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Introduction

Exact algorithms allow one to find optimal solutions to
NP-hard combinatorial optimization (CO) problems.
Many research papers report on solving large instances
of some NP-hard problems (see, e. g., [25,27]). The run-
ning time of exact algorithms is often very high for large
instances (many hours or even days), and very large
instances remain beyond the capabilities of exact algo-
rithms. Even for instances of moderate size, if we wish
to remain within seconds or minutes rather than hours
or days of running time, only heuristics can be used.
Certainly, with heuristics, we are not guaranteed to find
optimum, but good heuristics normally produce near-
optimal solutions. This is enough in most applications
since very often the data and/or mathematical model
are not exact anyway.

Research on CO heuristics has produced a large va-
riety of heuristics especially for well-known CO prob-
lems. Thus, we need to choose the best ones among
them. In most of the literature, heuristics are com-
pared in computational experiments. While experi-
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mental analysis is of definite importance, it cannot
cover all possible families of instances of the CO prob-
lem at hand and, in particular, it practically never cov-
ers the hardest instances.

Approximation Analysis [3] is a frequently used tool
for theoretical evaluation of CO heuristics. Let H be
a heuristic for a combinatorial minimization problem
P and let In be the set of instances of P of size n. In
approximation analysis, we use the performance ratio
rH(n) D maxf f (I)/ f �(I) : I 2 Ing; where f (I)( f �(I))
is the value of the heuristic (optimal) solution of I.
Unfortunately, for many CO problems, estimates for
rH (n) are not constants and provide only a vague pic-
ture of the quality of heuristics. Moreover, even con-
stant performance ratio does not guarantee that the
heuristic often outputs good-quality solutions, see, e. g.,
the discussion of the DMST heuristic below.

Domination Analysis (DA) (for surveys, see [22,24])
provides an alternative and a complement to approxi-
mation analysis. In DA, we are interested in the domi-
nation number or domination ratio of heuristics. Dom-
ination number (ratio) of a heuristic H for a combina-
torial optimization problem P is the maximum number
(fraction) of all solutions that are not better than the
solution found by H for any instance of P of size n.
In many cases, DA is very useful. For example, we
will see later that the greedy algorithm has domina-
tion number 1 for many CO problems. In other words,
the greedy algorithm, in the worst case, produces the
unique worst possible solution. This is in line with lat-
est computational experiments with the greedy algo-
rithm, see, e. g., [25], where the authors came to the
conclusion that the greedy algorithm ‘might be said to
self-destruct’ and that it should not be used even as
‘a general-purpose starting tour generator’.

The Asymmetric Traveling Salesman Problem
(ATSP) is the problem of computing aminimumweight
tour (Hamilton cycle) passing through every vertex in
a weighted complete digraph K�n on n vertices. The
Symmetric TSP (STSP) is the same problem, but on
a complete undirected graph. When a certain fact holds
for both ATSP and STSP, we will simply speak of TSP.
Sometimes, the maximizing version of TSP is of inter-
est, we denote it byMax TSP.

APX is the class of CO problems that admit poly-
nomial time approximation algorithms with a constant
performance ratio [3]. It is well known that while Max

TSP belongs to APX, TSP does not. This is at odds
with the simple fact that a ‘good’ approximation algo-
rithm for Max TSP can be easily transformed into an
algorithm for TSP. Thus, it seems that both Max TSP
and TSP should be in the same class of CO problems.
The above asymmetry was already viewed as a draw-
back of performance ratio already in the 1970’s, see,
e. g. [11,28,33]. Notice that from the DA point view
Max TSP and TSP are equivalent problems.

Zemel [33] was the first to characterize measures of
quality of approximate solutions (of binary integer pro-
gramming problems) that satisfy a few basic and nat-
ural properties: the measure becomes smaller for bet-
ter solutions, it equals 0 for optimal solutions and it is
the same for corresponding solutions of equivalent in-
stances. While the performance ratio and even the rel-
ative error (see [3]) do not satisfy the last property, the
parameter 1-r, where r is the domination ratio, does sat-
isfy all of the properties.

Local Search (LS) is one of the most successful ap-
proaches in constructing heuristics for CO problems.
Recently, several researchers investigated LS with Very
Large Scale Neighborhoods (see, e. g., [1,12,24]). The
hypothesis behind this approach is that the larger the
neighborhood the better quality solution are expected
to be found [1]. However, some computational ex-
periments do not support this hypothesis; sometimes
an LS with small neighborhoods proves to be supe-
rior to that with large neighborhoods. This means that
some other parameters are responsible for the relative
power of neighborhoods. Theoretical and experimen-
tal results on TSP indicate that one such parameter
may well be the domination number of the correspond-
ing LS.

