
Preface

It seems to have been decided that undergraduate mathematics today rests
on two foundations: calculus and linear algebra. These may not be the
best foundations for, say, number theory or combinatorics, but they serve
quite well for undergraduate analysis and several varieties of undergradu-
ate algebra and geometry. The really perfect sequel to calculus and linear
algebra, however, would be a blend of the two—a subject in which calcu-
lus throws light on linear algebra and vice versa. Look no further! This
perfect blend of calculus and linear algebra is Lie theory (named to honor
the Norwegian mathematician Sophus Lie—pronounced “Lee ”). So why
is Lie theory not a standard undergraduate topic?

The problem is that, until recently, Lie theory was a subject for mature
mathematicians or else a tool for chemists and physicists. There was no
Lie theory for novice mathematicians. Only in the last few years have there
been serious attempts to write Lie theory books for undergraduates. These
books broke through to the undergraduate level by making some sensible
compromises with generality; they stick to matrix groups and mainly to the
classical ones, such as rotation groups of n-dimensional space.

In this book I stick to similar subject matter. The classical groups
are introduced via a study of rotations in two, three, and four dimensions,
which is also an appropriate place to bring in complex numbers and quater-
nions. From there it is only a short step to studying rotations in real,
complex, and quaternion spaces of any dimension. In so doing, one has
introduced the classical simple Lie groups, in their most geometric form,
using only basic linear algebra. Then calculus intervenes to find the tan-
gent spaces of the classical groups—their Lie algebras—and to move back
and forth between the group and its algebra via the log and exponential
functions. Again, the basics suffice: single-variable differentiation and the
Taylor series for ex and log(1+ x).

vii
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Where my book diverges from the others is at the next level, the mirac-
ulous level where one discovers that the (curved) structure of a Lie group is
almost completely captured by the structure of its (flat) Lie algebra. At this
level, the other books retain many traces of the sophisticated approach to
Lie theory. For example, they rely on deep ideas from outside Lie theory,
such as the inverse function theorem, existence theorems for ODEs, and
representation theory. Even inside Lie theory, they depend on the Killing
form and the whole root system machine to prove simplicity of the classical
Lie algebras, and they use everything under the sun to prove the Campbell–
Baker–Hausdorff theorem that lifts structure from the Lie algebra to the Lie
group. But actually, proving simplicity of the classical Lie algebras can be
done by basic matrix arithmetic, and there is an amazing elementary proof
of Campbell–Baker–Hausdorff due to Eichler [1968].

The existence of these little-known elementary proofs convinced me
that a naive approach to Lie theory is possible and desirable. The aim of
this book is to carry it out—developing the central concepts and results of
Lie theory by the simplest possible methods, mainly from single-variable
calculus and linear algebra. Familiarity with elementary group theory is
also desirable, but I provide a crash course on the basics of group theory in
Sections 2.1 and 2.2.

The naive approach to Lie theory is due to von Neumann [1929], and it
is now possible to streamline it by using standard results of undergraduate
mathematics, particularly the results of linear algebra. Of course, there is a
downside to naiveté. It is probably not powerful enough to prove some of
the results for which Lie theory is famous, such as the classification of the
simple Lie algebras and the discovery of the five exceptional algebras.1 To
compensate for this lack of technical power, the end-of-chapter discussions
introduce important results beyond those proved in the book, as part of an
informal sketch of Lie theory and its history. It is also true that the naive
methods do not afford the same insights as more sophisticated methods.
But they offer another insight that is often undervalued—some important
theorems are not as difficult as they look! I think that all mathematics
students appreciate this kind of insight.

In any case, my approach is not entirely naive. A certain amount of
topology is essential, even in basic Lie theory, and in Chapter 8 I take

1I say so from painful experience, having entered Lie theory with the aim of under-
standing the exceptional groups. My opinion now is that the Lie theory that precedes the
classification is a book in itself.
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the opportunity to develop all the appropriate concepts from scratch. This
includes everything from open and closed sets to simple connectedness, so
the book contains in effect a minicourse on topology, with the rich class
of multidimensional examples that Lie theory provides. Readers already
familiar with topology can probably skip this chapter, or simply skim it to
see how Lie theory influences the subject. (Also, if time does not permit
covering the whole book, then the end of Chapter 7 is a good place to stop.)

I am indebted to Wendy Baratta, Simon Goberstein, Brian Hall, Ro-
han Hewson, Chris Hough, Nathan Jolly, David Kramer, Jonathan Lough,
Michael Sun, Marc Ryser, Abe Shenitzer, Paul Stanford, Fan Wu and the
anonymous referees for many corrections and comments. As usual, my
wife, Elaine, served as first proofreader; my son Robert also served as the
model for Figure 8.7. Thanks go to Monash University for the opportunity
to teach courses from which this book has grown, and to the University of
San Francisco for support while writing it.

Finally, a word about my title. Readers of a certain age will remember
the book Naive Set Theory by Paul Halmos—a lean and lively volume
covering the parts of set theory that all mathematicians ought to know.
Paul Halmos (1916–2006) was my mentor in mathematical writing, and I
dedicate this book to his memory. While not attempting to emulate his style
(which is inimitable), I hope that Naive Lie Theory can serve as a similar
introduction to Lie groups and Lie algebras. Lie theory today has become
the subject that all mathematicians ought to know something about, so I
believe the time has come for a naive, but mathematical, approach.

John Stillwell
University of San Francisco, December 2007

Monash University, February 2008
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Groups

PREVIEW

This chapter begins by reviewing some basic group theory—subgroups,
quotients, homomorphisms, and isomorphisms—in order to have a basis
for discussing Lie groups in general and simple Lie groups in particular.

We revisit the group S
3 of unit quaternions, this time viewing its rela-

tion to the group SO(3) as a 2-to-1 homomorphism. It follows that S
3 is

not a simple group. On the other hand, SO(3) is simple, as we show by a
direct geometric proof.

This discovery motivates much of Lie theory. There are infinitely many
simple Lie groups, and most of them are generalizations of rotation groups
in some sense. However, deep ideas are involved in identifying the simple
groups and in showing that we have enumerated them all.

