider the environment in which a
component system has been developed. At the same time, in building a large
scale distributed system, we cannot afford anymore not to take into consideration
the entire infrastructure. Deductive methods, on the other hand, can deal with
such large systems and furthermore, can be applied to re-configuration scenarios.
In our earlier work [1] we applied a specific deductive technique, the temporal
resolution method [5] to a simple component model. The complexity of the
resolution based verification turned out to be high. The analogous method for the
linear-time setting has been recently improved in [8] by the modification of the
underlying specification language to obtain a polynomial satisfiability checking
complexity. In this paper we propose a new framework for the specification of
the re-configuration process: the extension of the temporal specification by the
deontic modalities [14]. This enriches the expressive capacities of our formal
specification by allowing to represent, additionally, a behaviour protocol.

The paper is organised as follows. In §2 we introduce the architecture and
give an informal description of the main concepts: re-configuration (§2.1) and
model update (§2.2). Further, in §3 we introduce these concepts formally: in
§3.1 we describe the deontic extension of ECTL+ called ECTL+

D, then, in §3.2
define a concept of deontic temporal specification (DTS) and reconfiguration,
and in §3.3 provide a specification example. Next, in §4 we describe a resolution
based verification technique, introducing new deontic resolution rules and
providing an example refutation. Finally, in §5, we give concluding remarks
and identify future work.

Towards GCM re-configuration - extending specification by norms 19

2. Architecture

We identify three main parts of the architecture: the primitive components,
their composition into composite components through the Architecture Descrip-
tion Language (ADL) file and the infrastructure (see Figure 1).

Figure 1. Architecture

The first two are combined to deduce the stateful component system be-

haviour - a high-level behaviour distinct from the one of a single component,
which we assume to be already formally verified through other techniques being
recently researched. The specification is partially given as an input by the user
in the case of primitive components, and partially automatically extrapolated
using different sources, such as source code and the ADL file. The infrastructure
is specified mainly according to the user’s need, and following well defined and
accepted constrains such as those for safety, fairness, etc. [15] and in relation to
the resources required and services provided. The formal specification derived
through this process is a fusion of deontic and computation tree temporal logic,
extended from the previous developments in [1], which is a suitable input format
for our deductive reasoning tool. The properties to be specified and verified by
this techniques are the ones which are not possible to be considered when a
system is specified in a static way, this includes but is not limited to: presence
of resources and services, availability of distributed components, etc.

In the classical approach to component behaviour specification, the term
"behaviour" is referred to the inner component’s functionality - if the compo-
nent is supposed to calculate the factorial, is it doing it correctly? When we
consider the stateful component system behaviour instead, we are taking into
consideration a different matter: we are looking for those requirements that will
make the component "behaving correctly". As a simple example let us consider
a parser which checks if all the libraries required by the component are present
to calculate the factorial. Furthermore, what happens when we talk about a
distributed system, where changes might be needed to be done at runtime?
What if we require to replace a component, but the component we want to

20 MAKING GRIDS WORK

replace should not be stopped? We have taken into consideration these types of
situations while developing a specification procedure. We analyse the life cycle
of a component and define its states in a formal way so that they can be used
in the system specification. We consider past developments within the GCM
and other state aware grid systems [16]to define a set of states to be generated
that would monitored by a specific software [13]. This lifecycle is restricted,
in fact it only models the deployment state of the system (and, consequently,
the transitions of its states during the life), not its operational characteristics.
For example, once a component is in running state, it is available. On the other
hand, the service may fail for other unforeseen circumstances (hence the need
for a component monitoring system during runtime which will report a need for
changes into the state behaviour specification).

System/Infrastructure Behaviour. To specify the behaviour of a stateful
component system, we need, first of all, information on the architecture and
hierarchical components structure, the information flow, the possible require-
ments, and external requests. It is possible to extrapolate interface and bindings
information from the XML based ADL file (as similarly outlined in [16]). This
gives us an idea of the flow of the system; the user might need to refine this
process, for example to keep significant parameters only or add new parameters.
On the other hand, other component’s requirements must be taken directly from
the component’s definitions. Since one of the GridComp functionalities will
include a GCM parser to build component models, we will be able to reuse
some of the data it will provide to blueprint these requirements, leaving the
task to fill in the gaps to a programmer. The infrastructure can represent a
general purpose environment based on some common grounds, or a specific
one, defined by the programmer. Note that in the former case, infrastructure
must, of course, leave room for further expansion and adaptation depending on
the programmer’s need.

