
Preface

This book is meant to be a text for a first course in quantum physics. It is assumed
that the student has had courses in Modern Physics and in mathematics through
differential equations. The book is otherwise self-contained and does not rely on
outside resources such as the internet to supplement the material. SI units are used
throughout except for those topics for which atomic units are especially convenient.

It is our belief that for a physics major a quantum physics textbook should be
more than a one- or two-semester acquaintance. Consequently, this book contains
material that, while germane to the subject, the instructor might choose to omit
because of time limitations. There are topics and examples included that are not
normally covered in introductory textbooks. These topics are not necessarily too
advanced, they are simply not usually covered. We have not, however, presumed to
tell the instructor which topics must be included and which may be omitted. It is
our intention that omitted subjects are available for future reference in a book that
is already familiar to its owner. In short, it is our hope that the student will use the
book as a reference after having completed the course.

We have included at the end of most chapters a “Retrospective” of the chapter.
This is not meant to be merely a summary, but, rather, an overview of the importance
of the material and its place in the context of previous and forthcoming chapters. For
example, the Retrospective in Chapter 3 we feel is particularly important because,
in our experience, students spend so much time learning about eigenstates that they
get the impression that physical systems “live” in eigenstates.

We believe that students should, after a very brief review of salient experiments
and concepts that led to contemporary quantum physics (Chapter 1), begin solv-
ing problems. That is, the formal aspects of quantum physics, operator formalism,
should be introduced only after the student has seen quantum mechanics in action.
This is certainly not a new approach, but we prefer it to the alternative of the for-
mal mathematical introduction followed by problem solving. More importantly, we
believe that the students benefit from this approach. To this end we begin with a
derivation (read: rationalization) of the Schrödinger equation in Chapter 2. This
chapter continues with a discussion of the nature of the solutions of the Schrödinger
equation, particularly the wave function. We discuss at length both the utility of the
wave function and its characteristics. It is our observation that the art of sketching
wave functions has been neglected. We are led to this conclusion from discussions
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with graduate students who have had the undergraduate course, but are unable to
sketch wave functions for an arbitrarily drawn potential energy function. We think
that such a skill is crucial for understanding quantum mechanics at the introductory
level and, thus, we spend a good deal of Chapter 2 discussing qualitative aspects of
the wave function.

In Chapter 3 we solve the Schrödinger equation for two of the most important po-
tential energy functions, the infinite square well and the harmonic oscillator. A point
of contrast between the these potentials is penetration of oscillator wave functions
into the classically forbidden region. We discuss this penetration at length because,
in our experience, students have a great deal of difficulty with this concept. We then
elaborate upon this concept by presenting the details of a problem not often seen in
elementary texts, an infinite square well with a barrier in the middle. This affords
the opportunity to see that, for energies less than the barrier height, the particle
can be found on either side of the classically impenetrable barrier, thus making the
particle’s presence inside the barrier undeniable. This problem also sets the stage
for solution of the more conventional barrier penetration problems in Chapter 5.

In Chapter 4 we discuss time-dependent states. We choose to do this at this point
to contrast these states with those studied in the previous chapter. While we discuss
the free particle wave packet (as does virtually every other text), we also present
wave packets under the influence of a constant force and of a harmonic force. This
discussion will, we believe, relate nicely to a later presentation of harmonic oscilla-
tor coherent states (Chapter 7).

Chapter 5 is an extension of Chapter 3 in that we solve the time-independent
Schrödinger equation for several different one-dimensional potential energies. In-
cluded is one of the most successful analytic potential energy functions for charac-
terizing diatomic molecular vibrations, the Morse potential. The chapter concludes
with the WKB method for approximating solutions.

Chapter 6 presents the formalism of quantum physics, the mechanics of quan-
tum mechanics, including a set of postulates. For completeness we also discuss the
Schrödinger and Heisenberg pictures. Chapter 7 is devoted to the operator solu-
tion of the Schrödinger equation for the harmonic oscillator with emphasis on the
properties of the ladder operators. Harmonic oscillator coherent states are also dis-
cussed. Chapter 8 introduces three-dimensional problems and is devoted to angular
momentum. It is emphasized in this chapter that the concept of angular momen-
tum in quantum mechanics transcends three-dimensional rotations (orbital angular
momentum).

Chapters 9 and 10 are devoted to solving the radial Schrödinger equation for
several different central potentials. In addition to the common central potentials,
Chapter 9 includes a thorough discussion of the isotropic harmonic oscillator using
the shell model of the nucleus as an example. The isotropic oscillator also permits
introduction the concept of accidental degeneracy. Because they are constituents of
oscillator eigenfunctions, an attempt is made to decrypt the different conventions
that are used for Laguerre polynomials and associated Laguerre polynomials. In
our experience, this is a source of confusion to many students. Also contained in
this chapter is an elaboration on the Morse potential in which three-dimensional
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molecular motion is considered through rotation–vibration coupling. The discus-
sion of the hydrogen atom, the sole content of Chapter 10, is standard, but, as for
the isotropic oscillator, accidental degeneracy is stressed. Chapter 11 is included to
demonstrate to the student that there are angular momenta in quantum mechanics
other than orbital and spin angular momenta. It includes the introduction of the Lenz
vector, its consequences and ramifications. This subject is not usually covered at the
introductory level, but it is certainly not beyond the beginning student.

The material in the remaining four chapters depends heavily upon approxima-
tion methods. Chapter 12 presents time-independent approximation methods, while
Chapter 13 illustrates the use of these methods to solve problems of physical in-
terest. One problem that is included in Chapter 13, albeit superficially, is the effect
of fine structure on the shell model of the nucleus. Chapter 14 treats the Stark and
Zeeman effects. Particular attention is paid to the consequences of breaking the
spherical symmetry of central potentials by application of an external field. Chapter
15 presents time-dependent approximation methods, followed by a discussion of
atomic radiation including the Einstein coefficients.

