
Preface

Recent developments in genomics and molecular biology finally carry the
promise of understanding the functions of complex biological systems on a
whole genome level. These developments have led to enormous amounts of
data generated in highthroughput technologies, most prominently in gene
expression microarrays. Within the Bioconductor project, an increasing
number of researchers are trying to establish solutions for the analysis of
such data, combining knowledge from such diverse disciplines as statistics,
computer science, bioinformatics, and molecular biology.

With microarrays becoming a standard technology in many molecular
biology labs, there is increased demand for comprehensive yet easy to fol-
low instructions to the complex data analysis process. After many years of
teaching introductory Bioconductor courses we can identify the main topics
of interest, the common misunderstandings and pitfalls, and have learned to
better understand key problems with which beginners to the analysis tasks
are often challenged. In this book, we try to guide the readers through
each step of the data analysis process, beginning from import and data
processing to the generation of lists of differentially expressed genes and
finally the modeling and interpretation of these lists in downstream analy-
ses. Every chapter focuses on real data use cases that illustrate the problem,
and we present both executable code and detailed background informa-
tion for each step. A companion Webpage to this book can be found at
http://www.bioconductor.org/pub/docs/BioconductorCaseStudies
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R and Bioconductor
Introduction

R. Gentleman, F. Hahne, S. Falcon,
and M. Morgan

Abstract

In this chapter we cover basic uses of R and begin working with
Bioconductor datasets and tools. Topics covered include simple R
programming, R graphics, and working with environments as hash
tables. We introduce the ExpressionSet class as an example for a
basic Bioconductor structure used for holding genomic data, in this
case expression microarray data. And we explore some visualization
techniques for gene expression data to get a feeling for R’s extensive
graphical capabilities.

2.1 Finding help in R

To get started with R and Bioconductor it is important to know where
you can find help for the numerous functions, classes, and concepts you
are about to come across. The ? operator is the most immediate source
of information about R objects. Preceding the name of a function with ?

quickly gets you to the manual page of this function. Possible arguments
and return values should be introduced there, and you will find basic infor-
mation about the purpose and application of the function. A special flavor
of ? exists for classes. class ? foo will get you to the manual page of class
foo where you will often also find information about available methods for
this class.

Function apropos can be used to find objects in the search path partially
matching the given character string. find also locates objects, yet in a more
restrictive manner.
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> apropos("mean")

[1] "colMeans" "kmeans"
[3] "mean" "mean.Date"
[5] "mean.POSIXct" "mean.POSIXlt"
[7] "mean.data.frame" "mean.default"
[9] "mean.difftime" "rowMeans"

[11] "weighted.mean"
> find("mean")

[1] "package:base"

If you want to get information about a certain topic or concept, try
help.search. The function searches the help system for documentation
matching a given character string in the (file) name, alias, title, concept, or
keyword entries. Names and titles of the matched help entries are displayed.

> help.search("mean")

Moreover, there is a wealth of information just waiting for you out
on the Web: A very good introduction is R-Foundation (2007). For
many of the usual R-related questions you may most likely find an
answer in the R-FAQ at http://cran.r-project.org/faqs.html. More
specialized sources for help are the R and Bioconductor mailing lists
(http://www.r-project.org/mail.html, http://www.bioconductor.
org/mailList.html). You can subscribe to different sublists, regarding
your interests and level of expertise and post your questions to the R
society. Before doing so, you should read the posting guides. Often ques-
tions on the mailing lists are not answered because major posting rules
have been violated. It is also a good idea to search the online mailing
archives before posting a question. A lot of them have already been asked
and answered by someone else. A searchable Bioconductor archive can be
found at http://dir.gmane.org/gmane.science.biology.informatics.
conductor and the R archives at http://dir.gmane.org/index.php?
prefix=gmane.comp.lang.r.. All of these links can also be found on the
Bioconductor and R-Project Web pages.

