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Summary. Index tracking is concerned with forming a portfolio that mimics a benchmark
index as closely as possible. Traditionally, this implies that the returns between the index
and the portfolio should differ as little as possible. However, investors might happily accept
positive deviations (ie, returns higher than the index’s) while being particularly concerned with
negative deviations. In this chapter, we model these preferences by introducing loss aversion
to the index tracking problem and analyze the financial implications based on a computational
study for the US stock market. In order to cope with this demanding optimization problem,
we use Differential Evolution and investigate some calibration issues.

2.1 Introduction

Over recent years, passive portfolio management strategies have seen a remarkable
renaissance. Assuming that the market cannot be beaten on the long run (in particular
after transaction costs), these strategies aim to mimic a given market (or sector) index
by investing either into a replication of the benchmark, or by selecting a portfolio
which exhibits a behavior as similar to the benchmark’s as possible. The market share
of products such as exchange traded funds (ETFs) has increased significantly, and it
is argued that passive portfolio management is becoming predominant. According to
(5), almost half the capital in the Tokyo Stock exchange is subject to passive trading
strategies, and (2) report that assets benchmarked against the S&P 500 exceed US$1
trillion.

In contrast, active portfolio management tries to generate excess returns by pick-
ing stocks which are expected to outperform the market and avoiding assets that
are expected to underperform. Both approaches have their advantages and disadvan-
tages: active strategies rely heavily on superior predictions while passive strategies
require few assumptions about future price movements. Passive strategies will also
copy the benchmark’s poor behavior (in particular when segments of the market drag
down the overall performance) while active strategies can react more flexibly in bear
markets; etc. If investments are benchmarked against the index, a fund that aims
to replicate this benchmark will, by definition, have a lower likelihood to severely
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fall below this benchmark. It is often argued that it is the actively managed funds’
poor performance that makes passive funds all the more attractive (see, e.g., (2)). An
alternative, more fundamental argument against active funds is the basis for works
including (15) or (3), stating that all investments ought to be efficient ex ante, while
deviations ex post should be transitory. The rational behind this argument is, sim-
ply speaking, that if all market participants have the same access to the market and
to information, then the market index should be some sort of average of the indi-
vidual investments. By definition and in the absence of transaction costs, over- and
underperformers should then balance. In particular, no participant should be able to
produce results that are persistently on just one side of the average. Outperforming
the index could therefore be just a matter of good luck rather than skill. Constantly
remaining in this position (in particular when transaction costs are incurred) becomes
an increasingly rare experience the longer a period of time is considered, as empirical
studies confirm.1

Arguably the most common approach in passive portfolio management is index
tracking. In this strategy, investors select portfolios that mimic the behavior of an
index representing the market or a market segment as closely as possible. To find the
optimal combination, a distance measure between tracking portfolio and benchmark
index is defined which is to be minimized. This so-called Tracking Error (TE) is typ-
ically defined as the mean squared deviation between the returns. Akin to volatility,
this measure is more sensitive to bigger deviations, but it is oblivious to the sign of the
deviation; hence, it does not distinguish between under- or over-performance of the
tracking portfolio. Other things equal, investors appear to be mainly concerned with
losses rather than any deviation, positive and negative, from their expected outcome.
While some authors find that this might even lead to preference functions contradict-
ing the traditional utility analysis for rational risk aversion (see (4) and (18)) the only
assumption about investors’ preferences made in this contribution is that they want
to copy the market and that negative deviations are more “hurtful” than positive ones.
Translated to index tracking, investors will try to avoid falling below the benchmark,
hence they might want to particularly avoid negative deviations.

This chapter investigates how different levels of loss aversion affect the choice
in asset selection for index tracking under realistic constraints. These constraints
include an integer constraint on the number of assets, and that initial weights of in-
cluded assets must fall within certain limits to avoid dominating assets as well as
excessive fragmentation and data-fitting. As a consequence, the solution space be-
comes discrete, exhibits frictions and has multiple optima. Standard optimization
techniques cannot deal with these problems satisfactorily and therefore tend to sim-
plify the optimization problem. Heuristic methods, on the other hand, can deal with

1 As (1, p. 133) put it in their opening statement: “There is overwhelming evidence that,
post expenses, mutual fund managers on average underperform a combination of passive
portfolios of similar risk. [. . . ] Of the few studies that find that managers or a subset of
managers with a common objective (such as growth) outperform passive portfolios, most, if
not all, would reach opposite conclusions when survivorship bias and/or correct adjustment
for risk are taken into account.”
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these situations (see, e.g., (8)). In particular, it has been found in (10) and (9) that
Differential Evolution is well suited to solve this type of optimization problem.

The rest of this chapter is organized as follows. After formalizing the decision
problem in section 2.2, section 2.3 will present how it can be solved numerically us-
ing Differential Evolution. Section 2.4 presents the results of a computational study,
and section 2.5 concludes.