There are more than two hundred problems. A detailed solutions manual is avail-
able. There are a number of appendixes to the book, including the answers to all
problems for which one is required. Among the other appendixes is one listing the
Greek alphabet with notations on common usage of these symbols in the book.
There is also a short table of acronyms used in the book. The remaining appendixes
contain material that is intended to be quick reference material and helpful with
the core material in the book. A list of (the inevitable) corrections can be found at:
http://users.stlcc.edu/cburkhardt/ and http://www.umsl.edu/∼jjl/homepage/.

We are indebted to several people, without whose help this manuscript would not
have been completed. Helen and Charles Burkhardt, parents, read the manuscript
critically. Discussions with Dr. J. D. Kelley were invaluable, as was his critical read-
ing of the manuscript. Professor. S. T. Manson also read the manuscript and made
many useful suggestions. Discussions with Dr. M. J. Kernan were very helpful, as
were her suggestions. To all of these people we offer our sincere thanks.

Charles E. Burkhardt
Jacob J. Leventhal



Chapter 2
Elementary Wave Mechanics

2.1 What is Doing the Waving?

In nonrelativistic quantum physics, particles are treated as points. That is, they
have no finite dimensions (zero volume) so they cannot, for example, spin. We are
therefore justified in asking “what is doing the waving?” The answer is that it is
the probability of finding the particle in a particular region of space. Actually, it is
the probability of finding the particle within a particular range of some physically
measurable parameters such as linear momentum or angular momentum, but let us
confine our attention to coordinates for now. The application of quantum physics to
solve problems thus becomes one of solving the appropriate equation of motion for
the function that represents this probability. The mechanics of doing this is called
quantum mechanics or, archaically, wave mechanics. The intention of this chapter
is to introduce this equation of motion and, using it, to better understand the answer
to the question what is doing the waving.

2.2 A Gedanken Experiment—Electron Diffraction Revisited

It is reasonable to ask if we can imagine an experiment that will demonstrate the
wave nature of the probability and, simultaneously, the pointlike “structure” of the
particles. Gedanken is the German word for thought, so a Gedanken experiment
is not one that can actually be performed, but one that can be imagined and used
to understand a particular phenomenon. Modern technology has, however, made it
possible to perform experiments that were envisioned as Gedanken experiments dur-
ing the development of quantum mechanics. Because of the counterintuitive nature
of quantum physics, many Gedanken experiments were imagined, especially in the
early development of quantum physics. For the present purpose, we return to the
electron diffraction experiment described in Section 1.2.3 and use it to perform a
Gedanken experiment.

Imagine the screen to be constructed of a material that phosphoresces when
struck by an electron. Phosphorescent materials continue to emit light after be-
ing energized and we assume, for the purpose of this experiment, that our screen
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28 2 Elementary Wave Mechanics

phosphoresces indefinitely. Now, let us lower the intensity of the electron beam so
we can easily see each electron as it strikes the screen, lights it up, and leaves a
signature of its presence in the form of a persistent pinpoint of light. The first elec-
tron strikes somewhere, we cannot predict where with certainty. From the known
diffraction pattern we know where it is most likely to strike. Perhaps it is a contrary
electron and strikes in a region in which the diffraction pattern has low intensity,
perhaps not. Bear in mind that it is a single event. Wherever it strikes, it leaves
its signature. A second electron arrives. It too leaves its signature. Again, we do
not know where it will land, only where it is most likely to land. After perhaps
100 electrons have struck the screen we have a pattern, but it may not look like
the known diffraction pattern because 100 is not, statistically speaking, a very large
number. When, however, a large number of electrons have struck the screen it is
lit up with the known diffraction pattern. This pattern is composed of many points
of light representing the point electrons, but the pattern represents the diffraction
pattern characteristic of wave motion.

The important point to remember is that the particles are not magically turning
into slithering sausages as they make their way through the narrow slit. They main-
tain their identity as point particles. It is, perhaps, Avogadro’s number of them that
are required to demonstrate the wavelike properties of matter.

2.3 The Wave Function

Paramount to obtaining the probability distribution is the wave function, � (x, t).
We use the capital Greek letter to designate the wave function when the time is
included and, for now, we work with only one-dimension, x . We point out that
the wave function need not be written in terms of any coordinates. It could be in
terms of another variable (called an observable in quantum mechanics), but we will
consider only coordinates and time for now. Now, by postulate, � (x, t) contains all
the information that the uncertainty principle permits us to know about the particle.
Using an asterisk to signify the complex conjugate, the probability that the particle
will be found in the interval dx at time t is given by

�∗ (x, t) � (x, t) dx = |� (x, t)|2 dx (2.1)

provided � (x, t) has been normalized so that

∫ ∞

−∞
�∗ (x, t) � (x, t) dx = 1 (2.2)

Normalization assures that the total probability cannot exceed unity. The complex
conjugate is required because � (x, t) may very well be a complex function. On
the other hand, the probability must be real so the absolute value in Equation 2.1
assures us that the probability will be real. We see then that, while � (x, t) does
not give physical information, its absolute square does. The quantity |� (x, t)|2 is
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the probability density so that, in one-dimension, it has units of probability per unit
length.

If we wish to calculate the average value of some quantity that is a function of
x , say f (x), we multiply this function by the normalized probability distribution
�∗ (x, t) � (x, t) dx , which weights the values of f (x). We then integrate over all
possible values of x to obtain 〈 f (x)〉, the average value of f (x). This procedure
is analogous to calculating the class average on an examination by multiplying
each possible score by the number of students achieving that score, adding these
quantities, and then dividing by the total number of students. Division by the total
number has already been accounted for if the wave function is normalized. If not,
the integral in Equation 2.2 must be computed, which amounts to normalizing the
wave function. In the case of the class average the number of students is a discrete
number as are the possible test scores. Clearly the computation of 〈 f (x)〉 requires
integration so we define

〈 f (x)〉 ≡
∫ ∞

−∞
�∗ (x, t) f (x) � (x, t) dx = 1 (2.3)

Notice that 〈 f (x)〉 need not be one of the possible values f (x) just as the class
average of an examination need not be a score that any particular student actually
achieved. In quantum physics the average value as defined in Equation 2.3 is often
referred to as the expectation value, a fancy term for average value.