Most of the Bioconductor packages contain another valuable source of
information through their package vignettes. Vignettes are supposed to
describe more thoroughly the steps needed to perform one or several of
the specific tasks for which the package was designed. Text and executable
code are bundled together in one document, similar to the document you
are reading right now, which makes it easy to reproduce individual steps on
your own machine or to introduce modifications specific to your own task.
The function openVignette in Biobase can be used to open PDF versions of
the available vignettes. Vignettes become available once you load a package
(see the next section for an introduction to the concept of packages).
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Exercise 2.1
a. There are a number of different plotting functions available. Can you

find them?

b. Try to find out which function to use in order to perform a Mann–
Whitney test.

c. Open the PDF version of the vignette“Bioconductor Overview”which
is part of the Biobase package.

2.2 Working with packages

The design of R and Bioconductor is modular. A lot of the functionality is
provided by additional units of software called packages. There are many
hundreds of packages available for R and around 260 for Bioconductor.
Before we begin working with data, it is important that you learn how to
find, download, and install packages.

Different methods can be used for this task, and over time we expect
them to become more standardized. R packages are stored in libraries. You
can have multiple libraries on your computer, although most people have
only one on their personal machine. To add a package to your library, you
need to download and install it. After that, each time you want to use the
package, you need to load it. You do this using either the library function
or the function require.

Downloading packages can be done using the menu on a distribution of
R that has a GUI (Windows or Mac OS X). On these platforms you simply
select the packages you want from a list, and they are downloaded and
installed. Installing a package does not automatically load it into your R
session, you must do that. By default this mechanism will download the
appropriate binary packages.

You can use the function install.packages to download a specified list of
packages. One of the arguments to install.packages controls whether pack-
age dependencies should also be downloaded and for Bioconductor packages
we strongly recommend setting this to TRUE.

To make the installation of Bioconductor packages as easy as possible, we
provide a Web-accessible script called biocLite that you can use to install
any Bioconductor package along with its dependencies. You can also use
biocLite to install packages hosted on CRAN. Here is a sample session
illustrating how to use biocLite to install the graph and xtable packages.

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("graph", "xtable"))

The command update.packages can be used to check for and install
new versions of already installed packages. Note that you need to supply
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update.packages with the URL to a Bioconductor repository in order to
update Bioconductor packages as well. The recommended way of updating
all your installed packages is:

> source("http://bioconductor.org/biocLite.R")

> update.packages(repos=biocinstallRepos(), ask=FALSE)

Exercise 2.2
What is the output of function sessionInfo?

2.3 Some basic R

Before we begin, let’s make sure you are familiar with the basic data struc-
tures in R and the fundamental operations that are necessary for both
application of existing software and for writing your own short scripts. If
you find it easy to answer the following five questions you are ready to pro-
ceed with this chapter and learn about the great stuff you can do with your
genomic data. If not, it might be a good idea to go back to the excellent
“Introduction to R” which you can find on the R Foundation home page at
http://cran.r-project.org/manuals/R-intro.html to acquire a more
solid foundation of the nitty-gritty details of the language.

Exercise 2.3
a. The simplest data structure in R is a vector. Can you create the

following vectors?
– x with elements 0.1, 1.1, 2.5, and 10
– An integer vector y with elements 1 to 100
– A logical vector z indicating the elements of y that are below 10
– A named character vector pets with elements dog, cat, and bird.
You can choose whatever names you like for your new virtual pets.

b. What happens to vectors in arithmetic expressions? What is the result
of

2 * x + c(1,2)

c. Index vectors can be used to select subsets of elements of a vector.
What are the three different types of index vectors? How do we index
a matrix or an array?

d. How can we select elements of a list? How do we create a list?

e. What is the difference between a data.frame and a matrix?
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2.3.1 Functions

Writing functions in R is easy. All functions take inputs and they return
values. In R the value returned by a function is either specified explicitly by
a call to the function return or it is simply the value of the last expression.
So, the two functions below will return identical values.

