
5 Lattice-Based Retrieval Systems 

Have in mind the physical methods and mechanisms used  
to instrument models. 

(Calvin N. Mooers) 
 
This chapter describes the application of lattices in retrieval systems 
(Mooers, FaIR, BR-Explorer, Rajapakse-Denham, FooCA). The use of lat-
tices for visualization or navigation is not considered, nor are programming 
and implementation issues dealt with, as these fall outside our scope.  
 The goal of describing these systems is to present the way in which lat-
tices have been used to represent document structures, term relationships, 
and term-document matrices in actual retrieval systems developed thus far. 
 Mathematical properties (with proofs) of the lattices applied are estab-
lished. The principal finding is that they are not modular. 
 Further, a method is given to transform a term-document matrix into a 
Galois (concept) lattice.  
 The chapter ends with exercises and problems that are designed to en-
hance understanding of the properties of the lattices applied. 
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5.1 Mooers’ Model 

terms (i.e., to formally express the fact that words are not necessarily inde-
pendent of each other, which is a widely accepted hypothesis in many re-
trieval methods today). The model focuses on what Mooers calls symbols 
(known today as terms) that together form a query and on the relationship 
between the query and a subset of documents that can be selected from a 
collection of documents. 

5.1.1 Lattice of Documents 

The document subsets can be formed from, e.g., a library collection 
(books, articles, etc.). If one denotes a document subset by A and the entire 
library collection by L = {D1,…,Dn}, then the document subsets A ⊆ D 
form a Boolean algebra (℘(L), ∩, ∪, \) with respect to set intersection ∩, 
set union ∪, and set complement \, where ℘(L) denotes the powerset of L, 
i.e., the set of all subsets of L. In other words, the structure (℘(L), ∩, ∪, \) 
is a complemented and distributive lattice.  

5.1.2 Lattice of Unstructured Queries 

A query Q is conceived as consisting of one or several terms (in the latter 
case constructed from one-term queries). For example, the one-term query 
Q = A is modeled as the following lattice: {0, A} (Fig. 5.1): 
 

 
 

Fig. 5.1. One-term query Q = A represented as a lattice {0, A}, 0 ≤ A. 

 A new lattice P can be obtained by taking the product × of one-term lat-
tices (Fig. 5.2): 

 A 

 0 

Mooers (1959) seems to have been the first individual to offer a detailed 
and comprehensive treatment of the application of the lattice concept in 
IR. His model has the merit of being able to capture relationships between 
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1. Let Ai denote (or correspond to) the one-element lattice {0, Ai}, i = 

1,…,n. 

2.  The product lattice P = 
n

i 1=
× {0, Ai} is given by the lattice P=(℘(T), ⊆), 

where T = {A1,…,An}.  

 

 
Fig. 5.2. Product P of two one-term lattices: {0, A} and {0, B}. 

 

 The lattice P contains all the possible queries that can be formed using 
the given terms. It can be seen that the lattice P is a Boolean algebra and 
thus a complemented and distributive lattice. 
 Retrieval is formally viewed as follows. Given a query Q, i.e., an ele-
ment of lattice P, there may be other elements in P preceded by Q, or ele-
ments that precede Q. Retrieval is some procedure that locates those ele-
ments of ℘(T) that precede and are preceded by Q. However, the retrieval 
procedure is not described.  

5.1.3 Lattice of Term Hierarchies 

Mooers treats, very briefly, the case of term hierarchies. For example, the 
term “clothing” is broader in sense than the term “shoe.” Thus, the follow-
ing lattice (reflecting a hierarchy) can be constructed:  

  A 

  0 

  B 

  0  0 

 A   B 

 AB 
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 Taking into account hierarchical relations between terms should have an 
impact upon retrieval. In such lattices, some elements may be preceded by 
more than one element; this is referred to as a “system with weak hierar-
chy” (e.g., the U.S. Patent Office classification). After appropriate reduc-
tions, another lattice can be obtained from this one that does not allow for 
any element to be preceded by more than one element. Such a reduced lat-
tice is referred to as a “system with strong hierarchy” (e.g., the Dewey 
Decimal classification).  