Deontic extension of specification. We develop a specification language
based on the fusion of Computation Tree Logic (CTL) and deontic logic to
represent the properties of a behaviour protocol of a component system. The
requirements of the protocol are understood as norms and specified in terms of
deontic modalities, "obligation" and "permission". Note that the introduction
of this deontic dimension not only increases the expressiveness of the system
capturing the normative nature of the specification but also allows us to approach
the reconfiguration problem in a novel way.

2.1 Re-Configuration

We focus our attention on the critical aspect of re-configuration. We begin by
clarifying the term re-configuration used in this paper: we refer re-configuration
to the process through which a system halts operation under its current source

Towards GCM re-configuration - extending specification by norms 21

specification and begins operation under a different target specification [17], and
more precisely after the deployment has taken place (dynamic reconfiguration).
Some examples include the replacement of a software component by the user,
or an automated healing process activated by the system itself. In either of these
cases we consider the dynamic reconfiguration process as an unforeseen action
at development time (known as ad-hoc reconfiguration [3]). When the system is
deployed, the verification tool will run continuously and the system will report
back the current states for model mapping; if a re-configuration procedure
is requested or inconsistency detected, the healing process is triggered. The
dynamic re-configuration process works in a circular way [Figure: 2] and it is
divided into three major steps detailed below. The approach here is to specify
general invariants for the infrastructure and to accept any change to the system,
as long as these invariants hold. We assume that the infrastructure has some
pre-defined set of norms which define the constraints for the system, in order to
ensure system safety, mission success, or other crucial system properties which
are critical especially in distributed systems.

Figure 2. Re-Configuration Cycle

Model update request. A model update request can be triggered by a user’s
intention to re-configure the system, or by an inconsistency detection from the
verification tool. It refers in the model as a change to the behaviour specification
and it is constrained by the infrastructure restrictions. For example, the user
might want to upgrade a component, but these changes must conform to the
limitations set for such component. If the changes themselves are safe for the
system, the tool passes to the next step.

Model mapping. For the verification process to understand its current state
in the temporal tree, there is a need for a constant ‘model mapping’; in other
words, a background process needs to be present in order to map the structure
of the system into a model tree. This can be easily implemented alongside with
a current monitoring system which will keep track of this mapping indicating
which parts of the system are currently in which states in the model tree [4].

22 MAKING GRIDS WORK

This process is essential to ensure that no ‘past’ states are misused by the tool
during the healing process.

2.2 Model Update

If the model behaviour needs to be updated according to the new external
input parts of the system specification need to be changed. This process is the
key to this type of model update architecture and is necessary because, unlike
model revision in which the description is simply corrected but the overall
system remains unchanged, by updating our specification we are fundamentally
changing the system by adding, deleting and replacing states in the model
behaviour [9]. Here different types of changes are dealt with in a similar
faction, independently from the origin of the update (external user input or self
healing process). The behaviour specification is ‘extended’ to a new type of
specification and the verification process is resumed from this point forward
[Figure: 3]. This model update process consists of:

Figure 3. Model Update

(i) Norms/Invariant check. Utilise norms and invariants in the specification
for constraints on the set of states to be updated. Here we detect the deontic
properties in the specification which could be utilised in the healing process.

(ii) Compatibility check. Check if the supplied update to the model con-
forms with the the set of states to be updated, in other words, the system must
check for the presence of the standard bindings of the components, controllers,
etc; if so, the model is updated, otherwise, the healing is triggered.

(iii) Healing process. Search the tree model for a set of states which conform
with the norms and invariants, and is applicable for this set of states. Note that
candidate states for such an update in relation for some state si, do not have to
be in an ‘achievable’ future of si, i.e. do not have to belong to a subtree with
the root si, but only have to be ‘accessible’ from the current state according
to the norms set by the infrastructure. The candidate set of states (or a more

Towards GCM re-configuration - extending specification by norms 23

readable parsed version) is reported to the user/developer as a possible solution
to the inconsistency detected. (Note that healing is also triggered if there was
no supplied update as in the case of inconsistency detection).

