
Preface

Life has many surprises. One of the best surprises is meeting a caring mentor, an
encouraging collaborator, or an enthusiastic friend. This volume is a tribute to Pro-
fessor Michael K. Sain, who is such a teacher, colleague, and friend. On the beautiful
fall day of October 27, 2007, friends, families, colleagues, and former students gath-
ered at a workshop held in Notre Dame, Indiana. This workshop brought together
many people whose lives have been touched by Mike to celebrate his milestone 70th
birthday, and to congratulate him on his contributions in the fields of systems, cir-
cuits, and control.

Mike was born on March 22, 1937, in St. Louis, Missouri. After obtaining his
B.S.E.E. and M.S.E.E. at St. Louis University, he went on to study at the University
of Illinois at Urbana-Champaign for his doctoral degree. With his Ph.D. degree com-
plete, he came to the University of Notre Dame in 1965 as an assistant professor. He
became an associate professor in 1968, a full professor in 1972, and the Frank M.
Freimann Chair in Electrical Engineering in 1982. He has remained at and loved the
University of Notre Dame for over 40 years. Mike also held a number of consult-
ing jobs throughout his career. Most notably, he consulted with the Energy Controls
Division of Allied-Bendix Aerospace from 1976 to 1988 and the North American
Operations branch of the Research and Development Laboratory of General Motors
Corporation for a decade, 1984–1994.

Mike’s research interests have been wide and varied. He worked on statistical
control and game theory with a focus on the use of cumulants, system theory on
semirings, generalized pole and zero techniques, nonlinear multivariable feedback
control with tensors, structural control for buildings and bridges subject to high
winds and earthquakes, jet engine gas turbine control, algebraic systems theory, and
generalization of H∞ control.

Mike is a pioneer in statistical control theory, which generalizes traditional linear-
quadratic-Gaussian control by optimizing with respect to any of the cost cumulants
instead of just the mean. For over 30 years, Mike and his students have contributed
to the development of minimal cost variance control, kth cumulant control, and sta-
tistical game theory. In statistical game theory, the statistical paradigm generalized
mixed H2/H∞ control and stochastic H∞ control concepts. Although there is more
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work to be done in this area, Mike has pioneered a promising new stochastic optimal
control method.

Another major contribution of Mike’s research is in the field of algebraic sys-
tems theory, expanding the algebraic system-theoretic concepts of poles and zeros
of a linear system. Mike and his collaborators also researched a module-theoretic
approach to zeros of a linear system and the application of these ideas to inverse
systems. Mike’s 1981 monograph Introduction to Algebraic Systems Theory bridged
the gap between systems theory and algebraic theory and is considered a definitive
introduction to algebraic systems theory.

More recently, Mike has applied concepts from feedback control theory to model
Catholic moral teachings and decision making, showing that analogous structures
exist in the two fields, and that one can construct a framework to support selection
of “good” outcomes and rejection of what is “not good.”

Mike has also been a valuable resource to the Institute of Electrical and Elec-
tronics Engineers (IEEE). In particular, he was the founding editor-in-chief of the
flagship Circuits and Systems Magazine. Mike, with the support of then IEEE Cir-
cuits and Systems Society president Rui De Figueiredo, changed the IEEE Circuits
and Systems Society Newsletter into the Circuits and Systems Magazine, a highly
regarded magazine within the IEEE. Mike was also the editor-in-chief of the jour-
nal of record in the field of control systems, the IEEE Transactions on Automatic
Control. He also served on numerous award committees, including the IEEE Award
Board, where he chaired the Baker Prize Committee which annually determines the
best publication from among all those in the transactions and journals of the IEEE.
During his 42 years of service, he has received numerous awards and honors includ-
ing the IEEE Centennial Medal, IEEE Circuits and Systems Society Golden Jubilee
Medal, IEEE Fellow, and University of Notre Dame President’s Award.

Perhaps more importantly, Mike is widely recognized by his peers and students as
an outstanding educator, and he has received several teaching awards for his excellent
pedagogy. He has directed over 47 theses and dissertations, 19 of which are doctoral
dissertations, and his students have become leaders in academic research, teaching,
and administration, and in industry and government.