In our view, it is advantageous to have bounds for
both performance ratio and domination number (or,
domination ratio) of a heuristic whenever it is possible.
Roughly speaking this will enable us to see a 2D rather
than 1D picture. For example, consider the double min-
imum spanning tree heuristic (DMST) for the Met-
ric STSP (i. e., STSP with triangle inequality). DMST
starts from constructing a minimum weight spanning
tree T in the complete graph of the STSP, doubles ev-
ery edge in T, finds a closed Euler trail E in the ‘dou-
ble’ T, and cancels any repetition of vertices in E to
obtain a TSP tour H. It is well-known and easy to
prove that the weight of H is at most twice the weight
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of the optimal tour. Thus, the performance ratio for
DMST is bounded by 2. However, Punnen, Margot
and Kabadi [29] proved that the domination number
of DMST is 1. Interestingly, in practice DMST often
performs much worse than the well-known 2-Opt LS
heuristic. For 2-Opt LS we cannot give any constant ap-
proximation guarantee, but the heuristic is of very large
domination number [29].

The above example indicates that it makes sense to
use DA to rank heuristics for the CO problem under
consideration. If the domination number of a heuristic
H is larger than the domination of a heuristicH 0 (for
all or ‘almost all’ sizes n), we may say thatH is better
thanH 0 in the worst case (from the DA point of view).
Berend, Skiena and Twitto [10] used DA to rank some
well-known heuristics for the Vertex Cover problem
(and, thus, the Independent Set and Clique problems).
The three problems and the heuristics will be defined in
the corresponding subsection of the Cases section. Ben-
Arieh et al. [7] studied three heuristics for the General-
ized TSP: the vertices of the complete digraph are par-
titioned into subsets and the goal is to find a minimum
weight cycle containing exactly one vertex from each
subset. In the computational experiment in [7] one of
the heuristics was clearly inferior to the other two. The
best two behaved very similarly. Nevertheless, the au-
thors of [7] managed to ‘separate’ the two heuristics by
showing that one of the heuristics was of much larger
domination number.

One might wonder whether a heuristic A, which
is significantly better that another heuristic B from the
DA point of view, is better that B in computational ex-
periments. In particular, whether the ATSP greedy al-
gorithm, which is of domination number 1, is worse, in
computational experiments, than any ATSP heuristic of
domination number at least (n� 2)! ? Generally speak-
ing the answer to this natural question is negative. This
is because computational experiments and DA indicate
different aspects of quality of heuristics. Nevertheless,
it seems that many heuristics of very small domination
number such as the ATSP greedy algorithm perform
poorly also in computational experiments and, thus,
cannot be recommended to be widely used in compu-
tational practice.

The rest of the entry is organized as follows.We give
additional terminology and notation in the section Def-
initions. In the section Methods, we describe two pow-

erful methods in DA. In the section Cases, we consider
DA results for some well-known CO problems.

Definitions

Let P be a CO problem and let H be a heuristic for
P. The domination number domn(H ; I) of H for an
instance I of P is the number of solutions of I that
are not better than the solution s produced by H in-
cluding s itself. For example, consider an instance T
of the STSP on 5 vertices. Suppose that the weights
of tours in T are 2,5,5,6,6,9,9,11,11,12,12,15 (every in-
stance of STSP on 5 vertices has 12 tours) and sup-
pose that the greedy algorithm computes the tour T of
weight 6. Then domn(greedy;T ) D 9. In general, if
domn(H ; I) equals the number of solutions in I, then
H finds an optimal solution for I. If domn(H ; I) D 1,
then the solution found byH for I is the unique worst
possible one.

The domination number domn(H ; n) of H is the
minimum of domn(H ; I) over all instances I of size n.
Since the ATSP on n vertices has (n�1)! tours, an algo-
rithm for the ATSP with domination number (n � 1)!
is exact. The domination number of an exact algorithm
for the STSP is (n � 1)!/2: If an ATSP heuristic A has
domination number equal 1, then there is an assign-
ment of weights to the arcs of each complete digraph
K�n , n � 2, such thatA finds the unique worst possible
tour in K�n :

While studying TSP we normally consider only fea-
sible solutions (tours), for several other problems some
authors take into consideration also infeasible solu-
tions [10]. One example is the Maximum Independent
Set problem, where given a graph G, the aim is to find
an independent set in G of maximum cardinality. Ev-
ery non-empty set of vertices is considered to be a solu-
tion by Berend, Skiena and Twitto [10]. To avoid deal-
ing with infeasible solutions (and, thus, reserving the
term ‘solution’ only for feasible solutions) we also use
the notion of the blackball number introduced in [10].
The blackball number bbn(H ; I) ofH for a an instance
I of P is the number of solutions of I that are better
than the solution produced byH . The blackball num-
ber bbn(H ; n) ofH is the maximum of domn(H ; I)
over all instances I of size n.

When the number of solutions depends not only on
the size of the instance of the CO problem at hand (for
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example, the number of independent sets of vertices in
a graph G on n vertices depends on the structure of G),
the domination ratio of an algorithm A is of interest:
the domination ratio of A, domr(A; n), is the mini-
mum of domn(A; I)/sol(I); where sol(I) is the num-
ber of solutions of I, taken over all instances I of size n.
Clearly, domination ratio belongs to the interval (0; 1]
and exact algorithms are of domination ratio 1.