5.1.4 Lattice of Boolean Queries and Documents 

Mooers also outlines the case of Boolean (i.e., structured) queries (which 
he calls “characters with logic”). He starts by emphasizing that, “symbolic 
logic is a stylized view of things, and the symbolism or method which is 
found useful in that discipline need not necessarily be the most appropriate 
symbolism for information retrieval.”  
 Given the terms A1,…,An, a Boolean query is conceived as being an 
element of a lattice (L, ⊆) obtained as follows: 

1.  The atoms are A1,…,An. 
2.  The elements greater than the atoms, and immediately above them, 

are given by the Cartesian product {A1, ¬A1} × {A2, ¬A2}× …× {An, 
¬An}, where ¬ denotes negation. 

3. The elements of point (2) are “topped” by the maximal element of the 
lattice. 

If the query is a conjunction of terms (e.g., A1  A2), all terms are equally 
relevant to the subject matter of the document. When the query is a 

1

clothing 

shoe

0
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disjunction of terms (e.g., A1 V A2), then⎯based on the interpretation of V 
in mathematical logic⎯either one, or either two, and so on either all terms 
may be relevant to the subject matter of the document. “This is ridiculous,” 
⎯Mooers says. He continues by asking: “For example, how good is a 
retrieval system that treats the query  

red V square 

as a logical expression?” Thus, he notes:  

• Disjunction should not be a permissible operation in queries for re-
trieval; the only permissible operations should be conjunction and nega-
tion. 

• On the other hand, a document should be represented as a lattice using 
only negation and disjunction of terms.  

 
 For example, if two terms are used, say A and B, then all possible 
documents (i.e., the ‘space’ whose element a document may be) are given 
by the lattice shown in Fig. 5.3.  
 The document lattice can be obtained as a product of two-element lat-
tices. Figure 5.4 shows the two 2-element lattices whose product lattice is 
shown in Fig. 5.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.3. Document lattice for Boolean queries using two terms A and B. 

 
 
 
  

1 

0 

A B ¬A ¬B 

AVB AV¬B ¬AVB ¬AV¬B 
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Fig. 5.4. The two 2-element lattices whose product is the lattice in Fig. 5.3. 

 
The query lattice is similarly generated, but instead of disjunction we have 
conjunction. Mooers does not treat retrieval for such representations. At 
the same time, he makes a number of general and interesting observations: 

• If a term A has not been used as an index term for a document, then the 
query “¬A” should not retrieve that document merely because it does 
not contain A. In other words, in retrieval, absence is not necessarily 
synonymous with negation. 

• It may be important to know the frequency with which terms are used. 
Thus, one can attach frequencies as “scalars” to lattice elements. 

• In Boolean logic, the operations commute, e.g., A V B is the same as B 
V A. If the information in a document is structured as a lattice, the ideas 
are commutative. But this is not always the case. The words that make 
up a term may form a sequence, but they do not always commute. For 
example, “street lamp” as a term may be modeled formally as the con-
junction “street  lamp” but it is not equal, in general, to the commuted 
conjunction “lamp  street,” as it should if taken as a Boolean expres-
sion of mathematical logic. In the term “street lamp,” the words “street” 
and “lamp” do not form a hierarchy (and thus not a lattice); they form 
some other structure (e.g., a grammatical structure called a compound 
word). 

5.2 The FaIR System 

For a long time after Mooers’s paper was published, the application of lat-
tices in information retrieval was seen more as a theoretical possibility or 
curiosity. There were no further developments until Priss (2000) proposed 
a practical retrieval system, called FaIR, based on lattices, and thus 
showed that such a retrieval system could be built effectively.  

1 

0 

A ¬A 

1 

0 

B ¬B 
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 The FaIR system uses domain knowledge (in the form of a thesaurus) to 
generate term lattices. The thesaurus consists of a set T of terms that is par-
titioned into classes (called facets). The facets are lattices. Every node in 
such a lattice represents a term (word or phrase), and the lattice expresses 
thesaurus relationships such as “broader than,” “narrower than,” etc. Every 
such lattice, i.e., facet, is conceptually complete (their terms express one 
concept).  
 Documents are represented by (or assigned to) as many terms as needed, 
but at most one term from one facet. Documents that contain only one of 
the terms of the facet are mapped to that concept. Documents that contain 
several terms of the facet are mapped to the join of the concepts. Figure 5.5 
illustrates an example of a facet lattice. 
 

 
Fig. 5.5. Facet lattice “programming language.” A document containing both CGI 

and Java is assigned to the node “WWW programming language,” which is the 
join of these terms. 