2.4 Finding the Wave Function—the Schrödinger Equationö

Just as there are equations of motion in classical physics, there are equations of
motion of the wave function in quantum physics. Such equations are called wave
equations. In this book we deal with nonrelativistic quantum physics so we will use
the Schrödinger wave equation, an equation that cannot be derived. It can be ratio-
nalized, but it cannot be derived. This is not the first time you have encountered such
an equation. Newton’s second law, F = ma, cannot be derived. It works though, so
we accept it as being a law (at least nonrelativistically). It was deduced by Newton.
We can presume that he tried others, but settled on F = ma as the correct law of
motion because it worked. This is the same approach taken by Erwin Schrödinger
who shared the 1933 Nobel Prize in Physics with Paul Adrien Maurice Dirac. The
citation for their prize reads: “for the discovery of new productive forms of atomic
theory.”

The validity of the Schrödinger equation lies in the fact that it satisfactorily ex-
plains nonrelativistic quantal phenomena. It is, however, worthwhile to see how this
equation can be rationalized because we can see what is built into the Schrödinger
equation. The (nonrelativistic) TME E of a particle of mass m in terms of the po-
tential energy U (x), the particle’s momentum p is
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E = p2

2m
+ U (x) (2.4)

If we incorporate both of the important quantal relations, the Planck relation, Equa-
tion 1.2, and the de Broglie wavelength, Equation 1.48, into Equation 2.4, we have

�ω = (�k)2

2m
+ U (x) (2.5)

where we have replaced the de Broglie wavelength with the wave number k de-
fined as

k = 2π/λ ⇒ p = �k (2.6)

The term in Equation 2.5 that makes it particularly difficult to write a wave equation
for a particle is the potential energy, so we will temporarily ignore it. (We are, after
all, only rationalizing, not deriving.) If the particle were massless, for example a
photon, then the electromagnetic wave equation would pertain. That is, the equation
of motion is

�2 A (x, t)

�x2
= 1

c2

�2 A (x, t)

�t2
(2.7)

where A (x, t) is the space- and time-dependent amplitude (electric or magnetic
field) of the wave, and c is, as usual, the speed of light. Partial derivatives are
required because the wave function is a function of two variables. A solution to
Equation 2.7 is a plane wave

A (x, t) = K ei(kx−ωt) (2.8)

where K is a constant and i = √−1. Before proceeding let us recall that wave
motion is always described by a function of (x − vt) where v is the velocity of the
wave. Equation 2.8 is such a function with v = ω/k. For electromagnetic waves
v = c, the speed of light.

Suppose we try to apply Equation 2.7 to the case of a material particle (nonzero
mass), but, for simplicity, continue to let U (x) = 0. When U (x) = 0 we have
a “free particle.” We then replace the amplitude A (x, t) with the wave function
� (x, t), let c → v and assume a plane wave solution analogous to Equation 2.8 and
insert this solution into Equation 2.7. After dividing by the � (x, t) on both sides of
the equation we obtain

(ik)2 = 1

v2
(−iω)2 (2.9)

Equation 2.9 is, however, inconsistent with Equation 2.5 because, with U (x) = 0,
k2 ∝ ω, not ω2. We can see that in order to get only the first power of ω we must
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differentiate � (x, t) only once with respect to time. This results in a modification of
Equation 2.7 with A (x, t) → � (x, t) and �2 A (x, t) /�t2 → �� (x, t) /�t to yield

�2� (x, t)

�x2
= K

�� (x, t)

�t
(2.10)

where K is a constant. Inserting Equation 2.8 into Equation 2.10 and solving for K
we have

K = k2

iω
(2.11)

But, from Equation 2.5 we see, with U (x) = 0,

�ω = �
2k2

2m
=⇒ k2

ω
= 2m

�
(2.12)

Therefore,

K = −i
2m

�
(2.13)

and we have

�2� (x, t)

�x2
= −i

2m

�

�� (x, t)

�t
(2.14)

This equation can be put in its usual form by multiplying both sides by −�
2/2m,

the advantage of which is that both sides have units of energy. We have

− �
2

2m

�2� (x, t)

�x2
= −�

i

�� (x, t)

�t
(2.15)

This wave equation is applicable only to a free particle, that is, a particle for which
the de Broglie wavelength is constant throughout. The de Broglie wavelength is
constant because the total energy is presumed constant, so the kinetic energy and
therefore the momentum is constant. How do we account for a nonzero potential
energy? A constant potential energy is easy because the de Broglie wavelength is
constant; U (x) = 0 is a special case of U (x) = U0 = a constant. Thus, we can,
without any guilt, write

[
− �

2

2m

�2

�x2
+ U0

]
� (x, t) = −�

i

�� (x, t)

�t
(2.16)

which is consistent with Equation 2.5 with U (x) replaced by U0. Notice that we
have factored the � (x, t) to the right of the bracket on the left-hand side of Equa-
tion 2.16. The significance of this is that the quantity in brackets is an operator and
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it operates to the right. The first term is a differential operator and must be kept to
the left of the function � (x, t). The second term is, however, merely a multiplica-
tive operator, but an operator nonetheless. We will see that, in quantum mechanics,
observable quantities such as energy, momentum, and position are represented by
operators. We will deal with this in depth in a later chapter touching on it only
superficially here. It is not a great leap of faith to replace U0 in Equation 2.16 with
the function U (x) thus obtaining the time-dependent Schrödinger equation

[
− �

2

2m

�2

�x2
+ U (x)

]
� (x, t) = −�

i

�� (x, t)

�t
(2.17)

which, for brevity, we will refer to as the TDSE.
You may be wondering why we went through all this sleight of hand to arrive at

Equation 2.17, after having stated at the outset that it couldn’t be derived. After all,
you probably never had anyone rationalize F = ma. Why then go to all the trouble
to rationalize the TDSE? Why not just state it and get down to business solving
quantum mechanics problems? The reason lies in Equation 2.5. This equation for
the total energy of the particle comprises the two fundamental relations of quantum
physics, the de Broglie wavelength and the Planck relation. Thus, these manifestly
quantal quantities are incorporated in the TDSE.

