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Abstract. This paper investigates the relationship between automata-
and tableau-based inference procedures for Description Logics. To be
more precise, we develop an abstract notion of what a tableau-based al-
gorithm is, and then show, on this abstract level, how tableau-based algo-
rithms can be converted into automata-based algorithms. In particular,
this allows us to characterize a large class of tableau-based algorithms
that imply an ExpTime upper-bound for reasoning in the description
logics for which such an algorithm exists.

1 Introduction

Description logics (DLs) [1] are a family of knowledge representation languages
which can be used to represent the terminological knowledge of an application
domain in a structured and formally well-understood way. The name description
logics is motivated by the fact that, on the one hand, the important notions of
the domain are described by concept descriptions, i.e., expressions that are built
from atomic concepts (unary predicates) and atomic roles (binary predicates)
using the concept and role constructors provided by the particular DL. On the
other hand, DLs differ from their predecessors, such as semantic networks and
frames [21, 25], in that they are equipped with a formal, logic-based semantics,
which can, e.g., be given by a translation into first-order predicate logic.

Knowledge representation systems based on description logics (DL systems)
[22, 30] provide their users with various inference capabilities (like subsumption
and instance checking) that allow them to deduce implicit knowledge from the
explicitly represented knowledge. In order to ensure a reasonable and predictable
behavior of a DL system, these inference problems should at least be decidable,
and preferably of low complexity. Consequently, the expressive power of the DL
in question must be restricted in an appropriate way. If the imposed restrictions
are too severe, however, then the important notions of the application domain
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can no longer be expressed. Investigating this trade-off between the expressivity
of DLs and the complexity of their inference problems has been one of the most
important issues in DL research (see [9] for an overview of complexity results).

The focus of this research has, however, changed in the last 15 years. In
the beginning of the 1990ies, DL researchers investigated the border between
tractable and intractable DLs [11, 12], and systems that employed so-called
structural subsumption algorithms, which first normalize the concept descrip-
tions, and then recursively compare the syntactic structure of the normalized
descriptions, were still prevalent [19, 20, 23, 24]. It quickly turned out, how-
ever, that structural subsumption algorithms can handle only very inexpressive
languages, and that one cannot expect a DL of reasonable expressive power to
have tractable inference problems. For expressive DLs, tableau-based inference
procedures turned out to be quite useful. After the first such tableau-based sub-
sumption algorithm was developed by Schmidt-Schauß and Smolka [27] for the
DL ALC, this approach was extended to various other DLs and also to other
inference problems such as the instance problem (see [4] for an overview).

Most of these early tableau-based algorithms for DLs were of optimal worst-
case complexity: they treated DLs with a PSpace-complete subsumption prob-
lem, and the algorithms needed only polynomial space. Thus, by designing a
tableau-based algorithm for such a DL one could solve two problems simulta-
neously: prove an optimal complexity upper-bound, and describe an algorithm
that is easy to implement and optimize [2], thus yielding a practical reason-
ing system for this DL. [15] and RACER [13] are based on very expressive DLs
(like SHIQ [18]), which have an ExpTime-complete subsumption problem. high
worst-case complexity of the underlying logics, the systems FaCT and RACER
behave quite well in realistic applications. This is mainly due to the fact that
their implementors have developed a great variety of sophisticated optimiza-
tion techniques for tableau-based algorithms (see [16] for an overview of these
techniques). Tableau-based algorithms are, however, notoriously bad at prov-
ing ExpTime upper-bounds.1 In many cases, ExpTime upper-bounds are easily
established using automata-based approaches (see, e.g., Section 5.3 in [7]). How-
ever, to the best of our knowledge, there exist no practical DL reasoners based
on automata techniques. two different algorithms for every ExpTime-complete
DL, an automata-based one for establishing the exact worst-case complexity,
and a tableau-based one for the implementation.

This paper investigates the (rather close) relationship between automata- and
tableau-based algorithms. To be more precise, we develop an abstract notion of
what a tableau-based algorithm is, and then show, on this abstract level, how
tableau-based algorithms can be converted into automata-based algorithms. In
particular, this allows us to characterize a large class of tableau-based algorithms
that imply an ExpTime upper-bound for reasoning in the DLs for which such
an algorithm exists. We consider this to be a very useful result since, in many
cases, it eliminates the need for developing two algorithms for the same DL: one

1 treats the case of ALC with general concept inclusions (GCIs), and even in this
simple case the algorithm is very complicated.
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can now design a tableau-based algorithm, use our general result to obtain an
ExpTime upper-bound, and then base a practical implementation on the very
same algorithm. We illustrate the usefulness of our framework by reproving the
known ExpTime upper-bounds for the description logic ALC with general con-
cept inclusions [26], and for the extension ALCQI of ALC by qualified number
restrictions and inverse roles [8].

In the next section, we introduce the abstract notion of a tableau system.
In order to motivate and illustrate the technical definitions, we first consider
the example of a tableau-based algorithm for ALC with general concept inclu-
sions. In Section 3, we define additional restrictions on tableau systems that
ensure an exponential upper-bound on reasoning. This upper-bound is shown
via a translation of tableau systems into looping tree automata. In Section 4,
we show how tableau systems can directly be used to obtain a tableau-based de-
cision procedure, which can be the basis for an optimized implementation. The
main problem to be solved there is to ensure termination of the tableau-based
algorithm. In Section 5, we apply the abstract framework to a more complex
DL: we design a tableau system for the DL ALCQI, thus giving an alternative
proof of the known ExpTime upper-bound for reasoning in this DL. Finally, in
Section 6, we discuss possible variants and extensions of the abstract framework.

2 Formalizing Tableau Algorithms

In this section, we develop an abstract formalization of tableau algorithms. To
this end, we first discuss the standard tableau-based algorithm for the basic
description logic ALC, and then use this concrete example as a guide when
devising the abstract framework.

2.1 A Tableau Algorithm for ALC
We start with introducing the syntax and semantics of ALC:

Definition 1 (ALC Syntax). Let NC and NR be pairwise disjoint and countably
infinite sets of concept names and role names. The set of ALC-concepts CONALC
is the smallest set such that

– every concept name is an ALC-concept, and
– if C and D are ALC-concepts and r is a role name, then the following ex-

pressions are also ALC-concepts: ¬C, C � D, C � D, ∃r.C, ∀r.C.

A general concept inclusion (GCI) is an expression C � D, where both C and D
are ALC-concepts. A finite set of GCIs is called ALC-TBox. We use TBOXALC
to denote the set of all ALC-TBoxes.

As usual, we will use � as abbreviation for an arbitrary propositional tautology,
⊥ for ¬�, and C → D for ¬C � D.

Note that there exist several different TBox formalisms that vary consid-
erably w.r.t. expressive power (see [3]). The kind of TBoxes adopted here are
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among the most general ones available. They are supported by modern DL rea-
soners such as FaCT and RACER.

Like all DLs, ALC is equipped with a Tarski-style set-theoretic semantics.

Definition 2 (ALC Semantics). An interpretation I is a pair (∆I , ·I), where
∆I is a non-empty set, called the domain, and ·I is the interpretation function.
The interpretation function maps each concept name A to a subset AI of ∆I

and each role name r to a subset rI of ∆I × ∆I . It is extended to arbitrary
ALC-concepts as follows:

(¬C)I := ∆I \ CI

(C � D)I := CI ∩ DI

(C � D)I := CI ∪ DI

(∃r.C)I := {d ∈ ∆I | There is e ∈ ∆I with (d, e) ∈ rI and e ∈ CI}
(∀r.C)I := {d ∈ ∆I | For all e ∈ ∆I , if (d, e) ∈ rI , then e ∈ CI}

The interpretation I is a model of the ALC-concept C iff CI �= ∅, and it is a
model of the TBox T iff CI ⊆ DI holds for all C � D ∈ T .

The main inference problems related to a TBox are satisfiability and sub-
sumption of concepts.

Definition 3 (ALC Inference Problems). The ALC-concept C is satisfiable
w.r.t. the TBox T iff C and T have a common model, and C is subsumed by
the ALC-concept D w.r.t. the TBox T (written C �T D) iff CI ⊆ DI holds for
all models I of T .

Since C �T D iff C � ¬D is unsatisfiable w.r.t. T , it is sufficient to design a
satisfiability algorithm. We now discuss the standard tableau-based satisfiability
algorithm for ALC. This algorithm has first been described in [27]; more modern
accounts can, e.g., be found in [4]. It can rightfully be viewed as the ancestor
from which all state-of-the-art tableau-based algorithms for description logics are
descended. Such algorithms are nowadays the standard approach for reasoning
in DLs, and they underlie modern and efficient reasoning systems such as FaCT
and RACER, which are based on DLs that are much more expressive than ALC.

Tableau algorithms are characterized by an underlying data structure, a set
of completion rules, and a number of so-called clash-triggers. To decide the sat-
isfiability of an input concept C w.r.t. an input TBox T , the algorithm starts
with an initial instance of the data structure constructed from C and T , and
repeatedly applies completion rules to it. This rule application can be viewed
as an attempt to construct a model for the input, or as making implicit knowl-
edge explicit. Rule application continues until either one of the clash-triggers
applies, which means that the attempt to construct a model has failed, or all
implicit knowledge has been made explicit without encountering a clash-trigger.
In the latter case, the algorithm has succeeded to construct (a representation
of) a model. To be more precise, the tableau algorithms considered in this paper
may be non-deterministic, i.e., there may exist completion rules that yield more
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R� if C1 � C2 ∈ N (a) and {C1, C2} �⊆ N (a)
then N (a) := N (a) ∪ {C1, C2}

R� if C1 � C2 ∈ N (a) and {C1, C2} ∩ N (a) = ∅
then N (a) := N (a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃r.C ∈ N (a) and there is no r-successor b of a with C ∈ N (b),
then generate a new successor b of a, and set E(a, b) := r and N (b) := {C}

R∀ if ∀r.C ∈ N (a) and b is an r-successor of a with C /∈ N (b)
then set N (b) := N (b) ∪ {C}

RT if C � D ∈ T and nnf(C → D) /∈ N (a)
then set N (a) := N (a) ∪ {nnf(C → D)}

Fig. 1. Completion rules for ALC.

than one possible outcome. In this case, the algorithm returns “satisfiable” iff
there exists at least one way to apply the non-deterministic rules such that a
model of the input is obtained. Note that only the choice of the outcome of non-
deterministic rules is true “don’t know” non-determinism (and thus requires
backtracking), whereas the order of rule applications is basically “don’t care”
non-determinism.