2.2 The Asset Selection Problem under Loss Aversion

2.2.1 Passive Asset Management and Preferences

The simplest way of tracking a given index would be to replicate it by investing into
the assets included in it with their exact corresponding weights. This approach, how-
ever, is hampered by several practical limitations. For one, when the index is large
and has a high number of different assets, monitoring a correspondingly large track-
ing portfolio becomes not only cumbersome but also rather costly. Furthermore, if the
index is computed in a way that the required number of stocks is not constant over
time (e.g., when the relative weights are constant), a perfect replication would re-
quire frequent portfolio revision which to some extent defeats the purpose of passive
portfolio management. Finally, practical or institutional reasons can impede a perfect
replication: If the investor’s budget is limited and only whole-numbered quantities or
lots of assets can be bought, or if there are upper and/or lower limits on the weight an
individual asset can have within the portfolio, deviations of the benchmark’s struc-
ture can become inevitable. Finally, this one-to-one replication strategy requires that
the assets are available in the first place (which might be a problem not only for
illiquid assets, but also if these assets are not easily accessible, e.g., in commodity
indices). Hence, a trade-off between the revision frequency and the magnitude of the
tracking error has to be accepted, and in many cases using a subset of the index’s
component will be preferred to a full replication.

Deviating from the index’s structure might be reasonable if the investor does
not want to copy all the market movements: in line with the usual non-satiation as-
sumption of investor preferences, he might be willing to accept a (slightly) less well
diversified portfolio with a higher risk if the average return is higher. On a similar
note, a symmetric measure for the tracking error will not necessarily capture the in-
vestor’s actual preferences: while the returns of the tracking portfolio should not fall
below the index’s, the investor will probably not object if the portfolio outperforms
the benchmark. Putting more emphasis on losses lessens the impact of positive de-
viations when evaluating the TE. Explicitly aiming at outperforming the benchmark
blends the index tracking approach with active strategies where, typically, predictions
about individual assets’ future returns are required. In this contribution, however, the
original paradigm of passive strategies is maintained where no specific predictions
are required and the only assumption about returns is that they follow some but (more
or less) stable distribution without further specification.



10 D. Maringer

2.2.2 Risk Aversion and Loss Aversion

Traditionally, the measure for the tracking error is the (root of the) mean squared
difference between portfolio and index returns. This measure does not capture the
investor’s preferences for positive deviation, nor does it distinguish bullish (i.e., in-
creasing) and bearish (i.e., decreasing) markets, and minimizing the tracking error
will not maximize the investor’s utility.

Findings in behavioral finance suggest that an individual’s utility is not only af-
fected by the future level of wealth, but also whether this level is above or below
a certain threshold which is usually the current level of wealth. The same level of
future wealth provides a higher utility if it represents an increase in wealth rather
than a decrease in wealth. The marginal utility will be lower (higher) if this given
level of wealth depending on it represents a profit (loss). In other words, decision
makers exhibit loss aversion by reacting more sensitively to losses than suggested by
the traditional assumptions on risk aversion.2 A simple way to model this behavior
is to introduce a measure of loss aversion, λ , and transform the actual terminal levels
of wealth, wT , into “perceived” wealth, w̃T , where losses are amplified while profits
are kept unchanged:

w̃T =

{

w0 · exp(r) r ≥ 0
w0 · exp(r ·λ ) r < 0

(2.1)

= w0 · exp(r · (1+(λ −1)ℑr<0)) (2.2)

where r is the log return, r = ln(wT /w0) and ℑr<0 is a binary indicator for losses. If
λ = 1, the decision maker has no extra attitude to losses beyond the (still intact) risk
aversion, while λ > 1 models additional loss aversion. Cases where λ < 1 indicate
loss seeking behavior which contradicts the other assumptions and can therefore be
neglected.

One could find several ways to translate this into an index tracking framework.
However, an investor following a passive strategy can be assumed to accept losses
if this also reflects the development in the benchmark index. It therefore appears
more plausible to regard losses in terms of opportunity costs, i.e., if the tracking
portfolio’s returns fall below the index’s. This has the advantage that it also covers
situations where the tracking portfolio loses not as much as the benchmark which,
ceteris paribus, can be assumed favorable, while being outperformed in a bullish
market is not favorable. Hence, in this contribution the decision maker is concerned
with perceived deviations of the tracking portfolio’s returns, rP, from the index’s, rI ,

2 Kahneman and Tversky (4) found in their experiments that, as a consequence of loss aver-
sion, individuals are reluctant to realize losses and therefore tend to stick to assets that have
generated losses, making their behavior that of an irrational risk seeker (prospect theory).
Since this chapter is not concerned with repeated investment decisions and, more impor-
tantly, assumes that decision makers comply to the usual assumptions of rationality and
risk aversion, their model will not be applied in this contribution. For a critical assessment
of prospect theory, see, e.g., (6) and (7).
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˜∆r =

{

rP − rI rP ≥ rI

(rP − rI) ·λ rP < rI
(2.3)

= (rP − rI) · (1+(λ −1)ℑrP<rI ) (2.4)

where ℑrP<rI indicates outperformance (and hence opportunity costs). The para-
meter λ can be interpreted akin to loss aversion for levels of wealth: If λ > 1, then
losses are amplified, and their effects are bigger than under risk aversion alone. The
more λ exceeds one, the more harmful losses are perceived and the more keen the
decision maker will be to avoid, in particular, these deviations. As a consequence,
asymmetric preferences are introduced and reinforced. Furthermore, high loss aver-
sion reduces the (relative) contribution of positive deviations to the TE.