Methods

Currently, there are two powerful methods in DA. One
is used to prove that the heuristic under consideration is
of domination number 1. For this method to be useful,
the heuristic has to be a greedy-type algorithm for a CO
problem on independence systems. We describe the
method and its applications in the subsection Greedy-
Type Algorithms. The other method is used prove that
the heuristic under consideration is of very large dom-
ination number. For many problems this follows from
the fact that the heuristic always finds a solution that is
not worse than the average solution. This method is de-
scribed in the subsection Better-Than-Average Heuris-
tics.

Greedy-Type Algorithms

The main practical message of this subsection is that
one should be careful while using the classical greedy
algorithm and its variations in combinatorial optimiza-
tion (CO): there aremany instances of CO problems for
which such algorithms will produce the unique worst
possible solution. Moreover, this is true for several well-
known optimization problems and the corresponding
instances are not exotic, in a sense. This means that not
always the paradigm of greedy optimization provides
any meaningful optimization at all.

An independence system is a pair consisting of a fi-
nite set E and a family F of subsets (called independent
sets) of E such that (I1) and (I2) are satisfied.

(I1) the empty set is inF ;
(I2) If X 2 F and Y is a subset of X, then Y 2 F .

All maximal sets of F are called bases. An indepen-
dence system is uniform if all its bases are of the same
cardinality.

Many combinatorial optimization problems can be
formulated as follows. We are given an independence

system (E,F), a set W � ZC and a weight function
w that assigns a weight w(e) 2 W to every element of
E (ZC is the set of non-negative integers). The weight
w(S) of S 2 F is defined as the sum of the weights of
the elements of S. It is required to find a base B 2 F of
minimumweight. We will consider only such problems
and call them the (E,F,W)-optimization problems.

If S 2 F , then let I(S) D fx : S [ fxg 2 Fg � S.
This means that I(S) consists of those elements from E-
S, which can be added to S, in order to have an indepen-
dent set of size jSj C 1. Note that by (I2) I(S) ¤ ; for
every independent set S which is not a base.

The greedy algorithm tries to construct a minimum
weight base as follows: it starts from an empty set X,
and at every step it takes the current set X and adds
to it a minimum weight element e 2 I(X), the al-
gorithm stops when a base is built. We assume that
the greedy algorithm may choose any element among
equally weighted elements in I(X). Thus, when we say
that the greedy algorithm may construct a base B, we
mean that B is built provided the appropriate choices
between elements of the same weight are made.

An ordered partitioning of an ordered set Z D
fz1; z2; : : : ; zkg is a collection of subsets A1;A2; : : : ;Aq

of Z such that if zr 2 Ai and zs 2 Aj where 1 � i <
j � q then r < s. Some of the sets Ai may be empty and
[

q
iD1Ai D Z.
The following theorem by Bang-Jensen, Gutin and

Yeo [6] characterizes all uniform independence systems
(E,F) for which there is an assignment of weights to
the elements of E such that the greedy algorithm solv-
ing the (E;F ; f1; 2; : : : ; rg)-optimization problem may
construct the unique worst possible solution.

Theorem 1 Let (E,F) be a uniform independence sys-
tem and let r � 2 be a natural number. There exists
a weight assignment w : E ! f1; 2; : : : ; rg such that the
greedy algorithm may produce the unique worst possible
base if and only ifF contains some base B with the prop-
erty that for some ordering x1; : : : ; xk of the elements
of B and some ordered partitioning A1;A2; : : : ;Ar of
x1; : : : ; xk the following holds for every base B0 ¤ B
ofF :

r�1X
jD0

jI(A0; j) \ B0j <
rX

jD1

j � jAjj ; (1)

where A0; j D A0 [ � � � [ Aj and A0 D ;.
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The special case r D 2 has an ‘easier’ characterization
also proved in [6].

Theorem 2 Let (E,F) be a uniform independence sys-
tem. For every choice of distinct natural numbers a,b
there exists a weight function w : E ! fa; bg such that
the greedy algorithm may produce the unique worst base
if and only if F contains a base B D fx1; x2; : : : ; xkg
such that for some 1 � i < k the following holds:

(a) If B0 is a base such that fx1; : : : ; xig � B0 then B0 D
B.

(b) If B0 is a base such that fxiC1; : : : ; xkg � B0 then
B0 D B.

Using Theorem 1, the authors of [6] proved the follow-
ing two corollaries.

Corollary 3 Consider STSP as an (E,H ,W)-optimiza-
tion problem. Let n � 3:

(a) If n � 4 and jWj � b n�12 c, then the greedy algo-
rithm never produces the unique worst possible base
(i. e., tour).

(b) If n � 3, r � n � 1 and W D f1; 2; : : : ; rg, then
there exists a weight function w : E ! f1; 2; : : : ; rg
such that the greedy algorithm may produce the
unique worst possible base (i. e., tour).