There are a few mathematical consequences of using the TDSE as our equation
of motion that we should recognize. First, it is a homogeneous linear differential
equation. This means that linear combinations of solutions are also solutions, a
characteristic that has profound physical consequences. Second, the TDSE is merely
a differential equation. As such, it does not quantize anything. It could very well
appear at the end of a chapter in a book on differential equations as an exercise
asking the student to solve it for a given function U (x). It is the physics of a par-
ticular system that imposes quantization on a system, if indeed quantization occurs.
In other words, we as physicists must specify the conditions on the wave function
that are dictated by the system under consideration. These conditions may or may
not quantize the energy levels, as well as other physical parameters.

2.5 The Equation of Continuity

The TDSE, together with the probability interpretation of |� (x, t)|2 leads to a con-
tinuity equation for probability. This means that there is a flux of probability that
must be conserved. To take a concrete example, if an electron is moving from, say,
left to right, the probability is leaving one region of space and occupying another.
Let us be quantitative and examine the time dependence of the normalization of the
wave function:

�

�t
|� (x, t)|2 = �∗ (x, t)

�� (x, t)

�t
+ � (x, t)

��∗ (x, t)

�t
(2.18)
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We may, however, replace the partial derivatives with respect to time on the right-
hand side of Equation 2.18 using the TDSE Equation 2.17 and its complex conju-
gate. The potential energy function, being a real function, drops out and we have

�

�t
|� (x, t)|2 = �

2im

[
� (x, t)

�2�∗ (x, t)

�x2
− �∗ (x, t)

�2� (x, t)

�x2

]

�

�t
|� (x, t)|2 = �

�x

{
�

2im

[
�∗ (x, t)

�� (x, t)

�x
− � (x, t)

��∗ (x, t)

�x

]}
(2.19)

Now, define the quantity in curly brackets as the probability current j (x, t):

j (x, t) = �

2im

[
�∗ (x, t)

�� (x, t)

�x
− � (x, t)

��∗ (x, t)

�x

]
(2.20)

which leads to

� |� (x, t)|2
�t

+ �

�x
j (x, t) = 0 (2.21)

which is the desired continuity equation. The analogy with the equation of continu-
ity in electricity is often made. This analogy is more concrete if we imagine the wave
function to represent a beam of electrons so that the electronic charge e multiplied by
|� (x, t)|2 is, in a very real sense, the charge density. Thus, if we multiply Equation
2.21 by e we recover the continuity equation from electricity inasmuch as we now
identify the quantity ej (x, t) with the current density.

2.6 Separation of the Schrödinger Equation—Eigenfunctions

The potential energy term in Equation 2.17 does not contain the time. This will
almost always be the case (certainly in this book). We attempt to solve the TDSE
equation by the time-honored technique of separation of variables assuming a solu-
tion of the form

� (x, t) = ψ (x) T (t) (2.22)

Notice that the Greek psi on the right-hand side is lower-case which we reserve
for a function of coordinates only. Inserting Equation 2.22 into Equation 2.17 and
dividing by ψ (x) T (t) we have

1

ψ (x)

[
− �

2

2m

d2

dx2
+ U (x)

]
ψ (x) = −�

i

dT (t)

dt
(2.23)
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Note that, on the left-hand side of Equation 2.23, the ψ (x) in the denominator and
the ψ (x) in the numerator do not cancel because the one in the numerator must be
operated upon by the quantity in square brackets.

Now, the left-hand side of Equation 2.23 contains only coordinates while the
right-hand side only time. The only way these quantities, each containing a variable,
can be equal is if they are each equal to a constant which we choose to be E (because
we know the answer). Now, the equation in x cannot be solved unless we know
U (x), but the equation for time can be easily solved. The general solution is

T (t) = e−i(E/�)t (2.24)

which is the universal time part of the wave function as long as the potential en-
ergy is independent of time. We need not bother with a normalization constant in
Equation 2.24 because that will be absorbed in the normalization for ψ (x).

Setting the left-hand side of Equation 2.23 equal to the separation constant E we
have

[
− �

2

2m

d2

dx2
+ U (x)

]
ψ (x) = Eψ (x) (2.25)

This is the time-independent Schrödinger equation, the TISE. We will devote much
of the remainder of this book to the solution of Equation 2.25. It should be noted
that, as discussed above, the quantity in square brackets is an operator. This operator
represents the total energy of the system and is called the Hamiltonian, the same
Hamiltonian as in classical mechanics. If the potential energy does not contain the
time, the Hamiltonian, designated by the symbol Ĥ , is the TME. Moreover, since
the TME is the sum of kinetic plus potential energies it is clear the the first term
is the kinetic energy operator which can be written in terms of the momentum,
p̂2

x/2m. The “hat” over the momentum signifies that it is an operator. We will also
use a hat to designate a unit vector in any coordinate system, for example, ı̂, ĵ , k̂
in Cartesian coordinates or âr , âθ , âφ in spherical coordinates. This should cause
no confusion with the hat designation of operators. Now, the momentum is a vector
quantity (operator), so we use the subscript to denote the component even though
we are dealing with only one-dimension in this chapter. In terms of the Hamiltonian,
the (one-dimensional) TISE may be written as