> sq1 = function(x) return(x*x)

> sq2 = function(x) x*x

These functions are vectorized. This means you can pass a vector x to the
function and each element of x will be squared. Note that if you use two
vectors of unequal length for any vectorized operation R will try to recycle
the shorter one. Although this can be useful for certain applications, it can
also lead to unexpected results.

Exercise 2.4
In this exercise we want you to write a function that we use in the next
section. It relies on the R function paste, and you may want to read the
function’s manual page. The function should take a string as input and
return that string with a caret prepended. Let’s call it ppc; what we want
is that ppc("xx") returns "^xx".

One of the places that user-defined functions are often used is with the
apply family of functions and in the next section we show some examples.

2.3.2 The apply family of functions

In R a great deal of work is done by applying some function to all elements of
a list, matrix, or array. There are several functions available for you to use;
apply, lapply, sapply are the most commonly used. The function eapply is
also available for applying a function to each element of an environment .
We show more about how to create and how to work with environments in
the next section.

To understand how the apply family of functions works, we use
them to explore some of the metadata for the Affymetrix®HG-U95Av2
GeneChip®. Because these data are stored in environments we make use
of the eapply function.

The hgu95av2MAP environment contains the mappings between Affymet-
rix identifiers and chromosome band locations. For example, in the code
below we find the chromosome band to which the gene, for probe 1001_at
(TIE1), maps.

> library("hgu95av2.db")

> hgu95av2MAP$"1001_at"

[1] "1p34-p33"
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We can extract all of the map locations for a particular chromosome or
part of a chromosome by using regular expressions and the apply family
of functions. First let’s be more explicit about the problem: say we want
to find all genes that map to the p arm of chromosome 17. Then we know
that their map positions will all start with the characters 17p. This is a
simple regular expression, ^17p, where the caret, ^, means that we should
match the start of the word. We do this in two steps: first we use eapply

and grep and ask for grep to return the value that matched.

> myPos = eapply(hgu95av2MAP, function(x) grep("^17p", x,

value=TRUE))

> myPos = unlist(myPos)

> length(myPos)

[1] 190

Here we used an anonymous function to process each element of the
hgu95av2MAP environment . We could have named it and then used it.

> f17p = function(x) grep("^17p", x, value=TRUE)

> myPos2 = eapply(hgu95av2MAP, f17p)

> myPos2 = unlist(myPos2)

> identical(myPos, myPos2)

[1] TRUE

Exercise 2.5
Use the function ppc that you wrote in the previous exercise to create a new
function that can find and return the probes that map to any chromosome
(just prepend the caret to the chromosome number) or the chromosome
number with a p or a q after it.

2.3.3 Environments

In R, an environment is a set of symbol–value pairs. These are similar to
lists, but there is no natural ordering of the values and so you cannot make
use of numeric indices. Also unlike lists, partial matching of the symbols
will not work. Otherwise they behave the same way. In the previous section
you have already used an environment that stored the mapping between
Affymetrix identifiers and chromosome band locations. Here, we show how
to work with your own environments.

We first create an environment and carry out some simple tasks, such as
storing things in it, removing things from it, and listing the contents.
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> e1 = new.env(hash=TRUE)

> e1$a = rnorm(10)

> e1$b = runif(20)

> ls(e1)

[1] "a" "b"
> xx = as.list(e1)

> names(xx)

[1] "a" "b"
> rm(a, envir=e1)

Exercise 2.6
a. Create an environment and put in the chromosomal locations of all

genes on chromosome 18 using your function from the last exercise.

b. Put into the environment a second function that takes the strings
of chromosomal locations and strips the “18” from each string. The
function gsub can help you with that.

c. Now write a function, myExtract, that takes an environment as an
argument and returns a vector of stripped chromosomal locations
(i.e., apply the stripping function in the environment to the vector of
chromosomal locations in the same environment).