Corollary 4 Consider ATSP as an (E,H ,W)-optimiza-
tion problems. Let n � 3:

(a) If jWj � b n�12 c, then the greedy algorithm never
produces the unique worst possible base (i. e., tour).

(b) For every r � d nC1
2 e there exists a weight function

w : E(K�n ) ! f1; 2; : : : ; rg such that the greedy al-
gorithm may produce the unique worst possible base
(i. e., tour).

LetF be the sets of those subsets X of E(K2n) which in-
duce a bipartite graph with at most n vertices in each
partite set. Then (E(K2n);F) is a uniform indepen-
dence system and the bases of (E(K2n);F) correspond
to copies of the complete balanced bipartite graph Kn;n

in K2n . The (E(K2n);F ;ZC)-optimization problem is
called the Minimum Bisection Problem. Theorem 2 im-
plies the following:

Corollary 5 [6] Let n � 4. The greedy algorithm for the
(E(K2n);F ;W)-optimization problem may produce the
unique worst solution even if jWj D 2.

For W D ZC, the following sufficient condition can
often be used:

Theorem 6 [21] Let (E,F) be an independence system
which has a base B0 D fx1; x2; : : : ; xkg such that the
following holds for every base B 2 F , B 6D B0,

k�1X
jD0

jI(x1; x2; : : : ; x j) \ Bj < k(k C 1)/2 :

Then the greedy algorithm for the (E;F ;ZC)-
optimization problem may produce the unique worst so-
lution.

Gutin, Yeo and Zverovich [23] considered the well-
known nearest neighbor (NN) TSP heuristic: the tour
starts at any vertex x of the complete directed or undi-
rected graph; we repeat the following loop until all ver-
tices have been included in the tour: add to the tour
a vertex (among vertices not yet in the tour) closest to
the vertex last added to the tour. It was proved in [23]
that the domination number of NN is 1 for any n � 3:

Bendall and Margot [8] studied greedy-type algo-
rithms for many CO problems. Greedy-type algorithms
were introduced in [18]. They include NN and were de-
fined as follows. A greedy-type algorithm H is similar
to the greedy algorithm: start with the partial solution
X D ;; and then repeatedly add to X an element of
minimum weight in IH (X) (ties are broken arbitrarily)
until X is a base of F , where IH (X) is a subset of I (X)
that does not depend on the cost function c, but only
on the independence system (E,F) and the setX. More-
over, IH (X) is non-empty if I(X) ¤ ;, a condition that
guarantees that H always outputs a base. Bendall and
Margot [8] obtained complicated sufficient conditions
for an independent system (E,F) that ensure that every
greedy-type algorithm is of domination number 1 for
the (E;F ;ZC)-optimization problem.

The conditions imply that every greedy-type algo-
rithm is of domination number 1 for the following clas-
sical CO problems [8]: (1) The Minimum Bisection
Problem; (2) The k-Clique Problem: find a set of k ver-
tices in a complete graph so that the sum of the weights
of the edges between them is minimum; (3) ATSP; (4)
STSP; (5) The MinMax Matching Subgraph Problem:
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find a maximal (with respect to inclusion) matching so
that the sum of the weights of the edges in the matching
is minimum; (6) TheAssignment Problem: find a perfect
matching in a weighted complete bipartite graph so that
the sum of the weights of the edges in the matching is
minimum.

Better-Than-Average Heuristics

The idea of this method is to show that a heuristic is
of very large domination number if it always produces
a solution that is not worse than the average solution.
The first such result was proved by Rublineckii [31] for
the STSP.

Theorem 7 Every STSP heuristic that always produces
a tour not worse than the average tour (of the instance)
is of domination number at least (n � 2)! when n is odd
and (n � 2)!/2 when n is even.

The following similar theorem was proved by Sar-
vanov [32] for n odd and Gutin and Yeo [20] for n even.

Theorem 8 Every ATSP heuristic that always produces
a tour not worse than the average tour (of the instance)
is of domination number at least (n�2)! for each n ¤ 6:

The two theorems has been used to prove that a wide
variety of TSP heuristics have domination number at
least ˝((n � 2)!). We discuss two families of such
heuristics.

Consider an instance of the ATSP (STSP). Order the
vertices x1; x2; : : : ; xn of K�n (Kn) using some rule. The
generic vertex insertion algorithm proceeds as follows.
Start with the cycle C2 D x1x2x1. Construct the cy-
cle Cj from Cj�1 ( j D 3; 4; 5; : : : ; n), by inserting the
vertex xj into Cj-1 at the optimum place. This means
that for each arc e D xy which lies on the cycle Cj-1

we compute w(xx j) C w(x j y) � w(xy), and insert xj
into the arc e D xy, which obtains the minimum such
value. Here w(uv) denotes the weight of an arc uv. E.M.
Lifshitz (see [31]) was the first to prove that the generic
vertex insertion algorithm always produces a tour not
worse than the average tour. Thus, we have the follow-
ing:

Corollary 9 The generic vertex insertion algorithm has
domination number at least (n � 2)! (n ¤ 6).