Before we can define the data structure underlying the ALC tableau algo-
rithm, so-called completion trees, we must introduce some notation. Given an
ALC-concept C, its negation normal form is an equivalent2 concept such that
negation occurs only in front of concept names. Such a concept can easily be
computed by pushing negation as far as possible into concepts, using de Morgan’s
rules and the usual duality rules for quantifiers. We will denote the negation nor-
mal form of C by nnf(C). If C is an ALC-concept and T an ALC-TBox, then
we use sub(C, T ) to denote the set of all subconcepts of the concepts in the set

{nnf(C)} ∪
⋃

D�E∈T
{nnf(D → E)}.

Definition 4 (Completion Trees). Let C be an ALC-concept and T an ALC-
TBox. A completion tree for C and T is a labeled tree3 T = (V, E, N , E) of finite
out-degree such that (V, E) is a tree, each node a ∈ V is labeled with a subset
N (a) of sub(C, T ) and each edge (a, b) ∈ E is labeled with a role name E(a, b)
occurring in C or T .

The completion rules are given in Figure 1, where R� is the only non-
deterministic rule. To decide satisfiability of a concept C w.r.t. a TBox T , the
2 Two concepts are equivalent iff they subsume each other w.r.t. the empty TBox.
3 Here and in the following, a tree is an acyclic directed graph (V, E) with a unique

root where every node other than the root is reachable from the root and has exactly
one predecessor. The edge relation E is a subset of V × V , and thus the successors
of a given node are not ordered.



6 F. Baader et al.

ALC tableau algorithm starts with the initial completion tree

TC,T := ({x}, ∅, {x �→ {nnf(C)}, ∅)

and repeatedly applies completion rules. Rule application stops in one of the
following two cases:

1. the obtained completion tree T = (V, E, N , E) contains a clash, i.e. there is
a node a ∈ V and a concept name A such that {A, ¬A} ⊆ N (a);

2. T is saturated, i.e. no more completion rule is applicable to T .

If we consider only empty TBoxes (and thus drop the RT rule), then the
described algorithm terminates for any input and any sequence of rule applica-
tions. Things are not so simple if we admit non-empty TBoxes: because of the
RT rule, the algorithm need not terminate, both on satisfiable and on unsat-
isfiable inputs. For example, rule application to the concept � and the TBox
{� � ∃R.�} continues indefinitely. However, the algorithm then computes an
infinite “increasing” sequence of completion trees: in each step, the tree and its
node labels may only grow but never shrink. In case of non-termination, there
thus exists a unique completion tree computed by this run of the algorithm “in
the limit”. Thus, both terminating and non-terminating runs of the algorithm
“compute” a unique completion tree. This (possibly infinite) completion tree is
called saturated iff no more completion rule is applicable to it.

The tableau algorithm for ALC is sound and complete in the following sense:

– Soundness. If the algorithm computes a saturated and clash-free completion
tree for the input C, T , then C is satisfiable w.r.t. T .

– Completeness. If the input C, T is satisfiable, then there is a run of the
algorithm that computes a saturated and clash-free completion tree for this
input.

Given these notions of soundness and completeness, it should be clear that we
want our algorithm to compute saturated completion trees. Obviously, any ter-
minating run of the algorithm yields a saturated completion tree. For this reason,
the order of rule applications is in this case “don’t care” non-deterministic. For
a non-terminating run, this is only true if we require completion rules to be ap-
plied in a fair4 manner. Ensuring fairness is a simple task: we can, e.g., always
apply completion rules to those nodes in the tree that are as close to the root
as possible. This yields a fair strategy since the out-degree of completion trees
constructed for an input C, T is bounded by the cardinality of the set sub(C, T ).

Although the procedure as described until now does not necessarily terminate
and thus is no decision procedure for satisfiability, quite surprisingly we will
see that it already provides us with enough information to deduce an Exp-
Time upper-bound for ALC-concept satisfiability (and thus, in particular, with
a decidability result). This will be shown by a translation into a tree automaton,
4 Intuitively, fairness means that rules are applied such that every applicable rule will

eventually be applied unless it is made inapplicable by the application of other rules.
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which basically accepts saturated and clash-free completion trees for the input.
We view this as a rather convenient feature of our framework: to obtain an Exp-
Time decision procedure, it is sufficient to design a sound and complete tableau
algorithm and not even bother to prove termination, a usually hard task (see
Section 3 for details). Moreover, we will show in Section 4 that a given non-
terminating sound and complete tableau procedure can always be turned into a
terminating sound and complete procedure. This yields a tableau-based decision
procedure, which is, however, not necessarily of ExpTime complexity.

2.2 The General Framework

We now develop a general notion of tableau algorithms. It is in the nature of
this endeavor that our formalism will be a rather abstract one. We start with
defining the core notion: tableau systems. Intuitively, the purpose of a tableau
system is to capture all the details of a tableau algorithm such as the one for
ALC discussed in the previous section. The set I of inputs used in the following
definition can be thought of as consisting of all possible pairs (C, T ) of concepts
C and TBoxes T of the DL under consideration.

Definition 5 (Tableau System). Let I be a set of inputs. A tableau system
for I is a tuple

S = (NLE, EL, ·S , R, C),

where NLE and EL are sets of node label elements and edge labels, respectively,
and ·S is a function mapping each input Γ ∈ I to a tuple

ΓS = (nle, el, ini)

such that

– nle ⊆ NLE and el ⊆ EL are finite;
– ini is a subset of ℘(nle), where ℘(·) denotes powerset.

The definitions of R and C depend on the notion of an S-pattern, which is a
finite labeled tree

(V, E, n, �),

of depth at most one with n : V → ℘(NLE) and � : E → EL node and edge labeling
functions.

– R, the collection of completion rules, is is a function mapping each S-pattern
to a finite set of non-empty finite sets of S-patterns;

– C, the collection of clash-triggers, is a set of S-patterns.

To illustrate tableau systems, we now define a tableau system SALC that de-
scribes the ALC tableau algorithm discussed in the previous section. Intuitively,
NLE is the set of elements that may appear in node labels of completion trees,
independently of the input. In the case of ALC, NLE is thus simply CONALC .
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Similarly, EL is the set of edge labels, also independently of the input. In the
case of ALC, EL is thus the set of role names NR.

The function ·S describes the impact of the input on the form of the con-
structed completion trees. More precisely, nle fixes the node label elements that
may be used in a completion tree for a particular input, and el fixes the edge
labels. Finally, ini describes the possible initial node labels of the root of the com-
pletion tree. Note that the initial root label is not necessarily unique, but rather
there can be many choices—a possible source of (don’t know) non-determinism
that does not show up in the ALC algorithm.

To illustrate the function ·S , let us define it for the tableau system SALC .
For simplicity, we write nleSALC (C, T ) to refer to the first element of the tuple
(C, T )SALC , elSALC (C, T ) to refer to the second element of the tuple (C, T )SALC ,
and so forth. For each input C, T ∈ CONALC × TBOXALC , we have

nleSALC (C, T ) = sub(C, T );
elSALC (C, T ) = {r ∈ NR | r appears in C or T };
iniSALC (C, T ) = {{nnf(C)}}.

It remains to formalize the completion rules and clash-triggers. First observe
that, in the ALC tableau, every clash-trigger, every rule premise, and every rule
consequence concerns only a single node either alone or together with its succes-
sors in the completion tree. This observation motivates our definition of patterns,
which formalize clash-triggers as well as pre- and post-conditions of completion
rules. The collection of completion rules R maps patterns to finite sets of finite
sets of patterns. Intuitively, if P is a pattern and {P1, . . . , Pk} ∈ R(P ), then this
means that a rule of the collection can be applied to completion trees matching
the pattern P , non-deterministically replacing the “area” matching P with an
“area” matching one of the patterns P1, . . . , Pk (we will give a formal definition
of this later on). If {P1, . . . , Pk} ∈ R(P ), then we will usually write

P →R {P1, . . . , Pk}

to indicate the rule induced by this element of R(P ). Similar to the application
of such a rule, a completion tree contains a clash if this completion tree matches
a pattern in C.

To illustrate this, let us again consider the case of ALC. For ALC, the set
of clash-triggers C consists of all patterns whose root label contains both A and
¬A for some concept name A. Thus, a completion tree contains a clash if one of
its nodes labels contains A and ¬A for some concept name A.

With one exception, the collection of completion rules is defined by a straight-
forward translation of the rules in Figure 1. For each pattern P = (V, E, n, �)
with root v0, R(P ) is the smallest set of finite sets of patterns such that the
following holds:

R� if the root label n(v0) contains the concept C � D and {C, D} �⊆ n(v0),
then R(P ) contains the singleton set {(V, E, n′, �)}, where n′(v) = n(v) for
all v ∈ V \ {v0} and n′(v0) = n(v0) ∪ {C, D};
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R� if the root label n(v0) contains the concept C � D and {C, D} ∩ n(v0) =
∅, then R(P ) contains the set {(V, E, n′, �), (V, E, n′′, �)}, where n′(v) =
n′′(v) = n(v) for all v ∈ V \ {v0} and n′(v0) = n(v0) ∪ {C} and n′′(v0) =
n(v0) ∪ {D};

R∃ if the root label n(v0) contains the concept ∃r.C, u1, . . . , um are all the sons
of v0 with �(v0, ui) = r, and C �∈ n(ui) for all i, 1 ≤ i ≤ m, then R(P )
contains the set {P0, P1, . . . , Pm}, where
– P0 = (V0, E0, n0, �0), where u0 is a node not contained in V , V0 = V ∪

{u0}, E′ = E ∪{(v0, u0)}, n0 = n∪{u0 �→ {C}}, �′ = �∪{(v0, u0) �→ r},
– for i = 1, . . . , m, Pi = (V, E, ni, �), where ni(v) = n(v) for all v ∈ V \{ui}

and ni(ui) = n(ui) ∪ {C};

R∀ if n(v0) contains the concept ∀r.C, �(r, v1) = r for some v1 ∈ V , and
C /∈ n(v1), then R(P ) contains {(V, E, n′, �)}, where n′(v) = n(v) for all
v ∈ V \ {v1} and n′(v1) = n(v1) ∪ {C};

RT if C � D ∈ T and nnf(C → D) /∈ n(v0), then R(P ) contains the set
{(V, E, n′, �)}, where n′(v) = n(v) for all v ∈ V \ {v0} and n′(v0) = n(v0) ∪
{nnf(C → D)}.