To show why it is not easy to identify all the simple Lie groups we
make a special study of SO(4), the rotation group of R

4. Like SO(3),
SO(4) can be described with the help of quaternions. But a rotation of
R

4 generally depends on two quaternions, and this gives SO(4) a special
structure, related to the direct product of S

3 with itself. In particular, it
follows that SO(4) is not simple.

J. Stillwell, Naive Lie Theory, DOI: 10.1007/978-0-387-78214-0 2, 23
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2.1 Crash course on groups

For readers who would like a reminder of the basic properties of groups,
here is a crash course, oriented toward the kind of groups studied in this
book. Even those who have not seen groups before will be familiar with the
computational tricks—such as canceling by multiplying by the inverse—
since they are the same as those used in matrix computations.

First, a group G is a set with “product” and “inverse” operations, and
an identity element 1, with the following three basic properties:

g1(g2g3) = (g1g2)g3 for all g1,g2,g3 ∈ G,

g1 = 1g = g for all g ∈ G,

gg−1 = g−1g = 1 for all g ∈ G.

It should be mentioned that 1 is the unique element g′ such that gg′ = g
for all g ∈ G, because multiplying the equation gg′ = g on the left by g−1

gives g′ = 1. Similarly, for each g ∈ G, g−1 is the unique element g′′ such
that gg′′ = 1.

The above notation for “product,” “inverse,” and “identity” is called
multiplicative notation. It is used (sometimes with I, e, or 1 in place of 1)
for groups of numbers, quaternions, matrices, and all other groups whose
operation is called “product.” There are a few groups whose operation is
called “sum,” such as R

n under vector addition. For these we use additive
notation: g1 + g2 for the “sum” of g1,g2 ∈ G, −g for the inverse of g ∈ G,
and 0 (or 0) for the identity of G. Additive notation is used only when G is
abelian, that is, when g1 + g2 = g2 + g1 for all g1,g2 ∈ G.

Since groups are generally not abelian, we have to speak of multiplying
h by g “on the left” or “on the right,” because gh and hg are generally
different. If we multiply all members g′ of a group G on the left by a
particular g ∈ G, we get back all the members of G, because for any g′′ ∈ G
there is a g′ ∈ G such that gg′ = g′′ (namely g′ = g−1g′′).

Subgroups and cosets

To study a group G we look at the groups H contained in it, the subgroups
of G. For each subgroup H of G we have a decomposition of G into disjoint
pieces called the (left or right) cosets of H in G. The left cosets (which we
stick with, for the sake of consistency) are the sets of the form

gH = {gh : h ∈ H}.
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Thus H itself is the coset for g = 1, and in general a coset gH is “H trans-
lated by g,” though one cannot usually take the word “translation” literally.
One example for which this is literally true is G the plane R

2 of points
(x,y) under vector addition, and H the subgroup of points (0,y). In this
case we use additive notation and write the coset of (x,y) as

(x,y)+ H = {(x,y) : y ∈ R}, where x is constant.

Then H is the y-axis and the coset (x,y)+ H is H translated by the vector
(x,y) (see Figure 2.1). This example also illustrates how a group G decom-

x
0

H (1,0)+ H

(1,0)

(2,0)+ H

(2,0)

Figure 2.1: Subgroup H of R
2 and cosets.

poses into disjoint cosets (decomposing the plane into parallel lines), and
that different g ∈ G can give the same coset gH . For example, (1,0)+ H
and (1,1)+ H are both the vertical line x = 1.

Each coset gH is in 1-to-1 correspondence with H because we get back
each h ∈ H from gh ∈ gH by multiplying on the left by g−1. Different
cosets are disjoint because if g ∈ g1H and g ∈ g2H then

g = g1h1 = g2h2 for some h1,h2 ∈ H,

and therefore g1 = g2h2h−1
1 . But then

g1H = g2h2h−1
1 H = g2(h2h−1

1 H) = g2H

because h2h−1
1 ∈ H and therefore h2h−1

1 H = H by the remark at the end of
the last subsection (that multiplying a group by one of its members gives
back the group). Thus if two cosets have an element in common, they are
identical.
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This algebraic argument has surprising geometric consequences; for
example, a filling of S

3 by disjoint circles known as the Hopf fibration.
Figure 2.2 shows some of the circles, projected stereographically into R

3.
The circles fill nested torus surfaces, one of which is shown in gray.

Figure 2.2: Some circles in the Hopf fibration.

Proposition: S
3 can be decomposed into disjoint congruent circles.

Proof. As we saw in Section 1.3, the quaternions a + bi + cj + dk of unit
length satisfy

a2 + b2 + c2 + d2 = 1,

and hence they form a 3-sphere S
3. The unit quaternions also form a group

G, because the product and inverse of unit quaternions are also unit quater-
nions, by the multiplicative property of absolute value.

One subgroup H of G consists of the unit quaternions of the form
cosθ + isin θ , and these form a unit circle in the plane spanned by 1 and
i. It follows that any coset qH is also a unit circle, because multiplica-
tion by a quaternion q of unit length is an isometry, as we saw in Section
1.4. Since the cosets qH fill the whole group and are disjoint, we have a
decomposition of the 3-sphere into unit circles. �
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Exercises

An important nonabelian group (in fact, it is the simplest example of a nonabelian
Lie group) is the group of functions of the form

fa,b(x) = ax + b, where a,b ∈ R and a > 0.

The group operation is function composition.

2.1.1 If fa,b(x) = fa2,b2( fa1,b1(x)), work out a,b in terms of a1,b1,a2,b2, and
check that they are the same as the a,b determined by

(
a b
0 1

)
=

(
a2 b2

0 1

)(
a1 b1

0 1

)
.

2.1.2 Also show that the inverse function f−1
a,b (x) exists, and that it corresponds to

the inverse matrix (
a b
0 1

)−1

.

This correspondence between functions and matrices is a matrix representation of
the group of functions fa,b. We have already seen examples of matrix representa-
tions of groups—such as the rotation groups in two and three dimensions—and,
in fact, most of the important Lie groups can be represented by matrices.

The unit complex numbers, cosθ + isinθ , form a group SO(2) that we began
to study in Section 1.1. We now investigate its subgroups.