In TSP local search (LS) heuristics, a neighborhood
N(T) is assigned to every tour T; N(T) is a set of tours

in some sense close to T. The best improvement LS pro-
ceeds as follows. We start from a tour T0. In the i’th it-
eration (i � 1), we search in the neighborhood N(Ti�1)
for the best tour Ti. If the weights of Ti-1 and Ti do not
coincide, we carry out the next iteration. Otherwise, we
output Ti.

The k-Opt, k � 2, neighborhood of a tour T con-
sists of all tours that can be obtained by replacing a col-
lection of k edges (arcs) by a collection of k edges (arcs).
It is easy to see that one iteration of the best improve-
ment k-Opt LS can be completed in time O(nk ): Rubli-
neckii [31] showed that every local optimum for the
best improvement 2-Opt or 3-Opt LS for STSP is of
weight at least the average weight of a tour and, thus, by
Theorem 7 is of domination number at least (n � 2)!/2
when n is even and (n � 2)! when n is odd. Observe
that this result is of restricted interest since to reach
a k-Opt local optimum one may need exponential time
(cf. Section 3 in [26]). However, Punnen, Margot and
Kabadi [29] managed to prove that, in polynomial time,
the best improvement 2-Opt and 3-Opt LS’s for STSP
produce a tour of weight at least the average weight of
a tour. Thus, we have the following:

Corollary 10 For the STSP the best improvement 2-
Opt LS produces a tour, which is not worse than at least
˝((n�2)!) other tours, in at most O(n3 logn) iterations.

Corollary 10 is also valid for the best improvement
3-Opt LS and some other LS heuristics for TSP,
see [24,29]. In the next section, we will give further ex-
amples of better-than-average heuristics for problems
other than TSP.

Cases

Traveling Salesman Problem

In the previous sections, we discussed several TSP
heuristics. However, there are many more TSP heuris-
tics and, in this subsection, we consider some of them.
In the next subsection, some general upper bounds are
given on the domination number of TSP heuristics.

Gutin, Yeo and Zverovich [23] considered the re-
peated nearest neighbor (RNN) heuristic, which is the
following variation of the NN heuristic: construct n
tours by starting NN from each vertex of the complete
(di)graph and choose the best tour among the n tours.
The authors of [23] proved that for the ATSP, RNN al-
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ways produces a tour, which is not worse than at least
n/2�1 other tours, but for some instance it finds a tour,
which is not worse than at most n-2 other tours, n � 4.
We also show that, for some instance of the STSP on
n � 4 vertices, RNN produces a tour not worse than at
most 2n�3 tours.

Another ATSP heuristic, max-regret-fc (fc ab-
breviates First Coordinate), was first introduced by
Ghosh et al. [13]. Extensive computational experiments
in [13] demonstrated a clear superiority of max-regret-
fc over the greedy algorithm and several other con-
struction heuristics from [14]. Therefore, the result
of Theorem 11 obtained by Gutin, Goldengorin and
Huang [15] was somewhat unexpected.

Let K�n be a complete digraph with vertices V D
f1; 2; : : : ; ng. The weight of an arc (i,j) is denoted by
wij. Let Q be a collection of disjoint paths in K�n . An arc
a=(i,j) is a feasible addition to Q if Q+a is either a col-
lection of disjoint paths or a tour in K�n : Consider the
following two ATSP heuristics: max-regret-fc and max-
regret.

The heuristic max-regret-fc proceeds as follows. Set
W D T D ;:While V ¤W do the following: For each
i 2 V nW , compute two lightest arcs (i,j) and (i,k) that
are feasible additions to T, and compute the difference
�i D jwi j � wik j. For i 2 V nW with maximum �i

choose the lightest arc (i,j), which is a feasible addition
to T and add (i,j) toM and i toW.

The heuristic max-regret proceeds as follows. Set
WC D W� D T D ;: While V ¤ WC do the fol-
lowing: For each i 2 V n WC, compute two lightest
arcs (i,j) and (i,k) that are feasible additions to T, and
compute the difference �Ci D jwi j � wikj; for each
i 2 V n W�, compute two lightest arcs (j,i) and (k,i)
that are feasible additions to T, and compute the differ-
ence ��i D jwji � wki j. Compute i0 2 V n WC with
maximum �Ci 0 and i00 2 V nW� with maximum ��i 00 .
If �Ci 0 � ��i 00 choose the lightest arc (i0; j0), which is
a feasible addition to T and add (i0; j0) to M, i0 to W+

and j0 toW�:Otherwise, choose the lightest arc ( j00; i00),
which is a feasible addition to T and add ( j00; i00) to M,
i00 toW� and j00 toWC:

Notice that in max-regret-fc, if jV nWj D 1 we set
�i D 0. A similar remark applies to max-regret.