The exception is the treatment of existential restrictions. The rule in Figure 1
is deterministic: it always generates a new r-successor of the given node. In
contrast, the rule handling existential restrictions introduced above (don’t know)
non-deterministically chooses between generating a new successor or re-using one
of the old ones. Basically, this is the price we have to pay for having a very general
framework. The reason why one can always create a new individual when treating
existential restrictions in ALC is that ALC is invariant under bisimulation [5],
and thus one can duplicate successors in models without changing validity. We
could have tailored our framework such that the deterministic rule for ALC can
be used, but then we basically would have restricted its applicability to DLs
invariant under bisimulation (see Section 6 for a more detailed discussion of this
issue).

Let us now continue with the general definitions. Tableau systems are a rather
general notion. In fact, as described until now they are too general to be useful for
our purposes. For example, tableau algorithms described by such tableau systems
need not be monotonic: completion rules could repeatedly (even indefinitely) add
and remove the same piece of information. To prevent such pathologic behavior,
we now formulate a number of conditions that “well-behaved” tableau systems
are supposed to satisfy. For the following definitions, fix a set of inputs I and a
tableau system S = (NLE, EL, ·S , R, C) for I. Before we can define admissibility
of tableau systems, we must introduce an “inclusion relation” between patterns.

Definition 6. Let P = (V, E, n, �) and P ′ = (V ′, E′, n′, �′) be S-patterns. We
write P � P ′ iff the following conditions are satisfied: there is an injection
π : V → V ′ that maps the root of P to the root of P ′ and satisfies the following
conditions:
– for all x ∈ V , we have n(x) ⊆ n′(π(x));
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– for all x, y ∈ V , if (x, y) ∈ E, then (π(x), π(y)) ∈ E′ and
�(x, y) = �′(π(x), π(y));

If π is the identity on V , then we write P � P ′ (and P ≺ P ′ if, additionally,
P �= P ′). If π is a bijection and n(x) = n′(π(x)) for all x ∈ V , then we write
P ∼ P ′. To make the injection (bijection) π explicit, we sometimes write P �π

P ′ (P ∼π P ′).

Let Γ ∈ I be an input. We say that P is a pattern for Γ iff the labels of
all nodes in P are subsets of nleS(Γ ) and the labels of all edges in P belong to
elS(Γ ). The pattern P is saturated iff R(P ) = ∅.
Definition 7 (Admissible). The tableau system S is called admissible iff it
satisfies, for all S-patterns P = (V, E, n, �) and P ′ = (V ′, E′, n′, �′), the following
conditions:
1. If P →R {P1, . . . , Pk}, then P ≺ Pi for all i, 1 ≤ i ≤ k.
2. If P →R {P1, . . . , Pk}, P ′ is saturated, and P � P ′, then there exists an

i, 1 ≤ i ≤ k, such that Pi � P ′.
3. For all inputs Γ ∈ I, if P is a pattern for Γ and P →R {P1, . . . , Pk}, then

the patterns Pi are patterns for Γ .
4. If P ∈ C and P � P ′, then P ′ ∈ C.

It is in order to discuss the intuition underlying the above conditions. Condition 1
basically says that rule application always adds nodes or elements of node labels.
Condition 2 can be understood as follows. Assume that a (non-deterministic) rule
is applicable to P and that P ′ is a “superpattern” of P that is saturated (i.e.,
all applicable rules have already been applied). Then the non-deterministic rule
can be applied in such a way that the obtained new pattern is still a subpattern
of P ′. Intuitively, this condition can be used to reach P ′ from P by repeated rule
application. Condition 3 says that, by applying completion rules for some input
Γ , we stay within the limits given by the values of the ·S function. Condition 4
states that applicability of clash-triggers is monotonic, i.e., if a pattern triggers
a clash, all its “superpatterns” also trigger a clash.

It is easy to see that these conditions are satisfied by the tableau system
SALC for ALC. For Condition 1, this is obvious since the rules only add nodes
or elements of node labels, but never remove them. Condition 3 holds since rules
only add subconcepts of existing concepts to the node label. Condition 4 is also
clear: if the label of the root of P contains A and ¬A, then the label of the root
of every superpattern also contains A and ¬A.

The most interesting condition is Condition 2. We illustrate it by considering
the treatment of disjunction and of existential restrictions in SALC . First, assume
that P →R {P1, P2} where the root label of P contains C�D and the root labels
of P1 and P2 are obtained from the root label of P by respectively adding C and
D. If P � P ′, then the root label of P ′ also contains C �D. If, in addition, P ′ is
saturated, then its root label already contains C or D. In the first case, P ′ � P1
and in the second P ′ � P2.

Second, consider the rules handling existential restrictions. Thus, let P � P ′,
and assume that the root label of P contains the existential restriction ∃r.C and
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that the root of P has m r-successors u1, . . . , um. Then the existential restriction
∃r.C induces the rule P →R {P0, . . . , Pm} where the patterns P0, . . . , Pm are as
defined above. If, in addition, P ′ is saturated, then its root has an r-successor
whose label contains C. If this is a “new” r-successor (i.e., one not in the range
of the injection π that ensures P � P ′), then P0 � P ′.5 Otherwise, there is an
r-successor ui of the root of P such that the label of π(ui) in P ′ contains C. In
this case, Pi � P ′.

We now introduce S-trees, the abstract counterpart of completion trees, and
define what it means for a pattern to match into an S-tree.

Definition 8 (S-Tree, Matching). An S-tree is a labeled tree T = (V, E, n, �)
with finite out-degree, a countable set of nodes V , and the node and edge labeling
functions n : V → ℘(NLE) and � : E → EL.

Any node x ∈ V defines a pattern T, x, the neighborhood of x in T , as
follows: T, x := (V ′, E′, n′, �′) where

– V ′ = {x} ∪ {y ∈ V | (x, y) ∈ E};
– E′, n′, �′ are the restrictions of E, n, � to V ′;

If P = (V ′, E′, n′, �′) is an arbitrary S-pattern and x ∈ V , then we say that
P matches x in T iff P ∼ T, x (see Definition 6).

For the tableau system for ALC introduced above, SALC-trees are exactly the
completion trees defined in Section 2.

We are now ready to describe rule application on an abstract level. Intuitively,
the rule P →R {P1, . . . , Pk} can be applied to the node x in the tree T if
P ∼ T, x, and its application yields the new tree T ′, which is obtained from
T by adding new successor nodes of x and/or extending the node labels, as
indicated by some Pi. This intuition is formalized in the following definition.

Definition 9 (Rule Application). Let S be an admissible tableau system,
T = (V, E, n, �) be an S-tree, and P →R {P1, . . . , Pk} be a rule of S. The S-tree
T ′ = (V ′, E′, n′, �′) is obtained from T by application of this rule to a node x ∈ V
iff the following holds:

1. V ⊆ V ′;
2. E′ = E ∪ {(x, y) | y ∈ V ′ \ V };
3. �′ extends �, i.e., �(y, z) = �′(y, z) for all (y, z) ∈ E;
4. P ∼π T, x for some bijection π;
5. Pi ∼π′ T ′, x for some i, 1 ≤ i ≤ k and bijection π′ extending π;6

6. for all y ∈ V with y /∈ ran(π), we have n(y) = n′(y).

5 This shows that we cannot replace � by  in the statement of Condition 2. In fact,
we cannot be sure that the new successor introduced in P0 has the same name as
the new successor in P ′.

6 Note that Condition 1 in the definition of admissibility implies that Pi differs from
P in that the root may have additional successors, and that the node labels may
be larger. Thus, π′ differs from π in that the additional successors of the root are
mapped to the elements of V ′ \ V .
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Thus, rule application may add some new successors of x, may extend the la-
bels of the existing successors of x and of x itself, and otherwise leaves the
edge relation and the node and edge labels unchanged. For a fixed rule P →R
{P1, . . . , Pk}, a fixed choice of Pi, and a fixed node x in T , the results of the
rule application is unique up to the names of the new nodes in V ′ \ V . It is easy
to check that, in the case of SALC , rule application as defined above captures
precisely the intuitive understanding of rule application employed in Section 2.

To finish our abstract definition of tableau algorithms, we need some way to
describe the set of S-trees that can be obtained by starting with an initial S-tree
for an input Γ , and then repeatedly applying completion rules. This leads to the
notion of S-trees for Γ .

Definition 10 (S-Tree for Γ ). Let S be an admissible tableau system, and let
Γ be an input for S. The set of S-trees for Γ is the smallest set of S-trees such
that

1. All initial S-trees for Γ belong to this set, where an initial S-tree for Γ is of
the form

({v0}, ∅, {v0 �→ Λ}, ∅)

where v0 is a node and Λ ∈ iniS(Γ ).
2. If T is an S-tree for Γ and T ′ can be obtained from T by the application of

a completion rule, then T ′ is an S-tree for Γ .
3. If T0, T1, . . . is an infinite sequence of S-trees for Γ with Ti = (Vi, Ei, ni, �i)

such that
(a) T0 is an initial S-tree for Γ and
(b) for all i ≥ 0, Ti+1 can be obtained from Ti by the application of a com-

pletion rule,
then the tree Tω = (V, E, n, �) is also an S-tree for Γ , where
– V =

⋃
i≥0 Vi,

– E =
⋃

i≥0 Ei,
– n =

⋃
i≥0 ni, and

– � =
⋃

i≥0 �i.

Rule application may terminate after finitely many steps or continue forever.
The last case of Definition 10 deals with such infinite sequences of rule appli-
cations. The S-tree Tω can be viewed as the limit of the sequence of S-trees
T0, T1, . . . This limit exists since admissibility of S implies that rule application
is monotonic, i.e., it extends S-trees by new nodes or by additional elements in
node labels, but it never removes nodes or elements of node labels.

Let us now define when an S-tree is saturated and clash-free.

Definition 11 (Saturated, Clash-Free). Let S be an admissible tableau sys-
tem. We say that the S-tree T = (V, E, n, �) is

– saturated if, for every node x in T and every pattern P , P ∼ T, x implies
R(P ) = ∅;

– clash-free if, for every node x in T and every P ∈ C, we have P �∼ T, x.
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Saturatedness says that no completion rule is applicable to the S-tree, and an
S-tree is clash-free if no clash-trigger can be applied to any of its nodes.