2.2.3 The Constrained Index Tracking Problem under Loss Aversion

Under real life conditions, index tracking is hampered by several practical limita-
tions. Following (10), it can be assumed that an investor has a certain initial budget
B0 and that only a non-negative and integer quantity of ni of stock i can be bought.
If this stock has an initial price of S0,i, then the initial fraction invested in this stock
is x0,i = (ni ·S0,i)/B0. As prices will change over time while quantities are kept con-
stant, the fractions of asset i will also change over time. In the presence of lower and
upper limits on the initial weights for included assets, x� and xu, respectively, and the
absence of short selling, the quantities ni must either fall within certain bandwidths
or be equal to zero. By assumption, these limits must be kept only at time t = 0.
If price changes over the holding period lead to violations of these limits, portfolio
revisions are not required. Note that introducing lower and upper limits also intro-
duces implicit cardinality constraints: if no asset must exceed an initial weight of xu,
then at least kmin = �1/xu� must be included, also the lower weight limit allows for
at most kmax = �1/x�� positive weights.

The value of the portfolio at this time is Pt = ∑N
i=1 ni · St,i where St,i denotes the

price of stock i at time t. In this contribution, tracking an index I with a portfolio P
requires that over a given holding period their daily returns rt,P and rt,I , respectively,
are as similar as possible. In addition, negative deviations are perceived less favorable
than positive ones. Hence, the investor wants to minimize the perceived differences
where, depending on the level of loss aversion, there is different additional concern
with losses. A popular measure for the tracking error, T E, is the root of the mean
squared deviations of returns.3 This measure is adopted and applied to perceived
deviations, ˜∆r. The optimization problem for the constrained index tracking portfolio
under loss aversion can therefore be summarised as follows:

minT E =

√

1
T

T

∑
t=1

˜∆rt
2

(2.5a)

3 See, e.g., (11) or (14); this definition is also widely used in the industry. Alternatively,
authors including (13) define the tracking error as the difference between returns.
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subject to

˜∆rt = (rt,P − rt,I)(1+(λ −1)ℑrt,P<rt,I ) (2.5b)

rt,P = ln(Pt/Pt−1), rt,I = ln(It/It−1) (2.5c)

ℑrt,P<rt,I =

{

1 if rt,P < rt,I

0 if rt,P ≥ rt,I
(2.5d)

Pt =
N

∑
j=1

ni ·St,i (2.5e)

ni ∈ N
+
0 (2.5f)

ni :

{

x� ≤ ni·S0,i
B0

≤ xu if asset i is included

0 otherwise
(2.5g)

ni ·S0,i = B0 (2.5h)

The solution space for this problem is non-convex, and the integer constraint on the
number of assets makes it a discrete problem, traditional numerical methods can
therefore not be employed. Heuristic methods, on the other hand, are more flexible
with respect to the shape of the solution space and the constraints that have to be
met, as will be shown in the following section.

2.3 Differential Evolution for Portfolio Selection

2.3.1 The Principle and Application to Asset Selection Problems

Differential Evolution (DE) is a population based optimization heuristic for contin-
uous search spaces, suggested by Storn and Price (16, 17); a comprehensive pre-
sentation can be found in (12). The basic idea is to generate new solutions by lin-
early combining three distinct current solutions plus crossing over with a fourth; a
tournament principle is then employed to decide over replacement. In the course of
iterations, the population should evolve and converge towards the (global) optimum.

More specifically, the typical DE implementation is structured as follows. The
algorithm starts by generating P random initial solutions where P is the population
size. DE is designed for continuous problems, and solutions are represented as vec-
tors vp, p = 1, . . . ,P, containing the values of the decision variables, which, for the
Index Tracking problem at hand, will be the asset weights. vp[i] therefore represents
the weight of asset i in p’s solution. Each of the subsequent iterations comprises
of the following steps. First, for each of current solution p, one new solution ṽp
is generated. This is done by randomly picking three further distinct current mem-
bers of the population, c1 �= c2 �= c3, and linearly combining their corresponding
solution vectors. To do so, the first solutions is chosen as the base vector, vc1 to
which the weighted difference of the other two solutions, F · (vc2 − vc3), is added:
vc := vc1 + F · (vc2 − vc3). Next, this combined solution is crossed over with the
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original candidate solution, p, ṽp = crossover(vp,vc,π), where π is the cross over
probability that element i comes from parent p. The i-th element of the new solution
is therefore computed as follows:

ṽp[i] :=

{

vp[i] with probability π
vc1 +F · (vc2 [i]− vc3 [i]) otherwise

(2.6)

Graphically speaking, the difference vector “moves” the base solution within the
solution space. The larger the difference in the i-th element, the larger the move in
this dimension, while no (or small) differences in other elements preserve the current
position in those dimensions. The latter is the case in particular when the population
has converged and “flocks” around a certain point in the solution space. In order
to avoid premature convergence to local optima, it is common practise to add noise
(“jitter”). In this case, new solutions are generated according to

ṽp[i] :=

{

vp[i] with probability π
vc1 +(F + z1[i]) · (vc2 [i]− vc3 [i]+ z2[i]) otherwise

(2.6*)

where the vectors z j, j = 1,2 are vectors with either zero (with probability π j) or
normally distributed values with expected value zero and some predefined standard
deviation σ j. Further extensions can contain a second difference vector where an-
other two current solutions are picked randomly or where the distance from the best
solution so far is introduced.