3. Deontic Extension of the Specification Language

In this paper we introduce a new specification formalism, Temporal Deontic
Specification (TDS). We assume that the specification of a component model
now is either written directly in this new framework of TDS or is initially
given in the deontic extension of the logic ECTL+ called ECTL+

D and then is
converted into the TDS. Since the structure of TDS is similar to the SNFCTL

we are able to subsequently apply the resolution based verification technique
which must be also extended to cope with the normative dimension.

Note that the introduction of this deontic dimension not only increases the
expressiveness of the system capturing the normative nature of the specification
but also allows us to approach the reconfiguration problem in a novel way.

3.1 ECTL+

D
Syntax and Semantic

In the language of ECTL+
D, where formulae are built from the set, Prop,

of atomic propositions p, q, r, . . . , p1, q1, r1, . . . , pn, qn, rn, . . . , we use the fol-
lowing symbols: classical operators: ¬,∧,⇒,∨; temporal operators: –
‘always in the future’; ♦ – ‘at sometime in the future’; h– ‘at the next moment
in time’; U – ‘until’; W – ‘unless’; and path quantifiers: A – ‘for any future
path; E – ‘for some future path.

For the deontic part we assume a set Ag = {a, b, c . . . } of agents (processes),
which we associate with deontic modalities Oa(ϕ) read as ‘ϕ is obligatory for
an agent a’ and Pa(ϕ) read as ‘ϕ is permitted for an agent a’.

In the syntax of ECTL+
D we distinguish state (S) and path (P) formulae,

such that S are well formed formulae. These classes of formulae are inductively
defined below (where C is a formula of classical propositional logic)

S ::= C|S ∧ S|S ∨ S|S ⇒ S|¬S|AP |EP |PaS|OaS
P ::= P ∧ P |P ∨ P |P ⇒ P |¬P | S|♦S| hS|S U S|S W S

| ♦S|♦ S

Definition 1 (literal, modal literal) A literal is either p, or ¬p for

p is a proposition. A modal literal is either Oil, ¬Oil, P il, ¬P il where l is a

literal and i ∈ Ag.

ECTL+
D Semantics. We first introduce the notation of tree structures, the

underlying structures of time assumed for branching-time logics.

Definition 2 A tree is a pair (S, R), where S is a set of states and R ⊆ S×S
is a relation between states of S such that s0 ∈ S is a unique root node, i.e.

24 MAKING GRIDS WORK

there is no state si ∈ S such that R(si, s0); for every si ∈ S there exists sj ∈ S
such that R(si, sj); for every si, sj , sk ∈ S, if R(si, sk) and R(sj , sk) then

si = sj .

A path, χsi
is a sequence of states si, si+1, si+2 . . . such that for all j ≥ i,

(sj , sj+1) ∈ R. Let χ be a family of all paths of M. A path χs0 ∈ χ is called a
fullpath. Let X be a family of all fullpaths of M. Given a path χsi

and a state
sj ∈ χsi

, (i < j) we term a finite subsequence [si, sj] = si, si+1, . . . , sj of
χsi

a prefix of a path χsi
and an infinite sub-sequence sj , sj+1, sj+2 . . . of χsi

a suffix of a path χsi
abbreviated Suf(χsi

, sj).
Following [11], without loss of generality, we assume that underlying tree

models are of at most countable branching.

Definition 3 (Total countable ω-tree) A countable ω-tree, τω, is a

tree (S, R) with the family of all fullpaths, X , which satisfies the following

conditions: each fullpath is isomorphic to natural numbers; every state sm ∈ S
has a countable number of successors; X is R-generable [11], i.e. for every

state sm ∈ S, there exists χn ∈ X such that sm ∈ χn, and for every sequence

χn = s0, s1, s2 . . . the following is true: χn ∈ X if, and only if, for every

m (1 ≤ m), R(sm, sm+1).

Since in ω trees fullpaths are isomorphic to natural numbers, in the rest of
the paper we will abbreviate the relation R as ≤.

Next, for the interpretation of deontic operators, we introduce a binary agent
accessibility relation.

Definition 4 (Deontic Accessibility Relation) Given a countable

total tree τω = (S,≤), a binary agent accessibility relation Di ⊆ S × S, for

each agent i ∈ Ag, satisfies the following properties: it is serial (for any k ∈ S,

there exists l ∈ S such that Di(k, l)), transitive (for any k, l,m ∈ S, if Di(k, l)
and Di(l,m) then Di(k, m)), and Euclidian (for any k, l,m ∈ S, if Di(k, l)
and Di(k, m) then Di(l,m)).