Finally, we define soundness and completeness of tableau systems w.r.t. a
certain property of its set of inputs. If the inputs are pairs consisting of a concept
and a TBox, the property is usually satisfiability of the concept w.r.t. the TBox.

Definition 12 (Sound, Complete). Let P ⊆ I be a property. The tableau
system S is called
– sound for P iff, for any Γ ∈ I, the existence of a saturated and clash-free

S-tree for Γ implies that Γ ∈ P;
– complete for P iff, for any Γ ∈ P, there exists a saturated and clash-free

S-tree for Γ .

It should be noted that the algorithmic treatment of tableau systems requires
a stronger notion of completeness: an additional condition is needed to ensure
that the out-degree of S-trees is appropriately bounded (see Definition 13 and
Definition 20 below).

Taking into account the known soundness and completeness results for the
ALC tableau algorithm described in Figure 1, it is straightforward to check that
the tableau system SALC is sound and complete w.r.t. satisfiability of concepts
w.r.t. TBoxes. Note, in particular, that saturated S-trees for an input Γ are
precisely those S-trees for Γ that can be obtained by exhaustive or infinite and
fair rule application.

3 ExpTime Automata-Based Decision Procedures
from Tableau Systems

In this section, we define the class of “ExpTime-admissible” tableau systems. If
such a tableau system is sound and complete for a property P, then it gives rise
to an ExpTime algorithm for deciding P.7 In the case where P is satisfiability
of description logic concepts w.r.t. a (general) TBox, this means that the mere
existence of an ExpTime-admissible tableau system for the DL implies an Exp-
Time upper-bound for concept satisfiability w.r.t. (general) TBoxes in this DL.
The ExpTime upper-bound is shown via a translation of the inputs of the Exp-
Time-admissible tableau system into certain automata working on infinite trees.
For this reason, ExpTime-admissible tableau systems need not deal with the
issue of termination. Indeed, non-terminating tableau algorithms such as the
one for ALC with general TBoxes introduced in Section 2.1 may yield ExpTime-
admissible tableau systems.

Throughout this section, we consider a fixed set of inputs I and a fixed
tableau system S = (NL, EL, ·S , R, C) for I, which is sound and complete w.r.t.
some property P.7 As usual, the exponential upper-bound of deciding P is as-
sumed to be in the “size” of the input Γ ∈ I. Thus, we assume that the set
7 More precisely, we must demand a slightly stronger version of completeness, as in-

troduced in Definition 13 below.
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of inputs is equipped with a size function, which assigns to an input Γ ∈ I a
natural number, its size |Γ |.

3.1 Basic Notions

Recall that a tableau system S is sound and complete for a property P if, for
any input Γ , we have Γ ∈ P iff there exists a (potentially infinite) saturated
and clash-free S-tree for Γ . The fundamental idea for obtaining an ExpTime
upper-bound for deciding P is to use automata on infinite trees to check for the
existence of a clash-free and saturated S-tree for a given input Γ . More precisely,
each input Γ is converted into a tree automaton AΓ such that there exists a clash-
free and saturated S-tree for Γ iff AΓ accepts a non-empty language. Since tree
automata work on trees of some fixed out-degree, this approach only works if
the (size of the) input determines such a fixed out-degree for the S-trees to be
considered. This motivates the following definition.

Definition 13 (p-Complete). Let p be a polynomial. The tableau system S is
called p-complete for P iff, for any Γ ∈ P, there exists a saturated and clash-free
S-tree for Γ with out-degree bounded by p(|Γ |).
Throughout this section, we assume that there exists a polynomial p such that
the fixed tableau system S is p-complete w.r.t. the property P under considera-
tion.

The tableau system SALC defined in Section 2 is easily proved to be i-
complete, with i being the identity function on the natural numbers: using the
formulation of the rules, it is easily proved that the out-degree of every SALC-
tree for the input (C, T ) is bounded by the number of concepts of the form ∃r.D
in sub(C, T ) and thus also by

|(C, T )| := |C| +
∑

C1�C2∈T
(|nnf(C1 → C2)|),

where |E| denotes the length of the concept E.
It should be noted that most standard description logic tableau algorithms

also exploit p-completeness of the underlying logic: although this is not made
explicit in the formulation of the algorithm itself, it is usually one of the central
arguments in termination proofs. The intuition that p-completeness is not an
artefact of using an automata-based approach is reinforced by the fact that a
similar strengthening of completeness is needed in Section 4, where we construct
tableau-based decision procedures from tableau systems.

To ensure that the automaton AΓ can be computed and tested for emptiness
in exponential time, we require the function ·S of the tableau system S and the
rules of S to exhibit an “acceptable” computational behavior. This is captured
by the following definition. In this definition, we assume that all patterns are
appropriately encoded in some finite alphabet, and thus can be the input for a
decision procedure. The size of a pattern P is the sum of the sizes of its node
and edge labels, where the size of a node label is the sum of the sizes of its node
label elements.
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Definition 14 (ExpTime-Admissible). The tableau system S is called Exp-
Time-admissible iff the following conditions are satisfied:

1. S is admissible (see Definition 7);
2. iniS(Γ ) and elS(Γ ) can be computed in time exponential in |Γ |, and the size

of each edge label in elS(Γ ) is polynomial in |Γ |;
3. the cardinality of nleS(Γ ) and the size of each node label element in nleS(Γ )

is polynomial in |Γ |, and nleS(Γ ) can be computed in time exponential in
|Γ |;

4. for each pattern P it can be checked in time exponential in the size of P
whether, for all patterns P ′, P ′ ∼ P implies R(P ′) = ∅;

5. for each pattern P it can be checked in time exponential in the size of P
whether there is a clash-trigger P ′ ∈ C such that P ′ ∼ P .

Note that Point 2 of ExpTime-admissibility implies that, for each Γ ∈ I, the
cardinality of the sets iniS(Γ ) and elS(Γ ) are at most exponential in |Γ |. The
cardinality of the set of node label elements nleS(Γ ) is explicitly required (in
Point 3) to be polynomial. For the actual set of node labels (which are sets of
node label elements), this yields an exponential upper-bound on its cardinality,
but the size of each node label is polynomial in |Γ |. Since p-completeness implies
that we consider only S-trees T of out-degree bounded by p(|Γ |), and since the
sizes of edge and node labels are polynomial in |Γ |, the size of each neighborhood
T, x is polynomial in |Γ |. Thus, the fourth point ensures that the saturatedness
condition can be checked in time exponential in |Γ | for a given neighborhood
T, x of T . The fifth point yields the same for clash-freeness.

Most standard description logic tableau algorithms for ExpTime-complete
DLs trivially satisfy the conditions of ExpTime-admissibility. For example, it is
easy to show that the tableau system SALC defined in Section 2 is ExpTime-
admissible. We have already shown admissibility of SALC , and Point 2 and 3
are immediate consequences of the definitions of iniSALC , nleSALC , and elSALC .
To see that Points 4 and 5 are satisfied as well, first note that the definition of
the rules and clash-triggers in SALC is invariant under isomorphism of patterns.
For this reason, the decision problem in Point 4 reduces to checking whether a
given pattern P is saturated (see the definition of this notion below Definition 6),
and the decision problem in Point 5 reduces to checking whether a given pat-
tern is a clash-trigger. As an example, we consider the rule handling existential
restrictions. Let P = (V, E, n, �) be a pattern with root v0, and assume that
∃r.C ∈ n(v0). This existential restriction contributes a set of patterns to R(P )
iff C �∈ n(u) for all r-successors u of v0. Obviously, this can be checked in time
polynomial in the size of the pattern.

The remainder of the present section is concerned with converting tableau
systems into automata-based decision procedures, as outlined above. The ma-
jor challenge is to bring together the different philosophies underlying tableau
algorithms and automata-based approaches for deciding concept satisfiability:
tableau algorithm actively try to construct a model for the input by applying
rules, as reflected in the Definitions 9 and 10, whereas automata are based on
the concept of “acceptance” of a tree, i.e., they verifying whether a given tree
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actually describes a model. Of course, the emptiness test for the automaton then
again checks whether such a tree exists. Due to these different perspectives, it
is not straightforward to construct automata that directly check for the exis-
tence of S-trees for an input Γ . To overcome this problem, we first introduce
the (less constructive) notion of S-trees compatible with Γ , and investigate the
relationship of this notion to S-trees for Γ , as introduced in Definition 10.

Definition 15 (S-Tree Compatible with Γ ). Let Γ be an input and T =
(V, E, n, �) an S-tree with root v0. Then T is compatible with Γ iff it satisfies
the following conditions:

1. n(x) ⊆ ℘(nleS(Γ )) for each x ∈ V ;
2. �(x, y) ∈ elS(Γ ) for each (x, y) ∈ E;
3. there exists Λ ∈ iniS(Γ ) such that Λ ⊆ n(v0);
4. the out-degree of T is bounded by p(|Γ |).

Below, we will show that, given an ExpTime-admissible tableau system S that
is sound and p-complete for some property P and an input Γ for S, we can
construct a looping tree automaton of size exponential in the size of Γ that
accepts exactly the saturated and clash-free S-trees compatible with Γ . Since the
emptiness problem for looping tree automata can be decided in time polynomial
(actually, linear) in the size of the automaton, this shows that the existence of
saturated and clash-free S-trees compatible with Γ can be decided in exponential
time. Since S is sound and p-complete for P, we have Γ ∈ P iff there is a
saturated and clash-free S-tree for Γ . Thus, we must investigate the connection
between S-trees for Γ and S-trees compatible with Γ . This is done in the next
lemma.

In the proof of the lemma, we need sub-tree relations between S-trees in
analogy to the inclusion relations “�” and “�” between patterns introduced in
Definition 6. These relations are defined on trees exactly as for patterns, and we
also use the same relation symbols for them.

Lemma 1. There exists a clash-free and saturated S-tree that is compatible
with Γ iff there exists a clash-free and saturated S-tree for Γ .