Once a new solution ṽp has been generated for each current solution vp, a tourna-
ment is run where ṽp replaces vp if it has a better fitness value. The updated popula-
tion of candidate solutions then enters the next iteration, and the process is repeated
until some halting criterion is met, e.g., when the population has converged or a given
number of iterations has been passed.

An important aspect in the implementation of any heuristic is constraint satis-
faction. For the given asset selection problem, the asset weights have to be chosen
such that (ideally) they add up to one and must fall within certain ranges; further-
more the integer constraint on number of assets makes it a discrete problem. In the
suggested implementation, these constraints are met by introducing an interpretation
or mapping function that converts a candidate solution v into a valid solution of asset
weights x. This function comprises of the following steps. Due to undesirable prop-
erties as well as minimum weight constraints, it might be favorable not to include
all of the available assets in the tracking portfolio. Hence, it must first be decided
which assets shall be assigned positive weights. This is done by finding the elements
i where the corresponding element in the solution vector is positive, v[i] > 0. If this
applies to fewer than kmin = �1/xu� assets, the budget could not be spent without vi-
olating the upper weight limit; if it applies to more than kmax = �1/x�� then the lower
weight limit would be exceeded. In these cases, the elements of v with the kmin and
kmax largest values, respectively, are picked. Next, the included assets are assigned
the minimum weight while all the other weights are set equal to zero. Finally, the
weights of the included assets are increased proportional to their values in v and the
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Fig. 2.1. Differential evolution algorithm

weights add up to one. If for some asset(s) the upper weight limit is violated then the
excess weight is redistributed proportionally to the remaining included assets until
this constraint is also met. The actual number of stocks is determined according to
ni ← 〈xiV0/S0,i〉 where 〈·〉 is the rounding operator.4 This approach allows the algo-
rithm to operate in the continuous space, but encourages convergence to solutions
with suitable discrete counterparts.

2.3.2 Calibrating the Heuristic

Considerations and Experimental Setting

Unlike traditional deterministic methods, heuristics use stochastic ingredients in
their search process. As a consequence, they are non-deterministic and independent
restarts can lead to different reported solutions. It is therefore common practise to
solve a problem repeatedly in independent runs and use the best of these results for

4 A more strict version would round up (down) if this simple rounding operator violated the
lower (upper) weight limit. Given the granularities S0,i/V0 for the chosen assets and initial
budget, however, these violations are rather small. Preliminary experiments showed that
this more sophisticated method is computationally more expensive, but has only negligible
effects on the quality of results.
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the subsequent analysis. To investigate the properties of the heuristic, however, the
reported results have to be looked at in more detail. Due to their stochastic ingre-
dients, the results reported by a heuristic must be considered random with a certain
distribution, and the quality of a heuristic method can be described by the statistical
properties of these reported results. These statistical properties can then be used to
derive convergence proofs to show that a heuristics is capable of identifying the op-
timum with a given probability. These properties can also be used to find technical
parameters that favor the heuristic’s convergence to the global optimum by searching
for parameters where the optimum itself or a sufficiently close solution is found with
a given probability.

Ideally, the heuristic ought to find the global optimum in each run, resulting in a
degenerated distribution with just one realization. In practical applications, however,
the reported results can and will differ. Though the resulting distribution is (theoreti-
cally) truncated at the global optimum, it might well be that the empirical distribution
of reported results from a series of restarts is not: when the global optimum is never
found then this bound is never reached.

If a heuristic is to be evaluated for several test problems, it might be beneficial
to “standardize” the reported results in a way that they become comparable. As will
be presented in Section 2.4, the main computational study distinguishes six different
time windows and three different levels of loss aversion. For each of these 18 cases,
the optimal tracking error will differ. To evaluate the heuristic, a total of 28 075 inde-
pendent restarts were performed with different combinations of parameters, resulting
in approximately 1550 reported solutions per case c. From these reported solutions
T Er,c, the best was chosen, T E∗

c = minr T Er,c , and the relative deviations of reported
from optimal solutions, Dr,c = T Er,c/T E∗

c − 1, computed. While the distributions
of the Dr,c’s might still differ between cases, they are more similar than that of the
T Er,c’s; moreover, by definition they are all truncated at the same value, namely 0.

An indicator for the reliability of the implementation is how often this limit is
actually reached. More recently, sometimes statistics such as the mean and standard
deviation of the analyzed indicator are reported; this makes sense only when the as-
sumption of a Gaussian distribution is reasonable (and the truncation at the global
optimum is considered in the estimation process); otherwise they are not very illu-
minating. Usually statistically more stable and more meaningful is information on
how likely a certain deviation is to be reached or exceeded. In the lack of a suitable
parametric distribution, the latter can be measured by the quantiles of the empirical
distribution of the Dr,c. These quantiles represent which values are exceeded with
the respective frequency; they therefore indicate which values are also likely to be
exceeded with a certain probability in future restarts. These quantiles can also be
used to compare the results of different experimental settings: in superior settings,
exceedances beyond a given deviation should happen less frequently, and for a given
confidence level, the maximum exceedance should be smaller. Finally, these quan-
tiles allow some indication on how many restarts are advisable.
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The Trade-off Between Computational Time, Population Size and Number
of Generations

One of DE’s advantages is the low number of technical parameters it requires. Fur-
thermore, it is often found that DE requires less tuning than comparable methods and
that standard values often yield reasonable stable results already. Since the solution
space for the given problem is multi-modal with frictions and interpretation function
adds further complexity, experiments for different parameter settings appear reason-
able.