 
The elements of the facet lattice may be formally conceived as containing 
(i.e., being equal to the union of) the elements that are below it (equiva-
lently, down to atoms). Every document is mapped to a single concept 
over all facets.  
 A query Q is a Boolean expression of terms. For example, the query Q = 
”Java” retrieves the documents containing exactly and only the term 
“Java” (in the exclusive search) and the documents that also contain the 
more general term “WWW programming language” (in the inclusive 
search).  

WWW programming language 

Java 

Programming language 

Manual 

CGI X-KL Javascript 

0 
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5.3 Galois (Concept) Lattice-Based Models 

5.3.1 Galois (Concept) Lattice 

Concepts are basic units of language and thought. The extension G of a 
concept consists of all objects that belong to it. The intension M of a con-
cept consists of all attributes (properties) that apply to the elements of its 
extension. A formal context K is defined as a binary relation, i.e., as the set 
of relationships between objects and attributes to denote which object has a 

K = (G, M, I), I ⊆ G × M. (5.1)

 

X → X I = {m ∈ M | g I m, ∀g ∈ X}, (5.2)

i.e., the set of attributes common to all objects from X, and 

Y → Y I = {g ∈ G | g I m, ∀m ∈ Y}, (5.3)

i.e., the set of objects described by at least one attribute from Y. A formal 
concept (A, B) is defined as  

(A, B) is a formal concept ⇔ 

(A ⊆ G, B ⊆ M, A = B I, B = AI). 
(5.4)

The set A is the extent and the set B is the intent of the formal concept. The 
set of formal concepts becomes a poset [notation: ℜ(K)] with the ordering 
relation 

(A1, B1) ≤ (A2, B2)  ⇔ 

A1 ⊆ A2 (⇔ B2 ⊆ B1). 
(5.5)

The poset ℜ(K) can be turned into a complete lattice, denoted by ℜ(K), 
with the following definitions of infimum and supremum: 

 

infimum: j (Aj, Bj) = ( )( )II

j jj j BA ,  

supremum: Vj (Aj, Bj) = ( )( )
j j

II

j j BA , . 

 
(5.6)

The following derivation operations are defined for arbitrary X ⊆ G and  
Y ⊆ M: 

given property (Wolff 1993, Kim and Compton 2004, Wille 2005):  
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Concept lattices are useful for the representation of conceptual structure of 
data. There are efficient procedures for constructing formal concepts and 
the concept lattice from a given formal context (Kim and Compton 2004, 
Wille 2005).  

5.3.2 Term-Document Matrix and Concept Lattice 

Cheung and Vogel (2005) view the term-document matrix TDn,m (in its 
Boolean form, i.e., adjacency matrix, Table 5.1) as a formal context that is 
transformed into a concept lattice (Fig. 5.6).  
 

Table 5.1. Term-Document Matrix 

 D1 D2 D3 D4 
T1 1 1 0 0 
T2 1 0 1 0 
T3 0 1 0 1 
T4 0 0 1 1 

 
Thus, term T1 occurs in documents D1 and D2, term T4 occurs in documents 
D3 and D4, and so on. The term-document matrix can be transformed into a 
concept lattice using the following method: 
 

Generation of a Concept Lattice  
from the Term-Document Matrix 

1. The least element, 0 (as well as the greatest element, 1) of the  
concept lattice is introduced artificially. 

2. The lattice is built in a bottom-up fashion (i.e., from 0 to 1). 

3. Every term Ti corresponds to an atom. 

 j (j = 1,...,m), if TDi,j = TDk,j = 1, then document Dj is 
the meet (superconcept) of terms Ti and Tk.  

 

This method can be applied even when the TD matrix is not Boolean, i.e., 
when it contains (nonbinary) weights. In this case, the condition in point 4 
is rewritten as TDi,j, TDk,j ≠ 0. (The superconcepts, as given by the TD 
matrix, may not be unique. However, in the concept lattice only one is 
allowed.) 

 

4. For every column 
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Fig. 5.6. Concept lattice obtained from the term-document matrix of Table 5.1. 
 

A method to obtain a lattice from a term-document matrix is 
given in (Godin et al. 1989).  
 
Each element of the lattice is a couple (d, t) such that  

• d is the set of documents described by at least the terms in t. 
• t is the set of terms common to all the documents in d. 
 