Theorem 11 The domination number of both max-
regret-fc and max-regret equals 1 for each n � 2:

Upper Bounds for Domination Numbers
of ATSP Heuristics

It is realistic to assume that any ATSP algorithm spends
at least one unit of time on every arc of K�n that it con-
siders. We use this assumption in this subsection.

Theorem 12 [17] LetA be an ATSP heuristic of run-
ning time t(n). Then the domination number ofA does
not exceedmax1�n0�n(t(n)/n0)n

0 .

Corollary 13 [17] LetA be an ATSP heuristic of com-
plexity t(n). Then the domination number of A does
not exceed maxfet(n)/e ; (t(n)/n)ng, where e is the basis
of natural logarithms.

The next assertion follows directly from the proof of
Corollary 13.

Corollary 14 [17] LetA be an ATSP heuristic of com-
plexity t(n). For t(n) � en, the domination number of
A does not exceed (t(n)/n)n :

We finish this subsection with a result from [17] that
improves (and somewhat clarifies) Theorem 20 in [29].

Theorem 15 Unless P = NP, there is no polynomial
time ATSP algorithm of domination number at least
(n � 1)! � bn � n˛c! for any constant ˛ < 1.

Multidimensional Assignment Problem (MAP)

In case of s dimensions, MAP is abbreviated by s-AP
and defined as follows. Let X1 D X2 D � � � D Xs D

f1; 2; : : : ; ng. We will consider only vectors that belong
to the Cartesian product X D X1 � X2 � � � � � Xs . Each
vector e is assigned a weight w(e). For a vector e, ej de-
notes its jth coordinate, i. e., e j 2 Xj: A partial assign-
ment is a collection e1; e2; : : : ; et of t � n vectors such
that eij ¤ ekj for each i ¤ k and j 2 f1; 2; : : : ; sg: An
assignment is a partial assignment with n vectors. The
weight of a partial assignment A D fe1; e2; : : : ; etg is
w(A) D

Pt
iD1 w(e

i): The objective is to find an assign-
ment of minimum weight. Notice that s-AP has (n!)s�1

solutions (assignments).
s-AP can be considered as the (X;F ;ZC)-opti-

mization problem. (F consists of partial assignments
including the empty one.) This allows us to define the
greedy algorithm for s-AP and to conclude from Theo-
rem 6 that the greedy algorithm is of domination num-
ber 1 (for every fixed s � 3).
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In the subsection Traveling Salesman Problem, we
considered the max-regret-fc and max-regret heuristics.
In fact, max-regret was first introduced for 3-AP by
Balas and Saltzman [4]. (See [15] for detailed descrip-
tion of the s-AP max-regret-fc and max-regret heuris-
tics for each s � 2.) In computational experiments,
Balas and Saltzman [4] compared the greedy algorithm
with max-regret and concluded that max-regret is su-
perior to the greedy algorithm with respect to the qual-
ity of solutions. However, after conducting wider com-
putational experiments, Robertson [30] came to a dif-
ferent conclusion: the greedy algorithm and max-regret
are of similar quality for 3-AP. Gutin, Goldengorin and
Huang [15] share the conclusion of Robertson: both
max-regret and max-regret-fc are of domination num-
ber 1 (similarly to the greedy algorithm) for s-AP for
each s � 3. Moreover, there exists a family of s-AP
instances for which all three heuristics will find the
unique worst assignment [15] (for each s � 3).

Similarly to TSP, we may obtain MAP heuristics
of factorial domination number if we consider better-
than-average heuristics. This follows from the next the-
orem:

Theorem 16 [15] Let H be a heuristic that for each
instance of s-AP constructs an assignment of weight at
most the average weight of an assignment. Then the
domination number ofH is at least ((n � 1)!)s�1:

Balas and Saltzman [4] introduced a 3-Opt heuristic
for 3-AP which is similar to the 3-Opt TSP heuristic.
The 3-Opt neighborhood of an assignment A D fe1;
e2; : : : ; eng is the set of all assignments that can be
obtained from A by replacing a triple of vectors with
another triple of vectors. The 3-Opt is a local search
heuristic that uses the 3-Opt neighborhood. It is proved
in [15] that an assignment, that is the best in its 3-Opt
neighborhood, is at least as good as the average assign-
ment. This implies that 3-Opt is of domination number
at least ((n�1)!)2:Wecannot guarantee that 3-Opt local
search will stop after polynomial number of iterations.
Moreover, 3-Opt is only for 3-AP. Thus, the following
heuristic introduced and studied in [15] is of interest.