The crucial ingredient to any heuristic search method is the number of function
evaluations (FEs) during the optimization process. If the algorithm stops not when a
convergence criterion is met but when an exogenously given number of FEs has been
reached, then for population based methods, a decision has to be made whether these
FEs should rather be spent on small populations with many generations or a larger,
more diverse population with less iterations to converge. The number of conceded
FEs for this implementation are randomly set to 10 000, 25 000, 50 000, 100 000
or 250 000. Next, alternatives for the population size P are 50, 75, 100 and 150.
Depending on the combination of these parameter values, the number of generations
ranges from 67 (FEs = 10 000, P = 150) to 5 000 (FEs = 250 000, P = 50).

Table 2.1 lists the respective 1%, 10% and 50% quantiles for the different combi-
nations. Other things equal, the figures suggest that increasing the number of function
evaluations is highly beneficial: if the FEs are doubled, the deviation often reduces
by half or more, in some cases even by more, in magnitude. When there are at least
100 000 FEs, then one in ten restarts is likely to find a solution with a Tracking Error
at most 1% above the optimal one’s. With 250 000 FEs, every other run can be ex-
pected to find a solution which deviates by at most 5% from the global one, and one
in 100 restarts is likely to end in the global optimum.

Table 2.1. 1% (10%, 50%) Quantiles for Dr,c for different numbers of function evaluations
(FEs) and population size (P)

population size, P
FEs 50 75 100 150

10 000
0.0334

(0.1189, 0.3083)
0.0613

(0.1483, 0.3446)
0.0941

(0.1738, 0.4153)
0.1751

(0.2728, 0.5264)

25 000
0.0126

(0.0335, 0.1912)
0.0075

(0.0484, 0.1764)
0.0118

(0.0638, 0.1855)
0.031

(0.0604, 0.2335)

50 000
0.0023

(0.0133, 0.1474)
0.0036

(0.0182, 0.128)
0.0015

(0.0223, 0.1254)
0.0033

(0.0278, 0.1357)

100 000
0.0003

(0.0087, 0.1139)
0.0005

(0.0072, 0.1011)
0.0005

(0.0098, 0.1067)
0.0009

(0.0123, 0.1011)

250 000
0

(0.0027, 0.0537)
0.0001

(0.0019, 0.0287)
0

(0.0011, 0.017)
0

(0.0024, 0.0205)

These figures also shed light on another relevant question: other things equal, should
a large number of function evaluations be used on one (or a few) run(s) with many
iterations or on more frequent restarts with fewer iterations per run? If a total of 1
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million FEs can be used for 10 restarts with 100 000 FEs each or 100 restarts with
10 000 FEs each, then 10 restarts of the short runs are equally expensive as one long
run. Hence, the 1% quantile of the short runs can be compared to the 10% quantile
of the long ones. For all of the tested combinations, having longer runs yields better
results than having more restarts with more reported results to choose from.

When looking at the different population sizes, the effect is less consistent. In
general smaller populations can converge faster as they have less diversity within
them. This might be an advantage when the number of generations is small and con-
verging to a local optimum might be better than not converging at all. With more
generations available, however, slower convergence reduces the chances of getting
stuck in local optima, and it is the larger populations that benefit. Not surprisingly,
it is the latter that also see the strongest improvements in reported results, and one
can expect that all the quantiles will be superior to those of smaller population sizes
if FEs were increased further. It is particularly noteworthy that increasing the popu-
lation while keeping the number of generations constant is beneficial. Since in these
experiments, the number of generations equals FEs divided by population size, dou-
bling both FEs and population size, e.g., leaves the number of generations untouched.
Comparing the quantiles for the different settings favors larger population sizes – at
least for the tested ranges. This suggests that larger (and hence more diverse) popula-
tions have an advantage over smaller ones when conceded the same time to evolve in
terms of generations. A general rule of thumb suggests the population size should be
about three times the number of variables; with 64 (65) asset weights to optimize, this
would correspond to P ≈ 200. The empirical results from this study suggest that this
would require a substantially higher number of FEs than the ones investigated. From
a practical point of view, population sizes of 75 and 100 appear to work sufficiently
reliably (provided a sufficiently high number of FEs).