Proof. The “if” direction is straightforward: let T = (V, E, n, �) be a clash-free
and saturated S-tree for Γ . Since S is sound and p-complete for P, we can w.l.o.g.
assume that the out-degree of T is bounded by p(|Γ |). It is not hard to show
that T is compatible with Γ , i.e. satisfies Conditions 1 to 4 of Definition 15:

– Each initial S-tree satisfies Conditions 1 and 2 of compatibility, and Con-
dition 3 of admissibility ensures that rule application adds only node label
elements from nleS(Γ ) and edge labels from elS(Γ ).

– Each initial S-tree satisfies Condition 3 of compatibility, and rule application
cannot delete elements from node labels.

– Since we assume the out-degree of T to be bounded by p(|Γ |), Condition 4
of compatibility is also satisfied.
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Now for the “only if” direction. Let T = (V, E, n, �) be a clash-free and saturated
S-tree with root v0 that is compatible with Γ . To construct a clash-free and
saturated S-tree for Γ , we first construct a (possibly infinite) sequence

T1 � T2 � T3 � · · ·

of S-trees for Γ such that Ti �πi
T for all i ≥ 1. The construction will be

such that the injections πi that yield Ti � T also build an increasing chain, i.e.,
πi+1 extends πi for all i ≥ 1. In the construction, we use a countably infinite
set V ′ from which the nodes of the trees Ti are taken. We fix an arbitrary
enumeration x0, x1, . . . of V ′, and write x < y if x ∈ V ′ occurs before y ∈ V ′ in
this enumeration. We then proceed as follows:

– Since T is compatible with Γ , there exists Λ ∈ iniS(Γ ) such that Λ ⊆ n(v0).
Define T1 to be the initial S-tree ({x0}, ∅, {x0 �→ Λ}, ∅). Obviously, T1 �π1 T
for π1 := {x0 �→ v0}.

– Now, assume that Ti �πi T is already constructed. If Ti is saturated, then
Ti is the last tree in the sequence. Otherwise, choose the least node x in Ti

(w.r.t. the fixed ordering < on V ′) such that P ∼ Ti, x for some pattern
P that is not saturated, i.e. there exists a rule P →R {P1, . . . , Pk}. Since
Ti �πi T , we have P � T, πi(x). Since T is saturated, the pattern T, πi(x) is
saturated. By Condition 2 of admissibility, we have Pj � T, πi(x) for some
j with 1 ≤ j ≤ k. We apply the rule P →R {P1, . . . , Pk} to x in Ti such
that Pj ∼ Ti+1, x. If Ti+1 contains new nodes, then they are taken from V ′.
Admissibility yields Ti � Ti+1 and the fact that Pj � T, πi(x) implies that
we can define an injection πi+1 such that Ti+1 �πi+1 T .

In the definition of the clash-free and saturated S-tree T ∗ for Γ , we distinguish
two cases:

1. if the constructed sequence is finite and Tn is the last tree in the sequence,
then set T ∗ := Tn;

2. otherwise, let T ∗ be the S-tree Tω obtained from the sequence T1, T2, . . . as
in Case 3 of Definition 10.

In both cases, T ∗ is obviously an S-tree for Γ by definition. In addition, we have
T ∗ �π T where π is the injection obtained as the union of the injections πi for
i ≥ 1.

It remains to be shown that T ∗ is clash-free and saturated. We concentrate
on the second case, where T ∗ = Tω, since the first case is similar, but simpler.
Clash-freeness is an easy consequence of T ∗ � T . In fact, by Condition 4 of
admissibility, clash-freeness of T implies that T ∗ � T is also clash-free.

To show saturatedness of T ∗, we must look at T ∗ and its relationship to the
trees Ti in more detail. Since Ti � T ∗ � T and the out-degree of T is bounded
by p(|Γ |), the out-degrees of the trees Ti and T ∗ are also bounded by p(|Γ |). For
a given node x of T ∗, we consider its neighborhood T ∗, x. Since the rules of S
only add nodes or elements of node labels (see Condition 1 in the definition of
admissibility), and since the out-degree of x is bounded by p(|Γ |) and the set
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nleS(Γ ) is finite, there is an i such that x is a node of Ti and “the neighborhood
of x does not change after step i,” i.e., Ti, x = Ti+1, x = . . . = T ∗, x.

Now assume that T ∗ is not saturated, i.e., there exists a node x in T ∗ to
which a rule applies, i.e., P ∼ T ∗, x for some pattern P with R(P ) �= ∅. Let i
be such that Ti, x = Ti+1, x = . . . = T ∗, x. Thus, for j ≥ i, a rule applies to
the node x in Ti. In the construction of the sequence T1, T2, T3, . . ., we apply a
rule only to the least node to which a rule is applicable. Consequently, from the
ith step on, we only apply rules to nodes y ≤ x. Since there are only finitely
many such nodes (see the definition of the order < above), there is one node
y ≤ x to which rules are applied infinitely often. However, each rule application
strictly increases the number of successors of y, or the label of y or of one of its
successors. This contradicts the fact that the out-degree of y in the trees Ti is
bounded by p(|Γ |) and all node labels are subsets of the finite set nleS(Γ ). ��

3.2 Accepting Compatible S-Trees Using Looping Automata

Recall that we assume our tableau system S to be sound and p-complete w.r.t. a
property P. By Lemma 1, to check whether an input has property P, it thus suf-
fices to verify the existence of a saturated and clash-free S-tree that is compatible
with Γ . In this section, we show how this can be done using an automata-based
approach.

As usual, the automata work on k-ary infinite trees (for some fixed natural
number k) whose nodes are labeled by elements of a finite label set and whose
edges are ordered, i.e., we can talk about the i-th son of a node. To be more
precise, let M be a set and k ≥ 1. A k-ary M -tree is a mapping T : {1, . . . , k}∗ →
M that labels each node α ∈ {1, . . . , k}∗ with T (α) ∈ M . Intuitively, the node
αi is the i-th child of α. We use ε to denote the empty word, corresponding to
the root of the tree.

Definition 16 (Looping Tree Automata). A looping tree automaton A =
(Q, M, I, ∆) working on k-ary M -trees consists of a finite set Q of states, a
finite alphabet M , a set I ⊆ Q of initial states, and a transition relation ∆ ⊆
Q × M × Qk.

A run of A on an M -tree T is a mapping R : {1, . . . , k}∗ → Q such that
R(ε) ∈ I and

(R(α), T (α), R(α1), . . . , R(αk)) ∈ ∆

for each α ∈ {1, . . . , k}∗. The language of k-ary M -trees accepted by A is

L(A) := {T | there is a run of A on the k-ary M -tree T}.

Note that, in contrast to the S-trees considered above, the trees defined here
are infinite trees of a fixed arity k, where edges are not labeled, but ordered.
It is, however, not hard to convert S-trees compatible with a given input into
k-ary M -trees for appropriate k and M . This is achieved by (i) “padding” with
additional dummy nodes, and (ii) representing edge labels via node labels.
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Definition 17 (Padding). Let Γ ∈ I be an input and T = (V, E, n, �) an S-
tree with root v0 ∈ V that is compatible with Γ . For each x ∈ V , we use d(x)
to denote the out-degree of x in T . We assume that the successors of each node
x ∈ V are linearly ordered and that, for each node x ∈ V \ {v0}, s(x) = i iff x
is the i-th successor of its predecessor. We inductively define a function m from
{1, . . . , p(|Γ |)}∗ to V ∪ {	} (where 	 �∈ V ) as follows:

– m(ε) = v0;
– if m(α) = x, (x, y) ∈ E, and s(y) = i, then m(αi) = y;
– if m(α) = x and d(x) < i, then m(αi) = 	;
– if m(α) = 	, then m(αi) = 	 for all i ∈ {1, . . . , p(|Γ |)}.

Let tlS(Γ ) denote the set (℘(nleS(Γ )) × elS(Γ )) ∪ {(	, 	)}. The padding PT of T
is the p(|Γ |)-ary tlS(Γ )-tree defined by setting

1. PT (ε) = (n(v0), e0) where e0 is an arbitrary (but fixed) element of elS(Γ );
2. PT (α) = (n(x), Θ) if α �= ε, m(α) = x �= 	, and �(y, x) = Θ where y is the

(unique) predecessor of x in T ;
3. PT (α) = (	, 	) if m(α) = 	.

We now define, for each input Γ ∈ I, a looping automaton AΓ that accepts
a non-empty language iff there exists a saturated and clash-free S-tree that is
compatible with Γ .

Definition 18 (Automaton for Input Γ ). Let Γ ∈ I be an input and h =
p(|Γ |). The automaton AΓ is defined as follows:

– Q := M := tlS(Γ );
– I := {(Ψ, e0) | Λ ⊆ Ψ for some Λ ∈ iniS(Γ )};
– ((Λ0, Θ0), (Λ, Θ), (Λ1, Θ1), . . . , (Λh, Θh)) ∈ ∆ iff the following two conditions

are satisfied:
1. (Λ0, Θ0) = (Λ, Θ);
2. either Λ0 = Λ1 = · · · = Λh = 	,

or there is a 0 ≤ k ≤ h such that Λ0, . . . , Λk differ from 	, Λk+1 = · · · =
Λh = 	, and the pattern P ∗ = (V ∗, E∗, n∗, �∗) defined as
– V ∗ := {i | 0 ≤ i ≤ k},
– E∗ := {(0, i) | i ∈ V ∗ \ {0}},
– n∗ = {i �→ Λi | i ∈ V ∗}, and
– �∗ := {(0, i) �→ Θi | i ∈ V ∗ \ {0}}

satisfies the following conditions:
(a) for each pattern P with P ∼ P ∗, P is saturated (i.e. R(P ) = ∅);
(b) for each pattern P ∈ C, we have P �∼ P ∗.

The following lemma shows that the automaton AΓ accepts exactly the paddings
of saturated and clash-free S-trees compatible with Γ . Consequently, it accepts
a non-empty set of trees iff there exists a saturated and clash-free S-tree com-
patible with Γ .
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Lemma 2. Let Γ ∈ I be an input. Then

L(AΓ ) = {PT | T is a saturated and clash-free S-tree compatible with Γ}.