This Festschrift volume is divided into four parts: statistical control theory, alge-
braic systems theory, dynamic systems characteristics, and engineering education.
The statistical control theory part begins with a survey. Statistical control is a gener-
alization of Kalman’s linear-quadratic-Gaussian regulator. Here, we view the optimal
cost function as a random variable and optimize the cost cumulants. The current state
of research is discussed in the first chapter. In the second chapter, Cumulant Control
Systems: The Cost-Variance, Discrete-Time Case, the authors address the second
cumulant optimization for a discrete-time system. In this digital world, this is an
important addition to statistical control theory. The third chapter, by Pham, discusses
statistical control for a system with integral feedback, and extends the statistical con-
trol idea to both regulation and tracking problems. The fourth chapter uses a sta-
tistical control paradigm for decision making, using multi-player game theory. The
final chapter of Part I deals with multi-objective cumulant control. Here the cumulant
idea is applied to mixed H2/H∞ control. Instead of optimizing the mean in the H2
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cost function, the authors optimize the variance while constraining the system’s H∞
norm. Interestingly, this idea generalizes stochastic H∞ control.

The second part of the book is dedicated to algebraic systems theory. Its first
chapter describes a new system theory for linear time-invariant systems with coef-
ficients in a semiring motivated by applications in communication networks, manu-
facturing systems, and queueing systems. In addition to revealing realization issues
of systems over semirings, this theory connects geometric control with the frequency
domain and provides methods to compute invariant sets associated with decou-
pling. The second chapter, by Schrader and Wyman, discusses the module-theoretic
approach to zeros and poles of a linear multivariable system. By examining the intu-
ition that the zeros of a linear system should become the poles of its inverse system,
this chapter emphasizes Mike’s contributions to this body of knowledge. The main
result provides a complete understanding of the connection between all poles and
zeros of a transfer function matrix, including those at infinity and those resulting
from singularities. The final chapter of this section, by Conte and Perdon, presents
the notion of zeros for linear time-delay systems by generalizing the algebraic notion
of a zero module. Additional control problems such as inversion and tracking are also
addressed using this framework.

The third part starts with the overview of stability results for discontinuous hybrid
dynamical systems. Michel and Hou show that if the hypotheses of a classical Lya-
punov stability and boundedness result are satisfied for a given Lyapunov function,
then the hypotheses of the corresponding stability and boundedness result for discon-
tinuous dynamical systems are also satisfied for the same Lyapunov function. They
also show that the converse is not true in general. The second chapter solves complex
systems using a neural network structure. In particular, it discusses two algorithms,
based on a biologically inspired structure, in solving for an optimal state feedback
controller. The third chapter tackles the characterization and calculation of approx-
imate decentralized fixed modes. The fourth chapter is concerned with a communi-
cations system, wherein Lee and de Figueiredo discuss two approaches to mitigate
adverse effects due to the high peak-to-average power ratio in orthogonal frequency
division multiplexing systems. Then Polendo et al. discuss constructive techniques
for stabilization of nonlinear systems with uncertainties and limited information. The
final chapter of this part presents a systematic method for deriving and realizing non-
linear controllers and nonlinear closed-loop systems using Volterra control synthesis.

Mike has been a lifelong mentor and teacher to many students. So, appropriately,
we have chosen two important subjects in education for this volume. One impor-
tant topic is the issue of the first professional degree in engineering. In this context,
Dorato argues that the first professional degree in engineering should be the Mas-
ter of Engineering degree rather than the bachelor’s degree. In order to maintain
America’s competitiveness, advances in engineering education are prerequisite. This
chapter should generate some insight into the question of what constitutes a true
engineering education. A relatively new interest of Mike has been the research of the
relationship between theology and engineering. In this research he has been collabo-
rating with his daughter at St. Thomas University. Thus, it is appropriate to end this
volume with a chapter about theology and engineering, authored by Barbara Sain.
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There she answers the question: What does the discipline of engineering have to do
with the life of faith? It is interesting and insightful to see models of the will in block
diagrams!

Religion is an important part of Mike’s life. He is a devoted Catholic with a great
love and devotion for the Virgin Mary. He attends daily Mass and has visited Medju-
gorje in Bosnia-Herzegovina four times. Perhaps this is why his view on life is larger
than just research or teaching. We would like to end this preface with a prayer—the
same prayer that begins all Mike’s classes—because this is another commencement
for Mike.

Our Father, Who art in heaven
Hallowed be Thy Name;

Thy kingdom come,
Thy will be done,

on earth as it is in heaven.
Give us this day our daily bread,

and forgive us our trespasses,
as we forgive those who trespass against us;

and lead us not into temptation,
but deliver us from evil. Amen.