Using Additional Noise in the Optimization Process

When generating new solutions, the scaling factor F and the cross over probability
π play an important role (see equations (2.6) and (2.6*)). In most implementations,
they are both often chosen in the range between 0.5 and 0.9. In this study, either
parameter can take the values 0.25, 0.5 or 0.75. In addition, the cross over proba-
bility can be zero, implying that the new solution is equal to the linear combination
of three current solutions, but inherits no element of the solution against which it is
compared in the subsequent tournament. Table 2.2 summarizes the quantiles of devi-
ations from the global optimum under different parameter constellations. Introducing
crossover is beneficial as it increases the probability of finding good solutions. This
is particularly true for when small populations and low numbers of FEs are allowed
(top half of the table). It is noteworthy, however, that low values for F have a posi-
tive effect. In combination with high values for π , this implies that the base vector is
not dramatically changed by adding the weighted difference vector, and that the new
candidate solution is mainly inheriting properties of its future opponent in the tour-
nament, crossed over with the base vector. The figures also confirm that the results
are more sensitive to F than to π .
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Table 2.2. 1% (10%, 50%) Quantiles for Dr,c for different values of the scaling factor F and
cross over probability π for all reported results (top half) and results where FEs ≥ 50000 and
P ≥ 75 (bottom half)

cross over probability π
F 0 0.25 0.5 0.75

0.25
0.1153

(0.3831, 0.8095)
0.0088

(0.0331, 0.1439)
0.0006

(0.0098, 0.0588)
0.0001

(0.0041, 0.0286)

0.5
0.0093

(0.0918, 0.5506)
0.0002

(0.0053, 0.04)
0.0002

(0.0043, 0.0464)
0.0003

(0.0054, 0.0543)

0.75
0.0224

(0.1149, 0.6762)
0.0172

(0.0655, 0.2003)
0.018

(0.0477, 0.1475)
0.0131

(0.0325, 0.1053)

0.25
0.0828

(0.2648, 0.6864)
0.0044

(0.0193, 0.08)
0.0002

(0.0049, 0.0203)
0

(0.0009, 0.0103)

0.5
0.0053

(0.0427, 0.3913)
0.0001

(0.0027, 0.0178)
0.0003

(0.0028, 0.0178)
0.0004

(0.0043, 0.0215)

0.75
0.0207

(0.0777, 0.3913)
0.0132

(0.0448, 0.1331)
0.0155

(0.0361, 0.0895)
0.0099

(0.0258, 0.0565)

Tables 2.3 and 2.4 summarize the quantiles for the different setting for the noise
terms when equation (2.6*) is used to generate new solutions. Note that π1 = π2 = 0
reduces this model to the basic version without noise. Differences in the quantiles
for different values of σi when πi = 0 are due to sampling errors and give some
indication about the Monte Carlo error for the estimated quantiles. Noting this, the
results suggest that adding some noise to the scaling factor F (π1 > 0) improves the
distribution of reported results; the actual magnitude of the noise, however, seems
less important. Adding noise to the difference vector (π2), on the other hand, has
hardly any noticeable effect unless small populations and low numbers of FEs might
also be used.

Table 2.3. 1% (10%, 50%) Quantiles for Dr,c for different probabilities that the noise term
z1[i] is non-zero (π1) and its standard deviation in that case (σ1) for all reported results (top
half) and results where FEs ≥ 50000 and P ≥ 75 (bottom half)

standard deviation for the noise term, σ1
π1 0.05 0.25 0.5

0
0.0012

(0.0205, 0.2316)
0.0011

(0.0198, 0.2561)
0.001

(0.019, 0.2442)

0.025
0.0009

(0.0179, 0.2512)
0.0007

(0.0158, 0.2)
0.001

(0.014, 0.159)

0.1
0.0011

(0.0177, 0.2245)
0.0007

(0.0167, 0.1673)
0.0005

(0.0131, 0.1307)

0
0.0002

(0.0086, 0.0985)
0.0004

(0.0083, 0.1058)
0.0004

(0.0083, 0.0937)

0.025
0.0002

(0.0077, 0.1049)
0.0004

(0.0073, 0.0782)
0.0004

(0.0071, 0.0497)

0.1
0.0004

(0.0089, 0.094)
0.0003

(0.0088, 0.0711)
0.0003

(0.0067, 0.0427)

Comparing all of the results so far, one can confirm the often purported claim that
Differential Evolution is usually stable with respect to the chosen parameters. Once
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Table 2.4. 1% (10%, 50%) Quantiles for Dr,c for different probabilities that the noise term
z2[i] is non-zero (π1) and its standard deviation in that case (σ2) for all reported results (top
half) and results where FEs ≥ 50000 and P ≥ 75 (bottom half)

standard deviation for the noise term, σ2
π2 0.005 0.025 0.05

0
0.0007

(0.0179, 0.2163)
0.0012

(0.0182, 0.1992)
0.0009

(0.0165, 0.1938)

0.025
0.0006

(0.018, 0.2067)
0.0009

(0.0143, 0.1912)
0.0012

(0.0146, 0.1824)

0.1
0.0008

(0.0192, 0.1983)
0.001

(0.0176, 0.1991)
0.0007

(0.0156, 0.2003)

0
0.0004

(0.0089, 0.0846)
0.0004

(0.0089, 0.0769)
0.0004

(0.0078, 0.0722)

0.025
0.0002

(0.0085, 0.0831)
0.0003

(0.0081, 0.0661)
0.0005

(0.0072, 0.0685)

0.1
0.0003

(0.0089, 0.0766)
0.0003

(0.0075, 0.0776)
0.0003

(0.0061, 0.0706)

a sufficiently large number of function evaluations is chosen, together with a rea-
sonable number of restarts and a populations not too small in size, the algorithm is
hardly affected by the values of the remaining parameters as long as they fall within
certain (but generally broad) bandwidths.