Ĥψ (x) = Eψ (x)

=
[

p̂2
x

2m
+ U (x)

]
ψ (x) (2.26)

and the time-dependent Schrödinger wave equation, the TDSE, is

Ĥ� (x, t) = −�

i

�� (x, t)

�t
(2.27)
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In general, there will be many solutions of the TISE, each corresponding to a
different value of ψ (x) and its corresponding eigenvalue, E . We therefore attach
subscripts to distinguish the different ψn (x) and to correlate them with their corre-
sponding eigenvalues, En . Equations that have the form of Equation 2.26 are called
eigenvalue equations. The different values of En are the eigenvalues and the corre-
sponding values of ψn (x) are called eigenfunctions. It is also possible that some
eigenfunctions can share the same eigenvalue, in which case the eigenfunctions
are said to be degenerate. We will ignore degeneracy for now because, for bound
states in one-dimension, the eigenfunctions are nondegenerate. It will, however, be
an important consideration when we attack three-dimensional problems.

We can actually find the form of the x-component of the momentum operator by
noting that the square of an operator simply means that we should apply it twice in
succession. Thus, comparing the first terms in the brackets of Equations 2.25 and
2.26 we see that

p̂x = �

i

d

dx
(2.28)

The appearance of the imaginary number i is not a cause of concern because the
wave functions themselves can be complex functions. Recall that it is the absolute
squares of the wave functions that must be real. It will, however, be a requirement
that the eigenfunctions of any operator that represents an observable quantity, such
as momentum or energy, must be real, for it would be absurd to imagine measuring
an imaginary momentum.

2.7 The General Solution to the Schrödinger Equation

As noted above, an important property of the TISE is that it is a linear differen-
tial equation. This means that linear combinations of solutions are also solutions.
Moreover, as will be shown later, the eigenfunctions constitute a complete set of
functions. That is, the eigenfunctions are complete in the sense that any function
can be represented as a linear combination of them, much as any vector in three-
dimensional space can be represented as a linear combination of the unit vectors
ı̂, ĵ , and k̂. Indeed, the eigenfunctions span a vector space, the “vectors” being
any function that can be constructed as a linear combination of the ψn (x). Thus, a
general solution to the TISE, call it ψ (x), the absence of a subscript signifying that
it is not an eigenfunction, may be written

ψ (x) =
∞∑

n=1

anψn (x) (2.29)

where, because ψ (x) may be complex, as may be the expansion coefficients, the an.
An additional property that will be proven in a later chapter is that the ψn (x) are
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orthogonal in the same sense that the unit vectors are orthogonal. To designate this
orthogonality, the notation can be condensed to

∫ ∞

−∞
ψn (x) ψm (x) dx = 0 m �= n (2.30)

The integral in Equation 2.30 is the equivalent of the dot product for real vectors.
Suppose that ψ (x), as given by Equation 2.29, represents the total wave function

at t = 0, that is,

� (x, 0) = ψ (x)

=
∞∑

n=1

anψn (x) (2.31)

then, using the universal time dependence, Equation 2.24, it is a simple matter to
write the wave function for all time. We have

� (x, t) =
∞∑

n=1

anψn (x) e−i(En/�)t (2.32)

Equations 2.29 and 2.32 represent one of the most important theorems in quantum
mechanics, the superposition theorem. At this stage in our discussion these two
equations are merely mathematical constructions, but we will see that they have
profound implications for the behavior of physical systems and the states that they
occupy.

Because � (x, t), as given in Equation 2.32, is a solution of the TDSE, it is said
that the system is in a superposition of states. Moreover, the expansion represented
by Equation 2.32 is a coherent superposition of states in the sense the “components”
of the expansion have definite phase with respect to each other as contained in the
expansion coefficients and the time dependence. Suppose we have a large number
of identical systems and a measurement of some physical quantity, say the energy, is
made on a single one of these systems. The only possible result of this measurement
is one of the energy eigenvalues. If an identical measurement is made on another
of these systems, again, only one of the eigenvalues could result, but, possibly, a
different one than the other measurement. If measurements are made on many of
these identical systems (by many we mean many, say Avogadro’s number), then
the absolute squares of the expansion coefficients, the an, give the probabilities of
measuring the corresponding En’s.

The measurement process described above alters the system and changes the
wave function by forcing the system into the particular eigenstate, the eigenstate that
corresponds to the measured eigenvalue. In particular, if the energy measurement
yielded the i th eigenvalue Ei , then the wave function of the system becomes the
eigenfunction ψi (x). The language that goes with this is that the wave function has
been “collapsed” into the i th state.
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Consider a simple example. Suppose we have only two states in the expansion
and that the normalized wave function � (x, t) is given by

� (x, t) = 1√
3
ψ1 (x) e−iω1t +

√
2

3
ψ2 (x) e−iω2t (2.33)

where ωi = Ei/�. For simplicity, let ψ1 (x) and ψ2 (x) be real functions. The prob-
ability density is

|� (x, t)|2 = 1

3

{|ψ1 (x)|2 + 2 |ψ2 (x)|2

+2
√

2ψ1 (x) ψ2 (x) cos [(ω1 − ω2) t]
}

(2.34)

which is oscillatory, the frequency depending upon the difference in the energy and
the amplitude depending upon the expansion coefficients. Incidentally, it is clear
from Equation 2.34 that if there is only one component of � (x, t) then |� (x, t)|2
does not contain the time, thus justifying its designation as a “stationary state”.