Notre Dame, IN P. Antsaklis
Evansville, IN R. Diersing
Notre Dame, IN E. Kuehner
Los Angeles, CA P. Sain
Boise, ID C. Schrader
Philadelphia, PA C. Won
Columbus, OH S. Yurkovich

October 2007 Workshop Organizing Committee
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Summary. The expected value of a random cost may be viewed either as its first moment
or as its first cumulant. Recently, the Kalman control gain formulas have been generalized to
finite linear combinations of cost cumulants, when the systems are described in continuous
time. This paper initiates the investigation of cost cumulant control for discrete-time systems.
The cost variance is minimized, subject to a cost mean constraint. A new version of Bell-
man’s optimal cost recursion equation is obtained and solved for the case of full-state mea-
surement. Application is made to the First Generation Structural Benchmark for seismically
excited buildings.

1 Introduction

The 1960s saw a burst of controls research whose impact upon theory and applica-
tion has continued to this day, without much measurable lessening. Pivotal in this
burst was the pioneering work of R. E. Kalman, embracing concepts such as linear-
quadratic-Gaussion (LQG) control, with linear dynamical systems, quadratic costs,
and Gaussian noises. Kalman considered both discrete-time and continuous-time
linear system models, and imported the ideas of Lyapunov analysis to incorporate
notions of uniform controllability, uniform observability, and uniform asymptotic
stability. The separation principle, Kalman–Bucy and Kalman filters, and the Kalman
optimal control gain formulae, have become commonplace.

The approach of Kalman to LQG problems was, of course, based upon minimiz-
ing the average cost. We remark that the average cost is the first entry in two famous
sequences of random cost statistics. The first sequence is that of the cost moments;
the second sequence is that of the cost cumulants.

Without more information it would not be possible to surmise whether Kalman’s
formulae derived their efficacy from the average cost being a moment or from
the average cost being a cumulant. Recently, however, K. D. Pham, [Pha04],

C.-H. Won et al. (eds.), Advances in Statistical Control, Algebraic Systems Theory,
and Dynamic Systems Characteristics, DOI: 10.1007/978-0-8176-4795-7 2,
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[PSL02-1], [PSL02-2], has shown that the Kalman separation principle, filter, and
optimal control gains generalize naturally to optimal control problems based upon
finite linear combinations of cost cumulants. This suggests strongly that the success-
ful operative methods in the Kalman advances were cost-cumulant enabled. Khanh’s
work was in continuous-time.

Moreover, the cost-cumulant control strategy families studied by Pham also dis-
play many of the same desirable features known to LQG designers. Indeed, Pham
has carried out very promising applications of these algorithms to cable-stayed
bridges [PSL04], structures excited by wind [PJSSL04], and buildings shaken by
earthquakes [PSL02-3].

In view of these developments, it is both natural and desirable to examine the
corresponding research issues for the other family of systems studied by Kalman,
those in discrete time.

This paper initiates such investigations. Cost variance is minimized, subject to
cost mean constraint. A new version of Bellman’s optimal cost recursion equation is
obtained, and solved for the case of full-state measurement. The theory is based upon
the dissertation by Cosenza [Cos69]. Application is made to the First Generation
Structural Benchmark for seismically excited buildings [SDD98].

2 Problem Definition

Let I be a subset of the integers and R
1 be the 1-fold product of the real line. Consider

then the systems whose behavior is governed by the following stochastic difference
equations:

x( j + 1) = f ( j,x( j),u( j),w( j)) , x(n0) = x0 , (1)

y( j) = g( j,x( j),v( j)) , (2)

where x( j) ∈ R
n is the system state, u( j) ∈ R

m is the control input, w( j) ∈ R
p is the

actuation noise, y( j) ∈ R
q is the system output, and v( j) ∈ R

r is the measurement
noise, j ∈ I. The initial condition of equation (1) is given by x(n0), where n0 is the
smallest element in I. Let f : I ×R

n ×R
m ×R

p → R
n and g : I ×R

n ×R
r → R

q be
Borel measurable, with the probability density functions of w( j), v( j), and x0 given,
j ∈ I.

Define U( j) � {u(n0),u(n0 + 1), . . . ,u( j)}, with a similar definition made for
the remaining variables of equations (1) and (2), and let Z( j) � {Y ( j),U( j − 1)},
n0 < j, with Z(n0) = y(n0). It is then possible to denote the unique solution of
equation (1) satisfying the initial condition x(n0) = x0 by θ ( j), where θ ( j) �
θ ( j;n0,x0;U( j − 1),W( j− 1)), j ∈ I, and to specify that the control laws be of the
form k( j) � k( j,Z( j)), where k( j, ·, ·) : R

q( j−n0+1)×R
m( j−n0) → R

m, j ∈ I. Observe
that Z( j) contains all the information available to the controller at time j, and that
the form chosen for k( j), together with a boundedness requirement, contributes to
the definition of the class of admissible controls.
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With the definitions and notation recently introduced it is now possible to formu-
late a performance index as J(n0) � J(n0,x0;U(N −1),W(N −1)), where