2.4 Computational Study

2.4.1 The Data

For the computational study, the Dow Jones Industrial Average (DJIA64) is to be
tracked by using a subset of the stocks included in it. Adjusted daily prices for 65
stocks5 were downloaded from finance.yahoo.com for the period March 2000
to November 2006, leading to a total of 1648 days with observations. Nine missing
data are replaced by the averages of the prices of the adjacent days, and one stock
has to be excluded for all windows preceding 2004 due to missing data.

For the financial analysis, the in sample periods consist of 500 observations each,
representing about two years; the out of sample tests are performed on the subsequent
250 trading days (i.e., the subsequent year). The initial budget is set to 100 000, and
the weight limits are x� = 0.01 and xh = 0.5.

2.4.2 Financial Results

The returns of an ideal tracking portfolio should show no deviations from the index’s
returns. Given the real world constraints, however, which have been considered in
this contribution, this is not achievable, yet the decision maker will aim to come as
close to this ideal as possible. Traditionally, this means to minimize the root of the

5 Note that the composition of the DJIA64 has changed during the observed period.
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mean squared deviations between portfolio and index returns. Under loss aversion,
investors are more sensitive towards losses. This means that the reaction to losses
appears exaggerated when compared to a traditional risk aversion setting and can
manifest itself in two ways: the investor will try reduce losses either in magnitude or
in frequency, and the investor will request even bigger profits on the positive side to
restore an acceptable balance between (expected) return and risk. In either case, the
investor will develop a stronger preference for positive skewness, for which he even
might accept a (slight) increase in volatility.6

For the index tracking problem for the given DJIA data set, loss aversion (λ > 1)
shows predominately in the changed magnitude in returns when compared optimal
solutions for investors who are loss neutral (λ = 1). While the frequency of losses
remains more or less unchanged, the mean of the deviations between the tracking
portfolio’s and the index’s returns increases because the mean return increases on
days where the tracking portfolio outperforms the index (rD > 0) while it decreases
otherwise. As a consequence, the skewness of these deviations increases (as pre-
dicted for loss averse investors) (see table 2.5). The standard deviation of rD remains
virtually unchanged, while their kurtosis increases in two years, decreases in another
two years and remains constant in the remaining two years.

The financial results presented so far are, strictly speaking, in sample results: the
optimized assets weights would have been achievable only under perfect foresight.
A more realistic approach is to use a history of returns to optimize the weights and
then form a portfolio with exactly these weights. Table 2.6 reports the statistics for
the differences between the returns of tracking portfolio and index when decision
makers invest for one year, do not readjust their portfolios and chose their asset
weights such that it would have been the optimal choice for the preceding two year
period. To some extent, these out of sample results reflect the in sample findings:
the frequency of days with portfolio returns lower than the index’s is hardly effected
by the level of loss aversion, nor is the kurtosis. At the same time, with increasing
loss aversion, the skewness tends to be higher, and the same is true for the Sharpe
ratio. It is noteworthy, however, that the out of sample deviations do not show the
high levels of kurtosis that could be observed for the in sample results in later years.
The reasons for this are twofold: For one, out of sample results are – by definition –
less prone to data fitting. Secondly and more important, the similarity of in and out
of sample results for an optimization problem like the one considered here is also an
indicator of the stability of the underlying assets’ returns. Hence, it is not surprising
that the actual tracking errors are bigger (in particular when the composition of the
index changes and the decision maker does not adjust the tracking portfolio).

2.5 Conclusion

This chapter investigates the index tracking problem under realistic constraints
where, in addition, decision makers can have different levels of loss aversion. Due to

6 See also (9) for the effects in actively managed portfolios.
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Table 2.5. Frequency of losses and statistics of differences in (conditioned) returns between
tracking portfolio and index, rD = rP − rI , under loss neutrality (λ = 1) and loss aversion
(λ > 1)

λ 2000–02 2001–03 2002–2004 2003–05 2004–06 2005–2007
frequency of losses, mean(ℑrD<0)

1.00 0.41483 0.45691 0.41884 0.44289 0.40281 0.45622
1.25 0.45892 0.45691 0.42084 0.44689 0.39479 0.46313
1.50 0.44890 0.45491 0.42285 0.43287 0.40481 0.46774

mean(rD)
1.00 0.00020 0.00014 0.00013 0.00009 0.00009 0.00005
1.25 0.00021 0.00016 0.00013 0.00010 0.00010 0.00006
1.50 0.00022 0.00016 0.00014 0.00011 0.00012 0.00006

mean(rD|rD < 0)
1.00 -0.00112 -0.00062 -0.00053 -0.00042 -0.00034 -0.00031
1.25 -0.00099 -0.00060 -0.00052 -0.00042 -0.00034 -0.00029
1.50 -0.00101 -0.00060 -0.00051 -0.00042 -0.00031 -0.00029

mean(rD|rD > 0)
1.00 0.00114 0.00079 0.00060 0.00049 0.00038 0.00036
1.25 0.00124 0.00080 0.00060 0.00051 0.00038 0.00036
1.50 0.00123 0.00080 0.00061 0.00051 0.00040 0.00037