Let (S,≤) be a total countable ω-tree with a root s0 defined as in Def 3, X
be a set of all fullpaths, L : S × Prop −→ {true , false} be an interpretation
function mapping atomic propositional symbols to truth values at each state,
and every Ri ⊆ S × S (i ∈ 1, . . . , n) be an agent accessibility relation defined
as in Def 4. Now a model structure for interpretation of ECTL+

D formulae is
M = 〈S,≤, s0, X, L, D1, . . . , Dn〉.

Reminding that since the underlying tree structures are R-generable, they are
suffix, fusion and limit closed [11], in Figure 4 we define a relation ‘|=’, which
evaluates well-formed ECTL+

D formulae at a state sm in a model M.

Definition 5 (Satisfiability) A well-formed ECTL+
D formula, B, is sat-

isfiable if, and only if, there exists a model M such that 〈M, s0〉 |= B.

Towards GCM re-configuration - extending specification by norms 25

〈M, sm〉 |= p iff p ∈ L(sm), for p ∈ Prop
〈M, sm〉 |= AB iff for each χsm , 〈M, χsm〉 |= B
〈M, sm〉 |= EB iff there exists χsm such that

〈M, χsm〉 |= B
〈M, χsm〉 |= A iff 〈M, sm〉 |= A, for state formula A
〈M, χsm〉 |= B iff for each sn ∈ χsm , if m ≤ n then

〈M, Suf(χsm , sn)〉 |= B
〈M, χsm〉 |= hB iff 〈M, Suf(χsm , sm+1)〉 |= B
〈M, χsm〉 |= AU B iff there exists sn ∈ χsm such that m ≤ n

and 〈M, Suf(χsm , sn)〉 |= B
and for each sk ∈ χsm , if m ≤ k < n
then 〈M, Suf(χsm , sk)〉 |= A

〈M, χsm〉 |= AW B iff 〈M, χsm〉 |= A or 〈M, χsm〉 |= AU B
〈M, sm〉 |= OaB iff for each sn ∈ S, if Da(m, n) then

〈M, sn〉 |= B
〈M, sm〉 |= PaB iff there exists sn ∈ S, such that Da(m, n)

and 〈M, sn〉 |= B

Figure 4. ECTL+
D semantics

Definition 6 (Validity) A well-formed ECTL+
D formula, B, is valid if,

and only if, it is satisfied in every possible model.

3.2 Reconfiguration formalisation

To define a concept of propositional deontic temporal specification we extend
a normal form defined for the logic ECTL+, SNFCTL, which was developed in
[5–6]. Recall that the core idea of the normal form is to extract from a given
formula the following three types of constraints. Initial constraints represent
information relevant to the initial moment of time, the root of a tree. Step

constraints of the form indicate what will happen at the successor state(s) given
that some conditions are satisfied ‘now’. Finally, sometime constraints keep
track on any eventuality, again, given that some conditions are satisfied ‘now’.

The SNFD
CTL language is obtained from the ECTL+

D language by omitting
the U and W operators, and adding classically defined constants true and
false, and a new operator, start (‘at the initial moment of time’) defined as
〈M, si〉 |= start iff i = 0.

Similarly to SNFCTL, we incorporate the language for indices which is based
on the set of terms IND = {〈f〉, 〈g〉, 〈h〉, 〈LC(f)〉, 〈LC(g)〉, 〈LC(h)〉 . . . },
where f, g, h . . . denote constants. Thus, EA〈f〉 means that A holds on some
path labelled as 〈f〉. All formulae of SNFCTL of the type P ⇒ E hQ or

26 MAKING GRIDS WORK

P ⇒ E♦Q, where Q is a purely classical expression, are labelled with some
index.