J(n0) =
N

∑
j=n0+1

L( j,θ ( j),u( j−1)) , (3)

and where the loss function L : I×R
n×R

m →R
+ (the nonnegative real line) is Borel

measurable. Since f (·, ·, ·, ·), g(·, ·, ·) and L(·, ·, ·) are all Borel measurable, the per-
formance index is a random variable and consequently one of its statistical moments
must be selected for optimization. In this investigation it is desired to minimize the
variance of J(n0) while its mean is forced to obey a constraint. In mathematical par-
lance, it is desired to find k( j,Z( j)), n0 ≤ j ≤ N −1, such that

E
{

J2(n0)|Z(n0)
}

−E2{J(n0)|Z(n0)} (4)

is minimized, while
E{J(n0)|Z(n0)} = h(n0,Z(n0)) , (5)

where E{·|·} denotes the conditional expectation operator. The form of the func-
tion h : I ×R

q → R
+ is selected a priori based on practical considerations, such as

desired response, permissible deviations from the desired response, complexity of
the controller, etc.

Observe that the choice of h(n0,Z(n0)) is not entirely arbitrary, for if

α(n0,Z(n0)) = inf
U(N−1)

E{J(n0)|Z(n0)} , (6)

then h(n0,Z(n0)) must always be greater than α(n0,Z(n0)). This constraint on h,
together with equation (5), completes the definition of the class of admissible con-
trols.

3 Recursion Equation

In this section, a recursion equation for the optimal variance cost is derived. The
procedure employed is the standard procedure for this type of problem; first, the
constraint equation is appended to the expression to be minimized by means of a
Lagrange multiplier, µ(n0), and then the resulting equation is imbedded into the
more general class of problems where n0 is a variable rather than a fixed initial time.
It is clear that the solution of the more general problem leads trivially to the solu-
tion of the problem posed in Section 2. Consequently, it is desired to find µ( j) and
k(i,Z(i)), j ≤ i ≤ N −1, j ∈ I, such that

E
{

J2( j)|Z( j)
}

−E2{J( j)|Z( j)}+ 4µ( j) [E{J( j)|Z( j)}−h( j,Z( j))] (7)

is minimized, where µ( j) ∈ R is a Lagrange multiplier, and where the 4 premulti-
plying µ( j) has been introduced just for convenience.
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Before proceeding with the development of the recursion equation, however, let
k j � {k( j),k( j + 1), . . . ,k(N −1)}, j ∈ I, and let

VC( j,Z( j)|k j) = E
{

J2( j)|Z( j)
}

−E2{J( j)|Z( j)}
+ 4µ( j) [E{J( j)|Z( j)}−h( j,Z( j))] , j ∈ I , (8)

where VC signifies “variance cost.”
Define VC0(N − 1,Z(N − 1)) to be the optimal value of VC(N − 1,Z(N −

1)|kN−1), that is,

VC0(N −1,Z(N −1)) = min
k(N−1),µ(N−1)

{

E
{

L2(N)|Z(N −1)
}

−E2{L(N)|Z(N −1)}+ 4µ(N−1)[E{L(N)|Z(N −1)}

−h(N −1,Z(N −1))]
}

, (9)

where L( j) � L( j,θ ( j),k( j −1)). Note in particular that if k0(N −1) is the control
law which leads to VC0(N −1,Z(N −1)), then

E{L(N,θ0(N),k0(N −1))|Z(N −1)} = h(N,Z(N −1)) , (10)

where
θ0(N) = f (N −1,θ (N −1),k0(N −1),w(N −1)) , (11)

and therefore, combining equations (10) and (9) it follows that

VC0(N −1,Z(N −1)) = E
{

L2(N,θ0(N),k0(N −1))|Z(N −1)
}

−E2{L(N,θ0(N),k0(N −1))|Z(N −1)} . (12)

Similarly,

VC0(N −2,Z(N −2)) = min
kN−2,µ(N−2)

{

E
{

(L(N)+ L(N −1))2|Z(N −2)
}

−E2{L(N)+ L(N −1)|Z(N −2)}
+ 4µ(N−2)[E{L(N)+ L(N−1)|Z(N −2)}

−h(N−2,Z(N −2))]
}

, (13)

which after some manipulation may be written as

VC0(N −2,Z(N −2)) = minkN−2,µ(N−2)