standard deviation(rD)
1.00 0.001447 0.000896 0.000773 0.000661 0.000546 0.000527
1.25 0.001448 0.000896 0.000773 0.000662 0.000546 0.000527
1.50 0.001453 0.000899 0.000775 0.000666 0.000548 0.000529

skewness(rD)
1.00 -0.05705 0.18258 -1.28895 -1.28101 -0.65755 -0.74783
1.25 0.04730 0.26553 -1.18525 -0.99069 -0.46092 -0.56830
1.50 0.10531 0.33182 -1.09341 -0.69125 -0.17956 -0.39504

kurtosis(rD)
1.00 3.94 3.06 17.73 17.20 19.74 25.28
1.25 3.92 3.10 16.79 15.29 19.90 25.89
1.50 3.92 3.12 15.97 13.33 21.24 25.94

Sharpe Ratio(rD)
1.00 0.139830 0.160291 0.162276 0.133908 0.162969 0.101599
1.25 0.147869 0.173980 0.169229 0.143540 0.178148 0.112160
1.50 0.154523 0.182161 0.174573 0.160756 0.211543 0.121664

actual Tracking Error, mean(r2
D)

1.00 0.001460 0.000907 0.000782 0.000666 0.000552 0.000529
1.25 0.001463 0.000909 0.000783 0.000668 0.000554 0.000530
1.50 0.001469 0.000913 0.000786 0.000674 0.000560 0.000533
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Table 2.6. Out of sample differences in returns between tracking portfolio and index, rD =
rP − rI , under loss neutrality (λ = 1) and loss aversion (λ > 1)

λ 2003 2004 2005 2006 2007
frequency of losses, mean(ℑrD<0)

1.00 0.542169 0.461847 0.409639 0.502008 0.451087
1.25 0.534137 0.461847 0.413655 0.481928 0.451087
1.50 0.526104 0.461847 0.417671 0.477912 0.467391

mean(rD)
1.00 -0.000023 0.000778 0.000112 0.000040 0.000129
1.25 -0.000027 0.000769 0.000110 0.000048 0.000127
1.50 -0.000019 0.000766 0.000107 0.000057 0.000128

std(rD)
1.00 0.002271 0.005331 0.000851 0.001048 0.001103
1.25 0.002272 0.005269 0.000839 0.001040 0.001069
1.50 0.002233 0.005258 0.000830 0.001035 0.001057

skewness(rD)
1.00 0.076169 0.482286 -0.410592 0.179581 0.273688
1.25 0.134023 0.481608 -0.404146 0.142729 0.265465
1.50 0.161411 0.490486 -0.364425 0.109294 0.110819

kurtosis(rD)
1.00 4.18 3.74 6.89 7.35 3.03
1.25 4.28 3.74 6.84 7.66 3.02
1.50 4.25 3.77 6.69 8.07 3.02

Sharpe Ratio(rD)
1.00 -0.010261 0.145876 0.131729 0.038443 0.116941
1.25 -0.012062 0.145945 0.130525 0.046456 0.118676
1.50 -0.008420 0.145654 0.128627 0.055289 0.120888

actual Tracking Error, mean(r2
D)

1.00 0.002266 0.005377 0.000857 0.001047 0.001107
1.25 0.002267 0.005315 0.000845 0.001039 0.001074
1.50 0.002228 0.005303 0.000835 0.001034 0.001061

the nature of the constraints, the solution space exhibits frictions and is non-convex
and discrete; traditional optimization methods based on first order conditions are
therefore not appropriate. Heuristic optimization methods such as Differential Evo-
lution (DE), on the other hand, can deal with such demanding solution spaces. It was
discussed how constraint satisfaction can be dealt, and experiments were performed
to test different variants of DE and find values for the required technical parameters.
The main findings of these experiments shows that (in line with the literature) DE
is considerably stable with respect to its parameters. It was also found that for this
problem the population size needs not to be substantially higher than the number of
decision variables and that large populations are favorable merely with large number
of generations.

Meanwhile, there exist numerous variants of DE. A common extension is to add
noise which has an effect similar to mutation in other evolutionary methods and
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which should help to reduce the likelihood of getting stuck in local optima. For the
given problem, the experiments suggested that this is not necessary when the other
parameters are chosen appropriately. Further variants such as using several difference
vectors or enforcing the elitist were not considered here but shall be investigated in
future studies.

From a financial point of view, the main result is that the presence of loss aver-
sion has an effect on the investment choice, albeit a small one. As predicted, decision
makers will accept slightly bigger deviations from the benchmark if this allows for
a higher positive (or a less negative) skewness. Typically, these are matched with
slightly higher mean returns because both negative deviations are lowered while
positive ones are increased. At the same time, the frequency of falling below the
benchmark, however, is hardly affected. Out of sample, these effects mostly persist;
however, with neither asset returns nor the index’s composition being as stable as as-
sumed by the optimization model, imprecisions are inevitable, and a closer analysis
had to be omitted. Extensions to the index tracking model could account for these
aspects and include stability measures; furthermore opportunities to readjust the port-
folio and the inclusion of transaction costs are of great practical interest, yet have to
be left to future research.
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