2.1.3 Other than the trivial group {1}, what is the smallest subgroup of SO(2)?

2.1.4 Show that there is exactly one n-element subgroup of SO(2), for each natu-
ral number n, and list its members.

2.1.5 Show that the union R of all the finite subgroups of SO(2) is also a subgroup
(the group of “rational rotations”).

2.1.6 If z is a complex number not in the group R described in Exercise 2.1.5,
show that the numbers . . . ,z−2,z−1,1,z,z2, . . . are all distinct, and that they
form a subgroup of SO(2).

2.2 Crash course on homomorphisms

Normal subgroups

Since hg �= gh in general, it can also be that gH �= Hg, where

Hg = {hg : h ∈ H}
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is the right coset of H . If gH = Hg for all g ∈ G, we say that H is a normal
subgroup of G. An equivalent statement is that H equals

g−1Hg = {g−1hg : h ∈ H} for each g ∈ G.

(Because of this, it would be more sensible to call H “self-conjugate,” but
unfortunately the overused word “normal” has stuck.)

The good thing about a normal subgroup H is that its cosets themselves
form a group when “multiplied” by the rule that “the coset of g1, times the
coset of g2, equals the coset of g1g2”:

g1H ·g2H = g1g2H.

This rule makes sense for a normal subgroup H because if g′1H = g1H and
g′2H = g2H then g′1g′2H = g1g2H as follows:

g′1g′2H = g′1Hg′2 since g′2H = Hg′2 by normality,

= g1Hg′2 since g′1H = g1H by assumption,

= g1g′2H since g′2H = Hg′2 by normality,

= g1g2H since g′2H = g2H by assumption.

The group of cosets is called the quotient group of G by H , and is
written G/H . (When G and H are finite, the size of G/H is indeed the size
of G divided by the size of H .) We reiterate that the quotient group G/H
exists only when H is a normal subgroup. Another, more efficient, way to
describe this situation is in terms of homomorphisms: structure-preserving
maps from one group to another.

Homomorphisms and isomorphisms

When H is a normal subgroup of G, the map ϕ : G → G/H defined by

ϕ(g) = gH for all g ∈ G

preserves products in the sense that

ϕ(g1g2) = ϕ(g1) ·ϕ(g2).

This follows immediately from the definition of product of cosets, because

ϕ(g1g2) = g1g2H = g1H ·g2H = ϕ(g1) ·ϕ(g2).
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In general, a map ϕ : G → G′ of one group into another is called a ho-
momorphism (from the Greek for “similar form”) if it preserves products.
A group homomorphism indeed preserves group structure, because it not
only preserves products, but also the identity and inverses. Here is why:

• Since g = 1g for any g ∈ G, we have

ϕ(g) = ϕ(1g) = ϕ(1)ϕ(g) because ϕ preserves products.

Multiplying both sides on the right by ϕ(g)−1 then gives 1 = ϕ(1).

• Since 1 = gg−1 for any g ∈ G, we have

1 = ϕ(1) = ϕ(gg−1) = ϕ(g)ϕ(g−1)
because ϕ preserves products.

This says that ϕ(g−1) = ϕ(g)−1, because the inverse of ϕ(g) is
unique.

Thus the image ϕ(G) is of “similar” form to G, but we say that G′ is
isomorphic (of the “same form”) to G only when the map ϕ is 1-to-1 and
onto (in which case we call ϕ an isomorphism). In general, ϕ(G) is only a
shadow of G, because many elements of G may map to the same element
of G′. The case furthest from isomorphism is that in which ϕ sends all
elements of G to 1.

Any homomorphism ϕ of G onto G′ can be viewed as the special type
ϕ : G → G/H . The appropriate normal subgroup H of G is the so-called
kernel of ϕ :

H = ker ϕ = {g ∈ G : ϕ(g) = 1}.

Then G′ is isomorphic to the group G/ker ϕ of cosets of ker ϕ because:

1. ker ϕ is a group, because

h1,h2 ∈ ker ϕ ⇒ ϕ(h1) = ϕ(h2) = 1

⇒ ϕ(h1)ϕ(h2) = 1

⇒ ϕ(h1h2) = 1

⇒ h1h2 ∈ ker ϕ
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and

h ∈ ker ϕ ⇒ ϕ(h) = 1

⇒ ϕ(h)−1 = 1

⇒ ϕ(h−1) = 1

⇒ h−1 ∈ ker ϕ .

2. ker ϕ is a normal subgroup of G, because, for any g ∈ G,

h ∈ ker ϕ ⇒ ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) = ϕ(g)1ϕ(g)−1 = 1

⇒ ghg−1 ∈ ker ϕ .

Hence g(ker ϕ)g−1 = ker ϕ , that is, ker ϕ is normal.

3. Each g′ = ϕ(g) ∈ G′ corresponds to the coset g(ker ϕ).
In fact, g(ker ϕ) = ϕ−1(g′), because

k ∈ ϕ−1(g′) ⇔ ϕ(k) = g′ (definition of ϕ−1)

⇔ ϕ(k) = ϕ(g)

⇔ ϕ(g)−1ϕ(k) = 1

⇔ ϕ(g−1k) = 1

⇔ g−1k ∈ ker ϕ
⇔ k ∈ g(ker ϕ).

4. Products of elements of g′1,g
′
2 ∈ G′ correspond to products of the

corresponding cosets:

g′1 =ϕ(g1),g′2 =ϕ(g2) ⇒ ϕ−1(g′1)=g1(ker ϕ),ϕ−1(g′2)=g2(ker ϕ)

by step 3. But also

g′1 = ϕ(g1),g′2 = ϕ(g2) ⇒ g′1g′2 = ϕ(g1)ϕ(g2) = ϕ(g1g2)

⇒ ϕ−1(g′1g′2) = g1g2(ker ϕ),

also by step 3. Thus the product g′1g′2 corresponds to g1g2(ker ϕ),
which is the product of the cosets corresponding to g′1 and g′2 respec-
tively.

To sum up: a group homomorphism ϕ of G onto G′ gives a 1-to-1 corre-
spondence between G′ and G/(ker ϕ) that preserves products, that is, G′

is isomorphic to G/(ker ϕ).
This result is called the fundamental homomorphism theorem for

groups.
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The det homomorphism

An important homomorphism for real and complex matrix groups G is the
determinant map

det : G → C
×,

where C
× denotes the multiplicative group of nonzero complex numbers.