(

Γ (N −2)−E2{L(N)|Z(N −2)}

+E
{

E
{

L2(N)|Z(N −1)
}

|Z(N −2)
}

+2E{L(N)L(N −1)|Z(N −2)}

−2E{L(N)|Z(N −2)}E{L(N −1)|Z(N −2)}
)

, (14)
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where

Γ (N −2) = E
{

L2(N −1)|Z(N −2)
}

−E2{L(N −1)|Z(N −2)}

+ 4µ(N−2)[E{L(N)+ L(N −1)|Z(N −2)}

−h(N −2,Z(N −2))] . (15)

If now E
{

E2{L(N)|Z(N −1)}|Z(N−2)
}

is added and subtracted from equation
(14), then

VC0(N −2,Z(N −2)) = min
kN−2,µ(N−2)

{

Γ (N −2)+ E{E
{

L2(N)|Z(N −1)
}

+ 2E{L(N)L(N −1)|Z(N −2)}

−2E{L(N)|Z(N −2)}E{L(N−1)|Z(N −2)}

+ E{E2{L(N)|Z(N −1)}|Z(N −2)}

−E2{L(N)|Z(N −2)}

−E2{L(N)|Z(N −1)}|Z(N −2)}
}

. (16)

However, since the process under consideration is a multistage decision process, the
principle of optimality may be applied to it, and equation (16) then becomes

VC0(N −2,Z(N −2)) = min
k(N−2),µ(N−2)

{

Γ0(N −2)

+2E{L0(N)L(N −1)|Z(N −2)}

−2E{L0(N)|Z(N −2)}E{L(N−1)|Z(N −2)}

+E{E{L2
0(N)|Z(N −1)}

−E2{L0(N)|Z(N −1)}|Z(N−2)}

+E{E2{L0(N)|Z(N −1)}|Z(N −2)}

−E2{L0(N)|Z(N −2)}
}

, (17)

where

Γ0(N −2) = E{L2(N −1)|Z(N −2)}−E2{L(N −1)|Z(N −2)}

+ 4µ(N −2)[E{L0(N)+ L(N −1)|Z(N −2)}

−h(N −2,Z(N −2))] , (18)

and L0(N) = L(N,θ0(N),k0(N −1)).
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Furthermore, if equations (17) and (12) are combined, then

VC0(N −2,Z(N −2)) = min
k(N−2),µ(N−2)

{

Γ0(N −2)

+ 2E{L0(N)L(N −1)|Z(N −2)}
−2E{L0(N)|Z(N −2)}E{L(N−1)|Z(N −2)}
+ E{E2{L0(N)|Z(N −1)}|Z(N −2)}
−E2{L0(N)|Z(N −2)}

+ E{VC0(N −1,Z(N −1))|Z(N −2)}
}

. (19)

Proceeding by induction, it follows that

VC0(i,Z(i)) = min
k(i),µ(i)

{

Γ0(i)+ 2E

{
N

∑
j=i+2

L0( j)L(i+ 1)

∣
∣
∣
∣
∣
Z(i)

}

−2E

{
N

∑
j=i+2

L0( j)

∣
∣
∣
∣
∣
Z(i)

}

E{L(i+ 1)|Z(i)}

+ E

{

E2

{
N

∑
j=i+2

L0( j)

∣
∣
∣
∣
∣
Z(i+ 1)

}∣
∣
∣
∣
∣
Z(i)

}

−E2

{

E

{
N

∑
j=i+2

L0( j)

∣
∣
∣
∣
∣
Z(i+ 1)

}∣
∣
∣
∣
∣
Z(i)

}

+ E{VC0(i+ 1,Z(i+ 1))|Z(i)}
}

, (20)

where n0 ≤ i ≤ N −2, VC0(N −1,Z(N −1)) is as given by equation (9) and where

Γ0(i) = E{L2(i+ 1)|Z(i)}−E2{L(i+ 1)|Z(i)}

+ 4µ(i)

[

E

{
N

∑
j=i+2

L0( j)+ L(i+ 1)

∣
∣
∣
∣
∣
Z(i)

}

−h(i,Z(i))

]

. (21)

Theorem 1. Consider the nonlinear problem given in (1) and (3). A solution k∗

is the optimal minimum cost variance (MCV) strategy, if there exists a solution
VC0(i,Z(i)) to

VC0(i,Z(i)) = min
k(i)

{

E{VC0(i+ 1,Z(i+ 1))|Z(i)}+ E
{

L2(i+ 1)|Z(i)
}

(22)

−E2{L(i+ 1)|Z(i)}+ E

{

E2

{
N

∑
j=i+2

L0( j)
∣
∣
∣
∣
Z(i+ 1)