2.4 Structures for genomic data

Genomic data can be very complex, usually consisting of a number of
different bits and pieces. In Bioconductor we have taken the approach
that these pieces should be stored in a single structure to easily manage
the data. The package Biobase contains standardized data structures to
represent genomic data. The ExpressionSet class is designed to combine
several different sources of information into a single convenient structure.
An ExpressionSet can be manipulated (e.g., subsetted, copied), and is the
input to or output of many Bioconductor functions.

The data in an ExpressionSet consist of

• assayData: Expression data from microarray experiments
(assayData is used to hint at the methods used to access different
data components, as we show below).

• metadata: A description of the samples in the experiment
(phenoData), metadata about the features on the chip or technology
used for the experiment (featureData), and further annotations for
the features, for example gene annotations from biomedical databases
(annotation).

• experimentData: A flexible structure to describe the experiment.
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The ExpressionSet class coordinates all of these data, so that you do not
usually have to worry about the details. However, an ExpressionSet needs
to be created in the first place, because it will be the starting point for
many of the analyses using Bioconductor software.

In this section we learn how to create and manipulate ExpressionSet
objects, and by doing that we again practice some basic R skills.

2.4.1 Building an ExpressionSet from .CEL and other files

Many users have access to .CEL or other files produced by microarray chip
manufacturer hardware. Usually the strategy is to use a Bioconductor pack-
age such as affyPLM, affy, oligo, limma, or arrayMagic to read these
files. These Bioconductor packages have functions (e.g., ReadAffy, expresso,
or justRMA in affy) to read CEL files and perform preliminary preprocess-
ing, and to represent the resulting data as an ExpressionSet or other type
of object. Suppose the result from reading and preprocessing CEL or other
files is named object, and object is different from ExpressionSet ; a good
bet is to try, for example,

> library(convert)

> as(object, "ExpressionSet")

It might be the case that no converter is available. The path then is to
extract relevant data from object and use this to create an ExpressionSet
using the instructions below.

2.4.2 Building an ExpressionSet from scratch

As mentioned before, the data from many high-throughput genomic
experiments, such as microarray experiments, usually consist of several
conceptually distinct parts: assay data, sample annotations, feature anno-
tations, and an overall description of the experiment. We construct each of
these components, and then assemble them into an ExpressionSet .

Assay data

One important part of the experiment is a matrix of “expression” values.
The values are usually derived from microarrays of one sort or another,
perhaps after initial processing by manufacturer software or Bioconductor
packages. The matrix has F rows and S columns, where F is the number
of features on the chip and S is the number of samples.

A likely scenario is that your assay data are in a “tab-delimited” text file
(as exported from a spreadsheet, for instance) with rows corresponding to
features and columns to samples. The strategy is to read this file into R
using the read.table command, converting the result to a matrix . A typical
command to read a tab-delimited file that includes column headers is
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> dataDirectory = system.file("extdata", package="Biobase")

> exprsFile = file.path(dataDirectory, "exprsData.txt")

> exprs = as.matrix(read.table(exprsFile, header=TRUE,

sep="\t", row.names=1, as.is=TRUE))

The first two lines create a file path pointing to where the assay data are
stored; replace these with a character string pointing to your own file, for
example,

> exprsFile = "c:/path/to/exprsData.txt"

(Windows users: note the use of / rather than \; this is because R treats
the \ character as an “escape” sequence to change the meaning of the
subsequent character.) See the help pages for read.table for more detail.
A common variant is that the character separating columns is a comma
(“comma-separated values”, or “csv” files), in which case the sep argument
might be sep=",".

It is always important to verify that the data you have read match your
expectations. At a minimum, check the class and dimensions of geneData

and take a peek at the first several rows.