Recursive Opt Matching (ROM) proceeds as fol-
lows. Compute a new weight w̄(i; j) D w(Xi j)/ns�2,
where Xij is the set of all vectors with last two coordi-
nates equal i and j, respectively. Solving the 2-AP with
the new weights to optimality, find an optimal assign-

ment f(i; s(i)) : i D 1; 2; : : : ; ng, where  s is a per-
mutation on Xs. While s ¤ 1, introduce (s-1)-AP
with weights given as follows: w0( f i) D w( f i ; s(i))
for each vector f i 2 X0, where X0n D X1 � X2 �

� � � � Xs�1, with last coordinate equal i and apply
ROM recursively. As a result we have obtained per-
mutations s ; s�1; : : : ; 2. The output is the assign-
ment f(i; 2(i); : : : ; s(s�1(: : : (2(i))) : : : )) : i D 1;
2; : : : ; ng.

Clearly, ROM is of running time O(n3) for every
fixed s � 3: Using Theorem 16, it is proved in [15] that
ROM is of domination number at least ((n � 1)!)s�1:

Minimum Partition
andMultiprocessor Scheduling Problems

In this subsection, N always denotes the set
f1; 2; : : : ; ng and each i 2 N is assigned a positive inte-
gral weight �(i).A D (A1;A2; : : : ;Ap) is a p-partition
of N if each Ai � N , Ai \ Aj D ; for each i ¤ j and
the union of all sets in A equals N. For a subset A of
N, �(A) D

P
i2A �(i). The Minimum Multiprocessor

Scheduling Problem (MMS) [3] can be stated as follows.
We are given a triple (N; �; p), where p is an integer,
p � 2: We are required to find a p-partition C of
N that minimizes �(A) D max1�i�p �(Ai ) over all
p-partitionsA D (A1;A2; : : : ;Ap) of N.

Clearly, if p � n, then MMS becomes trivial. Thus,
in what follows, p < n: The size s of MMS is 
(n CPn

iD1 log �(i)): Consider the following heuristicH for
MMS. If s � pn , then we simply solve the problem op-
timally. This takes O(s2) time, as there are at most O(s)
solutions, and each one can be evaluated and compared
to the current best in O(s) time. If s < pn , then we
sort the elements of the sequence �(1); �(2); : : : ; �(n).
For simplicity of notation, assume that �(1) � �(2) �
� � � � �(n). Compute r D dlog n/ log pe and solve
MMS for (f1; 2; : : : ; rg; �; p) to optimality. Suppose we
have obtained a p-partitionA of f1; 2; : : : ; rg. Now for
i from r+1 to n add i to the set Aj of the current p-
partition A with smallest �(Aj): The following result
was proved by Gutin, Jensen and Yeo [16].

Theorem 17 The heuristicH runs in time O(s2 log s)
and lims!1 domr(H ; s) D 1:

The Minimum Partition Problem (MP) is MMS with
p=2. Alon, Gutin and Krivelevich [2] proved Theo-
rem 17 for MP with s replaced by n.



�

Floudas, Pardalos: Encyclopedia of Optimization — Entry 189 — 2008/7/23 — 19:27 — page 800 — le-tex
�

� �

800 D Domination Analysis in Combinatorial Optimization

Max Cut Problem

The Max Cut (MC) is the following problem: given
a weighted graph G=(V,E), find a bipartition (a cut)
(X,Y) of V such that the sum of weights of the edges
with one end vertex in X and the other in Y , called the
weight of the cut (X,Y), is maximum. For this problem,
there are some better-than-average heuristics. The sim-
plest is probably the following greedy-like heuristic C;
order the vertices arbitrarily and put each vertex in its
turn either in X or in Y in order to maximize in each
step the total weight of crossing edges.

Using an advanced probabilistic approach Alon,
Gutin and Krivelevich [2] proved that the heuristic C
is of domination ratio larger than 0.025. For the un-
weighted MC (all weights are equal), a better quality
algorithm can be designed as described in [2]. Its dom-
ination ratio is at least 1/3 � o(1):

Constraint Satisfaction Problems

Let r be a fixed positive integer, and let F D f f1;
f2; : : : ; fmg be a collection of Boolean functions, each
involving at most r of the n variables, and each hav-
ing a positive weight w( fi). The Max-r-Constraint Sat-
isfaction Problem (orMax-r-CSP, for short), is the prob-
lem of finding a truth assignment to the variables so as
to maximize the total weight of the functions satisfied.
Note that this includes, as a special case, the Max Cut
problem. Another interesting special case is the Max-r-
SAT problem, in which each of the Boolean functions
f i is a clause of at most r literals.

Alon, Gutin and Krivelevich [2] proved the follow-
ing:

Theorem 18 For each fixed integer r � 1 there ex-
ists a linear time algorithm for the Max-r-CSP problem,
whose domination ratio exceeds 1

24/3�26r .

Vertex Cover, Independent Set
and Clique Problems

A clique in a graph G is a set of vertices in G such
that every pair of vertices in the set are connected by
an edge. The Maximum Clique Problem (MCl) is the
problem of finding a clique of maximum cardinality in
a graph. A vertex cover in a graph G is a set S of ver-
tices in G such that every edge is incident to a vertex
in S. TheMinimum Vertex Cover Problem (MVC) is the

problem of finding aminimum cardinality vertex cover.
An independent set in a graph is a set S of vertices such
that no edge joins two vertices in S. The Maximum In-
dependent Set Problem (MIS) is the problem of finding
a minimum cardinality independent set in a graph. It is
easy to see that the number of cliques and independent
sets in a graph depends on its structure, and not only
on the number of vertices. The same holds for vertex
covers.