Thus, t is the set of terms appearing in a conjunctive query retrieving  
exactly the documents in d. The set of all such couples is a lattice with the 
following partial order defined from the corresponding order on the term 
sets: 

c1 = (d1, tl) < c2 = (d2, t2) ⇔ t1 ⊂ t2. (5.7)

Equivalently, 

t1 ⊂ t2 ⇔ d2 ⊂ d1. (5.8)

The partial order is used to generate the Hasse diagram of the lattice. 
There is an edge (cl, c2) if cl < c2, and there is no other element c3 such 
that cl < c3 < c2 . 

1

0

T1 T2 T3 T4 

D1 D2 D3 D4 
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5.3.3 BR-Explorer System 

Messai et al. (2006) propose a retrieval system called BR-Explorer based 
on concept lattices. The term-document Boolean matrix (conceived as a 
formal context) is first transformed into a concept lattice L. A query Q is 
conceived as being a set of terms (attributes). In order to answer query Q, 
this is inserted into the concept lattice L first (e.g., by building L from 
scratch, or using some more efficient method as suggested by Messai  
et al.).  
 Relevance is defined as follows. The document d is relevant to query Q 
if they share at least one attribute. Messai et al. give a retrieval method 
(i.e., traversal of the concept lattice) that retrieves documents already 
ranked by their relevance degree.  

5.3.4 Rajapakse-Denham System 

Rajapakse and Denham (2006) proposed another application of lattices to 
IR. Documents and queries are represented as individual lattices. Concepts 
extracted from documents are used to construct a lattice. A document or 
query is conceived as a structure of objects, attributes, and their relation-
ships from which a lattice is generated. The atoms are the elements con-
sisting of objects that have identical attributes. On the next level, the ele-
ments are the objects that share most of their attributes, and so on. The 
smallest element of the lattice, at the bottom, is an artificial empty element, 
whereas the largest element, on the top, is the union of all the objects.  
 Retrieval is defined as follows. The relevance of a document to a query 
is determined on the basis of their common concepts. This is achieved by 
comparing nodes of the query lattice with the nodes of the document lat-
tice. A partial match between the query lattice and the document lattice is 
defined as being the meet between their corresponding objects and attrib-
utes. When any of these two meets are empty, a keyword match is applied.  
 Rajapakse and Denham showed that their model worked by building an 
experimental system whose relevance effectiveness was measured on the 
Cranfield test collection. Moreover, the system was enhanced with a (per-
sonalized) learning strategy. In a relevance feedback process, all the terms 
of the query that are not present in a relevant document are added to that 
document. Weighting strategies were also used to refine the model. 
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5.3.5 The FooCA System 

The FooCA system applies formal concepts to enhance Web retrieval 
(Koester 2006a,b, 2005). The system runs under Linux and is written in 
PERL. FooCA lets the user enter a query, which it sends to Google (other 
Web search engines can also be used).  
 The hit list returned by the search engine is used to construct a formal 
context and formal concepts as follows. The snippets (i.e., the short ex-
cerpts returned by the search engine) are used to extract terms. If there is 
no snippet, then the page address is used instead. The URLs of pages are 
viewed as objects, whereas its terms are viewed as attributes.  
 The hit list returned by the search engine is presented to the user as a ta-
ble in which the rows correspond to objects (in the ranked order given by 
the search engine) and the columns to attributes. The table can be navi-
gated using the mouse, and the corresponding row is highlighted. When 
the user clicks on a row, he/she is taken to the corresponding page.  
 The table can also be used for query refinement. If the user clicks on an 
attribute, then he/she can launch another search using the clicked attribute 
as the query or he/she can include or exclude that term into/from the origi-
nal query.  
 FooCA can be used to visualize the hierarchy of formal concepts, which 
helps the user to assess the hits better and thus to know which hit to view 
first. 