> class(exprs)

[1] "matrix"
> dim(exprs)

[1] 500 26
> colnames(exprs)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
[14] "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
> head(exprs)

A B C D E F
AFFX-MurIL2_at 192.7 85.75 176.8 135.6 64.49 76.4
AFFX-MurIL10_at 97.1 126.20 77.9 93.4 24.40 85.5
AFFX-MurIL4_at 45.8 8.83 33.1 28.7 5.94 28.3
AFFX-MurFAS_at 22.5 3.60 14.7 12.3 36.87 11.3
AFFX-BioB-5_at 96.8 30.44 46.1 70.9 56.17 42.7
AFFX-BioB-M_at 89.1 25.85 57.2 70.0 49.58 26.1

G H I J K L M
AFFX-MurIL2_at 160.5 66.0 56.9 135.61 63.44 78.2 83.1
AFFX-MurIL10_at 98.9 81.7 97.8 90.48 70.57 94.5 75.3
AFFX-MurIL4_at 31.0 14.8 14.2 34.49 20.35 14.2 20.6
AFFX-MurFAS_at 23.0 16.2 12.0 4.55 8.52 27.3 10.2
AFFX-BioB-5_at 86.5 30.8 19.7 46.35 39.13 41.8 80.2
AFFX-BioB-M_at 75.0 42.3 41.1 91.53 39.91 49.8 63.5
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N O P Q R S T
AFFX-MurIL2_at 89.3 91.1 95.9 179.8 152.5 180.83 85.4
AFFX-MurIL10_at 68.6 87.4 84.5 87.7 108.0 134.26 91.4
AFFX-MurIL4_at 15.9 20.2 27.8 32.8 33.5 19.82 20.4
AFFX-MurFAS_at 20.2 15.8 14.3 15.9 14.7 -7.92 12.9
AFFX-BioB-5_at 36.5 36.4 35.3 58.6 114.1 93.44 22.5
AFFX-BioB-M_at 24.7 47.5 47.4 58.1 104.1 115.83 58.1

U V W X Y Z
AFFX-MurIL2_at 157.99 146.8 93.9 103.86 64.4 175.62
AFFX-MurIL10_at -8.69 85.0 79.3 71.66 64.2 78.71
AFFX-MurIL4_at 26.87 31.1 22.3 19.01 12.2 17.38
AFFX-MurFAS_at 11.92 12.8 11.1 7.56 20.0 8.97
AFFX-BioB-5_at 48.65 90.2 42.0 57.57 44.8 61.70
AFFX-BioB-M_at 73.42 64.6 40.3 41.82 46.1 49.41

Sample annotation

The information about the samples (e.g., experimental conditions or param-
eters, or attributes of the subjects such as sex, age, and diagnosis) is often
referred to as covariates. The information describing the samples can be
represented as a table with S rows and V columns, where V is the number
of covariates. An example of such a table can be input with

> pDataFile = file.path(dataDirectory, "pData.txt")

> pData = read.table(pDataFile,

row.names=1, header=TRUE, sep="\t")

> dim(pData)

[1] 26 3
> rownames(pData)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
[14] "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
> summary(pData)

gender type score
Female:11 Case :15 Min. :0.100
Male :15 Control:11 1st Qu.:0.328

Median :0.415
Mean :0.537
3rd Qu.:0.765
Max. :0.980

There are three columns of data, and 26 rows. Note that the rows of the
sample data table align with the columns of the expression data matrix:

> all(rownames(pData) == colnames(exprs))

[1] TRUE
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This is an essential feature of the relationship between the assay and
sample data; ExpressionSet will complain if these names do not match.

Sample data can take on a number of different forms. For instance, some
covariates might reasonably be represented as numeric values. Other covari-
ates (e.g., gender, tissue type, or cancer status) might be better represented
as factor objects (see the help page for factor for more information). It is
important that the sample covariates are encoded correctly; the colClasses

argument to read.table can be helpful in correctly inputting (and ignoring,
if desired) columns from the file.

Exercise 2.7
a. What class does read.table return?

b. Determine the column names of pData. Hint: apropos("name").

c. Use sapply to determine the classes of each column of pData. Hint:
read the help page for sapply.

d. What is the sex and Case/Control status of the 15th and 20th sam-
ples? What is the status for the sample(s) with score greater than
0.8?