Let us assume that we have a large number of identical systems, each described
by the wave function of Equation 2.33. Now, what can we expect if we measure
the energy of each of these identical systems? We have already stated that the only
possible result of such a measurement is one of the eigenvalues. In the present case
the measurement can yield only E1 or E2 because the system is in a superposi-
tion of only ψ1 (x) and ψ2 (x). What is the probability of measuring each of these
eigenvalues? Without resorting to mathematical formalism to which we have not
yet been exposed, it is relatively easy to deduce the answer. Suppose, rather than
the expansion coefficients used in Equation 2.33, � (x, t) is an equal admixture of
ψ1 (x) and ψ2 (x). (For an unknown reason it is customary to use the word admixture
here rather than mixture.) For this equal admixture only E1 or E2 could be measured,
but with equal probabilities, 1

2 . The normalized wave function must therefore be

� (x, t) = 1√
2
ψ1 (x) e−iω1t + 1√

2
ψ2 (x) e−iω2 t (2.35)

Consequently, we conclude that it is the square of the expansion coefficient that
gives the probability of measuring the corresponding eigenvalue. If the system is
described by the wave function of Equation 2.33, we would therefore measure E2

twice as often as we would measure E1.
The consequence of the above discussion is that the system is indeed in more than

one eigenstate—as long as we are not “looking,” that is “making a measurement.”
When we make the measurement (and look), we necessarily perturb the system,
immediately collapsing the wave function into one of the eigenstates.
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2.8 Stationary States and Bound States

Bohr’s characterization of the states of hydrogen as stationary states has been broad-
ened and retained in modern quantum physics. It refers to any state � (x, t) for
which the expansion, Equation 2.32, consists of a single term. Thus, the probability
density |� (x, t)|2 reduces to

|� (x, t)|2 = ψn (x) e−i(En/�)tψ∗
n (x) e+i(En/�)t

= ψn (x) ψ∗
n (x)

= function of x only (2.36)

Because this probability density is independent of time, it is defined as a “stationary
state.” On the other hand, if the wave function, � (x, t), contains two or more terms
in Equation 2.32, the probability density will be time-dependent and the state does
not qualify as a stationary state (see for example Equation 2.34).

If a particle is confined to a region of space by a potential energy function, then
the resulting quantum states are referred to as “bound states.” Incidentally, physicists
often get sloppy and refer to the potential energy function as, simply, the potential.
We will follow this custom and use the two interchangeably. Obviously Bohr’s sta-
tionary states are examples of bound states, but there are many other examples of
bound states. The wave function representing a particle confined by such a poten-
tial energy function may be a stationary state or it may be a linear combination of
them as in Equation 2.32. If there is more than one term in the expansion of the
wave function that represents the quantum system, then the system is said to be
in “a superposition of states.” More will be said about this designation when we
discuss the formalism of quantum mechanics. In this chapter we will concentrate
on the characteristics of stationary bound states of some simple systems. A great
simplification exists for bound states in one-dimensional problems. They are always
nondegenerate (see Problem 3).

2.9 Characteristics of the Eigenfunctions ψn (x)

What must be the character of an eigenfunction ψm (x)? First, it may be a real,
imaginary, or complex function because it is the absolute square of ψn (x) that gives
the probability density. It must, however, be single valued and it must be contin-
uous. Even in the mysterious world of quantum mechanics a particle cannot be in
two places at once. If ψn (x) had, say, two different values at a given value of x ,
then |ψn (x)|2 would be similarly double valued and there would be two different
probabilities of finding the particle at a given value of x . Accepting that this is
absurd, even in quantum physics, we require that ψn (x) is single valued. A similar
incongruity would occur if the wave function were discontinuous. These are, in fact,
characteristics of any general solution to the TISE ψ (x), not just eigenfunctions.
Figure 2.1 illustrates three hypothetical wave functions ψ (x) that are unacceptable.
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Fig. 2.1 Hypothetical wave
functions ψ (x) that, for the
indicated reasons, would be
unacceptable bound state
wave functions

In addition to these general conditions on ψ (x), we are also interested in the
important case in which U (x) supports bound states. This means that the particle
motion is restricted to a particular region of space by the potential energy func-
tion, similar to the way the planets are bound by the potential energy of the sun.
In such cases the particle is confined by the potential energy function and, as a
consequence, the probability density and therefore the wave function must approach
zero as |x | → ∞. The language that goes with this is to say that the wave function
is “normalizable” or “square integrable.” This means that the wave function can be
multiplied by a constant such that

∫ ∞

−∞
ψ∗ (x) ψ (x) dx = 1 (2.37)

Equation 2.37 is called the normalization integral and it signifies that the probability
of finding the particle somewhere is unity. Moreover, for bound states it cannot be
found at infinity because the nature of the potential localizes it in space. Notice that
multiplication of the eigenfunction by a constant does not change the magnitude of
the corresponding eigenvalue because the eigenfunction ψ (x) occurs in each term of
the TISE, Equation 2.25. Combining the orthogonality property with normalization,
we may write for eigenfunctions

∫ ∞

−∞
ψ∗

n (x) ψm (x) dx = δmn (2.38)

where δmn is the Kronecker delta defined as

δmn = 0 if m �= n

= 1 if m = n (2.39)

Eigenfunctions that obey Equation 2.38 are said to be orthonormal.
Now we must ask about the derivative of ψ (x). The TISE contains the second

derivative, so that if U (x) is a continuous function, both ψ (x) and dψ (x) /dx must
be continuous. Even if U (x) has a finite discontinuity, both ψ (x) and dψ (x) /dx
must be continuous. This is so because, from the TISE, d2ψ (x) /dx2 will then have
a finite discontinuity (imagine solving Equation 2.23 for d2ψ (x) /dx2) from which
it follows that dψ (x) /dx must be continuous and that ψ (x) is continuous. An
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Fig. 2.2 Sketch of a
hypothetical potential energy
with a discontinuity that
occurs as ε → 0

unacceptable discontinuity of the derivative is illustrated in Fig. 2.1. To place this
on a more mathematical foundation we may imagine a potential energy function that
has a finite discontinuity at some value of x , say x = x0 as illustrated in Fig. 2.2.