The determinant map is a homomorphism because det is multiplicative—
det(AB) = det(A)det(B)—a fact well known from linear algebra.

The kernel of det, consisting of the matrices with determinant 1, is
therefore a normal subgroup of G. Many important Lie groups arise in
precisely this way, as we will see in Chapter 3.

Simple groups

A many-to-1 homomorphism of a group G maps it onto a group G′ that
is “simpler” than G (or, at any rate, not more complicated than G). For
this reason, groups that admit no such homomorphism, other than the ho-
momorphism sending all elements to 1, are called simple. Equivalently, a
nontrivial group is simple if it contains no normal subgroups other than
itself and the trivial group.

One of the main goals of group theory in general, and Lie group theory
in particular, is to find all the simple groups. We find the first interesting
example in the next section.

Exercises

2.2.1 Check that z �→ z2 is a homomorphism of S
1. What is its kernel? What are

the cosets of the kernel?

2.2.2 Show directly (that is, without appealing to Exercise 2.2.1) that pairs {±zα},
where zα = cosα + isinα , form a group G when pairs are multiplied by the
rule

{±zα} · {±zβ} = {±(zα zβ )}.

Show also that the function ϕ : S
1 → G that sends both zα ,−zα ∈ S

1 to the
pair {±zα} is a 2-to-1 homomorphism.

2.2.3 Show that z �→ z2 is a well-defined map from G onto S
1, where G is the

group described in Exercise 2.2.2, and that this map is an isomorphism.

The space that consists of the pairs {±zα} of opposite (or “antipodal”) points
on the circle is called the real projective line RP

1. Thus the above exercises
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show that the real projective line has a natural group structure, under which it is
isomorphic to the circle group S

1.
In the next section we will consider the real projective space RP

3, consisting
of the antipodal point pairs {±q} on the 3-sphere S

3. These pairs likewise have
a natural product operation, which makes RP

3 a group—in fact, it is the group
SO(3) of rotations of R

3. We will show that RP
3 is not the same group as S

3,
because SO(3) is simple and S

3 is not.
We can see right now that S

3 is not simple, by finding a nontrivial normal
subgroup.

2.2.4 Show that {±1} is a normal subgroup of S
3.

However, it turns out that {±1} is the only nontrivial normal subgroup of S
3.

In particular, the subgroup S
1 that we found in Section 2.1 is not normal.

2.2.5 Show that S
1 is not a normal subgroup of S

3.

2.3 The groups SU(2) and SO(3)

The group SO(2) of rotations of R
2 about O can be viewed as a geometric

object, namely the unit circle in the plane, as we observed in Section 1.1.
The unit circle, S

1, is the first in the series of unit n-spheres S
n, the nth

of which consists of the points at distance 1 from the origin in R
n+1. Thus

S
2 is the ordinary sphere, consisting of the points at distance 1 from the

origin in R
3. Unfortunately (for those who would like an example of an

easily visualized but nontrivial Lie group) there is no rule for multiplying
points that makes S

2 a Lie group. In fact, the only other Lie group among
the n-spheres is S

3. As we saw in Section 1.3, it becomes a group when
its points are viewed as unit quaternions, under the operation of quaternion
multiplication.

The group S
3 of unit quaternions can also be viewed as the group of

2×2 complex matrices of the form

Q =
(

a+ di −b− ci
b− ci a−di

)
, where det(Q) = 1,

because these are precisely the quaternions of absolute value 1. Such matri-
ces are called unitary, and the group S

3 is also known as the special unitary
group SU(2). Unitary matrices are the complex counterpart of orthogonal
matrices, and we study the analogy between the two in Chapters 3 and 4.

The group SU(2) is closely related to the group SO(3) of rotations
of R

3. As we saw in Section 1.5, rotations of R
3 correspond 1-to-1 to
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the pairs ±t of antipodal unit quaternions, the rotation being induced on
Ri+Rj+Rk by the conjugation map q �→ t−1qt. Also, the group operation
of SO(3) corresponds to quaternion multiplication, because if one rotation
is induced by conjugation by t1, and another by conjugation by t2, then
conjugation by t1t2 induces the product rotation (first rotation followed by
the second). Of course, we multiply pairs ±t of quaternions by the rule

(±t1)(±t2) = ±t1t2.

We therefore identify SO(3) with the group RP
3 of unit quaternion

pairs ±t under this product operation. The map ϕ : SU(2)→SO(3) defined
by ϕ(t) = {±t} is a 2-to-1 homomorphism, because the two elements t and
−t of SU(2) go to the single pair ±t in SO(3). Thus SO(3) looks “simpler”
than SU(2) because SO(3) has only one element where SU(2) has two.
Indeed, SO(3) is “simpler” because SU(2) is not simple—it has the normal
subgroup {±1}—and SO(3) is. We now prove this famous property of
SO(3) by showing that SO(3) has no nontrivial normal subgroup.

Simplicity of SO(3). The only nontrivial subgroup of SO(3) closed under
conjugation is SO(3) itself.

Proof. Suppose that H is a nontrivial subgroup of SO(3), so H includes a
nontrivial rotation, say the rotation h about axis l through angle α .

Now suppose that H is normal, so H also includes all elements g−1hg
for g ∈ SO(3). If g moves axis l to axis m, then g−1hg is the rotation about
axis m through angle α . (In detail, g−1 moves m to l, h rotates through
angle α about l, then g moves l back to m.) Thus the normal subgroup H
includes the rotations through angle α about all possible axes.

Now a rotation through α about P, followed by rotation through α
about Q, equals rotation through angle θ about R, where R and θ are as
shown in Figure 2.3. As in Exercise 1.5.6, we obtain the rotation about
P by successive reflections in the great circles PR and PQ, and then the
rotation about Q by successive reflections in the great circles PQ and QR.
In this sequence of four reflections, the reflections in PQ cancel out, leaving
the reflections in PR and QR that define the rotation about R.