Investigators often find that the meaning of simple column names does
not provide enough information about the covariate. What is the cryptic
name supposed to represent? In what units are the covariates measured? We
can create a data frame containing such metadata (or read the information
from a file using read.table) with

> metadata = data.frame(labelDescription=c("Patient gender",

"Case/control status", "Tumor progress on XYZ scale"),

row.names=c("gender", "type", "score"))

This creates a data.frame object with a single column called “labelDe-
scription”, and with row names identical to the column names of
the data.frame containing the sample annotation data. The column
labelDescription must be present; other columns are optional.

Bioconductor’s Biobase package provides a class called Annotated-
DataFrame that conveniently stores and manipulates tabular data in a
coordinated fashion. Create and view an AnnotatedDataFrame instance
with:

> adf = new("AnnotatedDataFrame", data=pData,

varMetadata=metadata)

> adf

An object of class "AnnotatedDataFrame"
rowNames: A, B, ..., Z (26 total)
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varLabels and varMetadata description:
gender: Patient gender
type: Case/control status
score: Tumor progress on XYZ scale

Some useful operations on an AnnotatedDataFrame include
sampleNames, pData (to extract the original pData data.frame), and
varMetadata. In addition, AnnotatedDataFrame objects can be subset
much as a data.frame:

> head(pData(adf))

gender type score
A Female Control 0.75
B Male Case 0.40
C Male Control 0.73
D Male Case 0.42
E Female Case 0.93
F Male Control 0.22
> adf[c("A","Z"), "gender"]

An object of class "AnnotatedDataFrame"
rowNames: A, Z
varLabels and varMetadata description:
gender: Patient gender

> pData(adf[adf$score > 0.8,])

gender type score
E Female Case 0.93
G Male Case 0.96
X Male Control 0.98
Y Female Case 0.94

Annotations and feature data

Metadata on features are as important as metadata on samples, and can be
very large and diverse. A single chip design (i.e., collection of features) is
likely to be used in many different experiments, and it would be inefficient
to repeatedly collect and coordinate the same metadata for each Expres-
sionSet instance. Instead, the idea is to construct specialized metadata
packages for each type of chip or instrument. Many of these packages are
available from the Bioconductor Web site. These packages contain informa-
tion such as the gene name, symbol, and chromosomal location. There are
other metadata packages that contain the information that is provided by
other initiatives such as GO and KEGG. The annotate package provides
basic data manipulation tools for the metadata packages.

The appropriate way to create annotation data for features is very
straight forward: we provide a character string identifying the type of chip
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used in the experiment. For instance, the data we are using are from the
Affymetrix HG-U95Av2 GeneChip :

> annotation = "hgu95av2"

It is also possible to record information about features that are unique to
the experiment (e.g., flagging particularly relevant features). This is done
by creating or modifying an AnnotatedDataFrame like that for adf but with
row names of the AnnotatedDataFrame matching rows of the assay data.

Experiment description

A basic description about the experiment (e.g., the investigator or lab where
the experiment was done, an overall title, and other notes) can be recorded
by creating a MIAME object. One way to create a MIAME object is to
use the new function:

> experimentData = new("MIAME", name="Pierre Fermat",

lab="Francis Galton Lab",

contact="pfermat@lab.not.exist",

title="Smoking-Cancer Experiment",

abstract="An example ExpressionSet",

url="www.lab.not.exist",

other=list(notes="Created from text files"))

Usually, new takes as arguments the class name and pairs of names and
values corresponding to different slots in the class; consult the help page
for MIAME for details of available slots.

Assembling an ExpressionSet

An ExpressionSet object is created by assembling its component parts, and
after all this work the final assembly is disappointingly easy:

> exampleSet = new("ExpressionSet", exprs=exprs,

phenoData=adf, experimentData=experimentData,

annotation="hgu95av2")

Note that the names on the right of each equal sign can refer to any object
of appropriate class for the argument. See the help page for ExpressionSet
for more information.

We created a rich data object to coordinate diverse sources of infor-
mation. Less rich objects can be created by providing less information. A
minimal expression set can be created with

> minimalSet = new("ExpressionSet", exprs=exprs)
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Of course this object has no information about sample or feature data
or about the chip used for the assay.