We simply integrate the TISE across the discontinuity from x0 − ε to x0 + ε:

∫ ε

−ε

d

dx

[
dψn (x)

dx

]
dx =

(
−2m

�2

)∫ ε

−ε

[E − U (x)] ψn (x) dx (2.40)

and take the limit as ε → 0:

lim
ε→0

dψn (x)

dx

∣∣
∣
∣
x=ε

− lim
ε→0

dψn (x)

dx

∣∣
∣
∣
x=−ε

=
(

−2m

�2

)
lim
ε→0

∫ ε

−ε

[E − U (x)] ψn (x) dx (2.41)

As long as the discontinuity in U (x) that occurs when ε → 0 is finite, the integral
on the right-hand side of Equation 2.41 vanishes in the limit and dψ/dx must be
continuous at x = x0. If, on the other hand, the discontinuity is infinite, as would
occur if U → ∞, then the integral on the right-hand side does not necessarily vanish
in the limit and the derivative need not be continuous.

There is a great deal that we can learn about the nature of the eigenfunctions, the
ψn (x), without ever actually solving the TISE. Let us solve Equation 2.25 for the
second derivative and, again, for simplicity, imagine ψn (x) to be a real function:

d2ψn (x)

dx2
=

(
−2m

�2

)
[E − U (x)] ψn (x) (2.42)

Now, recall that the second derivative of a function is a measure of the curvature of
the function. A high value of the second derivative means a “tight” curve, while
a low value means a gentle curve. Moreover, the sign of the second derivative
indicates the direction of curvature. (Recall that this is the basis for determining
whether a zero of the first derivative is a maximum or a minimum.) A negative
second derivative means that the function is concave down while a positive second
derivative is concave up. These features of the second derivative are summarized in
Fig. 2.3 for an arbitrary function f (x).
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Fig. 2.3 Illustrations of
various possible second
derivatives of the function
f (x). The curves labeled 1
and 2 have positive values of
d2 f (x) /dx2 and are
therefore concave up. Curve 3
is concave down. The second
derivative of curve 1 is
greater than that of curve 2

If the curvature of a wave function ψ (x) is high as, for example, the curve labeled
number 1 in Fig. 2.3, then the de Broglie wavelength of the particle that it represents
is short and the momentum and kinetic energy are high. This is characteristic of a
high-energy state. Thus, we expect the lowest energy states to have the longest de
Broglie wavelengths and their eigenfunctions to have the gentlest curvatures. In
such a case the wave function will not go through zero (a node) except at ±∞ so
the lowest state, the ground state, will have no nodes. The first excited state, having
slightly higher energy, has one node, and so on. In essence, we are fitting de Broglie
waves into the region of space that is dictated by the potential energy function. In
this sense the ground state is the fundamental and the first excited state the first
overtone.

There is still more that we can learn from Equation 2.42. Figure 2.4 shows a
sketch of a fictitious potential energy curve.

The horizontal line represents E , the TME of a particle. Let us temporarily as-
sume classical motion so that E can take on any value as determined by the initial
conditions. Because U (x) (in the illustration) extends to values higher than E , the
motion will be bound. The limits of this motion will be xc1 and xc2. These points
are known as classical turning points. At these points the particle has zero kinetic
energy and it turns around. Classically, the particle cannot move beyond the clas-
sical turning points because this would require a negative kinetic energy and, thus,
an imaginary speed. Nevertheless, quantum mechanics, being the contrary branch
of physics that it is, permits motion into this “classically forbidden region.” Let us

Fig. 2.4 A hypothetical
potential energy curve with a
presumed total mechanical
energy (TME) showing the
classical turning points xc1

and xc2
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examine the nature of ψ (x) in both the classically allowed and forbidden regions of
space.

In the classically allowed region E is always greater than U (x) so the the quan-
tity in square brackets in Equation 2.42 is necessarily positive. Thus, if ψ (x) is
positive, the second derivative is negative. On the other hand, if ψ (x) is nega-
tive, then d2ψ (x) /dx2 > 0. The consequence of this is that, in the classically
allowed region, the wave function always curves toward the x-axis as illustrated
in Fig. 2.5 where we have superposed a presumed wave function on the potential
function of Fig. 2.4 using the line representing the TME as the zero of ψ (x). Thus,
the second derivative is shown to be positive on the left-hand side where ψ (x) is
negative and negative on the right-hand side where it is positive. At the xc2, where
the wave function crosses into the classically forbidden region, the wave function
undergoes an inflection point and the second derivative changes from negative to
positive.

These characteristics of the second derivative are typical of sinusoidal functions
for the classically allowed region and exponentially decaying functions for the for-
bidden regions. Indeed, the wave functions in the forbidden regions must decrease
as x → ±∞ in order for the wave function to be normalizable, as it must be to
correctly describe a bound state.

There is yet another bit of general information that can be obtained in certain
cases from the TISE equation. Let us make the assumption that the potential function
is an even function so that U (x) = U (−x). Recall that functions may have definite
parity. That is, they may be even or they may be odd. They may also be neither. To
check the parity of a function f (x) simply let x → −x . If f (x) has definite parity,
then one of the conditions

f (x) = f (−x) even

f (x) = − f (x) odd (2.43)

will prevail. An easy way to think of these functions is that even functions are sym-
metric with respect to the ordinate, while odd functions are symmetric with respect
to the origin as illustrated in Fig. 2.6.