As P varies continuously over some interval of the great circle through
P and Q, θ varies continuously over some interval. (R may also vary, but
this does not matter.) It follows that θ takes some value of the form

mπ
n

, where m is odd,



34 2 Groups

R

θ/2

P

α/2

Q
α/2

Figure 2.3: Angle of the product rotation.

because such numbers are dense in R. The n-fold product of this rotation
also belongs to H , and it is a rotation about R through mπ , where m is odd.
The latter rotation is simply rotation through π , so H includes rotations
through π about any point on the sphere (by conjugation with a suitable g
again).

Finally, taking the product of rotations with α/2 = π/2 in Figure 2.3,
it is clear that we can get a rotation about R through any angle θ between
0 and 2π . Hence H includes all the rotations in SO(3). �

Exercises

Like SO(2), SO(3) contains some finite subgroups. It contains all the finite sub-
groups of SO(2) in an obvious way (as rotations of R

3 about a fixed axis), but
also three more interesting subgroups called the polyhedral groups. Each poly-
hedral group is so called because it consists of the rotations that map a regular
polyhedron into itself.

Here we consider the group of 12 rotations that map a regular tetrahedron
into itself. We consider the tetrahedron whose vertices are alternate vertices of the
unit cube in Ri + Rj + Rk, where the cube has center at O and edges parallel to
the i, j, and k axes (Figure 2.4).

First, let us see why there are indeed 12 rotations that map the tetrahedron
into itself. To do this, observe that the position of the tetrahedron is completely
determined when we know

• Which of the four faces is in the position of the front face in Figure 2.4.
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• Which of the three edges of that face is at the bottom of the front face in
Figure 2.4.

Figure 2.4: The tetrahedron and the cube.

2.3.1 Explain why this observation implies 12 possible positions of the tetrahe-
dron, and also explain why all these positions can be obtained by rotations.

2.3.2 Similarly, explain why there are 24 rotations that map the cube into itself
(so the rotation group of the tetrahedron is different from the rotation group
of the cube).

The 12 rotations of the tetrahedron are in fact easy to enumerate with the help
of Figure 2.5. As is clear from the figure, the tetrahedron is mapped into itself by
two types of rotation:

• A 1/2 turn about each line through the centers of opposite edges.

• A 1/3 turn about each line through a vertex and the opposite face center.

2.3.3 Show that there are 11 distinct rotations among these two types. What
rotation accounts for the 12th position of the tetrahedron?

Now we make use of the quaternion representation of rotations from Section
1.5. Remember that a rotation about axis u through angle θ corresponds to the
quaternion pair ±q, where

q = cos
θ
2

+ usin
θ
2

.

2.3.4 Show that the identity, and the three 1/2 turns, correspond to the four quater-
nion pairs ±1,±i,±j,±k.



36 2 Groups

1/2 turn

1/3 turn

Figure 2.5: The tetrahedron and axes of rotation.

2.3.5 Show that the 1/3 turns correspond to the eight antipodal pairs among the
16 quaternions

±1
2
± i

2
± j

2
± k

2
.

The 24 quaternions obtained in Exercises 2.3.4 and 2.3.5 form an exceptionally
symmetric configuration in R

4. They are the vertices of a regular figure called the
24-cell, copies of which form a “tiling” of R

4.

2.4 Isometries of R
n and reflections

In this section we take up an idea that appeared briefly in the exercises
for Section 1.5: the representation of isometries as products of reflections.
There we showed that certain isometries of R

2 and R
3 are products of

reflections. Here we represent isometries of R
n as products of reflections,

and in the next section we use this result to describe the rotations of R
4.

We actually prove that any isometry of R
n that fixes O is the product

of reflections in hyperplanes through O, and then specialize to orientation-
preserving isometries. A hyperplane H through O is an (n−1)-dimensional
subspace of R

n, and reflection in H is the linear map of R
n that fixes the

elements in H and reverses the vectors orthogonal to H .
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Reflection representation of isometries. Any isometry of R
n that fixes O

is the product of at most n reflections in hyperplanes through O.

Proof. We argue by induction on n. For n = 1 the result is the obvious one
that the only isometries of R fixing O are the identity and the map x �→ −x,
which is reflection in O.

Now suppose that the result is true for n = k−1 and that f is an isom-
etry of R

k fixing O. If f is not the identity, suppose that v ∈ R
k is such

that f (v) = w �= v. Then the reflection ru in the hyperplane orthogonal to
u = v−w maps the subspace Ru of real multiples of u onto itself and the
map ru f (“ f followed by ru”) is the identity on the subspace Ru of R

k.
The restriction of ru f to the R

k−1 orthogonal to Ru is, by induction,
the product of ≤ k− 1 reflections. It follows that f = rug, where g is the
product of ≤ k−1 reflections.

Therefore, f is the product of ≤ k reflections, and the result is true for
all n by induction. �

It follows in particular that any orientation-preserving isometry of R
3

is the product of 0 or 2 reflections (because the product of an odd number
of reflections reverses orientation). Thus any such isometry is a rotation
about an axis passing through O.

This theorem is sometimes known as the Cartan–Dieudonné theorem,
after a more general theorem proved by Cartan [1938], and generalized
further by Dieudonné. Cartan’s theorem concerns “reflections” in spaces
with real or complex coordinates, and Dieudonné’s extends it to spaces
with coordinates from finite fields.

Exercises

Assuming that reflections are linear, the representation of isometries as products
of reflections shows that all isometries fixing the origin are linear maps. In fact,
there is nice direct proof that all such isometries (including reflections) are linear,
pointed out to me by Marc Ryser. We suppose that f is an isometry that fixes O,
and that u and v are any points in R

n.

2.4.1 Prove that f preserves straight lines and midpoints of line segments.

2.4.2 Using the fact that u + v is the midpoint of the line joining 2u and 2v, and
Exercise 2.4.1, show that f (u + v) = f (u)+ f (v).

2.4.3 Also prove that f (ru) = r f (u) for any real number r.

It is also true that reflections have determinant −1, hence the determinant detects
the “reversal of orientation” effected by a reflection.
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2.4.4 Show that reflection in the hyperplane orthogonal to a coordinate axis has
determinant −1, and generalize this result to any reflection.