2.4.3 ExpressionSet basics

Now that you have an ExpressionSet instance, let’s explore some of the
basic operations. You can get an overview of the structure and available
methods for ExpressionSet objects by reading the help page:

> help("ExpressionSet-class")

When you print an ExpressionSet object, a brief summary of the contents
of the object is displayed (displaying the entire object would fill your screen
with numbers):

> exampleSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 26 samples
element names: exprs

phenoData
sampleNames: A, B, ..., Z (26 total)
varLabels and varMetadata description:
gender: Patient gender
type: Case/control status
score: Tumor progress on XYZ scale

featureData
featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, ..., 31
739_at (500 total)
fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
Annotation: hgu95av2

Accessing data elements

A number of accessor functions are available to extract data from an
ExpressionSet instance. You can access the columns of the sample data
(an AnnotatedDataFrame) using $:

> exampleSet$gender[1:5]

[1] Female Male Male Male Female
Levels: Female Male
> exampleSet$gender[1:5] == "Female"

[1] TRUE FALSE FALSE FALSE TRUE

You can retrieve the names of the features using featureNames. For many
microarray datasets, the feature names are the probe set identifiers.
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> featureNames(exampleSet)[1:5]

[1] "AFFX-MurIL2_at" "AFFX-MurIL10_at"
[3] "AFFX-MurIL4_at" "AFFX-MurFAS_at"
[5] "AFFX-BioB-5_at"

The unique identifiers of the samples in the dataset are available via the
sampleNames method. The varLabels method lists the column names of the
sample data:

> sampleNames(exampleSet)[1:5]

[1] "A" "B" "C" "D" "E"
> varLabels(exampleSet)

[1] "gender" "type" "score"

Extract the expression matrix and the AnnotatedDataFrame of sample
information using exprs and phenoData, respectively:

> mat = exprs(exampleSet)

> dim(mat)

[1] 500 26
> adf = phenoData(exampleSet)

> adf

An object of class "AnnotatedDataFrame"
sampleNames: A, B, ..., Z (26 total)
varLabels and varMetadata description:
gender: Patient gender
type: Case/control status
score: Tumor progress on XYZ scale

Subsetting

Probably the most useful operation to perform on ExpressionSet objects
is subsetting. Subsetting an ExpressionSet is very similar to subsetting the
expression matrix that is contained within the ExpressionSet : the first argu-
ment subsets the features and the second argument subsets the samples.
Here are some examples. Create a new ExpressionSet consisting of the five
features and the first three samples:

> vv = exampleSet[1:5, 1:3]

> dim(vv)

Features Samples
5 3

> featureNames(vv)
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[1] "AFFX-MurIL2_at" "AFFX-MurIL10_at"
[3] "AFFX-MurIL4_at" "AFFX-MurFAS_at"
[5] "AFFX-BioB-5_at"
> sampleNames(vv)

[1] "A" "B" "C"

Create a subset consisting of only the male samples:

> males = exampleSet[, exampleSet$gender == "Male"]

> males

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 15 samples
element names: exprs

phenoData
sampleNames: B, C, ..., X (15 total)
varLabels and varMetadata description:
gender: Patient gender
type: Case/control status
score: Tumor progress on XYZ scale

featureData
featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, ..., 31
739_at (500 total)
fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
Annotation: hgu95av2

2.5 Graphics

Graphics and visualization are important issues when dealing with complex
data such as the ones typically found in biological science. In this section
we work through some examples that allow us to create general plots in R.
Both R and Bioconductor offer a range of functions that generate various
graphical representations of our data. For each function there are usually
numerous parameters that enable the user to tailor the output to the spe-
cific needs. We only touch on some of the issues and tools. Interested readers
should look at Chapter 10 of Gentleman et al. (2005a) or for even more
detail Murrell (2005).