We let x → −x in the TISE, Equation 2.25 with the condition that U (x) =
U (−x) and obtain

Fig. 2.5 A hypothetical wave
function sketched on the
potential curve shown in
Fig. 2.4. The signs of the
second derivative of the wave
function, the curvature, in
different regions are
displayed; inflection points
are indicated by solid circles
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Fig. 2.6 Even and odd
functions of x , f (x)

[
− �

2

2m

d2

dx2
+ U (x)

]
ψn (−x) = Eψn (−x) (2.44)

where we have used the subscripts on the wave function to emphasize that they are
eigenfunctions. Clearly ψn (−x) and ψn (x) are solutions of the same TISE, and,
importantly, have the same eigenvalue En . Because ψn (−x) and ψn (x) have the
same eigenvalue, they can differ only by a constant. That is,

ψn (−x) = βψn (x) (2.45)

We can, however, change the sign of x again so that

ψn (x) = βψn (−x)

= β [βψn (x)]

= β2ψn (x) (2.46)

from which it is clear that β = ±1. The conclusion is, therefore, that in the not so
special case in which the potential energy is an even function, the eigenfunctions of
the TISE have definite parity. That is, if U (x) = U (−x), then the eigenfunctions
ψn (x) are such that they have definite parity, ψn (x) = ±ψn (−x). We note that the
ground state must have no nodes so it must have even parity.

2.10 Retrospective

The statistical nature of the quantum description of matter is the most important
distinction between quantum physics and classical physics. The concept of a wave
function from which all allowable information can be extracted is new to most stu-
dents and the idea that probabilities, averages, and other statistical quantities must be
employed to describe a physical system is novel. The Schrödinger equation, which
is the equation of motion for the wave function, incorporates the Planck relation
and the de Broglie wavelength, neither of which have classical analogs. Thus, one
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can, in principle, find the wave function for a given set of conditions. But, what is
this wave function? It isn’t something that we can measure. Obviously though, it is
important. From our current perspective, the perspective that the wave function is a
solution to the TDSE and is a function of position and time, we must regard it as
a function, such that when its absolute square is taken, it yields the probability of
finding the particle between x and x + dx during the time interval between t and
t + dt . We can say no more. This is, however, a great deal—quantum mechanically
speaking. It should thus be borne in mind when going through the mathematical
gymnastics required to solve the TDSE that we ultimately seek these probabilities.

Problems

1. A particle of mass m that is confined in a potential well is known to be in an
eigenstate having eigenfunction ψ (x) = Ae−α2 x2/2 and energy (α�)2 / (2m).

(a) Find the potential energy function U (x) that confines the particle.
(b) What is the force that confines the particle?
(c) Find the value of the constant A that is required to normalize this eigen-

function.

2. The normalized wave function of a particle of mass m is given by

� (x, t) =
√

α

π1/4
e−α2 x2/2ei(kx−ωt)

(a) What is the probability of finding the particle between x and x + dx at
time t?

(b) What is the probability of finding the particle in the range −∞ < x < ∞?

3. Prove that for bound states in one-dimension the energy eigenfunctions are non-
degenerate. Note that it is crucial that this proof applies only to one-dimension
and to bound states.

4. A particle is represented by the wave function ψ (x) = Aei(kx−ωt) where k =
p/� = 2π/λ where λ is the de Broglie wavelength and p is the momentum.

(a) Calculate the probability current density j (x, t).
(b) The particle encounters a rise in potential energy that causes p to decrease

by a factor of 2. Find the resulting change in amplitude of the wave after
the encounter.

5. Six potential wells with possible wave functions ψ (x) sketched on the wells
are shown. The dashed lines are located at the energy of the state that ψ (x) is
intended to represent. The dashed lines also represent ψ (x) = 0. Which ψ (x)
are acceptable wave functions and which are unacceptable? Give reasons.
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Potential wells and possible wave functions for Problem 5

6. Assume that the TISE has been solved for a potential energy function that sup-
ports bound states and the orthonormal energy eigenfunctions are denoted by
ψn (x) with corresponding energy eigenvalues En . A large number of energy
measurements are made, but only three different values of the energy are ac-
tually observed, E1, E2, and E3. The ratio of occurrences of these values is
(in order) 3 : 4 : 5.

(a) What is the normalized wave function � (x, 0) at t = 0?
(b) What is the normalized wave function � (x, t)?
(c) What is the expectation value of the energy at t = 0?
(d) What is the expectation value of the energy for t > 0?

7. A free particle having wave number kI is traveling in the +x direction when
it encounters a sudden change in the potential energy to some constant lower
value. After a finite distance the potential energy increases to its original value.
Sketch the wave function that represents this particle in all three regions of
space. Pay particular attention to the de Broglie wavelengths in each region.
Note the properties of this wave function such as amplitude, continuity, and
derivatives.

8. A particle of mass m is subjected to a potential energy such that at t = 0 the
wave function that describes the particle is given by

� (x, 0) =
[√

2

3
ψ1 (x) +

√
6

3
ψ2 (x) + 1

3
ψ3 (x)

]

where the ψn (x) are eigenfunctions of the Hamiltonian Ĥ , each of which has
energy eigenvalue − (

1/n2
)

E0 where E0 is a positive constant.

(a) If an energy measurement is made, what are the possible results of the
measurement?

(b) What is the probability of measuring each of these energies?
(c) What is the expectation value of the energy?
(d) Suppose there is another physical quantity that may be measured, a quan-

tity that is represented mathematically by Q. Assume that the ψn (x) are
also eigenfunctions of the operator that represents this quantity, Q̂, with
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eigenvalues nQ0. If the energy is measured first and found to be − (1/9) E0

and then a measurement of Q is made, what will be the value of Q that is
measured?

9. A one-dimensional potential energy function is given in a.u. by

U (x) = ∞ x ≤ 0

= − 1

x
x > 0

(a) Sketch the potential energy. Is it possible that this potential will support
bound states?

(b) Only one of the wave functions listed below is the eigenfunction that rep-
resents the ground state. Which one?

ψ1 (x) = Ae−αx ; ψ2 (x) = Axe−αx

ψ3 (x) = Ae−α2 x2
; ψ4 (x) = A

(
x − 2x2

)
e−α2 x2

(c) What is the ground state energy in a.u.?
(d) What is 〈x〉 for the ground state?