5.3.6 Query Refinement, Thesaurus Representation 

Carpineto and Romano (2005) offer an excellent overview of other uses of 
concept lattices in retrieval. One such application of concept lattices is 
query refinement. Given a Boolean query (i.e., a Boolean expression of 
terms), the matching documents are found first. Then, the set of common 
terms in the retrieved documents is determined and used to build a concept 
lattice. The query can be refined by choosing the most general term (con-
cept) that contains all the query terms.  
 Another use of lattices in retrieval is the representation of a thesaurus as 
a concept lattice by taking into account the ordering suggested by the the-
saurus. The concept lattice of a document collection may be used as an un-
derlying clustering structure. The query is merged into this lattice. Each 
document is ranked according to the shortest path between the query and 
the document concept.  
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 Concept lattices can also be used to bound the search space or for navi-
gational purposes. A possible application relates to Web searching. A set 
of pages returned by a search engine is parsed, and a concept lattice is built 
using the pages as objects and the terms as attributes. The user is presented 
with this lattice to initiate the next search interaction. 

5.4 Properties of the Lattices Applied 

As seen in the retrieval systems that have been described, lattices are used 
as mathematical models of the entities involved: objects and their relation-
ships (document sets, structure of a document, within document-term rela-
tionships, queries, term relationships in general, and concepts). These lat-
tices have different meanings (or roles) such as query, document, or 
concept. According to their role, they are subjected to appropriate process-
ing. Retrieval is defined as a matching between a document and a query 
lattice, or between lattices (a query lattice and a document lattice). Differ-
ent specific matching algorithms were proposed.  
 The lattices used are complex (albeit that there are attempts to find 
methods to reduce their complexity), and their construction is not an easy 
task.  
 Godin et al. (1998) showed that the number H of nodes in a concept lat-
tice has linear complexity with the number n of documents: 

H = O(n⋅2k), (5.9)

where O denotes “big-Oh” (upper bound) from computational complexity, 
and k denotes the maximum number of terms/document. Experimental re-
sults showed that the ratio H/n was fairly constant and much lower than 2k.  
 Cheung and Vogel (2005) applied SVD (singular value decomposition) 
to reduce the size of the term-document matrix, whereby the corresponding 
lattice became considerably smaller than the one corresponding to the 
original matrix.  
 From a purely formal point of view, the application of lattices in re-
trieval systems can be characterized as follows. Let 

T = {t1, t2,…,tn} (5.10)

denote a set of elements (e.g., terms, documents, etc.). Several types of lat-
tices  are defined over T, such as:  

• Atomic, complete. 
• Boolean algebra. 
• Complete, atomic, complemented, nonmodular (hence not distributive). 
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• Complete, atomic, nonmodular (hence not distributive), not comple-
mented. 

We show now that, in Mooers’s model, the following property holds: 

Theorem 5.1. The lattices of Boolean documents and queries are  
1. Atomic and complete. 
2. Complemented.  
3. Not modular. 

 Proof (using Fig. 5.3 as a model). Point (1) is straightforward. To prove 
point (2), note that the complement AC of any atom A is equal to any ex-
pression of which A is not a member. The complement AC of any nonatom 
A is equal to its negated counterpart. For point (3), we give a counterex-
ample. By definition, a lattice L is modular if  

(∀A, B, C ∈ L for which A ≤ C)  
A ∨ (B ∧ C) = (A ∨ B) ∧ C. 

 

For example, A ⊆ C = {A, B}, i.e., A ≤ (A ∨ B) (recall that ∨ = ∪ and  
∧ = ∩). By taking B = {¬A, ¬B}, we now have 

A ∪ ({¬A, ¬B} ∩ {A, B}) = A ∪ 0 = A,  

which is not equal to 

(A ∪ {¬A, ¬B}) ∩ {A, B} = 1 ∩ {A, B} = {A, B}.  

Further, we can prove that the facet lattices used in the FaIR system have 
the following property: 

Theorem 5.2. The facet lattice is 
1. Atomic and complete.  
2.  Not modular. 

 Proof. Point (1) is straightforward. For point (2), we give a counterex-
ample (using Fig. 5.5). For A = ‘X-KL’, B = ‘CGI’ and C = ‘Manual’, we 
have A ≤ C, and 

A ∪ (B ∩ C) = A ∪ 0 = “X-KL”,  

which is not equal to  

(A ∪ B) ∩ C = “Programming language” ∩ C = “Manual.”  