Proof. First, assume that T is a saturated and clash-free S-tree compatible with
Γ . We claim that PT itself is a run of AΓ on PT . In fact, PT (ε) ∈ I is an imme-
diate consequence of the definition of padding and Condition 3 in the definition
of S-trees compatible with Γ . Now, consider some node α of PT . The first con-
dition in the definition of ∆ is satisfied since we have PT as run on itself. Thus,
consider the second condition. If PT (α) = (	, 	), then the definition of padding
implies that all the successor nodes of α also have label (	, 	), and thus the sec-
ond condition in the definition of ∆ is satisfied. Otherwise, it is easy to see that
the pattern P ∗ defined in the second condition in the definition of ∆ is also a
pattern in T . Since T is saturated and clash-free, P ∗ thus satisfies (a) and (b)
in the second condition in the definition of ∆. This completes the proof that PT

is a run of AΓ on PT , and thus shows that PT ∈ L(AΓ ).
Second, assume that T̂ is a tree accepted by AΓ . Because of the first condition

in the definition of ∆, T̂ itself is a run of AΓ on T̂ . The definitions of Q, I, and ∆
imply that there is an S-tree T compatible with Γ such that PT = T̂ . This tree
can be obtained from T̂ by removing all the padding. It remains to be shown
that T is saturated and clash-free. Thus, consider a node x of T , and let α be
the corresponding node in PT = T̂ . Since x is a node in T , the node α has a label
different from (	, 	). Let us now consider the transition from α to its successor
nodes. It is easy to see that the pattern P ∗ defined in the second condition in
the definition of the transition relation coincides with T, x. Thus (a) and (b) in
this condition imply that no rule and no clash-trigger is applicable to x. ��

We are now ready to prove the main result of this section: the ExpTime
upper-bound induced by ExpTime-admissible tableau systems.

Theorem 1. Let I be a set of inputs, P ⊆ I a property, and p a polynomial.
If there exists an ExpTime-admissible tableau system S for I that is sound and
p-complete for P, then P is decidable in ExpTime.

Proof. Let Γ ∈ I be an input. To decide whether Γ ∈ P, we construct the
automaton AΓ and then check whether it accepts a non-empty language. By
Lemmas 1 and 2, this algorithm is correct. Thus, it remains to be shown that
it can be executed in exponential time. To see that the automaton AΓ can be
constructed in time exponential in |Γ |, note that, by Conditions 2 and 3 of Exp-
Time-admissibility, we can compute ℘(nleS(Γ )) and elS(Γ ) in time exponential in
|Γ |, and thus the same holds for tlS(Γ ) = Q = M , and I. The transition relation
∆ can be computed in exponential time due to the Conditions 4 and 5 of Exp-
Time-admissibility and the fact that p is a polynomial. Since the automaton can
be computed in exponential time, its size is at most exponential in |Γ |. Thus, it
remains to note that the emptiness test for looping tree automata can be realized
in polynomial time [29]. ��
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Since we have shown that the tableau system SALC is ExpTime-admissible as
well as sound and p-complete (for some polynomial p) for satisfiability of ALC-
concepts w.r.t. (general) TBoxes, we can immediately put Theorem 1 to work:

Corollary 1. ALC-concept satisfiability w.r.t. TBoxes is in ExpTime.

4 Tableau-Based Decision Procedures
from Tableau Systems

The tableau systems described in Section 2.2 cannot immediately be used as
tableau-based decision procedures since rule application need not terminate.
The purpose of this section is to show that, under certain natural conditions,
the addition of a straightforward cycle detection mechanism turns them into (ter-
minating) decision procedures. The resulting procedures are structurally similar
to standard tableau-based algorithms for description logics, such as the ones un-
derlying systems like FaCT and RACER. In contrast to the ExpTime algorithm
constructed in the previous section, the procedures obtained here are usually not
worst-case optimal—a price we have to pay for more easily implementable and
optimizable decision procedures.

Fix a set of inputs I and a tableau system S = (NLE, EL, ·S , R, C) for I. As in
the previous section, we require that S has a number of computational properties.
Since we do not consider complexity issues in this section, it is sufficient for our
purposes to impose effectiveness (and not efficiency) constraints. We start with
modifying Definition 14:

Definition 19 (Recursive Tableau System). S is called recursive iff the
following conditions are satisfied:

1. S is admissible (see Definition 7);
2. iniS(Γ ) can be computed effectively;
3. for each pattern P it can be checked effectively whether, for all patterns P ′,

P ′ ∼ P implies R(P ′) = ∅; if this is not the case, then we can effectively
determine a rule

P ′ →R {P1, . . . , Pk}

and a bijection π such that P ′ ∼π P .
4. for each pattern P it can be checked effectively whether there is a clash-trigger

P ′ ∈ C such that P ′ ∼ P .

The main difference between this definition and Definition 14 is Condition 3,
which now requires that, besides checking the applicability of rules, we can ef-
fectively apply at least one rule whenever some rule is applicable at all. Another
difference is that we do not actually need to compute the sets elS(Γ ) and nleS(Γ )
in order to apply rules.

Analogously to the case of ExpTime-admissibility, it can be verified that the
tableau system SALC is recursive. In particular, for the second part of Condition 3
we can again use the fact that the rules of SALC are invariant under isomorphism
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Preconditions: Let I be a set of inputs, P ⊆ I a property, f a recursive function, and
S a recursive tableau system for I that is sound and f -complete for P.

Algorithm: Return true on input Γ ∈ I if the procedure tableau(T ) defined below
returns true for at least one initial S-tree T for Γ . Otherwise return false.

procedure tableau(T )

If P ∼ T, x for some P ∈ C and node x in T or the out-degree of T exceeds f(|Γ |),
then return false.

If no rule is applicable to a non-blocked node x in T ,
then return true.

Take a a non-blocked node x in T and a rule P →R {P1, . . . , Pk} with P ∼ T, x.

Let Ti be the result of applying the above rule such that Pi ∼ Ti, x, for 1 ≤ i ≤ k.

If at least one of tableau(T1), tableau(T2), . . . , tableau(Tk) returns true,
then return true.

Return false.

Fig. 2. Decision procedure for P.

of patterns: this means that it suffices to compute, for a given non-saturated
pattern P , a set of patterns {P1, . . . , Pk} such that P →R {P1, . . . , Pk}. It is
easy to see that this can be effectively done for the rules of SALC .

We now define a more relaxed variant of Definition 13.

Definition 20 (f-Complete). Let f : N → N be a recursive function. The
tableau system S is called f -complete for P iff, for any Γ ∈ P, there exists a
saturated and clash-free S-tree for Γ with out-degree bounded by f(|Γ |).

Since we have already shown that SALC is p-complete for some polynomial p,
SALC is clearly f -complete for the (computable) function f induced by the poly-
nomial p.

In order to implement a cycle detection mechanism, we introduce the notion
of blocking: given an S-tree T = (V, E, n, �), we denote by E∗ the transitive
and reflexive closure of E and say that x ∈ V is blocked iff there exist distinct
u, v ∈ V such that uE∗x, vE∗x, and n(u) = n(v). Note that this corresponds to
the well-known “equality-blocking” technique that is used in various DL tableau
algorithms [4, 17].

The tableau-based decision procedure for P induced by the tableau system
S is described in Figure 2. Note that the selection of rules and nodes in the
“else” part of the procedure tableau is “don’t care” non-deterministic: for the
soundness and completeness of the algorithm, it does not matter which rule we
apply when to which node.

Let us verify that the individual steps performed by the algorithm in Figure 2
are actually effective:

– the initial trees for an input Γ can be computed effectively, since iniS(Γ ) can
be computed effectively by Condition 2 of Definition 19;
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– the condition in the first “if” statement can be checked effectively by Con-
dition 4 of Definition 19 and since f is a recursive function;

– the applicability of rules can be checked by the first part of Condition 3 of
Definition 19;

– finally, that we can effectively take a rule and apply it to a node x follows
from the second part of Condition 3 of Definition 19.

We now turn to termination, soundness, and completeness of the algorithm.

Lemma 3 (Termination). Suppose the preconditions of Figure 2 are satisfied.
Then the algorithm of Figure 2 terminates for any input Γ ∈ I.

Proof. Let Γ ∈ I. The number of initial trees for Γ is finite and can be computed
effectively. Hence, it is sufficient to show that the procedure tableau terminates on
any initial tree for Γ . For each step in which the procedure does not immediately
return true or false, a node is added to the tree or n(x) properly increases for some
node x (due to Condition 1 of admissibility). Hence, since n(x) ⊆ ℘(nleS(Γ ))
for any node x and any tree constructed during a run of tableau, it is sufficient
to show that both the out-degree and the depth of the trees constructed is
bounded. But the out-degree of the trees is bounded by f(|Γ |) (more precisely,
as soon as one rule application yields a tree with out-degree larger than f(|Γ |),
the algorithm returns false in the next step) and the length of E-paths does not
exceed 2|nleS(Γ )| since rules are not applied to blocked nodes. ��

Lemma 4 (Soundness). Suppose the preconditions of Figure 2 are satisfied.
If the algorithm of Figure 2 returns true on input Γ , then Γ ∈ P.

Proof. Suppose the algorithm returns true on input Γ . Then the algorithm termi-
nates with a clash-free S-tree T = (V, E, n, �) whose out-degree does not exceed
f(|Γ |) and such that no rule is applicable to a non-blocked node in T . As S is
sound for P, it is sufficient to show that there exists a saturated and clash-free
S-tree for Γ . To this end we construct a clash-free and saturated S-tree

T ′ = (V ′, E′, n′, �′)

which is compatible with Γ (from which, by Lemma 1, we obtain a clash-free
and saturated S-tree for Γ ). Say that a node x ∈ V is directly blocked if it is
blocked but its predecessor is not blocked. If y is the (uniquely determined) node
y �= x with yE∗x and n(x) = n(y), then y is said to block x.