}∣
∣
∣
∣
Z(i)

}
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+ E2

{

E

{
N

∑
j=i+2

L0( j)
∣
∣
∣
∣
Z(i+ 1)

}∣
∣
∣
∣
Z(i)

}

+ 2E

{(
N

∑
j=i+2

L0( j)

)

L(i+ 1)
∣
∣
∣
∣
Z(i)

}

−2E

{
N

∑
j=i+2

L0( j)
∣
∣
∣
∣
Z(i)

}

E {L(i+ 1)|Z(i)}

+ 4µ(i)

[

E

{
N

∑
j=i+2

L0( j)+ L(i+ 1)
∣
∣
∣
∣
Z(i)

}

−M(i,Z(i))

]}

,

where γ(k) is a Lagrange multiplier, L0( j) = L( j,x( j),k∗( j−1)), and k∗ is the min-
imizing argument of (22).

Proof. From the one-step analysis, we see that the variance cost is minimized. We
need to prove by the method of induction that (22) holds. We shall assume that (22)
holds for time i + 1. We now will need to show that with this assumption, equa-
tion (22) is valid for time i. By the definition of VC0(i,Z(i)) we have

VC0(i,Z(i)) = min
k(i),··· ,k(N−1)

{

E{J2(i,x(i);k)|Z(i)}−E2{J(i,x(i);k)|Z(i)}

+ 4µ(i) [E{J(i,x(i);k)|Z(i)}−M(i,Z(i))]
}

,

which by substitution gives

V (i,Z(i)) = min
k(i),··· ,k(N−1)

{

E{(L(i+ 1)+ J(i+ 1,x(i+ 1);k))2|Z(i)}

−E2{L(i+ 1)+ J(i+ 1,x(i+ 1);k)|Z(i)}
+ 4µ(i) [E{J(i+ 1,x(i+ 1);k)|Z(i)}−M(i,Z(i))]

}

= min
k(i),··· ,k(N−1)

{

E{L2(i+ 1)|Z(i)}

+ 2E{L(i+ 1)J(i+ 1,x(i+ 1);k)|Z(i)}
+ E{J2(i+ 1,x(i+ 1);k)|Z(i)}−E2{L(i+ 1)|Z(i)}
−E2{J(i+ 1,x(i+ 1);k)|Z(i)}
−2E{L(i+ 1)|Z(i)}E{J(i+ 1,x(i+1);k)|Z(i)}
+ 4µ(i) [E{J(i+ 1,x(i+ 1);k)|Z(i)}−M(i,Z(i))]

}

where J is given in (3) with i in place of 0. Now by using the principle of optimality
we have

VC0(i,Z(i)) = min
k(i)

{

E{L2(i+ 1)|Z(i)}−E2{L(i+ 1)|Z(i)}
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+ 2E

{(
N

∑
j=i+2

L( j)0

)

L(i+ 1)|Z(i)

}

−2E

{
N

∑
j=i+2

L0( j)|Z(i)

}

E {L(i+ 1)|Z(i)}

+ E

⎧

⎨

⎩
E

⎧

⎨

⎩

(
N

∑
j=i+2

L0( j)

)2

|Z(i+ 1)

⎫

⎬

⎭
|Z(i)

⎫

⎬

⎭

−E

{

E2

{
N

∑
j=i+2

L0( j)|Z(i+ 1)

}

|Z(i)

}

+ E

{

E2

{
N

∑
j=i+2

L0( j)|Z(i+ 1)

}

|Z(i)

}

−E2

{

E

{
N

∑
j=i+2

L0( j)|Z(i+ 1)

}

|Z(i)

}

+ 4µ(i)

[

E{
N

∑
j=i+2

L0( j)+ L(i+ 1)|Z(i)}−M(i,Z(i))

]}

,

where we still only have the mean constraint for time i. But for time i+ 1, the mean
constraint is satisfied if the optimal solution k∗(i + 1,x(i + 1)) is played. Therefore
equation (22) is satisfied for time i. �

With this result we can now turn our attention to solving the special case when
the system is linear and the cost is quadratic. We apply the nonlinear, nonquadratic
cost results and get a recursion equation for this case. We then determine the optimal
MCV strategy for full-state feedback information.