2.5 Rotations of R
4 and pairs of quaternions

A linear map is called orientation-preserving if its determinant is positive,
and orientation-reversing otherwise. Reflections are linear and orientation-
reversing, so a product of reflections is orientation-preserving if and only
if it contains an even number of terms. We define a rotation of R

n about O
to be an orientation-preserving isometry that fixes O.

Thus it follows from the Cartan–Dieudonné theorem that any rotation
of R

4 is the product of 0, 2, or 4 reflections. The exact number is not impor-
tant here—what we really want is a way to represent reflections by quater-
nions, as a stepping-stone to the representation of rotations by quaternions.
Not surprisingly, each reflection is specified by the quaternion orthogonal
to the hyperplane of reflection. More surprisingly, a rotation is specified
by just two quaternions, regardless of the number of reflections needed to
compose it. Our proof follows Conway and Smith [2003], p. 41.

Quaternion representation of reflections. Reflection of H = R
4 in the

hyperplane through O orthogonal to the unit quaternion u is the map that
sends each q ∈ H to −uqu.

Proof. First observe that the map q �→−uqu is an isometry. This is because

• q �→−q reverses the real part of q and keeps the imaginary part fixed,
hence it is reflection in the hyperplane spanned by i, j, and k.

• Multiplication on the left by the unit quaternion u is an isometry
by the argument in Section 1.4, and there is a similar argument for
multiplication on the right.

Next notice that the map q �→ −uqu sends

vu to −u(vu)u = −uu vu because (vu) = u v,

= −vu because uu = |u|2 = 1.

In particular, the map sends u to −u, so vectors parallel to u are reversed.
And it sends iu to iu, because i = −i, and similarly ju to ju and ku to ku.
Thus the vectors iu, ju, and ku, which span the hyperplane orthogonal to
u, are fixed. Hence the map q �→ −uqu is reflection in this hyperplane. �
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Quaternion representation of rotations. Any rotation of H = R
4 about

O is a map of the form q �→ vqw, where v and w are unit quaternions.

Proof. It follows from the quaternion representation of reflections that the
result of successive reflections in the hyperplanes orthogonal to the unit
quaternions u1,u2, . . . ,u2n is the map

q �→ u2n · · ·u3u2u1 q u1u2u3 · · ·u2n,

because an even number of sign changes and conjugations makes no
change. The pre- and postmultipliers are in general two different unit
quaternions, u2n · · ·u3u2u1 = v and u1u2u3 · · ·u2n = w, say, so the general
rotation of R

4 is a map of the form

q �→ vqw, where v and w are unit quaternions.

Conversely, any map of this form is a rotation, because multiplication
of H = R

4 on either side by a unit quaternion is an orientation-preserving
isometry. We already know that multiplication by a unit quaternion is an
isometry, by Section 1.4. And it preserves orientation by the following
argument.

Multiplication of H = R
4 by a unit quaternion

v =
(

a+ id −b− ic
b− ic a− id

)
, where a2 + b2 + c2 + d2 = 1,

is a linear transformation of R
4 with matrix

Rv =

⎛
⎜⎝

a −d −b c
d a −c −b
b c a d
−c b −d a

⎞
⎟⎠ ,

where the 2×2 submatrices represent the complex-number entries in v. It
can be checked that det(Rv) = 1. So multiplication by v, on either side,
preserves orientation. �

Exercises

The following exercises study the rotation q �→ iq of H = R
4, first expressing it as a

product of “plane rotations”—of the planes spanned by 1, i and j, k respectively—
then breaking it down to a product of four reflections.
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2.5.1 Check that q �→ iq sends 1 to i, i to −1 and j to k, k to −j. How many points
of R

4 are fixed by this map?

2.5.2 Show that the rotation that sends 1 to i, i to −1 and leaves j, k fixed is
the product of reflections in the hyperplanes orthogonal to u1 = i and u2 =
(i−1)/

√
2.

2.5.3 Show that the rotation that sends j to k, k to −j and leaves 1, i fixed is the
product of reflections in the hyperplanes orthogonal to u3 = k and u4 =
(k− j)/

√
2.

It follows, by the formula q �→ −uqu for reflection, that the product of rota-
tions in Exercises 2.5.2 and 2.5.3 is the product

q �→ u4u3u2u1 q u1u2u3u4

of reflections in the hyperplanes orthogonal to u1,u2,u3,u4 respectively.

2.5.4 Check that u4u3u2u1 = i and u1u2u3u4 = 1, so the product of the four re-
flections is indeed q �→ iq.

2.6 Direct products of groups

Before we analyze rotations of R
4 from the viewpoint of group theory, it is

desirable to review the concept of direct product or Cartesian product of
groups.

Definition. If A and B are groups then their direct product A×B is the set
of ordered pairs (a,b), where a ∈ A and b ∈ B, under the “product of pairs”
operation defined by

(a1,b1)(a2,b2) = (a1a2,b1b2).

It is easy to check that this product operation is associative, that the
identity element of A×B is the pair (1A,1B), where 1A is the identity of
A and 1B is the identity of B, and that (a,b) has inverse (a−1,b−1). Thus
A×B is indeed a group.

Many important groups are nontrivial direct products; that is, they have
the form A×B where neither A nor B is the trivial group {1}. For example:

• The group R
2, under vector addition, is the direct product R×R.

More generally, R
n is the n-fold direct product R×R×·· ·×R.
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• If A and B are groups of n×n matrices, then the matrices of the form
(

a 0
0 b

)
, where a ∈ A and b ∈ B,

make up a group isomorphic to A×B under matrix multiplication,
where 0 is the n× n zero matrix. This is because of the so-called
block multiplication of matrices, according to which

(
a1 0
0 b1

)(
a2 0
0 b2

)
=

(
a1a2 0

0 b1b2

)
.

• It follows, from the previous item, that R
n is isomorphic to a 2n×2n

matrix group, because R is isomorphic to the group of matrices
(

1 x
0 1

)
where x ∈ R.

• The group S
1 ×S

1 is a group called the (two-dimensional) torus T
2.

More generally, the n-fold direct product of S
1 factors is called the

n-dimensional torus T
n.

We call S
1 × S

1 a torus because its elements (θ ,φ), where θ ,φ ∈ S
1,

can be viewed as the points on the torus surface (Figure 2.6).