The function plot can be used to produce dot plots. Read through its
documentation (? plot) and also take a look into the documentation for
par, which controls most of the parameters for R’s base graphics. We now
want to use the plot function to compare the gene expression intensities of
two samples from our dataset on a log–log scale.
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Figure 2.1. Scatterplot of expression intensities for two samples.

> x = exprs(exampleSet[, 1])

> y = exprs(exampleSet[, 3])

> plot(x=x, y=y, log="xy")

From the plot in Figure 2.1 we can see that the measurements for each
probe are highly correlated between the two samples. They form an almost
perfect line along the 45 degree diagonal.

Exercise 2.8
The axis annotation of the plot in Figure 2.1 is not very informative. Can
you add more meaningful axis labels and a title to the plot? Can you change
the plotting symbols? Add the 45 degrees diagonal to the plot. [Hint: use
function abline.]

Proper visualization can help to detect possible problems or inconsisten-
cies in the data. In the simplest case one can spot such problems by looking
at distribution summaries. A good example for this is the dependency of
the measurement intensity of a microarray probe on its GC-content. To
demonstrate this, we need to load a more extended data set from the CLL
package which includes the raw measurement values for each probe from an
experiment using the Affymetrix HG-U95Av2 GeneChip. The basecontent

function from package matchprobes calculates the base frequencies for
each probe based on a sequence vector.
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> library("CLL")

> library("matchprobes")

> library("hgu95av2probe")

> library("hgu95av2cdf")

> library("RColorBrewer")

> data("CLLbatch")

> bases = basecontent(hgu95av2probe$sequence)

We now need to match the probes via their position on the array to
positions in the data matrix of the CLLbatch object. Because we have several
samples in the set, we use the rowMeans function to compute, for each probe,
the average of its expression values across arrays.

> iab = with(hgu95av2probe, xy2indices(x, y,

cdf="hgu95av2cdf"))

> probedata = data.frame(

int=rowMeans(log2(exprs(CLLbatch)[iab, ])),

gc=bases[, "C"] + bases[, "G"])

Now we are ready to plot the log2-transformed intensity values of the
probes grouped by their GC-content. An extraordinarily effective tool for
the visualization of distributions is the boxplot. In the code below, we
construct a set of boxplots, one box for each possible value of GC-content.
The result is shown in Figure 2.2.

> colorfunction = colorRampPalette(brewer.pal(9, "GnBu"))

> mycolors = colorfunction(length(unique(probedata$gc)))

> label = expression(log[2]~intensity)

> boxplot(int ~ gc, data=probedata, col=mycolors,

outline=FALSE, xlab="Number of G and C",

ylab=label, main="")

The first two lines of the above code chunk are concerned with creating a
set of colors for the boxes. We use the function brewer.pal from the package
RColorBrewer to obtain a set of basic colors and colorRampPalette to
interpolate between them, defining a unique color for each possible value
of gc.

An alternative visualization of univariate distributions is the density plot.
We can plot multiple densities in one panel using the function multidensity

from the package geneplotter. For this plot we focus on the ten biggest
groups. First, we find out which of the GC-content values occur most often.
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Figure 2.2. Boxplots of the distributions of log2-intensities from the CLL dataset
grouped by GC-content. Please refer to the manual pages of the functions
boxplot.stats and boxplot for details on the features shown in a boxplot.

> tab = table(probedata$gc)

> gcUse = as.integer(names(sort(tab, decreasing=TRUE)[1:10]))

> gcUse

[1] 13 11 12 10 14 9 15 8 16 17

Then we can call the plot function.

> library("geneplotter")

> multidensity(int ~ gc, data=subset(probedata,

gc %in% gcUse), xlim=c(6, 11),

col=colorfunction(12)[-(1:2)],

lwd=2, main="", xlab=label)

Exercise 2.9
Another useful distribution summary is plots of the empirical cumulative
distribution function. Create a plot similar to the one in Figure 2.3 using
the function multiecdf.
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Figure 2.3. Density plot of distributions of log2-intensities from the CLL dataset
grouped by GC content.