 Before proceeding with the analysis of the properties of lattices used in 
retrieval systems, we introduce further concepts related to lattices. 
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Definition 5.1. Two lattices (L1, ∧1, ∨1) and (L2, ∧2, ∨2) are isomorphic if 
there exists a bijective function f: L1 → L2 such that  

f(a ∧1 b) = f(a) ∧2 f(b), 

f(a ∨1 b) = f(a) ∨2 f(b), ∀ a, b ∈ L1.  
(5.11)

 

Definition 5.2. The structure (L1, ∧, ∨), where L1 ⊆ L and L1 ≠ ∅, is a 
sublattice of the lattice (L, ∧, ∨) if  

a ∧ b ∈ L1,  a ∨ b ∈ L1, ∀a, b ∈ L1.  
(5.12)

Definition 5.3. A lattice L1 can be embedded into a lattice L2 if there exists 
a sublattice of L2 isomorphic to L1.  

 There is an important relationship between the pentagon lattice and 
nonmodularity, namely: 

Theorem 5.3. (Burris and Sankappanavar, 2000) A lattice L is not modular 
if and only if the pentagon lattice can be embedded into L. 

 Proof. It is clear that if the pentagon lattice can be embedded into a lat-
tice L, then L is not modular (because the pentagon lattice itself is not 
modular; see Section 3.6). In order to prove the reverse, let us assume that 
L is not modular. This means that for A, B, C ∈ L such that A ≤ C we have 
A ∨ (B ∧ C) < (A ∨ B) ∧ C. Let D = A ∨ (B ∧ C), then  

B ∨ D = B ∨ ( A ∨ (B ∧ C) ) = 
B ∨ ( (B ∧ C) ∨ A ) = 
( B ∨ (B ∧ C) ) ∨ A = 

B ∨ A. 

 
 
 

Now let E = (A ∨ B) ∧ C; then 

B ∧ E = 
B ∧ ( (A ∨ B) ∧ C ) = 
( B ∧ (A ∨ B) ) ∧ C = 

B ∧ C. 

 
 
 

D < E by assumption. Also B ∧ C < A ∨ (B ∧ C) = D. Thus B ∧ C < D < E, 
and so  

B ∧ C < 
B ∧ D < 

B ∧ E = B ∧ C. 
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Hence, B ∧ D = B ∧ E = B ∧ C. Likewise, B ∨ E = B ∨ D = B ∨ A. Figure 
5.7 shows the copy of the pentagon lattice in L. 

 
Fig. 5.7. Copy of the pentagon lattice as an embedded lattice. 

 
 Wille (2005) gives many examples of concept lattices, which model a 
wide range of different real situations:  

• Geography (bodies of water).  
• Sociology (economic concepts of young persons).  
• Geometry (types of triangles, inversion of a circle).  
• Medicine (examination of anorectic patient, functional rooms in a hospi-

tal, Ph-level of children with diabetes).  
• Tourism (leisure activities).  
• Information science (information and knowledge processing).  
• Urbanism (town and traffic).  
• Music (musical attributes).  
• Biology (animals).  

 The concept lattice of the Ph-level of children with diabetes is shown in 
Fig 5.8. (This concept lattice was generated using the data from 111 chil-
dren and 22 attributes in collaboration with medical experts.) It can be seen 
that this concept lattice is nothing other than the pentagon lattice, and 
hence it is not modular.  
 

C ∧ B 

D 

E 

B ∨ A 

B 
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Fig. 5.8. Concept lattice of Ph-level of children with diabetes. 
 
 If one examines the other lattices given by Wille, it turns out that other 
concept lattices (e.g. those of economic concepts of young persons, of 
types of triangles, and of animals) also have sublattices isomorphic with 
the pentagon lattice, which means that they are not modular. Indeed, we 
can show that in general: 

Theorem 5.4. Galois (concept) lattices are not modular. 

 Proof. A lattice L is, by definition, modular if  

(∀A, B, C ∈ L for which A ≤ C)  

A ∨ (B ∧ C) = (A ∨ B) ∧ C. 

 

For Galois lattices, the definition of modularity becomes 

(∀(X1, X2), (Y1, Y2), (Z1, Z2) ∈ L such that (X1, X2) ≤ (Z1, Z2))  

(X1, X2) ∨ ( (Y1, Y2) ∧ (Z1, Z2) ) = 

( (X1, X2) ∨ (Y1, Y2) ) ∧ (Z1, Z2). 