θ

φ

(θ ,φ)

Figure 2.6: The torus S
1 ×S

1.

Since the groups R and S
1 are abelian, the same is true of all their

direct products R
m ×T

n. It can be shown that the latter groups include all
the connected abelian matrix Lie groups.
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Exercises

If we let x1,x2,x3,x4 be the coordinates along mutually orthogonal axes in R
4,

then it is possible to “rotate” the x1 and x2 axes while keeping the x3 and x4 axes
fixed.

2.6.1 Write a 4× 4 matrix for the transformation that rotates the (x1,x2)-plane
through angle θ while keeping the x3- and x4-axes fixed.

2.6.2 Write a 4× 4 matrix for the transformation that rotates the (x3,x4)-plane
through angle φ while keeping the x1- and x2-axes fixed.

2.6.3 Observe that the rotations in Exercise 2.6.1 form an S
1, as do the rotations

in Exercise 2.6.2, and deduce that SO(4) contains a subgroup isomorphic
to T

2.

The groups of the form R
m×T

n may be called “generalized cylinders,” based
on the simplest example R×S

1.

2.6.4 Why is it appropriate to call the group R×S
1 a cylinder?

The notation S
n is unfortunately not compatible with the direct product nota-

tion (at least not the way the notation R
n is).

2.6.5 Explain why S
3 = SU(2) is not the same group as S

1 ×S
1 ×S

1.

2.7 The map from SU(2)×SU(2) to SO(4)

In Section 2.5 we showed that the rotations of R
4 are precisely the maps

q �→ vqw, where v and w run through all the unit quaternions. Since v−1

is a unit quaternion if and only if v is, it is equally valid to represent each
rotation of R

4 by a map of the form q �→ v−1qw, where v and w are unit
quaternions. The latter representation is more convenient for what comes
next.

The pairs of unit quaternions (v,w) form a group under the operation
defined by

(v1,w1) · (v2,w2) = (v1v2,w1w2),

where the products v1v2 and w1w2 on the right side are ordinary quaternion
products. Since the v come from the group SU(2) of unit quaternions, and
the w likewise, the group of pairs (v,w) is the direct product SU(2)×SU(2)
of SU(2) with itself.

The map that sends each pair (v,w) ∈ SU(2)× SU(2) to the rotation
q �→ v−1qw in SO(4) is a homomorphism ϕ : SU(2)× SU(2) → SO(4).
This is because



2.7 The map from SU(2)×SU(2) to SO(4) 43

• the product of the map q �→ v−1
1 qw1 corresponding to (v1,w1)

• with the map q �→ v−1
2 qw2 corresponding to (v2,w2)

• is the map q �→ v−1
2 v−1

1 qw1w2,

• which is the map q �→ (v1v2)−1q(w1w2) corresponding to the product
(v1v2,w1w2) of (v1,w1) and (v2,w2).

This homomorphism is onto SO(4), because each rotation of R
4 can

be expressed in the form q �→ v−1qw, but one might expect it to be very
many-to-one, since many pairs (v,w) of unit quaternions conceivably give
the same rotation. Surprisingly, this is not so. The representation of ro-
tations by pairs is “unique up to sign” in the following sense: if (v,w)
gives a certain rotation, the only other pair that gives the same rotation is
(−v,−w).

To prove this, it suffices to prove that the kernel of the homomorphism
ϕ : SU(2)×SU(2) → SO(4) has two elements.

Size of the kernel. The homomorphism ϕ : SU(2)× SU(2) → SO(4) is
2-to-1, because its kernel has two elements.

Proof. Suppose that (v,w) is in the kernel, so q �→ v−1qw is the identity
rotation. In particular, this rotation fixes 1, so

v−11w = 1; hence v = w.

Thus the map is in fact q �→ v−1qv, which we know (from Section 1.5) fixes
the real axis and rotates the space of pure imaginary quaternions. Only if
v = 1 or v = −1 does the map fix everything; hence the kernel of ϕ has
only two elements, (1,1) and (−1,−1).

The left cosets of the kernel are therefore the 2-element sets

(v,w)(±1,±1) = (±v,±w),

and each coset corresponds to a distinct rotation of R
4, by the fundamental

homomorphism theorem of Section 2.2. �

This theorem shows that SO(4) is “almost” the same as SU(2)×SU(2),
and the latter is far from being a simple group. For example, the subgroup
of pairs (v,1) is a nontrivial normal subgroup, but clearly not the whole of
SU(2)×SU(2). This gives us a way to show that SO(4) is not simple.
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SO(4) is not simple. There is a nontrivial normal subgroup of SO(4), not
equal to SO(4).

Proof. The subgroup of pairs (v,1) ∈ SU(2)×SU(2) is normal; in fact, it
is the kernel of the map (v,w) �→ (1,w), which is clearly a homomorphism.

The corresponding subgroup of SO(4) consists of maps of the form
q �→ v−1q1, which likewise form a normal subgroup of SO(4). But this
subgroup is not the whole of SO(4). For example, it does not include the
map q �→ qw for any w �= ±1, by the “unique up to sign” representation of
rotations by pairs (v,w). �

Exercises

An interesting subgroup Aut(H) of SO(4) consists of the continuous automor-
phisms of H = R

4. These are the continuous bijections ρ : H → H that preserve
the quaternion sum and product, that is,

ρ(p + q) = ρ(p)+ ρ(q), ρ(pq) = ρ(p)ρ(q) for any p,q ∈ H.

It is easy to check that, for each unit quaternion u, the ρ that sends q �→ u−1qu
is an automorphism (first exercise), so it follows from Section 1.5 that Aut(H)
includes the SO(3) of rotations of the 3-dimensional subspace Ri + Rj + Rk of
pure imaginary quaternions. The purpose of this set of exercises is to show that
all continuous automorphisms of H are of this form, so Aut(H) = SO(3).

2.7.1 Check that q �→ u−1qu is an automorphism of H for any unit quaternion u.

Now suppose that ρ is any automorphism of H.

2.7.2 Use the preservation of sums by an automorphism ρ to deduce in turn that

• ρ preserves 0, that is, ρ(0) = 0,

• ρ preserves differences, that is, ρ(p−q) = ρ(p)−ρ(q).