Now, V ′ consists of all non-empty sequences 〈v0, x1, . . . , xn〉, where v0 is
the root of V , the x1, . . . , xn ∈ V are directly blocked or not blocked, and
(xi, xi+1) ∈ E if xi is not blocked or xi is blocked by some y ∈ V such that
(y, xi+1) ∈ E. Define E′ by setting, for x = 〈v0, x1, . . . , xn〉 ∈ V ′ and y ∈ V ′,
(x,y) ∈ E′ iff there exists xn+1 such that y = 〈v0, x1, . . . , xn, xn+1〉. Define n′

by setting n′(〈v0, x1, . . . , xn〉) = n(xn). Finally, define �′ by

– �′(〈v0, x1, . . . , xn〉 , 〈v0, x1, . . . , xn, xn+1〉) = �(xn, xn+1) if xn is not blocked;
– �′(〈v0, x1, . . . , xn〉 , 〈v0, x1, . . . , xn, xn+1〉) = �(y, xn+1) if xn is blocked and y

blocks xn.
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We show that T ′ is a clash-free and saturated S-tree which is compatible with Γ .
Compatibility is readily checked using the definition of T ′. Since T is clash-free
and no rule is applicable to a non-blocked node of T , we can prove clash-freeness
and saturatedness of T ′ by showing that any S-pattern P that matches T ′,x
for some node x in T ′ also matches a T, x for some non-blocked node x in
T . Thus, assume that P ∼τ T ′, 〈v0, x1, . . . , xn〉, for some bijection τ . If xn is
not blocked, then P ∼τ ′ T, xn, where τ ′ is obtained from τ by composing τ
with the mapping that assigns xn to 〈v0, x1, . . . , xn〉 and xn+1 to each successor
〈v0, x1, . . . , xn, xn+1〉 of 〈v0, x1, . . . , xn〉. Similarly, if xn is blocked by y, then
P ∼τ ′ T, y, where τ ′ is obtained from τ by composing τ with the mapping that
assigns y to 〈v0, x1, . . . , xn〉 and xn+1 to each successor 〈v0, x1, . . . , xn, xn+1〉 of
〈v0, x1, . . . , xn〉. ��

Lemma 5 (Completeness). Suppose the preconditions of Figure 2 are satis-
fied. If Γ ∈ P, then the algorithm of Figure 2 returns true on input Γ .

Proof. Suppose Γ ∈ P. Since S is f -complete for P, there exists a clash-free and
saturated S-tree T = (V, E, n, �) for Γ whose out-degree does not exceed f(|Γ |).
We use T to “guide” the algorithm to an S-tree of out-degree at most f(|Γ |) in
which no clash-trigger applies and no rule is applicable to a non-blocked node.
This will be done in a way such that all constructed S-trees T ′ satisfy T ′ � T .

For the start, we need to choose an appropriate initial S-tree T1. Let v0 be
the root of T . Since S-trees for Γ are also compatible with Γ , the definition of
compatibility implies that there exists Λ ∈ iniS(Γ ) such that Λ ⊆ n(v0). Define
T1 to be the initial S-tree ({v0}, ∅, {v0 �→ Λ}, ∅). Clearly, T1 � T . We start the
procedure tableau with the tree T1.

Now suppose that tableau is called with some S-tree T ′ such that T ′ � T .
If no rule is applicable to a non-blocked node in T ′, we are done: since T ′ � T
and T is clash-free and of out-degree at most f(|Γ |), the same holds for T ′.
Now suppose that a rule is applicable to a non-blocked node in T ′. Assume that
the tableau procedure has chosen the rule P →R {P1, . . . , Pk} with P ∼ T ′, x.
Since T ′ �τ T for some τ , we have P � T, τ(x). Since T is saturated, T, τ(x)
is saturated. By Condition 2 of admissibility, we have Pj � T, τ(x) for some
j, 1 ≤ j ≤ k. So we “guide” the tableau procedure to continue exploring the
S-tree T ′

j obtained from T ′ by applying the rule P →R {P1, . . . , Pk} such that
Pj ∼ T ′

j , x. Now, Pj � T, τ(x) implies T ′
j � T .

Since the tableau procedure terminates on any input, the “guidance” process
will also terminate and thus succeeds in finding an S-tree of out-degree at most
f(|Γ |) in which no clash-trigger applies and no rule is applicable to a non-blocked
node. Hence, tableau(T1) returns true. ��

The three lemmas just proved imply that we have succeeded in converting the
tableau system S into a decision procedure for P.

Theorem 2. Suppose the preconditions of Figure 2 are satisfied. Then the al-
gorithm of Figure 2 effectively decides P.
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5 A Tableau System for ALCQI
As an example for a more expressive DL that can be treated within our frame-
work, we consider the DL ALCQI, which extends ALC with qualified num-
ber restrictions and inverse roles. Qualified number restrictions ((�m r.C) and
(�m r.C)) can be used to state constraints on the number of r-successors be-
longing to a given concept C, and the inverse roles allow us to use both a role r
and its inverse r− when building a complex concept.

Definition 21 (ALCQI Syntax and Semantics). Let NC and NR be pair-
wise disjoint and countably infinite sets of concept and role names. The set of
ALCQI-roles is defined as ROLALCQI := NR ∪ {r− | r ∈ NR}.

The set of ALCQI-concepts CONALCQI is the smallest set such that

– every concept name is a concept, and
– if C and D are ALCQI-concepts and r ∈ ROLALCQI is a role, then ¬C, C �

D, C � D, (�m r.C) and (�m r.C) are also ALCQI-concepts.

TBoxes are defined as in the case of ALC, i.e., they are finite sets of GCIs
C � D where C, D ∈ CONALCQI .

The semantics of ALCQI is defined as for ALC, where the additional con-
structors are interpreted as follows:

(r−)I := {(y, x) | (x, y) ∈ rI},

(�m r.C)I := {d ∈ ∆I | #{y | (d, y) ∈ rI ∧ y ∈ CI} ≤ m},

(�m r.C)I := {d ∈ ∆I | #{y | (d, y) ∈ rI ∧ y ∈ CI} ≥ m},

where #S denotes the cardinality of the set S.

Although the constructors ∃r.C and ∀r.C are not explicitly present in ALCQI,
they can be simulated by (� 1 r.C) and (� 0 r.¬C), respectively. Thus, ALCQI
really extends ALC.

The definition of negation normal form (and thus of the function nnf) can
easily be extended to ALCQI (see, e.g., [14]), and the same is true for the
function sub. In addition, we define the closure of the ALCQI concept C and
the TBox T as

cl(C, T ) := sub(C, T ) ∪ {nnf(¬D) | D ∈ sub(C, T )}.

In order to simplify the treatment of inverse roles, we denote the inverse of the
ALCQI-role r by r, i.e., r = r− if r is a role name, and r = s if r = s− for a
role name s.

Completion trees for ALCQI look like completion trees for ALC, with the
only difference that edges may also be labeled with inverse roles. In fact, to
handle a number restriction of the form (� 1 r−.C) (which corresponds to the
existential restriction ∃r−.C) in the label of the node v, the tableau algorithm
may introduce an r−-successor of v.
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The fact that edges can also be labeled by inverse roles complicates the
treatment of number restrictions by tableau rules. For a given node, we need to
count the number of other nodes it is related to via the role r. Without inverse
roles, this is quite easy: we just take the direct successors reached by an edge
labeled with r. With inverse roles, we must also count the direct predecessor if
the corresponding edge is labeled with r. However, our framework only allows for
patterns of depth one, and thus the rules cannot simultaneously look at a node
together with its direct predecessor and its direct successors. To overcome this
problem, we introduce new concept names Mr,C for every pair r, C appearing
in a number restriction (�m r.C) or (�m r.C). The intuitive meaning of these
“marker concepts” is the following: if the label of node v contains Mr,C , then
the edge leading to v from its direct predecessor u is labeled with r and the label
of u contains C. Since the root node of the tree does not have a predecessor,
these concepts are not allowed to appear in the root node. We will ensure this
by enforcing that the root label contains ¬Mr,C . Given a concept C and a TBox
T , the set of necessary marker concepts is

MC,T := {Mr,C , ¬Mr,C | {(�m r.C), (�m r.C)} ∩ cl(C, T ) �= ∅ for some m}.

Definition 22 (SALCQI). The tableau system SALCQI is defined as follows:
NLE := CONALCQI is the set of all ALCQI-concepts, EL := ROLALCQI is the
set of all ALCQI-roles, and the function ·SALCQI assigns to any input pair (C, T )
the following tuple (nleSALCQI , elSALCQI , iniSALCQI ):

nleSALCQI (C, T ) := cl(C, T ) ∪ MC,T ,

elSALCQI (C, T ) := {r, r− | r ∈ NR occurs in C or T },

iniSALCQI (C, T ) := {{nnf(C)} ∪ {¬Mr,C | ¬Mr,C ∈ MC,T }}.

The rules and clash-triggers of SALCQI are introduced in the next two definitions.

In order to define the rules and clash-triggers, we need to count the r-
neighbors of a given node v in an SALCQI-tree, i.e., the nodes that are either
r-successors of v or the (unique) predecessor of v in case v is an r-successor of
this predecessor. The problem is that we must do this in a pattern, where the
predecessor is not explicitly present. Instead, we use the presence of the marker
concepts Mr,D in the label of v.8 Let P be a pattern with root v0. We say that
v0 has k r-neighbors containing D iff

– either Mr,D is not in the label of v0 and v0 has exactly k r-successors whose
labels contain D;

– or Mr,D is in the label of v0 and v0 has exactly k − 1 r-successors whose
labels contain D.

8 The rules and clash-triggers are defined such that the presence of the marker concept
Mr,D in the label of a node v in a saturated and clash-free SALCQI-tree implies that
v is an r-successor of its father w and that the label of w contains D.
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In addition to the rules handling conjunctions, disjunctions, and the TBox ax-
ioms, SALCQI has three rules9 that treat number restrictions. Before introducing
them formally, we give brief intuitive explanations of these rules:

R� To satisfy an at-least restriction (�m r.C), the rule creates the necessary
neighbors one-by-one. In a single step, it adds Mr,C to the label of the root
of the pattern, or it adds C to the label of an existing r-successor of the
root, or it creates a new r-successor of the root with label {C}.

RC If the root label of the pattern contains the at-most restriction (�m r.C),
then this so-called choose-rule adds either the concept C or the concept
nnf(¬C) to the label of all r-successors of the root. In addition, this rule also
takes the (not explicitly present) predecessor node into account by “guessing”
whether the given node is an r-successor of its predecessor and whether the
label of this predecessor contains C. This is done by adding either Mr,C or
¬Mr,C to the label of the root.

R↑ This rule propagates the information contained in the marker concepts to
the predecessor node, i.e., if the label of an r-successor of the root contains
Mr,C , then we add C to the label of the root; if the label of an r-successor
of the root contains ¬Mr,C , then we add ¬C to the label of the root.