Definition 7 (Deontic Temporal Specification - DTS) DTS is a

tuple 〈In, St, Ev, N, Lit〉 where In is the set of initial constraints, St is the

set of step constraints, Ev is the set of eventuality constraints, N is a set of

normative expressions, and Lit is the set of literal constraints, i.e. formulae that

are globally true. The structure of these constraints called clauses, is defined

below where each αi, βm, γ or le is a literal, true or false, de is either a literal

or a modal literal involving the O or P operators, and 〈ind〉 ∈ IND is some

index.

start⇒ ∨k
i=1 βi (In)

∧k
i=1 αi ⇒ A h[

∨n
m=1 βm] (St A)

∧k
i=1 αi ⇒ E h[

∨n
m=1 βm]〈ind〉 (St E)

∧k
i=1 αi ⇒A♦γ (Ev A)

∧k
i=1 αi⇒E♦γ〈LC(ind)〉 (Ev E)

true ⇒∨n
e=1 de (D)

true ⇒∨n
e=1 le (Lit)

In order to give a formalisation of the reconfiguration process we adapt the
approach given in [17] extending it to the usage of norms. We assume that we
are given a set of specification properties, Si be the start state and Sj the end
state of the system, a set of norms, N , and a set of invariants I . We can define a
reconfiguration, R, to be applicable when the following conditions holds:
- R commences when the initial state Si is not operating anymore and finishes
before the last state to be updated, Sj , becomes compliant with the system.
- Sj is the appropriate choice for the target specification at some point during R.
- Time for R is less or equal than the time for the transition from Si to Sj .
- The transition invariant(s), I , holds during R.
- The norms, N , for Sj are true at the time when R finishes.
- The lifetime of R is bounded by any two occurrences of the same specification.

The conditions for reconfigurations can be considered as a set of restriction,
which when true allow for the model to be simply replaced. The reconfiguration
conditions above give a clear indication to which states in the model can be
changed and when, while the temporal specification sets the conditions for the
change and defines the acceptable states which will replace the current ones.

3.3 Example Specification

Let us consider an example specification in which we use of norms for
reconfiguration, and where a component is requested to be updated.

Let r represent a property that a core component is bound to the system (one
that should be always available and should not be ‘touched’), and let q be a new
upgraded version of this core component. Now the expression A (r ⇒ Oi¬q)
stands for the obligation of not binding this new component once r is present.

Towards GCM re-configuration - extending specification by norms 27

Assume that the system received a request for the permission to eventually
bind q. In the table below we summarise these conditions of the component
system and their representations in the language of TDS (note that w is a new
(auxiliary) proposition introduced to achieve the required form of DTS clauses).

Conditions of the System Constraints of DTS
Invariant Property r A ((start ⇒ r) ∧ (r ⇒ A fr))
Obligation of not binding new component q A (r ⇒ Oi¬q)

A request for the permission to eventually bind q A ((r ⇒ E♦w) ∧ (w ⇒ Piq))

4. Resolution Based Verification Technique

We first update the set of resolution rules developed for SNFCTL [6] by new
resolution rules capturing the deontic constraints. However, due to the lack of
space, here we present only those rules that will be involved into an example of
the refutation.

DRES
true ⇒ D ∨ Oil
true ⇒ D′ ∨ Pi¬l
true ⇒ D ∨ D′

SRES
A ⇒ A h(l ∨ D)
B ⇒ A h(¬l ∨ E)
A ∧ B ⇒ A h(D ∨ E)

TRES
A ⇒ A l
B ⇒ E♦l〈f〉
B ⇒ E(¬AW l)〈f〉

Resolution Example Here we present a resolution refutation for the set of
clauses of TDS obtained for the component system analysed in the previous
section.

TDS
1. start ⇒ r
2. r ⇒ A hr
3. r ⇒Oi¬q
4. r ⇒ E♦w〈f〉

5. w ⇒P iq

Proof
6. true ⇒¬r ∨ Oi¬q from 3
7. true ⇒¬w ∨ P iq from 5
8. true ⇒¬r ∨ ¬w DRES, 6, 7
9. start ⇒¬r ∨ ¬w temporising, 8

10. true ⇒ A h(¬r ∨ ¬w) temporising, 8
11. r ⇒ A hw SRES, 2, 10
12. r ⇒¬rW w TRES, 2, 11, 4
13. r ⇒ w ∨ ¬r W removal, 12
14. start ⇒¬r ∨ w W removal, 12
15. start ⇒ false SRES, 1, 9, 14

Here the reconfiguration request is rejected, hence no changes to the model.