4 Linear Quadratic Case

Let I again denote a subset of the integers with n0 as its smallest element and intro-
duce R

m×n and S
n×n where R

m×n represents the linear space of m×n real matrices
and S

n×n the real linear space of n× n symmetric matrices. Consider then the con-
trollable system described by the following stochastic difference equations:

x( j + 1) = A( j)x( j)+ B( j)u( j)+ w( j) , x(n0) = x0 , (23)

y( j) = x( j) , (24)

where A( j) ∈ R
n×n is bounded and nonsingular, and B( j) ∈ R

n×m is bounded, j ∈ I.
The actuation noise sequence, w( j), is a sequence of identically distributed, zero
mean, independent Gaussian variables with covariance matrix given by

E{w( j) >< w( j)} = QW , (25)
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where QW ∈ S
n×n is a time-invariant diagonal matrix, and where ·>< · : R

n ×R
n →

R
n×n is the dyad.

The loss function is given by

L( j,θ ( j),k( j−1)) = 〈θ ( j),R( j−1)θ 〉
+ 〈k( j−1),P( j−1)k( j−1)〉 , j ∈ I , (26)

where < ·, · >: R
n ×R

n → R is the Euclidean inner product and θ ( j) is the unique
solution of equation (23) satisfying the initial condition x(n0) = x0. R( j) and P( j)
are positive definite,5 bounded, and symmetric for all j, j ∈ I.

Similarly, the mean value constraint is given by

h(n0,Z(n0)) = m(n0)+ 〈θ (n0),M(n0)θ (n0)〉 , (27)

where m(n0) ∈ R
+ and the matrix M(n0) ∈ S

n×n must be bounded and positive defi-
nite. Both m(n0) and M(n0) must be selected such that

h(n0,Z(n0)) > α(n0,Z(n0)) , (28)

where α(n0,Z(n0)) is as given by equation (6).
The assumption of linear control laws leads naturally to quadratic optimal costs,

that is, for linear control laws it is always possible to write

VC0(i+ 1,Z(i+ 1)) = v0(i+ 1)+ 〈θ (i),V0(i+ 1)θ (i)〉 , (29)

where v0(i)∈R
+ and V0(i)∈ S

n×n is nonnegative definite, and where n0 ≤ i ≤N−1.
Therefore,

E{VC0(i+ 1,Z(i+ 1))|Z(i)} = v0(i+ 1)+ 〈β (i),V0(i+ 1)β (i)〉
+ Tr{V0(i+ 1)QW} . (30)

If the following definition is introduced, RM(i) = R(i)+ M(i + 1) for n0 ≤ i ≤
N−1, and the terminal conditions are given as m(N) = 0, M(N) = 0, v0(N) = 0, and
V0(N) = 0, then with some mathematical manipulations we have

VC0(i,Z(i)) = min
k(i),µ(i)

{

4〈β (i),RM(i)QW RM(i)β (i)〉

+ E
{

〈w(i),RM(i)w(i)〉2
}

−Tr2 {RM(i)QW}+ v0(i+ 1)

+ 〈β (i),V0(i+ 1)β (i)〉+ Tr{V0(i+ 1)QW}+ 4µ(i)
[

m(i+ 1)

+ 〈k(i),P(i)k(i)〉+ 〈β (i),RM(i)β (i)〉+ Tr{RM(i)QW}

−m(i)−〈θ (i),M(i)θ (i)〉
]}

, n0 ≤ i ≤ N −1, (31)

5The assumptions that QW be diagonal and R( j) be positive definite have been made for
convenience only.
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where β (i) = A(i)θ (i)+ B(i)k(i). Performing the minimization with respect to k(i),
the optimal MCV controller is given as

k0(i) = K0(i)θ (i) = −
[

BT (i)Λ(i)B(i)+ µ(i)P(i)
]−1

BT (i)Λ(i)A(i)θ (i), (32)

where
Λ(i) = RM(i)QW RM(i)+V0(i+ 1)/4 + µ(i)RM(i) (33)

for n0 ≤ i ≤ N−1. Using this optimal controller and performing the minimization in
terms of µ(i) we have the mean constraint

M(i) = KT
0 (i)P(i)K0(i)+ AT

0 (i)RM(i)A0(i)
m(i) = m(i+ 1)+ Tr{RM(i)QW}

(34)

and we also have the variance

V0(i) = AT
0 (i) [4RM(i)QW RM(i)+V0(i+ 1)]A0(i)

v0(i) = v0(i+ 1)+ Tr{V0(i+ 1)QW}+ E
{

〈w(i),RM(i)w(i)〉2
}

−Tr2 {RM(i)QW} ,

(35)
where A0(i) = A(i)+ B(i)K0(i) is the closed loop A matrix and n0 ≤ i ≤ N −1.