Notice that if C is a vertex cover of a graph G, then
V(G)nC is an independent set inG; ifQ is a clique inG,
then Q is an independent set in the complement of G.
These well-known facts imply that if there is a heuristic
for one of the problem of domination ratio at least r(n),
all other problems admit a heuristic of domination ratio
at least r(n).

MCl, MIS and MVC are somewhat different from
the previous problems we have considered. Firstly, the
number of feasible solutions, for an input of size n, de-
pends on the actual input, and not just its size. The sec-
ond difference is that the three problems do not admit
polynomial-time heuristics of domination ratio at least
1/p(n) for any polynomial p(n) in n unless P=NP. This
was proved by Gutin, Vainshtein and Yeo [19].

Because of the first difference, it is better to compare
heuristics for the problems using the blackball number
rather than domination number. Since a heuristic for
MVC can be easy transformed into a heuristic for the
other two problems, we restrict ourselves only to MVC
heuristics.

The incremental deletion heuristic starts with an ar-
bitrary permutation  of vertices of G and an initial so-
lution S=V(G). We consider each vertex of G in turn
(according to ), deleting it from S if the resulting sub-
set remains a (feasible) solution. A seemingly better
heuristic for MVC is obtained by ordering the vertices
by degree (lower degrees first), and then applying the
incremental deletion heuristic. We call it the increasing-
degree deletion heuristic. The well-known maximal
matching heuristic constructs a maximal matching M
and outputs both end-vertices of all edges inM as a so-
lution. Berend, Skiena and Twitto [10] proved that the
incremental deletion heuristic (increasing-degree dele-
tion heuristic, maximal matching heuristic) is of black-
ball number 2n�1 � n (of blackball number larger than
2 � �)n for each � > 0, of blackball number approxi-
mately 1:839n). Clearly, the maximal matching heuris-
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tic is the best among the three heuristics from the DA
point of view.

Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) can be for-
mulated as follows. We are given two n � n matrices
A D [ai j] and B D [bi j] of integers. Our aim is to
find a permutation  of f1; 2; : : : ; ng that minimizes the
sum

nX
iD1

nX
jD1

ai jb�(i)�( j) :

Gutin and Yeo [23] described a better-than-average
heuristic for QAP and proved that the heuristic is of
domination number at least n!/ˇn for each ˇ > 1.
Moreover, the domination number of the heuristic is
at least (n � 2)! for every prime power n. These results
were obtained using a group-theoretical approach.

See also

� Traveling Salesman Problem
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Abstract

Duality gaps in optimization problems arise because of
the nonconvexities involved in the objective function or
constraints. The Lagrangian dual of a nonconvex opti-
mization problem can also be viewed as a two-person
zero-sum game. From this viewpoint, the occurrence of
duality gaps originates from the order in which the two
players select their strategies. Therefore, duality theory
can be analyzed as a zero-sum game where the order of
play generates an asymmetry. One can conjecture that

this asymmetry can be eliminated by allowing one of
the players to select strategies from a larger space than
that of the finite-dimensional Euclidean space. Once
the asymmetry is removed, then there is zero duality
gap. The aim of this article is to review two methods by
which this process can be carried out. The first is based
on randomization of the primal problem. The second
extends the space from which the dual variables can be
selected. Duality gaps are important in mathematical
programming and some of the results reviewed here are
more than 50 years old, but only recently methods have
been discovered to take advantage of them. The theory
is elegant and helps appreciate the game-theoretic ori-
gins of the dual problem and the role of Lagrange mul-
tipliers.

Background

We discuss how duality gaps arise, and how they can
be eliminated in nonconvex optimization problems.
A standard optimization problem is stated as follows:

min f (x) ;

g(x) � 0 ;
x 2 X ;

(1)

where f : Rn ! R and g : Rn ! Rm are assumed to be
smooth and nonconvex. The feasible region of (1) is de-
noted byF , and it is assumed to be nonempty and com-
pact. X is some compact convex set.

In order to understand the origins of duality in
mathematical programming, consider devising a strat-
egy to determine whether a point, say y, is the glob-
ally optimal solution of (1). Such a strategy can be con-
cocted as follows: if f (y) is the global solution of (1) then
the following system of inequalities

f (x) < f (y) ;

g(x) � 0 ;

x 2 X

(2)

will not have a solution. We can reformulate (2) in
a slightly more convenient framework. Indeed, suppose
that there exist m positive scalars �i, i D 1; : : : ;m,
such that

L(x; �) D f (x)C
mX
iD1

�i gi (x) < f (y) (3)