5. Conclusions

The need for a safe and reliable way to reconfigure systems, especially dis-
tributed, resource depending and long running systems, has led to the need for
a formal way to describe and verify them before risking to take some action. In

28 MAKING GRIDS WORK

this paper we have given a definition for dynamic reconfiguration and a formal
way to specify the behaviour of a component model and its infrastructure. Fur-
thermore we have demonstrated how we can apply this formal specification to
model update techniques that conform to the definition of dynamic reconfigura-
tion given. The method introduced can also be used to prevent inconsistency
and suggest corrections to the system in a static and/or dynamic environment.
Indeed, if the verification technique discovers inconsistencies in the configu-
ration then the ‘healing’ process is triggered: the process of "re-configuring"
of the computation tree model that conforms the protocol. To ensure the con-
sistency we must supply the system with internal ‘clocks’ which is needed to
synchronise the states that belong to different branches of the computation tree.
We are planning to eventually embed all these features in a prototype plug-in for
the GridComp GIDE and test it on case studies proposed by industry partners.

References

[1] A. Basso, A. Bolotov, A. Basukoski, V. Getov, L. Henrio and M. Urbanski. Specification
and Verification of Reconfiguration Protocols in Grid Component Systems. In Proceedings

of the 3rd IEEE Conference On Intelligent Systems IS-200, 2006, IEEE.

[2] T. Barros and L. Henrio and E. Madelaine. Verification of Distributed Hierarchical
Components. In Proc. of the International Workshop on Formal Aspects of Component

Software (FACS’05). Electronic Notes in Theor. Computer Sci. 160. pp. 41-55 (ENTCS),
2005.

[3] Batista, T., Joolia, A. and Coulson, G. Managing Dynamic Reconfiguration in Component-
based Systems Proceedings of the European Workshop on Software Architectures, June,
2005, Springer-Velag LNCS series, Vol 3527, pp 1-18.

[4] F. Baude and D. Caromel and F. Huet and L. Mestre and J. Vayssi Interactive and
Descriptor-Based Deployment of Object-Oriented Grid Applications HPDC ’02: Pro-
ceedings of the 11 th IEEE International Symposium on High Performance Distributed
Computing HPDC-11 p. 93, IEEE Computer Society.

[5] A. Bolotov. Clausal Resolution for Branching-Time Temporal Logic. PhD thesis, Depart-
ment of Computing and Mathematics, The Manchester Metropolitan University, 2000.

[6] A. Bolotov and M. Fisher. A Clausal Resolution Method for CTL Branching Time
Temporal Logic. Journal of Experimental and Theoretical Artificial Intelligence., 11:77–
93, 1999.

[7] E. M. Clarke, A. Fehnker, S. Jha and H. Veith. Temporal Logic Model Checking.,
Handbook of Networked and Embedded Control Systems, 2005, pages 539-558.

[8] C. Dixon, M. Fisher, and B. Konev. Tractable Temporal Reasoning. In Proceedings of

the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), pages
318-323, January 6-12th 2007.

[9] T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision,
updates, and counterfactuals. PODS ’92: Proceedings of the eleventh ACM SIGACT-
SIGMOD-SIGART symposium, p261-273, 1992.

[10] M. Endler. A language for implementing generic dynamic reconfigurations of distributed
programs. In Proceedings of the 12th Brazilian Symposium on Computer Networks, pages
175-187, 1994.

Towards GCM re-configuration - extending specification by norms 29

[11] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science: Volume B, Formal Models and Semantics., pages 996–1072.
Elsevier, 1990.

[12] GCM program committee Basic Features of the Grid Component Model Deliverable
D.PM.04, CoreGRID, March 2007.

[13] V. Getov, A. Basukoski, J. Thiyagalingam, Y. Yulai and Y. Wu Grid programming with
COMPonents : an advanced component platform for an effective invisible grid GRIDComp
Technical Report, July 2007

[14] A. Lomuscio and B. Wozna. A complete and decidable axiomatisation for deontic
interpreted systems. In DEON, volume 4048 of Lecture Notes in Computer Science, pages
238–254. Springer, 2006.

[15] Z. Manna and A. Pnueli. Temporal Specification and Verification of Reactive Modules.
Weizmann Institute of Science Technical Report, March 1992

[16] S. Schaefer. CDDLM - Component Model In proceeding to the Open Grid Forum, March
2006

[17] Elisabeth A. Strunk and John C. Knight. Assured Reconfiguration of Embedded Real-Time
Software. DSN ’04: Proceedings of the 2004 International Conference on Dependable
Systems and Networks (DSN’04), 2004, p. 367, IEEE Computer Society.