2.7.3 Use preservation of products to deduce that

• ρ preserves 1, that is, ρ(1) = 1,

• ρ preserves quotients, that is, ρ(p/q) = ρ(p)/ρ(q) for q �= 0.

2.7.4 Deduce from Exercises 2.7.2 and 2.7.3 that ρ(m/n) = m/n for any integers
m and n �= 0. This implies ρ(r) = r for any real r, and hence that ρ is a
linear map of R

4. Why?

Thus we now know that a continuous automorphism ρ is a linear bijection
of R

4 that preserves the real axis, and hence ρ maps Ri+Rj +Rk onto itself. It
remains to show that the restriction of ρ to Ri+Rj +Rk is a rotation, that is, an
orientation-preserving isometry, because we know from Section 1.5 that rotations
of Ri+Rj +Rk are of the form q �→ u−1qu.
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2.7.5 Prove in turn that

• ρ preserves conjugates, that is, ρ(q) = ρ(q),

• ρ preserves distance,

• ρ preserves inner product in Ri+Rj +Rk,

• ρ(p × q) = ρ(p)× ρ(q) in Ri + Rj + Rk, and hence ρ preserves
orientation.

The appearance of SO(3) as the automorphism group of the quaternion al-
gebra H suggests that the automorphism group of the octonion algebra O might
also be of interest. It turns out to be a 14-dimensional group called G2—the first
of the exceptional Lie groups mentioned (along with O) in Section 1.6. This link
between O and the exceptional groups was pointed out by Cartan [1908].

2.8 Discussion

The concept of simple group emerged around 1830 from Galois’s theory
of equations. Galois showed that each polynomial equation has a finite
group of “symmetries” (permutations of its roots that leave its coefficients
invariant), and that the equation is solvable only if its group decomposes
in a certain way. In particular, the general quintic equation is not solvable
because its group contains the nonabelian simple group A5—the group of
even permutations of five objects. The same applies to the general equation
of any degree greater than 5, because An, the group of even permutations
of n objects, is simple for any n ≥ 5.

With this discovery, Galois effectively closed the classical theory of
equations, but he opened the (much larger) theory of groups. Specifi-
cally, by exhibiting the nontrivial infinite family An for n ≥ 5, he raised
the problem of finding and classifying all finite simple groups. This prob-
lem is much deeper than anyone could have imagined in the time of Galois,
because it depends on solving the corresponding problem for continuous
groups, or Lie groups as we now call them.

Around 1870, Sophus Lie was inspired by Galois theory to develop an
analogous theory of differential equations and their “symmetries,” which
generally form continuous groups. As with polynomial equations, simple
groups raise an obstacle to solvability. However, at that time it was not
clear what the generalization of the group concept from finite to continuous
should be. Lie understood continuous groups to be groups generated by
“infinitesimal” elements, so he thought that the rotation group of R

3 should
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include “infinitesimal rotations.” Today, we separate out the “infinitesimal
rotations” of R

3 in a structure called so(3), the Lie algebra of SO(3). The
concept of simplicity also makes sense for so(3), and is somewhat easier
to establish. Indeed, the infinitesimal elements of any continuous group G
form a structure g now called the Lie algebra of G, which captures most
of the structure of G but is easier to handle. We discuss “infinitesimal
elements,” and their modern counterparts, further in Section 4.3.

It was a stroke of luck (or genius) that Lie decided to look at infinitesi-
mal elements, because it enabled him to prove simplicity for whole infinite
families of Lie algebras in one fell swoop. (As we will see later, most of
the corresponding continuous groups are not quite simple, and one has to
tease out certain small subgroups and quotient by them.) Around 1885 Lie
proved results so general that they cover all but a finite number of simple
Lie algebras—namely, those of the exceptional groups mentioned at the
end of Chapter 1 (see Hawkins [2000], pp. 92–98).

In the avalanche of Lie’s results, the special case of so(3) and SO(3)
seems to have gone unnoticed. It gradually came to light as twentieth-
century books on Lie theory started to work out special cases of geometric
interest by way of illustration. In the 1920s, quantum physics also directed
attention to SO(3), since rotations in three dimensions are physically sig-
nificant. Still, it is remarkable that a purely geometric argument for the
simplicity of SO(3) took so long to emerge. Perhaps its belated appear-
ance is due to its topological content, namely, the step that depends purely
on continuity. The argument hinges on the fact that θ is a continuous func-
tion of distance along the great circle PQ, and that such a function takes
every value between its extreme values: the so-called intermediate value
theorem.

The theory of continuity (topology) came after the theory of continuous
groups—not surprisingly, since one does not bother to develop a theory
of continuity before seeing that it has some content—and applications of
topology to group theory were rare before the 1920s. In this book we will
present further isolated examples of continuity arguments in Sections 3.2,
3.8, and 7.5 before taking up topology systematically in Chapter 8.

Another book with a strongly geometric treatment of SO(3) is Berger
[1987]. Volume I of Berger, p. 169, has a simplicity proof for SO(3) similar
to the one given here, and it is extended to a simplicity result about SO(n),
for n ≥ 5, on p. 170: SO(2m + 1) is simple and the only nontrivial normal
subgroup of SO(2m) is {±1}. We arrive at the same result by a different
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route in Section 7.5. (Our route is longer, but it also takes in the complex
and quaternion analogues of SO(n).) Berger treats SO(4) with the help
of quaternions on p. 190 of his Volume II, much as we have done here.
The quaternion representation of rotations of R

4 was another of Cayley’s
discoveries, made in 1855.

Lie observed the anomalous structure of SO(4) at the infinitesimal
level. He mentions it, in scarcely recognizable form, on p. 683 of Volume
III of his 1893 book Theorie der Transformationsgruppen. The anomaly of
SO(4) is hidden in some modern treatments of Lie theory, where the con-
cept of simplicity is superseded by the more general concept of semisim-
plicity. All simple groups are semisimple, and SO(4) is semisimple, so an
anomaly is removed by relaxing the concept of “simple” to “semisimple.”
However, the concept of semisimplicity makes little sense before one has
absorbed the concept of simplicity, and our goal in this book is to under-
stand the simple groups, notwithstanding the anomaly of SO(4).