It is important to understand the differences between the recursion equations of a
minimum mean problem and those of a minimum cost variance problem. In a mini-
mum mean problem, the solution of the recursion equations leads to the minimum of
the expected value of a performance index and to its corresponding control law. In a
minimum cost variance problem, subsequent to the selection of µ(i), n0 ≤ i ≤ N−1,
solution of the recursion equations leads to a mean value of the performance index
together with its corresponding minimum cost variance and optimal control law. By
properly altering µ(i), n0 ≤ i ≤ N − 1, several such sets of expected values, min-
imum cost variances, and optimal control laws may be obtained. Clearly then, the
amount of information which the optimization procedure herein employed furnishes
concerning the performance index far exceeds that supplied by its mean value coun-
terpart. Furthermore, observe that the minimum mean problem is a particular case
of the problem herein solved, namely, it is the solution of the recursion equations in
the limit as µ(i) approaches infinity, n0 ≤ i ≤ N −1. Similarly, it may be shown that
when it is possible to set µ(i) equal to zero, n0 ≤ i ≤ N − 1, then one obtains the
solution of a MCV problem with no constraint on the mean value of the performance
index. Generally speaking, such “pure” cost variance minimizations are not available
in continuous time.

It is of interest to observe that the minimum cost variance corresponding to the
smallest mean is finite. More interesting, however, is the fact that under certain con-
ditions there exists a finite mean value whose corresponding V0(i) is zero, that is,
there exists a finite mean value whose corresponding minimum cost variance is inde-
pendent of the initial conditions. To prove this assertion, suppose QW and B(i) are
nonsingular, n0 ≤ i ≤ N −1. Then, replacing µ(i) by zero in the recursion equations,
it follows that
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K0(i) = B−1(i)A(i) , n0 ≤ i ≤ N −1, (36)

which, from equation (35), implies that V0(i) is zero, n0 ≤ i ≤ N −1.
In the preceding paragraph it was hinted that it is not always possible to replace

µ(i) by zero, the reason being that the solution of the recursion equations is contin-
gent upon the nonsingularity of the matrix BT (i)Λ(i)B(i)+ µ(i)P(i), n0 ≤ i ≤ N−1.

5 Application to First Generation Structural Benchmark
for Earthquakes

With the theory now well established, the control algorithm discussed is applied to
the First Generation Structural Benchmark under seismic excitation. The structure
under consideration is a three-story building excited by an earthquake. For control
purposes, the building has an active mass driver on the third floor. The benchmark
problem has a 28-state evaluation model. In the interest of control, a 10-state design
model is used. For more details on the building, models, and the discussion of the
performance criteria, the reader is encouraged to refer to [SDD98]. The benchmark
control design model is a continuous-time model, so to apply the results in this paper,
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Fig. 1. Building performance.



40 Luis Cosenza, Michael K. Sain, Ronald W. Diersing, and Chang-Hee Won

the model is discretized. Furthermore the state and control weighting matrices, R( j)
and P( j), are respectively selected to be 0.1I10 and 50, where I10 is the 10 by 10
identity matrix. For the MCV control, the parameter, µ , is selected to be 1.3× 106.
Simulation results appear in Figure 1 and Figure 2.

The results in Figure 1 represent the performance of the building. It is seen that
there is a significant reduction for each of these performance criteria. For the root-
mean-square criteria, J1 and J2, there is about a 30% reduction in the MCV case from
the LQG controller results. For peak response of the building, there is also a notable
decrease in the performance criteria. There is about a 16% reduction for J6 and an
8.4% reduction for J7.

With this reduction in the civil engineering criteria that deal with the building
performance, the question becomes: What about the criteria that deal with the con-
trol effort? As would seem likely, the increase in performance corresponds with an
increase in control effort, as seen in Figure 2. Despite this increase over the LQG
case, the control is still within the constraint imposed on the control in the bench-
mark problem. This suggests that the MCV control makes more efficient use of the
control resources available.
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Fig. 2. Control effort.
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6 Conclusion

A new version of the Bellman recursion equation for optimal cost variance has been
obtained for the problem of minimizing the variance of a cost, given a constraint
upon the cost mean. Although emphasis has been placed upon linear dynamical sys-
tems in discrete time, some of the steps were carried out for nonlinear, nonquadratic
cases. A complete solution of the recursion has been obtained for the case of full-
state measurements. However, the general recursion has been derived for the case of
noisy measurements, and the next step of the research is to complete the solution for
that case. The MCV controller was then applied to the First Generation Benchmark
for seismically excited structures. The results were compared to those of the LQG
control. The MCV controller showed substantial improvement over the LQG results,
while observing the given control constraints.
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