 
 

Using the definitions of join ∨ and meet ∧ in concept lattices, and the hy-
pothesis (X1, X2) ≤ (Z1, Z2), we rewrite the modularity condition as follows: 

( (X1 ∪ (Y1 ∩ Z1 ))II, X2 ∩ Y2
II ) = 

( (X1 ∪ Y1)II ∩ Z1, ((X2 ∩ Y2) ∪ Z2)II ), 

 

0 

ph dangerous 

ph pathological 

1 

ph normal 
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which is equivalent to 

( ((X1 ∪ Y1) ∩ Z1 )II, X2 ∩ Y2 ) = 

( (X1 ∪ Y1)II ∩ Z1, ((Z2 ∩ (Y2 ∪ Z2)II ). 

 

Let us take now (X1, X2) ≤ (Y1, Y2), i.e., X1 ⊆ Y1, Y2 ⊆ X2. Then, the previous 
condition is rewritten as  

( (Y1 ∩ Z1 )II, Y2 ) = 

( Y1
II ∩ Z1, ((Z2 ∩ (Y2 ∪ Z2)II ). 

 

(Y1 ∩ Z1 )II = Y1
 ∩ Z1; 

 

and when 

Y2 = (Z2 ∩ (Y2 ∪ Z2)II = Z2 ∩ (Y2 ∪ Z2). 
 

But if Y2 ⊂ Z2, then Z2 ∩ (Y2 ∪ Z2) = Z2 ∩ Z2 = Z2, which is different from 
Y2.  
 
 However, in nonmodular lattices certain pairs of elements may satisfy 
the modularity condition.  

Definition 5.4. An ordered pair (A, B) of elements⎯i.e., in this order A is 
the first element of the pair and B is the second element of the pair⎯of a 
lattice L is referred to as a modular pair (notation: AMB) if 

(∀ C ∈ L such that C ≤ B)   
C ∨ (A ∧ B) = (C ∨ A) ∧ B.  

(5.13)

 If A and B are not modular pairs, then this is denoted by AMB. Albeit 
that Galois (concept) lattices are not, in general, modular, in the concept 
lattices in Wille (2005), which all have a sublattice isomorphic to the pen-
tagon lattice, there are modular pairs that correspond to the following 
modular pair in the pentagon lattice: 

0 ≤ x   
0 ∨ (x ∧ y) = 0 ∨ x = x = 

(0 ∨ x) ∧ y = x ∧ y 
= x. 

 
 

(5.14)
 
 

This means that y and x are a modular pair: yMx. A Galois lattice has a 
sublattice isomorphic with the pentagon lattice. Hence, it also has a modular 

The equality holds when (Y1 ∩ Z1 )II = Y1
II ∩ Z1, which is true because  

Y1
II = Y1, and so we have: 
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pair of elements. We should note, however, that xMy. We have x ≤ y, but x 
∨ (z ∧ y) = x, which is not equal to (x ∨ z) ∧ y = y. This means that x and y 
are not a modular pair: xMy. 

 It is known that the logical propositions of mathematical logic form a 
complemented and distributive lattice ({T, F}, V, , ¬). As concept lat-
tices are not modular (Theorem 5.4), they are not distributive either. 
Hence, the main difference between concept lattices and the lattice of 
propositions relates to the presence/absence of distributivity. In logic, dis-
tributivity is a property that connects conjunction and disjunction and is 
the expression of compatibility between any two propositions P and Q in 
the sense that  

(P  Q) V (P  ¬Q) = P V (Q  ¬Q) = P. (5.15)

The fact that concept lattices are not distributive means that, in general, 
there are objects and/or properties that are not compatible, i.e., about 
which we cannot always reason in the sense of mathematical logic. For ex-
ample, in the concept lattice of Fig. 5.6, we have  

(D1  D2) V (D1  ¬D2
C) = T1, (5.16)

which means that reasoning with documents D1 and D2 does not result in 
some other document, but rather in a term (which is a different type of en-
tity). In other words, in concept lattices, reasoning may lead to an object 
having a different nature or quality than the nature of objects on which rea-
soning has operated (a situation unimaginable in mathematical logic). 

5.5 Exercises and Problems 

1. Using a document collection of your choice, construct the corre-
sponding concept lattice (using the term-document matrix). 

2. Show that facet lattices are not distributive. 

3. Are concept lattices uniquely complemented? 

4. Is the Boolean algebra of documents uniquely complemented? 

5. Are concept lattices orthomodular? 