Definition 23 (The Rules of SALCQI). Let P = (V, E, n, �) be a pattern with
root v0. Then R(P ) is the smallest set of finite sets of patterns that contains all
the sets of patterns required by the R�, R�, and RT rules, and in addition the
following sets:

R�1 if the root label n(v0) contains the concept (�m r.C) as well as the concept
Mr,C , and there are less than m − 1 nodes v for which �(v0, v) = r and
C ∈ n(v), then R(P ) contains the set {P0, P1, . . . , Pt}, where {u1, . . . , ut}
consists of all sons of v0 with �(v0, ui) = r and C /∈ n(ui) and
1. P0 = (V0, E0, n0, �0), where u0 /∈ V , V0 = V ∪{u0}, E0 = E ∪{(v0, u0)},

n0 = n ∪ {u0 �→ {C}}, and �0 = � ∪ {(v0, u0) �→ r},
2. for 1 ≤ i ≤ t, Pi = (V, E, ni, �), where ni(v) = n(v) for all v ∈ V \ {ui}

and n′
i(ui) = ni(ui) ∪ {C};

R�2 if the root label n(v0) contains the concept (�m r.C), but not the con-
cept Mr,C , and if there are less than m nodes v for which �(v0, v) = r and
C ∈ n(v), then R(P ) contains the set {P−1, P0, P1, . . . , Pt}, where t and
P0, . . . , Pt are defined as in the R�1-rule, and
3. P−1 = (V, E, n−1, �), where n−1(v) = n(v) for all v ∈ V \ {v0} and

n−1(v0) = n(v0) ∪ {Mr,C};

RC1 if the root label n(v0) contains the concept (�m r.C) and �(v0, v1) = r for
some v1 ∈ V with n(v1) ∩ {C, nnf(¬C)} = ∅, then R(P ) contains the set
{(V, E, n′, �), (V, E, n′′, �)}, where n′(v1) = n(v1) ∪ {C}, n′′(v1) = n(v1) ∪
{nnf(¬C)}, and n′(v) = n′′(v) = n(v) for all v ∈ V \ {v1};

9 For better readability, each rule will be split into two sub-rules.
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RC2 if the root label n(v0) contains the concept (�m r.C), but neither Mr,C

nor ¬Mr,C , then R(P ) contains the set {(V, E, n′, �), (V, E, n′′, �)}, where
n′(v0) = n(v0)∪{Mr,C}, n′′(v0) = n(v0)∪{¬Mr,C} and n′(v) = n′′(v) = n(v)
for all v ∈ V \ {v0};

R↑1 if there is a son v1 of the root v0 with Mr,C ∈ n(v1) and �(v0, v1) = r,
but C �∈ n(v0), then R(P ) contains the singleton set {P ′}, where P ′ =
(V, E, n′, �) and n′(v) = n(v) for all v ∈ V \ {v0} and n′(v0) = n(v0) ∪ {C};

R↑2 if there is a son v1 of the root v0 with ¬Mr,C ∈ n(v1) and �(v0, v1) = r,
but nnf(¬C) �∈ n(v0), then R(P ) contains the singleton set {P ′}, where
P ′ = (V, E, n′, �) and n′(v) = n(v) for all v ∈ V \ {v0} and n′(v0) = n(v0) ∪
{nnf(¬C)}.

In SALCQI , we also need two additional clash-triggers. First, we have a clash
whenever the label of the node v contains a marker concept that is in conflict
with the actual label of the edge connecting the predecessor of v with v. Second,
we need a clash-trigger that detects that an at-most restriction is violated.

Definition 24. The set of clash-triggers C contains all the clash triggers of
SALC, and additionally

– all patterns (V, E, n, �) such that there exists an edge (v, w) ∈ E, roles r, s,
and a concept C with �(v, w) = r, Ms,C ∈ n(w), and r �= s;

– all patterns (V, E, n, �) with root v0 such that (�m r.C) ∈ n(v0) and v0 has
more than m r-neighbors containing C.

Admissibility, ExpTime-admissibility, and recursive admissibility of SALCQI
can be shown as for SALC . The proof of soundness and completeness is similar
to known soundness and completeness proofs for tableau algorithms for DLs
containing qualified number restrictions and inverse roles (see, e.g., [18]). In order
to have p-completeness for an appropriate polynomial p, we must assume that
numbers in number restrictions are given in unary coding, i.e., the number m
really contributes with m to the size of the input. As an immediate consequence
of Theorem 1, we obtain the following upper-bound for the satisfiability problem
in ALCQI.

Corollary 2. ALCQI-concept satisfiability w.r.t. TBoxes is in ExpTime.

6 Variants and Extensions

When defining the abstract notion of a tableau system, we had several degrees
of freedom. The decisions we made were motivated by our desire to stay as close
as possible to the “usual” tableau-based algorithms for DLs while at the same
time obtaining a notion that is as general as possible. While writing the paper,
we have noticed that several decisions could have been made differently. In the
following, we mention three alternative decisions, one leading to a restricted
variant and two leading to extensions of the framework. Embedding the two
extensions into our framework is the subject of future work.
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6.1 Changing the Definition of Subpatterns

Recall that our treatment of existential restrictions in the tableau system SALC
differs from the usual treatment in tableau-based algorithms for ALC in that
it leads to a non-deterministic rule, which chooses between generating a new r-
successor or re-using an old one. In contrast, the usual rules treating existential
restrictions always generate a new successor.

Why could we not employ the usual rule for handling existential restrictions?
The reason is that then the tableau system would not be admissible. In fact,
the proof that Condition 2 of Definition 7 is satisfied for SALC (given below
Definition 7) strongly depends on the fact that r-successors can be re-used. To
be more precise, assume that P is a pattern whose root label consists of ∃r.A for
a concept name A, and whose root has exactly one successor u1, which is an r-
successor with an empty label. Let P ′ be the pattern that is obtained from P by
adding A to the label of u1. Obviously, P � P ′ and P ′ is saturated. However, if
we consider the pattern P1 that is obtained from P by adding a new r-successor
with label {A}, then P1 �� P ′. Thus, the deterministic rule P →R {P1} does not
satisfy Condition 2 of Definition 7.

Could we change the framework such that the usual deterministic rule for
handling existential restrictions becomes admissible? One way to achieve this
would be to change the definition of the subpattern relation � (see Definition 6)
by removing the requirement that π be injective. In fact, with this new definition,
we would have P1 � P ′ in the example above. By consistently replacing the old
version of � with this new version, we would obtain a framework where all the
results of Sections 3 and 4 still hold, and where the usual deterministic rule for
handling existential restrictions in ALC is admissible.

Why did we not use this modified framework? Intuitively, if we use a non-
injective mapping π in the definition of �, then the actual number of r-successors
of a given node is irrelevant as long as we have one successor of each “type.”
Thus, a clash-trigger that fires if a certain number of successors is exceeded
(like the one used in Section 5) does not make sense. In fact, with the modified
definition of �, a pattern P ∈ C having at least m successors of the root node
could be a subpattern of a pattern T, x where x has only one successor. Thus,
the modified framework could not treat a DL like ALCQI, where the number of
successors (and not just their type) counts. For DLs like ALC, where the number
of successors of a given type is irrelevant,10 the modified framework could be
used, and would probably lead to simpler rules. However, we think that number
restrictions are important enough in DLs to justify the use of a framework that
can handle them, even if this leads to a somewhat more complex treatment of
other constructors.

10 This follows from the bisimulation invariance of ALC, which is an immediate conse-
quence of bisimulation invariance of its syntactic variant, multi-modal Km [5].
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6.2 Using Larger Patterns

In our current framework, patterns (the clash-triggers and left-hand sides of
rules) are trees of depth at most one, i.e., we consider one node and its direct
successors when defining rules and clash-triggers. In some cases, it would be
more convenient to have larger patterns available. A case in point are DLs with
inverse roles (like ALCQI), where it would be more convenient to have not only
the direct successors of a node available, but also its direct predecessor. In our
definition of the tableau system for ALCQI, we had to employ special markers
to memorize whether the predecessor belongs to a certain concept. Though this
works, it is not very natural, and it leads to rather complicated rules. Thus, a
natural extension motivated by ALCQI and similar DLs is to consider patterns
consisting of a node together with its direct predecessor and its direct successors.
This would yield a new framework that is close to two-way automata [28].

Why have we not made this extension? Including the predecessor of a node
in the definition of patterns is an extension that appears to be tailored to the
treatment of DLs with inverse roles. Thus, it has the flavor of an ad-hoc exten-
sion, with the clear danger that adding another constructor may motivate yet
another extension of the framework.

Is there a more general extension? Instead of restricting patterns to being
certain trees of depth 2, a more general extension would be to use as patterns
trees of some fixed depth k or patterns whose depth is bounded by some function
of the input size. We conjecture that it is possible to extend our framework in
this direction while retaining the results shown in this paper. In contrast to the
extension of patterns by predecessor nodes, this appears to require some more
work, though.

6.3 Allowing for Global Information

In the present framework, rules are local in that they consider only one node and
its direct successors. The extension mentioned in the previous subsection extends
the scope of rules but leaves it still local (bounded by the depth of patterns). In
some cases, it would be convenient to be able to access global information that
can influence the behavior of rules and can also be changed by rules.

Is such global information useful? A typical example where it would be con-
venient to allow for global information are DLs with so-called nominals, i.e.,
concept names that must be interpreted as singletons, and thus stand for a sin-
gle element of the interpretation domain. Assume that N is such a nominal. If N
occurs in the label of two different nodes of a completion tree, then this means
that these nodes represent the same individual in the corresponding model, and
thus the whole label sets of these nodes must coincide in a saturated and clash-
free completion tree. Thus, rules and clash-triggers that are designed to realizing
this are concerned with information about nodes that may be quite far apart
from each other in the tree. One way of ensuring this could be to have, in ad-
dition to the completion tree with its local node labels, a global book-keeping
component that contains information about the labels of all nominals. A rule
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that encounters the nominal N in the label of node v may then use the infor-
mation in the book-keeping component for nominal N to extend the label of v,
but it may also extend the book-keeping component based on what is found in
the label of v. Thus, through this book-keeping component, information can be
passed between nodes that are far apart from each other in the tree.

Is this extension too general? We believe that this extension is harmless
as long as the number of possible “states” of the book-keeping component is
appropriately bounded by the size of the input. Of course, this depends on the
exact definition of the book-keeping component and its interaction with rules
and clash-triggers. The integration of such a book-keeping component into our
framework and the proof that the results shown in the present paper still hold
in this extended framework is a subject of future research.
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